1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
67                                  GISelChangeObserver &Observer,
68                                  MachineIRBuilder &Builder)
69     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
70       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
71   MIRBuilder.setMF(MF);
72   MIRBuilder.setChangeObserver(Observer);
73 }
74 
75 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
76                                  GISelChangeObserver &Observer,
77                                  MachineIRBuilder &B)
78     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
79   MIRBuilder.setMF(MF);
80   MIRBuilder.setChangeObserver(Observer);
81 }
82 LegalizerHelper::LegalizeResult
83 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
84   LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
85 
86   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
87       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
88     return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized
89                                                      : UnableToLegalize;
90   auto Step = LI.getAction(MI, MRI);
91   switch (Step.Action) {
92   case Legal:
93     LLVM_DEBUG(dbgs() << ".. Already legal\n");
94     return AlreadyLegal;
95   case Libcall:
96     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
97     return libcall(MI);
98   case NarrowScalar:
99     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
100     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
101   case WidenScalar:
102     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
103     return widenScalar(MI, Step.TypeIdx, Step.NewType);
104   case Lower:
105     LLVM_DEBUG(dbgs() << ".. Lower\n");
106     return lower(MI, Step.TypeIdx, Step.NewType);
107   case FewerElements:
108     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
109     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
110   case MoreElements:
111     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
112     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
113   case Custom:
114     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
115     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
116                                                             : UnableToLegalize;
117   default:
118     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
119     return UnableToLegalize;
120   }
121 }
122 
123 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
124                                    SmallVectorImpl<Register> &VRegs) {
125   for (int i = 0; i < NumParts; ++i)
126     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
127   MIRBuilder.buildUnmerge(VRegs, Reg);
128 }
129 
130 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
131                                    LLT MainTy, LLT &LeftoverTy,
132                                    SmallVectorImpl<Register> &VRegs,
133                                    SmallVectorImpl<Register> &LeftoverRegs) {
134   assert(!LeftoverTy.isValid() && "this is an out argument");
135 
136   unsigned RegSize = RegTy.getSizeInBits();
137   unsigned MainSize = MainTy.getSizeInBits();
138   unsigned NumParts = RegSize / MainSize;
139   unsigned LeftoverSize = RegSize - NumParts * MainSize;
140 
141   // Use an unmerge when possible.
142   if (LeftoverSize == 0) {
143     for (unsigned I = 0; I < NumParts; ++I)
144       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
145     MIRBuilder.buildUnmerge(VRegs, Reg);
146     return true;
147   }
148 
149   if (MainTy.isVector()) {
150     unsigned EltSize = MainTy.getScalarSizeInBits();
151     if (LeftoverSize % EltSize != 0)
152       return false;
153     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
154   } else {
155     LeftoverTy = LLT::scalar(LeftoverSize);
156   }
157 
158   // For irregular sizes, extract the individual parts.
159   for (unsigned I = 0; I != NumParts; ++I) {
160     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
161     VRegs.push_back(NewReg);
162     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
163   }
164 
165   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
166        Offset += LeftoverSize) {
167     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
168     LeftoverRegs.push_back(NewReg);
169     MIRBuilder.buildExtract(NewReg, Reg, Offset);
170   }
171 
172   return true;
173 }
174 
175 static LLT getGCDType(LLT OrigTy, LLT TargetTy) {
176   if (OrigTy.isVector() && TargetTy.isVector()) {
177     assert(OrigTy.getElementType() == TargetTy.getElementType());
178     int GCD = greatestCommonDivisor(OrigTy.getNumElements(),
179                                     TargetTy.getNumElements());
180     return LLT::scalarOrVector(GCD, OrigTy.getElementType());
181   }
182 
183   if (OrigTy.isVector() && !TargetTy.isVector()) {
184     assert(OrigTy.getElementType() == TargetTy);
185     return TargetTy;
186   }
187 
188   assert(!OrigTy.isVector() && !TargetTy.isVector());
189 
190   int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(),
191                                   TargetTy.getSizeInBits());
192   return LLT::scalar(GCD);
193 }
194 
195 void LegalizerHelper::insertParts(Register DstReg,
196                                   LLT ResultTy, LLT PartTy,
197                                   ArrayRef<Register> PartRegs,
198                                   LLT LeftoverTy,
199                                   ArrayRef<Register> LeftoverRegs) {
200   if (!LeftoverTy.isValid()) {
201     assert(LeftoverRegs.empty());
202 
203     if (!ResultTy.isVector()) {
204       MIRBuilder.buildMerge(DstReg, PartRegs);
205       return;
206     }
207 
208     if (PartTy.isVector())
209       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
210     else
211       MIRBuilder.buildBuildVector(DstReg, PartRegs);
212     return;
213   }
214 
215   unsigned PartSize = PartTy.getSizeInBits();
216   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
217 
218   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
219   MIRBuilder.buildUndef(CurResultReg);
220 
221   unsigned Offset = 0;
222   for (Register PartReg : PartRegs) {
223     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
224     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
225     CurResultReg = NewResultReg;
226     Offset += PartSize;
227   }
228 
229   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
230     // Use the original output register for the final insert to avoid a copy.
231     Register NewResultReg = (I + 1 == E) ?
232       DstReg : MRI.createGenericVirtualRegister(ResultTy);
233 
234     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
235     CurResultReg = NewResultReg;
236     Offset += LeftoverPartSize;
237   }
238 }
239 
240 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
241   switch (Opcode) {
242   case TargetOpcode::G_SDIV:
243     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
244     switch (Size) {
245     case 32:
246       return RTLIB::SDIV_I32;
247     case 64:
248       return RTLIB::SDIV_I64;
249     case 128:
250       return RTLIB::SDIV_I128;
251     default:
252       llvm_unreachable("unexpected size");
253     }
254   case TargetOpcode::G_UDIV:
255     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
256     switch (Size) {
257     case 32:
258       return RTLIB::UDIV_I32;
259     case 64:
260       return RTLIB::UDIV_I64;
261     case 128:
262       return RTLIB::UDIV_I128;
263     default:
264       llvm_unreachable("unexpected size");
265     }
266   case TargetOpcode::G_SREM:
267     assert((Size == 32 || Size == 64) && "Unsupported size");
268     return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32;
269   case TargetOpcode::G_UREM:
270     assert((Size == 32 || Size == 64) && "Unsupported size");
271     return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32;
272   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
273     assert(Size == 32 && "Unsupported size");
274     return RTLIB::CTLZ_I32;
275   case TargetOpcode::G_FADD:
276     assert((Size == 32 || Size == 64) && "Unsupported size");
277     return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32;
278   case TargetOpcode::G_FSUB:
279     assert((Size == 32 || Size == 64) && "Unsupported size");
280     return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32;
281   case TargetOpcode::G_FMUL:
282     assert((Size == 32 || Size == 64) && "Unsupported size");
283     return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32;
284   case TargetOpcode::G_FDIV:
285     assert((Size == 32 || Size == 64) && "Unsupported size");
286     return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32;
287   case TargetOpcode::G_FEXP:
288     assert((Size == 32 || Size == 64) && "Unsupported size");
289     return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32;
290   case TargetOpcode::G_FEXP2:
291     assert((Size == 32 || Size == 64) && "Unsupported size");
292     return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32;
293   case TargetOpcode::G_FREM:
294     return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32;
295   case TargetOpcode::G_FPOW:
296     return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32;
297   case TargetOpcode::G_FMA:
298     assert((Size == 32 || Size == 64) && "Unsupported size");
299     return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32;
300   case TargetOpcode::G_FSIN:
301     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
302     return Size == 128 ? RTLIB::SIN_F128
303                        : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32;
304   case TargetOpcode::G_FCOS:
305     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
306     return Size == 128 ? RTLIB::COS_F128
307                        : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32;
308   case TargetOpcode::G_FLOG10:
309     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
310     return Size == 128 ? RTLIB::LOG10_F128
311                        : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32;
312   case TargetOpcode::G_FLOG:
313     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
314     return Size == 128 ? RTLIB::LOG_F128
315                        : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32;
316   case TargetOpcode::G_FLOG2:
317     assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
318     return Size == 128 ? RTLIB::LOG2_F128
319                        : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32;
320   case TargetOpcode::G_FCEIL:
321     assert((Size == 32 || Size == 64) && "Unsupported size");
322     return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32;
323   case TargetOpcode::G_FFLOOR:
324     assert((Size == 32 || Size == 64) && "Unsupported size");
325     return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32;
326   }
327   llvm_unreachable("Unknown libcall function");
328 }
329 
330 LegalizerHelper::LegalizeResult
331 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
332                     const CallLowering::ArgInfo &Result,
333                     ArrayRef<CallLowering::ArgInfo> Args) {
334   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
335   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
336   const char *Name = TLI.getLibcallName(Libcall);
337 
338   MIRBuilder.getMF().getFrameInfo().setHasCalls(true);
339 
340   CallLowering::CallLoweringInfo Info;
341   Info.CallConv = TLI.getLibcallCallingConv(Libcall);
342   Info.Callee = MachineOperand::CreateES(Name);
343   Info.OrigRet = Result;
344   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
345   if (!CLI.lowerCall(MIRBuilder, Info))
346     return LegalizerHelper::UnableToLegalize;
347 
348   return LegalizerHelper::Legalized;
349 }
350 
351 // Useful for libcalls where all operands have the same type.
352 static LegalizerHelper::LegalizeResult
353 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
354               Type *OpType) {
355   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
356 
357   SmallVector<CallLowering::ArgInfo, 3> Args;
358   for (unsigned i = 1; i < MI.getNumOperands(); i++)
359     Args.push_back({MI.getOperand(i).getReg(), OpType});
360   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
361                        Args);
362 }
363 
364 LegalizerHelper::LegalizeResult
365 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
366                        MachineInstr &MI) {
367   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
368   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
369 
370   SmallVector<CallLowering::ArgInfo, 3> Args;
371   for (unsigned i = 1; i < MI.getNumOperands(); i++) {
372     Register Reg = MI.getOperand(i).getReg();
373 
374     // Need derive an IR type for call lowering.
375     LLT OpLLT = MRI.getType(Reg);
376     Type *OpTy = nullptr;
377     if (OpLLT.isPointer())
378       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
379     else
380       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
381     Args.push_back({Reg, OpTy});
382   }
383 
384   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
385   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
386   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
387   RTLIB::Libcall RTLibcall;
388   switch (ID) {
389   case Intrinsic::memcpy:
390     RTLibcall = RTLIB::MEMCPY;
391     break;
392   case Intrinsic::memset:
393     RTLibcall = RTLIB::MEMSET;
394     break;
395   case Intrinsic::memmove:
396     RTLibcall = RTLIB::MEMMOVE;
397     break;
398   default:
399     return LegalizerHelper::UnableToLegalize;
400   }
401   const char *Name = TLI.getLibcallName(RTLibcall);
402 
403   MIRBuilder.setInstr(MI);
404   MIRBuilder.getMF().getFrameInfo().setHasCalls(true);
405 
406   CallLowering::CallLoweringInfo Info;
407   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
408   Info.Callee = MachineOperand::CreateES(Name);
409   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
410   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
411   if (!CLI.lowerCall(MIRBuilder, Info))
412     return LegalizerHelper::UnableToLegalize;
413 
414   return LegalizerHelper::Legalized;
415 }
416 
417 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
418                                        Type *FromType) {
419   auto ToMVT = MVT::getVT(ToType);
420   auto FromMVT = MVT::getVT(FromType);
421 
422   switch (Opcode) {
423   case TargetOpcode::G_FPEXT:
424     return RTLIB::getFPEXT(FromMVT, ToMVT);
425   case TargetOpcode::G_FPTRUNC:
426     return RTLIB::getFPROUND(FromMVT, ToMVT);
427   case TargetOpcode::G_FPTOSI:
428     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
429   case TargetOpcode::G_FPTOUI:
430     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
431   case TargetOpcode::G_SITOFP:
432     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
433   case TargetOpcode::G_UITOFP:
434     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
435   }
436   llvm_unreachable("Unsupported libcall function");
437 }
438 
439 static LegalizerHelper::LegalizeResult
440 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
441                   Type *FromType) {
442   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
443   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
444                        {{MI.getOperand(1).getReg(), FromType}});
445 }
446 
447 LegalizerHelper::LegalizeResult
448 LegalizerHelper::libcall(MachineInstr &MI) {
449   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
450   unsigned Size = LLTy.getSizeInBits();
451   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
452 
453   MIRBuilder.setInstr(MI);
454 
455   switch (MI.getOpcode()) {
456   default:
457     return UnableToLegalize;
458   case TargetOpcode::G_SDIV:
459   case TargetOpcode::G_UDIV:
460   case TargetOpcode::G_SREM:
461   case TargetOpcode::G_UREM:
462   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
463     Type *HLTy = IntegerType::get(Ctx, Size);
464     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
465     if (Status != Legalized)
466       return Status;
467     break;
468   }
469   case TargetOpcode::G_FADD:
470   case TargetOpcode::G_FSUB:
471   case TargetOpcode::G_FMUL:
472   case TargetOpcode::G_FDIV:
473   case TargetOpcode::G_FMA:
474   case TargetOpcode::G_FPOW:
475   case TargetOpcode::G_FREM:
476   case TargetOpcode::G_FCOS:
477   case TargetOpcode::G_FSIN:
478   case TargetOpcode::G_FLOG10:
479   case TargetOpcode::G_FLOG:
480   case TargetOpcode::G_FLOG2:
481   case TargetOpcode::G_FEXP:
482   case TargetOpcode::G_FEXP2:
483   case TargetOpcode::G_FCEIL:
484   case TargetOpcode::G_FFLOOR: {
485     if (Size > 64) {
486       LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n");
487       return UnableToLegalize;
488     }
489     Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx);
490     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
491     if (Status != Legalized)
492       return Status;
493     break;
494   }
495   case TargetOpcode::G_FPEXT: {
496     // FIXME: Support other floating point types (half, fp128 etc)
497     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
498     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
499     if (ToSize != 64 || FromSize != 32)
500       return UnableToLegalize;
501     LegalizeResult Status = conversionLibcall(
502         MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx));
503     if (Status != Legalized)
504       return Status;
505     break;
506   }
507   case TargetOpcode::G_FPTRUNC: {
508     // FIXME: Support other floating point types (half, fp128 etc)
509     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
510     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
511     if (ToSize != 32 || FromSize != 64)
512       return UnableToLegalize;
513     LegalizeResult Status = conversionLibcall(
514         MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx));
515     if (Status != Legalized)
516       return Status;
517     break;
518   }
519   case TargetOpcode::G_FPTOSI:
520   case TargetOpcode::G_FPTOUI: {
521     // FIXME: Support other types
522     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
523     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
524     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
525       return UnableToLegalize;
526     LegalizeResult Status = conversionLibcall(
527         MI, MIRBuilder,
528         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
529         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
530     if (Status != Legalized)
531       return Status;
532     break;
533   }
534   case TargetOpcode::G_SITOFP:
535   case TargetOpcode::G_UITOFP: {
536     // FIXME: Support other types
537     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
538     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
539     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
540       return UnableToLegalize;
541     LegalizeResult Status = conversionLibcall(
542         MI, MIRBuilder,
543         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
544         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
545     if (Status != Legalized)
546       return Status;
547     break;
548   }
549   }
550 
551   MI.eraseFromParent();
552   return Legalized;
553 }
554 
555 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
556                                                               unsigned TypeIdx,
557                                                               LLT NarrowTy) {
558   MIRBuilder.setInstr(MI);
559 
560   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
561   uint64_t NarrowSize = NarrowTy.getSizeInBits();
562 
563   switch (MI.getOpcode()) {
564   default:
565     return UnableToLegalize;
566   case TargetOpcode::G_IMPLICIT_DEF: {
567     // FIXME: add support for when SizeOp0 isn't an exact multiple of
568     // NarrowSize.
569     if (SizeOp0 % NarrowSize != 0)
570       return UnableToLegalize;
571     int NumParts = SizeOp0 / NarrowSize;
572 
573     SmallVector<Register, 2> DstRegs;
574     for (int i = 0; i < NumParts; ++i)
575       DstRegs.push_back(
576           MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg());
577 
578     Register DstReg = MI.getOperand(0).getReg();
579     if(MRI.getType(DstReg).isVector())
580       MIRBuilder.buildBuildVector(DstReg, DstRegs);
581     else
582       MIRBuilder.buildMerge(DstReg, DstRegs);
583     MI.eraseFromParent();
584     return Legalized;
585   }
586   case TargetOpcode::G_CONSTANT: {
587     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
588     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
589     unsigned TotalSize = Ty.getSizeInBits();
590     unsigned NarrowSize = NarrowTy.getSizeInBits();
591     int NumParts = TotalSize / NarrowSize;
592 
593     SmallVector<Register, 4> PartRegs;
594     for (int I = 0; I != NumParts; ++I) {
595       unsigned Offset = I * NarrowSize;
596       auto K = MIRBuilder.buildConstant(NarrowTy,
597                                         Val.lshr(Offset).trunc(NarrowSize));
598       PartRegs.push_back(K.getReg(0));
599     }
600 
601     LLT LeftoverTy;
602     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
603     SmallVector<Register, 1> LeftoverRegs;
604     if (LeftoverBits != 0) {
605       LeftoverTy = LLT::scalar(LeftoverBits);
606       auto K = MIRBuilder.buildConstant(
607         LeftoverTy,
608         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
609       LeftoverRegs.push_back(K.getReg(0));
610     }
611 
612     insertParts(MI.getOperand(0).getReg(),
613                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
614 
615     MI.eraseFromParent();
616     return Legalized;
617   }
618   case TargetOpcode::G_SEXT: {
619     if (TypeIdx != 0)
620       return UnableToLegalize;
621 
622     Register SrcReg = MI.getOperand(1).getReg();
623     LLT SrcTy = MRI.getType(SrcReg);
624 
625     // FIXME: support the general case where the requested NarrowTy may not be
626     // the same as the source type. E.g. s128 = sext(s32)
627     if ((SrcTy.getSizeInBits() != SizeOp0 / 2) ||
628         SrcTy.getSizeInBits() != NarrowTy.getSizeInBits()) {
629       LLVM_DEBUG(dbgs() << "Can't narrow sext to type " << NarrowTy << "\n");
630       return UnableToLegalize;
631     }
632 
633     // Shift the sign bit of the low register through the high register.
634     auto ShiftAmt =
635         MIRBuilder.buildConstant(LLT::scalar(64), NarrowTy.getSizeInBits() - 1);
636     auto Shift = MIRBuilder.buildAShr(NarrowTy, SrcReg, ShiftAmt);
637     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {SrcReg, Shift.getReg(0)});
638     MI.eraseFromParent();
639     return Legalized;
640   }
641   case TargetOpcode::G_ZEXT: {
642     if (TypeIdx != 0)
643       return UnableToLegalize;
644 
645     LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
646     uint64_t SizeOp1 = SrcTy.getSizeInBits();
647     if (SizeOp0 % SizeOp1 != 0)
648       return UnableToLegalize;
649 
650     // Generate a merge where the bottom bits are taken from the source, and
651     // zero everything else.
652     Register ZeroReg = MIRBuilder.buildConstant(SrcTy, 0).getReg(0);
653     unsigned NumParts = SizeOp0 / SizeOp1;
654     SmallVector<Register, 4> Srcs = {MI.getOperand(1).getReg()};
655     for (unsigned Part = 1; Part < NumParts; ++Part)
656       Srcs.push_back(ZeroReg);
657     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Srcs);
658     MI.eraseFromParent();
659     return Legalized;
660   }
661   case TargetOpcode::G_TRUNC: {
662     if (TypeIdx != 1)
663       return UnableToLegalize;
664 
665     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
666     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
667       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
668       return UnableToLegalize;
669     }
670 
671     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg());
672     MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Unmerge.getReg(0));
673     MI.eraseFromParent();
674     return Legalized;
675   }
676 
677   case TargetOpcode::G_ADD: {
678     // FIXME: add support for when SizeOp0 isn't an exact multiple of
679     // NarrowSize.
680     if (SizeOp0 % NarrowSize != 0)
681       return UnableToLegalize;
682     // Expand in terms of carry-setting/consuming G_ADDE instructions.
683     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
684 
685     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
686     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
687     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
688 
689     Register CarryIn;
690     for (int i = 0; i < NumParts; ++i) {
691       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
692       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
693 
694       if (i == 0)
695         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
696       else {
697         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
698                               Src2Regs[i], CarryIn);
699       }
700 
701       DstRegs.push_back(DstReg);
702       CarryIn = CarryOut;
703     }
704     Register DstReg = MI.getOperand(0).getReg();
705     if(MRI.getType(DstReg).isVector())
706       MIRBuilder.buildBuildVector(DstReg, DstRegs);
707     else
708       MIRBuilder.buildMerge(DstReg, DstRegs);
709     MI.eraseFromParent();
710     return Legalized;
711   }
712   case TargetOpcode::G_SUB: {
713     // FIXME: add support for when SizeOp0 isn't an exact multiple of
714     // NarrowSize.
715     if (SizeOp0 % NarrowSize != 0)
716       return UnableToLegalize;
717 
718     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
719 
720     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
721     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
722     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
723 
724     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
725     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
726     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
727                           {Src1Regs[0], Src2Regs[0]});
728     DstRegs.push_back(DstReg);
729     Register BorrowIn = BorrowOut;
730     for (int i = 1; i < NumParts; ++i) {
731       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
732       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
733 
734       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
735                             {Src1Regs[i], Src2Regs[i], BorrowIn});
736 
737       DstRegs.push_back(DstReg);
738       BorrowIn = BorrowOut;
739     }
740     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs);
741     MI.eraseFromParent();
742     return Legalized;
743   }
744   case TargetOpcode::G_MUL:
745   case TargetOpcode::G_UMULH:
746     return narrowScalarMul(MI, NarrowTy);
747   case TargetOpcode::G_EXTRACT:
748     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
749   case TargetOpcode::G_INSERT:
750     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
751   case TargetOpcode::G_LOAD: {
752     const auto &MMO = **MI.memoperands_begin();
753     Register DstReg = MI.getOperand(0).getReg();
754     LLT DstTy = MRI.getType(DstReg);
755     if (DstTy.isVector())
756       return UnableToLegalize;
757 
758     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
759       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
760       auto &MMO = **MI.memoperands_begin();
761       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO);
762       MIRBuilder.buildAnyExt(DstReg, TmpReg);
763       MI.eraseFromParent();
764       return Legalized;
765     }
766 
767     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
768   }
769   case TargetOpcode::G_ZEXTLOAD:
770   case TargetOpcode::G_SEXTLOAD: {
771     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
772     Register DstReg = MI.getOperand(0).getReg();
773     Register PtrReg = MI.getOperand(1).getReg();
774 
775     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
776     auto &MMO = **MI.memoperands_begin();
777     if (MMO.getSizeInBits() == NarrowSize) {
778       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
779     } else {
780       unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD
781         : TargetOpcode::G_SEXTLOAD;
782       MIRBuilder.buildInstr(ExtLoad)
783         .addDef(TmpReg)
784         .addUse(PtrReg)
785         .addMemOperand(&MMO);
786     }
787 
788     if (ZExt)
789       MIRBuilder.buildZExt(DstReg, TmpReg);
790     else
791       MIRBuilder.buildSExt(DstReg, TmpReg);
792 
793     MI.eraseFromParent();
794     return Legalized;
795   }
796   case TargetOpcode::G_STORE: {
797     const auto &MMO = **MI.memoperands_begin();
798 
799     Register SrcReg = MI.getOperand(0).getReg();
800     LLT SrcTy = MRI.getType(SrcReg);
801     if (SrcTy.isVector())
802       return UnableToLegalize;
803 
804     int NumParts = SizeOp0 / NarrowSize;
805     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
806     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
807     if (SrcTy.isVector() && LeftoverBits != 0)
808       return UnableToLegalize;
809 
810     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
811       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
812       auto &MMO = **MI.memoperands_begin();
813       MIRBuilder.buildTrunc(TmpReg, SrcReg);
814       MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO);
815       MI.eraseFromParent();
816       return Legalized;
817     }
818 
819     return reduceLoadStoreWidth(MI, 0, NarrowTy);
820   }
821   case TargetOpcode::G_SELECT:
822     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
823   case TargetOpcode::G_AND:
824   case TargetOpcode::G_OR:
825   case TargetOpcode::G_XOR: {
826     // Legalize bitwise operation:
827     // A = BinOp<Ty> B, C
828     // into:
829     // B1, ..., BN = G_UNMERGE_VALUES B
830     // C1, ..., CN = G_UNMERGE_VALUES C
831     // A1 = BinOp<Ty/N> B1, C2
832     // ...
833     // AN = BinOp<Ty/N> BN, CN
834     // A = G_MERGE_VALUES A1, ..., AN
835     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
836   }
837   case TargetOpcode::G_SHL:
838   case TargetOpcode::G_LSHR:
839   case TargetOpcode::G_ASHR:
840     return narrowScalarShift(MI, TypeIdx, NarrowTy);
841   case TargetOpcode::G_CTLZ:
842   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
843   case TargetOpcode::G_CTTZ:
844   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
845   case TargetOpcode::G_CTPOP:
846     if (TypeIdx != 0)
847       return UnableToLegalize; // TODO
848 
849     Observer.changingInstr(MI);
850     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
851     Observer.changedInstr(MI);
852     return Legalized;
853   case TargetOpcode::G_INTTOPTR:
854     if (TypeIdx != 1)
855       return UnableToLegalize;
856 
857     Observer.changingInstr(MI);
858     narrowScalarSrc(MI, NarrowTy, 1);
859     Observer.changedInstr(MI);
860     return Legalized;
861   case TargetOpcode::G_PTRTOINT:
862     if (TypeIdx != 0)
863       return UnableToLegalize;
864 
865     Observer.changingInstr(MI);
866     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
867     Observer.changedInstr(MI);
868     return Legalized;
869   case TargetOpcode::G_PHI: {
870     unsigned NumParts = SizeOp0 / NarrowSize;
871     SmallVector<Register, 2> DstRegs;
872     SmallVector<SmallVector<Register, 2>, 2> SrcRegs;
873     DstRegs.resize(NumParts);
874     SrcRegs.resize(MI.getNumOperands() / 2);
875     Observer.changingInstr(MI);
876     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
877       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
878       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
879       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
880                    SrcRegs[i / 2]);
881     }
882     MachineBasicBlock &MBB = *MI.getParent();
883     MIRBuilder.setInsertPt(MBB, MI);
884     for (unsigned i = 0; i < NumParts; ++i) {
885       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
886       MachineInstrBuilder MIB =
887           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
888       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
889         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
890     }
891     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
892     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs);
893     Observer.changedInstr(MI);
894     MI.eraseFromParent();
895     return Legalized;
896   }
897   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
898   case TargetOpcode::G_INSERT_VECTOR_ELT: {
899     if (TypeIdx != 2)
900       return UnableToLegalize;
901 
902     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
903     Observer.changingInstr(MI);
904     narrowScalarSrc(MI, NarrowTy, OpIdx);
905     Observer.changedInstr(MI);
906     return Legalized;
907   }
908   case TargetOpcode::G_ICMP: {
909     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
910     if (NarrowSize * 2 != SrcSize)
911       return UnableToLegalize;
912 
913     Observer.changingInstr(MI);
914     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
915     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
916     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2).getReg());
917 
918     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
919     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
920     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3).getReg());
921 
922     CmpInst::Predicate Pred =
923         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
924     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
925 
926     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
927       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
928       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
929       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
930       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
931       MIRBuilder.buildICmp(Pred, MI.getOperand(0).getReg(), Or, Zero);
932     } else {
933       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
934       MachineInstrBuilder CmpHEQ =
935           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
936       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
937           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
938       MIRBuilder.buildSelect(MI.getOperand(0).getReg(), CmpHEQ, CmpLU, CmpH);
939     }
940     Observer.changedInstr(MI);
941     MI.eraseFromParent();
942     return Legalized;
943   }
944   case TargetOpcode::G_SEXT_INREG: {
945     if (TypeIdx != 0)
946       return UnableToLegalize;
947 
948     if (!MI.getOperand(2).isImm())
949       return UnableToLegalize;
950     int64_t SizeInBits = MI.getOperand(2).getImm();
951 
952     // So long as the new type has more bits than the bits we're extending we
953     // don't need to break it apart.
954     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
955       Observer.changingInstr(MI);
956       // We don't lose any non-extension bits by truncating the src and
957       // sign-extending the dst.
958       MachineOperand &MO1 = MI.getOperand(1);
959       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1.getReg());
960       MO1.setReg(TruncMIB->getOperand(0).getReg());
961 
962       MachineOperand &MO2 = MI.getOperand(0);
963       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
964       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
965       MIRBuilder.buildInstr(TargetOpcode::G_SEXT, {MO2.getReg()}, {DstExt});
966       MO2.setReg(DstExt);
967       Observer.changedInstr(MI);
968       return Legalized;
969     }
970 
971     // Break it apart. Components below the extension point are unmodified. The
972     // component containing the extension point becomes a narrower SEXT_INREG.
973     // Components above it are ashr'd from the component containing the
974     // extension point.
975     if (SizeOp0 % NarrowSize != 0)
976       return UnableToLegalize;
977     int NumParts = SizeOp0 / NarrowSize;
978 
979     // List the registers where the destination will be scattered.
980     SmallVector<Register, 2> DstRegs;
981     // List the registers where the source will be split.
982     SmallVector<Register, 2> SrcRegs;
983 
984     // Create all the temporary registers.
985     for (int i = 0; i < NumParts; ++i) {
986       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
987 
988       SrcRegs.push_back(SrcReg);
989     }
990 
991     // Explode the big arguments into smaller chunks.
992     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1).getReg());
993 
994     Register AshrCstReg =
995         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
996             ->getOperand(0)
997             .getReg();
998     Register FullExtensionReg = 0;
999     Register PartialExtensionReg = 0;
1000 
1001     // Do the operation on each small part.
1002     for (int i = 0; i < NumParts; ++i) {
1003       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1004         DstRegs.push_back(SrcRegs[i]);
1005       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1006         assert(PartialExtensionReg &&
1007                "Expected to visit partial extension before full");
1008         if (FullExtensionReg) {
1009           DstRegs.push_back(FullExtensionReg);
1010           continue;
1011         }
1012         DstRegs.push_back(MIRBuilder
1013                               .buildInstr(TargetOpcode::G_ASHR, {NarrowTy},
1014                                           {PartialExtensionReg, AshrCstReg})
1015                               ->getOperand(0)
1016                               .getReg());
1017         FullExtensionReg = DstRegs.back();
1018       } else {
1019         DstRegs.push_back(
1020             MIRBuilder
1021                 .buildInstr(
1022                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1023                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1024                 ->getOperand(0)
1025                 .getReg());
1026         PartialExtensionReg = DstRegs.back();
1027       }
1028     }
1029 
1030     // Gather the destination registers into the final destination.
1031     Register DstReg = MI.getOperand(0).getReg();
1032     MIRBuilder.buildMerge(DstReg, DstRegs);
1033     MI.eraseFromParent();
1034     return Legalized;
1035   }
1036   }
1037 }
1038 
1039 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1040                                      unsigned OpIdx, unsigned ExtOpcode) {
1041   MachineOperand &MO = MI.getOperand(OpIdx);
1042   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()});
1043   MO.setReg(ExtB->getOperand(0).getReg());
1044 }
1045 
1046 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1047                                       unsigned OpIdx) {
1048   MachineOperand &MO = MI.getOperand(OpIdx);
1049   auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy},
1050                                     {MO.getReg()});
1051   MO.setReg(ExtB->getOperand(0).getReg());
1052 }
1053 
1054 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1055                                      unsigned OpIdx, unsigned TruncOpcode) {
1056   MachineOperand &MO = MI.getOperand(OpIdx);
1057   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1058   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1059   MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt});
1060   MO.setReg(DstExt);
1061 }
1062 
1063 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1064                                       unsigned OpIdx, unsigned ExtOpcode) {
1065   MachineOperand &MO = MI.getOperand(OpIdx);
1066   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1067   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1068   MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc});
1069   MO.setReg(DstTrunc);
1070 }
1071 
1072 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1073                                             unsigned OpIdx) {
1074   MachineOperand &MO = MI.getOperand(OpIdx);
1075   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1076   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1077   MIRBuilder.buildExtract(MO.getReg(), DstExt, 0);
1078   MO.setReg(DstExt);
1079 }
1080 
1081 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1082                                             unsigned OpIdx) {
1083   MachineOperand &MO = MI.getOperand(OpIdx);
1084 
1085   LLT OldTy = MRI.getType(MO.getReg());
1086   unsigned OldElts = OldTy.getNumElements();
1087   unsigned NewElts = MoreTy.getNumElements();
1088 
1089   unsigned NumParts = NewElts / OldElts;
1090 
1091   // Use concat_vectors if the result is a multiple of the number of elements.
1092   if (NumParts * OldElts == NewElts) {
1093     SmallVector<Register, 8> Parts;
1094     Parts.push_back(MO.getReg());
1095 
1096     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1097     for (unsigned I = 1; I != NumParts; ++I)
1098       Parts.push_back(ImpDef);
1099 
1100     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1101     MO.setReg(Concat.getReg(0));
1102     return;
1103   }
1104 
1105   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1106   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1107   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1108   MO.setReg(MoreReg);
1109 }
1110 
1111 LegalizerHelper::LegalizeResult
1112 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1113                                         LLT WideTy) {
1114   if (TypeIdx != 1)
1115     return UnableToLegalize;
1116 
1117   Register DstReg = MI.getOperand(0).getReg();
1118   LLT DstTy = MRI.getType(DstReg);
1119   if (DstTy.isVector())
1120     return UnableToLegalize;
1121 
1122   Register Src1 = MI.getOperand(1).getReg();
1123   LLT SrcTy = MRI.getType(Src1);
1124   const int DstSize = DstTy.getSizeInBits();
1125   const int SrcSize = SrcTy.getSizeInBits();
1126   const int WideSize = WideTy.getSizeInBits();
1127   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1128 
1129   unsigned NumOps = MI.getNumOperands();
1130   unsigned NumSrc = MI.getNumOperands() - 1;
1131   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1132 
1133   if (WideSize >= DstSize) {
1134     // Directly pack the bits in the target type.
1135     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1136 
1137     for (unsigned I = 2; I != NumOps; ++I) {
1138       const unsigned Offset = (I - 1) * PartSize;
1139 
1140       Register SrcReg = MI.getOperand(I).getReg();
1141       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1142 
1143       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1144 
1145       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1146         MRI.createGenericVirtualRegister(WideTy);
1147 
1148       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1149       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1150       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1151       ResultReg = NextResult;
1152     }
1153 
1154     if (WideSize > DstSize)
1155       MIRBuilder.buildTrunc(DstReg, ResultReg);
1156     else if (DstTy.isPointer())
1157       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1158 
1159     MI.eraseFromParent();
1160     return Legalized;
1161   }
1162 
1163   // Unmerge the original values to the GCD type, and recombine to the next
1164   // multiple greater than the original type.
1165   //
1166   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1167   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1168   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1169   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1170   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1171   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1172   // %12:_(s12) = G_MERGE_VALUES %10, %11
1173   //
1174   // Padding with undef if necessary:
1175   //
1176   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1177   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1178   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1179   // %7:_(s2) = G_IMPLICIT_DEF
1180   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1181   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1182   // %10:_(s12) = G_MERGE_VALUES %8, %9
1183 
1184   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1185   LLT GCDTy = LLT::scalar(GCD);
1186 
1187   SmallVector<Register, 8> Parts;
1188   SmallVector<Register, 8> NewMergeRegs;
1189   SmallVector<Register, 8> Unmerges;
1190   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1191 
1192   // Decompose the original operands if they don't evenly divide.
1193   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1194     Register SrcReg = MI.getOperand(I).getReg();
1195     if (GCD == SrcSize) {
1196       Unmerges.push_back(SrcReg);
1197     } else {
1198       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1199       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1200         Unmerges.push_back(Unmerge.getReg(J));
1201     }
1202   }
1203 
1204   // Pad with undef to the next size that is a multiple of the requested size.
1205   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1206     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1207     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1208       Unmerges.push_back(UndefReg);
1209   }
1210 
1211   const int PartsPerGCD = WideSize / GCD;
1212 
1213   // Build merges of each piece.
1214   ArrayRef<Register> Slicer(Unmerges);
1215   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1216     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1217     NewMergeRegs.push_back(Merge.getReg(0));
1218   }
1219 
1220   // A truncate may be necessary if the requested type doesn't evenly divide the
1221   // original result type.
1222   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1223     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1224   } else {
1225     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1226     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1227   }
1228 
1229   MI.eraseFromParent();
1230   return Legalized;
1231 }
1232 
1233 LegalizerHelper::LegalizeResult
1234 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1235                                           LLT WideTy) {
1236   if (TypeIdx != 0)
1237     return UnableToLegalize;
1238 
1239   unsigned NumDst = MI.getNumOperands() - 1;
1240   Register SrcReg = MI.getOperand(NumDst).getReg();
1241   LLT SrcTy = MRI.getType(SrcReg);
1242   if (!SrcTy.isScalar())
1243     return UnableToLegalize;
1244 
1245   Register Dst0Reg = MI.getOperand(0).getReg();
1246   LLT DstTy = MRI.getType(Dst0Reg);
1247   if (!DstTy.isScalar())
1248     return UnableToLegalize;
1249 
1250   unsigned NewSrcSize = NumDst * WideTy.getSizeInBits();
1251   LLT NewSrcTy = LLT::scalar(NewSrcSize);
1252   unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits();
1253 
1254   auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg);
1255 
1256   for (unsigned I = 1; I != NumDst; ++I) {
1257     auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I);
1258     auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt);
1259     WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl);
1260   }
1261 
1262   Observer.changingInstr(MI);
1263 
1264   MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg());
1265   for (unsigned I = 0; I != NumDst; ++I)
1266     widenScalarDst(MI, WideTy, I);
1267 
1268   Observer.changedInstr(MI);
1269 
1270   return Legalized;
1271 }
1272 
1273 LegalizerHelper::LegalizeResult
1274 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1275                                     LLT WideTy) {
1276   Register DstReg = MI.getOperand(0).getReg();
1277   Register SrcReg = MI.getOperand(1).getReg();
1278   LLT SrcTy = MRI.getType(SrcReg);
1279 
1280   LLT DstTy = MRI.getType(DstReg);
1281   unsigned Offset = MI.getOperand(2).getImm();
1282 
1283   if (TypeIdx == 0) {
1284     if (SrcTy.isVector() || DstTy.isVector())
1285       return UnableToLegalize;
1286 
1287     SrcOp Src(SrcReg);
1288     if (SrcTy.isPointer()) {
1289       // Extracts from pointers can be handled only if they are really just
1290       // simple integers.
1291       const DataLayout &DL = MIRBuilder.getDataLayout();
1292       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1293         return UnableToLegalize;
1294 
1295       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1296       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1297       SrcTy = SrcAsIntTy;
1298     }
1299 
1300     if (DstTy.isPointer())
1301       return UnableToLegalize;
1302 
1303     if (Offset == 0) {
1304       // Avoid a shift in the degenerate case.
1305       MIRBuilder.buildTrunc(DstReg,
1306                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1307       MI.eraseFromParent();
1308       return Legalized;
1309     }
1310 
1311     // Do a shift in the source type.
1312     LLT ShiftTy = SrcTy;
1313     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1314       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1315       ShiftTy = WideTy;
1316     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1317       return UnableToLegalize;
1318 
1319     auto LShr = MIRBuilder.buildLShr(
1320       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1321     MIRBuilder.buildTrunc(DstReg, LShr);
1322     MI.eraseFromParent();
1323     return Legalized;
1324   }
1325 
1326   if (SrcTy.isScalar()) {
1327     Observer.changingInstr(MI);
1328     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1329     Observer.changedInstr(MI);
1330     return Legalized;
1331   }
1332 
1333   if (!SrcTy.isVector())
1334     return UnableToLegalize;
1335 
1336   if (DstTy != SrcTy.getElementType())
1337     return UnableToLegalize;
1338 
1339   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1340     return UnableToLegalize;
1341 
1342   Observer.changingInstr(MI);
1343   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1344 
1345   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1346                           Offset);
1347   widenScalarDst(MI, WideTy.getScalarType(), 0);
1348   Observer.changedInstr(MI);
1349   return Legalized;
1350 }
1351 
1352 LegalizerHelper::LegalizeResult
1353 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1354                                    LLT WideTy) {
1355   if (TypeIdx != 0)
1356     return UnableToLegalize;
1357   Observer.changingInstr(MI);
1358   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1359   widenScalarDst(MI, WideTy);
1360   Observer.changedInstr(MI);
1361   return Legalized;
1362 }
1363 
1364 LegalizerHelper::LegalizeResult
1365 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1366   MIRBuilder.setInstr(MI);
1367 
1368   switch (MI.getOpcode()) {
1369   default:
1370     return UnableToLegalize;
1371   case TargetOpcode::G_EXTRACT:
1372     return widenScalarExtract(MI, TypeIdx, WideTy);
1373   case TargetOpcode::G_INSERT:
1374     return widenScalarInsert(MI, TypeIdx, WideTy);
1375   case TargetOpcode::G_MERGE_VALUES:
1376     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1377   case TargetOpcode::G_UNMERGE_VALUES:
1378     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1379   case TargetOpcode::G_UADDO:
1380   case TargetOpcode::G_USUBO: {
1381     if (TypeIdx == 1)
1382       return UnableToLegalize; // TODO
1383     auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy},
1384                                          {MI.getOperand(2).getReg()});
1385     auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy},
1386                                          {MI.getOperand(3).getReg()});
1387     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1388                           ? TargetOpcode::G_ADD
1389                           : TargetOpcode::G_SUB;
1390     // Do the arithmetic in the larger type.
1391     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1392     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1393     APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits());
1394     auto AndOp = MIRBuilder.buildInstr(
1395         TargetOpcode::G_AND, {WideTy},
1396         {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())});
1397     // There is no overflow if the AndOp is the same as NewOp.
1398     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp,
1399                          AndOp);
1400     // Now trunc the NewOp to the original result.
1401     MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp);
1402     MI.eraseFromParent();
1403     return Legalized;
1404   }
1405   case TargetOpcode::G_CTTZ:
1406   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1407   case TargetOpcode::G_CTLZ:
1408   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1409   case TargetOpcode::G_CTPOP: {
1410     if (TypeIdx == 0) {
1411       Observer.changingInstr(MI);
1412       widenScalarDst(MI, WideTy, 0);
1413       Observer.changedInstr(MI);
1414       return Legalized;
1415     }
1416 
1417     Register SrcReg = MI.getOperand(1).getReg();
1418 
1419     // First ZEXT the input.
1420     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1421     LLT CurTy = MRI.getType(SrcReg);
1422     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1423       // The count is the same in the larger type except if the original
1424       // value was zero.  This can be handled by setting the bit just off
1425       // the top of the original type.
1426       auto TopBit =
1427           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1428       MIBSrc = MIRBuilder.buildOr(
1429         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1430     }
1431 
1432     // Perform the operation at the larger size.
1433     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1434     // This is already the correct result for CTPOP and CTTZs
1435     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1436         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1437       // The correct result is NewOp - (Difference in widety and current ty).
1438       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1439       MIBNewOp = MIRBuilder.buildInstr(
1440           TargetOpcode::G_SUB, {WideTy},
1441           {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)});
1442     }
1443 
1444     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1445     MI.eraseFromParent();
1446     return Legalized;
1447   }
1448   case TargetOpcode::G_BSWAP: {
1449     Observer.changingInstr(MI);
1450     Register DstReg = MI.getOperand(0).getReg();
1451 
1452     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1453     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1454     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1455     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1456 
1457     MI.getOperand(0).setReg(DstExt);
1458 
1459     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1460 
1461     LLT Ty = MRI.getType(DstReg);
1462     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1463     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1464     MIRBuilder.buildInstr(TargetOpcode::G_LSHR)
1465       .addDef(ShrReg)
1466       .addUse(DstExt)
1467       .addUse(ShiftAmtReg);
1468 
1469     MIRBuilder.buildTrunc(DstReg, ShrReg);
1470     Observer.changedInstr(MI);
1471     return Legalized;
1472   }
1473   case TargetOpcode::G_BITREVERSE: {
1474     Observer.changingInstr(MI);
1475 
1476     Register DstReg = MI.getOperand(0).getReg();
1477     LLT Ty = MRI.getType(DstReg);
1478     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1479 
1480     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1481     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1482     MI.getOperand(0).setReg(DstExt);
1483     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1484 
1485     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1486     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1487     MIRBuilder.buildTrunc(DstReg, Shift);
1488     Observer.changedInstr(MI);
1489     return Legalized;
1490   }
1491   case TargetOpcode::G_ADD:
1492   case TargetOpcode::G_AND:
1493   case TargetOpcode::G_MUL:
1494   case TargetOpcode::G_OR:
1495   case TargetOpcode::G_XOR:
1496   case TargetOpcode::G_SUB:
1497     // Perform operation at larger width (any extension is fines here, high bits
1498     // don't affect the result) and then truncate the result back to the
1499     // original type.
1500     Observer.changingInstr(MI);
1501     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1502     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1503     widenScalarDst(MI, WideTy);
1504     Observer.changedInstr(MI);
1505     return Legalized;
1506 
1507   case TargetOpcode::G_SHL:
1508     Observer.changingInstr(MI);
1509 
1510     if (TypeIdx == 0) {
1511       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1512       widenScalarDst(MI, WideTy);
1513     } else {
1514       assert(TypeIdx == 1);
1515       // The "number of bits to shift" operand must preserve its value as an
1516       // unsigned integer:
1517       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1518     }
1519 
1520     Observer.changedInstr(MI);
1521     return Legalized;
1522 
1523   case TargetOpcode::G_SDIV:
1524   case TargetOpcode::G_SREM:
1525   case TargetOpcode::G_SMIN:
1526   case TargetOpcode::G_SMAX:
1527     Observer.changingInstr(MI);
1528     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1529     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1530     widenScalarDst(MI, WideTy);
1531     Observer.changedInstr(MI);
1532     return Legalized;
1533 
1534   case TargetOpcode::G_ASHR:
1535   case TargetOpcode::G_LSHR:
1536     Observer.changingInstr(MI);
1537 
1538     if (TypeIdx == 0) {
1539       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1540         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1541 
1542       widenScalarSrc(MI, WideTy, 1, CvtOp);
1543       widenScalarDst(MI, WideTy);
1544     } else {
1545       assert(TypeIdx == 1);
1546       // The "number of bits to shift" operand must preserve its value as an
1547       // unsigned integer:
1548       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1549     }
1550 
1551     Observer.changedInstr(MI);
1552     return Legalized;
1553   case TargetOpcode::G_UDIV:
1554   case TargetOpcode::G_UREM:
1555   case TargetOpcode::G_UMIN:
1556   case TargetOpcode::G_UMAX:
1557     Observer.changingInstr(MI);
1558     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1559     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1560     widenScalarDst(MI, WideTy);
1561     Observer.changedInstr(MI);
1562     return Legalized;
1563 
1564   case TargetOpcode::G_SELECT:
1565     Observer.changingInstr(MI);
1566     if (TypeIdx == 0) {
1567       // Perform operation at larger width (any extension is fine here, high
1568       // bits don't affect the result) and then truncate the result back to the
1569       // original type.
1570       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1571       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1572       widenScalarDst(MI, WideTy);
1573     } else {
1574       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1575       // Explicit extension is required here since high bits affect the result.
1576       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1577     }
1578     Observer.changedInstr(MI);
1579     return Legalized;
1580 
1581   case TargetOpcode::G_FPTOSI:
1582   case TargetOpcode::G_FPTOUI:
1583     if (TypeIdx != 0)
1584       return UnableToLegalize;
1585     Observer.changingInstr(MI);
1586     widenScalarDst(MI, WideTy);
1587     Observer.changedInstr(MI);
1588     return Legalized;
1589 
1590   case TargetOpcode::G_SITOFP:
1591     if (TypeIdx != 1)
1592       return UnableToLegalize;
1593     Observer.changingInstr(MI);
1594     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1595     Observer.changedInstr(MI);
1596     return Legalized;
1597 
1598   case TargetOpcode::G_UITOFP:
1599     if (TypeIdx != 1)
1600       return UnableToLegalize;
1601     Observer.changingInstr(MI);
1602     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1603     Observer.changedInstr(MI);
1604     return Legalized;
1605 
1606   case TargetOpcode::G_LOAD:
1607   case TargetOpcode::G_SEXTLOAD:
1608   case TargetOpcode::G_ZEXTLOAD:
1609     Observer.changingInstr(MI);
1610     widenScalarDst(MI, WideTy);
1611     Observer.changedInstr(MI);
1612     return Legalized;
1613 
1614   case TargetOpcode::G_STORE: {
1615     if (TypeIdx != 0)
1616       return UnableToLegalize;
1617 
1618     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1619     if (!isPowerOf2_32(Ty.getSizeInBits()))
1620       return UnableToLegalize;
1621 
1622     Observer.changingInstr(MI);
1623 
1624     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1625       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1626     widenScalarSrc(MI, WideTy, 0, ExtType);
1627 
1628     Observer.changedInstr(MI);
1629     return Legalized;
1630   }
1631   case TargetOpcode::G_CONSTANT: {
1632     MachineOperand &SrcMO = MI.getOperand(1);
1633     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1634     const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits());
1635     Observer.changingInstr(MI);
1636     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1637 
1638     widenScalarDst(MI, WideTy);
1639     Observer.changedInstr(MI);
1640     return Legalized;
1641   }
1642   case TargetOpcode::G_FCONSTANT: {
1643     MachineOperand &SrcMO = MI.getOperand(1);
1644     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1645     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1646     bool LosesInfo;
1647     switch (WideTy.getSizeInBits()) {
1648     case 32:
1649       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1650                   &LosesInfo);
1651       break;
1652     case 64:
1653       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1654                   &LosesInfo);
1655       break;
1656     default:
1657       return UnableToLegalize;
1658     }
1659 
1660     assert(!LosesInfo && "extend should always be lossless");
1661 
1662     Observer.changingInstr(MI);
1663     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1664 
1665     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1666     Observer.changedInstr(MI);
1667     return Legalized;
1668   }
1669   case TargetOpcode::G_IMPLICIT_DEF: {
1670     Observer.changingInstr(MI);
1671     widenScalarDst(MI, WideTy);
1672     Observer.changedInstr(MI);
1673     return Legalized;
1674   }
1675   case TargetOpcode::G_BRCOND:
1676     Observer.changingInstr(MI);
1677     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1678     Observer.changedInstr(MI);
1679     return Legalized;
1680 
1681   case TargetOpcode::G_FCMP:
1682     Observer.changingInstr(MI);
1683     if (TypeIdx == 0)
1684       widenScalarDst(MI, WideTy);
1685     else {
1686       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1687       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1688     }
1689     Observer.changedInstr(MI);
1690     return Legalized;
1691 
1692   case TargetOpcode::G_ICMP:
1693     Observer.changingInstr(MI);
1694     if (TypeIdx == 0)
1695       widenScalarDst(MI, WideTy);
1696     else {
1697       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1698                                MI.getOperand(1).getPredicate()))
1699                                ? TargetOpcode::G_SEXT
1700                                : TargetOpcode::G_ZEXT;
1701       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1702       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1703     }
1704     Observer.changedInstr(MI);
1705     return Legalized;
1706 
1707   case TargetOpcode::G_GEP:
1708     assert(TypeIdx == 1 && "unable to legalize pointer of GEP");
1709     Observer.changingInstr(MI);
1710     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1711     Observer.changedInstr(MI);
1712     return Legalized;
1713 
1714   case TargetOpcode::G_PHI: {
1715     assert(TypeIdx == 0 && "Expecting only Idx 0");
1716 
1717     Observer.changingInstr(MI);
1718     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1719       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1720       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1721       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1722     }
1723 
1724     MachineBasicBlock &MBB = *MI.getParent();
1725     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1726     widenScalarDst(MI, WideTy);
1727     Observer.changedInstr(MI);
1728     return Legalized;
1729   }
1730   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1731     if (TypeIdx == 0) {
1732       Register VecReg = MI.getOperand(1).getReg();
1733       LLT VecTy = MRI.getType(VecReg);
1734       Observer.changingInstr(MI);
1735 
1736       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
1737                                      WideTy.getSizeInBits()),
1738                      1, TargetOpcode::G_SEXT);
1739 
1740       widenScalarDst(MI, WideTy, 0);
1741       Observer.changedInstr(MI);
1742       return Legalized;
1743     }
1744 
1745     if (TypeIdx != 2)
1746       return UnableToLegalize;
1747     Observer.changingInstr(MI);
1748     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1749     Observer.changedInstr(MI);
1750     return Legalized;
1751   }
1752   case TargetOpcode::G_FADD:
1753   case TargetOpcode::G_FMUL:
1754   case TargetOpcode::G_FSUB:
1755   case TargetOpcode::G_FMA:
1756   case TargetOpcode::G_FMAD:
1757   case TargetOpcode::G_FNEG:
1758   case TargetOpcode::G_FABS:
1759   case TargetOpcode::G_FCANONICALIZE:
1760   case TargetOpcode::G_FMINNUM:
1761   case TargetOpcode::G_FMAXNUM:
1762   case TargetOpcode::G_FMINNUM_IEEE:
1763   case TargetOpcode::G_FMAXNUM_IEEE:
1764   case TargetOpcode::G_FMINIMUM:
1765   case TargetOpcode::G_FMAXIMUM:
1766   case TargetOpcode::G_FDIV:
1767   case TargetOpcode::G_FREM:
1768   case TargetOpcode::G_FCEIL:
1769   case TargetOpcode::G_FFLOOR:
1770   case TargetOpcode::G_FCOS:
1771   case TargetOpcode::G_FSIN:
1772   case TargetOpcode::G_FLOG10:
1773   case TargetOpcode::G_FLOG:
1774   case TargetOpcode::G_FLOG2:
1775   case TargetOpcode::G_FRINT:
1776   case TargetOpcode::G_FNEARBYINT:
1777   case TargetOpcode::G_FSQRT:
1778   case TargetOpcode::G_FEXP:
1779   case TargetOpcode::G_FEXP2:
1780   case TargetOpcode::G_FPOW:
1781   case TargetOpcode::G_INTRINSIC_TRUNC:
1782   case TargetOpcode::G_INTRINSIC_ROUND:
1783     assert(TypeIdx == 0);
1784     Observer.changingInstr(MI);
1785 
1786     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
1787       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
1788 
1789     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1790     Observer.changedInstr(MI);
1791     return Legalized;
1792   case TargetOpcode::G_INTTOPTR:
1793     if (TypeIdx != 1)
1794       return UnableToLegalize;
1795 
1796     Observer.changingInstr(MI);
1797     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1798     Observer.changedInstr(MI);
1799     return Legalized;
1800   case TargetOpcode::G_PTRTOINT:
1801     if (TypeIdx != 0)
1802       return UnableToLegalize;
1803 
1804     Observer.changingInstr(MI);
1805     widenScalarDst(MI, WideTy, 0);
1806     Observer.changedInstr(MI);
1807     return Legalized;
1808   case TargetOpcode::G_BUILD_VECTOR: {
1809     Observer.changingInstr(MI);
1810 
1811     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
1812     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
1813       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
1814 
1815     // Avoid changing the result vector type if the source element type was
1816     // requested.
1817     if (TypeIdx == 1) {
1818       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
1819       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
1820     } else {
1821       widenScalarDst(MI, WideTy, 0);
1822     }
1823 
1824     Observer.changedInstr(MI);
1825     return Legalized;
1826   }
1827   case TargetOpcode::G_SEXT_INREG:
1828     if (TypeIdx != 0)
1829       return UnableToLegalize;
1830 
1831     Observer.changingInstr(MI);
1832     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1833     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
1834     Observer.changedInstr(MI);
1835     return Legalized;
1836   }
1837 }
1838 
1839 LegalizerHelper::LegalizeResult
1840 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
1841   using namespace TargetOpcode;
1842   MIRBuilder.setInstr(MI);
1843 
1844   switch(MI.getOpcode()) {
1845   default:
1846     return UnableToLegalize;
1847   case TargetOpcode::G_SREM:
1848   case TargetOpcode::G_UREM: {
1849     Register QuotReg = MRI.createGenericVirtualRegister(Ty);
1850     MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV)
1851         .addDef(QuotReg)
1852         .addUse(MI.getOperand(1).getReg())
1853         .addUse(MI.getOperand(2).getReg());
1854 
1855     Register ProdReg = MRI.createGenericVirtualRegister(Ty);
1856     MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg());
1857     MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
1858                         ProdReg);
1859     MI.eraseFromParent();
1860     return Legalized;
1861   }
1862   case TargetOpcode::G_SMULO:
1863   case TargetOpcode::G_UMULO: {
1864     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
1865     // result.
1866     Register Res = MI.getOperand(0).getReg();
1867     Register Overflow = MI.getOperand(1).getReg();
1868     Register LHS = MI.getOperand(2).getReg();
1869     Register RHS = MI.getOperand(3).getReg();
1870 
1871     MIRBuilder.buildMul(Res, LHS, RHS);
1872 
1873     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
1874                           ? TargetOpcode::G_SMULH
1875                           : TargetOpcode::G_UMULH;
1876 
1877     Register HiPart = MRI.createGenericVirtualRegister(Ty);
1878     MIRBuilder.buildInstr(Opcode)
1879       .addDef(HiPart)
1880       .addUse(LHS)
1881       .addUse(RHS);
1882 
1883     Register Zero = MRI.createGenericVirtualRegister(Ty);
1884     MIRBuilder.buildConstant(Zero, 0);
1885 
1886     // For *signed* multiply, overflow is detected by checking:
1887     // (hi != (lo >> bitwidth-1))
1888     if (Opcode == TargetOpcode::G_SMULH) {
1889       Register Shifted = MRI.createGenericVirtualRegister(Ty);
1890       Register ShiftAmt = MRI.createGenericVirtualRegister(Ty);
1891       MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1);
1892       MIRBuilder.buildInstr(TargetOpcode::G_ASHR)
1893         .addDef(Shifted)
1894         .addUse(Res)
1895         .addUse(ShiftAmt);
1896       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
1897     } else {
1898       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
1899     }
1900     MI.eraseFromParent();
1901     return Legalized;
1902   }
1903   case TargetOpcode::G_FNEG: {
1904     // TODO: Handle vector types once we are able to
1905     // represent them.
1906     if (Ty.isVector())
1907       return UnableToLegalize;
1908     Register Res = MI.getOperand(0).getReg();
1909     Type *ZeroTy;
1910     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1911     switch (Ty.getSizeInBits()) {
1912     case 16:
1913       ZeroTy = Type::getHalfTy(Ctx);
1914       break;
1915     case 32:
1916       ZeroTy = Type::getFloatTy(Ctx);
1917       break;
1918     case 64:
1919       ZeroTy = Type::getDoubleTy(Ctx);
1920       break;
1921     case 128:
1922       ZeroTy = Type::getFP128Ty(Ctx);
1923       break;
1924     default:
1925       llvm_unreachable("unexpected floating-point type");
1926     }
1927     ConstantFP &ZeroForNegation =
1928         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
1929     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
1930     Register SubByReg = MI.getOperand(1).getReg();
1931     Register ZeroReg = Zero->getOperand(0).getReg();
1932     MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg},
1933                           MI.getFlags());
1934     MI.eraseFromParent();
1935     return Legalized;
1936   }
1937   case TargetOpcode::G_FSUB: {
1938     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
1939     // First, check if G_FNEG is marked as Lower. If so, we may
1940     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
1941     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
1942       return UnableToLegalize;
1943     Register Res = MI.getOperand(0).getReg();
1944     Register LHS = MI.getOperand(1).getReg();
1945     Register RHS = MI.getOperand(2).getReg();
1946     Register Neg = MRI.createGenericVirtualRegister(Ty);
1947     MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS);
1948     MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags());
1949     MI.eraseFromParent();
1950     return Legalized;
1951   }
1952   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
1953     Register OldValRes = MI.getOperand(0).getReg();
1954     Register SuccessRes = MI.getOperand(1).getReg();
1955     Register Addr = MI.getOperand(2).getReg();
1956     Register CmpVal = MI.getOperand(3).getReg();
1957     Register NewVal = MI.getOperand(4).getReg();
1958     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
1959                                   **MI.memoperands_begin());
1960     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
1961     MI.eraseFromParent();
1962     return Legalized;
1963   }
1964   case TargetOpcode::G_LOAD:
1965   case TargetOpcode::G_SEXTLOAD:
1966   case TargetOpcode::G_ZEXTLOAD: {
1967     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
1968     Register DstReg = MI.getOperand(0).getReg();
1969     Register PtrReg = MI.getOperand(1).getReg();
1970     LLT DstTy = MRI.getType(DstReg);
1971     auto &MMO = **MI.memoperands_begin();
1972 
1973     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
1974       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
1975         // This load needs splitting into power of 2 sized loads.
1976         if (DstTy.isVector())
1977           return UnableToLegalize;
1978         if (isPowerOf2_32(DstTy.getSizeInBits()))
1979           return UnableToLegalize; // Don't know what we're being asked to do.
1980 
1981         // Our strategy here is to generate anyextending loads for the smaller
1982         // types up to next power-2 result type, and then combine the two larger
1983         // result values together, before truncating back down to the non-pow-2
1984         // type.
1985         // E.g. v1 = i24 load =>
1986         // v2 = i32 load (2 byte)
1987         // v3 = i32 load (1 byte)
1988         // v4 = i32 shl v3, 16
1989         // v5 = i32 or v4, v2
1990         // v1 = i24 trunc v5
1991         // By doing this we generate the correct truncate which should get
1992         // combined away as an artifact with a matching extend.
1993         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
1994         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
1995 
1996         MachineFunction &MF = MIRBuilder.getMF();
1997         MachineMemOperand *LargeMMO =
1998             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
1999         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2000             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2001 
2002         LLT PtrTy = MRI.getType(PtrReg);
2003         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2004         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2005         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2006         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2007         auto LargeLoad =
2008             MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO);
2009 
2010         auto OffsetCst =
2011             MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8);
2012         Register GEPReg = MRI.createGenericVirtualRegister(PtrTy);
2013         auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0));
2014         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2015                                               *SmallMMO);
2016 
2017         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2018         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2019         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2020         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2021         MI.eraseFromParent();
2022         return Legalized;
2023       }
2024       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2025       MI.eraseFromParent();
2026       return Legalized;
2027     }
2028 
2029     if (DstTy.isScalar()) {
2030       Register TmpReg =
2031           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2032       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2033       switch (MI.getOpcode()) {
2034       default:
2035         llvm_unreachable("Unexpected opcode");
2036       case TargetOpcode::G_LOAD:
2037         MIRBuilder.buildAnyExt(DstReg, TmpReg);
2038         break;
2039       case TargetOpcode::G_SEXTLOAD:
2040         MIRBuilder.buildSExt(DstReg, TmpReg);
2041         break;
2042       case TargetOpcode::G_ZEXTLOAD:
2043         MIRBuilder.buildZExt(DstReg, TmpReg);
2044         break;
2045       }
2046       MI.eraseFromParent();
2047       return Legalized;
2048     }
2049 
2050     return UnableToLegalize;
2051   }
2052   case TargetOpcode::G_STORE: {
2053     // Lower a non-power of 2 store into multiple pow-2 stores.
2054     // E.g. split an i24 store into an i16 store + i8 store.
2055     // We do this by first extending the stored value to the next largest power
2056     // of 2 type, and then using truncating stores to store the components.
2057     // By doing this, likewise with G_LOAD, generate an extend that can be
2058     // artifact-combined away instead of leaving behind extracts.
2059     Register SrcReg = MI.getOperand(0).getReg();
2060     Register PtrReg = MI.getOperand(1).getReg();
2061     LLT SrcTy = MRI.getType(SrcReg);
2062     MachineMemOperand &MMO = **MI.memoperands_begin();
2063     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2064       return UnableToLegalize;
2065     if (SrcTy.isVector())
2066       return UnableToLegalize;
2067     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2068       return UnableToLegalize; // Don't know what we're being asked to do.
2069 
2070     // Extend to the next pow-2.
2071     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2072     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2073 
2074     // Obtain the smaller value by shifting away the larger value.
2075     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2076     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2077     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2078     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2079 
2080     // Generate the GEP and truncating stores.
2081     LLT PtrTy = MRI.getType(PtrReg);
2082     auto OffsetCst =
2083         MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8);
2084     Register GEPReg = MRI.createGenericVirtualRegister(PtrTy);
2085     auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0));
2086 
2087     MachineFunction &MF = MIRBuilder.getMF();
2088     MachineMemOperand *LargeMMO =
2089         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2090     MachineMemOperand *SmallMMO =
2091         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2092     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2093     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2094     MI.eraseFromParent();
2095     return Legalized;
2096   }
2097   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2098   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2099   case TargetOpcode::G_CTLZ:
2100   case TargetOpcode::G_CTTZ:
2101   case TargetOpcode::G_CTPOP:
2102     return lowerBitCount(MI, TypeIdx, Ty);
2103   case G_UADDO: {
2104     Register Res = MI.getOperand(0).getReg();
2105     Register CarryOut = MI.getOperand(1).getReg();
2106     Register LHS = MI.getOperand(2).getReg();
2107     Register RHS = MI.getOperand(3).getReg();
2108 
2109     MIRBuilder.buildAdd(Res, LHS, RHS);
2110     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2111 
2112     MI.eraseFromParent();
2113     return Legalized;
2114   }
2115   case G_UADDE: {
2116     Register Res = MI.getOperand(0).getReg();
2117     Register CarryOut = MI.getOperand(1).getReg();
2118     Register LHS = MI.getOperand(2).getReg();
2119     Register RHS = MI.getOperand(3).getReg();
2120     Register CarryIn = MI.getOperand(4).getReg();
2121 
2122     Register TmpRes = MRI.createGenericVirtualRegister(Ty);
2123     Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty);
2124 
2125     MIRBuilder.buildAdd(TmpRes, LHS, RHS);
2126     MIRBuilder.buildZExt(ZExtCarryIn, CarryIn);
2127     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2128     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2129 
2130     MI.eraseFromParent();
2131     return Legalized;
2132   }
2133   case G_USUBO: {
2134     Register Res = MI.getOperand(0).getReg();
2135     Register BorrowOut = MI.getOperand(1).getReg();
2136     Register LHS = MI.getOperand(2).getReg();
2137     Register RHS = MI.getOperand(3).getReg();
2138 
2139     MIRBuilder.buildSub(Res, LHS, RHS);
2140     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2141 
2142     MI.eraseFromParent();
2143     return Legalized;
2144   }
2145   case G_USUBE: {
2146     Register Res = MI.getOperand(0).getReg();
2147     Register BorrowOut = MI.getOperand(1).getReg();
2148     Register LHS = MI.getOperand(2).getReg();
2149     Register RHS = MI.getOperand(3).getReg();
2150     Register BorrowIn = MI.getOperand(4).getReg();
2151 
2152     Register TmpRes = MRI.createGenericVirtualRegister(Ty);
2153     Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty);
2154     Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
2155     Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1));
2156 
2157     MIRBuilder.buildSub(TmpRes, LHS, RHS);
2158     MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn);
2159     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2160     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS);
2161     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS);
2162     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2163 
2164     MI.eraseFromParent();
2165     return Legalized;
2166   }
2167   case G_UITOFP:
2168     return lowerUITOFP(MI, TypeIdx, Ty);
2169   case G_SITOFP:
2170     return lowerSITOFP(MI, TypeIdx, Ty);
2171   case G_FPTOUI:
2172     return lowerFPTOUI(MI, TypeIdx, Ty);
2173   case G_SMIN:
2174   case G_SMAX:
2175   case G_UMIN:
2176   case G_UMAX:
2177     return lowerMinMax(MI, TypeIdx, Ty);
2178   case G_FCOPYSIGN:
2179     return lowerFCopySign(MI, TypeIdx, Ty);
2180   case G_FMINNUM:
2181   case G_FMAXNUM:
2182     return lowerFMinNumMaxNum(MI);
2183   case G_UNMERGE_VALUES:
2184     return lowerUnmergeValues(MI);
2185   case TargetOpcode::G_SEXT_INREG: {
2186     assert(MI.getOperand(2).isImm() && "Expected immediate");
2187     int64_t SizeInBits = MI.getOperand(2).getImm();
2188 
2189     Register DstReg = MI.getOperand(0).getReg();
2190     Register SrcReg = MI.getOperand(1).getReg();
2191     LLT DstTy = MRI.getType(DstReg);
2192     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2193 
2194     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2195     MIRBuilder.buildInstr(TargetOpcode::G_SHL, {TmpRes}, {SrcReg, MIBSz->getOperand(0).getReg()});
2196     MIRBuilder.buildInstr(TargetOpcode::G_ASHR, {DstReg}, {TmpRes, MIBSz->getOperand(0).getReg()});
2197     MI.eraseFromParent();
2198     return Legalized;
2199   }
2200   case G_SHUFFLE_VECTOR:
2201     return lowerShuffleVector(MI);
2202   case G_DYN_STACKALLOC:
2203     return lowerDynStackAlloc(MI);
2204   }
2205 }
2206 
2207 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2208     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2209   SmallVector<Register, 2> DstRegs;
2210 
2211   unsigned NarrowSize = NarrowTy.getSizeInBits();
2212   Register DstReg = MI.getOperand(0).getReg();
2213   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2214   int NumParts = Size / NarrowSize;
2215   // FIXME: Don't know how to handle the situation where the small vectors
2216   // aren't all the same size yet.
2217   if (Size % NarrowSize != 0)
2218     return UnableToLegalize;
2219 
2220   for (int i = 0; i < NumParts; ++i) {
2221     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2222     MIRBuilder.buildUndef(TmpReg);
2223     DstRegs.push_back(TmpReg);
2224   }
2225 
2226   if (NarrowTy.isVector())
2227     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2228   else
2229     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2230 
2231   MI.eraseFromParent();
2232   return Legalized;
2233 }
2234 
2235 LegalizerHelper::LegalizeResult
2236 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx,
2237                                           LLT NarrowTy) {
2238   const unsigned Opc = MI.getOpcode();
2239   const unsigned NumOps = MI.getNumOperands() - 1;
2240   const unsigned NarrowSize = NarrowTy.getSizeInBits();
2241   const Register DstReg = MI.getOperand(0).getReg();
2242   const unsigned Flags = MI.getFlags();
2243   const LLT DstTy = MRI.getType(DstReg);
2244   const unsigned Size = DstTy.getSizeInBits();
2245   const int NumParts = Size / NarrowSize;
2246   const LLT EltTy = DstTy.getElementType();
2247   const unsigned EltSize = EltTy.getSizeInBits();
2248   const unsigned BitsForNumParts = NarrowSize * NumParts;
2249 
2250   // Check if we have any leftovers. If we do, then only handle the case where
2251   // the leftover is one element.
2252   if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size)
2253     return UnableToLegalize;
2254 
2255   if (BitsForNumParts != Size) {
2256     Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy);
2257     MIRBuilder.buildUndef(AccumDstReg);
2258 
2259     // Handle the pieces which evenly divide into the requested type with
2260     // extract/op/insert sequence.
2261     for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) {
2262       SmallVector<SrcOp, 4> SrcOps;
2263       for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2264         Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy);
2265         MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset);
2266         SrcOps.push_back(PartOpReg);
2267       }
2268 
2269       Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy);
2270       MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
2271 
2272       Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy);
2273       MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset);
2274       AccumDstReg = PartInsertReg;
2275     }
2276 
2277     // Handle the remaining element sized leftover piece.
2278     SmallVector<SrcOp, 4> SrcOps;
2279     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2280       Register PartOpReg = MRI.createGenericVirtualRegister(EltTy);
2281       MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(),
2282                               BitsForNumParts);
2283       SrcOps.push_back(PartOpReg);
2284     }
2285 
2286     Register PartDstReg = MRI.createGenericVirtualRegister(EltTy);
2287     MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags);
2288     MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts);
2289     MI.eraseFromParent();
2290 
2291     return Legalized;
2292   }
2293 
2294   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2295 
2296   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs);
2297 
2298   if (NumOps >= 2)
2299     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs);
2300 
2301   if (NumOps >= 3)
2302     extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs);
2303 
2304   for (int i = 0; i < NumParts; ++i) {
2305     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
2306 
2307     if (NumOps == 1)
2308       MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags);
2309     else if (NumOps == 2) {
2310       MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags);
2311     } else if (NumOps == 3) {
2312       MIRBuilder.buildInstr(Opc, {DstReg},
2313                             {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags);
2314     }
2315 
2316     DstRegs.push_back(DstReg);
2317   }
2318 
2319   if (NarrowTy.isVector())
2320     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2321   else
2322     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2323 
2324   MI.eraseFromParent();
2325   return Legalized;
2326 }
2327 
2328 // Handle splitting vector operations which need to have the same number of
2329 // elements in each type index, but each type index may have a different element
2330 // type.
2331 //
2332 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2333 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2334 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2335 //
2336 // Also handles some irregular breakdown cases, e.g.
2337 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2338 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2339 //             s64 = G_SHL s64, s32
2340 LegalizerHelper::LegalizeResult
2341 LegalizerHelper::fewerElementsVectorMultiEltType(
2342   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2343   if (TypeIdx != 0)
2344     return UnableToLegalize;
2345 
2346   const LLT NarrowTy0 = NarrowTyArg;
2347   const unsigned NewNumElts =
2348       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2349 
2350   const Register DstReg = MI.getOperand(0).getReg();
2351   LLT DstTy = MRI.getType(DstReg);
2352   LLT LeftoverTy0;
2353 
2354   // All of the operands need to have the same number of elements, so if we can
2355   // determine a type breakdown for the result type, we can for all of the
2356   // source types.
2357   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2358   if (NumParts < 0)
2359     return UnableToLegalize;
2360 
2361   SmallVector<MachineInstrBuilder, 4> NewInsts;
2362 
2363   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2364   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2365 
2366   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2367     LLT LeftoverTy;
2368     Register SrcReg = MI.getOperand(I).getReg();
2369     LLT SrcTyI = MRI.getType(SrcReg);
2370     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2371     LLT LeftoverTyI;
2372 
2373     // Split this operand into the requested typed registers, and any leftover
2374     // required to reproduce the original type.
2375     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2376                       LeftoverRegs))
2377       return UnableToLegalize;
2378 
2379     if (I == 1) {
2380       // For the first operand, create an instruction for each part and setup
2381       // the result.
2382       for (Register PartReg : PartRegs) {
2383         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2384         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2385                                .addDef(PartDstReg)
2386                                .addUse(PartReg));
2387         DstRegs.push_back(PartDstReg);
2388       }
2389 
2390       for (Register LeftoverReg : LeftoverRegs) {
2391         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2392         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2393                                .addDef(PartDstReg)
2394                                .addUse(LeftoverReg));
2395         LeftoverDstRegs.push_back(PartDstReg);
2396       }
2397     } else {
2398       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2399 
2400       // Add the newly created operand splits to the existing instructions. The
2401       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2402       // pieces.
2403       unsigned InstCount = 0;
2404       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2405         NewInsts[InstCount++].addUse(PartRegs[J]);
2406       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2407         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2408     }
2409 
2410     PartRegs.clear();
2411     LeftoverRegs.clear();
2412   }
2413 
2414   // Insert the newly built operations and rebuild the result register.
2415   for (auto &MIB : NewInsts)
2416     MIRBuilder.insertInstr(MIB);
2417 
2418   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2419 
2420   MI.eraseFromParent();
2421   return Legalized;
2422 }
2423 
2424 LegalizerHelper::LegalizeResult
2425 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2426                                           LLT NarrowTy) {
2427   if (TypeIdx != 0)
2428     return UnableToLegalize;
2429 
2430   Register DstReg = MI.getOperand(0).getReg();
2431   Register SrcReg = MI.getOperand(1).getReg();
2432   LLT DstTy = MRI.getType(DstReg);
2433   LLT SrcTy = MRI.getType(SrcReg);
2434 
2435   LLT NarrowTy0 = NarrowTy;
2436   LLT NarrowTy1;
2437   unsigned NumParts;
2438 
2439   if (NarrowTy.isVector()) {
2440     // Uneven breakdown not handled.
2441     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2442     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2443       return UnableToLegalize;
2444 
2445     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2446   } else {
2447     NumParts = DstTy.getNumElements();
2448     NarrowTy1 = SrcTy.getElementType();
2449   }
2450 
2451   SmallVector<Register, 4> SrcRegs, DstRegs;
2452   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2453 
2454   for (unsigned I = 0; I < NumParts; ++I) {
2455     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2456     MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode())
2457       .addDef(DstReg)
2458       .addUse(SrcRegs[I]);
2459 
2460     NewInst->setFlags(MI.getFlags());
2461     DstRegs.push_back(DstReg);
2462   }
2463 
2464   if (NarrowTy.isVector())
2465     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2466   else
2467     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2468 
2469   MI.eraseFromParent();
2470   return Legalized;
2471 }
2472 
2473 LegalizerHelper::LegalizeResult
2474 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2475                                         LLT NarrowTy) {
2476   Register DstReg = MI.getOperand(0).getReg();
2477   Register Src0Reg = MI.getOperand(2).getReg();
2478   LLT DstTy = MRI.getType(DstReg);
2479   LLT SrcTy = MRI.getType(Src0Reg);
2480 
2481   unsigned NumParts;
2482   LLT NarrowTy0, NarrowTy1;
2483 
2484   if (TypeIdx == 0) {
2485     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2486     unsigned OldElts = DstTy.getNumElements();
2487 
2488     NarrowTy0 = NarrowTy;
2489     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2490     NarrowTy1 = NarrowTy.isVector() ?
2491       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2492       SrcTy.getElementType();
2493 
2494   } else {
2495     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2496     unsigned OldElts = SrcTy.getNumElements();
2497 
2498     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2499       NarrowTy.getNumElements();
2500     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2501                             DstTy.getScalarSizeInBits());
2502     NarrowTy1 = NarrowTy;
2503   }
2504 
2505   // FIXME: Don't know how to handle the situation where the small vectors
2506   // aren't all the same size yet.
2507   if (NarrowTy1.isVector() &&
2508       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2509     return UnableToLegalize;
2510 
2511   CmpInst::Predicate Pred
2512     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2513 
2514   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2515   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2516   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2517 
2518   for (unsigned I = 0; I < NumParts; ++I) {
2519     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2520     DstRegs.push_back(DstReg);
2521 
2522     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2523       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2524     else {
2525       MachineInstr *NewCmp
2526         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2527       NewCmp->setFlags(MI.getFlags());
2528     }
2529   }
2530 
2531   if (NarrowTy1.isVector())
2532     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2533   else
2534     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2535 
2536   MI.eraseFromParent();
2537   return Legalized;
2538 }
2539 
2540 LegalizerHelper::LegalizeResult
2541 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2542                                            LLT NarrowTy) {
2543   Register DstReg = MI.getOperand(0).getReg();
2544   Register CondReg = MI.getOperand(1).getReg();
2545 
2546   unsigned NumParts = 0;
2547   LLT NarrowTy0, NarrowTy1;
2548 
2549   LLT DstTy = MRI.getType(DstReg);
2550   LLT CondTy = MRI.getType(CondReg);
2551   unsigned Size = DstTy.getSizeInBits();
2552 
2553   assert(TypeIdx == 0 || CondTy.isVector());
2554 
2555   if (TypeIdx == 0) {
2556     NarrowTy0 = NarrowTy;
2557     NarrowTy1 = CondTy;
2558 
2559     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2560     // FIXME: Don't know how to handle the situation where the small vectors
2561     // aren't all the same size yet.
2562     if (Size % NarrowSize != 0)
2563       return UnableToLegalize;
2564 
2565     NumParts = Size / NarrowSize;
2566 
2567     // Need to break down the condition type
2568     if (CondTy.isVector()) {
2569       if (CondTy.getNumElements() == NumParts)
2570         NarrowTy1 = CondTy.getElementType();
2571       else
2572         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2573                                 CondTy.getScalarSizeInBits());
2574     }
2575   } else {
2576     NumParts = CondTy.getNumElements();
2577     if (NarrowTy.isVector()) {
2578       // TODO: Handle uneven breakdown.
2579       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2580         return UnableToLegalize;
2581 
2582       return UnableToLegalize;
2583     } else {
2584       NarrowTy0 = DstTy.getElementType();
2585       NarrowTy1 = NarrowTy;
2586     }
2587   }
2588 
2589   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2590   if (CondTy.isVector())
2591     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2592 
2593   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2594   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2595 
2596   for (unsigned i = 0; i < NumParts; ++i) {
2597     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2598     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2599                            Src1Regs[i], Src2Regs[i]);
2600     DstRegs.push_back(DstReg);
2601   }
2602 
2603   if (NarrowTy0.isVector())
2604     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2605   else
2606     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2607 
2608   MI.eraseFromParent();
2609   return Legalized;
2610 }
2611 
2612 LegalizerHelper::LegalizeResult
2613 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2614                                         LLT NarrowTy) {
2615   const Register DstReg = MI.getOperand(0).getReg();
2616   LLT PhiTy = MRI.getType(DstReg);
2617   LLT LeftoverTy;
2618 
2619   // All of the operands need to have the same number of elements, so if we can
2620   // determine a type breakdown for the result type, we can for all of the
2621   // source types.
2622   int NumParts, NumLeftover;
2623   std::tie(NumParts, NumLeftover)
2624     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2625   if (NumParts < 0)
2626     return UnableToLegalize;
2627 
2628   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2629   SmallVector<MachineInstrBuilder, 4> NewInsts;
2630 
2631   const int TotalNumParts = NumParts + NumLeftover;
2632 
2633   // Insert the new phis in the result block first.
2634   for (int I = 0; I != TotalNumParts; ++I) {
2635     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2636     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2637     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2638                        .addDef(PartDstReg));
2639     if (I < NumParts)
2640       DstRegs.push_back(PartDstReg);
2641     else
2642       LeftoverDstRegs.push_back(PartDstReg);
2643   }
2644 
2645   MachineBasicBlock *MBB = MI.getParent();
2646   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2647   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2648 
2649   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2650 
2651   // Insert code to extract the incoming values in each predecessor block.
2652   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2653     PartRegs.clear();
2654     LeftoverRegs.clear();
2655 
2656     Register SrcReg = MI.getOperand(I).getReg();
2657     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2658     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2659 
2660     LLT Unused;
2661     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
2662                       LeftoverRegs))
2663       return UnableToLegalize;
2664 
2665     // Add the newly created operand splits to the existing instructions. The
2666     // odd-sized pieces are ordered after the requested NarrowTyArg sized
2667     // pieces.
2668     for (int J = 0; J != TotalNumParts; ++J) {
2669       MachineInstrBuilder MIB = NewInsts[J];
2670       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
2671       MIB.addMBB(&OpMBB);
2672     }
2673   }
2674 
2675   MI.eraseFromParent();
2676   return Legalized;
2677 }
2678 
2679 LegalizerHelper::LegalizeResult
2680 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
2681                                                   unsigned TypeIdx,
2682                                                   LLT NarrowTy) {
2683   if (TypeIdx != 1)
2684     return UnableToLegalize;
2685 
2686   const int NumDst = MI.getNumOperands() - 1;
2687   const Register SrcReg = MI.getOperand(NumDst).getReg();
2688   LLT SrcTy = MRI.getType(SrcReg);
2689 
2690   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2691 
2692   // TODO: Create sequence of extracts.
2693   if (DstTy == NarrowTy)
2694     return UnableToLegalize;
2695 
2696   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
2697   if (DstTy == GCDTy) {
2698     // This would just be a copy of the same unmerge.
2699     // TODO: Create extracts, pad with undef and create intermediate merges.
2700     return UnableToLegalize;
2701   }
2702 
2703   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
2704   const int NumUnmerge = Unmerge->getNumOperands() - 1;
2705   const int PartsPerUnmerge = NumDst / NumUnmerge;
2706 
2707   for (int I = 0; I != NumUnmerge; ++I) {
2708     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
2709 
2710     for (int J = 0; J != PartsPerUnmerge; ++J)
2711       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
2712     MIB.addUse(Unmerge.getReg(I));
2713   }
2714 
2715   MI.eraseFromParent();
2716   return Legalized;
2717 }
2718 
2719 LegalizerHelper::LegalizeResult
2720 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
2721                                       LLT NarrowTy) {
2722   // FIXME: Don't know how to handle secondary types yet.
2723   if (TypeIdx != 0)
2724     return UnableToLegalize;
2725 
2726   MachineMemOperand *MMO = *MI.memoperands_begin();
2727 
2728   // This implementation doesn't work for atomics. Give up instead of doing
2729   // something invalid.
2730   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
2731       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
2732     return UnableToLegalize;
2733 
2734   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
2735   Register ValReg = MI.getOperand(0).getReg();
2736   Register AddrReg = MI.getOperand(1).getReg();
2737   LLT ValTy = MRI.getType(ValReg);
2738 
2739   int NumParts = -1;
2740   int NumLeftover = -1;
2741   LLT LeftoverTy;
2742   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
2743   if (IsLoad) {
2744     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
2745   } else {
2746     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
2747                      NarrowLeftoverRegs)) {
2748       NumParts = NarrowRegs.size();
2749       NumLeftover = NarrowLeftoverRegs.size();
2750     }
2751   }
2752 
2753   if (NumParts == -1)
2754     return UnableToLegalize;
2755 
2756   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
2757 
2758   unsigned TotalSize = ValTy.getSizeInBits();
2759 
2760   // Split the load/store into PartTy sized pieces starting at Offset. If this
2761   // is a load, return the new registers in ValRegs. For a store, each elements
2762   // of ValRegs should be PartTy. Returns the next offset that needs to be
2763   // handled.
2764   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
2765                              unsigned Offset) -> unsigned {
2766     MachineFunction &MF = MIRBuilder.getMF();
2767     unsigned PartSize = PartTy.getSizeInBits();
2768     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
2769          Offset += PartSize, ++Idx) {
2770       unsigned ByteSize = PartSize / 8;
2771       unsigned ByteOffset = Offset / 8;
2772       Register NewAddrReg;
2773 
2774       MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
2775 
2776       MachineMemOperand *NewMMO =
2777         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
2778 
2779       if (IsLoad) {
2780         Register Dst = MRI.createGenericVirtualRegister(PartTy);
2781         ValRegs.push_back(Dst);
2782         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
2783       } else {
2784         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
2785       }
2786     }
2787 
2788     return Offset;
2789   };
2790 
2791   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
2792 
2793   // Handle the rest of the register if this isn't an even type breakdown.
2794   if (LeftoverTy.isValid())
2795     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
2796 
2797   if (IsLoad) {
2798     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
2799                 LeftoverTy, NarrowLeftoverRegs);
2800   }
2801 
2802   MI.eraseFromParent();
2803   return Legalized;
2804 }
2805 
2806 LegalizerHelper::LegalizeResult
2807 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
2808                                      LLT NarrowTy) {
2809   using namespace TargetOpcode;
2810 
2811   MIRBuilder.setInstr(MI);
2812   switch (MI.getOpcode()) {
2813   case G_IMPLICIT_DEF:
2814     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
2815   case G_AND:
2816   case G_OR:
2817   case G_XOR:
2818   case G_ADD:
2819   case G_SUB:
2820   case G_MUL:
2821   case G_SMULH:
2822   case G_UMULH:
2823   case G_FADD:
2824   case G_FMUL:
2825   case G_FSUB:
2826   case G_FNEG:
2827   case G_FABS:
2828   case G_FCANONICALIZE:
2829   case G_FDIV:
2830   case G_FREM:
2831   case G_FMA:
2832   case G_FMAD:
2833   case G_FPOW:
2834   case G_FEXP:
2835   case G_FEXP2:
2836   case G_FLOG:
2837   case G_FLOG2:
2838   case G_FLOG10:
2839   case G_FNEARBYINT:
2840   case G_FCEIL:
2841   case G_FFLOOR:
2842   case G_FRINT:
2843   case G_INTRINSIC_ROUND:
2844   case G_INTRINSIC_TRUNC:
2845   case G_FCOS:
2846   case G_FSIN:
2847   case G_FSQRT:
2848   case G_BSWAP:
2849   case G_BITREVERSE:
2850   case G_SDIV:
2851   case G_SMIN:
2852   case G_SMAX:
2853   case G_UMIN:
2854   case G_UMAX:
2855   case G_FMINNUM:
2856   case G_FMAXNUM:
2857   case G_FMINNUM_IEEE:
2858   case G_FMAXNUM_IEEE:
2859   case G_FMINIMUM:
2860   case G_FMAXIMUM:
2861     return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy);
2862   case G_SHL:
2863   case G_LSHR:
2864   case G_ASHR:
2865   case G_CTLZ:
2866   case G_CTLZ_ZERO_UNDEF:
2867   case G_CTTZ:
2868   case G_CTTZ_ZERO_UNDEF:
2869   case G_CTPOP:
2870   case G_FCOPYSIGN:
2871     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
2872   case G_ZEXT:
2873   case G_SEXT:
2874   case G_ANYEXT:
2875   case G_FPEXT:
2876   case G_FPTRUNC:
2877   case G_SITOFP:
2878   case G_UITOFP:
2879   case G_FPTOSI:
2880   case G_FPTOUI:
2881   case G_INTTOPTR:
2882   case G_PTRTOINT:
2883   case G_ADDRSPACE_CAST:
2884     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
2885   case G_ICMP:
2886   case G_FCMP:
2887     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
2888   case G_SELECT:
2889     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
2890   case G_PHI:
2891     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
2892   case G_UNMERGE_VALUES:
2893     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
2894   case G_LOAD:
2895   case G_STORE:
2896     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
2897   default:
2898     return UnableToLegalize;
2899   }
2900 }
2901 
2902 LegalizerHelper::LegalizeResult
2903 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
2904                                              const LLT HalfTy, const LLT AmtTy) {
2905 
2906   Register InL = MRI.createGenericVirtualRegister(HalfTy);
2907   Register InH = MRI.createGenericVirtualRegister(HalfTy);
2908   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg());
2909 
2910   if (Amt.isNullValue()) {
2911     MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH});
2912     MI.eraseFromParent();
2913     return Legalized;
2914   }
2915 
2916   LLT NVT = HalfTy;
2917   unsigned NVTBits = HalfTy.getSizeInBits();
2918   unsigned VTBits = 2 * NVTBits;
2919 
2920   SrcOp Lo(Register(0)), Hi(Register(0));
2921   if (MI.getOpcode() == TargetOpcode::G_SHL) {
2922     if (Amt.ugt(VTBits)) {
2923       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
2924     } else if (Amt.ugt(NVTBits)) {
2925       Lo = MIRBuilder.buildConstant(NVT, 0);
2926       Hi = MIRBuilder.buildShl(NVT, InL,
2927                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
2928     } else if (Amt == NVTBits) {
2929       Lo = MIRBuilder.buildConstant(NVT, 0);
2930       Hi = InL;
2931     } else {
2932       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
2933       auto OrLHS =
2934           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
2935       auto OrRHS = MIRBuilder.buildLShr(
2936           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
2937       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
2938     }
2939   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
2940     if (Amt.ugt(VTBits)) {
2941       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
2942     } else if (Amt.ugt(NVTBits)) {
2943       Lo = MIRBuilder.buildLShr(NVT, InH,
2944                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
2945       Hi = MIRBuilder.buildConstant(NVT, 0);
2946     } else if (Amt == NVTBits) {
2947       Lo = InH;
2948       Hi = MIRBuilder.buildConstant(NVT, 0);
2949     } else {
2950       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
2951 
2952       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
2953       auto OrRHS = MIRBuilder.buildShl(
2954           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
2955 
2956       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
2957       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
2958     }
2959   } else {
2960     if (Amt.ugt(VTBits)) {
2961       Hi = Lo = MIRBuilder.buildAShr(
2962           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
2963     } else if (Amt.ugt(NVTBits)) {
2964       Lo = MIRBuilder.buildAShr(NVT, InH,
2965                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
2966       Hi = MIRBuilder.buildAShr(NVT, InH,
2967                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
2968     } else if (Amt == NVTBits) {
2969       Lo = InH;
2970       Hi = MIRBuilder.buildAShr(NVT, InH,
2971                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
2972     } else {
2973       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
2974 
2975       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
2976       auto OrRHS = MIRBuilder.buildShl(
2977           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
2978 
2979       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
2980       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
2981     }
2982   }
2983 
2984   MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()});
2985   MI.eraseFromParent();
2986 
2987   return Legalized;
2988 }
2989 
2990 // TODO: Optimize if constant shift amount.
2991 LegalizerHelper::LegalizeResult
2992 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
2993                                    LLT RequestedTy) {
2994   if (TypeIdx == 1) {
2995     Observer.changingInstr(MI);
2996     narrowScalarSrc(MI, RequestedTy, 2);
2997     Observer.changedInstr(MI);
2998     return Legalized;
2999   }
3000 
3001   Register DstReg = MI.getOperand(0).getReg();
3002   LLT DstTy = MRI.getType(DstReg);
3003   if (DstTy.isVector())
3004     return UnableToLegalize;
3005 
3006   Register Amt = MI.getOperand(2).getReg();
3007   LLT ShiftAmtTy = MRI.getType(Amt);
3008   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3009   if (DstEltSize % 2 != 0)
3010     return UnableToLegalize;
3011 
3012   // Ignore the input type. We can only go to exactly half the size of the
3013   // input. If that isn't small enough, the resulting pieces will be further
3014   // legalized.
3015   const unsigned NewBitSize = DstEltSize / 2;
3016   const LLT HalfTy = LLT::scalar(NewBitSize);
3017   const LLT CondTy = LLT::scalar(1);
3018 
3019   if (const MachineInstr *KShiftAmt =
3020           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3021     return narrowScalarShiftByConstant(
3022         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3023   }
3024 
3025   // TODO: Expand with known bits.
3026 
3027   // Handle the fully general expansion by an unknown amount.
3028   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3029 
3030   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3031   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3032   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg());
3033 
3034   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3035   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3036 
3037   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3038   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3039   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3040 
3041   Register ResultRegs[2];
3042   switch (MI.getOpcode()) {
3043   case TargetOpcode::G_SHL: {
3044     // Short: ShAmt < NewBitSize
3045     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3046 
3047     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3048     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3049     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3050 
3051     // Long: ShAmt >= NewBitSize
3052     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3053     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3054 
3055     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3056     auto Hi = MIRBuilder.buildSelect(
3057         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3058 
3059     ResultRegs[0] = Lo.getReg(0);
3060     ResultRegs[1] = Hi.getReg(0);
3061     break;
3062   }
3063   case TargetOpcode::G_LSHR:
3064   case TargetOpcode::G_ASHR: {
3065     // Short: ShAmt < NewBitSize
3066     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3067 
3068     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3069     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3070     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3071 
3072     // Long: ShAmt >= NewBitSize
3073     MachineInstrBuilder HiL;
3074     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3075       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3076     } else {
3077       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3078       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3079     }
3080     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3081                                      {InH, AmtExcess});     // Lo from Hi part.
3082 
3083     auto Lo = MIRBuilder.buildSelect(
3084         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3085 
3086     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3087 
3088     ResultRegs[0] = Lo.getReg(0);
3089     ResultRegs[1] = Hi.getReg(0);
3090     break;
3091   }
3092   default:
3093     llvm_unreachable("not a shift");
3094   }
3095 
3096   MIRBuilder.buildMerge(DstReg, ResultRegs);
3097   MI.eraseFromParent();
3098   return Legalized;
3099 }
3100 
3101 LegalizerHelper::LegalizeResult
3102 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3103                                        LLT MoreTy) {
3104   assert(TypeIdx == 0 && "Expecting only Idx 0");
3105 
3106   Observer.changingInstr(MI);
3107   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3108     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3109     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3110     moreElementsVectorSrc(MI, MoreTy, I);
3111   }
3112 
3113   MachineBasicBlock &MBB = *MI.getParent();
3114   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3115   moreElementsVectorDst(MI, MoreTy, 0);
3116   Observer.changedInstr(MI);
3117   return Legalized;
3118 }
3119 
3120 LegalizerHelper::LegalizeResult
3121 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3122                                     LLT MoreTy) {
3123   MIRBuilder.setInstr(MI);
3124   unsigned Opc = MI.getOpcode();
3125   switch (Opc) {
3126   case TargetOpcode::G_IMPLICIT_DEF:
3127   case TargetOpcode::G_LOAD: {
3128     if (TypeIdx != 0)
3129       return UnableToLegalize;
3130     Observer.changingInstr(MI);
3131     moreElementsVectorDst(MI, MoreTy, 0);
3132     Observer.changedInstr(MI);
3133     return Legalized;
3134   }
3135   case TargetOpcode::G_STORE:
3136     if (TypeIdx != 0)
3137       return UnableToLegalize;
3138     Observer.changingInstr(MI);
3139     moreElementsVectorSrc(MI, MoreTy, 0);
3140     Observer.changedInstr(MI);
3141     return Legalized;
3142   case TargetOpcode::G_AND:
3143   case TargetOpcode::G_OR:
3144   case TargetOpcode::G_XOR:
3145   case TargetOpcode::G_SMIN:
3146   case TargetOpcode::G_SMAX:
3147   case TargetOpcode::G_UMIN:
3148   case TargetOpcode::G_UMAX: {
3149     Observer.changingInstr(MI);
3150     moreElementsVectorSrc(MI, MoreTy, 1);
3151     moreElementsVectorSrc(MI, MoreTy, 2);
3152     moreElementsVectorDst(MI, MoreTy, 0);
3153     Observer.changedInstr(MI);
3154     return Legalized;
3155   }
3156   case TargetOpcode::G_EXTRACT:
3157     if (TypeIdx != 1)
3158       return UnableToLegalize;
3159     Observer.changingInstr(MI);
3160     moreElementsVectorSrc(MI, MoreTy, 1);
3161     Observer.changedInstr(MI);
3162     return Legalized;
3163   case TargetOpcode::G_INSERT:
3164     if (TypeIdx != 0)
3165       return UnableToLegalize;
3166     Observer.changingInstr(MI);
3167     moreElementsVectorSrc(MI, MoreTy, 1);
3168     moreElementsVectorDst(MI, MoreTy, 0);
3169     Observer.changedInstr(MI);
3170     return Legalized;
3171   case TargetOpcode::G_SELECT:
3172     if (TypeIdx != 0)
3173       return UnableToLegalize;
3174     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3175       return UnableToLegalize;
3176 
3177     Observer.changingInstr(MI);
3178     moreElementsVectorSrc(MI, MoreTy, 2);
3179     moreElementsVectorSrc(MI, MoreTy, 3);
3180     moreElementsVectorDst(MI, MoreTy, 0);
3181     Observer.changedInstr(MI);
3182     return Legalized;
3183   case TargetOpcode::G_UNMERGE_VALUES: {
3184     if (TypeIdx != 1)
3185       return UnableToLegalize;
3186 
3187     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3188     int NumDst = MI.getNumOperands() - 1;
3189     moreElementsVectorSrc(MI, MoreTy, NumDst);
3190 
3191     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3192     for (int I = 0; I != NumDst; ++I)
3193       MIB.addDef(MI.getOperand(I).getReg());
3194 
3195     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3196     for (int I = NumDst; I != NewNumDst; ++I)
3197       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3198 
3199     MIB.addUse(MI.getOperand(NumDst).getReg());
3200     MI.eraseFromParent();
3201     return Legalized;
3202   }
3203   case TargetOpcode::G_PHI:
3204     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3205   default:
3206     return UnableToLegalize;
3207   }
3208 }
3209 
3210 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3211                                         ArrayRef<Register> Src1Regs,
3212                                         ArrayRef<Register> Src2Regs,
3213                                         LLT NarrowTy) {
3214   MachineIRBuilder &B = MIRBuilder;
3215   unsigned SrcParts = Src1Regs.size();
3216   unsigned DstParts = DstRegs.size();
3217 
3218   unsigned DstIdx = 0; // Low bits of the result.
3219   Register FactorSum =
3220       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3221   DstRegs[DstIdx] = FactorSum;
3222 
3223   unsigned CarrySumPrevDstIdx;
3224   SmallVector<Register, 4> Factors;
3225 
3226   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3227     // Collect low parts of muls for DstIdx.
3228     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3229          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3230       MachineInstrBuilder Mul =
3231           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3232       Factors.push_back(Mul.getReg(0));
3233     }
3234     // Collect high parts of muls from previous DstIdx.
3235     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3236          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3237       MachineInstrBuilder Umulh =
3238           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3239       Factors.push_back(Umulh.getReg(0));
3240     }
3241     // Add CarrySum from additons calculated for previous DstIdx.
3242     if (DstIdx != 1) {
3243       Factors.push_back(CarrySumPrevDstIdx);
3244     }
3245 
3246     Register CarrySum;
3247     // Add all factors and accumulate all carries into CarrySum.
3248     if (DstIdx != DstParts - 1) {
3249       MachineInstrBuilder Uaddo =
3250           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3251       FactorSum = Uaddo.getReg(0);
3252       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3253       for (unsigned i = 2; i < Factors.size(); ++i) {
3254         MachineInstrBuilder Uaddo =
3255             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3256         FactorSum = Uaddo.getReg(0);
3257         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3258         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3259       }
3260     } else {
3261       // Since value for the next index is not calculated, neither is CarrySum.
3262       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3263       for (unsigned i = 2; i < Factors.size(); ++i)
3264         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3265     }
3266 
3267     CarrySumPrevDstIdx = CarrySum;
3268     DstRegs[DstIdx] = FactorSum;
3269     Factors.clear();
3270   }
3271 }
3272 
3273 LegalizerHelper::LegalizeResult
3274 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3275   Register DstReg = MI.getOperand(0).getReg();
3276   Register Src1 = MI.getOperand(1).getReg();
3277   Register Src2 = MI.getOperand(2).getReg();
3278 
3279   LLT Ty = MRI.getType(DstReg);
3280   if (Ty.isVector())
3281     return UnableToLegalize;
3282 
3283   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3284   unsigned DstSize = Ty.getSizeInBits();
3285   unsigned NarrowSize = NarrowTy.getSizeInBits();
3286   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3287     return UnableToLegalize;
3288 
3289   unsigned NumDstParts = DstSize / NarrowSize;
3290   unsigned NumSrcParts = SrcSize / NarrowSize;
3291   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3292   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3293 
3294   SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs;
3295   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3296   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3297   DstTmpRegs.resize(DstTmpParts);
3298   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3299 
3300   // Take only high half of registers if this is high mul.
3301   ArrayRef<Register> DstRegs(
3302       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3303   MIRBuilder.buildMerge(DstReg, DstRegs);
3304   MI.eraseFromParent();
3305   return Legalized;
3306 }
3307 
3308 LegalizerHelper::LegalizeResult
3309 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3310                                      LLT NarrowTy) {
3311   if (TypeIdx != 1)
3312     return UnableToLegalize;
3313 
3314   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3315 
3316   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3317   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3318   // NarrowSize.
3319   if (SizeOp1 % NarrowSize != 0)
3320     return UnableToLegalize;
3321   int NumParts = SizeOp1 / NarrowSize;
3322 
3323   SmallVector<Register, 2> SrcRegs, DstRegs;
3324   SmallVector<uint64_t, 2> Indexes;
3325   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3326 
3327   Register OpReg = MI.getOperand(0).getReg();
3328   uint64_t OpStart = MI.getOperand(2).getImm();
3329   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3330   for (int i = 0; i < NumParts; ++i) {
3331     unsigned SrcStart = i * NarrowSize;
3332 
3333     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3334       // No part of the extract uses this subregister, ignore it.
3335       continue;
3336     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3337       // The entire subregister is extracted, forward the value.
3338       DstRegs.push_back(SrcRegs[i]);
3339       continue;
3340     }
3341 
3342     // OpSegStart is where this destination segment would start in OpReg if it
3343     // extended infinitely in both directions.
3344     int64_t ExtractOffset;
3345     uint64_t SegSize;
3346     if (OpStart < SrcStart) {
3347       ExtractOffset = 0;
3348       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3349     } else {
3350       ExtractOffset = OpStart - SrcStart;
3351       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3352     }
3353 
3354     Register SegReg = SrcRegs[i];
3355     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3356       // A genuine extract is needed.
3357       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3358       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3359     }
3360 
3361     DstRegs.push_back(SegReg);
3362   }
3363 
3364   Register DstReg = MI.getOperand(0).getReg();
3365   if(MRI.getType(DstReg).isVector())
3366     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3367   else
3368     MIRBuilder.buildMerge(DstReg, DstRegs);
3369   MI.eraseFromParent();
3370   return Legalized;
3371 }
3372 
3373 LegalizerHelper::LegalizeResult
3374 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3375                                     LLT NarrowTy) {
3376   // FIXME: Don't know how to handle secondary types yet.
3377   if (TypeIdx != 0)
3378     return UnableToLegalize;
3379 
3380   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3381   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3382 
3383   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3384   // NarrowSize.
3385   if (SizeOp0 % NarrowSize != 0)
3386     return UnableToLegalize;
3387 
3388   int NumParts = SizeOp0 / NarrowSize;
3389 
3390   SmallVector<Register, 2> SrcRegs, DstRegs;
3391   SmallVector<uint64_t, 2> Indexes;
3392   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3393 
3394   Register OpReg = MI.getOperand(2).getReg();
3395   uint64_t OpStart = MI.getOperand(3).getImm();
3396   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3397   for (int i = 0; i < NumParts; ++i) {
3398     unsigned DstStart = i * NarrowSize;
3399 
3400     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3401       // No part of the insert affects this subregister, forward the original.
3402       DstRegs.push_back(SrcRegs[i]);
3403       continue;
3404     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3405       // The entire subregister is defined by this insert, forward the new
3406       // value.
3407       DstRegs.push_back(OpReg);
3408       continue;
3409     }
3410 
3411     // OpSegStart is where this destination segment would start in OpReg if it
3412     // extended infinitely in both directions.
3413     int64_t ExtractOffset, InsertOffset;
3414     uint64_t SegSize;
3415     if (OpStart < DstStart) {
3416       InsertOffset = 0;
3417       ExtractOffset = DstStart - OpStart;
3418       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3419     } else {
3420       InsertOffset = OpStart - DstStart;
3421       ExtractOffset = 0;
3422       SegSize =
3423         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3424     }
3425 
3426     Register SegReg = OpReg;
3427     if (ExtractOffset != 0 || SegSize != OpSize) {
3428       // A genuine extract is needed.
3429       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3430       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3431     }
3432 
3433     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3434     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3435     DstRegs.push_back(DstReg);
3436   }
3437 
3438   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3439   Register DstReg = MI.getOperand(0).getReg();
3440   if(MRI.getType(DstReg).isVector())
3441     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3442   else
3443     MIRBuilder.buildMerge(DstReg, DstRegs);
3444   MI.eraseFromParent();
3445   return Legalized;
3446 }
3447 
3448 LegalizerHelper::LegalizeResult
3449 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3450                                    LLT NarrowTy) {
3451   Register DstReg = MI.getOperand(0).getReg();
3452   LLT DstTy = MRI.getType(DstReg);
3453 
3454   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3455 
3456   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3457   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3458   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3459   LLT LeftoverTy;
3460   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
3461                     Src0Regs, Src0LeftoverRegs))
3462     return UnableToLegalize;
3463 
3464   LLT Unused;
3465   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
3466                     Src1Regs, Src1LeftoverRegs))
3467     llvm_unreachable("inconsistent extractParts result");
3468 
3469   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3470     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
3471                                         {Src0Regs[I], Src1Regs[I]});
3472     DstRegs.push_back(Inst->getOperand(0).getReg());
3473   }
3474 
3475   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3476     auto Inst = MIRBuilder.buildInstr(
3477       MI.getOpcode(),
3478       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
3479     DstLeftoverRegs.push_back(Inst->getOperand(0).getReg());
3480   }
3481 
3482   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3483               LeftoverTy, DstLeftoverRegs);
3484 
3485   MI.eraseFromParent();
3486   return Legalized;
3487 }
3488 
3489 LegalizerHelper::LegalizeResult
3490 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
3491                                     LLT NarrowTy) {
3492   if (TypeIdx != 0)
3493     return UnableToLegalize;
3494 
3495   Register CondReg = MI.getOperand(1).getReg();
3496   LLT CondTy = MRI.getType(CondReg);
3497   if (CondTy.isVector()) // TODO: Handle vselect
3498     return UnableToLegalize;
3499 
3500   Register DstReg = MI.getOperand(0).getReg();
3501   LLT DstTy = MRI.getType(DstReg);
3502 
3503   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3504   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3505   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
3506   LLT LeftoverTy;
3507   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
3508                     Src1Regs, Src1LeftoverRegs))
3509     return UnableToLegalize;
3510 
3511   LLT Unused;
3512   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
3513                     Src2Regs, Src2LeftoverRegs))
3514     llvm_unreachable("inconsistent extractParts result");
3515 
3516   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3517     auto Select = MIRBuilder.buildSelect(NarrowTy,
3518                                          CondReg, Src1Regs[I], Src2Regs[I]);
3519     DstRegs.push_back(Select->getOperand(0).getReg());
3520   }
3521 
3522   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3523     auto Select = MIRBuilder.buildSelect(
3524       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
3525     DstLeftoverRegs.push_back(Select->getOperand(0).getReg());
3526   }
3527 
3528   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3529               LeftoverTy, DstLeftoverRegs);
3530 
3531   MI.eraseFromParent();
3532   return Legalized;
3533 }
3534 
3535 LegalizerHelper::LegalizeResult
3536 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3537   unsigned Opc = MI.getOpcode();
3538   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
3539   auto isSupported = [this](const LegalityQuery &Q) {
3540     auto QAction = LI.getAction(Q).Action;
3541     return QAction == Legal || QAction == Libcall || QAction == Custom;
3542   };
3543   switch (Opc) {
3544   default:
3545     return UnableToLegalize;
3546   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
3547     // This trivially expands to CTLZ.
3548     Observer.changingInstr(MI);
3549     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
3550     Observer.changedInstr(MI);
3551     return Legalized;
3552   }
3553   case TargetOpcode::G_CTLZ: {
3554     Register SrcReg = MI.getOperand(1).getReg();
3555     unsigned Len = Ty.getSizeInBits();
3556     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) {
3557       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
3558       auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF,
3559                                              {Ty}, {SrcReg});
3560       auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
3561       auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
3562       auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
3563                                           SrcReg, MIBZero);
3564       MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen,
3565                              MIBCtlzZU);
3566       MI.eraseFromParent();
3567       return Legalized;
3568     }
3569     // for now, we do this:
3570     // NewLen = NextPowerOf2(Len);
3571     // x = x | (x >> 1);
3572     // x = x | (x >> 2);
3573     // ...
3574     // x = x | (x >>16);
3575     // x = x | (x >>32); // for 64-bit input
3576     // Upto NewLen/2
3577     // return Len - popcount(x);
3578     //
3579     // Ref: "Hacker's Delight" by Henry Warren
3580     Register Op = SrcReg;
3581     unsigned NewLen = PowerOf2Ceil(Len);
3582     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
3583       auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i);
3584       auto MIBOp = MIRBuilder.buildInstr(
3585           TargetOpcode::G_OR, {Ty},
3586           {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty},
3587                                      {Op, MIBShiftAmt})});
3588       Op = MIBOp->getOperand(0).getReg();
3589     }
3590     auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op});
3591     MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()},
3592                           {MIRBuilder.buildConstant(Ty, Len), MIBPop});
3593     MI.eraseFromParent();
3594     return Legalized;
3595   }
3596   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
3597     // This trivially expands to CTTZ.
3598     Observer.changingInstr(MI);
3599     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
3600     Observer.changedInstr(MI);
3601     return Legalized;
3602   }
3603   case TargetOpcode::G_CTTZ: {
3604     Register SrcReg = MI.getOperand(1).getReg();
3605     unsigned Len = Ty.getSizeInBits();
3606     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) {
3607       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
3608       // zero.
3609       auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF,
3610                                              {Ty}, {SrcReg});
3611       auto MIBZero = MIRBuilder.buildConstant(Ty, 0);
3612       auto MIBLen = MIRBuilder.buildConstant(Ty, Len);
3613       auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
3614                                           SrcReg, MIBZero);
3615       MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen,
3616                              MIBCttzZU);
3617       MI.eraseFromParent();
3618       return Legalized;
3619     }
3620     // for now, we use: { return popcount(~x & (x - 1)); }
3621     // unless the target has ctlz but not ctpop, in which case we use:
3622     // { return 32 - nlz(~x & (x-1)); }
3623     // Ref: "Hacker's Delight" by Henry Warren
3624     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
3625     auto MIBNot =
3626         MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1});
3627     auto MIBTmp = MIRBuilder.buildInstr(
3628         TargetOpcode::G_AND, {Ty},
3629         {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty},
3630                                        {SrcReg, MIBCstNeg1})});
3631     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
3632         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
3633       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
3634       MIRBuilder.buildInstr(
3635           TargetOpcode::G_SUB, {MI.getOperand(0).getReg()},
3636           {MIBCstLen,
3637            MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})});
3638       MI.eraseFromParent();
3639       return Legalized;
3640     }
3641     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
3642     MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg());
3643     return Legalized;
3644   }
3645   }
3646 }
3647 
3648 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
3649 // representation.
3650 LegalizerHelper::LegalizeResult
3651 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
3652   Register Dst = MI.getOperand(0).getReg();
3653   Register Src = MI.getOperand(1).getReg();
3654   const LLT S64 = LLT::scalar(64);
3655   const LLT S32 = LLT::scalar(32);
3656   const LLT S1 = LLT::scalar(1);
3657 
3658   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
3659 
3660   // unsigned cul2f(ulong u) {
3661   //   uint lz = clz(u);
3662   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
3663   //   u = (u << lz) & 0x7fffffffffffffffUL;
3664   //   ulong t = u & 0xffffffffffUL;
3665   //   uint v = (e << 23) | (uint)(u >> 40);
3666   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
3667   //   return as_float(v + r);
3668   // }
3669 
3670   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
3671   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
3672 
3673   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
3674 
3675   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
3676   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
3677 
3678   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
3679   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
3680 
3681   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
3682   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
3683 
3684   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
3685 
3686   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
3687   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
3688 
3689   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
3690   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
3691   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
3692 
3693   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
3694   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
3695   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
3696   auto One = MIRBuilder.buildConstant(S32, 1);
3697 
3698   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
3699   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
3700   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
3701   MIRBuilder.buildAdd(Dst, V, R);
3702 
3703   return Legalized;
3704 }
3705 
3706 LegalizerHelper::LegalizeResult
3707 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3708   Register Dst = MI.getOperand(0).getReg();
3709   Register Src = MI.getOperand(1).getReg();
3710   LLT DstTy = MRI.getType(Dst);
3711   LLT SrcTy = MRI.getType(Src);
3712 
3713   if (SrcTy != LLT::scalar(64))
3714     return UnableToLegalize;
3715 
3716   if (DstTy == LLT::scalar(32)) {
3717     // TODO: SelectionDAG has several alternative expansions to port which may
3718     // be more reasonble depending on the available instructions. If a target
3719     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
3720     // intermediate type, this is probably worse.
3721     return lowerU64ToF32BitOps(MI);
3722   }
3723 
3724   return UnableToLegalize;
3725 }
3726 
3727 LegalizerHelper::LegalizeResult
3728 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3729   Register Dst = MI.getOperand(0).getReg();
3730   Register Src = MI.getOperand(1).getReg();
3731   LLT DstTy = MRI.getType(Dst);
3732   LLT SrcTy = MRI.getType(Src);
3733 
3734   const LLT S64 = LLT::scalar(64);
3735   const LLT S32 = LLT::scalar(32);
3736   const LLT S1 = LLT::scalar(1);
3737 
3738   if (SrcTy != S64)
3739     return UnableToLegalize;
3740 
3741   if (DstTy == S32) {
3742     // signed cl2f(long l) {
3743     //   long s = l >> 63;
3744     //   float r = cul2f((l + s) ^ s);
3745     //   return s ? -r : r;
3746     // }
3747     Register L = Src;
3748     auto SignBit = MIRBuilder.buildConstant(S64, 63);
3749     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
3750 
3751     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
3752     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
3753     auto R = MIRBuilder.buildUITOFP(S32, Xor);
3754 
3755     auto RNeg = MIRBuilder.buildFNeg(S32, R);
3756     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
3757                                             MIRBuilder.buildConstant(S64, 0));
3758     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
3759     return Legalized;
3760   }
3761 
3762   return UnableToLegalize;
3763 }
3764 
3765 LegalizerHelper::LegalizeResult
3766 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3767   Register Dst = MI.getOperand(0).getReg();
3768   Register Src = MI.getOperand(1).getReg();
3769   LLT DstTy = MRI.getType(Dst);
3770   LLT SrcTy = MRI.getType(Src);
3771   const LLT S64 = LLT::scalar(64);
3772   const LLT S32 = LLT::scalar(32);
3773 
3774   if (SrcTy != S64 && SrcTy != S32)
3775     return UnableToLegalize;
3776   if (DstTy != S32 && DstTy != S64)
3777     return UnableToLegalize;
3778 
3779   // FPTOSI gives same result as FPTOUI for positive signed integers.
3780   // FPTOUI needs to deal with fp values that convert to unsigned integers
3781   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
3782 
3783   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
3784   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
3785                                                 : APFloat::IEEEdouble(),
3786                     APInt::getNullValue(SrcTy.getSizeInBits()));
3787   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
3788 
3789   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
3790 
3791   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
3792   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
3793   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
3794   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
3795   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
3796   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
3797   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
3798 
3799   MachineInstrBuilder FCMP =
3800       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, DstTy, Src, Threshold);
3801   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
3802 
3803   MI.eraseFromParent();
3804   return Legalized;
3805 }
3806 
3807 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
3808   switch (Opc) {
3809   case TargetOpcode::G_SMIN:
3810     return CmpInst::ICMP_SLT;
3811   case TargetOpcode::G_SMAX:
3812     return CmpInst::ICMP_SGT;
3813   case TargetOpcode::G_UMIN:
3814     return CmpInst::ICMP_ULT;
3815   case TargetOpcode::G_UMAX:
3816     return CmpInst::ICMP_UGT;
3817   default:
3818     llvm_unreachable("not in integer min/max");
3819   }
3820 }
3821 
3822 LegalizerHelper::LegalizeResult
3823 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3824   Register Dst = MI.getOperand(0).getReg();
3825   Register Src0 = MI.getOperand(1).getReg();
3826   Register Src1 = MI.getOperand(2).getReg();
3827 
3828   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
3829   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
3830 
3831   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
3832   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
3833 
3834   MI.eraseFromParent();
3835   return Legalized;
3836 }
3837 
3838 LegalizerHelper::LegalizeResult
3839 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3840   Register Dst = MI.getOperand(0).getReg();
3841   Register Src0 = MI.getOperand(1).getReg();
3842   Register Src1 = MI.getOperand(2).getReg();
3843 
3844   const LLT Src0Ty = MRI.getType(Src0);
3845   const LLT Src1Ty = MRI.getType(Src1);
3846 
3847   const int Src0Size = Src0Ty.getScalarSizeInBits();
3848   const int Src1Size = Src1Ty.getScalarSizeInBits();
3849 
3850   auto SignBitMask = MIRBuilder.buildConstant(
3851     Src0Ty, APInt::getSignMask(Src0Size));
3852 
3853   auto NotSignBitMask = MIRBuilder.buildConstant(
3854     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
3855 
3856   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
3857   MachineInstr *Or;
3858 
3859   if (Src0Ty == Src1Ty) {
3860     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask);
3861     Or = MIRBuilder.buildOr(Dst, And0, And1);
3862   } else if (Src0Size > Src1Size) {
3863     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
3864     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
3865     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
3866     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
3867     Or = MIRBuilder.buildOr(Dst, And0, And1);
3868   } else {
3869     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
3870     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
3871     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
3872     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
3873     Or = MIRBuilder.buildOr(Dst, And0, And1);
3874   }
3875 
3876   // Be careful about setting nsz/nnan/ninf on every instruction, since the
3877   // constants are a nan and -0.0, but the final result should preserve
3878   // everything.
3879   if (unsigned Flags = MI.getFlags())
3880     Or->setFlags(Flags);
3881 
3882   MI.eraseFromParent();
3883   return Legalized;
3884 }
3885 
3886 LegalizerHelper::LegalizeResult
3887 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
3888   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
3889     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
3890 
3891   Register Dst = MI.getOperand(0).getReg();
3892   Register Src0 = MI.getOperand(1).getReg();
3893   Register Src1 = MI.getOperand(2).getReg();
3894   LLT Ty = MRI.getType(Dst);
3895 
3896   if (!MI.getFlag(MachineInstr::FmNoNans)) {
3897     // Insert canonicalizes if it's possible we need to quiet to get correct
3898     // sNaN behavior.
3899 
3900     // Note this must be done here, and not as an optimization combine in the
3901     // absence of a dedicate quiet-snan instruction as we're using an
3902     // omni-purpose G_FCANONICALIZE.
3903     if (!isKnownNeverSNaN(Src0, MRI))
3904       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
3905 
3906     if (!isKnownNeverSNaN(Src1, MRI))
3907       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
3908   }
3909 
3910   // If there are no nans, it's safe to simply replace this with the non-IEEE
3911   // version.
3912   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
3913   MI.eraseFromParent();
3914   return Legalized;
3915 }
3916 
3917 LegalizerHelper::LegalizeResult
3918 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
3919   const unsigned NumDst = MI.getNumOperands() - 1;
3920   const Register SrcReg = MI.getOperand(NumDst).getReg();
3921   LLT SrcTy = MRI.getType(SrcReg);
3922 
3923   Register Dst0Reg = MI.getOperand(0).getReg();
3924   LLT DstTy = MRI.getType(Dst0Reg);
3925 
3926 
3927   // Expand scalarizing unmerge as bitcast to integer and shift.
3928   if (!DstTy.isVector() && SrcTy.isVector() &&
3929       SrcTy.getElementType() == DstTy) {
3930     LLT IntTy = LLT::scalar(SrcTy.getSizeInBits());
3931     Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0);
3932 
3933     MIRBuilder.buildTrunc(Dst0Reg, Cast);
3934 
3935     const unsigned DstSize = DstTy.getSizeInBits();
3936     unsigned Offset = DstSize;
3937     for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
3938       auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
3939       auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt);
3940       MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
3941     }
3942 
3943     MI.eraseFromParent();
3944     return Legalized;
3945   }
3946 
3947   return UnableToLegalize;
3948 }
3949 
3950 LegalizerHelper::LegalizeResult
3951 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
3952   Register DstReg = MI.getOperand(0).getReg();
3953   Register Src0Reg = MI.getOperand(1).getReg();
3954   Register Src1Reg = MI.getOperand(2).getReg();
3955   LLT Src0Ty = MRI.getType(Src0Reg);
3956   LLT DstTy = MRI.getType(DstReg);
3957   LLT IdxTy = LLT::scalar(32);
3958 
3959   const Constant *ShufMask = MI.getOperand(3).getShuffleMask();
3960 
3961   SmallVector<int, 32> Mask;
3962   ShuffleVectorInst::getShuffleMask(ShufMask, Mask);
3963 
3964   if (DstTy.isScalar()) {
3965     if (Src0Ty.isVector())
3966       return UnableToLegalize;
3967 
3968     // This is just a SELECT.
3969     assert(Mask.size() == 1 && "Expected a single mask element");
3970     Register Val;
3971     if (Mask[0] < 0 || Mask[0] > 1)
3972       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
3973     else
3974       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
3975     MIRBuilder.buildCopy(DstReg, Val);
3976     MI.eraseFromParent();
3977     return Legalized;
3978   }
3979 
3980   Register Undef;
3981   SmallVector<Register, 32> BuildVec;
3982   LLT EltTy = DstTy.getElementType();
3983 
3984   for (int Idx : Mask) {
3985     if (Idx < 0) {
3986       if (!Undef.isValid())
3987         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
3988       BuildVec.push_back(Undef);
3989       continue;
3990     }
3991 
3992     if (Src0Ty.isScalar()) {
3993       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
3994     } else {
3995       int NumElts = Src0Ty.getNumElements();
3996       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
3997       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
3998       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
3999       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
4000       BuildVec.push_back(Extract.getReg(0));
4001     }
4002   }
4003 
4004   MIRBuilder.buildBuildVector(DstReg, BuildVec);
4005   MI.eraseFromParent();
4006   return Legalized;
4007 }
4008 
4009 LegalizerHelper::LegalizeResult
4010 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
4011   Register Dst = MI.getOperand(0).getReg();
4012   Register AllocSize = MI.getOperand(1).getReg();
4013   unsigned Align = MI.getOperand(2).getImm();
4014 
4015   const auto &MF = *MI.getMF();
4016   const auto &TLI = *MF.getSubtarget().getTargetLowering();
4017 
4018   LLT PtrTy = MRI.getType(Dst);
4019   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
4020 
4021   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
4022   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
4023   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
4024 
4025   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
4026   // have to generate an extra instruction to negate the alloc and then use
4027   // G_GEP to add the negative offset.
4028   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
4029   if (Align) {
4030     APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true);
4031     AlignMask.negate();
4032     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
4033     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
4034   }
4035 
4036   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
4037   MIRBuilder.buildCopy(SPReg, SPTmp);
4038   MIRBuilder.buildCopy(Dst, SPTmp);
4039 
4040   MI.eraseFromParent();
4041   return Legalized;
4042 }
4043