1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetInstrInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #define DEBUG_TYPE "legalizer" 28 29 using namespace llvm; 30 using namespace LegalizeActions; 31 32 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 33 /// 34 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 35 /// with any leftover piece as type \p LeftoverTy 36 /// 37 /// Returns -1 in the first element of the pair if the breakdown is not 38 /// satisfiable. 39 static std::pair<int, int> 40 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 41 assert(!LeftoverTy.isValid() && "this is an out argument"); 42 43 unsigned Size = OrigTy.getSizeInBits(); 44 unsigned NarrowSize = NarrowTy.getSizeInBits(); 45 unsigned NumParts = Size / NarrowSize; 46 unsigned LeftoverSize = Size - NumParts * NarrowSize; 47 assert(Size > NarrowSize); 48 49 if (LeftoverSize == 0) 50 return {NumParts, 0}; 51 52 if (NarrowTy.isVector()) { 53 unsigned EltSize = OrigTy.getScalarSizeInBits(); 54 if (LeftoverSize % EltSize != 0) 55 return {-1, -1}; 56 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 57 } else { 58 LeftoverTy = LLT::scalar(LeftoverSize); 59 } 60 61 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 62 return std::make_pair(NumParts, NumLeftover); 63 } 64 65 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 66 GISelChangeObserver &Observer, 67 MachineIRBuilder &Builder) 68 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 69 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 70 MIRBuilder.setMF(MF); 71 MIRBuilder.setChangeObserver(Observer); 72 } 73 74 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 75 GISelChangeObserver &Observer, 76 MachineIRBuilder &B) 77 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 78 MIRBuilder.setMF(MF); 79 MIRBuilder.setChangeObserver(Observer); 80 } 81 LegalizerHelper::LegalizeResult 82 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 83 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 84 85 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 86 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 87 return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized 88 : UnableToLegalize; 89 auto Step = LI.getAction(MI, MRI); 90 switch (Step.Action) { 91 case Legal: 92 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 93 return AlreadyLegal; 94 case Libcall: 95 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 96 return libcall(MI); 97 case NarrowScalar: 98 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 99 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 100 case WidenScalar: 101 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 102 return widenScalar(MI, Step.TypeIdx, Step.NewType); 103 case Lower: 104 LLVM_DEBUG(dbgs() << ".. Lower\n"); 105 return lower(MI, Step.TypeIdx, Step.NewType); 106 case FewerElements: 107 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 108 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 109 case MoreElements: 110 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 111 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 112 case Custom: 113 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 114 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 115 : UnableToLegalize; 116 default: 117 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 118 return UnableToLegalize; 119 } 120 } 121 122 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 123 SmallVectorImpl<Register> &VRegs) { 124 for (int i = 0; i < NumParts; ++i) 125 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 126 MIRBuilder.buildUnmerge(VRegs, Reg); 127 } 128 129 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 130 LLT MainTy, LLT &LeftoverTy, 131 SmallVectorImpl<Register> &VRegs, 132 SmallVectorImpl<Register> &LeftoverRegs) { 133 assert(!LeftoverTy.isValid() && "this is an out argument"); 134 135 unsigned RegSize = RegTy.getSizeInBits(); 136 unsigned MainSize = MainTy.getSizeInBits(); 137 unsigned NumParts = RegSize / MainSize; 138 unsigned LeftoverSize = RegSize - NumParts * MainSize; 139 140 // Use an unmerge when possible. 141 if (LeftoverSize == 0) { 142 for (unsigned I = 0; I < NumParts; ++I) 143 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 144 MIRBuilder.buildUnmerge(VRegs, Reg); 145 return true; 146 } 147 148 if (MainTy.isVector()) { 149 unsigned EltSize = MainTy.getScalarSizeInBits(); 150 if (LeftoverSize % EltSize != 0) 151 return false; 152 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 153 } else { 154 LeftoverTy = LLT::scalar(LeftoverSize); 155 } 156 157 // For irregular sizes, extract the individual parts. 158 for (unsigned I = 0; I != NumParts; ++I) { 159 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 160 VRegs.push_back(NewReg); 161 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 162 } 163 164 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 165 Offset += LeftoverSize) { 166 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 167 LeftoverRegs.push_back(NewReg); 168 MIRBuilder.buildExtract(NewReg, Reg, Offset); 169 } 170 171 return true; 172 } 173 174 void LegalizerHelper::insertParts(Register DstReg, 175 LLT ResultTy, LLT PartTy, 176 ArrayRef<Register> PartRegs, 177 LLT LeftoverTy, 178 ArrayRef<Register> LeftoverRegs) { 179 if (!LeftoverTy.isValid()) { 180 assert(LeftoverRegs.empty()); 181 182 if (!ResultTy.isVector()) { 183 MIRBuilder.buildMerge(DstReg, PartRegs); 184 return; 185 } 186 187 if (PartTy.isVector()) 188 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 189 else 190 MIRBuilder.buildBuildVector(DstReg, PartRegs); 191 return; 192 } 193 194 unsigned PartSize = PartTy.getSizeInBits(); 195 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 196 197 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 198 MIRBuilder.buildUndef(CurResultReg); 199 200 unsigned Offset = 0; 201 for (Register PartReg : PartRegs) { 202 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 203 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 204 CurResultReg = NewResultReg; 205 Offset += PartSize; 206 } 207 208 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 209 // Use the original output register for the final insert to avoid a copy. 210 Register NewResultReg = (I + 1 == E) ? 211 DstReg : MRI.createGenericVirtualRegister(ResultTy); 212 213 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 214 CurResultReg = NewResultReg; 215 Offset += LeftoverPartSize; 216 } 217 } 218 219 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 220 switch (Opcode) { 221 case TargetOpcode::G_SDIV: 222 assert((Size == 32 || Size == 64) && "Unsupported size"); 223 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32; 224 case TargetOpcode::G_UDIV: 225 assert((Size == 32 || Size == 64) && "Unsupported size"); 226 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32; 227 case TargetOpcode::G_SREM: 228 assert((Size == 32 || Size == 64) && "Unsupported size"); 229 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 230 case TargetOpcode::G_UREM: 231 assert((Size == 32 || Size == 64) && "Unsupported size"); 232 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 233 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 234 assert(Size == 32 && "Unsupported size"); 235 return RTLIB::CTLZ_I32; 236 case TargetOpcode::G_FADD: 237 assert((Size == 32 || Size == 64) && "Unsupported size"); 238 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 239 case TargetOpcode::G_FSUB: 240 assert((Size == 32 || Size == 64) && "Unsupported size"); 241 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 242 case TargetOpcode::G_FMUL: 243 assert((Size == 32 || Size == 64) && "Unsupported size"); 244 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 245 case TargetOpcode::G_FDIV: 246 assert((Size == 32 || Size == 64) && "Unsupported size"); 247 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 248 case TargetOpcode::G_FEXP: 249 assert((Size == 32 || Size == 64) && "Unsupported size"); 250 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 251 case TargetOpcode::G_FEXP2: 252 assert((Size == 32 || Size == 64) && "Unsupported size"); 253 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 254 case TargetOpcode::G_FREM: 255 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 256 case TargetOpcode::G_FPOW: 257 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 258 case TargetOpcode::G_FMA: 259 assert((Size == 32 || Size == 64) && "Unsupported size"); 260 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 261 case TargetOpcode::G_FSIN: 262 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 263 return Size == 128 ? RTLIB::SIN_F128 264 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 265 case TargetOpcode::G_FCOS: 266 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 267 return Size == 128 ? RTLIB::COS_F128 268 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 269 case TargetOpcode::G_FLOG10: 270 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 271 return Size == 128 ? RTLIB::LOG10_F128 272 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 273 case TargetOpcode::G_FLOG: 274 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 275 return Size == 128 ? RTLIB::LOG_F128 276 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 277 case TargetOpcode::G_FLOG2: 278 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 279 return Size == 128 ? RTLIB::LOG2_F128 280 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 281 case TargetOpcode::G_FCEIL: 282 assert((Size == 32 || Size == 64) && "Unsupported size"); 283 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 284 case TargetOpcode::G_FFLOOR: 285 assert((Size == 32 || Size == 64) && "Unsupported size"); 286 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 287 } 288 llvm_unreachable("Unknown libcall function"); 289 } 290 291 LegalizerHelper::LegalizeResult 292 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 293 const CallLowering::ArgInfo &Result, 294 ArrayRef<CallLowering::ArgInfo> Args) { 295 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 296 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 297 const char *Name = TLI.getLibcallName(Libcall); 298 299 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 300 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall), 301 MachineOperand::CreateES(Name), Result, Args)) 302 return LegalizerHelper::UnableToLegalize; 303 304 return LegalizerHelper::Legalized; 305 } 306 307 // Useful for libcalls where all operands have the same type. 308 static LegalizerHelper::LegalizeResult 309 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 310 Type *OpType) { 311 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 312 313 SmallVector<CallLowering::ArgInfo, 3> Args; 314 for (unsigned i = 1; i < MI.getNumOperands(); i++) 315 Args.push_back({MI.getOperand(i).getReg(), OpType}); 316 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 317 Args); 318 } 319 320 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 321 Type *FromType) { 322 auto ToMVT = MVT::getVT(ToType); 323 auto FromMVT = MVT::getVT(FromType); 324 325 switch (Opcode) { 326 case TargetOpcode::G_FPEXT: 327 return RTLIB::getFPEXT(FromMVT, ToMVT); 328 case TargetOpcode::G_FPTRUNC: 329 return RTLIB::getFPROUND(FromMVT, ToMVT); 330 case TargetOpcode::G_FPTOSI: 331 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 332 case TargetOpcode::G_FPTOUI: 333 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 334 case TargetOpcode::G_SITOFP: 335 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 336 case TargetOpcode::G_UITOFP: 337 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 338 } 339 llvm_unreachable("Unsupported libcall function"); 340 } 341 342 static LegalizerHelper::LegalizeResult 343 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 344 Type *FromType) { 345 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 346 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 347 {{MI.getOperand(1).getReg(), FromType}}); 348 } 349 350 LegalizerHelper::LegalizeResult 351 LegalizerHelper::libcall(MachineInstr &MI) { 352 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 353 unsigned Size = LLTy.getSizeInBits(); 354 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 355 356 MIRBuilder.setInstr(MI); 357 358 switch (MI.getOpcode()) { 359 default: 360 return UnableToLegalize; 361 case TargetOpcode::G_SDIV: 362 case TargetOpcode::G_UDIV: 363 case TargetOpcode::G_SREM: 364 case TargetOpcode::G_UREM: 365 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 366 Type *HLTy = IntegerType::get(Ctx, Size); 367 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 368 if (Status != Legalized) 369 return Status; 370 break; 371 } 372 case TargetOpcode::G_FADD: 373 case TargetOpcode::G_FSUB: 374 case TargetOpcode::G_FMUL: 375 case TargetOpcode::G_FDIV: 376 case TargetOpcode::G_FMA: 377 case TargetOpcode::G_FPOW: 378 case TargetOpcode::G_FREM: 379 case TargetOpcode::G_FCOS: 380 case TargetOpcode::G_FSIN: 381 case TargetOpcode::G_FLOG10: 382 case TargetOpcode::G_FLOG: 383 case TargetOpcode::G_FLOG2: 384 case TargetOpcode::G_FEXP: 385 case TargetOpcode::G_FEXP2: 386 case TargetOpcode::G_FCEIL: 387 case TargetOpcode::G_FFLOOR: { 388 if (Size > 64) { 389 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 390 return UnableToLegalize; 391 } 392 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 393 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 394 if (Status != Legalized) 395 return Status; 396 break; 397 } 398 case TargetOpcode::G_FPEXT: { 399 // FIXME: Support other floating point types (half, fp128 etc) 400 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 401 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 402 if (ToSize != 64 || FromSize != 32) 403 return UnableToLegalize; 404 LegalizeResult Status = conversionLibcall( 405 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 406 if (Status != Legalized) 407 return Status; 408 break; 409 } 410 case TargetOpcode::G_FPTRUNC: { 411 // FIXME: Support other floating point types (half, fp128 etc) 412 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 413 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 414 if (ToSize != 32 || FromSize != 64) 415 return UnableToLegalize; 416 LegalizeResult Status = conversionLibcall( 417 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 418 if (Status != Legalized) 419 return Status; 420 break; 421 } 422 case TargetOpcode::G_FPTOSI: 423 case TargetOpcode::G_FPTOUI: { 424 // FIXME: Support other types 425 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 426 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 427 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 428 return UnableToLegalize; 429 LegalizeResult Status = conversionLibcall( 430 MI, MIRBuilder, 431 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 432 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 433 if (Status != Legalized) 434 return Status; 435 break; 436 } 437 case TargetOpcode::G_SITOFP: 438 case TargetOpcode::G_UITOFP: { 439 // FIXME: Support other types 440 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 441 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 442 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 443 return UnableToLegalize; 444 LegalizeResult Status = conversionLibcall( 445 MI, MIRBuilder, 446 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 447 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 448 if (Status != Legalized) 449 return Status; 450 break; 451 } 452 } 453 454 MI.eraseFromParent(); 455 return Legalized; 456 } 457 458 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 459 unsigned TypeIdx, 460 LLT NarrowTy) { 461 MIRBuilder.setInstr(MI); 462 463 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 464 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 465 466 switch (MI.getOpcode()) { 467 default: 468 return UnableToLegalize; 469 case TargetOpcode::G_IMPLICIT_DEF: { 470 // FIXME: add support for when SizeOp0 isn't an exact multiple of 471 // NarrowSize. 472 if (SizeOp0 % NarrowSize != 0) 473 return UnableToLegalize; 474 int NumParts = SizeOp0 / NarrowSize; 475 476 SmallVector<Register, 2> DstRegs; 477 for (int i = 0; i < NumParts; ++i) 478 DstRegs.push_back( 479 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 480 481 Register DstReg = MI.getOperand(0).getReg(); 482 if(MRI.getType(DstReg).isVector()) 483 MIRBuilder.buildBuildVector(DstReg, DstRegs); 484 else 485 MIRBuilder.buildMerge(DstReg, DstRegs); 486 MI.eraseFromParent(); 487 return Legalized; 488 } 489 case TargetOpcode::G_CONSTANT: { 490 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 491 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 492 unsigned TotalSize = Ty.getSizeInBits(); 493 unsigned NarrowSize = NarrowTy.getSizeInBits(); 494 int NumParts = TotalSize / NarrowSize; 495 496 SmallVector<Register, 4> PartRegs; 497 for (int I = 0; I != NumParts; ++I) { 498 unsigned Offset = I * NarrowSize; 499 auto K = MIRBuilder.buildConstant(NarrowTy, 500 Val.lshr(Offset).trunc(NarrowSize)); 501 PartRegs.push_back(K.getReg(0)); 502 } 503 504 LLT LeftoverTy; 505 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 506 SmallVector<Register, 1> LeftoverRegs; 507 if (LeftoverBits != 0) { 508 LeftoverTy = LLT::scalar(LeftoverBits); 509 auto K = MIRBuilder.buildConstant( 510 LeftoverTy, 511 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 512 LeftoverRegs.push_back(K.getReg(0)); 513 } 514 515 insertParts(MI.getOperand(0).getReg(), 516 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 517 518 MI.eraseFromParent(); 519 return Legalized; 520 } 521 case TargetOpcode::G_ADD: { 522 // FIXME: add support for when SizeOp0 isn't an exact multiple of 523 // NarrowSize. 524 if (SizeOp0 % NarrowSize != 0) 525 return UnableToLegalize; 526 // Expand in terms of carry-setting/consuming G_ADDE instructions. 527 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 528 529 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 530 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 531 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 532 533 Register CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); 534 MIRBuilder.buildConstant(CarryIn, 0); 535 536 for (int i = 0; i < NumParts; ++i) { 537 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 538 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 539 540 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 541 Src2Regs[i], CarryIn); 542 543 DstRegs.push_back(DstReg); 544 CarryIn = CarryOut; 545 } 546 Register DstReg = MI.getOperand(0).getReg(); 547 if(MRI.getType(DstReg).isVector()) 548 MIRBuilder.buildBuildVector(DstReg, DstRegs); 549 else 550 MIRBuilder.buildMerge(DstReg, DstRegs); 551 MI.eraseFromParent(); 552 return Legalized; 553 } 554 case TargetOpcode::G_SUB: { 555 // FIXME: add support for when SizeOp0 isn't an exact multiple of 556 // NarrowSize. 557 if (SizeOp0 % NarrowSize != 0) 558 return UnableToLegalize; 559 560 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 561 562 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 563 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 564 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 565 566 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 567 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 568 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 569 {Src1Regs[0], Src2Regs[0]}); 570 DstRegs.push_back(DstReg); 571 Register BorrowIn = BorrowOut; 572 for (int i = 1; i < NumParts; ++i) { 573 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 574 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 575 576 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 577 {Src1Regs[i], Src2Regs[i], BorrowIn}); 578 579 DstRegs.push_back(DstReg); 580 BorrowIn = BorrowOut; 581 } 582 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 583 MI.eraseFromParent(); 584 return Legalized; 585 } 586 case TargetOpcode::G_MUL: 587 case TargetOpcode::G_UMULH: 588 return narrowScalarMul(MI, NarrowTy); 589 case TargetOpcode::G_EXTRACT: 590 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 591 case TargetOpcode::G_INSERT: 592 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 593 case TargetOpcode::G_LOAD: { 594 const auto &MMO = **MI.memoperands_begin(); 595 Register DstReg = MI.getOperand(0).getReg(); 596 LLT DstTy = MRI.getType(DstReg); 597 if (DstTy.isVector()) 598 return UnableToLegalize; 599 600 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 601 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 602 auto &MMO = **MI.memoperands_begin(); 603 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 604 MIRBuilder.buildAnyExt(DstReg, TmpReg); 605 MI.eraseFromParent(); 606 return Legalized; 607 } 608 609 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 610 } 611 case TargetOpcode::G_ZEXTLOAD: 612 case TargetOpcode::G_SEXTLOAD: { 613 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 614 Register DstReg = MI.getOperand(0).getReg(); 615 Register PtrReg = MI.getOperand(1).getReg(); 616 617 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 618 auto &MMO = **MI.memoperands_begin(); 619 if (MMO.getSizeInBits() == NarrowSize) { 620 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 621 } else { 622 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 623 : TargetOpcode::G_SEXTLOAD; 624 MIRBuilder.buildInstr(ExtLoad) 625 .addDef(TmpReg) 626 .addUse(PtrReg) 627 .addMemOperand(&MMO); 628 } 629 630 if (ZExt) 631 MIRBuilder.buildZExt(DstReg, TmpReg); 632 else 633 MIRBuilder.buildSExt(DstReg, TmpReg); 634 635 MI.eraseFromParent(); 636 return Legalized; 637 } 638 case TargetOpcode::G_STORE: { 639 const auto &MMO = **MI.memoperands_begin(); 640 641 Register SrcReg = MI.getOperand(0).getReg(); 642 LLT SrcTy = MRI.getType(SrcReg); 643 if (SrcTy.isVector()) 644 return UnableToLegalize; 645 646 int NumParts = SizeOp0 / NarrowSize; 647 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 648 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 649 if (SrcTy.isVector() && LeftoverBits != 0) 650 return UnableToLegalize; 651 652 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 653 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 654 auto &MMO = **MI.memoperands_begin(); 655 MIRBuilder.buildTrunc(TmpReg, SrcReg); 656 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 657 MI.eraseFromParent(); 658 return Legalized; 659 } 660 661 return reduceLoadStoreWidth(MI, 0, NarrowTy); 662 } 663 case TargetOpcode::G_SELECT: 664 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 665 case TargetOpcode::G_AND: 666 case TargetOpcode::G_OR: 667 case TargetOpcode::G_XOR: { 668 // Legalize bitwise operation: 669 // A = BinOp<Ty> B, C 670 // into: 671 // B1, ..., BN = G_UNMERGE_VALUES B 672 // C1, ..., CN = G_UNMERGE_VALUES C 673 // A1 = BinOp<Ty/N> B1, C2 674 // ... 675 // AN = BinOp<Ty/N> BN, CN 676 // A = G_MERGE_VALUES A1, ..., AN 677 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 678 } 679 case TargetOpcode::G_SHL: 680 case TargetOpcode::G_LSHR: 681 case TargetOpcode::G_ASHR: 682 return narrowScalarShift(MI, TypeIdx, NarrowTy); 683 case TargetOpcode::G_CTLZ: 684 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 685 case TargetOpcode::G_CTTZ: 686 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 687 case TargetOpcode::G_CTPOP: 688 if (TypeIdx != 0) 689 return UnableToLegalize; // TODO 690 691 Observer.changingInstr(MI); 692 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 693 Observer.changedInstr(MI); 694 return Legalized; 695 case TargetOpcode::G_INTTOPTR: 696 if (TypeIdx != 1) 697 return UnableToLegalize; 698 699 Observer.changingInstr(MI); 700 narrowScalarSrc(MI, NarrowTy, 1); 701 Observer.changedInstr(MI); 702 return Legalized; 703 case TargetOpcode::G_PTRTOINT: 704 if (TypeIdx != 0) 705 return UnableToLegalize; 706 707 Observer.changingInstr(MI); 708 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 709 Observer.changedInstr(MI); 710 return Legalized; 711 } 712 } 713 714 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 715 unsigned OpIdx, unsigned ExtOpcode) { 716 MachineOperand &MO = MI.getOperand(OpIdx); 717 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 718 MO.setReg(ExtB->getOperand(0).getReg()); 719 } 720 721 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 722 unsigned OpIdx) { 723 MachineOperand &MO = MI.getOperand(OpIdx); 724 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 725 {MO.getReg()}); 726 MO.setReg(ExtB->getOperand(0).getReg()); 727 } 728 729 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 730 unsigned OpIdx, unsigned TruncOpcode) { 731 MachineOperand &MO = MI.getOperand(OpIdx); 732 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 733 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 734 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 735 MO.setReg(DstExt); 736 } 737 738 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 739 unsigned OpIdx, unsigned ExtOpcode) { 740 MachineOperand &MO = MI.getOperand(OpIdx); 741 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 742 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 743 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 744 MO.setReg(DstTrunc); 745 } 746 747 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 748 unsigned OpIdx) { 749 MachineOperand &MO = MI.getOperand(OpIdx); 750 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 751 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 752 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 753 MO.setReg(DstExt); 754 } 755 756 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 757 unsigned OpIdx) { 758 MachineOperand &MO = MI.getOperand(OpIdx); 759 760 LLT OldTy = MRI.getType(MO.getReg()); 761 unsigned OldElts = OldTy.getNumElements(); 762 unsigned NewElts = MoreTy.getNumElements(); 763 764 unsigned NumParts = NewElts / OldElts; 765 766 // Use concat_vectors if the result is a multiple of the number of elements. 767 if (NumParts * OldElts == NewElts) { 768 SmallVector<Register, 8> Parts; 769 Parts.push_back(MO.getReg()); 770 771 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 772 for (unsigned I = 1; I != NumParts; ++I) 773 Parts.push_back(ImpDef); 774 775 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 776 MO.setReg(Concat.getReg(0)); 777 return; 778 } 779 780 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 781 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 782 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 783 MO.setReg(MoreReg); 784 } 785 786 LegalizerHelper::LegalizeResult 787 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 788 LLT WideTy) { 789 if (TypeIdx != 1) 790 return UnableToLegalize; 791 792 Register DstReg = MI.getOperand(0).getReg(); 793 LLT DstTy = MRI.getType(DstReg); 794 if (!DstTy.isScalar()) 795 return UnableToLegalize; 796 797 Register Src1 = MI.getOperand(1).getReg(); 798 LLT SrcTy = MRI.getType(Src1); 799 int NumMerge = DstTy.getSizeInBits() / WideTy.getSizeInBits(); 800 801 // Try to turn this into a merge of merges if we can use the requested type as 802 // the source. 803 804 // TODO: Pad with undef if DstTy > WideTy 805 if (NumMerge > 1 && WideTy.getSizeInBits() % SrcTy.getSizeInBits() == 0) { 806 int PartsPerMerge = WideTy.getSizeInBits() / SrcTy.getSizeInBits(); 807 SmallVector<Register, 4> Parts; 808 SmallVector<Register, 4> SubMerges; 809 810 for (int I = 0; I != NumMerge; ++I) { 811 for (int J = 0; J != PartsPerMerge; ++J) 812 Parts.push_back(MI.getOperand(I * PartsPerMerge + J + 1).getReg()); 813 814 auto SubMerge = MIRBuilder.buildMerge(WideTy, Parts); 815 SubMerges.push_back(SubMerge.getReg(0)); 816 Parts.clear(); 817 } 818 819 MIRBuilder.buildMerge(DstReg, SubMerges); 820 MI.eraseFromParent(); 821 return Legalized; 822 } 823 824 unsigned NumOps = MI.getNumOperands(); 825 unsigned NumSrc = MI.getNumOperands() - 1; 826 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 827 828 Register ResultReg = MIRBuilder.buildZExt(DstTy, Src1).getReg(0); 829 830 for (unsigned I = 2; I != NumOps; ++I) { 831 const unsigned Offset = (I - 1) * PartSize; 832 833 Register SrcReg = MI.getOperand(I).getReg(); 834 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 835 836 auto ZextInput = MIRBuilder.buildZExt(DstTy, SrcReg); 837 838 Register NextResult = I + 1 == NumOps ? DstReg : 839 MRI.createGenericVirtualRegister(DstTy); 840 841 auto ShiftAmt = MIRBuilder.buildConstant(DstTy, Offset); 842 auto Shl = MIRBuilder.buildShl(DstTy, ZextInput, ShiftAmt); 843 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 844 ResultReg = NextResult; 845 } 846 847 MI.eraseFromParent(); 848 return Legalized; 849 } 850 851 LegalizerHelper::LegalizeResult 852 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 853 LLT WideTy) { 854 if (TypeIdx != 0) 855 return UnableToLegalize; 856 857 unsigned NumDst = MI.getNumOperands() - 1; 858 Register SrcReg = MI.getOperand(NumDst).getReg(); 859 LLT SrcTy = MRI.getType(SrcReg); 860 if (!SrcTy.isScalar()) 861 return UnableToLegalize; 862 863 Register Dst0Reg = MI.getOperand(0).getReg(); 864 LLT DstTy = MRI.getType(Dst0Reg); 865 if (!DstTy.isScalar()) 866 return UnableToLegalize; 867 868 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 869 LLT NewSrcTy = LLT::scalar(NewSrcSize); 870 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 871 872 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 873 874 for (unsigned I = 1; I != NumDst; ++I) { 875 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 876 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 877 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 878 } 879 880 Observer.changingInstr(MI); 881 882 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 883 for (unsigned I = 0; I != NumDst; ++I) 884 widenScalarDst(MI, WideTy, I); 885 886 Observer.changedInstr(MI); 887 888 return Legalized; 889 } 890 891 LegalizerHelper::LegalizeResult 892 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 893 LLT WideTy) { 894 Register DstReg = MI.getOperand(0).getReg(); 895 Register SrcReg = MI.getOperand(1).getReg(); 896 LLT SrcTy = MRI.getType(SrcReg); 897 898 LLT DstTy = MRI.getType(DstReg); 899 unsigned Offset = MI.getOperand(2).getImm(); 900 901 if (TypeIdx == 0) { 902 if (SrcTy.isVector() || DstTy.isVector()) 903 return UnableToLegalize; 904 905 SrcOp Src(SrcReg); 906 if (SrcTy.isPointer()) { 907 // Extracts from pointers can be handled only if they are really just 908 // simple integers. 909 const DataLayout &DL = MIRBuilder.getDataLayout(); 910 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 911 return UnableToLegalize; 912 913 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 914 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 915 SrcTy = SrcAsIntTy; 916 } 917 918 if (DstTy.isPointer()) 919 return UnableToLegalize; 920 921 if (Offset == 0) { 922 // Avoid a shift in the degenerate case. 923 MIRBuilder.buildTrunc(DstReg, 924 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 925 MI.eraseFromParent(); 926 return Legalized; 927 } 928 929 // Do a shift in the source type. 930 LLT ShiftTy = SrcTy; 931 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 932 Src = MIRBuilder.buildAnyExt(WideTy, Src); 933 ShiftTy = WideTy; 934 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 935 return UnableToLegalize; 936 937 auto LShr = MIRBuilder.buildLShr( 938 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 939 MIRBuilder.buildTrunc(DstReg, LShr); 940 MI.eraseFromParent(); 941 return Legalized; 942 } 943 944 if (SrcTy.isScalar()) { 945 Observer.changingInstr(MI); 946 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 947 Observer.changedInstr(MI); 948 return Legalized; 949 } 950 951 if (!SrcTy.isVector()) 952 return UnableToLegalize; 953 954 if (DstTy != SrcTy.getElementType()) 955 return UnableToLegalize; 956 957 if (Offset % SrcTy.getScalarSizeInBits() != 0) 958 return UnableToLegalize; 959 960 Observer.changingInstr(MI); 961 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 962 963 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 964 Offset); 965 widenScalarDst(MI, WideTy.getScalarType(), 0); 966 Observer.changedInstr(MI); 967 return Legalized; 968 } 969 970 LegalizerHelper::LegalizeResult 971 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 972 LLT WideTy) { 973 if (TypeIdx != 0) 974 return UnableToLegalize; 975 Observer.changingInstr(MI); 976 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 977 widenScalarDst(MI, WideTy); 978 Observer.changedInstr(MI); 979 return Legalized; 980 } 981 982 LegalizerHelper::LegalizeResult 983 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 984 MIRBuilder.setInstr(MI); 985 986 switch (MI.getOpcode()) { 987 default: 988 return UnableToLegalize; 989 case TargetOpcode::G_EXTRACT: 990 return widenScalarExtract(MI, TypeIdx, WideTy); 991 case TargetOpcode::G_INSERT: 992 return widenScalarInsert(MI, TypeIdx, WideTy); 993 case TargetOpcode::G_MERGE_VALUES: 994 return widenScalarMergeValues(MI, TypeIdx, WideTy); 995 case TargetOpcode::G_UNMERGE_VALUES: 996 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 997 case TargetOpcode::G_UADDO: 998 case TargetOpcode::G_USUBO: { 999 if (TypeIdx == 1) 1000 return UnableToLegalize; // TODO 1001 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1002 {MI.getOperand(2).getReg()}); 1003 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1004 {MI.getOperand(3).getReg()}); 1005 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1006 ? TargetOpcode::G_ADD 1007 : TargetOpcode::G_SUB; 1008 // Do the arithmetic in the larger type. 1009 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1010 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1011 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 1012 auto AndOp = MIRBuilder.buildInstr( 1013 TargetOpcode::G_AND, {WideTy}, 1014 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 1015 // There is no overflow if the AndOp is the same as NewOp. 1016 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 1017 AndOp); 1018 // Now trunc the NewOp to the original result. 1019 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 1020 MI.eraseFromParent(); 1021 return Legalized; 1022 } 1023 case TargetOpcode::G_CTTZ: 1024 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1025 case TargetOpcode::G_CTLZ: 1026 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1027 case TargetOpcode::G_CTPOP: { 1028 if (TypeIdx == 0) { 1029 Observer.changingInstr(MI); 1030 widenScalarDst(MI, WideTy, 0); 1031 Observer.changedInstr(MI); 1032 return Legalized; 1033 } 1034 1035 Register SrcReg = MI.getOperand(1).getReg(); 1036 1037 // First ZEXT the input. 1038 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1039 LLT CurTy = MRI.getType(SrcReg); 1040 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1041 // The count is the same in the larger type except if the original 1042 // value was zero. This can be handled by setting the bit just off 1043 // the top of the original type. 1044 auto TopBit = 1045 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1046 MIBSrc = MIRBuilder.buildOr( 1047 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1048 } 1049 1050 // Perform the operation at the larger size. 1051 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1052 // This is already the correct result for CTPOP and CTTZs 1053 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1054 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1055 // The correct result is NewOp - (Difference in widety and current ty). 1056 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1057 MIBNewOp = MIRBuilder.buildInstr( 1058 TargetOpcode::G_SUB, {WideTy}, 1059 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1060 } 1061 1062 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1063 MI.eraseFromParent(); 1064 return Legalized; 1065 } 1066 case TargetOpcode::G_BSWAP: { 1067 Observer.changingInstr(MI); 1068 Register DstReg = MI.getOperand(0).getReg(); 1069 1070 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1071 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1072 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1073 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1074 1075 MI.getOperand(0).setReg(DstExt); 1076 1077 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1078 1079 LLT Ty = MRI.getType(DstReg); 1080 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1081 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1082 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1083 .addDef(ShrReg) 1084 .addUse(DstExt) 1085 .addUse(ShiftAmtReg); 1086 1087 MIRBuilder.buildTrunc(DstReg, ShrReg); 1088 Observer.changedInstr(MI); 1089 return Legalized; 1090 } 1091 case TargetOpcode::G_ADD: 1092 case TargetOpcode::G_AND: 1093 case TargetOpcode::G_MUL: 1094 case TargetOpcode::G_OR: 1095 case TargetOpcode::G_XOR: 1096 case TargetOpcode::G_SUB: 1097 // Perform operation at larger width (any extension is fines here, high bits 1098 // don't affect the result) and then truncate the result back to the 1099 // original type. 1100 Observer.changingInstr(MI); 1101 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1102 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1103 widenScalarDst(MI, WideTy); 1104 Observer.changedInstr(MI); 1105 return Legalized; 1106 1107 case TargetOpcode::G_SHL: 1108 Observer.changingInstr(MI); 1109 1110 if (TypeIdx == 0) { 1111 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1112 widenScalarDst(MI, WideTy); 1113 } else { 1114 assert(TypeIdx == 1); 1115 // The "number of bits to shift" operand must preserve its value as an 1116 // unsigned integer: 1117 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1118 } 1119 1120 Observer.changedInstr(MI); 1121 return Legalized; 1122 1123 case TargetOpcode::G_SDIV: 1124 case TargetOpcode::G_SREM: 1125 case TargetOpcode::G_SMIN: 1126 case TargetOpcode::G_SMAX: 1127 Observer.changingInstr(MI); 1128 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1129 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1130 widenScalarDst(MI, WideTy); 1131 Observer.changedInstr(MI); 1132 return Legalized; 1133 1134 case TargetOpcode::G_ASHR: 1135 case TargetOpcode::G_LSHR: 1136 Observer.changingInstr(MI); 1137 1138 if (TypeIdx == 0) { 1139 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1140 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1141 1142 widenScalarSrc(MI, WideTy, 1, CvtOp); 1143 widenScalarDst(MI, WideTy); 1144 } else { 1145 assert(TypeIdx == 1); 1146 // The "number of bits to shift" operand must preserve its value as an 1147 // unsigned integer: 1148 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1149 } 1150 1151 Observer.changedInstr(MI); 1152 return Legalized; 1153 case TargetOpcode::G_UDIV: 1154 case TargetOpcode::G_UREM: 1155 case TargetOpcode::G_UMIN: 1156 case TargetOpcode::G_UMAX: 1157 Observer.changingInstr(MI); 1158 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1159 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1160 widenScalarDst(MI, WideTy); 1161 Observer.changedInstr(MI); 1162 return Legalized; 1163 1164 case TargetOpcode::G_SELECT: 1165 Observer.changingInstr(MI); 1166 if (TypeIdx == 0) { 1167 // Perform operation at larger width (any extension is fine here, high 1168 // bits don't affect the result) and then truncate the result back to the 1169 // original type. 1170 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1171 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1172 widenScalarDst(MI, WideTy); 1173 } else { 1174 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1175 // Explicit extension is required here since high bits affect the result. 1176 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1177 } 1178 Observer.changedInstr(MI); 1179 return Legalized; 1180 1181 case TargetOpcode::G_FPTOSI: 1182 case TargetOpcode::G_FPTOUI: 1183 if (TypeIdx != 0) 1184 return UnableToLegalize; 1185 Observer.changingInstr(MI); 1186 widenScalarDst(MI, WideTy); 1187 Observer.changedInstr(MI); 1188 return Legalized; 1189 1190 case TargetOpcode::G_SITOFP: 1191 if (TypeIdx != 1) 1192 return UnableToLegalize; 1193 Observer.changingInstr(MI); 1194 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1195 Observer.changedInstr(MI); 1196 return Legalized; 1197 1198 case TargetOpcode::G_UITOFP: 1199 if (TypeIdx != 1) 1200 return UnableToLegalize; 1201 Observer.changingInstr(MI); 1202 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1203 Observer.changedInstr(MI); 1204 return Legalized; 1205 1206 case TargetOpcode::G_LOAD: 1207 case TargetOpcode::G_SEXTLOAD: 1208 case TargetOpcode::G_ZEXTLOAD: 1209 Observer.changingInstr(MI); 1210 widenScalarDst(MI, WideTy); 1211 Observer.changedInstr(MI); 1212 return Legalized; 1213 1214 case TargetOpcode::G_STORE: { 1215 if (TypeIdx != 0) 1216 return UnableToLegalize; 1217 1218 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1219 if (!isPowerOf2_32(Ty.getSizeInBits())) 1220 return UnableToLegalize; 1221 1222 Observer.changingInstr(MI); 1223 1224 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1225 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1226 widenScalarSrc(MI, WideTy, 0, ExtType); 1227 1228 Observer.changedInstr(MI); 1229 return Legalized; 1230 } 1231 case TargetOpcode::G_CONSTANT: { 1232 MachineOperand &SrcMO = MI.getOperand(1); 1233 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1234 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 1235 Observer.changingInstr(MI); 1236 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1237 1238 widenScalarDst(MI, WideTy); 1239 Observer.changedInstr(MI); 1240 return Legalized; 1241 } 1242 case TargetOpcode::G_FCONSTANT: { 1243 MachineOperand &SrcMO = MI.getOperand(1); 1244 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1245 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1246 bool LosesInfo; 1247 switch (WideTy.getSizeInBits()) { 1248 case 32: 1249 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1250 &LosesInfo); 1251 break; 1252 case 64: 1253 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1254 &LosesInfo); 1255 break; 1256 default: 1257 return UnableToLegalize; 1258 } 1259 1260 assert(!LosesInfo && "extend should always be lossless"); 1261 1262 Observer.changingInstr(MI); 1263 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1264 1265 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1266 Observer.changedInstr(MI); 1267 return Legalized; 1268 } 1269 case TargetOpcode::G_IMPLICIT_DEF: { 1270 Observer.changingInstr(MI); 1271 widenScalarDst(MI, WideTy); 1272 Observer.changedInstr(MI); 1273 return Legalized; 1274 } 1275 case TargetOpcode::G_BRCOND: 1276 Observer.changingInstr(MI); 1277 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1278 Observer.changedInstr(MI); 1279 return Legalized; 1280 1281 case TargetOpcode::G_FCMP: 1282 Observer.changingInstr(MI); 1283 if (TypeIdx == 0) 1284 widenScalarDst(MI, WideTy); 1285 else { 1286 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1287 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1288 } 1289 Observer.changedInstr(MI); 1290 return Legalized; 1291 1292 case TargetOpcode::G_ICMP: 1293 Observer.changingInstr(MI); 1294 if (TypeIdx == 0) 1295 widenScalarDst(MI, WideTy); 1296 else { 1297 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1298 MI.getOperand(1).getPredicate())) 1299 ? TargetOpcode::G_SEXT 1300 : TargetOpcode::G_ZEXT; 1301 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1302 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1303 } 1304 Observer.changedInstr(MI); 1305 return Legalized; 1306 1307 case TargetOpcode::G_GEP: 1308 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 1309 Observer.changingInstr(MI); 1310 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1311 Observer.changedInstr(MI); 1312 return Legalized; 1313 1314 case TargetOpcode::G_PHI: { 1315 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1316 1317 Observer.changingInstr(MI); 1318 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1319 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1320 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1321 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1322 } 1323 1324 MachineBasicBlock &MBB = *MI.getParent(); 1325 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1326 widenScalarDst(MI, WideTy); 1327 Observer.changedInstr(MI); 1328 return Legalized; 1329 } 1330 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1331 if (TypeIdx == 0) { 1332 Register VecReg = MI.getOperand(1).getReg(); 1333 LLT VecTy = MRI.getType(VecReg); 1334 Observer.changingInstr(MI); 1335 1336 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1337 WideTy.getSizeInBits()), 1338 1, TargetOpcode::G_SEXT); 1339 1340 widenScalarDst(MI, WideTy, 0); 1341 Observer.changedInstr(MI); 1342 return Legalized; 1343 } 1344 1345 if (TypeIdx != 2) 1346 return UnableToLegalize; 1347 Observer.changingInstr(MI); 1348 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1349 Observer.changedInstr(MI); 1350 return Legalized; 1351 } 1352 case TargetOpcode::G_FADD: 1353 case TargetOpcode::G_FMUL: 1354 case TargetOpcode::G_FSUB: 1355 case TargetOpcode::G_FMA: 1356 case TargetOpcode::G_FNEG: 1357 case TargetOpcode::G_FABS: 1358 case TargetOpcode::G_FCANONICALIZE: 1359 case TargetOpcode::G_FDIV: 1360 case TargetOpcode::G_FREM: 1361 case TargetOpcode::G_FCEIL: 1362 case TargetOpcode::G_FFLOOR: 1363 case TargetOpcode::G_FCOS: 1364 case TargetOpcode::G_FSIN: 1365 case TargetOpcode::G_FLOG10: 1366 case TargetOpcode::G_FLOG: 1367 case TargetOpcode::G_FLOG2: 1368 case TargetOpcode::G_FRINT: 1369 case TargetOpcode::G_FNEARBYINT: 1370 case TargetOpcode::G_FSQRT: 1371 case TargetOpcode::G_FEXP: 1372 case TargetOpcode::G_FEXP2: 1373 case TargetOpcode::G_FPOW: 1374 case TargetOpcode::G_INTRINSIC_TRUNC: 1375 case TargetOpcode::G_INTRINSIC_ROUND: 1376 assert(TypeIdx == 0); 1377 Observer.changingInstr(MI); 1378 1379 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1380 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1381 1382 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1383 Observer.changedInstr(MI); 1384 return Legalized; 1385 case TargetOpcode::G_INTTOPTR: 1386 if (TypeIdx != 1) 1387 return UnableToLegalize; 1388 1389 Observer.changingInstr(MI); 1390 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1391 Observer.changedInstr(MI); 1392 return Legalized; 1393 case TargetOpcode::G_PTRTOINT: 1394 if (TypeIdx != 0) 1395 return UnableToLegalize; 1396 1397 Observer.changingInstr(MI); 1398 widenScalarDst(MI, WideTy, 0); 1399 Observer.changedInstr(MI); 1400 return Legalized; 1401 } 1402 } 1403 1404 LegalizerHelper::LegalizeResult 1405 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1406 using namespace TargetOpcode; 1407 MIRBuilder.setInstr(MI); 1408 1409 switch(MI.getOpcode()) { 1410 default: 1411 return UnableToLegalize; 1412 case TargetOpcode::G_SREM: 1413 case TargetOpcode::G_UREM: { 1414 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 1415 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1416 .addDef(QuotReg) 1417 .addUse(MI.getOperand(1).getReg()) 1418 .addUse(MI.getOperand(2).getReg()); 1419 1420 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 1421 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1422 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1423 ProdReg); 1424 MI.eraseFromParent(); 1425 return Legalized; 1426 } 1427 case TargetOpcode::G_SMULO: 1428 case TargetOpcode::G_UMULO: { 1429 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1430 // result. 1431 Register Res = MI.getOperand(0).getReg(); 1432 Register Overflow = MI.getOperand(1).getReg(); 1433 Register LHS = MI.getOperand(2).getReg(); 1434 Register RHS = MI.getOperand(3).getReg(); 1435 1436 MIRBuilder.buildMul(Res, LHS, RHS); 1437 1438 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1439 ? TargetOpcode::G_SMULH 1440 : TargetOpcode::G_UMULH; 1441 1442 Register HiPart = MRI.createGenericVirtualRegister(Ty); 1443 MIRBuilder.buildInstr(Opcode) 1444 .addDef(HiPart) 1445 .addUse(LHS) 1446 .addUse(RHS); 1447 1448 Register Zero = MRI.createGenericVirtualRegister(Ty); 1449 MIRBuilder.buildConstant(Zero, 0); 1450 1451 // For *signed* multiply, overflow is detected by checking: 1452 // (hi != (lo >> bitwidth-1)) 1453 if (Opcode == TargetOpcode::G_SMULH) { 1454 Register Shifted = MRI.createGenericVirtualRegister(Ty); 1455 Register ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1456 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1457 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1458 .addDef(Shifted) 1459 .addUse(Res) 1460 .addUse(ShiftAmt); 1461 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1462 } else { 1463 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1464 } 1465 MI.eraseFromParent(); 1466 return Legalized; 1467 } 1468 case TargetOpcode::G_FNEG: { 1469 // TODO: Handle vector types once we are able to 1470 // represent them. 1471 if (Ty.isVector()) 1472 return UnableToLegalize; 1473 Register Res = MI.getOperand(0).getReg(); 1474 Type *ZeroTy; 1475 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1476 switch (Ty.getSizeInBits()) { 1477 case 16: 1478 ZeroTy = Type::getHalfTy(Ctx); 1479 break; 1480 case 32: 1481 ZeroTy = Type::getFloatTy(Ctx); 1482 break; 1483 case 64: 1484 ZeroTy = Type::getDoubleTy(Ctx); 1485 break; 1486 case 128: 1487 ZeroTy = Type::getFP128Ty(Ctx); 1488 break; 1489 default: 1490 llvm_unreachable("unexpected floating-point type"); 1491 } 1492 ConstantFP &ZeroForNegation = 1493 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1494 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1495 Register SubByReg = MI.getOperand(1).getReg(); 1496 Register ZeroReg = Zero->getOperand(0).getReg(); 1497 MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg}, 1498 MI.getFlags()); 1499 MI.eraseFromParent(); 1500 return Legalized; 1501 } 1502 case TargetOpcode::G_FSUB: { 1503 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1504 // First, check if G_FNEG is marked as Lower. If so, we may 1505 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1506 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1507 return UnableToLegalize; 1508 Register Res = MI.getOperand(0).getReg(); 1509 Register LHS = MI.getOperand(1).getReg(); 1510 Register RHS = MI.getOperand(2).getReg(); 1511 Register Neg = MRI.createGenericVirtualRegister(Ty); 1512 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1513 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags()); 1514 MI.eraseFromParent(); 1515 return Legalized; 1516 } 1517 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1518 Register OldValRes = MI.getOperand(0).getReg(); 1519 Register SuccessRes = MI.getOperand(1).getReg(); 1520 Register Addr = MI.getOperand(2).getReg(); 1521 Register CmpVal = MI.getOperand(3).getReg(); 1522 Register NewVal = MI.getOperand(4).getReg(); 1523 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 1524 **MI.memoperands_begin()); 1525 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 1526 MI.eraseFromParent(); 1527 return Legalized; 1528 } 1529 case TargetOpcode::G_LOAD: 1530 case TargetOpcode::G_SEXTLOAD: 1531 case TargetOpcode::G_ZEXTLOAD: { 1532 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 1533 Register DstReg = MI.getOperand(0).getReg(); 1534 Register PtrReg = MI.getOperand(1).getReg(); 1535 LLT DstTy = MRI.getType(DstReg); 1536 auto &MMO = **MI.memoperands_begin(); 1537 1538 if (DstTy.getSizeInBits() == MMO.getSize() /* in bytes */ * 8) { 1539 // In the case of G_LOAD, this was a non-extending load already and we're 1540 // about to lower to the same instruction. 1541 if (MI.getOpcode() == TargetOpcode::G_LOAD) 1542 return UnableToLegalize; 1543 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 1544 MI.eraseFromParent(); 1545 return Legalized; 1546 } 1547 1548 if (DstTy.isScalar()) { 1549 Register TmpReg = 1550 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 1551 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1552 switch (MI.getOpcode()) { 1553 default: 1554 llvm_unreachable("Unexpected opcode"); 1555 case TargetOpcode::G_LOAD: 1556 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1557 break; 1558 case TargetOpcode::G_SEXTLOAD: 1559 MIRBuilder.buildSExt(DstReg, TmpReg); 1560 break; 1561 case TargetOpcode::G_ZEXTLOAD: 1562 MIRBuilder.buildZExt(DstReg, TmpReg); 1563 break; 1564 } 1565 MI.eraseFromParent(); 1566 return Legalized; 1567 } 1568 1569 return UnableToLegalize; 1570 } 1571 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1572 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1573 case TargetOpcode::G_CTLZ: 1574 case TargetOpcode::G_CTTZ: 1575 case TargetOpcode::G_CTPOP: 1576 return lowerBitCount(MI, TypeIdx, Ty); 1577 case G_UADDO: { 1578 Register Res = MI.getOperand(0).getReg(); 1579 Register CarryOut = MI.getOperand(1).getReg(); 1580 Register LHS = MI.getOperand(2).getReg(); 1581 Register RHS = MI.getOperand(3).getReg(); 1582 1583 MIRBuilder.buildAdd(Res, LHS, RHS); 1584 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 1585 1586 MI.eraseFromParent(); 1587 return Legalized; 1588 } 1589 case G_UADDE: { 1590 Register Res = MI.getOperand(0).getReg(); 1591 Register CarryOut = MI.getOperand(1).getReg(); 1592 Register LHS = MI.getOperand(2).getReg(); 1593 Register RHS = MI.getOperand(3).getReg(); 1594 Register CarryIn = MI.getOperand(4).getReg(); 1595 1596 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 1597 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 1598 1599 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 1600 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 1601 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 1602 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 1603 1604 MI.eraseFromParent(); 1605 return Legalized; 1606 } 1607 case G_USUBO: { 1608 Register Res = MI.getOperand(0).getReg(); 1609 Register BorrowOut = MI.getOperand(1).getReg(); 1610 Register LHS = MI.getOperand(2).getReg(); 1611 Register RHS = MI.getOperand(3).getReg(); 1612 1613 MIRBuilder.buildSub(Res, LHS, RHS); 1614 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 1615 1616 MI.eraseFromParent(); 1617 return Legalized; 1618 } 1619 case G_USUBE: { 1620 Register Res = MI.getOperand(0).getReg(); 1621 Register BorrowOut = MI.getOperand(1).getReg(); 1622 Register LHS = MI.getOperand(2).getReg(); 1623 Register RHS = MI.getOperand(3).getReg(); 1624 Register BorrowIn = MI.getOperand(4).getReg(); 1625 1626 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 1627 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 1628 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1629 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1630 1631 MIRBuilder.buildSub(TmpRes, LHS, RHS); 1632 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 1633 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 1634 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 1635 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 1636 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 1637 1638 MI.eraseFromParent(); 1639 return Legalized; 1640 } 1641 case G_UITOFP: 1642 return lowerUITOFP(MI, TypeIdx, Ty); 1643 case G_SITOFP: 1644 return lowerSITOFP(MI, TypeIdx, Ty); 1645 case G_SMIN: 1646 case G_SMAX: 1647 case G_UMIN: 1648 case G_UMAX: 1649 return lowerMinMax(MI, TypeIdx, Ty); 1650 } 1651 } 1652 1653 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 1654 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 1655 SmallVector<Register, 2> DstRegs; 1656 1657 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1658 Register DstReg = MI.getOperand(0).getReg(); 1659 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 1660 int NumParts = Size / NarrowSize; 1661 // FIXME: Don't know how to handle the situation where the small vectors 1662 // aren't all the same size yet. 1663 if (Size % NarrowSize != 0) 1664 return UnableToLegalize; 1665 1666 for (int i = 0; i < NumParts; ++i) { 1667 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1668 MIRBuilder.buildUndef(TmpReg); 1669 DstRegs.push_back(TmpReg); 1670 } 1671 1672 if (NarrowTy.isVector()) 1673 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1674 else 1675 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1676 1677 MI.eraseFromParent(); 1678 return Legalized; 1679 } 1680 1681 LegalizerHelper::LegalizeResult 1682 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 1683 LLT NarrowTy) { 1684 const unsigned Opc = MI.getOpcode(); 1685 const unsigned NumOps = MI.getNumOperands() - 1; 1686 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 1687 const Register DstReg = MI.getOperand(0).getReg(); 1688 const unsigned Flags = MI.getFlags(); 1689 const LLT DstTy = MRI.getType(DstReg); 1690 const unsigned Size = DstTy.getSizeInBits(); 1691 const int NumParts = Size / NarrowSize; 1692 const LLT EltTy = DstTy.getElementType(); 1693 const unsigned EltSize = EltTy.getSizeInBits(); 1694 const unsigned BitsForNumParts = NarrowSize * NumParts; 1695 1696 // Check if we have any leftovers. If we do, then only handle the case where 1697 // the leftover is one element. 1698 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 1699 return UnableToLegalize; 1700 1701 if (BitsForNumParts != Size) { 1702 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 1703 MIRBuilder.buildUndef(AccumDstReg); 1704 1705 // Handle the pieces which evenly divide into the requested type with 1706 // extract/op/insert sequence. 1707 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 1708 SmallVector<SrcOp, 4> SrcOps; 1709 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1710 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 1711 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 1712 SrcOps.push_back(PartOpReg); 1713 } 1714 1715 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 1716 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1717 1718 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 1719 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 1720 AccumDstReg = PartInsertReg; 1721 } 1722 1723 // Handle the remaining element sized leftover piece. 1724 SmallVector<SrcOp, 4> SrcOps; 1725 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1726 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 1727 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 1728 BitsForNumParts); 1729 SrcOps.push_back(PartOpReg); 1730 } 1731 1732 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 1733 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1734 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 1735 MI.eraseFromParent(); 1736 1737 return Legalized; 1738 } 1739 1740 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 1741 1742 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 1743 1744 if (NumOps >= 2) 1745 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 1746 1747 if (NumOps >= 3) 1748 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 1749 1750 for (int i = 0; i < NumParts; ++i) { 1751 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 1752 1753 if (NumOps == 1) 1754 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 1755 else if (NumOps == 2) { 1756 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 1757 } else if (NumOps == 3) { 1758 MIRBuilder.buildInstr(Opc, {DstReg}, 1759 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 1760 } 1761 1762 DstRegs.push_back(DstReg); 1763 } 1764 1765 if (NarrowTy.isVector()) 1766 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1767 else 1768 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1769 1770 MI.eraseFromParent(); 1771 return Legalized; 1772 } 1773 1774 // Handle splitting vector operations which need to have the same number of 1775 // elements in each type index, but each type index may have a different element 1776 // type. 1777 // 1778 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 1779 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1780 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1781 // 1782 // Also handles some irregular breakdown cases, e.g. 1783 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 1784 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1785 // s64 = G_SHL s64, s32 1786 LegalizerHelper::LegalizeResult 1787 LegalizerHelper::fewerElementsVectorMultiEltType( 1788 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 1789 if (TypeIdx != 0) 1790 return UnableToLegalize; 1791 1792 const LLT NarrowTy0 = NarrowTyArg; 1793 const unsigned NewNumElts = 1794 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 1795 1796 const Register DstReg = MI.getOperand(0).getReg(); 1797 LLT DstTy = MRI.getType(DstReg); 1798 LLT LeftoverTy0; 1799 1800 int NumParts, NumLeftover; 1801 // All of the operands need to have the same number of elements, so if we can 1802 // determine a type breakdown for the result type, we can for all of the 1803 // source types. 1804 std::tie(NumParts, NumLeftover) 1805 = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0); 1806 if (NumParts < 0) 1807 return UnableToLegalize; 1808 1809 SmallVector<MachineInstrBuilder, 4> NewInsts; 1810 1811 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 1812 SmallVector<Register, 4> PartRegs, LeftoverRegs; 1813 1814 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1815 LLT LeftoverTy; 1816 Register SrcReg = MI.getOperand(I).getReg(); 1817 LLT SrcTyI = MRI.getType(SrcReg); 1818 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 1819 LLT LeftoverTyI; 1820 1821 // Split this operand into the requested typed registers, and any leftover 1822 // required to reproduce the original type. 1823 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 1824 LeftoverRegs)) 1825 return UnableToLegalize; 1826 1827 if (I == 1) { 1828 // For the first operand, create an instruction for each part and setup 1829 // the result. 1830 for (Register PartReg : PartRegs) { 1831 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1832 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1833 .addDef(PartDstReg) 1834 .addUse(PartReg)); 1835 DstRegs.push_back(PartDstReg); 1836 } 1837 1838 for (Register LeftoverReg : LeftoverRegs) { 1839 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 1840 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1841 .addDef(PartDstReg) 1842 .addUse(LeftoverReg)); 1843 LeftoverDstRegs.push_back(PartDstReg); 1844 } 1845 } else { 1846 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 1847 1848 // Add the newly created operand splits to the existing instructions. The 1849 // odd-sized pieces are ordered after the requested NarrowTyArg sized 1850 // pieces. 1851 unsigned InstCount = 0; 1852 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 1853 NewInsts[InstCount++].addUse(PartRegs[J]); 1854 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 1855 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 1856 } 1857 1858 PartRegs.clear(); 1859 LeftoverRegs.clear(); 1860 } 1861 1862 // Insert the newly built operations and rebuild the result register. 1863 for (auto &MIB : NewInsts) 1864 MIRBuilder.insertInstr(MIB); 1865 1866 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 1867 1868 MI.eraseFromParent(); 1869 return Legalized; 1870 } 1871 1872 LegalizerHelper::LegalizeResult 1873 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 1874 LLT NarrowTy) { 1875 if (TypeIdx != 0) 1876 return UnableToLegalize; 1877 1878 Register DstReg = MI.getOperand(0).getReg(); 1879 Register SrcReg = MI.getOperand(1).getReg(); 1880 LLT DstTy = MRI.getType(DstReg); 1881 LLT SrcTy = MRI.getType(SrcReg); 1882 1883 LLT NarrowTy0 = NarrowTy; 1884 LLT NarrowTy1; 1885 unsigned NumParts; 1886 1887 if (NarrowTy.isVector()) { 1888 // Uneven breakdown not handled. 1889 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 1890 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 1891 return UnableToLegalize; 1892 1893 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 1894 } else { 1895 NumParts = DstTy.getNumElements(); 1896 NarrowTy1 = SrcTy.getElementType(); 1897 } 1898 1899 SmallVector<Register, 4> SrcRegs, DstRegs; 1900 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 1901 1902 for (unsigned I = 0; I < NumParts; ++I) { 1903 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1904 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 1905 .addDef(DstReg) 1906 .addUse(SrcRegs[I]); 1907 1908 NewInst->setFlags(MI.getFlags()); 1909 DstRegs.push_back(DstReg); 1910 } 1911 1912 if (NarrowTy.isVector()) 1913 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1914 else 1915 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1916 1917 MI.eraseFromParent(); 1918 return Legalized; 1919 } 1920 1921 LegalizerHelper::LegalizeResult 1922 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 1923 LLT NarrowTy) { 1924 Register DstReg = MI.getOperand(0).getReg(); 1925 Register Src0Reg = MI.getOperand(2).getReg(); 1926 LLT DstTy = MRI.getType(DstReg); 1927 LLT SrcTy = MRI.getType(Src0Reg); 1928 1929 unsigned NumParts; 1930 LLT NarrowTy0, NarrowTy1; 1931 1932 if (TypeIdx == 0) { 1933 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1934 unsigned OldElts = DstTy.getNumElements(); 1935 1936 NarrowTy0 = NarrowTy; 1937 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 1938 NarrowTy1 = NarrowTy.isVector() ? 1939 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 1940 SrcTy.getElementType(); 1941 1942 } else { 1943 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1944 unsigned OldElts = SrcTy.getNumElements(); 1945 1946 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 1947 NarrowTy.getNumElements(); 1948 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 1949 DstTy.getScalarSizeInBits()); 1950 NarrowTy1 = NarrowTy; 1951 } 1952 1953 // FIXME: Don't know how to handle the situation where the small vectors 1954 // aren't all the same size yet. 1955 if (NarrowTy1.isVector() && 1956 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 1957 return UnableToLegalize; 1958 1959 CmpInst::Predicate Pred 1960 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1961 1962 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 1963 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 1964 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 1965 1966 for (unsigned I = 0; I < NumParts; ++I) { 1967 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1968 DstRegs.push_back(DstReg); 1969 1970 if (MI.getOpcode() == TargetOpcode::G_ICMP) 1971 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1972 else { 1973 MachineInstr *NewCmp 1974 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1975 NewCmp->setFlags(MI.getFlags()); 1976 } 1977 } 1978 1979 if (NarrowTy1.isVector()) 1980 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1981 else 1982 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1983 1984 MI.eraseFromParent(); 1985 return Legalized; 1986 } 1987 1988 LegalizerHelper::LegalizeResult 1989 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 1990 LLT NarrowTy) { 1991 Register DstReg = MI.getOperand(0).getReg(); 1992 Register CondReg = MI.getOperand(1).getReg(); 1993 1994 unsigned NumParts = 0; 1995 LLT NarrowTy0, NarrowTy1; 1996 1997 LLT DstTy = MRI.getType(DstReg); 1998 LLT CondTy = MRI.getType(CondReg); 1999 unsigned Size = DstTy.getSizeInBits(); 2000 2001 assert(TypeIdx == 0 || CondTy.isVector()); 2002 2003 if (TypeIdx == 0) { 2004 NarrowTy0 = NarrowTy; 2005 NarrowTy1 = CondTy; 2006 2007 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2008 // FIXME: Don't know how to handle the situation where the small vectors 2009 // aren't all the same size yet. 2010 if (Size % NarrowSize != 0) 2011 return UnableToLegalize; 2012 2013 NumParts = Size / NarrowSize; 2014 2015 // Need to break down the condition type 2016 if (CondTy.isVector()) { 2017 if (CondTy.getNumElements() == NumParts) 2018 NarrowTy1 = CondTy.getElementType(); 2019 else 2020 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2021 CondTy.getScalarSizeInBits()); 2022 } 2023 } else { 2024 NumParts = CondTy.getNumElements(); 2025 if (NarrowTy.isVector()) { 2026 // TODO: Handle uneven breakdown. 2027 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2028 return UnableToLegalize; 2029 2030 return UnableToLegalize; 2031 } else { 2032 NarrowTy0 = DstTy.getElementType(); 2033 NarrowTy1 = NarrowTy; 2034 } 2035 } 2036 2037 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2038 if (CondTy.isVector()) 2039 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2040 2041 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2042 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2043 2044 for (unsigned i = 0; i < NumParts; ++i) { 2045 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2046 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2047 Src1Regs[i], Src2Regs[i]); 2048 DstRegs.push_back(DstReg); 2049 } 2050 2051 if (NarrowTy0.isVector()) 2052 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2053 else 2054 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2055 2056 MI.eraseFromParent(); 2057 return Legalized; 2058 } 2059 2060 LegalizerHelper::LegalizeResult 2061 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2062 LLT NarrowTy) { 2063 const Register DstReg = MI.getOperand(0).getReg(); 2064 LLT PhiTy = MRI.getType(DstReg); 2065 LLT LeftoverTy; 2066 2067 // All of the operands need to have the same number of elements, so if we can 2068 // determine a type breakdown for the result type, we can for all of the 2069 // source types. 2070 int NumParts, NumLeftover; 2071 std::tie(NumParts, NumLeftover) 2072 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2073 if (NumParts < 0) 2074 return UnableToLegalize; 2075 2076 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2077 SmallVector<MachineInstrBuilder, 4> NewInsts; 2078 2079 const int TotalNumParts = NumParts + NumLeftover; 2080 2081 // Insert the new phis in the result block first. 2082 for (int I = 0; I != TotalNumParts; ++I) { 2083 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2084 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2085 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2086 .addDef(PartDstReg)); 2087 if (I < NumParts) 2088 DstRegs.push_back(PartDstReg); 2089 else 2090 LeftoverDstRegs.push_back(PartDstReg); 2091 } 2092 2093 MachineBasicBlock *MBB = MI.getParent(); 2094 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2095 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2096 2097 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2098 2099 // Insert code to extract the incoming values in each predecessor block. 2100 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2101 PartRegs.clear(); 2102 LeftoverRegs.clear(); 2103 2104 Register SrcReg = MI.getOperand(I).getReg(); 2105 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2106 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2107 2108 LLT Unused; 2109 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2110 LeftoverRegs)) 2111 return UnableToLegalize; 2112 2113 // Add the newly created operand splits to the existing instructions. The 2114 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2115 // pieces. 2116 for (int J = 0; J != TotalNumParts; ++J) { 2117 MachineInstrBuilder MIB = NewInsts[J]; 2118 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2119 MIB.addMBB(&OpMBB); 2120 } 2121 } 2122 2123 MI.eraseFromParent(); 2124 return Legalized; 2125 } 2126 2127 LegalizerHelper::LegalizeResult 2128 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2129 LLT NarrowTy) { 2130 // FIXME: Don't know how to handle secondary types yet. 2131 if (TypeIdx != 0) 2132 return UnableToLegalize; 2133 2134 MachineMemOperand *MMO = *MI.memoperands_begin(); 2135 2136 // This implementation doesn't work for atomics. Give up instead of doing 2137 // something invalid. 2138 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2139 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2140 return UnableToLegalize; 2141 2142 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2143 Register ValReg = MI.getOperand(0).getReg(); 2144 Register AddrReg = MI.getOperand(1).getReg(); 2145 LLT ValTy = MRI.getType(ValReg); 2146 2147 int NumParts = -1; 2148 int NumLeftover = -1; 2149 LLT LeftoverTy; 2150 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 2151 if (IsLoad) { 2152 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2153 } else { 2154 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2155 NarrowLeftoverRegs)) { 2156 NumParts = NarrowRegs.size(); 2157 NumLeftover = NarrowLeftoverRegs.size(); 2158 } 2159 } 2160 2161 if (NumParts == -1) 2162 return UnableToLegalize; 2163 2164 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2165 2166 unsigned TotalSize = ValTy.getSizeInBits(); 2167 2168 // Split the load/store into PartTy sized pieces starting at Offset. If this 2169 // is a load, return the new registers in ValRegs. For a store, each elements 2170 // of ValRegs should be PartTy. Returns the next offset that needs to be 2171 // handled. 2172 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 2173 unsigned Offset) -> unsigned { 2174 MachineFunction &MF = MIRBuilder.getMF(); 2175 unsigned PartSize = PartTy.getSizeInBits(); 2176 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2177 Offset += PartSize, ++Idx) { 2178 unsigned ByteSize = PartSize / 8; 2179 unsigned ByteOffset = Offset / 8; 2180 Register NewAddrReg; 2181 2182 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2183 2184 MachineMemOperand *NewMMO = 2185 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2186 2187 if (IsLoad) { 2188 Register Dst = MRI.createGenericVirtualRegister(PartTy); 2189 ValRegs.push_back(Dst); 2190 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2191 } else { 2192 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2193 } 2194 } 2195 2196 return Offset; 2197 }; 2198 2199 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2200 2201 // Handle the rest of the register if this isn't an even type breakdown. 2202 if (LeftoverTy.isValid()) 2203 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2204 2205 if (IsLoad) { 2206 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2207 LeftoverTy, NarrowLeftoverRegs); 2208 } 2209 2210 MI.eraseFromParent(); 2211 return Legalized; 2212 } 2213 2214 LegalizerHelper::LegalizeResult 2215 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2216 LLT NarrowTy) { 2217 using namespace TargetOpcode; 2218 2219 MIRBuilder.setInstr(MI); 2220 switch (MI.getOpcode()) { 2221 case G_IMPLICIT_DEF: 2222 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2223 case G_AND: 2224 case G_OR: 2225 case G_XOR: 2226 case G_ADD: 2227 case G_SUB: 2228 case G_MUL: 2229 case G_SMULH: 2230 case G_UMULH: 2231 case G_FADD: 2232 case G_FMUL: 2233 case G_FSUB: 2234 case G_FNEG: 2235 case G_FABS: 2236 case G_FCANONICALIZE: 2237 case G_FDIV: 2238 case G_FREM: 2239 case G_FMA: 2240 case G_FPOW: 2241 case G_FEXP: 2242 case G_FEXP2: 2243 case G_FLOG: 2244 case G_FLOG2: 2245 case G_FLOG10: 2246 case G_FNEARBYINT: 2247 case G_FCEIL: 2248 case G_FFLOOR: 2249 case G_FRINT: 2250 case G_INTRINSIC_ROUND: 2251 case G_INTRINSIC_TRUNC: 2252 case G_FCOS: 2253 case G_FSIN: 2254 case G_FSQRT: 2255 case G_BSWAP: 2256 case G_SDIV: 2257 case G_SMIN: 2258 case G_SMAX: 2259 case G_UMIN: 2260 case G_UMAX: 2261 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 2262 case G_SHL: 2263 case G_LSHR: 2264 case G_ASHR: 2265 case G_CTLZ: 2266 case G_CTLZ_ZERO_UNDEF: 2267 case G_CTTZ: 2268 case G_CTTZ_ZERO_UNDEF: 2269 case G_CTPOP: 2270 case G_FCOPYSIGN: 2271 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 2272 case G_ZEXT: 2273 case G_SEXT: 2274 case G_ANYEXT: 2275 case G_FPEXT: 2276 case G_FPTRUNC: 2277 case G_SITOFP: 2278 case G_UITOFP: 2279 case G_FPTOSI: 2280 case G_FPTOUI: 2281 case G_INTTOPTR: 2282 case G_PTRTOINT: 2283 case G_ADDRSPACE_CAST: 2284 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 2285 case G_ICMP: 2286 case G_FCMP: 2287 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 2288 case G_SELECT: 2289 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 2290 case G_PHI: 2291 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 2292 case G_LOAD: 2293 case G_STORE: 2294 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 2295 default: 2296 return UnableToLegalize; 2297 } 2298 } 2299 2300 LegalizerHelper::LegalizeResult 2301 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 2302 const LLT HalfTy, const LLT AmtTy) { 2303 2304 Register InL = MRI.createGenericVirtualRegister(HalfTy); 2305 Register InH = MRI.createGenericVirtualRegister(HalfTy); 2306 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2307 2308 if (Amt.isNullValue()) { 2309 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 2310 MI.eraseFromParent(); 2311 return Legalized; 2312 } 2313 2314 LLT NVT = HalfTy; 2315 unsigned NVTBits = HalfTy.getSizeInBits(); 2316 unsigned VTBits = 2 * NVTBits; 2317 2318 SrcOp Lo(Register(0)), Hi(Register(0)); 2319 if (MI.getOpcode() == TargetOpcode::G_SHL) { 2320 if (Amt.ugt(VTBits)) { 2321 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2322 } else if (Amt.ugt(NVTBits)) { 2323 Lo = MIRBuilder.buildConstant(NVT, 0); 2324 Hi = MIRBuilder.buildShl(NVT, InL, 2325 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2326 } else if (Amt == NVTBits) { 2327 Lo = MIRBuilder.buildConstant(NVT, 0); 2328 Hi = InL; 2329 } else { 2330 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 2331 auto OrLHS = 2332 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 2333 auto OrRHS = MIRBuilder.buildLShr( 2334 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2335 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2336 } 2337 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2338 if (Amt.ugt(VTBits)) { 2339 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2340 } else if (Amt.ugt(NVTBits)) { 2341 Lo = MIRBuilder.buildLShr(NVT, InH, 2342 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2343 Hi = MIRBuilder.buildConstant(NVT, 0); 2344 } else if (Amt == NVTBits) { 2345 Lo = InH; 2346 Hi = MIRBuilder.buildConstant(NVT, 0); 2347 } else { 2348 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2349 2350 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2351 auto OrRHS = MIRBuilder.buildShl( 2352 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2353 2354 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2355 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 2356 } 2357 } else { 2358 if (Amt.ugt(VTBits)) { 2359 Hi = Lo = MIRBuilder.buildAShr( 2360 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2361 } else if (Amt.ugt(NVTBits)) { 2362 Lo = MIRBuilder.buildAShr(NVT, InH, 2363 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2364 Hi = MIRBuilder.buildAShr(NVT, InH, 2365 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2366 } else if (Amt == NVTBits) { 2367 Lo = InH; 2368 Hi = MIRBuilder.buildAShr(NVT, InH, 2369 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2370 } else { 2371 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2372 2373 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2374 auto OrRHS = MIRBuilder.buildShl( 2375 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2376 2377 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2378 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 2379 } 2380 } 2381 2382 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 2383 MI.eraseFromParent(); 2384 2385 return Legalized; 2386 } 2387 2388 // TODO: Optimize if constant shift amount. 2389 LegalizerHelper::LegalizeResult 2390 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 2391 LLT RequestedTy) { 2392 if (TypeIdx == 1) { 2393 Observer.changingInstr(MI); 2394 narrowScalarSrc(MI, RequestedTy, 2); 2395 Observer.changedInstr(MI); 2396 return Legalized; 2397 } 2398 2399 Register DstReg = MI.getOperand(0).getReg(); 2400 LLT DstTy = MRI.getType(DstReg); 2401 if (DstTy.isVector()) 2402 return UnableToLegalize; 2403 2404 Register Amt = MI.getOperand(2).getReg(); 2405 LLT ShiftAmtTy = MRI.getType(Amt); 2406 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 2407 if (DstEltSize % 2 != 0) 2408 return UnableToLegalize; 2409 2410 // Ignore the input type. We can only go to exactly half the size of the 2411 // input. If that isn't small enough, the resulting pieces will be further 2412 // legalized. 2413 const unsigned NewBitSize = DstEltSize / 2; 2414 const LLT HalfTy = LLT::scalar(NewBitSize); 2415 const LLT CondTy = LLT::scalar(1); 2416 2417 if (const MachineInstr *KShiftAmt = 2418 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 2419 return narrowScalarShiftByConstant( 2420 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 2421 } 2422 2423 // TODO: Expand with known bits. 2424 2425 // Handle the fully general expansion by an unknown amount. 2426 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 2427 2428 Register InL = MRI.createGenericVirtualRegister(HalfTy); 2429 Register InH = MRI.createGenericVirtualRegister(HalfTy); 2430 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2431 2432 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 2433 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 2434 2435 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 2436 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 2437 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 2438 2439 Register ResultRegs[2]; 2440 switch (MI.getOpcode()) { 2441 case TargetOpcode::G_SHL: { 2442 // Short: ShAmt < NewBitSize 2443 auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2444 2445 auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2446 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 2447 auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2448 2449 // Long: ShAmt >= NewBitSize 2450 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 2451 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 2452 2453 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 2454 auto Hi = MIRBuilder.buildSelect( 2455 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 2456 2457 ResultRegs[0] = Lo.getReg(0); 2458 ResultRegs[1] = Hi.getReg(0); 2459 break; 2460 } 2461 case TargetOpcode::G_LSHR: { 2462 // Short: ShAmt < NewBitSize 2463 auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt); 2464 2465 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2466 auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 2467 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2468 2469 // Long: ShAmt >= NewBitSize 2470 auto HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 2471 auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2472 2473 auto Lo = MIRBuilder.buildSelect( 2474 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2475 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2476 2477 ResultRegs[0] = Lo.getReg(0); 2478 ResultRegs[1] = Hi.getReg(0); 2479 break; 2480 } 2481 case TargetOpcode::G_ASHR: { 2482 // Short: ShAmt < NewBitSize 2483 auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt); 2484 2485 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2486 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack); 2487 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2488 2489 // Long: ShAmt >= NewBitSize 2490 2491 // Sign of Hi part. 2492 auto HiL = MIRBuilder.buildAShr( 2493 HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1)); 2494 2495 auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2496 2497 auto Lo = MIRBuilder.buildSelect( 2498 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2499 2500 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2501 2502 ResultRegs[0] = Lo.getReg(0); 2503 ResultRegs[1] = Hi.getReg(0); 2504 break; 2505 } 2506 default: 2507 llvm_unreachable("not a shift"); 2508 } 2509 2510 MIRBuilder.buildMerge(DstReg, ResultRegs); 2511 MI.eraseFromParent(); 2512 return Legalized; 2513 } 2514 2515 LegalizerHelper::LegalizeResult 2516 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2517 LLT MoreTy) { 2518 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2519 2520 Observer.changingInstr(MI); 2521 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2522 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2523 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2524 moreElementsVectorSrc(MI, MoreTy, I); 2525 } 2526 2527 MachineBasicBlock &MBB = *MI.getParent(); 2528 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2529 moreElementsVectorDst(MI, MoreTy, 0); 2530 Observer.changedInstr(MI); 2531 return Legalized; 2532 } 2533 2534 LegalizerHelper::LegalizeResult 2535 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 2536 LLT MoreTy) { 2537 MIRBuilder.setInstr(MI); 2538 unsigned Opc = MI.getOpcode(); 2539 switch (Opc) { 2540 case TargetOpcode::G_IMPLICIT_DEF: { 2541 Observer.changingInstr(MI); 2542 moreElementsVectorDst(MI, MoreTy, 0); 2543 Observer.changedInstr(MI); 2544 return Legalized; 2545 } 2546 case TargetOpcode::G_AND: 2547 case TargetOpcode::G_OR: 2548 case TargetOpcode::G_XOR: 2549 case TargetOpcode::G_SMIN: 2550 case TargetOpcode::G_SMAX: 2551 case TargetOpcode::G_UMIN: 2552 case TargetOpcode::G_UMAX: { 2553 Observer.changingInstr(MI); 2554 moreElementsVectorSrc(MI, MoreTy, 1); 2555 moreElementsVectorSrc(MI, MoreTy, 2); 2556 moreElementsVectorDst(MI, MoreTy, 0); 2557 Observer.changedInstr(MI); 2558 return Legalized; 2559 } 2560 case TargetOpcode::G_EXTRACT: 2561 if (TypeIdx != 1) 2562 return UnableToLegalize; 2563 Observer.changingInstr(MI); 2564 moreElementsVectorSrc(MI, MoreTy, 1); 2565 Observer.changedInstr(MI); 2566 return Legalized; 2567 case TargetOpcode::G_INSERT: 2568 if (TypeIdx != 0) 2569 return UnableToLegalize; 2570 Observer.changingInstr(MI); 2571 moreElementsVectorSrc(MI, MoreTy, 1); 2572 moreElementsVectorDst(MI, MoreTy, 0); 2573 Observer.changedInstr(MI); 2574 return Legalized; 2575 case TargetOpcode::G_SELECT: 2576 if (TypeIdx != 0) 2577 return UnableToLegalize; 2578 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 2579 return UnableToLegalize; 2580 2581 Observer.changingInstr(MI); 2582 moreElementsVectorSrc(MI, MoreTy, 2); 2583 moreElementsVectorSrc(MI, MoreTy, 3); 2584 moreElementsVectorDst(MI, MoreTy, 0); 2585 Observer.changedInstr(MI); 2586 return Legalized; 2587 case TargetOpcode::G_PHI: 2588 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 2589 default: 2590 return UnableToLegalize; 2591 } 2592 } 2593 2594 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 2595 ArrayRef<Register> Src1Regs, 2596 ArrayRef<Register> Src2Regs, 2597 LLT NarrowTy) { 2598 MachineIRBuilder &B = MIRBuilder; 2599 unsigned SrcParts = Src1Regs.size(); 2600 unsigned DstParts = DstRegs.size(); 2601 2602 unsigned DstIdx = 0; // Low bits of the result. 2603 Register FactorSum = 2604 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 2605 DstRegs[DstIdx] = FactorSum; 2606 2607 unsigned CarrySumPrevDstIdx; 2608 SmallVector<Register, 4> Factors; 2609 2610 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 2611 // Collect low parts of muls for DstIdx. 2612 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 2613 i <= std::min(DstIdx, SrcParts - 1); ++i) { 2614 MachineInstrBuilder Mul = 2615 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 2616 Factors.push_back(Mul.getReg(0)); 2617 } 2618 // Collect high parts of muls from previous DstIdx. 2619 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 2620 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 2621 MachineInstrBuilder Umulh = 2622 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 2623 Factors.push_back(Umulh.getReg(0)); 2624 } 2625 // Add CarrySum from additons calculated for previous DstIdx. 2626 if (DstIdx != 1) { 2627 Factors.push_back(CarrySumPrevDstIdx); 2628 } 2629 2630 Register CarrySum; 2631 // Add all factors and accumulate all carries into CarrySum. 2632 if (DstIdx != DstParts - 1) { 2633 MachineInstrBuilder Uaddo = 2634 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 2635 FactorSum = Uaddo.getReg(0); 2636 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 2637 for (unsigned i = 2; i < Factors.size(); ++i) { 2638 MachineInstrBuilder Uaddo = 2639 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 2640 FactorSum = Uaddo.getReg(0); 2641 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 2642 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 2643 } 2644 } else { 2645 // Since value for the next index is not calculated, neither is CarrySum. 2646 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 2647 for (unsigned i = 2; i < Factors.size(); ++i) 2648 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 2649 } 2650 2651 CarrySumPrevDstIdx = CarrySum; 2652 DstRegs[DstIdx] = FactorSum; 2653 Factors.clear(); 2654 } 2655 } 2656 2657 LegalizerHelper::LegalizeResult 2658 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 2659 Register DstReg = MI.getOperand(0).getReg(); 2660 Register Src1 = MI.getOperand(1).getReg(); 2661 Register Src2 = MI.getOperand(2).getReg(); 2662 2663 LLT Ty = MRI.getType(DstReg); 2664 if (Ty.isVector()) 2665 return UnableToLegalize; 2666 2667 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 2668 unsigned DstSize = Ty.getSizeInBits(); 2669 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2670 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 2671 return UnableToLegalize; 2672 2673 unsigned NumDstParts = DstSize / NarrowSize; 2674 unsigned NumSrcParts = SrcSize / NarrowSize; 2675 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 2676 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 2677 2678 SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs; 2679 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 2680 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 2681 DstTmpRegs.resize(DstTmpParts); 2682 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 2683 2684 // Take only high half of registers if this is high mul. 2685 ArrayRef<Register> DstRegs( 2686 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 2687 MIRBuilder.buildMerge(DstReg, DstRegs); 2688 MI.eraseFromParent(); 2689 return Legalized; 2690 } 2691 2692 LegalizerHelper::LegalizeResult 2693 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 2694 LLT NarrowTy) { 2695 if (TypeIdx != 1) 2696 return UnableToLegalize; 2697 2698 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2699 2700 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 2701 // FIXME: add support for when SizeOp1 isn't an exact multiple of 2702 // NarrowSize. 2703 if (SizeOp1 % NarrowSize != 0) 2704 return UnableToLegalize; 2705 int NumParts = SizeOp1 / NarrowSize; 2706 2707 SmallVector<Register, 2> SrcRegs, DstRegs; 2708 SmallVector<uint64_t, 2> Indexes; 2709 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2710 2711 Register OpReg = MI.getOperand(0).getReg(); 2712 uint64_t OpStart = MI.getOperand(2).getImm(); 2713 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2714 for (int i = 0; i < NumParts; ++i) { 2715 unsigned SrcStart = i * NarrowSize; 2716 2717 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 2718 // No part of the extract uses this subregister, ignore it. 2719 continue; 2720 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2721 // The entire subregister is extracted, forward the value. 2722 DstRegs.push_back(SrcRegs[i]); 2723 continue; 2724 } 2725 2726 // OpSegStart is where this destination segment would start in OpReg if it 2727 // extended infinitely in both directions. 2728 int64_t ExtractOffset; 2729 uint64_t SegSize; 2730 if (OpStart < SrcStart) { 2731 ExtractOffset = 0; 2732 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 2733 } else { 2734 ExtractOffset = OpStart - SrcStart; 2735 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 2736 } 2737 2738 Register SegReg = SrcRegs[i]; 2739 if (ExtractOffset != 0 || SegSize != NarrowSize) { 2740 // A genuine extract is needed. 2741 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2742 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 2743 } 2744 2745 DstRegs.push_back(SegReg); 2746 } 2747 2748 Register DstReg = MI.getOperand(0).getReg(); 2749 if(MRI.getType(DstReg).isVector()) 2750 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2751 else 2752 MIRBuilder.buildMerge(DstReg, DstRegs); 2753 MI.eraseFromParent(); 2754 return Legalized; 2755 } 2756 2757 LegalizerHelper::LegalizeResult 2758 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 2759 LLT NarrowTy) { 2760 // FIXME: Don't know how to handle secondary types yet. 2761 if (TypeIdx != 0) 2762 return UnableToLegalize; 2763 2764 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 2765 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2766 2767 // FIXME: add support for when SizeOp0 isn't an exact multiple of 2768 // NarrowSize. 2769 if (SizeOp0 % NarrowSize != 0) 2770 return UnableToLegalize; 2771 2772 int NumParts = SizeOp0 / NarrowSize; 2773 2774 SmallVector<Register, 2> SrcRegs, DstRegs; 2775 SmallVector<uint64_t, 2> Indexes; 2776 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2777 2778 Register OpReg = MI.getOperand(2).getReg(); 2779 uint64_t OpStart = MI.getOperand(3).getImm(); 2780 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2781 for (int i = 0; i < NumParts; ++i) { 2782 unsigned DstStart = i * NarrowSize; 2783 2784 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 2785 // No part of the insert affects this subregister, forward the original. 2786 DstRegs.push_back(SrcRegs[i]); 2787 continue; 2788 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2789 // The entire subregister is defined by this insert, forward the new 2790 // value. 2791 DstRegs.push_back(OpReg); 2792 continue; 2793 } 2794 2795 // OpSegStart is where this destination segment would start in OpReg if it 2796 // extended infinitely in both directions. 2797 int64_t ExtractOffset, InsertOffset; 2798 uint64_t SegSize; 2799 if (OpStart < DstStart) { 2800 InsertOffset = 0; 2801 ExtractOffset = DstStart - OpStart; 2802 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 2803 } else { 2804 InsertOffset = OpStart - DstStart; 2805 ExtractOffset = 0; 2806 SegSize = 2807 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 2808 } 2809 2810 Register SegReg = OpReg; 2811 if (ExtractOffset != 0 || SegSize != OpSize) { 2812 // A genuine extract is needed. 2813 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2814 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 2815 } 2816 2817 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2818 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 2819 DstRegs.push_back(DstReg); 2820 } 2821 2822 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 2823 Register DstReg = MI.getOperand(0).getReg(); 2824 if(MRI.getType(DstReg).isVector()) 2825 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2826 else 2827 MIRBuilder.buildMerge(DstReg, DstRegs); 2828 MI.eraseFromParent(); 2829 return Legalized; 2830 } 2831 2832 LegalizerHelper::LegalizeResult 2833 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 2834 LLT NarrowTy) { 2835 Register DstReg = MI.getOperand(0).getReg(); 2836 LLT DstTy = MRI.getType(DstReg); 2837 2838 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 2839 2840 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 2841 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 2842 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 2843 LLT LeftoverTy; 2844 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 2845 Src0Regs, Src0LeftoverRegs)) 2846 return UnableToLegalize; 2847 2848 LLT Unused; 2849 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 2850 Src1Regs, Src1LeftoverRegs)) 2851 llvm_unreachable("inconsistent extractParts result"); 2852 2853 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 2854 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 2855 {Src0Regs[I], Src1Regs[I]}); 2856 DstRegs.push_back(Inst->getOperand(0).getReg()); 2857 } 2858 2859 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 2860 auto Inst = MIRBuilder.buildInstr( 2861 MI.getOpcode(), 2862 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 2863 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); 2864 } 2865 2866 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 2867 LeftoverTy, DstLeftoverRegs); 2868 2869 MI.eraseFromParent(); 2870 return Legalized; 2871 } 2872 2873 LegalizerHelper::LegalizeResult 2874 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 2875 LLT NarrowTy) { 2876 if (TypeIdx != 0) 2877 return UnableToLegalize; 2878 2879 Register CondReg = MI.getOperand(1).getReg(); 2880 LLT CondTy = MRI.getType(CondReg); 2881 if (CondTy.isVector()) // TODO: Handle vselect 2882 return UnableToLegalize; 2883 2884 Register DstReg = MI.getOperand(0).getReg(); 2885 LLT DstTy = MRI.getType(DstReg); 2886 2887 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 2888 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 2889 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 2890 LLT LeftoverTy; 2891 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 2892 Src1Regs, Src1LeftoverRegs)) 2893 return UnableToLegalize; 2894 2895 LLT Unused; 2896 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 2897 Src2Regs, Src2LeftoverRegs)) 2898 llvm_unreachable("inconsistent extractParts result"); 2899 2900 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 2901 auto Select = MIRBuilder.buildSelect(NarrowTy, 2902 CondReg, Src1Regs[I], Src2Regs[I]); 2903 DstRegs.push_back(Select->getOperand(0).getReg()); 2904 } 2905 2906 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 2907 auto Select = MIRBuilder.buildSelect( 2908 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 2909 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 2910 } 2911 2912 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 2913 LeftoverTy, DstLeftoverRegs); 2914 2915 MI.eraseFromParent(); 2916 return Legalized; 2917 } 2918 2919 LegalizerHelper::LegalizeResult 2920 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2921 unsigned Opc = MI.getOpcode(); 2922 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2923 auto isSupported = [this](const LegalityQuery &Q) { 2924 auto QAction = LI.getAction(Q).Action; 2925 return QAction == Legal || QAction == Libcall || QAction == Custom; 2926 }; 2927 switch (Opc) { 2928 default: 2929 return UnableToLegalize; 2930 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 2931 // This trivially expands to CTLZ. 2932 Observer.changingInstr(MI); 2933 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 2934 Observer.changedInstr(MI); 2935 return Legalized; 2936 } 2937 case TargetOpcode::G_CTLZ: { 2938 Register SrcReg = MI.getOperand(1).getReg(); 2939 unsigned Len = Ty.getSizeInBits(); 2940 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 2941 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 2942 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 2943 {Ty}, {SrcReg}); 2944 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2945 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2946 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2947 SrcReg, MIBZero); 2948 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2949 MIBCtlzZU); 2950 MI.eraseFromParent(); 2951 return Legalized; 2952 } 2953 // for now, we do this: 2954 // NewLen = NextPowerOf2(Len); 2955 // x = x | (x >> 1); 2956 // x = x | (x >> 2); 2957 // ... 2958 // x = x | (x >>16); 2959 // x = x | (x >>32); // for 64-bit input 2960 // Upto NewLen/2 2961 // return Len - popcount(x); 2962 // 2963 // Ref: "Hacker's Delight" by Henry Warren 2964 Register Op = SrcReg; 2965 unsigned NewLen = PowerOf2Ceil(Len); 2966 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 2967 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 2968 auto MIBOp = MIRBuilder.buildInstr( 2969 TargetOpcode::G_OR, {Ty}, 2970 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 2971 {Op, MIBShiftAmt})}); 2972 Op = MIBOp->getOperand(0).getReg(); 2973 } 2974 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 2975 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2976 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 2977 MI.eraseFromParent(); 2978 return Legalized; 2979 } 2980 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 2981 // This trivially expands to CTTZ. 2982 Observer.changingInstr(MI); 2983 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 2984 Observer.changedInstr(MI); 2985 return Legalized; 2986 } 2987 case TargetOpcode::G_CTTZ: { 2988 Register SrcReg = MI.getOperand(1).getReg(); 2989 unsigned Len = Ty.getSizeInBits(); 2990 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 2991 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 2992 // zero. 2993 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 2994 {Ty}, {SrcReg}); 2995 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2996 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2997 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2998 SrcReg, MIBZero); 2999 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3000 MIBCttzZU); 3001 MI.eraseFromParent(); 3002 return Legalized; 3003 } 3004 // for now, we use: { return popcount(~x & (x - 1)); } 3005 // unless the target has ctlz but not ctpop, in which case we use: 3006 // { return 32 - nlz(~x & (x-1)); } 3007 // Ref: "Hacker's Delight" by Henry Warren 3008 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 3009 auto MIBNot = 3010 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 3011 auto MIBTmp = MIRBuilder.buildInstr( 3012 TargetOpcode::G_AND, {Ty}, 3013 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 3014 {SrcReg, MIBCstNeg1})}); 3015 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 3016 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 3017 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 3018 MIRBuilder.buildInstr( 3019 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3020 {MIBCstLen, 3021 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 3022 MI.eraseFromParent(); 3023 return Legalized; 3024 } 3025 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 3026 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 3027 return Legalized; 3028 } 3029 } 3030 } 3031 3032 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 3033 // representation. 3034 LegalizerHelper::LegalizeResult 3035 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 3036 Register Dst = MI.getOperand(0).getReg(); 3037 Register Src = MI.getOperand(1).getReg(); 3038 const LLT S64 = LLT::scalar(64); 3039 const LLT S32 = LLT::scalar(32); 3040 const LLT S1 = LLT::scalar(1); 3041 3042 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 3043 3044 // unsigned cul2f(ulong u) { 3045 // uint lz = clz(u); 3046 // uint e = (u != 0) ? 127U + 63U - lz : 0; 3047 // u = (u << lz) & 0x7fffffffffffffffUL; 3048 // ulong t = u & 0xffffffffffUL; 3049 // uint v = (e << 23) | (uint)(u >> 40); 3050 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 3051 // return as_float(v + r); 3052 // } 3053 3054 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 3055 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 3056 3057 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 3058 3059 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 3060 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 3061 3062 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 3063 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 3064 3065 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 3066 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 3067 3068 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 3069 3070 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 3071 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 3072 3073 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 3074 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 3075 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 3076 3077 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 3078 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 3079 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 3080 auto One = MIRBuilder.buildConstant(S32, 1); 3081 3082 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 3083 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 3084 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 3085 MIRBuilder.buildAdd(Dst, V, R); 3086 3087 return Legalized; 3088 } 3089 3090 LegalizerHelper::LegalizeResult 3091 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3092 Register Dst = MI.getOperand(0).getReg(); 3093 Register Src = MI.getOperand(1).getReg(); 3094 LLT DstTy = MRI.getType(Dst); 3095 LLT SrcTy = MRI.getType(Src); 3096 3097 if (SrcTy != LLT::scalar(64)) 3098 return UnableToLegalize; 3099 3100 if (DstTy == LLT::scalar(32)) { 3101 // TODO: SelectionDAG has several alternative expansions to port which may 3102 // be more reasonble depending on the available instructions. If a target 3103 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 3104 // intermediate type, this is probably worse. 3105 return lowerU64ToF32BitOps(MI); 3106 } 3107 3108 return UnableToLegalize; 3109 } 3110 3111 LegalizerHelper::LegalizeResult 3112 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3113 Register Dst = MI.getOperand(0).getReg(); 3114 Register Src = MI.getOperand(1).getReg(); 3115 LLT DstTy = MRI.getType(Dst); 3116 LLT SrcTy = MRI.getType(Src); 3117 3118 const LLT S64 = LLT::scalar(64); 3119 const LLT S32 = LLT::scalar(32); 3120 const LLT S1 = LLT::scalar(1); 3121 3122 if (SrcTy != S64) 3123 return UnableToLegalize; 3124 3125 if (DstTy == S32) { 3126 // signed cl2f(long l) { 3127 // long s = l >> 63; 3128 // float r = cul2f((l + s) ^ s); 3129 // return s ? -r : r; 3130 // } 3131 Register L = Src; 3132 auto SignBit = MIRBuilder.buildConstant(S64, 63); 3133 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 3134 3135 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 3136 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 3137 auto R = MIRBuilder.buildUITOFP(S32, Xor); 3138 3139 auto RNeg = MIRBuilder.buildFNeg(S32, R); 3140 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 3141 MIRBuilder.buildConstant(S64, 0)); 3142 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 3143 return Legalized; 3144 } 3145 3146 return UnableToLegalize; 3147 } 3148 3149 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 3150 switch (Opc) { 3151 case TargetOpcode::G_SMIN: 3152 return CmpInst::ICMP_SLT; 3153 case TargetOpcode::G_SMAX: 3154 return CmpInst::ICMP_SGT; 3155 case TargetOpcode::G_UMIN: 3156 return CmpInst::ICMP_ULT; 3157 case TargetOpcode::G_UMAX: 3158 return CmpInst::ICMP_UGT; 3159 default: 3160 llvm_unreachable("not in integer min/max"); 3161 } 3162 } 3163 3164 LegalizerHelper::LegalizeResult 3165 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3166 Register Dst = MI.getOperand(0).getReg(); 3167 Register Src0 = MI.getOperand(1).getReg(); 3168 Register Src1 = MI.getOperand(2).getReg(); 3169 3170 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 3171 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 3172 3173 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 3174 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 3175 3176 MI.eraseFromParent(); 3177 return Legalized; 3178 } 3179