1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 
27 #define DEBUG_TYPE "legalizer"
28 
29 using namespace llvm;
30 using namespace LegalizeActions;
31 
32 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
33 ///
34 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
35 /// with any leftover piece as type \p LeftoverTy
36 ///
37 /// Returns -1 in the first element of the pair if the breakdown is not
38 /// satisfiable.
39 static std::pair<int, int>
40 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
41   assert(!LeftoverTy.isValid() && "this is an out argument");
42 
43   unsigned Size = OrigTy.getSizeInBits();
44   unsigned NarrowSize = NarrowTy.getSizeInBits();
45   unsigned NumParts = Size / NarrowSize;
46   unsigned LeftoverSize = Size - NumParts * NarrowSize;
47   assert(Size > NarrowSize);
48 
49   if (LeftoverSize == 0)
50     return {NumParts, 0};
51 
52   if (NarrowTy.isVector()) {
53     unsigned EltSize = OrigTy.getScalarSizeInBits();
54     if (LeftoverSize % EltSize != 0)
55       return {-1, -1};
56     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
57   } else {
58     LeftoverTy = LLT::scalar(LeftoverSize);
59   }
60 
61   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
62   return std::make_pair(NumParts, NumLeftover);
63 }
64 
65 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
66                                  GISelChangeObserver &Observer,
67                                  MachineIRBuilder &Builder)
68     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
69       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
70   MIRBuilder.setMF(MF);
71   MIRBuilder.setChangeObserver(Observer);
72 }
73 
74 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
75                                  GISelChangeObserver &Observer,
76                                  MachineIRBuilder &B)
77     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
78   MIRBuilder.setMF(MF);
79   MIRBuilder.setChangeObserver(Observer);
80 }
81 LegalizerHelper::LegalizeResult
82 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
83   LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
84 
85   auto Step = LI.getAction(MI, MRI);
86   switch (Step.Action) {
87   case Legal:
88     LLVM_DEBUG(dbgs() << ".. Already legal\n");
89     return AlreadyLegal;
90   case Libcall:
91     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
92     return libcall(MI);
93   case NarrowScalar:
94     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
95     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
96   case WidenScalar:
97     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
98     return widenScalar(MI, Step.TypeIdx, Step.NewType);
99   case Lower:
100     LLVM_DEBUG(dbgs() << ".. Lower\n");
101     return lower(MI, Step.TypeIdx, Step.NewType);
102   case FewerElements:
103     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
104     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
105   case MoreElements:
106     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
107     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
108   case Custom:
109     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
110     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
111                                                             : UnableToLegalize;
112   default:
113     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
114     return UnableToLegalize;
115   }
116 }
117 
118 void LegalizerHelper::extractParts(unsigned Reg, LLT Ty, int NumParts,
119                                    SmallVectorImpl<unsigned> &VRegs) {
120   for (int i = 0; i < NumParts; ++i)
121     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
122   MIRBuilder.buildUnmerge(VRegs, Reg);
123 }
124 
125 bool LegalizerHelper::extractParts(unsigned Reg, LLT RegTy,
126                                    LLT MainTy, LLT &LeftoverTy,
127                                    SmallVectorImpl<unsigned> &VRegs,
128                                    SmallVectorImpl<unsigned> &LeftoverRegs) {
129   assert(!LeftoverTy.isValid() && "this is an out argument");
130 
131   unsigned RegSize = RegTy.getSizeInBits();
132   unsigned MainSize = MainTy.getSizeInBits();
133   unsigned NumParts = RegSize / MainSize;
134   unsigned LeftoverSize = RegSize - NumParts * MainSize;
135 
136   // Use an unmerge when possible.
137   if (LeftoverSize == 0) {
138     for (unsigned I = 0; I < NumParts; ++I)
139       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
140     MIRBuilder.buildUnmerge(VRegs, Reg);
141     return true;
142   }
143 
144   if (MainTy.isVector()) {
145     unsigned EltSize = MainTy.getScalarSizeInBits();
146     if (LeftoverSize % EltSize != 0)
147       return false;
148     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
149   } else {
150     LeftoverTy = LLT::scalar(LeftoverSize);
151   }
152 
153   // For irregular sizes, extract the individual parts.
154   for (unsigned I = 0; I != NumParts; ++I) {
155     unsigned NewReg = MRI.createGenericVirtualRegister(MainTy);
156     VRegs.push_back(NewReg);
157     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
158   }
159 
160   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
161        Offset += LeftoverSize) {
162     unsigned NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
163     LeftoverRegs.push_back(NewReg);
164     MIRBuilder.buildExtract(NewReg, Reg, Offset);
165   }
166 
167   return true;
168 }
169 
170 void LegalizerHelper::insertParts(unsigned DstReg,
171                                   LLT ResultTy, LLT PartTy,
172                                   ArrayRef<unsigned> PartRegs,
173                                   LLT LeftoverTy,
174                                   ArrayRef<unsigned> LeftoverRegs) {
175   if (!LeftoverTy.isValid()) {
176     assert(LeftoverRegs.empty());
177 
178     if (!ResultTy.isVector()) {
179       MIRBuilder.buildMerge(DstReg, PartRegs);
180       return;
181     }
182 
183     if (PartTy.isVector())
184       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
185     else
186       MIRBuilder.buildBuildVector(DstReg, PartRegs);
187     return;
188   }
189 
190   unsigned PartSize = PartTy.getSizeInBits();
191   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
192 
193   unsigned CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
194   MIRBuilder.buildUndef(CurResultReg);
195 
196   unsigned Offset = 0;
197   for (unsigned PartReg : PartRegs) {
198     unsigned NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
199     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
200     CurResultReg = NewResultReg;
201     Offset += PartSize;
202   }
203 
204   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
205     // Use the original output register for the final insert to avoid a copy.
206     unsigned NewResultReg = (I + 1 == E) ?
207       DstReg : MRI.createGenericVirtualRegister(ResultTy);
208 
209     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
210     CurResultReg = NewResultReg;
211     Offset += LeftoverPartSize;
212   }
213 }
214 
215 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
216   switch (Opcode) {
217   case TargetOpcode::G_SDIV:
218     assert((Size == 32 || Size == 64) && "Unsupported size");
219     return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32;
220   case TargetOpcode::G_UDIV:
221     assert((Size == 32 || Size == 64) && "Unsupported size");
222     return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32;
223   case TargetOpcode::G_SREM:
224     assert((Size == 32 || Size == 64) && "Unsupported size");
225     return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32;
226   case TargetOpcode::G_UREM:
227     assert((Size == 32 || Size == 64) && "Unsupported size");
228     return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32;
229   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
230     assert(Size == 32 && "Unsupported size");
231     return RTLIB::CTLZ_I32;
232   case TargetOpcode::G_FADD:
233     assert((Size == 32 || Size == 64) && "Unsupported size");
234     return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32;
235   case TargetOpcode::G_FSUB:
236     assert((Size == 32 || Size == 64) && "Unsupported size");
237     return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32;
238   case TargetOpcode::G_FMUL:
239     assert((Size == 32 || Size == 64) && "Unsupported size");
240     return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32;
241   case TargetOpcode::G_FDIV:
242     assert((Size == 32 || Size == 64) && "Unsupported size");
243     return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32;
244   case TargetOpcode::G_FEXP:
245     assert((Size == 32 || Size == 64) && "Unsupported size");
246     return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32;
247   case TargetOpcode::G_FEXP2:
248     assert((Size == 32 || Size == 64) && "Unsupported size");
249     return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32;
250   case TargetOpcode::G_FREM:
251     return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32;
252   case TargetOpcode::G_FPOW:
253     return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32;
254   case TargetOpcode::G_FMA:
255     assert((Size == 32 || Size == 64) && "Unsupported size");
256     return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32;
257   case TargetOpcode::G_FSIN:
258     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
259     return Size == 128 ? RTLIB::SIN_F128
260                        : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32;
261   case TargetOpcode::G_FCOS:
262     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
263     return Size == 128 ? RTLIB::COS_F128
264                        : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32;
265   case TargetOpcode::G_FLOG10:
266     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
267     return Size == 128 ? RTLIB::LOG10_F128
268                        : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32;
269   case TargetOpcode::G_FLOG:
270     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
271     return Size == 128 ? RTLIB::LOG_F128
272                        : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32;
273   case TargetOpcode::G_FLOG2:
274     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
275     return Size == 128 ? RTLIB::LOG2_F128
276                        : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32;
277   case TargetOpcode::G_FCEIL:
278     assert((Size == 32 || Size == 64) && "Unsupported size");
279     return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32;
280   case TargetOpcode::G_FFLOOR:
281     assert((Size == 32 || Size == 64) && "Unsupported size");
282     return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32;
283   }
284   llvm_unreachable("Unknown libcall function");
285 }
286 
287 LegalizerHelper::LegalizeResult
288 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
289                     const CallLowering::ArgInfo &Result,
290                     ArrayRef<CallLowering::ArgInfo> Args) {
291   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
292   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
293   const char *Name = TLI.getLibcallName(Libcall);
294 
295   MIRBuilder.getMF().getFrameInfo().setHasCalls(true);
296   if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall),
297                      MachineOperand::CreateES(Name), Result, Args))
298     return LegalizerHelper::UnableToLegalize;
299 
300   return LegalizerHelper::Legalized;
301 }
302 
303 // Useful for libcalls where all operands have the same type.
304 static LegalizerHelper::LegalizeResult
305 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
306               Type *OpType) {
307   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
308 
309   SmallVector<CallLowering::ArgInfo, 3> Args;
310   for (unsigned i = 1; i < MI.getNumOperands(); i++)
311     Args.push_back({MI.getOperand(i).getReg(), OpType});
312   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
313                        Args);
314 }
315 
316 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
317                                        Type *FromType) {
318   auto ToMVT = MVT::getVT(ToType);
319   auto FromMVT = MVT::getVT(FromType);
320 
321   switch (Opcode) {
322   case TargetOpcode::G_FPEXT:
323     return RTLIB::getFPEXT(FromMVT, ToMVT);
324   case TargetOpcode::G_FPTRUNC:
325     return RTLIB::getFPROUND(FromMVT, ToMVT);
326   case TargetOpcode::G_FPTOSI:
327     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
328   case TargetOpcode::G_FPTOUI:
329     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
330   case TargetOpcode::G_SITOFP:
331     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
332   case TargetOpcode::G_UITOFP:
333     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
334   }
335   llvm_unreachable("Unsupported libcall function");
336 }
337 
338 static LegalizerHelper::LegalizeResult
339 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
340                   Type *FromType) {
341   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
342   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
343                        {{MI.getOperand(1).getReg(), FromType}});
344 }
345 
346 LegalizerHelper::LegalizeResult
347 LegalizerHelper::libcall(MachineInstr &MI) {
348   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
349   unsigned Size = LLTy.getSizeInBits();
350   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
351 
352   MIRBuilder.setInstr(MI);
353 
354   switch (MI.getOpcode()) {
355   default:
356     return UnableToLegalize;
357   case TargetOpcode::G_SDIV:
358   case TargetOpcode::G_UDIV:
359   case TargetOpcode::G_SREM:
360   case TargetOpcode::G_UREM:
361   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
362     Type *HLTy = IntegerType::get(Ctx, Size);
363     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
364     if (Status != Legalized)
365       return Status;
366     break;
367   }
368   case TargetOpcode::G_FADD:
369   case TargetOpcode::G_FSUB:
370   case TargetOpcode::G_FMUL:
371   case TargetOpcode::G_FDIV:
372   case TargetOpcode::G_FMA:
373   case TargetOpcode::G_FPOW:
374   case TargetOpcode::G_FREM:
375   case TargetOpcode::G_FCOS:
376   case TargetOpcode::G_FSIN:
377   case TargetOpcode::G_FLOG10:
378   case TargetOpcode::G_FLOG:
379   case TargetOpcode::G_FLOG2:
380   case TargetOpcode::G_FEXP:
381   case TargetOpcode::G_FEXP2:
382   case TargetOpcode::G_FCEIL:
383   case TargetOpcode::G_FFLOOR: {
384     if (Size > 64) {
385       LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n");
386       return UnableToLegalize;
387     }
388     Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx);
389     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
390     if (Status != Legalized)
391       return Status;
392     break;
393   }
394   case TargetOpcode::G_FPEXT: {
395     // FIXME: Support other floating point types (half, fp128 etc)
396     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
397     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
398     if (ToSize != 64 || FromSize != 32)
399       return UnableToLegalize;
400     LegalizeResult Status = conversionLibcall(
401         MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx));
402     if (Status != Legalized)
403       return Status;
404     break;
405   }
406   case TargetOpcode::G_FPTRUNC: {
407     // FIXME: Support other floating point types (half, fp128 etc)
408     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
409     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
410     if (ToSize != 32 || FromSize != 64)
411       return UnableToLegalize;
412     LegalizeResult Status = conversionLibcall(
413         MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx));
414     if (Status != Legalized)
415       return Status;
416     break;
417   }
418   case TargetOpcode::G_FPTOSI:
419   case TargetOpcode::G_FPTOUI: {
420     // FIXME: Support other types
421     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
422     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
423     if (ToSize != 32 || (FromSize != 32 && FromSize != 64))
424       return UnableToLegalize;
425     LegalizeResult Status = conversionLibcall(
426         MI, MIRBuilder, Type::getInt32Ty(Ctx),
427         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
428     if (Status != Legalized)
429       return Status;
430     break;
431   }
432   case TargetOpcode::G_SITOFP:
433   case TargetOpcode::G_UITOFP: {
434     // FIXME: Support other types
435     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
436     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
437     if (FromSize != 32 || (ToSize != 32 && ToSize != 64))
438       return UnableToLegalize;
439     LegalizeResult Status = conversionLibcall(
440         MI, MIRBuilder,
441         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
442         Type::getInt32Ty(Ctx));
443     if (Status != Legalized)
444       return Status;
445     break;
446   }
447   }
448 
449   MI.eraseFromParent();
450   return Legalized;
451 }
452 
453 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
454                                                               unsigned TypeIdx,
455                                                               LLT NarrowTy) {
456   MIRBuilder.setInstr(MI);
457 
458   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
459   uint64_t NarrowSize = NarrowTy.getSizeInBits();
460 
461   switch (MI.getOpcode()) {
462   default:
463     return UnableToLegalize;
464   case TargetOpcode::G_IMPLICIT_DEF: {
465     // FIXME: add support for when SizeOp0 isn't an exact multiple of
466     // NarrowSize.
467     if (SizeOp0 % NarrowSize != 0)
468       return UnableToLegalize;
469     int NumParts = SizeOp0 / NarrowSize;
470 
471     SmallVector<unsigned, 2> DstRegs;
472     for (int i = 0; i < NumParts; ++i)
473       DstRegs.push_back(
474           MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg());
475 
476     unsigned DstReg = MI.getOperand(0).getReg();
477     if(MRI.getType(DstReg).isVector())
478       MIRBuilder.buildBuildVector(DstReg, DstRegs);
479     else
480       MIRBuilder.buildMerge(DstReg, DstRegs);
481     MI.eraseFromParent();
482     return Legalized;
483   }
484   case TargetOpcode::G_CONSTANT: {
485     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
486     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
487     unsigned TotalSize = Ty.getSizeInBits();
488     unsigned NarrowSize = NarrowTy.getSizeInBits();
489     int NumParts = TotalSize / NarrowSize;
490 
491     SmallVector<unsigned, 4> PartRegs;
492     for (int I = 0; I != NumParts; ++I) {
493       unsigned Offset = I * NarrowSize;
494       auto K = MIRBuilder.buildConstant(NarrowTy,
495                                         Val.lshr(Offset).trunc(NarrowSize));
496       PartRegs.push_back(K.getReg(0));
497     }
498 
499     LLT LeftoverTy;
500     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
501     SmallVector<unsigned, 1> LeftoverRegs;
502     if (LeftoverBits != 0) {
503       LeftoverTy = LLT::scalar(LeftoverBits);
504       auto K = MIRBuilder.buildConstant(
505         LeftoverTy,
506         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
507       LeftoverRegs.push_back(K.getReg(0));
508     }
509 
510     insertParts(MI.getOperand(0).getReg(),
511                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
512 
513     MI.eraseFromParent();
514     return Legalized;
515   }
516   case TargetOpcode::G_ADD: {
517     // FIXME: add support for when SizeOp0 isn't an exact multiple of
518     // NarrowSize.
519     if (SizeOp0 % NarrowSize != 0)
520       return UnableToLegalize;
521     // Expand in terms of carry-setting/consuming G_ADDE instructions.
522     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
523 
524     SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs;
525     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
526     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
527 
528     unsigned CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1));
529     MIRBuilder.buildConstant(CarryIn, 0);
530 
531     for (int i = 0; i < NumParts; ++i) {
532       unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
533       unsigned CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
534 
535       MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
536                             Src2Regs[i], CarryIn);
537 
538       DstRegs.push_back(DstReg);
539       CarryIn = CarryOut;
540     }
541     unsigned DstReg = MI.getOperand(0).getReg();
542     if(MRI.getType(DstReg).isVector())
543       MIRBuilder.buildBuildVector(DstReg, DstRegs);
544     else
545       MIRBuilder.buildMerge(DstReg, DstRegs);
546     MI.eraseFromParent();
547     return Legalized;
548   }
549   case TargetOpcode::G_SUB: {
550     // FIXME: add support for when SizeOp0 isn't an exact multiple of
551     // NarrowSize.
552     if (SizeOp0 % NarrowSize != 0)
553       return UnableToLegalize;
554 
555     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
556 
557     SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs;
558     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
559     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
560 
561     unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
562     unsigned BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
563     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
564                           {Src1Regs[0], Src2Regs[0]});
565     DstRegs.push_back(DstReg);
566     unsigned BorrowIn = BorrowOut;
567     for (int i = 1; i < NumParts; ++i) {
568       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
569       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
570 
571       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
572                             {Src1Regs[i], Src2Regs[i], BorrowIn});
573 
574       DstRegs.push_back(DstReg);
575       BorrowIn = BorrowOut;
576     }
577     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs);
578     MI.eraseFromParent();
579     return Legalized;
580   }
581   case TargetOpcode::G_MUL:
582   case TargetOpcode::G_UMULH:
583     return narrowScalarMul(MI, NarrowTy);
584   case TargetOpcode::G_EXTRACT:
585     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
586   case TargetOpcode::G_INSERT:
587     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
588   case TargetOpcode::G_LOAD: {
589     const auto &MMO = **MI.memoperands_begin();
590     unsigned DstReg = MI.getOperand(0).getReg();
591     LLT DstTy = MRI.getType(DstReg);
592     if (DstTy.isVector())
593       return UnableToLegalize;
594 
595     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
596       unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
597       auto &MMO = **MI.memoperands_begin();
598       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO);
599       MIRBuilder.buildAnyExt(DstReg, TmpReg);
600       MI.eraseFromParent();
601       return Legalized;
602     }
603 
604     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
605   }
606   case TargetOpcode::G_ZEXTLOAD:
607   case TargetOpcode::G_SEXTLOAD: {
608     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
609     unsigned DstReg = MI.getOperand(0).getReg();
610     unsigned PtrReg = MI.getOperand(1).getReg();
611 
612     unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
613     auto &MMO = **MI.memoperands_begin();
614     if (MMO.getSizeInBits() == NarrowSize) {
615       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
616     } else {
617       unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD
618         : TargetOpcode::G_SEXTLOAD;
619       MIRBuilder.buildInstr(ExtLoad)
620         .addDef(TmpReg)
621         .addUse(PtrReg)
622         .addMemOperand(&MMO);
623     }
624 
625     if (ZExt)
626       MIRBuilder.buildZExt(DstReg, TmpReg);
627     else
628       MIRBuilder.buildSExt(DstReg, TmpReg);
629 
630     MI.eraseFromParent();
631     return Legalized;
632   }
633   case TargetOpcode::G_STORE: {
634     const auto &MMO = **MI.memoperands_begin();
635 
636     unsigned SrcReg = MI.getOperand(0).getReg();
637     LLT SrcTy = MRI.getType(SrcReg);
638     if (SrcTy.isVector())
639       return UnableToLegalize;
640 
641     int NumParts = SizeOp0 / NarrowSize;
642     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
643     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
644     if (SrcTy.isVector() && LeftoverBits != 0)
645       return UnableToLegalize;
646 
647     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
648       unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
649       auto &MMO = **MI.memoperands_begin();
650       MIRBuilder.buildTrunc(TmpReg, SrcReg);
651       MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO);
652       MI.eraseFromParent();
653       return Legalized;
654     }
655 
656     return reduceLoadStoreWidth(MI, 0, NarrowTy);
657   }
658   case TargetOpcode::G_SELECT:
659     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
660   case TargetOpcode::G_AND:
661   case TargetOpcode::G_OR:
662   case TargetOpcode::G_XOR: {
663     // Legalize bitwise operation:
664     // A = BinOp<Ty> B, C
665     // into:
666     // B1, ..., BN = G_UNMERGE_VALUES B
667     // C1, ..., CN = G_UNMERGE_VALUES C
668     // A1 = BinOp<Ty/N> B1, C2
669     // ...
670     // AN = BinOp<Ty/N> BN, CN
671     // A = G_MERGE_VALUES A1, ..., AN
672     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
673   }
674   case TargetOpcode::G_SHL:
675   case TargetOpcode::G_LSHR:
676   case TargetOpcode::G_ASHR:
677     return narrowScalarShift(MI, TypeIdx, NarrowTy);
678   case TargetOpcode::G_CTLZ:
679   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
680   case TargetOpcode::G_CTTZ:
681   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
682   case TargetOpcode::G_CTPOP:
683     if (TypeIdx != 0)
684       return UnableToLegalize; // TODO
685 
686     Observer.changingInstr(MI);
687     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
688     Observer.changedInstr(MI);
689     return Legalized;
690   case TargetOpcode::G_INTTOPTR:
691     if (TypeIdx != 1)
692       return UnableToLegalize;
693 
694     Observer.changingInstr(MI);
695     narrowScalarSrc(MI, NarrowTy, 1);
696     Observer.changedInstr(MI);
697     return Legalized;
698   case TargetOpcode::G_PTRTOINT:
699     if (TypeIdx != 0)
700       return UnableToLegalize;
701 
702     Observer.changingInstr(MI);
703     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
704     Observer.changedInstr(MI);
705     return Legalized;
706   }
707 }
708 
709 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
710                                      unsigned OpIdx, unsigned ExtOpcode) {
711   MachineOperand &MO = MI.getOperand(OpIdx);
712   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()});
713   MO.setReg(ExtB->getOperand(0).getReg());
714 }
715 
716 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
717                                       unsigned OpIdx) {
718   MachineOperand &MO = MI.getOperand(OpIdx);
719   auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy},
720                                     {MO.getReg()});
721   MO.setReg(ExtB->getOperand(0).getReg());
722 }
723 
724 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
725                                      unsigned OpIdx, unsigned TruncOpcode) {
726   MachineOperand &MO = MI.getOperand(OpIdx);
727   unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
728   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
729   MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt});
730   MO.setReg(DstExt);
731 }
732 
733 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
734                                       unsigned OpIdx, unsigned ExtOpcode) {
735   MachineOperand &MO = MI.getOperand(OpIdx);
736   unsigned DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
737   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
738   MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc});
739   MO.setReg(DstTrunc);
740 }
741 
742 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
743                                             unsigned OpIdx) {
744   MachineOperand &MO = MI.getOperand(OpIdx);
745   unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
746   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
747   MIRBuilder.buildExtract(MO.getReg(), DstExt, 0);
748   MO.setReg(DstExt);
749 }
750 
751 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
752                                             unsigned OpIdx) {
753   MachineOperand &MO = MI.getOperand(OpIdx);
754 
755   LLT OldTy = MRI.getType(MO.getReg());
756   unsigned OldElts = OldTy.getNumElements();
757   unsigned NewElts = MoreTy.getNumElements();
758 
759   unsigned NumParts = NewElts / OldElts;
760 
761   // Use concat_vectors if the result is a multiple of the number of elements.
762   if (NumParts * OldElts == NewElts) {
763     SmallVector<unsigned, 8> Parts;
764     Parts.push_back(MO.getReg());
765 
766     unsigned ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
767     for (unsigned I = 1; I != NumParts; ++I)
768       Parts.push_back(ImpDef);
769 
770     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
771     MO.setReg(Concat.getReg(0));
772     return;
773   }
774 
775   unsigned MoreReg = MRI.createGenericVirtualRegister(MoreTy);
776   unsigned ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
777   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
778   MO.setReg(MoreReg);
779 }
780 
781 LegalizerHelper::LegalizeResult
782 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
783                                         LLT WideTy) {
784   if (TypeIdx != 1)
785     return UnableToLegalize;
786 
787   unsigned DstReg = MI.getOperand(0).getReg();
788   LLT DstTy = MRI.getType(DstReg);
789   if (!DstTy.isScalar())
790     return UnableToLegalize;
791 
792   unsigned NumOps = MI.getNumOperands();
793   unsigned NumSrc = MI.getNumOperands() - 1;
794   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
795 
796   unsigned Src1 = MI.getOperand(1).getReg();
797   unsigned ResultReg = MIRBuilder.buildZExt(DstTy, Src1)->getOperand(0).getReg();
798 
799   for (unsigned I = 2; I != NumOps; ++I) {
800     const unsigned Offset = (I - 1) * PartSize;
801 
802     unsigned SrcReg = MI.getOperand(I).getReg();
803     assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
804 
805     auto ZextInput = MIRBuilder.buildZExt(DstTy, SrcReg);
806 
807     unsigned NextResult = I + 1 == NumOps ? DstReg :
808       MRI.createGenericVirtualRegister(DstTy);
809 
810     auto ShiftAmt = MIRBuilder.buildConstant(DstTy, Offset);
811     auto Shl = MIRBuilder.buildShl(DstTy, ZextInput, ShiftAmt);
812     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
813     ResultReg = NextResult;
814   }
815 
816   MI.eraseFromParent();
817   return Legalized;
818 }
819 
820 LegalizerHelper::LegalizeResult
821 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
822                                           LLT WideTy) {
823   if (TypeIdx != 0)
824     return UnableToLegalize;
825 
826   unsigned NumDst = MI.getNumOperands() - 1;
827   unsigned SrcReg = MI.getOperand(NumDst).getReg();
828   LLT SrcTy = MRI.getType(SrcReg);
829   if (!SrcTy.isScalar())
830     return UnableToLegalize;
831 
832   unsigned Dst0Reg = MI.getOperand(0).getReg();
833   LLT DstTy = MRI.getType(Dst0Reg);
834   if (!DstTy.isScalar())
835     return UnableToLegalize;
836 
837   unsigned NewSrcSize = NumDst * WideTy.getSizeInBits();
838   LLT NewSrcTy = LLT::scalar(NewSrcSize);
839   unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits();
840 
841   auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg);
842 
843   for (unsigned I = 1; I != NumDst; ++I) {
844     auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I);
845     auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt);
846     WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl);
847   }
848 
849   Observer.changingInstr(MI);
850 
851   MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg());
852   for (unsigned I = 0; I != NumDst; ++I)
853     widenScalarDst(MI, WideTy, I);
854 
855   Observer.changedInstr(MI);
856 
857   return Legalized;
858 }
859 
860 LegalizerHelper::LegalizeResult
861 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
862                                     LLT WideTy) {
863   unsigned DstReg = MI.getOperand(0).getReg();
864   unsigned SrcReg = MI.getOperand(1).getReg();
865   LLT SrcTy = MRI.getType(SrcReg);
866 
867   LLT DstTy = MRI.getType(DstReg);
868   unsigned Offset = MI.getOperand(2).getImm();
869 
870   if (TypeIdx == 0) {
871     if (SrcTy.isVector() || DstTy.isVector())
872       return UnableToLegalize;
873 
874     SrcOp Src(SrcReg);
875     if (SrcTy.isPointer()) {
876       // Extracts from pointers can be handled only if they are really just
877       // simple integers.
878       const DataLayout &DL = MIRBuilder.getDataLayout();
879       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
880         return UnableToLegalize;
881 
882       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
883       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
884       SrcTy = SrcAsIntTy;
885     }
886 
887     if (DstTy.isPointer())
888       return UnableToLegalize;
889 
890     if (Offset == 0) {
891       // Avoid a shift in the degenerate case.
892       MIRBuilder.buildTrunc(DstReg,
893                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
894       MI.eraseFromParent();
895       return Legalized;
896     }
897 
898     // Do a shift in the source type.
899     LLT ShiftTy = SrcTy;
900     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
901       Src = MIRBuilder.buildAnyExt(WideTy, Src);
902       ShiftTy = WideTy;
903     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
904       return UnableToLegalize;
905 
906     auto LShr = MIRBuilder.buildLShr(
907       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
908     MIRBuilder.buildTrunc(DstReg, LShr);
909     MI.eraseFromParent();
910     return Legalized;
911   }
912 
913   if (SrcTy.isScalar()) {
914     Observer.changingInstr(MI);
915     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
916     Observer.changedInstr(MI);
917     return Legalized;
918   }
919 
920   if (!SrcTy.isVector())
921     return UnableToLegalize;
922 
923   if (DstTy != SrcTy.getElementType())
924     return UnableToLegalize;
925 
926   if (Offset % SrcTy.getScalarSizeInBits() != 0)
927     return UnableToLegalize;
928 
929   Observer.changingInstr(MI);
930   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
931 
932   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
933                           Offset);
934   widenScalarDst(MI, WideTy.getScalarType(), 0);
935   Observer.changedInstr(MI);
936   return Legalized;
937 }
938 
939 LegalizerHelper::LegalizeResult
940 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
941                                    LLT WideTy) {
942   if (TypeIdx != 0)
943     return UnableToLegalize;
944   Observer.changingInstr(MI);
945   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
946   widenScalarDst(MI, WideTy);
947   Observer.changedInstr(MI);
948   return Legalized;
949 }
950 
951 LegalizerHelper::LegalizeResult
952 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
953   MIRBuilder.setInstr(MI);
954 
955   switch (MI.getOpcode()) {
956   default:
957     return UnableToLegalize;
958   case TargetOpcode::G_EXTRACT:
959     return widenScalarExtract(MI, TypeIdx, WideTy);
960   case TargetOpcode::G_INSERT:
961     return widenScalarInsert(MI, TypeIdx, WideTy);
962   case TargetOpcode::G_MERGE_VALUES:
963     return widenScalarMergeValues(MI, TypeIdx, WideTy);
964   case TargetOpcode::G_UNMERGE_VALUES:
965     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
966   case TargetOpcode::G_UADDO:
967   case TargetOpcode::G_USUBO: {
968     if (TypeIdx == 1)
969       return UnableToLegalize; // TODO
970     auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy},
971                                          {MI.getOperand(2).getReg()});
972     auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy},
973                                          {MI.getOperand(3).getReg()});
974     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
975                           ? TargetOpcode::G_ADD
976                           : TargetOpcode::G_SUB;
977     // Do the arithmetic in the larger type.
978     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
979     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
980     APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits());
981     auto AndOp = MIRBuilder.buildInstr(
982         TargetOpcode::G_AND, {WideTy},
983         {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())});
984     // There is no overflow if the AndOp is the same as NewOp.
985     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp,
986                          AndOp);
987     // Now trunc the NewOp to the original result.
988     MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp);
989     MI.eraseFromParent();
990     return Legalized;
991   }
992   case TargetOpcode::G_CTTZ:
993   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
994   case TargetOpcode::G_CTLZ:
995   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
996   case TargetOpcode::G_CTPOP: {
997     if (TypeIdx == 0) {
998       Observer.changingInstr(MI);
999       widenScalarDst(MI, WideTy, 0);
1000       Observer.changedInstr(MI);
1001       return Legalized;
1002     }
1003 
1004     unsigned SrcReg = MI.getOperand(1).getReg();
1005 
1006     // First ZEXT the input.
1007     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1008     LLT CurTy = MRI.getType(SrcReg);
1009     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1010       // The count is the same in the larger type except if the original
1011       // value was zero.  This can be handled by setting the bit just off
1012       // the top of the original type.
1013       auto TopBit =
1014           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1015       MIBSrc = MIRBuilder.buildOr(
1016         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1017     }
1018 
1019     // Perform the operation at the larger size.
1020     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1021     // This is already the correct result for CTPOP and CTTZs
1022     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1023         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1024       // The correct result is NewOp - (Difference in widety and current ty).
1025       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1026       MIBNewOp = MIRBuilder.buildInstr(
1027           TargetOpcode::G_SUB, {WideTy},
1028           {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)});
1029     }
1030 
1031     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1032     MI.eraseFromParent();
1033     return Legalized;
1034   }
1035   case TargetOpcode::G_BSWAP: {
1036     Observer.changingInstr(MI);
1037     unsigned DstReg = MI.getOperand(0).getReg();
1038 
1039     unsigned ShrReg = MRI.createGenericVirtualRegister(WideTy);
1040     unsigned DstExt = MRI.createGenericVirtualRegister(WideTy);
1041     unsigned ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1042     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1043 
1044     MI.getOperand(0).setReg(DstExt);
1045 
1046     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1047 
1048     LLT Ty = MRI.getType(DstReg);
1049     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1050     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1051     MIRBuilder.buildInstr(TargetOpcode::G_LSHR)
1052       .addDef(ShrReg)
1053       .addUse(DstExt)
1054       .addUse(ShiftAmtReg);
1055 
1056     MIRBuilder.buildTrunc(DstReg, ShrReg);
1057     Observer.changedInstr(MI);
1058     return Legalized;
1059   }
1060   case TargetOpcode::G_ADD:
1061   case TargetOpcode::G_AND:
1062   case TargetOpcode::G_MUL:
1063   case TargetOpcode::G_OR:
1064   case TargetOpcode::G_XOR:
1065   case TargetOpcode::G_SUB:
1066     // Perform operation at larger width (any extension is fines here, high bits
1067     // don't affect the result) and then truncate the result back to the
1068     // original type.
1069     Observer.changingInstr(MI);
1070     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1071     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1072     widenScalarDst(MI, WideTy);
1073     Observer.changedInstr(MI);
1074     return Legalized;
1075 
1076   case TargetOpcode::G_SHL:
1077     Observer.changingInstr(MI);
1078 
1079     if (TypeIdx == 0) {
1080       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1081       widenScalarDst(MI, WideTy);
1082     } else {
1083       assert(TypeIdx == 1);
1084       // The "number of bits to shift" operand must preserve its value as an
1085       // unsigned integer:
1086       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1087     }
1088 
1089     Observer.changedInstr(MI);
1090     return Legalized;
1091 
1092   case TargetOpcode::G_SDIV:
1093   case TargetOpcode::G_SREM:
1094   case TargetOpcode::G_SMIN:
1095   case TargetOpcode::G_SMAX:
1096     Observer.changingInstr(MI);
1097     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1098     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1099     widenScalarDst(MI, WideTy);
1100     Observer.changedInstr(MI);
1101     return Legalized;
1102 
1103   case TargetOpcode::G_ASHR:
1104   case TargetOpcode::G_LSHR:
1105     Observer.changingInstr(MI);
1106 
1107     if (TypeIdx == 0) {
1108       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1109         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1110 
1111       widenScalarSrc(MI, WideTy, 1, CvtOp);
1112       widenScalarDst(MI, WideTy);
1113     } else {
1114       assert(TypeIdx == 1);
1115       // The "number of bits to shift" operand must preserve its value as an
1116       // unsigned integer:
1117       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1118     }
1119 
1120     Observer.changedInstr(MI);
1121     return Legalized;
1122   case TargetOpcode::G_UDIV:
1123   case TargetOpcode::G_UREM:
1124   case TargetOpcode::G_UMIN:
1125   case TargetOpcode::G_UMAX:
1126     Observer.changingInstr(MI);
1127     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1128     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1129     widenScalarDst(MI, WideTy);
1130     Observer.changedInstr(MI);
1131     return Legalized;
1132 
1133   case TargetOpcode::G_SELECT:
1134     Observer.changingInstr(MI);
1135     if (TypeIdx == 0) {
1136       // Perform operation at larger width (any extension is fine here, high
1137       // bits don't affect the result) and then truncate the result back to the
1138       // original type.
1139       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1140       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1141       widenScalarDst(MI, WideTy);
1142     } else {
1143       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1144       // Explicit extension is required here since high bits affect the result.
1145       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1146     }
1147     Observer.changedInstr(MI);
1148     return Legalized;
1149 
1150   case TargetOpcode::G_FPTOSI:
1151   case TargetOpcode::G_FPTOUI:
1152     if (TypeIdx != 0)
1153       return UnableToLegalize;
1154     Observer.changingInstr(MI);
1155     widenScalarDst(MI, WideTy);
1156     Observer.changedInstr(MI);
1157     return Legalized;
1158 
1159   case TargetOpcode::G_SITOFP:
1160     if (TypeIdx != 1)
1161       return UnableToLegalize;
1162     Observer.changingInstr(MI);
1163     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1164     Observer.changedInstr(MI);
1165     return Legalized;
1166 
1167   case TargetOpcode::G_UITOFP:
1168     if (TypeIdx != 1)
1169       return UnableToLegalize;
1170     Observer.changingInstr(MI);
1171     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1172     Observer.changedInstr(MI);
1173     return Legalized;
1174 
1175   case TargetOpcode::G_LOAD:
1176   case TargetOpcode::G_SEXTLOAD:
1177   case TargetOpcode::G_ZEXTLOAD:
1178     Observer.changingInstr(MI);
1179     widenScalarDst(MI, WideTy);
1180     Observer.changedInstr(MI);
1181     return Legalized;
1182 
1183   case TargetOpcode::G_STORE: {
1184     if (TypeIdx != 0)
1185       return UnableToLegalize;
1186 
1187     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1188     if (!isPowerOf2_32(Ty.getSizeInBits()))
1189       return UnableToLegalize;
1190 
1191     Observer.changingInstr(MI);
1192 
1193     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1194       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1195     widenScalarSrc(MI, WideTy, 0, ExtType);
1196 
1197     Observer.changedInstr(MI);
1198     return Legalized;
1199   }
1200   case TargetOpcode::G_CONSTANT: {
1201     MachineOperand &SrcMO = MI.getOperand(1);
1202     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1203     const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits());
1204     Observer.changingInstr(MI);
1205     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1206 
1207     widenScalarDst(MI, WideTy);
1208     Observer.changedInstr(MI);
1209     return Legalized;
1210   }
1211   case TargetOpcode::G_FCONSTANT: {
1212     MachineOperand &SrcMO = MI.getOperand(1);
1213     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1214     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1215     bool LosesInfo;
1216     switch (WideTy.getSizeInBits()) {
1217     case 32:
1218       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1219                   &LosesInfo);
1220       break;
1221     case 64:
1222       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1223                   &LosesInfo);
1224       break;
1225     default:
1226       return UnableToLegalize;
1227     }
1228 
1229     assert(!LosesInfo && "extend should always be lossless");
1230 
1231     Observer.changingInstr(MI);
1232     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1233 
1234     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1235     Observer.changedInstr(MI);
1236     return Legalized;
1237   }
1238   case TargetOpcode::G_IMPLICIT_DEF: {
1239     Observer.changingInstr(MI);
1240     widenScalarDst(MI, WideTy);
1241     Observer.changedInstr(MI);
1242     return Legalized;
1243   }
1244   case TargetOpcode::G_BRCOND:
1245     Observer.changingInstr(MI);
1246     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1247     Observer.changedInstr(MI);
1248     return Legalized;
1249 
1250   case TargetOpcode::G_FCMP:
1251     Observer.changingInstr(MI);
1252     if (TypeIdx == 0)
1253       widenScalarDst(MI, WideTy);
1254     else {
1255       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1256       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1257     }
1258     Observer.changedInstr(MI);
1259     return Legalized;
1260 
1261   case TargetOpcode::G_ICMP:
1262     Observer.changingInstr(MI);
1263     if (TypeIdx == 0)
1264       widenScalarDst(MI, WideTy);
1265     else {
1266       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1267                                MI.getOperand(1).getPredicate()))
1268                                ? TargetOpcode::G_SEXT
1269                                : TargetOpcode::G_ZEXT;
1270       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1271       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1272     }
1273     Observer.changedInstr(MI);
1274     return Legalized;
1275 
1276   case TargetOpcode::G_GEP:
1277     assert(TypeIdx == 1 && "unable to legalize pointer of GEP");
1278     Observer.changingInstr(MI);
1279     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1280     Observer.changedInstr(MI);
1281     return Legalized;
1282 
1283   case TargetOpcode::G_PHI: {
1284     assert(TypeIdx == 0 && "Expecting only Idx 0");
1285 
1286     Observer.changingInstr(MI);
1287     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1288       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1289       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1290       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1291     }
1292 
1293     MachineBasicBlock &MBB = *MI.getParent();
1294     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1295     widenScalarDst(MI, WideTy);
1296     Observer.changedInstr(MI);
1297     return Legalized;
1298   }
1299   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1300     if (TypeIdx == 0) {
1301       unsigned VecReg = MI.getOperand(1).getReg();
1302       LLT VecTy = MRI.getType(VecReg);
1303       Observer.changingInstr(MI);
1304 
1305       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
1306                                      WideTy.getSizeInBits()),
1307                      1, TargetOpcode::G_SEXT);
1308 
1309       widenScalarDst(MI, WideTy, 0);
1310       Observer.changedInstr(MI);
1311       return Legalized;
1312     }
1313 
1314     if (TypeIdx != 2)
1315       return UnableToLegalize;
1316     Observer.changingInstr(MI);
1317     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1318     Observer.changedInstr(MI);
1319     return Legalized;
1320   }
1321   case TargetOpcode::G_FADD:
1322   case TargetOpcode::G_FMUL:
1323   case TargetOpcode::G_FSUB:
1324   case TargetOpcode::G_FMA:
1325   case TargetOpcode::G_FNEG:
1326   case TargetOpcode::G_FABS:
1327   case TargetOpcode::G_FCANONICALIZE:
1328   case TargetOpcode::G_FDIV:
1329   case TargetOpcode::G_FREM:
1330   case TargetOpcode::G_FCEIL:
1331   case TargetOpcode::G_FFLOOR:
1332   case TargetOpcode::G_FCOS:
1333   case TargetOpcode::G_FSIN:
1334   case TargetOpcode::G_FLOG10:
1335   case TargetOpcode::G_FLOG:
1336   case TargetOpcode::G_FLOG2:
1337   case TargetOpcode::G_FRINT:
1338   case TargetOpcode::G_FNEARBYINT:
1339   case TargetOpcode::G_FSQRT:
1340   case TargetOpcode::G_FEXP:
1341   case TargetOpcode::G_FEXP2:
1342   case TargetOpcode::G_FPOW:
1343   case TargetOpcode::G_INTRINSIC_TRUNC:
1344   case TargetOpcode::G_INTRINSIC_ROUND:
1345     assert(TypeIdx == 0);
1346     Observer.changingInstr(MI);
1347 
1348     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
1349       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
1350 
1351     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1352     Observer.changedInstr(MI);
1353     return Legalized;
1354   case TargetOpcode::G_INTTOPTR:
1355     if (TypeIdx != 1)
1356       return UnableToLegalize;
1357 
1358     Observer.changingInstr(MI);
1359     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1360     Observer.changedInstr(MI);
1361     return Legalized;
1362   case TargetOpcode::G_PTRTOINT:
1363     if (TypeIdx != 0)
1364       return UnableToLegalize;
1365 
1366     Observer.changingInstr(MI);
1367     widenScalarDst(MI, WideTy, 0);
1368     Observer.changedInstr(MI);
1369     return Legalized;
1370   }
1371 }
1372 
1373 LegalizerHelper::LegalizeResult
1374 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
1375   using namespace TargetOpcode;
1376   MIRBuilder.setInstr(MI);
1377 
1378   switch(MI.getOpcode()) {
1379   default:
1380     return UnableToLegalize;
1381   case TargetOpcode::G_SREM:
1382   case TargetOpcode::G_UREM: {
1383     unsigned QuotReg = MRI.createGenericVirtualRegister(Ty);
1384     MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV)
1385         .addDef(QuotReg)
1386         .addUse(MI.getOperand(1).getReg())
1387         .addUse(MI.getOperand(2).getReg());
1388 
1389     unsigned ProdReg = MRI.createGenericVirtualRegister(Ty);
1390     MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg());
1391     MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
1392                         ProdReg);
1393     MI.eraseFromParent();
1394     return Legalized;
1395   }
1396   case TargetOpcode::G_SMULO:
1397   case TargetOpcode::G_UMULO: {
1398     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
1399     // result.
1400     unsigned Res = MI.getOperand(0).getReg();
1401     unsigned Overflow = MI.getOperand(1).getReg();
1402     unsigned LHS = MI.getOperand(2).getReg();
1403     unsigned RHS = MI.getOperand(3).getReg();
1404 
1405     MIRBuilder.buildMul(Res, LHS, RHS);
1406 
1407     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
1408                           ? TargetOpcode::G_SMULH
1409                           : TargetOpcode::G_UMULH;
1410 
1411     unsigned HiPart = MRI.createGenericVirtualRegister(Ty);
1412     MIRBuilder.buildInstr(Opcode)
1413       .addDef(HiPart)
1414       .addUse(LHS)
1415       .addUse(RHS);
1416 
1417     unsigned Zero = MRI.createGenericVirtualRegister(Ty);
1418     MIRBuilder.buildConstant(Zero, 0);
1419 
1420     // For *signed* multiply, overflow is detected by checking:
1421     // (hi != (lo >> bitwidth-1))
1422     if (Opcode == TargetOpcode::G_SMULH) {
1423       unsigned Shifted = MRI.createGenericVirtualRegister(Ty);
1424       unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty);
1425       MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1);
1426       MIRBuilder.buildInstr(TargetOpcode::G_ASHR)
1427         .addDef(Shifted)
1428         .addUse(Res)
1429         .addUse(ShiftAmt);
1430       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
1431     } else {
1432       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
1433     }
1434     MI.eraseFromParent();
1435     return Legalized;
1436   }
1437   case TargetOpcode::G_FNEG: {
1438     // TODO: Handle vector types once we are able to
1439     // represent them.
1440     if (Ty.isVector())
1441       return UnableToLegalize;
1442     unsigned Res = MI.getOperand(0).getReg();
1443     Type *ZeroTy;
1444     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1445     switch (Ty.getSizeInBits()) {
1446     case 16:
1447       ZeroTy = Type::getHalfTy(Ctx);
1448       break;
1449     case 32:
1450       ZeroTy = Type::getFloatTy(Ctx);
1451       break;
1452     case 64:
1453       ZeroTy = Type::getDoubleTy(Ctx);
1454       break;
1455     case 128:
1456       ZeroTy = Type::getFP128Ty(Ctx);
1457       break;
1458     default:
1459       llvm_unreachable("unexpected floating-point type");
1460     }
1461     ConstantFP &ZeroForNegation =
1462         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
1463     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
1464     unsigned SubByReg = MI.getOperand(1).getReg();
1465     unsigned ZeroReg = Zero->getOperand(0).getReg();
1466     MachineInstr *SrcMI = MRI.getVRegDef(SubByReg);
1467     MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg},
1468                           SrcMI->getFlags());
1469     MI.eraseFromParent();
1470     return Legalized;
1471   }
1472   case TargetOpcode::G_FSUB: {
1473     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
1474     // First, check if G_FNEG is marked as Lower. If so, we may
1475     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
1476     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
1477       return UnableToLegalize;
1478     unsigned Res = MI.getOperand(0).getReg();
1479     unsigned LHS = MI.getOperand(1).getReg();
1480     unsigned RHS = MI.getOperand(2).getReg();
1481     unsigned Neg = MRI.createGenericVirtualRegister(Ty);
1482     MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS);
1483     MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags());
1484     MI.eraseFromParent();
1485     return Legalized;
1486   }
1487   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
1488     unsigned OldValRes = MI.getOperand(0).getReg();
1489     unsigned SuccessRes = MI.getOperand(1).getReg();
1490     unsigned Addr = MI.getOperand(2).getReg();
1491     unsigned CmpVal = MI.getOperand(3).getReg();
1492     unsigned NewVal = MI.getOperand(4).getReg();
1493     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
1494                                   **MI.memoperands_begin());
1495     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
1496     MI.eraseFromParent();
1497     return Legalized;
1498   }
1499   case TargetOpcode::G_LOAD:
1500   case TargetOpcode::G_SEXTLOAD:
1501   case TargetOpcode::G_ZEXTLOAD: {
1502     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
1503     unsigned DstReg = MI.getOperand(0).getReg();
1504     unsigned PtrReg = MI.getOperand(1).getReg();
1505     LLT DstTy = MRI.getType(DstReg);
1506     auto &MMO = **MI.memoperands_begin();
1507 
1508     if (DstTy.getSizeInBits() == MMO.getSize() /* in bytes */ * 8) {
1509       // In the case of G_LOAD, this was a non-extending load already and we're
1510       // about to lower to the same instruction.
1511       if (MI.getOpcode() == TargetOpcode::G_LOAD)
1512           return UnableToLegalize;
1513       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
1514       MI.eraseFromParent();
1515       return Legalized;
1516     }
1517 
1518     if (DstTy.isScalar()) {
1519       unsigned TmpReg =
1520           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
1521       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
1522       switch (MI.getOpcode()) {
1523       default:
1524         llvm_unreachable("Unexpected opcode");
1525       case TargetOpcode::G_LOAD:
1526         MIRBuilder.buildAnyExt(DstReg, TmpReg);
1527         break;
1528       case TargetOpcode::G_SEXTLOAD:
1529         MIRBuilder.buildSExt(DstReg, TmpReg);
1530         break;
1531       case TargetOpcode::G_ZEXTLOAD:
1532         MIRBuilder.buildZExt(DstReg, TmpReg);
1533         break;
1534       }
1535       MI.eraseFromParent();
1536       return Legalized;
1537     }
1538 
1539     return UnableToLegalize;
1540   }
1541   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1542   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1543   case TargetOpcode::G_CTLZ:
1544   case TargetOpcode::G_CTTZ:
1545   case TargetOpcode::G_CTPOP:
1546     return lowerBitCount(MI, TypeIdx, Ty);
1547   case G_UADDO: {
1548     unsigned Res = MI.getOperand(0).getReg();
1549     unsigned CarryOut = MI.getOperand(1).getReg();
1550     unsigned LHS = MI.getOperand(2).getReg();
1551     unsigned RHS = MI.getOperand(3).getReg();
1552 
1553     MIRBuilder.buildAdd(Res, LHS, RHS);
1554     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
1555 
1556     MI.eraseFromParent();
1557     return Legalized;
1558   }
1559   case G_UADDE: {
1560     unsigned Res = MI.getOperand(0).getReg();
1561     unsigned CarryOut = MI.getOperand(1).getReg();
1562     unsigned LHS = MI.getOperand(2).getReg();
1563     unsigned RHS = MI.getOperand(3).getReg();
1564     unsigned CarryIn = MI.getOperand(4).getReg();
1565 
1566     unsigned TmpRes = MRI.createGenericVirtualRegister(Ty);
1567     unsigned ZExtCarryIn = MRI.createGenericVirtualRegister(Ty);
1568 
1569     MIRBuilder.buildAdd(TmpRes, LHS, RHS);
1570     MIRBuilder.buildZExt(ZExtCarryIn, CarryIn);
1571     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
1572     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
1573 
1574     MI.eraseFromParent();
1575     return Legalized;
1576   }
1577   case G_USUBO: {
1578     unsigned Res = MI.getOperand(0).getReg();
1579     unsigned BorrowOut = MI.getOperand(1).getReg();
1580     unsigned LHS = MI.getOperand(2).getReg();
1581     unsigned RHS = MI.getOperand(3).getReg();
1582 
1583     MIRBuilder.buildSub(Res, LHS, RHS);
1584     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
1585 
1586     MI.eraseFromParent();
1587     return Legalized;
1588   }
1589   case G_USUBE: {
1590     unsigned Res = MI.getOperand(0).getReg();
1591     unsigned BorrowOut = MI.getOperand(1).getReg();
1592     unsigned LHS = MI.getOperand(2).getReg();
1593     unsigned RHS = MI.getOperand(3).getReg();
1594     unsigned BorrowIn = MI.getOperand(4).getReg();
1595 
1596     unsigned TmpRes = MRI.createGenericVirtualRegister(Ty);
1597     unsigned ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty);
1598     unsigned LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
1599     unsigned LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
1600 
1601     MIRBuilder.buildSub(TmpRes, LHS, RHS);
1602     MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn);
1603     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
1604     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS);
1605     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS);
1606     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
1607 
1608     MI.eraseFromParent();
1609     return Legalized;
1610   }
1611   case G_UITOFP:
1612     return lowerUITOFP(MI, TypeIdx, Ty);
1613   case G_SITOFP:
1614     return lowerSITOFP(MI, TypeIdx, Ty);
1615   }
1616 }
1617 
1618 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
1619     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
1620   SmallVector<unsigned, 2> DstRegs;
1621 
1622   unsigned NarrowSize = NarrowTy.getSizeInBits();
1623   unsigned DstReg = MI.getOperand(0).getReg();
1624   unsigned Size = MRI.getType(DstReg).getSizeInBits();
1625   int NumParts = Size / NarrowSize;
1626   // FIXME: Don't know how to handle the situation where the small vectors
1627   // aren't all the same size yet.
1628   if (Size % NarrowSize != 0)
1629     return UnableToLegalize;
1630 
1631   for (int i = 0; i < NumParts; ++i) {
1632     unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1633     MIRBuilder.buildUndef(TmpReg);
1634     DstRegs.push_back(TmpReg);
1635   }
1636 
1637   if (NarrowTy.isVector())
1638     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
1639   else
1640     MIRBuilder.buildBuildVector(DstReg, DstRegs);
1641 
1642   MI.eraseFromParent();
1643   return Legalized;
1644 }
1645 
1646 LegalizerHelper::LegalizeResult
1647 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx,
1648                                           LLT NarrowTy) {
1649   const unsigned Opc = MI.getOpcode();
1650   const unsigned NumOps = MI.getNumOperands() - 1;
1651   const unsigned NarrowSize = NarrowTy.getSizeInBits();
1652   const unsigned DstReg = MI.getOperand(0).getReg();
1653   const unsigned Flags = MI.getFlags();
1654   const LLT DstTy = MRI.getType(DstReg);
1655   const unsigned Size = DstTy.getSizeInBits();
1656   const int NumParts = Size / NarrowSize;
1657   const LLT EltTy = DstTy.getElementType();
1658   const unsigned EltSize = EltTy.getSizeInBits();
1659   const unsigned BitsForNumParts = NarrowSize * NumParts;
1660 
1661   // Check if we have any leftovers. If we do, then only handle the case where
1662   // the leftover is one element.
1663   if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size)
1664     return UnableToLegalize;
1665 
1666   if (BitsForNumParts != Size) {
1667     unsigned AccumDstReg = MRI.createGenericVirtualRegister(DstTy);
1668     MIRBuilder.buildUndef(AccumDstReg);
1669 
1670     // Handle the pieces which evenly divide into the requested type with
1671     // extract/op/insert sequence.
1672     for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) {
1673       SmallVector<SrcOp, 4> SrcOps;
1674       for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
1675         unsigned PartOpReg = MRI.createGenericVirtualRegister(NarrowTy);
1676         MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset);
1677         SrcOps.push_back(PartOpReg);
1678       }
1679 
1680       unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy);
1681       MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
1682 
1683       unsigned PartInsertReg = MRI.createGenericVirtualRegister(DstTy);
1684       MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset);
1685       AccumDstReg = PartInsertReg;
1686     }
1687 
1688     // Handle the remaining element sized leftover piece.
1689     SmallVector<SrcOp, 4> SrcOps;
1690     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
1691       unsigned PartOpReg = MRI.createGenericVirtualRegister(EltTy);
1692       MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(),
1693                               BitsForNumParts);
1694       SrcOps.push_back(PartOpReg);
1695     }
1696 
1697     unsigned PartDstReg = MRI.createGenericVirtualRegister(EltTy);
1698     MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
1699     MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts);
1700     MI.eraseFromParent();
1701 
1702     return Legalized;
1703   }
1704 
1705   SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
1706 
1707   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs);
1708 
1709   if (NumOps >= 2)
1710     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs);
1711 
1712   if (NumOps >= 3)
1713     extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs);
1714 
1715   for (int i = 0; i < NumParts; ++i) {
1716     unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
1717 
1718     if (NumOps == 1)
1719       MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags);
1720     else if (NumOps == 2) {
1721       MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags);
1722     } else if (NumOps == 3) {
1723       MIRBuilder.buildInstr(Opc, {DstReg},
1724                             {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags);
1725     }
1726 
1727     DstRegs.push_back(DstReg);
1728   }
1729 
1730   if (NarrowTy.isVector())
1731     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
1732   else
1733     MIRBuilder.buildBuildVector(DstReg, DstRegs);
1734 
1735   MI.eraseFromParent();
1736   return Legalized;
1737 }
1738 
1739 // Handle splitting vector operations which need to have the same number of
1740 // elements in each type index, but each type index may have a different element
1741 // type.
1742 //
1743 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
1744 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
1745 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
1746 //
1747 // Also handles some irregular breakdown cases, e.g.
1748 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
1749 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
1750 //             s64 = G_SHL s64, s32
1751 LegalizerHelper::LegalizeResult
1752 LegalizerHelper::fewerElementsVectorMultiEltType(
1753   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
1754   if (TypeIdx != 0)
1755     return UnableToLegalize;
1756 
1757   const LLT NarrowTy0 = NarrowTyArg;
1758   const unsigned NewNumElts =
1759       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
1760 
1761   const unsigned DstReg = MI.getOperand(0).getReg();
1762   LLT DstTy = MRI.getType(DstReg);
1763   LLT LeftoverTy0;
1764 
1765   int NumParts, NumLeftover;
1766   // All of the operands need to have the same number of elements, so if we can
1767   // determine a type breakdown for the result type, we can for all of the
1768   // source types.
1769   std::tie(NumParts, NumLeftover)
1770     = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0);
1771   if (NumParts < 0)
1772     return UnableToLegalize;
1773 
1774   SmallVector<MachineInstrBuilder, 4> NewInsts;
1775 
1776   SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs;
1777   SmallVector<unsigned, 4> PartRegs, LeftoverRegs;
1778 
1779   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
1780     LLT LeftoverTy;
1781     unsigned SrcReg = MI.getOperand(I).getReg();
1782     LLT SrcTyI = MRI.getType(SrcReg);
1783     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
1784     LLT LeftoverTyI;
1785 
1786     // Split this operand into the requested typed registers, and any leftover
1787     // required to reproduce the original type.
1788     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
1789                       LeftoverRegs))
1790       return UnableToLegalize;
1791 
1792     if (I == 1) {
1793       // For the first operand, create an instruction for each part and setup
1794       // the result.
1795       for (unsigned PartReg : PartRegs) {
1796         unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
1797         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
1798                                .addDef(PartDstReg)
1799                                .addUse(PartReg));
1800         DstRegs.push_back(PartDstReg);
1801       }
1802 
1803       for (unsigned LeftoverReg : LeftoverRegs) {
1804         unsigned PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
1805         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
1806                                .addDef(PartDstReg)
1807                                .addUse(LeftoverReg));
1808         LeftoverDstRegs.push_back(PartDstReg);
1809       }
1810     } else {
1811       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
1812 
1813       // Add the newly created operand splits to the existing instructions. The
1814       // odd-sized pieces are ordered after the requested NarrowTyArg sized
1815       // pieces.
1816       unsigned InstCount = 0;
1817       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
1818         NewInsts[InstCount++].addUse(PartRegs[J]);
1819       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
1820         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
1821     }
1822 
1823     PartRegs.clear();
1824     LeftoverRegs.clear();
1825   }
1826 
1827   // Insert the newly built operations and rebuild the result register.
1828   for (auto &MIB : NewInsts)
1829     MIRBuilder.insertInstr(MIB);
1830 
1831   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
1832 
1833   MI.eraseFromParent();
1834   return Legalized;
1835 }
1836 
1837 LegalizerHelper::LegalizeResult
1838 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
1839                                           LLT NarrowTy) {
1840   if (TypeIdx != 0)
1841     return UnableToLegalize;
1842 
1843   unsigned DstReg = MI.getOperand(0).getReg();
1844   unsigned SrcReg = MI.getOperand(1).getReg();
1845   LLT DstTy = MRI.getType(DstReg);
1846   LLT SrcTy = MRI.getType(SrcReg);
1847 
1848   LLT NarrowTy0 = NarrowTy;
1849   LLT NarrowTy1;
1850   unsigned NumParts;
1851 
1852   if (NarrowTy.isVector()) {
1853     // Uneven breakdown not handled.
1854     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
1855     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
1856       return UnableToLegalize;
1857 
1858     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
1859   } else {
1860     NumParts = DstTy.getNumElements();
1861     NarrowTy1 = SrcTy.getElementType();
1862   }
1863 
1864   SmallVector<unsigned, 4> SrcRegs, DstRegs;
1865   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
1866 
1867   for (unsigned I = 0; I < NumParts; ++I) {
1868     unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
1869     MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode())
1870       .addDef(DstReg)
1871       .addUse(SrcRegs[I]);
1872 
1873     NewInst->setFlags(MI.getFlags());
1874     DstRegs.push_back(DstReg);
1875   }
1876 
1877   if (NarrowTy.isVector())
1878     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
1879   else
1880     MIRBuilder.buildBuildVector(DstReg, DstRegs);
1881 
1882   MI.eraseFromParent();
1883   return Legalized;
1884 }
1885 
1886 LegalizerHelper::LegalizeResult
1887 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
1888                                         LLT NarrowTy) {
1889   unsigned DstReg = MI.getOperand(0).getReg();
1890   unsigned Src0Reg = MI.getOperand(2).getReg();
1891   LLT DstTy = MRI.getType(DstReg);
1892   LLT SrcTy = MRI.getType(Src0Reg);
1893 
1894   unsigned NumParts;
1895   LLT NarrowTy0, NarrowTy1;
1896 
1897   if (TypeIdx == 0) {
1898     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
1899     unsigned OldElts = DstTy.getNumElements();
1900 
1901     NarrowTy0 = NarrowTy;
1902     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
1903     NarrowTy1 = NarrowTy.isVector() ?
1904       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
1905       SrcTy.getElementType();
1906 
1907   } else {
1908     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
1909     unsigned OldElts = SrcTy.getNumElements();
1910 
1911     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
1912       NarrowTy.getNumElements();
1913     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
1914                             DstTy.getScalarSizeInBits());
1915     NarrowTy1 = NarrowTy;
1916   }
1917 
1918   // FIXME: Don't know how to handle the situation where the small vectors
1919   // aren't all the same size yet.
1920   if (NarrowTy1.isVector() &&
1921       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
1922     return UnableToLegalize;
1923 
1924   CmpInst::Predicate Pred
1925     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1926 
1927   SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs;
1928   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
1929   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
1930 
1931   for (unsigned I = 0; I < NumParts; ++I) {
1932     unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
1933     DstRegs.push_back(DstReg);
1934 
1935     if (MI.getOpcode() == TargetOpcode::G_ICMP)
1936       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
1937     else {
1938       MachineInstr *NewCmp
1939         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
1940       NewCmp->setFlags(MI.getFlags());
1941     }
1942   }
1943 
1944   if (NarrowTy1.isVector())
1945     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
1946   else
1947     MIRBuilder.buildBuildVector(DstReg, DstRegs);
1948 
1949   MI.eraseFromParent();
1950   return Legalized;
1951 }
1952 
1953 LegalizerHelper::LegalizeResult
1954 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
1955                                            LLT NarrowTy) {
1956   unsigned DstReg = MI.getOperand(0).getReg();
1957   unsigned CondReg = MI.getOperand(1).getReg();
1958 
1959   unsigned NumParts = 0;
1960   LLT NarrowTy0, NarrowTy1;
1961 
1962   LLT DstTy = MRI.getType(DstReg);
1963   LLT CondTy = MRI.getType(CondReg);
1964   unsigned Size = DstTy.getSizeInBits();
1965 
1966   assert(TypeIdx == 0 || CondTy.isVector());
1967 
1968   if (TypeIdx == 0) {
1969     NarrowTy0 = NarrowTy;
1970     NarrowTy1 = CondTy;
1971 
1972     unsigned NarrowSize = NarrowTy0.getSizeInBits();
1973     // FIXME: Don't know how to handle the situation where the small vectors
1974     // aren't all the same size yet.
1975     if (Size % NarrowSize != 0)
1976       return UnableToLegalize;
1977 
1978     NumParts = Size / NarrowSize;
1979 
1980     // Need to break down the condition type
1981     if (CondTy.isVector()) {
1982       if (CondTy.getNumElements() == NumParts)
1983         NarrowTy1 = CondTy.getElementType();
1984       else
1985         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
1986                                 CondTy.getScalarSizeInBits());
1987     }
1988   } else {
1989     NumParts = CondTy.getNumElements();
1990     if (NarrowTy.isVector()) {
1991       // TODO: Handle uneven breakdown.
1992       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
1993         return UnableToLegalize;
1994 
1995       return UnableToLegalize;
1996     } else {
1997       NarrowTy0 = DstTy.getElementType();
1998       NarrowTy1 = NarrowTy;
1999     }
2000   }
2001 
2002   SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2003   if (CondTy.isVector())
2004     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2005 
2006   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2007   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2008 
2009   for (unsigned i = 0; i < NumParts; ++i) {
2010     unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2011     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2012                            Src1Regs[i], Src2Regs[i]);
2013     DstRegs.push_back(DstReg);
2014   }
2015 
2016   if (NarrowTy0.isVector())
2017     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2018   else
2019     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2020 
2021   MI.eraseFromParent();
2022   return Legalized;
2023 }
2024 
2025 LegalizerHelper::LegalizeResult
2026 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2027                                         LLT NarrowTy) {
2028   const unsigned DstReg = MI.getOperand(0).getReg();
2029   LLT PhiTy = MRI.getType(DstReg);
2030   LLT LeftoverTy;
2031 
2032   // All of the operands need to have the same number of elements, so if we can
2033   // determine a type breakdown for the result type, we can for all of the
2034   // source types.
2035   int NumParts, NumLeftover;
2036   std::tie(NumParts, NumLeftover)
2037     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2038   if (NumParts < 0)
2039     return UnableToLegalize;
2040 
2041   SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs;
2042   SmallVector<MachineInstrBuilder, 4> NewInsts;
2043 
2044   const int TotalNumParts = NumParts + NumLeftover;
2045 
2046   // Insert the new phis in the result block first.
2047   for (int I = 0; I != TotalNumParts; ++I) {
2048     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2049     unsigned PartDstReg = MRI.createGenericVirtualRegister(Ty);
2050     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2051                        .addDef(PartDstReg));
2052     if (I < NumParts)
2053       DstRegs.push_back(PartDstReg);
2054     else
2055       LeftoverDstRegs.push_back(PartDstReg);
2056   }
2057 
2058   MachineBasicBlock *MBB = MI.getParent();
2059   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2060   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2061 
2062   SmallVector<unsigned, 4> PartRegs, LeftoverRegs;
2063 
2064   // Insert code to extract the incoming values in each predecessor block.
2065   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2066     PartRegs.clear();
2067     LeftoverRegs.clear();
2068 
2069     unsigned SrcReg = MI.getOperand(I).getReg();
2070     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2071     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2072 
2073     LLT Unused;
2074     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
2075                       LeftoverRegs))
2076       return UnableToLegalize;
2077 
2078     // Add the newly created operand splits to the existing instructions. The
2079     // odd-sized pieces are ordered after the requested NarrowTyArg sized
2080     // pieces.
2081     for (int J = 0; J != TotalNumParts; ++J) {
2082       MachineInstrBuilder MIB = NewInsts[J];
2083       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
2084       MIB.addMBB(&OpMBB);
2085     }
2086   }
2087 
2088   MI.eraseFromParent();
2089   return Legalized;
2090 }
2091 
2092 LegalizerHelper::LegalizeResult
2093 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
2094                                       LLT NarrowTy) {
2095   // FIXME: Don't know how to handle secondary types yet.
2096   if (TypeIdx != 0)
2097     return UnableToLegalize;
2098 
2099   MachineMemOperand *MMO = *MI.memoperands_begin();
2100 
2101   // This implementation doesn't work for atomics. Give up instead of doing
2102   // something invalid.
2103   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
2104       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
2105     return UnableToLegalize;
2106 
2107   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
2108   unsigned ValReg = MI.getOperand(0).getReg();
2109   unsigned AddrReg = MI.getOperand(1).getReg();
2110   LLT ValTy = MRI.getType(ValReg);
2111 
2112   int NumParts = -1;
2113   int NumLeftover = -1;
2114   LLT LeftoverTy;
2115   SmallVector<unsigned, 8> NarrowRegs, NarrowLeftoverRegs;
2116   if (IsLoad) {
2117     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
2118   } else {
2119     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
2120                      NarrowLeftoverRegs)) {
2121       NumParts = NarrowRegs.size();
2122       NumLeftover = NarrowLeftoverRegs.size();
2123     }
2124   }
2125 
2126   if (NumParts == -1)
2127     return UnableToLegalize;
2128 
2129   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
2130 
2131   unsigned TotalSize = ValTy.getSizeInBits();
2132 
2133   // Split the load/store into PartTy sized pieces starting at Offset. If this
2134   // is a load, return the new registers in ValRegs. For a store, each elements
2135   // of ValRegs should be PartTy. Returns the next offset that needs to be
2136   // handled.
2137   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<unsigned> &ValRegs,
2138                              unsigned Offset) -> unsigned {
2139     MachineFunction &MF = MIRBuilder.getMF();
2140     unsigned PartSize = PartTy.getSizeInBits();
2141     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
2142          Offset += PartSize, ++Idx) {
2143       unsigned ByteSize = PartSize / 8;
2144       unsigned ByteOffset = Offset / 8;
2145       unsigned NewAddrReg = 0;
2146 
2147       MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
2148 
2149       MachineMemOperand *NewMMO =
2150         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
2151 
2152       if (IsLoad) {
2153         unsigned Dst = MRI.createGenericVirtualRegister(PartTy);
2154         ValRegs.push_back(Dst);
2155         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
2156       } else {
2157         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
2158       }
2159     }
2160 
2161     return Offset;
2162   };
2163 
2164   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
2165 
2166   // Handle the rest of the register if this isn't an even type breakdown.
2167   if (LeftoverTy.isValid())
2168     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
2169 
2170   if (IsLoad) {
2171     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
2172                 LeftoverTy, NarrowLeftoverRegs);
2173   }
2174 
2175   MI.eraseFromParent();
2176   return Legalized;
2177 }
2178 
2179 LegalizerHelper::LegalizeResult
2180 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
2181                                      LLT NarrowTy) {
2182   using namespace TargetOpcode;
2183 
2184   MIRBuilder.setInstr(MI);
2185   switch (MI.getOpcode()) {
2186   case G_IMPLICIT_DEF:
2187     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
2188   case G_AND:
2189   case G_OR:
2190   case G_XOR:
2191   case G_ADD:
2192   case G_SUB:
2193   case G_MUL:
2194   case G_SMULH:
2195   case G_UMULH:
2196   case G_FADD:
2197   case G_FMUL:
2198   case G_FSUB:
2199   case G_FNEG:
2200   case G_FABS:
2201   case G_FCANONICALIZE:
2202   case G_FDIV:
2203   case G_FREM:
2204   case G_FMA:
2205   case G_FPOW:
2206   case G_FEXP:
2207   case G_FEXP2:
2208   case G_FLOG:
2209   case G_FLOG2:
2210   case G_FLOG10:
2211   case G_FNEARBYINT:
2212   case G_FCEIL:
2213   case G_FFLOOR:
2214   case G_FRINT:
2215   case G_INTRINSIC_ROUND:
2216   case G_INTRINSIC_TRUNC:
2217   case G_FCOS:
2218   case G_FSIN:
2219   case G_FSQRT:
2220   case G_BSWAP:
2221   case G_SDIV:
2222   case G_SMIN:
2223   case G_SMAX:
2224   case G_UMIN:
2225   case G_UMAX:
2226     return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy);
2227   case G_SHL:
2228   case G_LSHR:
2229   case G_ASHR:
2230   case G_CTLZ:
2231   case G_CTLZ_ZERO_UNDEF:
2232   case G_CTTZ:
2233   case G_CTTZ_ZERO_UNDEF:
2234   case G_CTPOP:
2235   case G_FCOPYSIGN:
2236     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
2237   case G_ZEXT:
2238   case G_SEXT:
2239   case G_ANYEXT:
2240   case G_FPEXT:
2241   case G_FPTRUNC:
2242   case G_SITOFP:
2243   case G_UITOFP:
2244   case G_FPTOSI:
2245   case G_FPTOUI:
2246   case G_INTTOPTR:
2247   case G_PTRTOINT:
2248   case G_ADDRSPACE_CAST:
2249     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
2250   case G_ICMP:
2251   case G_FCMP:
2252     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
2253   case G_SELECT:
2254     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
2255   case G_PHI:
2256     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
2257   case G_LOAD:
2258   case G_STORE:
2259     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
2260   default:
2261     return UnableToLegalize;
2262   }
2263 }
2264 
2265 LegalizerHelper::LegalizeResult
2266 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
2267                                              const LLT HalfTy, const LLT AmtTy) {
2268 
2269   unsigned InL = MRI.createGenericVirtualRegister(HalfTy);
2270   unsigned InH = MRI.createGenericVirtualRegister(HalfTy);
2271   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg());
2272 
2273   if (Amt.isNullValue()) {
2274     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH});
2275     MI.eraseFromParent();
2276     return Legalized;
2277   }
2278 
2279   LLT NVT = HalfTy;
2280   unsigned NVTBits = HalfTy.getSizeInBits();
2281   unsigned VTBits = 2 * NVTBits;
2282 
2283   SrcOp Lo(0), Hi(0);
2284   if (MI.getOpcode() == TargetOpcode::G_SHL) {
2285     if (Amt.ugt(VTBits)) {
2286       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
2287     } else if (Amt.ugt(NVTBits)) {
2288       Lo = MIRBuilder.buildConstant(NVT, 0);
2289       Hi = MIRBuilder.buildShl(NVT, InL,
2290                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
2291     } else if (Amt == NVTBits) {
2292       Lo = MIRBuilder.buildConstant(NVT, 0);
2293       Hi = InL;
2294     } else {
2295       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
2296       auto OrLHS =
2297           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
2298       auto OrRHS = MIRBuilder.buildLShr(
2299           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
2300       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
2301     }
2302   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
2303     if (Amt.ugt(VTBits)) {
2304       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
2305     } else if (Amt.ugt(NVTBits)) {
2306       Lo = MIRBuilder.buildLShr(NVT, InH,
2307                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
2308       Hi = MIRBuilder.buildConstant(NVT, 0);
2309     } else if (Amt == NVTBits) {
2310       Lo = InH;
2311       Hi = MIRBuilder.buildConstant(NVT, 0);
2312     } else {
2313       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
2314 
2315       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
2316       auto OrRHS = MIRBuilder.buildShl(
2317           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
2318 
2319       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
2320       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
2321     }
2322   } else {
2323     if (Amt.ugt(VTBits)) {
2324       Hi = Lo = MIRBuilder.buildAShr(
2325           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
2326     } else if (Amt.ugt(NVTBits)) {
2327       Lo = MIRBuilder.buildAShr(NVT, InH,
2328                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
2329       Hi = MIRBuilder.buildAShr(NVT, InH,
2330                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
2331     } else if (Amt == NVTBits) {
2332       Lo = InH;
2333       Hi = MIRBuilder.buildAShr(NVT, InH,
2334                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
2335     } else {
2336       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
2337 
2338       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
2339       auto OrRHS = MIRBuilder.buildShl(
2340           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
2341 
2342       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
2343       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
2344     }
2345   }
2346 
2347   MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()});
2348   MI.eraseFromParent();
2349 
2350   return Legalized;
2351 }
2352 
2353 // TODO: Optimize if constant shift amount.
2354 LegalizerHelper::LegalizeResult
2355 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
2356                                    LLT RequestedTy) {
2357   if (TypeIdx == 1) {
2358     Observer.changingInstr(MI);
2359     narrowScalarSrc(MI, RequestedTy, 2);
2360     Observer.changedInstr(MI);
2361     return Legalized;
2362   }
2363 
2364   unsigned DstReg = MI.getOperand(0).getReg();
2365   LLT DstTy = MRI.getType(DstReg);
2366   if (DstTy.isVector())
2367     return UnableToLegalize;
2368 
2369   unsigned Amt = MI.getOperand(2).getReg();
2370   LLT ShiftAmtTy = MRI.getType(Amt);
2371   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
2372   if (DstEltSize % 2 != 0)
2373     return UnableToLegalize;
2374 
2375   // Ignore the input type. We can only go to exactly half the size of the
2376   // input. If that isn't small enough, the resulting pieces will be further
2377   // legalized.
2378   const unsigned NewBitSize = DstEltSize / 2;
2379   const LLT HalfTy = LLT::scalar(NewBitSize);
2380   const LLT CondTy = LLT::scalar(1);
2381 
2382   if (const MachineInstr *KShiftAmt =
2383           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
2384     return narrowScalarShiftByConstant(
2385         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
2386   }
2387 
2388   // TODO: Expand with known bits.
2389 
2390   // Handle the fully general expansion by an unknown amount.
2391   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
2392 
2393   unsigned InL = MRI.createGenericVirtualRegister(HalfTy);
2394   unsigned InH = MRI.createGenericVirtualRegister(HalfTy);
2395   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg());
2396 
2397   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
2398   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
2399 
2400   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
2401   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
2402   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
2403 
2404   unsigned ResultRegs[2];
2405   switch (MI.getOpcode()) {
2406   case TargetOpcode::G_SHL: {
2407     // Short: ShAmt < NewBitSize
2408     auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt);
2409 
2410     auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt);
2411     auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
2412     auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS);
2413 
2414     // Long: ShAmt >= NewBitSize
2415     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
2416     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
2417 
2418     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
2419     auto Hi = MIRBuilder.buildSelect(
2420         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
2421 
2422     ResultRegs[0] = Lo.getReg(0);
2423     ResultRegs[1] = Hi.getReg(0);
2424     break;
2425   }
2426   case TargetOpcode::G_LSHR: {
2427     // Short: ShAmt < NewBitSize
2428     auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt);
2429 
2430     auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt);
2431     auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
2432     auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS);
2433 
2434     // Long: ShAmt >= NewBitSize
2435     auto HiL = MIRBuilder.buildConstant(HalfTy, 0);          // Hi part is zero.
2436     auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part.
2437 
2438     auto Lo = MIRBuilder.buildSelect(
2439         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
2440     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
2441 
2442     ResultRegs[0] = Lo.getReg(0);
2443     ResultRegs[1] = Hi.getReg(0);
2444     break;
2445   }
2446   case TargetOpcode::G_ASHR: {
2447     // Short: ShAmt < NewBitSize
2448     auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt);
2449 
2450     auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt);
2451     auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack);
2452     auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS);
2453 
2454     // Long: ShAmt >= NewBitSize
2455 
2456     // Sign of Hi part.
2457     auto HiL = MIRBuilder.buildAShr(
2458         HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1));
2459 
2460     auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part.
2461 
2462     auto Lo = MIRBuilder.buildSelect(
2463         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
2464 
2465     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
2466 
2467     ResultRegs[0] = Lo.getReg(0);
2468     ResultRegs[1] = Hi.getReg(0);
2469     break;
2470   }
2471   default:
2472     llvm_unreachable("not a shift");
2473   }
2474 
2475   MIRBuilder.buildMerge(DstReg, ResultRegs);
2476   MI.eraseFromParent();
2477   return Legalized;
2478 }
2479 
2480 LegalizerHelper::LegalizeResult
2481 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2482                                        LLT MoreTy) {
2483   assert(TypeIdx == 0 && "Expecting only Idx 0");
2484 
2485   Observer.changingInstr(MI);
2486   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2487     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2488     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2489     moreElementsVectorSrc(MI, MoreTy, I);
2490   }
2491 
2492   MachineBasicBlock &MBB = *MI.getParent();
2493   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2494   moreElementsVectorDst(MI, MoreTy, 0);
2495   Observer.changedInstr(MI);
2496   return Legalized;
2497 }
2498 
2499 LegalizerHelper::LegalizeResult
2500 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
2501                                     LLT MoreTy) {
2502   MIRBuilder.setInstr(MI);
2503   unsigned Opc = MI.getOpcode();
2504   switch (Opc) {
2505   case TargetOpcode::G_IMPLICIT_DEF: {
2506     Observer.changingInstr(MI);
2507     moreElementsVectorDst(MI, MoreTy, 0);
2508     Observer.changedInstr(MI);
2509     return Legalized;
2510   }
2511   case TargetOpcode::G_AND:
2512   case TargetOpcode::G_OR:
2513   case TargetOpcode::G_XOR:
2514   case TargetOpcode::G_SMIN:
2515   case TargetOpcode::G_SMAX:
2516   case TargetOpcode::G_UMIN:
2517   case TargetOpcode::G_UMAX: {
2518     Observer.changingInstr(MI);
2519     moreElementsVectorSrc(MI, MoreTy, 1);
2520     moreElementsVectorSrc(MI, MoreTy, 2);
2521     moreElementsVectorDst(MI, MoreTy, 0);
2522     Observer.changedInstr(MI);
2523     return Legalized;
2524   }
2525   case TargetOpcode::G_EXTRACT:
2526     if (TypeIdx != 1)
2527       return UnableToLegalize;
2528     Observer.changingInstr(MI);
2529     moreElementsVectorSrc(MI, MoreTy, 1);
2530     Observer.changedInstr(MI);
2531     return Legalized;
2532   case TargetOpcode::G_INSERT:
2533     if (TypeIdx != 0)
2534       return UnableToLegalize;
2535     Observer.changingInstr(MI);
2536     moreElementsVectorSrc(MI, MoreTy, 1);
2537     moreElementsVectorDst(MI, MoreTy, 0);
2538     Observer.changedInstr(MI);
2539     return Legalized;
2540   case TargetOpcode::G_SELECT:
2541     if (TypeIdx != 0)
2542       return UnableToLegalize;
2543     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
2544       return UnableToLegalize;
2545 
2546     Observer.changingInstr(MI);
2547     moreElementsVectorSrc(MI, MoreTy, 2);
2548     moreElementsVectorSrc(MI, MoreTy, 3);
2549     moreElementsVectorDst(MI, MoreTy, 0);
2550     Observer.changedInstr(MI);
2551     return Legalized;
2552   case TargetOpcode::G_PHI:
2553     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
2554   default:
2555     return UnableToLegalize;
2556   }
2557 }
2558 
2559 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<unsigned> &DstRegs,
2560                                         ArrayRef<unsigned> Src1Regs,
2561                                         ArrayRef<unsigned> Src2Regs,
2562                                         LLT NarrowTy) {
2563   MachineIRBuilder &B = MIRBuilder;
2564   unsigned SrcParts = Src1Regs.size();
2565   unsigned DstParts = DstRegs.size();
2566 
2567   unsigned DstIdx = 0; // Low bits of the result.
2568   unsigned FactorSum =
2569       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
2570   DstRegs[DstIdx] = FactorSum;
2571 
2572   unsigned CarrySumPrevDstIdx;
2573   SmallVector<unsigned, 4> Factors;
2574 
2575   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
2576     // Collect low parts of muls for DstIdx.
2577     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
2578          i <= std::min(DstIdx, SrcParts - 1); ++i) {
2579       MachineInstrBuilder Mul =
2580           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
2581       Factors.push_back(Mul.getReg(0));
2582     }
2583     // Collect high parts of muls from previous DstIdx.
2584     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
2585          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
2586       MachineInstrBuilder Umulh =
2587           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
2588       Factors.push_back(Umulh.getReg(0));
2589     }
2590     // Add CarrySum from additons calculated for previous DstIdx.
2591     if (DstIdx != 1) {
2592       Factors.push_back(CarrySumPrevDstIdx);
2593     }
2594 
2595     unsigned CarrySum = 0;
2596     // Add all factors and accumulate all carries into CarrySum.
2597     if (DstIdx != DstParts - 1) {
2598       MachineInstrBuilder Uaddo =
2599           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
2600       FactorSum = Uaddo.getReg(0);
2601       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
2602       for (unsigned i = 2; i < Factors.size(); ++i) {
2603         MachineInstrBuilder Uaddo =
2604             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
2605         FactorSum = Uaddo.getReg(0);
2606         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
2607         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
2608       }
2609     } else {
2610       // Since value for the next index is not calculated, neither is CarrySum.
2611       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
2612       for (unsigned i = 2; i < Factors.size(); ++i)
2613         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
2614     }
2615 
2616     CarrySumPrevDstIdx = CarrySum;
2617     DstRegs[DstIdx] = FactorSum;
2618     Factors.clear();
2619   }
2620 }
2621 
2622 LegalizerHelper::LegalizeResult
2623 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
2624   unsigned DstReg = MI.getOperand(0).getReg();
2625   unsigned Src1 = MI.getOperand(1).getReg();
2626   unsigned Src2 = MI.getOperand(2).getReg();
2627 
2628   LLT Ty = MRI.getType(DstReg);
2629   if (Ty.isVector())
2630     return UnableToLegalize;
2631 
2632   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
2633   unsigned DstSize = Ty.getSizeInBits();
2634   unsigned NarrowSize = NarrowTy.getSizeInBits();
2635   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
2636     return UnableToLegalize;
2637 
2638   unsigned NumDstParts = DstSize / NarrowSize;
2639   unsigned NumSrcParts = SrcSize / NarrowSize;
2640   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
2641   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
2642 
2643   SmallVector<unsigned, 2> Src1Parts, Src2Parts, DstTmpRegs;
2644   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
2645   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
2646   DstTmpRegs.resize(DstTmpParts);
2647   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
2648 
2649   // Take only high half of registers if this is high mul.
2650   ArrayRef<unsigned> DstRegs(
2651       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
2652   MIRBuilder.buildMerge(DstReg, DstRegs);
2653   MI.eraseFromParent();
2654   return Legalized;
2655 }
2656 
2657 LegalizerHelper::LegalizeResult
2658 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
2659                                      LLT NarrowTy) {
2660   if (TypeIdx != 1)
2661     return UnableToLegalize;
2662 
2663   uint64_t NarrowSize = NarrowTy.getSizeInBits();
2664 
2665   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
2666   // FIXME: add support for when SizeOp1 isn't an exact multiple of
2667   // NarrowSize.
2668   if (SizeOp1 % NarrowSize != 0)
2669     return UnableToLegalize;
2670   int NumParts = SizeOp1 / NarrowSize;
2671 
2672   SmallVector<unsigned, 2> SrcRegs, DstRegs;
2673   SmallVector<uint64_t, 2> Indexes;
2674   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
2675 
2676   unsigned OpReg = MI.getOperand(0).getReg();
2677   uint64_t OpStart = MI.getOperand(2).getImm();
2678   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
2679   for (int i = 0; i < NumParts; ++i) {
2680     unsigned SrcStart = i * NarrowSize;
2681 
2682     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
2683       // No part of the extract uses this subregister, ignore it.
2684       continue;
2685     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
2686       // The entire subregister is extracted, forward the value.
2687       DstRegs.push_back(SrcRegs[i]);
2688       continue;
2689     }
2690 
2691     // OpSegStart is where this destination segment would start in OpReg if it
2692     // extended infinitely in both directions.
2693     int64_t ExtractOffset;
2694     uint64_t SegSize;
2695     if (OpStart < SrcStart) {
2696       ExtractOffset = 0;
2697       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
2698     } else {
2699       ExtractOffset = OpStart - SrcStart;
2700       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
2701     }
2702 
2703     unsigned SegReg = SrcRegs[i];
2704     if (ExtractOffset != 0 || SegSize != NarrowSize) {
2705       // A genuine extract is needed.
2706       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
2707       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
2708     }
2709 
2710     DstRegs.push_back(SegReg);
2711   }
2712 
2713   unsigned DstReg = MI.getOperand(0).getReg();
2714   if(MRI.getType(DstReg).isVector())
2715     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2716   else
2717     MIRBuilder.buildMerge(DstReg, DstRegs);
2718   MI.eraseFromParent();
2719   return Legalized;
2720 }
2721 
2722 LegalizerHelper::LegalizeResult
2723 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
2724                                     LLT NarrowTy) {
2725   // FIXME: Don't know how to handle secondary types yet.
2726   if (TypeIdx != 0)
2727     return UnableToLegalize;
2728 
2729   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
2730   uint64_t NarrowSize = NarrowTy.getSizeInBits();
2731 
2732   // FIXME: add support for when SizeOp0 isn't an exact multiple of
2733   // NarrowSize.
2734   if (SizeOp0 % NarrowSize != 0)
2735     return UnableToLegalize;
2736 
2737   int NumParts = SizeOp0 / NarrowSize;
2738 
2739   SmallVector<unsigned, 2> SrcRegs, DstRegs;
2740   SmallVector<uint64_t, 2> Indexes;
2741   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
2742 
2743   unsigned OpReg = MI.getOperand(2).getReg();
2744   uint64_t OpStart = MI.getOperand(3).getImm();
2745   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
2746   for (int i = 0; i < NumParts; ++i) {
2747     unsigned DstStart = i * NarrowSize;
2748 
2749     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
2750       // No part of the insert affects this subregister, forward the original.
2751       DstRegs.push_back(SrcRegs[i]);
2752       continue;
2753     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
2754       // The entire subregister is defined by this insert, forward the new
2755       // value.
2756       DstRegs.push_back(OpReg);
2757       continue;
2758     }
2759 
2760     // OpSegStart is where this destination segment would start in OpReg if it
2761     // extended infinitely in both directions.
2762     int64_t ExtractOffset, InsertOffset;
2763     uint64_t SegSize;
2764     if (OpStart < DstStart) {
2765       InsertOffset = 0;
2766       ExtractOffset = DstStart - OpStart;
2767       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
2768     } else {
2769       InsertOffset = OpStart - DstStart;
2770       ExtractOffset = 0;
2771       SegSize =
2772         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
2773     }
2774 
2775     unsigned SegReg = OpReg;
2776     if (ExtractOffset != 0 || SegSize != OpSize) {
2777       // A genuine extract is needed.
2778       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
2779       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
2780     }
2781 
2782     unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy);
2783     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
2784     DstRegs.push_back(DstReg);
2785   }
2786 
2787   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
2788   unsigned DstReg = MI.getOperand(0).getReg();
2789   if(MRI.getType(DstReg).isVector())
2790     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2791   else
2792     MIRBuilder.buildMerge(DstReg, DstRegs);
2793   MI.eraseFromParent();
2794   return Legalized;
2795 }
2796 
2797 LegalizerHelper::LegalizeResult
2798 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
2799                                    LLT NarrowTy) {
2800   unsigned DstReg = MI.getOperand(0).getReg();
2801   LLT DstTy = MRI.getType(DstReg);
2802 
2803   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
2804 
2805   SmallVector<unsigned, 4> DstRegs, DstLeftoverRegs;
2806   SmallVector<unsigned, 4> Src0Regs, Src0LeftoverRegs;
2807   SmallVector<unsigned, 4> Src1Regs, Src1LeftoverRegs;
2808   LLT LeftoverTy;
2809   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
2810                     Src0Regs, Src0LeftoverRegs))
2811     return UnableToLegalize;
2812 
2813   LLT Unused;
2814   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
2815                     Src1Regs, Src1LeftoverRegs))
2816     llvm_unreachable("inconsistent extractParts result");
2817 
2818   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
2819     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
2820                                         {Src0Regs[I], Src1Regs[I]});
2821     DstRegs.push_back(Inst->getOperand(0).getReg());
2822   }
2823 
2824   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
2825     auto Inst = MIRBuilder.buildInstr(
2826       MI.getOpcode(),
2827       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
2828     DstLeftoverRegs.push_back(Inst->getOperand(0).getReg());
2829   }
2830 
2831   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
2832               LeftoverTy, DstLeftoverRegs);
2833 
2834   MI.eraseFromParent();
2835   return Legalized;
2836 }
2837 
2838 LegalizerHelper::LegalizeResult
2839 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
2840                                     LLT NarrowTy) {
2841   if (TypeIdx != 0)
2842     return UnableToLegalize;
2843 
2844   unsigned CondReg = MI.getOperand(1).getReg();
2845   LLT CondTy = MRI.getType(CondReg);
2846   if (CondTy.isVector()) // TODO: Handle vselect
2847     return UnableToLegalize;
2848 
2849   unsigned DstReg = MI.getOperand(0).getReg();
2850   LLT DstTy = MRI.getType(DstReg);
2851 
2852   SmallVector<unsigned, 4> DstRegs, DstLeftoverRegs;
2853   SmallVector<unsigned, 4> Src1Regs, Src1LeftoverRegs;
2854   SmallVector<unsigned, 4> Src2Regs, Src2LeftoverRegs;
2855   LLT LeftoverTy;
2856   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
2857                     Src1Regs, Src1LeftoverRegs))
2858     return UnableToLegalize;
2859 
2860   LLT Unused;
2861   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
2862                     Src2Regs, Src2LeftoverRegs))
2863     llvm_unreachable("inconsistent extractParts result");
2864 
2865   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
2866     auto Select = MIRBuilder.buildSelect(NarrowTy,
2867                                          CondReg, Src1Regs[I], Src2Regs[I]);
2868     DstRegs.push_back(Select->getOperand(0).getReg());
2869   }
2870 
2871   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
2872     auto Select = MIRBuilder.buildSelect(
2873       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
2874     DstLeftoverRegs.push_back(Select->getOperand(0).getReg());
2875   }
2876 
2877   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
2878               LeftoverTy, DstLeftoverRegs);
2879 
2880   MI.eraseFromParent();
2881   return Legalized;
2882 }
2883 
2884 LegalizerHelper::LegalizeResult
2885 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2886   unsigned Opc = MI.getOpcode();
2887   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2888   auto isSupported = [this](const LegalityQuery &Q) {
2889     auto QAction = LI.getAction(Q).Action;
2890     return QAction == Legal || QAction == Libcall || QAction == Custom;
2891   };
2892   switch (Opc) {
2893   default:
2894     return UnableToLegalize;
2895   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
2896     // This trivially expands to CTLZ.
2897     Observer.changingInstr(MI);
2898     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
2899     Observer.changedInstr(MI);
2900     return Legalized;
2901   }
2902   case TargetOpcode::G_CTLZ: {
2903     unsigned SrcReg = MI.getOperand(1).getReg();
2904     unsigned Len = Ty.getSizeInBits();
2905     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) {
2906       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
2907       auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF,
2908                                              {Ty}, {SrcReg});
2909       auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
2910       auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
2911       auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
2912                                           SrcReg, MIBZero);
2913       MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen,
2914                              MIBCtlzZU);
2915       MI.eraseFromParent();
2916       return Legalized;
2917     }
2918     // for now, we do this:
2919     // NewLen = NextPowerOf2(Len);
2920     // x = x | (x >> 1);
2921     // x = x | (x >> 2);
2922     // ...
2923     // x = x | (x >>16);
2924     // x = x | (x >>32); // for 64-bit input
2925     // Upto NewLen/2
2926     // return Len - popcount(x);
2927     //
2928     // Ref: "Hacker's Delight" by Henry Warren
2929     unsigned Op = SrcReg;
2930     unsigned NewLen = PowerOf2Ceil(Len);
2931     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
2932       auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i);
2933       auto MIBOp = MIRBuilder.buildInstr(
2934           TargetOpcode::G_OR, {Ty},
2935           {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty},
2936                                      {Op, MIBShiftAmt})});
2937       Op = MIBOp->getOperand(0).getReg();
2938     }
2939     auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op});
2940     MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()},
2941                           {MIRBuilder.buildConstant(Ty, Len), MIBPop});
2942     MI.eraseFromParent();
2943     return Legalized;
2944   }
2945   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
2946     // This trivially expands to CTTZ.
2947     Observer.changingInstr(MI);
2948     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
2949     Observer.changedInstr(MI);
2950     return Legalized;
2951   }
2952   case TargetOpcode::G_CTTZ: {
2953     unsigned SrcReg = MI.getOperand(1).getReg();
2954     unsigned Len = Ty.getSizeInBits();
2955     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) {
2956       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
2957       // zero.
2958       auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF,
2959                                              {Ty}, {SrcReg});
2960       auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
2961       auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
2962       auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
2963                                           SrcReg, MIBZero);
2964       MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen,
2965                              MIBCttzZU);
2966       MI.eraseFromParent();
2967       return Legalized;
2968     }
2969     // for now, we use: { return popcount(~x & (x - 1)); }
2970     // unless the target has ctlz but not ctpop, in which case we use:
2971     // { return 32 - nlz(~x & (x-1)); }
2972     // Ref: "Hacker's Delight" by Henry Warren
2973     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
2974     auto MIBNot =
2975         MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1});
2976     auto MIBTmp = MIRBuilder.buildInstr(
2977         TargetOpcode::G_AND, {Ty},
2978         {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty},
2979                                        {SrcReg, MIBCstNeg1})});
2980     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
2981         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
2982       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
2983       MIRBuilder.buildInstr(
2984           TargetOpcode::G_SUB, {MI.getOperand(0).getReg()},
2985           {MIBCstLen,
2986            MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})});
2987       MI.eraseFromParent();
2988       return Legalized;
2989     }
2990     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
2991     MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg());
2992     return Legalized;
2993   }
2994   }
2995 }
2996 
2997 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
2998 // representation.
2999 LegalizerHelper::LegalizeResult
3000 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
3001   unsigned Dst = MI.getOperand(0).getReg();
3002   unsigned Src = MI.getOperand(1).getReg();
3003   const LLT S64 = LLT::scalar(64);
3004   const LLT S32 = LLT::scalar(32);
3005   const LLT S1 = LLT::scalar(1);
3006 
3007   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
3008 
3009   // unsigned cul2f(ulong u) {
3010   //   uint lz = clz(u);
3011   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
3012   //   u = (u << lz) & 0x7fffffffffffffffUL;
3013   //   ulong t = u & 0xffffffffffUL;
3014   //   uint v = (e << 23) | (uint)(u >> 40);
3015   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
3016   //   return as_float(v + r);
3017   // }
3018 
3019   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
3020   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
3021 
3022   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
3023 
3024   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
3025   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
3026 
3027   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
3028   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
3029 
3030   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
3031   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
3032 
3033   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
3034 
3035   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
3036   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
3037 
3038   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
3039   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
3040   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
3041 
3042   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
3043   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
3044   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
3045   auto One = MIRBuilder.buildConstant(S32, 1);
3046 
3047   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
3048   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
3049   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
3050   MIRBuilder.buildAdd(Dst, V, R);
3051 
3052   return Legalized;
3053 }
3054 
3055 LegalizerHelper::LegalizeResult
3056 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3057   unsigned Dst = MI.getOperand(0).getReg();
3058   unsigned Src = MI.getOperand(1).getReg();
3059   LLT DstTy = MRI.getType(Dst);
3060   LLT SrcTy = MRI.getType(Src);
3061 
3062   if (SrcTy != LLT::scalar(64))
3063     return UnableToLegalize;
3064 
3065   if (DstTy == LLT::scalar(32)) {
3066     // TODO: SelectionDAG has several alternative expansions to port which may
3067     // be more reasonble depending on the available instructions. If a target
3068     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
3069     // intermediate type, this is probably worse.
3070     return lowerU64ToF32BitOps(MI);
3071   }
3072 
3073   return UnableToLegalize;
3074 }
3075 
3076 LegalizerHelper::LegalizeResult
3077 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3078   unsigned Dst = MI.getOperand(0).getReg();
3079   unsigned Src = MI.getOperand(1).getReg();
3080   LLT DstTy = MRI.getType(Dst);
3081   LLT SrcTy = MRI.getType(Src);
3082 
3083   const LLT S64 = LLT::scalar(64);
3084   const LLT S32 = LLT::scalar(32);
3085   const LLT S1 = LLT::scalar(1);
3086 
3087   if (SrcTy != S64)
3088     return UnableToLegalize;
3089 
3090   if (DstTy == S32) {
3091     // signed cl2f(long l) {
3092     //   long s = l >> 63;
3093     //   float r = cul2f((l + s) ^ s);
3094     //   return s ? -r : r;
3095     // }
3096     unsigned L = Src;
3097     auto SignBit = MIRBuilder.buildConstant(S64, 63);
3098     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
3099 
3100     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
3101     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
3102     auto R = MIRBuilder.buildUITOFP(S32, Xor);
3103 
3104     auto RNeg = MIRBuilder.buildFNeg(S32, R);
3105     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
3106                                             MIRBuilder.buildConstant(S64, 0));
3107     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
3108     return Legalized;
3109   }
3110 
3111   return UnableToLegalize;
3112 }
3113