1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static LLT getGCDType(LLT OrigTy, LLT TargetTy) { 67 if (OrigTy.isVector() && TargetTy.isVector()) { 68 assert(OrigTy.getElementType() == TargetTy.getElementType()); 69 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 70 TargetTy.getNumElements()); 71 return LLT::scalarOrVector(GCD, OrigTy.getElementType()); 72 } 73 74 if (OrigTy.isVector() && !TargetTy.isVector()) { 75 assert(OrigTy.getElementType() == TargetTy); 76 return TargetTy; 77 } 78 79 assert(!OrigTy.isVector() && !TargetTy.isVector() && 80 "GCD type of vector and scalar not implemented"); 81 82 int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(), 83 TargetTy.getSizeInBits()); 84 return LLT::scalar(GCD); 85 } 86 87 static LLT getLCMType(LLT Ty0, LLT Ty1) { 88 if (!Ty0.isVector() && !Ty1.isVector()) { 89 unsigned Mul = Ty0.getSizeInBits() * Ty1.getSizeInBits(); 90 int GCDSize = greatestCommonDivisor(Ty0.getSizeInBits(), 91 Ty1.getSizeInBits()); 92 return LLT::scalar(Mul / GCDSize); 93 } 94 95 if (Ty0.isVector() && !Ty1.isVector()) { 96 assert(Ty0.getElementType() == Ty1 && "not yet handled"); 97 return Ty0; 98 } 99 100 if (Ty1.isVector() && !Ty0.isVector()) { 101 assert(Ty1.getElementType() == Ty0 && "not yet handled"); 102 return Ty1; 103 } 104 105 if (Ty0.isVector() && Ty1.isVector()) { 106 assert(Ty0.getElementType() == Ty1.getElementType() && "not yet handled"); 107 108 int GCDElts = greatestCommonDivisor(Ty0.getNumElements(), 109 Ty1.getNumElements()); 110 111 int Mul = Ty0.getNumElements() * Ty1.getNumElements(); 112 return LLT::vector(Mul / GCDElts, Ty0.getElementType()); 113 } 114 115 llvm_unreachable("not yet handled"); 116 } 117 118 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 119 120 if (!Ty.isScalar()) 121 return nullptr; 122 123 switch (Ty.getSizeInBits()) { 124 case 16: 125 return Type::getHalfTy(Ctx); 126 case 32: 127 return Type::getFloatTy(Ctx); 128 case 64: 129 return Type::getDoubleTy(Ctx); 130 case 128: 131 return Type::getFP128Ty(Ctx); 132 default: 133 return nullptr; 134 } 135 } 136 137 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 138 GISelChangeObserver &Observer, 139 MachineIRBuilder &Builder) 140 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 141 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 142 MIRBuilder.setMF(MF); 143 MIRBuilder.setChangeObserver(Observer); 144 } 145 146 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 147 GISelChangeObserver &Observer, 148 MachineIRBuilder &B) 149 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 150 MIRBuilder.setMF(MF); 151 MIRBuilder.setChangeObserver(Observer); 152 } 153 LegalizerHelper::LegalizeResult 154 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 155 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 156 157 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 158 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 159 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 160 : UnableToLegalize; 161 auto Step = LI.getAction(MI, MRI); 162 switch (Step.Action) { 163 case Legal: 164 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 165 return AlreadyLegal; 166 case Libcall: 167 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 168 return libcall(MI); 169 case NarrowScalar: 170 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 171 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 172 case WidenScalar: 173 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 174 return widenScalar(MI, Step.TypeIdx, Step.NewType); 175 case Lower: 176 LLVM_DEBUG(dbgs() << ".. Lower\n"); 177 return lower(MI, Step.TypeIdx, Step.NewType); 178 case FewerElements: 179 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 180 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 181 case MoreElements: 182 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 183 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 184 case Custom: 185 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 186 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 187 : UnableToLegalize; 188 default: 189 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 190 return UnableToLegalize; 191 } 192 } 193 194 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 195 SmallVectorImpl<Register> &VRegs) { 196 for (int i = 0; i < NumParts; ++i) 197 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 198 MIRBuilder.buildUnmerge(VRegs, Reg); 199 } 200 201 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 202 LLT MainTy, LLT &LeftoverTy, 203 SmallVectorImpl<Register> &VRegs, 204 SmallVectorImpl<Register> &LeftoverRegs) { 205 assert(!LeftoverTy.isValid() && "this is an out argument"); 206 207 unsigned RegSize = RegTy.getSizeInBits(); 208 unsigned MainSize = MainTy.getSizeInBits(); 209 unsigned NumParts = RegSize / MainSize; 210 unsigned LeftoverSize = RegSize - NumParts * MainSize; 211 212 // Use an unmerge when possible. 213 if (LeftoverSize == 0) { 214 for (unsigned I = 0; I < NumParts; ++I) 215 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 216 MIRBuilder.buildUnmerge(VRegs, Reg); 217 return true; 218 } 219 220 if (MainTy.isVector()) { 221 unsigned EltSize = MainTy.getScalarSizeInBits(); 222 if (LeftoverSize % EltSize != 0) 223 return false; 224 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 225 } else { 226 LeftoverTy = LLT::scalar(LeftoverSize); 227 } 228 229 // For irregular sizes, extract the individual parts. 230 for (unsigned I = 0; I != NumParts; ++I) { 231 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 232 VRegs.push_back(NewReg); 233 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 234 } 235 236 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 237 Offset += LeftoverSize) { 238 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 239 LeftoverRegs.push_back(NewReg); 240 MIRBuilder.buildExtract(NewReg, Reg, Offset); 241 } 242 243 return true; 244 } 245 246 void LegalizerHelper::insertParts(Register DstReg, 247 LLT ResultTy, LLT PartTy, 248 ArrayRef<Register> PartRegs, 249 LLT LeftoverTy, 250 ArrayRef<Register> LeftoverRegs) { 251 if (!LeftoverTy.isValid()) { 252 assert(LeftoverRegs.empty()); 253 254 if (!ResultTy.isVector()) { 255 MIRBuilder.buildMerge(DstReg, PartRegs); 256 return; 257 } 258 259 if (PartTy.isVector()) 260 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 261 else 262 MIRBuilder.buildBuildVector(DstReg, PartRegs); 263 return; 264 } 265 266 unsigned PartSize = PartTy.getSizeInBits(); 267 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 268 269 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 270 MIRBuilder.buildUndef(CurResultReg); 271 272 unsigned Offset = 0; 273 for (Register PartReg : PartRegs) { 274 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 275 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 276 CurResultReg = NewResultReg; 277 Offset += PartSize; 278 } 279 280 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 281 // Use the original output register for the final insert to avoid a copy. 282 Register NewResultReg = (I + 1 == E) ? 283 DstReg : MRI.createGenericVirtualRegister(ResultTy); 284 285 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 286 CurResultReg = NewResultReg; 287 Offset += LeftoverPartSize; 288 } 289 } 290 291 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 292 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 293 const MachineInstr &MI) { 294 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 295 296 const int NumResults = MI.getNumOperands() - 1; 297 Regs.resize(NumResults); 298 for (int I = 0; I != NumResults; ++I) 299 Regs[I] = MI.getOperand(I).getReg(); 300 } 301 302 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 303 LLT NarrowTy, Register SrcReg) { 304 LLT SrcTy = MRI.getType(SrcReg); 305 306 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 307 if (SrcTy == GCDTy) { 308 // If the source already evenly divides the result type, we don't need to do 309 // anything. 310 Parts.push_back(SrcReg); 311 } else { 312 // Need to split into common type sized pieces. 313 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 314 getUnmergeResults(Parts, *Unmerge); 315 } 316 317 return GCDTy; 318 } 319 320 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 321 SmallVectorImpl<Register> &VRegs, 322 unsigned PadStrategy) { 323 LLT LCMTy = getLCMType(DstTy, NarrowTy); 324 325 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 326 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 327 int NumOrigSrc = VRegs.size(); 328 329 Register PadReg; 330 331 // Get a value we can use to pad the source value if the sources won't evenly 332 // cover the result type. 333 if (NumOrigSrc < NumParts * NumSubParts) { 334 if (PadStrategy == TargetOpcode::G_ZEXT) 335 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 336 else if (PadStrategy == TargetOpcode::G_ANYEXT) 337 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 338 else { 339 assert(PadStrategy == TargetOpcode::G_SEXT); 340 341 // Shift the sign bit of the low register through the high register. 342 auto ShiftAmt = 343 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 344 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 345 } 346 } 347 348 // Registers for the final merge to be produced. 349 SmallVector<Register, 4> Remerge(NumParts); 350 351 // Registers needed for intermediate merges, which will be merged into a 352 // source for Remerge. 353 SmallVector<Register, 4> SubMerge(NumSubParts); 354 355 // Once we've fully read off the end of the original source bits, we can reuse 356 // the same high bits for remaining padding elements. 357 Register AllPadReg; 358 359 // Build merges to the LCM type to cover the original result type. 360 for (int I = 0; I != NumParts; ++I) { 361 bool AllMergePartsArePadding = true; 362 363 // Build the requested merges to the requested type. 364 for (int J = 0; J != NumSubParts; ++J) { 365 int Idx = I * NumSubParts + J; 366 if (Idx >= NumOrigSrc) { 367 SubMerge[J] = PadReg; 368 continue; 369 } 370 371 SubMerge[J] = VRegs[Idx]; 372 373 // There are meaningful bits here we can't reuse later. 374 AllMergePartsArePadding = false; 375 } 376 377 // If we've filled up a complete piece with padding bits, we can directly 378 // emit the natural sized constant if applicable, rather than a merge of 379 // smaller constants. 380 if (AllMergePartsArePadding && !AllPadReg) { 381 if (PadStrategy == TargetOpcode::G_ANYEXT) 382 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 383 else if (PadStrategy == TargetOpcode::G_ZEXT) 384 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 385 386 // If this is a sign extension, we can't materialize a trivial constant 387 // with the right type and have to produce a merge. 388 } 389 390 if (AllPadReg) { 391 // Avoid creating additional instructions if we're just adding additional 392 // copies of padding bits. 393 Remerge[I] = AllPadReg; 394 continue; 395 } 396 397 if (NumSubParts == 1) 398 Remerge[I] = SubMerge[0]; 399 else 400 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 401 402 // In the sign extend padding case, re-use the first all-signbit merge. 403 if (AllMergePartsArePadding && !AllPadReg) 404 AllPadReg = Remerge[I]; 405 } 406 407 VRegs = std::move(Remerge); 408 return LCMTy; 409 } 410 411 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 412 ArrayRef<Register> RemergeRegs) { 413 LLT DstTy = MRI.getType(DstReg); 414 415 // Create the merge to the widened source, and extract the relevant bits into 416 // the result. 417 418 if (DstTy == LCMTy) { 419 MIRBuilder.buildMerge(DstReg, RemergeRegs); 420 return; 421 } 422 423 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 424 if (DstTy.isScalar() && LCMTy.isScalar()) { 425 MIRBuilder.buildTrunc(DstReg, Remerge); 426 return; 427 } 428 429 if (LCMTy.isVector()) { 430 MIRBuilder.buildExtract(DstReg, Remerge, 0); 431 return; 432 } 433 434 llvm_unreachable("unhandled case"); 435 } 436 437 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 438 switch (Opcode) { 439 case TargetOpcode::G_SDIV: 440 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 441 switch (Size) { 442 case 32: 443 return RTLIB::SDIV_I32; 444 case 64: 445 return RTLIB::SDIV_I64; 446 case 128: 447 return RTLIB::SDIV_I128; 448 default: 449 llvm_unreachable("unexpected size"); 450 } 451 case TargetOpcode::G_UDIV: 452 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 453 switch (Size) { 454 case 32: 455 return RTLIB::UDIV_I32; 456 case 64: 457 return RTLIB::UDIV_I64; 458 case 128: 459 return RTLIB::UDIV_I128; 460 default: 461 llvm_unreachable("unexpected size"); 462 } 463 case TargetOpcode::G_SREM: 464 assert((Size == 32 || Size == 64) && "Unsupported size"); 465 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 466 case TargetOpcode::G_UREM: 467 assert((Size == 32 || Size == 64) && "Unsupported size"); 468 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 469 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 470 assert(Size == 32 && "Unsupported size"); 471 return RTLIB::CTLZ_I32; 472 case TargetOpcode::G_FADD: 473 assert((Size == 32 || Size == 64) && "Unsupported size"); 474 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 475 case TargetOpcode::G_FSUB: 476 assert((Size == 32 || Size == 64) && "Unsupported size"); 477 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 478 case TargetOpcode::G_FMUL: 479 assert((Size == 32 || Size == 64) && "Unsupported size"); 480 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 481 case TargetOpcode::G_FDIV: 482 assert((Size == 32 || Size == 64) && "Unsupported size"); 483 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 484 case TargetOpcode::G_FEXP: 485 assert((Size == 32 || Size == 64) && "Unsupported size"); 486 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 487 case TargetOpcode::G_FEXP2: 488 assert((Size == 32 || Size == 64) && "Unsupported size"); 489 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 490 case TargetOpcode::G_FREM: 491 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 492 case TargetOpcode::G_FPOW: 493 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 494 case TargetOpcode::G_FMA: 495 assert((Size == 32 || Size == 64) && "Unsupported size"); 496 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 497 case TargetOpcode::G_FSIN: 498 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 499 return Size == 128 ? RTLIB::SIN_F128 500 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 501 case TargetOpcode::G_FCOS: 502 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 503 return Size == 128 ? RTLIB::COS_F128 504 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 505 case TargetOpcode::G_FLOG10: 506 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 507 return Size == 128 ? RTLIB::LOG10_F128 508 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 509 case TargetOpcode::G_FLOG: 510 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 511 return Size == 128 ? RTLIB::LOG_F128 512 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 513 case TargetOpcode::G_FLOG2: 514 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 515 return Size == 128 ? RTLIB::LOG2_F128 516 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 517 case TargetOpcode::G_FCEIL: 518 assert((Size == 32 || Size == 64) && "Unsupported size"); 519 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 520 case TargetOpcode::G_FFLOOR: 521 assert((Size == 32 || Size == 64) && "Unsupported size"); 522 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 523 } 524 llvm_unreachable("Unknown libcall function"); 525 } 526 527 /// True if an instruction is in tail position in its caller. Intended for 528 /// legalizing libcalls as tail calls when possible. 529 static bool isLibCallInTailPosition(MachineInstr &MI) { 530 const Function &F = MI.getParent()->getParent()->getFunction(); 531 532 // Conservatively require the attributes of the call to match those of 533 // the return. Ignore NoAlias and NonNull because they don't affect the 534 // call sequence. 535 AttributeList CallerAttrs = F.getAttributes(); 536 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 537 .removeAttribute(Attribute::NoAlias) 538 .removeAttribute(Attribute::NonNull) 539 .hasAttributes()) 540 return false; 541 542 // It's not safe to eliminate the sign / zero extension of the return value. 543 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 544 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 545 return false; 546 547 // Only tail call if the following instruction is a standard return. 548 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 549 MachineInstr *Next = MI.getNextNode(); 550 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 551 return false; 552 553 return true; 554 } 555 556 LegalizerHelper::LegalizeResult 557 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 558 const CallLowering::ArgInfo &Result, 559 ArrayRef<CallLowering::ArgInfo> Args) { 560 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 561 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 562 const char *Name = TLI.getLibcallName(Libcall); 563 564 CallLowering::CallLoweringInfo Info; 565 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 566 Info.Callee = MachineOperand::CreateES(Name); 567 Info.OrigRet = Result; 568 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 569 if (!CLI.lowerCall(MIRBuilder, Info)) 570 return LegalizerHelper::UnableToLegalize; 571 572 return LegalizerHelper::Legalized; 573 } 574 575 // Useful for libcalls where all operands have the same type. 576 static LegalizerHelper::LegalizeResult 577 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 578 Type *OpType) { 579 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 580 581 SmallVector<CallLowering::ArgInfo, 3> Args; 582 for (unsigned i = 1; i < MI.getNumOperands(); i++) 583 Args.push_back({MI.getOperand(i).getReg(), OpType}); 584 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 585 Args); 586 } 587 588 LegalizerHelper::LegalizeResult 589 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 590 MachineInstr &MI) { 591 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 592 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 593 594 SmallVector<CallLowering::ArgInfo, 3> Args; 595 // Add all the args, except for the last which is an imm denoting 'tail'. 596 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 597 Register Reg = MI.getOperand(i).getReg(); 598 599 // Need derive an IR type for call lowering. 600 LLT OpLLT = MRI.getType(Reg); 601 Type *OpTy = nullptr; 602 if (OpLLT.isPointer()) 603 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 604 else 605 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 606 Args.push_back({Reg, OpTy}); 607 } 608 609 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 610 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 611 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 612 RTLIB::Libcall RTLibcall; 613 switch (ID) { 614 case Intrinsic::memcpy: 615 RTLibcall = RTLIB::MEMCPY; 616 break; 617 case Intrinsic::memset: 618 RTLibcall = RTLIB::MEMSET; 619 break; 620 case Intrinsic::memmove: 621 RTLibcall = RTLIB::MEMMOVE; 622 break; 623 default: 624 return LegalizerHelper::UnableToLegalize; 625 } 626 const char *Name = TLI.getLibcallName(RTLibcall); 627 628 MIRBuilder.setInstr(MI); 629 630 CallLowering::CallLoweringInfo Info; 631 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 632 Info.Callee = MachineOperand::CreateES(Name); 633 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 634 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 635 isLibCallInTailPosition(MI); 636 637 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 638 if (!CLI.lowerCall(MIRBuilder, Info)) 639 return LegalizerHelper::UnableToLegalize; 640 641 if (Info.LoweredTailCall) { 642 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 643 // We must have a return following the call to get past 644 // isLibCallInTailPosition. 645 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 646 "Expected instr following MI to be a return?"); 647 648 // We lowered a tail call, so the call is now the return from the block. 649 // Delete the old return. 650 MI.getNextNode()->eraseFromParent(); 651 } 652 653 return LegalizerHelper::Legalized; 654 } 655 656 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 657 Type *FromType) { 658 auto ToMVT = MVT::getVT(ToType); 659 auto FromMVT = MVT::getVT(FromType); 660 661 switch (Opcode) { 662 case TargetOpcode::G_FPEXT: 663 return RTLIB::getFPEXT(FromMVT, ToMVT); 664 case TargetOpcode::G_FPTRUNC: 665 return RTLIB::getFPROUND(FromMVT, ToMVT); 666 case TargetOpcode::G_FPTOSI: 667 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 668 case TargetOpcode::G_FPTOUI: 669 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 670 case TargetOpcode::G_SITOFP: 671 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 672 case TargetOpcode::G_UITOFP: 673 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 674 } 675 llvm_unreachable("Unsupported libcall function"); 676 } 677 678 static LegalizerHelper::LegalizeResult 679 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 680 Type *FromType) { 681 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 682 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 683 {{MI.getOperand(1).getReg(), FromType}}); 684 } 685 686 LegalizerHelper::LegalizeResult 687 LegalizerHelper::libcall(MachineInstr &MI) { 688 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 689 unsigned Size = LLTy.getSizeInBits(); 690 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 691 692 MIRBuilder.setInstr(MI); 693 694 switch (MI.getOpcode()) { 695 default: 696 return UnableToLegalize; 697 case TargetOpcode::G_SDIV: 698 case TargetOpcode::G_UDIV: 699 case TargetOpcode::G_SREM: 700 case TargetOpcode::G_UREM: 701 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 702 Type *HLTy = IntegerType::get(Ctx, Size); 703 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 704 if (Status != Legalized) 705 return Status; 706 break; 707 } 708 case TargetOpcode::G_FADD: 709 case TargetOpcode::G_FSUB: 710 case TargetOpcode::G_FMUL: 711 case TargetOpcode::G_FDIV: 712 case TargetOpcode::G_FMA: 713 case TargetOpcode::G_FPOW: 714 case TargetOpcode::G_FREM: 715 case TargetOpcode::G_FCOS: 716 case TargetOpcode::G_FSIN: 717 case TargetOpcode::G_FLOG10: 718 case TargetOpcode::G_FLOG: 719 case TargetOpcode::G_FLOG2: 720 case TargetOpcode::G_FEXP: 721 case TargetOpcode::G_FEXP2: 722 case TargetOpcode::G_FCEIL: 723 case TargetOpcode::G_FFLOOR: { 724 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 725 if (!HLTy || (Size != 32 && Size != 64)) { 726 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 727 return UnableToLegalize; 728 } 729 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 730 if (Status != Legalized) 731 return Status; 732 break; 733 } 734 case TargetOpcode::G_FPEXT: 735 case TargetOpcode::G_FPTRUNC: { 736 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 737 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 738 if (!FromTy || !ToTy) 739 return UnableToLegalize; 740 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 741 if (Status != Legalized) 742 return Status; 743 break; 744 } 745 case TargetOpcode::G_FPTOSI: 746 case TargetOpcode::G_FPTOUI: { 747 // FIXME: Support other types 748 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 749 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 750 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 751 return UnableToLegalize; 752 LegalizeResult Status = conversionLibcall( 753 MI, MIRBuilder, 754 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 755 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 756 if (Status != Legalized) 757 return Status; 758 break; 759 } 760 case TargetOpcode::G_SITOFP: 761 case TargetOpcode::G_UITOFP: { 762 // FIXME: Support other types 763 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 764 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 765 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 766 return UnableToLegalize; 767 LegalizeResult Status = conversionLibcall( 768 MI, MIRBuilder, 769 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 770 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 771 if (Status != Legalized) 772 return Status; 773 break; 774 } 775 } 776 777 MI.eraseFromParent(); 778 return Legalized; 779 } 780 781 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 782 unsigned TypeIdx, 783 LLT NarrowTy) { 784 MIRBuilder.setInstr(MI); 785 786 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 787 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 788 789 switch (MI.getOpcode()) { 790 default: 791 return UnableToLegalize; 792 case TargetOpcode::G_IMPLICIT_DEF: { 793 // FIXME: add support for when SizeOp0 isn't an exact multiple of 794 // NarrowSize. 795 if (SizeOp0 % NarrowSize != 0) 796 return UnableToLegalize; 797 int NumParts = SizeOp0 / NarrowSize; 798 799 SmallVector<Register, 2> DstRegs; 800 for (int i = 0; i < NumParts; ++i) 801 DstRegs.push_back( 802 MIRBuilder.buildUndef(NarrowTy).getReg(0)); 803 804 Register DstReg = MI.getOperand(0).getReg(); 805 if(MRI.getType(DstReg).isVector()) 806 MIRBuilder.buildBuildVector(DstReg, DstRegs); 807 else 808 MIRBuilder.buildMerge(DstReg, DstRegs); 809 MI.eraseFromParent(); 810 return Legalized; 811 } 812 case TargetOpcode::G_CONSTANT: { 813 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 814 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 815 unsigned TotalSize = Ty.getSizeInBits(); 816 unsigned NarrowSize = NarrowTy.getSizeInBits(); 817 int NumParts = TotalSize / NarrowSize; 818 819 SmallVector<Register, 4> PartRegs; 820 for (int I = 0; I != NumParts; ++I) { 821 unsigned Offset = I * NarrowSize; 822 auto K = MIRBuilder.buildConstant(NarrowTy, 823 Val.lshr(Offset).trunc(NarrowSize)); 824 PartRegs.push_back(K.getReg(0)); 825 } 826 827 LLT LeftoverTy; 828 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 829 SmallVector<Register, 1> LeftoverRegs; 830 if (LeftoverBits != 0) { 831 LeftoverTy = LLT::scalar(LeftoverBits); 832 auto K = MIRBuilder.buildConstant( 833 LeftoverTy, 834 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 835 LeftoverRegs.push_back(K.getReg(0)); 836 } 837 838 insertParts(MI.getOperand(0).getReg(), 839 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 840 841 MI.eraseFromParent(); 842 return Legalized; 843 } 844 case TargetOpcode::G_SEXT: 845 case TargetOpcode::G_ZEXT: 846 case TargetOpcode::G_ANYEXT: 847 return narrowScalarExt(MI, TypeIdx, NarrowTy); 848 case TargetOpcode::G_TRUNC: { 849 if (TypeIdx != 1) 850 return UnableToLegalize; 851 852 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 853 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 854 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 855 return UnableToLegalize; 856 } 857 858 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 859 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 860 MI.eraseFromParent(); 861 return Legalized; 862 } 863 864 case TargetOpcode::G_ADD: { 865 // FIXME: add support for when SizeOp0 isn't an exact multiple of 866 // NarrowSize. 867 if (SizeOp0 % NarrowSize != 0) 868 return UnableToLegalize; 869 // Expand in terms of carry-setting/consuming G_ADDE instructions. 870 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 871 872 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 873 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 874 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 875 876 Register CarryIn; 877 for (int i = 0; i < NumParts; ++i) { 878 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 879 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 880 881 if (i == 0) 882 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 883 else { 884 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 885 Src2Regs[i], CarryIn); 886 } 887 888 DstRegs.push_back(DstReg); 889 CarryIn = CarryOut; 890 } 891 Register DstReg = MI.getOperand(0).getReg(); 892 if(MRI.getType(DstReg).isVector()) 893 MIRBuilder.buildBuildVector(DstReg, DstRegs); 894 else 895 MIRBuilder.buildMerge(DstReg, DstRegs); 896 MI.eraseFromParent(); 897 return Legalized; 898 } 899 case TargetOpcode::G_SUB: { 900 // FIXME: add support for when SizeOp0 isn't an exact multiple of 901 // NarrowSize. 902 if (SizeOp0 % NarrowSize != 0) 903 return UnableToLegalize; 904 905 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 906 907 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 908 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 909 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 910 911 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 912 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 913 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 914 {Src1Regs[0], Src2Regs[0]}); 915 DstRegs.push_back(DstReg); 916 Register BorrowIn = BorrowOut; 917 for (int i = 1; i < NumParts; ++i) { 918 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 919 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 920 921 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 922 {Src1Regs[i], Src2Regs[i], BorrowIn}); 923 924 DstRegs.push_back(DstReg); 925 BorrowIn = BorrowOut; 926 } 927 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 928 MI.eraseFromParent(); 929 return Legalized; 930 } 931 case TargetOpcode::G_MUL: 932 case TargetOpcode::G_UMULH: 933 return narrowScalarMul(MI, NarrowTy); 934 case TargetOpcode::G_EXTRACT: 935 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 936 case TargetOpcode::G_INSERT: 937 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 938 case TargetOpcode::G_LOAD: { 939 const auto &MMO = **MI.memoperands_begin(); 940 Register DstReg = MI.getOperand(0).getReg(); 941 LLT DstTy = MRI.getType(DstReg); 942 if (DstTy.isVector()) 943 return UnableToLegalize; 944 945 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 946 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 947 auto &MMO = **MI.memoperands_begin(); 948 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 949 MIRBuilder.buildAnyExt(DstReg, TmpReg); 950 MI.eraseFromParent(); 951 return Legalized; 952 } 953 954 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 955 } 956 case TargetOpcode::G_ZEXTLOAD: 957 case TargetOpcode::G_SEXTLOAD: { 958 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 959 Register DstReg = MI.getOperand(0).getReg(); 960 Register PtrReg = MI.getOperand(1).getReg(); 961 962 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 963 auto &MMO = **MI.memoperands_begin(); 964 if (MMO.getSizeInBits() == NarrowSize) { 965 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 966 } else { 967 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 968 } 969 970 if (ZExt) 971 MIRBuilder.buildZExt(DstReg, TmpReg); 972 else 973 MIRBuilder.buildSExt(DstReg, TmpReg); 974 975 MI.eraseFromParent(); 976 return Legalized; 977 } 978 case TargetOpcode::G_STORE: { 979 const auto &MMO = **MI.memoperands_begin(); 980 981 Register SrcReg = MI.getOperand(0).getReg(); 982 LLT SrcTy = MRI.getType(SrcReg); 983 if (SrcTy.isVector()) 984 return UnableToLegalize; 985 986 int NumParts = SizeOp0 / NarrowSize; 987 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 988 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 989 if (SrcTy.isVector() && LeftoverBits != 0) 990 return UnableToLegalize; 991 992 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 993 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 994 auto &MMO = **MI.memoperands_begin(); 995 MIRBuilder.buildTrunc(TmpReg, SrcReg); 996 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 997 MI.eraseFromParent(); 998 return Legalized; 999 } 1000 1001 return reduceLoadStoreWidth(MI, 0, NarrowTy); 1002 } 1003 case TargetOpcode::G_SELECT: 1004 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 1005 case TargetOpcode::G_AND: 1006 case TargetOpcode::G_OR: 1007 case TargetOpcode::G_XOR: { 1008 // Legalize bitwise operation: 1009 // A = BinOp<Ty> B, C 1010 // into: 1011 // B1, ..., BN = G_UNMERGE_VALUES B 1012 // C1, ..., CN = G_UNMERGE_VALUES C 1013 // A1 = BinOp<Ty/N> B1, C2 1014 // ... 1015 // AN = BinOp<Ty/N> BN, CN 1016 // A = G_MERGE_VALUES A1, ..., AN 1017 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1018 } 1019 case TargetOpcode::G_SHL: 1020 case TargetOpcode::G_LSHR: 1021 case TargetOpcode::G_ASHR: 1022 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1023 case TargetOpcode::G_CTLZ: 1024 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1025 case TargetOpcode::G_CTTZ: 1026 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1027 case TargetOpcode::G_CTPOP: 1028 if (TypeIdx == 1) 1029 switch (MI.getOpcode()) { 1030 case TargetOpcode::G_CTLZ: 1031 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1032 case TargetOpcode::G_CTTZ: 1033 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1034 case TargetOpcode::G_CTPOP: 1035 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1036 default: 1037 return UnableToLegalize; 1038 } 1039 1040 Observer.changingInstr(MI); 1041 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1042 Observer.changedInstr(MI); 1043 return Legalized; 1044 case TargetOpcode::G_INTTOPTR: 1045 if (TypeIdx != 1) 1046 return UnableToLegalize; 1047 1048 Observer.changingInstr(MI); 1049 narrowScalarSrc(MI, NarrowTy, 1); 1050 Observer.changedInstr(MI); 1051 return Legalized; 1052 case TargetOpcode::G_PTRTOINT: 1053 if (TypeIdx != 0) 1054 return UnableToLegalize; 1055 1056 Observer.changingInstr(MI); 1057 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1058 Observer.changedInstr(MI); 1059 return Legalized; 1060 case TargetOpcode::G_PHI: { 1061 unsigned NumParts = SizeOp0 / NarrowSize; 1062 SmallVector<Register, 2> DstRegs(NumParts); 1063 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1064 Observer.changingInstr(MI); 1065 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1066 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1067 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1068 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1069 SrcRegs[i / 2]); 1070 } 1071 MachineBasicBlock &MBB = *MI.getParent(); 1072 MIRBuilder.setInsertPt(MBB, MI); 1073 for (unsigned i = 0; i < NumParts; ++i) { 1074 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1075 MachineInstrBuilder MIB = 1076 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1077 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1078 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1079 } 1080 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1081 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1082 Observer.changedInstr(MI); 1083 MI.eraseFromParent(); 1084 return Legalized; 1085 } 1086 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1087 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1088 if (TypeIdx != 2) 1089 return UnableToLegalize; 1090 1091 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1092 Observer.changingInstr(MI); 1093 narrowScalarSrc(MI, NarrowTy, OpIdx); 1094 Observer.changedInstr(MI); 1095 return Legalized; 1096 } 1097 case TargetOpcode::G_ICMP: { 1098 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1099 if (NarrowSize * 2 != SrcSize) 1100 return UnableToLegalize; 1101 1102 Observer.changingInstr(MI); 1103 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1104 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1105 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1106 1107 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1108 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1109 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1110 1111 CmpInst::Predicate Pred = 1112 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1113 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1114 1115 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1116 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1117 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1118 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1119 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1120 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1121 } else { 1122 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1123 MachineInstrBuilder CmpHEQ = 1124 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1125 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1126 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1127 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1128 } 1129 Observer.changedInstr(MI); 1130 MI.eraseFromParent(); 1131 return Legalized; 1132 } 1133 case TargetOpcode::G_SEXT_INREG: { 1134 if (TypeIdx != 0) 1135 return UnableToLegalize; 1136 1137 int64_t SizeInBits = MI.getOperand(2).getImm(); 1138 1139 // So long as the new type has more bits than the bits we're extending we 1140 // don't need to break it apart. 1141 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1142 Observer.changingInstr(MI); 1143 // We don't lose any non-extension bits by truncating the src and 1144 // sign-extending the dst. 1145 MachineOperand &MO1 = MI.getOperand(1); 1146 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1147 MO1.setReg(TruncMIB.getReg(0)); 1148 1149 MachineOperand &MO2 = MI.getOperand(0); 1150 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1151 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1152 MIRBuilder.buildSExt(MO2, DstExt); 1153 MO2.setReg(DstExt); 1154 Observer.changedInstr(MI); 1155 return Legalized; 1156 } 1157 1158 // Break it apart. Components below the extension point are unmodified. The 1159 // component containing the extension point becomes a narrower SEXT_INREG. 1160 // Components above it are ashr'd from the component containing the 1161 // extension point. 1162 if (SizeOp0 % NarrowSize != 0) 1163 return UnableToLegalize; 1164 int NumParts = SizeOp0 / NarrowSize; 1165 1166 // List the registers where the destination will be scattered. 1167 SmallVector<Register, 2> DstRegs; 1168 // List the registers where the source will be split. 1169 SmallVector<Register, 2> SrcRegs; 1170 1171 // Create all the temporary registers. 1172 for (int i = 0; i < NumParts; ++i) { 1173 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1174 1175 SrcRegs.push_back(SrcReg); 1176 } 1177 1178 // Explode the big arguments into smaller chunks. 1179 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1180 1181 Register AshrCstReg = 1182 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1183 .getReg(0); 1184 Register FullExtensionReg = 0; 1185 Register PartialExtensionReg = 0; 1186 1187 // Do the operation on each small part. 1188 for (int i = 0; i < NumParts; ++i) { 1189 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1190 DstRegs.push_back(SrcRegs[i]); 1191 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1192 assert(PartialExtensionReg && 1193 "Expected to visit partial extension before full"); 1194 if (FullExtensionReg) { 1195 DstRegs.push_back(FullExtensionReg); 1196 continue; 1197 } 1198 DstRegs.push_back( 1199 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1200 .getReg(0)); 1201 FullExtensionReg = DstRegs.back(); 1202 } else { 1203 DstRegs.push_back( 1204 MIRBuilder 1205 .buildInstr( 1206 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1207 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1208 .getReg(0)); 1209 PartialExtensionReg = DstRegs.back(); 1210 } 1211 } 1212 1213 // Gather the destination registers into the final destination. 1214 Register DstReg = MI.getOperand(0).getReg(); 1215 MIRBuilder.buildMerge(DstReg, DstRegs); 1216 MI.eraseFromParent(); 1217 return Legalized; 1218 } 1219 case TargetOpcode::G_BSWAP: 1220 case TargetOpcode::G_BITREVERSE: { 1221 if (SizeOp0 % NarrowSize != 0) 1222 return UnableToLegalize; 1223 1224 Observer.changingInstr(MI); 1225 SmallVector<Register, 2> SrcRegs, DstRegs; 1226 unsigned NumParts = SizeOp0 / NarrowSize; 1227 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1228 1229 for (unsigned i = 0; i < NumParts; ++i) { 1230 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1231 {SrcRegs[NumParts - 1 - i]}); 1232 DstRegs.push_back(DstPart.getReg(0)); 1233 } 1234 1235 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1236 1237 Observer.changedInstr(MI); 1238 MI.eraseFromParent(); 1239 return Legalized; 1240 } 1241 } 1242 } 1243 1244 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1245 unsigned OpIdx, unsigned ExtOpcode) { 1246 MachineOperand &MO = MI.getOperand(OpIdx); 1247 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1248 MO.setReg(ExtB.getReg(0)); 1249 } 1250 1251 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1252 unsigned OpIdx) { 1253 MachineOperand &MO = MI.getOperand(OpIdx); 1254 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1255 MO.setReg(ExtB.getReg(0)); 1256 } 1257 1258 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1259 unsigned OpIdx, unsigned TruncOpcode) { 1260 MachineOperand &MO = MI.getOperand(OpIdx); 1261 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1262 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1263 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1264 MO.setReg(DstExt); 1265 } 1266 1267 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1268 unsigned OpIdx, unsigned ExtOpcode) { 1269 MachineOperand &MO = MI.getOperand(OpIdx); 1270 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1271 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1272 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1273 MO.setReg(DstTrunc); 1274 } 1275 1276 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1277 unsigned OpIdx) { 1278 MachineOperand &MO = MI.getOperand(OpIdx); 1279 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1280 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1281 MIRBuilder.buildExtract(MO, DstExt, 0); 1282 MO.setReg(DstExt); 1283 } 1284 1285 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1286 unsigned OpIdx) { 1287 MachineOperand &MO = MI.getOperand(OpIdx); 1288 1289 LLT OldTy = MRI.getType(MO.getReg()); 1290 unsigned OldElts = OldTy.getNumElements(); 1291 unsigned NewElts = MoreTy.getNumElements(); 1292 1293 unsigned NumParts = NewElts / OldElts; 1294 1295 // Use concat_vectors if the result is a multiple of the number of elements. 1296 if (NumParts * OldElts == NewElts) { 1297 SmallVector<Register, 8> Parts; 1298 Parts.push_back(MO.getReg()); 1299 1300 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1301 for (unsigned I = 1; I != NumParts; ++I) 1302 Parts.push_back(ImpDef); 1303 1304 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1305 MO.setReg(Concat.getReg(0)); 1306 return; 1307 } 1308 1309 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1310 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1311 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1312 MO.setReg(MoreReg); 1313 } 1314 1315 LegalizerHelper::LegalizeResult 1316 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1317 LLT WideTy) { 1318 if (TypeIdx != 1) 1319 return UnableToLegalize; 1320 1321 Register DstReg = MI.getOperand(0).getReg(); 1322 LLT DstTy = MRI.getType(DstReg); 1323 if (DstTy.isVector()) 1324 return UnableToLegalize; 1325 1326 Register Src1 = MI.getOperand(1).getReg(); 1327 LLT SrcTy = MRI.getType(Src1); 1328 const int DstSize = DstTy.getSizeInBits(); 1329 const int SrcSize = SrcTy.getSizeInBits(); 1330 const int WideSize = WideTy.getSizeInBits(); 1331 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1332 1333 unsigned NumOps = MI.getNumOperands(); 1334 unsigned NumSrc = MI.getNumOperands() - 1; 1335 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1336 1337 if (WideSize >= DstSize) { 1338 // Directly pack the bits in the target type. 1339 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1340 1341 for (unsigned I = 2; I != NumOps; ++I) { 1342 const unsigned Offset = (I - 1) * PartSize; 1343 1344 Register SrcReg = MI.getOperand(I).getReg(); 1345 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1346 1347 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1348 1349 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1350 MRI.createGenericVirtualRegister(WideTy); 1351 1352 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1353 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1354 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1355 ResultReg = NextResult; 1356 } 1357 1358 if (WideSize > DstSize) 1359 MIRBuilder.buildTrunc(DstReg, ResultReg); 1360 else if (DstTy.isPointer()) 1361 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1362 1363 MI.eraseFromParent(); 1364 return Legalized; 1365 } 1366 1367 // Unmerge the original values to the GCD type, and recombine to the next 1368 // multiple greater than the original type. 1369 // 1370 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1371 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1372 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1373 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1374 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1375 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1376 // %12:_(s12) = G_MERGE_VALUES %10, %11 1377 // 1378 // Padding with undef if necessary: 1379 // 1380 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1381 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1382 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1383 // %7:_(s2) = G_IMPLICIT_DEF 1384 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1385 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1386 // %10:_(s12) = G_MERGE_VALUES %8, %9 1387 1388 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1389 LLT GCDTy = LLT::scalar(GCD); 1390 1391 SmallVector<Register, 8> Parts; 1392 SmallVector<Register, 8> NewMergeRegs; 1393 SmallVector<Register, 8> Unmerges; 1394 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1395 1396 // Decompose the original operands if they don't evenly divide. 1397 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1398 Register SrcReg = MI.getOperand(I).getReg(); 1399 if (GCD == SrcSize) { 1400 Unmerges.push_back(SrcReg); 1401 } else { 1402 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1403 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1404 Unmerges.push_back(Unmerge.getReg(J)); 1405 } 1406 } 1407 1408 // Pad with undef to the next size that is a multiple of the requested size. 1409 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1410 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1411 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1412 Unmerges.push_back(UndefReg); 1413 } 1414 1415 const int PartsPerGCD = WideSize / GCD; 1416 1417 // Build merges of each piece. 1418 ArrayRef<Register> Slicer(Unmerges); 1419 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1420 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1421 NewMergeRegs.push_back(Merge.getReg(0)); 1422 } 1423 1424 // A truncate may be necessary if the requested type doesn't evenly divide the 1425 // original result type. 1426 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1427 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1428 } else { 1429 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1430 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1431 } 1432 1433 MI.eraseFromParent(); 1434 return Legalized; 1435 } 1436 1437 LegalizerHelper::LegalizeResult 1438 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1439 LLT WideTy) { 1440 if (TypeIdx != 0) 1441 return UnableToLegalize; 1442 1443 int NumDst = MI.getNumOperands() - 1; 1444 Register SrcReg = MI.getOperand(NumDst).getReg(); 1445 LLT SrcTy = MRI.getType(SrcReg); 1446 if (SrcTy.isVector()) 1447 return UnableToLegalize; 1448 1449 Register Dst0Reg = MI.getOperand(0).getReg(); 1450 LLT DstTy = MRI.getType(Dst0Reg); 1451 if (!DstTy.isScalar()) 1452 return UnableToLegalize; 1453 1454 if (WideTy.getSizeInBits() == SrcTy.getSizeInBits()) { 1455 if (SrcTy.isPointer()) { 1456 const DataLayout &DL = MIRBuilder.getDataLayout(); 1457 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1458 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 1459 return UnableToLegalize; 1460 } 1461 1462 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1463 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1464 } 1465 1466 // Theres no unmerge type to target. Directly extract the bits from the 1467 // source type 1468 unsigned DstSize = DstTy.getSizeInBits(); 1469 1470 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1471 for (int I = 1; I != NumDst; ++I) { 1472 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1473 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1474 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1475 } 1476 1477 MI.eraseFromParent(); 1478 return Legalized; 1479 } 1480 1481 // TODO 1482 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1483 return UnableToLegalize; 1484 1485 // Extend the source to a wider type. 1486 LLT LCMTy = getLCMType(SrcTy, WideTy); 1487 1488 Register WideSrc = SrcReg; 1489 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1490 // TODO: If this is an integral address space, cast to integer and anyext. 1491 if (SrcTy.isPointer()) { 1492 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1493 return UnableToLegalize; 1494 } 1495 1496 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1497 } 1498 1499 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1500 1501 // Create a sequence of unmerges to the original results. since we may have 1502 // widened the source, we will need to pad the results with dead defs to cover 1503 // the source register. 1504 // e.g. widen s16 to s32: 1505 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1506 // 1507 // => 1508 // %4:_(s64) = G_ANYEXT %0:_(s48) 1509 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1510 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1511 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1512 1513 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1514 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1515 1516 for (int I = 0; I != NumUnmerge; ++I) { 1517 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1518 1519 for (int J = 0; J != PartsPerUnmerge; ++J) { 1520 int Idx = I * PartsPerUnmerge + J; 1521 if (Idx < NumDst) 1522 MIB.addDef(MI.getOperand(Idx).getReg()); 1523 else { 1524 // Create dead def for excess components. 1525 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1526 } 1527 } 1528 1529 MIB.addUse(Unmerge.getReg(I)); 1530 } 1531 1532 MI.eraseFromParent(); 1533 return Legalized; 1534 } 1535 1536 LegalizerHelper::LegalizeResult 1537 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1538 LLT WideTy) { 1539 Register DstReg = MI.getOperand(0).getReg(); 1540 Register SrcReg = MI.getOperand(1).getReg(); 1541 LLT SrcTy = MRI.getType(SrcReg); 1542 1543 LLT DstTy = MRI.getType(DstReg); 1544 unsigned Offset = MI.getOperand(2).getImm(); 1545 1546 if (TypeIdx == 0) { 1547 if (SrcTy.isVector() || DstTy.isVector()) 1548 return UnableToLegalize; 1549 1550 SrcOp Src(SrcReg); 1551 if (SrcTy.isPointer()) { 1552 // Extracts from pointers can be handled only if they are really just 1553 // simple integers. 1554 const DataLayout &DL = MIRBuilder.getDataLayout(); 1555 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1556 return UnableToLegalize; 1557 1558 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1559 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1560 SrcTy = SrcAsIntTy; 1561 } 1562 1563 if (DstTy.isPointer()) 1564 return UnableToLegalize; 1565 1566 if (Offset == 0) { 1567 // Avoid a shift in the degenerate case. 1568 MIRBuilder.buildTrunc(DstReg, 1569 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1570 MI.eraseFromParent(); 1571 return Legalized; 1572 } 1573 1574 // Do a shift in the source type. 1575 LLT ShiftTy = SrcTy; 1576 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1577 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1578 ShiftTy = WideTy; 1579 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1580 return UnableToLegalize; 1581 1582 auto LShr = MIRBuilder.buildLShr( 1583 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1584 MIRBuilder.buildTrunc(DstReg, LShr); 1585 MI.eraseFromParent(); 1586 return Legalized; 1587 } 1588 1589 if (SrcTy.isScalar()) { 1590 Observer.changingInstr(MI); 1591 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1592 Observer.changedInstr(MI); 1593 return Legalized; 1594 } 1595 1596 if (!SrcTy.isVector()) 1597 return UnableToLegalize; 1598 1599 if (DstTy != SrcTy.getElementType()) 1600 return UnableToLegalize; 1601 1602 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1603 return UnableToLegalize; 1604 1605 Observer.changingInstr(MI); 1606 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1607 1608 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1609 Offset); 1610 widenScalarDst(MI, WideTy.getScalarType(), 0); 1611 Observer.changedInstr(MI); 1612 return Legalized; 1613 } 1614 1615 LegalizerHelper::LegalizeResult 1616 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1617 LLT WideTy) { 1618 if (TypeIdx != 0) 1619 return UnableToLegalize; 1620 Observer.changingInstr(MI); 1621 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1622 widenScalarDst(MI, WideTy); 1623 Observer.changedInstr(MI); 1624 return Legalized; 1625 } 1626 1627 LegalizerHelper::LegalizeResult 1628 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1629 MIRBuilder.setInstr(MI); 1630 1631 switch (MI.getOpcode()) { 1632 default: 1633 return UnableToLegalize; 1634 case TargetOpcode::G_EXTRACT: 1635 return widenScalarExtract(MI, TypeIdx, WideTy); 1636 case TargetOpcode::G_INSERT: 1637 return widenScalarInsert(MI, TypeIdx, WideTy); 1638 case TargetOpcode::G_MERGE_VALUES: 1639 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1640 case TargetOpcode::G_UNMERGE_VALUES: 1641 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1642 case TargetOpcode::G_UADDO: 1643 case TargetOpcode::G_USUBO: { 1644 if (TypeIdx == 1) 1645 return UnableToLegalize; // TODO 1646 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1647 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1648 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1649 ? TargetOpcode::G_ADD 1650 : TargetOpcode::G_SUB; 1651 // Do the arithmetic in the larger type. 1652 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1653 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1654 APInt Mask = 1655 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1656 auto AndOp = MIRBuilder.buildAnd( 1657 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1658 // There is no overflow if the AndOp is the same as NewOp. 1659 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1660 // Now trunc the NewOp to the original result. 1661 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1662 MI.eraseFromParent(); 1663 return Legalized; 1664 } 1665 case TargetOpcode::G_CTTZ: 1666 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1667 case TargetOpcode::G_CTLZ: 1668 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1669 case TargetOpcode::G_CTPOP: { 1670 if (TypeIdx == 0) { 1671 Observer.changingInstr(MI); 1672 widenScalarDst(MI, WideTy, 0); 1673 Observer.changedInstr(MI); 1674 return Legalized; 1675 } 1676 1677 Register SrcReg = MI.getOperand(1).getReg(); 1678 1679 // First ZEXT the input. 1680 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1681 LLT CurTy = MRI.getType(SrcReg); 1682 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1683 // The count is the same in the larger type except if the original 1684 // value was zero. This can be handled by setting the bit just off 1685 // the top of the original type. 1686 auto TopBit = 1687 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1688 MIBSrc = MIRBuilder.buildOr( 1689 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1690 } 1691 1692 // Perform the operation at the larger size. 1693 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1694 // This is already the correct result for CTPOP and CTTZs 1695 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1696 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1697 // The correct result is NewOp - (Difference in widety and current ty). 1698 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1699 MIBNewOp = MIRBuilder.buildSub( 1700 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1701 } 1702 1703 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1704 MI.eraseFromParent(); 1705 return Legalized; 1706 } 1707 case TargetOpcode::G_BSWAP: { 1708 Observer.changingInstr(MI); 1709 Register DstReg = MI.getOperand(0).getReg(); 1710 1711 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1712 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1713 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1714 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1715 1716 MI.getOperand(0).setReg(DstExt); 1717 1718 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1719 1720 LLT Ty = MRI.getType(DstReg); 1721 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1722 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1723 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1724 1725 MIRBuilder.buildTrunc(DstReg, ShrReg); 1726 Observer.changedInstr(MI); 1727 return Legalized; 1728 } 1729 case TargetOpcode::G_BITREVERSE: { 1730 Observer.changingInstr(MI); 1731 1732 Register DstReg = MI.getOperand(0).getReg(); 1733 LLT Ty = MRI.getType(DstReg); 1734 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1735 1736 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1737 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1738 MI.getOperand(0).setReg(DstExt); 1739 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1740 1741 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1742 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1743 MIRBuilder.buildTrunc(DstReg, Shift); 1744 Observer.changedInstr(MI); 1745 return Legalized; 1746 } 1747 case TargetOpcode::G_ADD: 1748 case TargetOpcode::G_AND: 1749 case TargetOpcode::G_MUL: 1750 case TargetOpcode::G_OR: 1751 case TargetOpcode::G_XOR: 1752 case TargetOpcode::G_SUB: 1753 // Perform operation at larger width (any extension is fines here, high bits 1754 // don't affect the result) and then truncate the result back to the 1755 // original type. 1756 Observer.changingInstr(MI); 1757 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1758 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1759 widenScalarDst(MI, WideTy); 1760 Observer.changedInstr(MI); 1761 return Legalized; 1762 1763 case TargetOpcode::G_SHL: 1764 Observer.changingInstr(MI); 1765 1766 if (TypeIdx == 0) { 1767 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1768 widenScalarDst(MI, WideTy); 1769 } else { 1770 assert(TypeIdx == 1); 1771 // The "number of bits to shift" operand must preserve its value as an 1772 // unsigned integer: 1773 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1774 } 1775 1776 Observer.changedInstr(MI); 1777 return Legalized; 1778 1779 case TargetOpcode::G_SDIV: 1780 case TargetOpcode::G_SREM: 1781 case TargetOpcode::G_SMIN: 1782 case TargetOpcode::G_SMAX: 1783 Observer.changingInstr(MI); 1784 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1785 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1786 widenScalarDst(MI, WideTy); 1787 Observer.changedInstr(MI); 1788 return Legalized; 1789 1790 case TargetOpcode::G_ASHR: 1791 case TargetOpcode::G_LSHR: 1792 Observer.changingInstr(MI); 1793 1794 if (TypeIdx == 0) { 1795 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1796 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1797 1798 widenScalarSrc(MI, WideTy, 1, CvtOp); 1799 widenScalarDst(MI, WideTy); 1800 } else { 1801 assert(TypeIdx == 1); 1802 // The "number of bits to shift" operand must preserve its value as an 1803 // unsigned integer: 1804 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1805 } 1806 1807 Observer.changedInstr(MI); 1808 return Legalized; 1809 case TargetOpcode::G_UDIV: 1810 case TargetOpcode::G_UREM: 1811 case TargetOpcode::G_UMIN: 1812 case TargetOpcode::G_UMAX: 1813 Observer.changingInstr(MI); 1814 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1815 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1816 widenScalarDst(MI, WideTy); 1817 Observer.changedInstr(MI); 1818 return Legalized; 1819 1820 case TargetOpcode::G_SELECT: 1821 Observer.changingInstr(MI); 1822 if (TypeIdx == 0) { 1823 // Perform operation at larger width (any extension is fine here, high 1824 // bits don't affect the result) and then truncate the result back to the 1825 // original type. 1826 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1827 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1828 widenScalarDst(MI, WideTy); 1829 } else { 1830 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1831 // Explicit extension is required here since high bits affect the result. 1832 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1833 } 1834 Observer.changedInstr(MI); 1835 return Legalized; 1836 1837 case TargetOpcode::G_FPTOSI: 1838 case TargetOpcode::G_FPTOUI: 1839 Observer.changingInstr(MI); 1840 1841 if (TypeIdx == 0) 1842 widenScalarDst(MI, WideTy); 1843 else 1844 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1845 1846 Observer.changedInstr(MI); 1847 return Legalized; 1848 case TargetOpcode::G_SITOFP: 1849 if (TypeIdx != 1) 1850 return UnableToLegalize; 1851 Observer.changingInstr(MI); 1852 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1853 Observer.changedInstr(MI); 1854 return Legalized; 1855 1856 case TargetOpcode::G_UITOFP: 1857 if (TypeIdx != 1) 1858 return UnableToLegalize; 1859 Observer.changingInstr(MI); 1860 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1861 Observer.changedInstr(MI); 1862 return Legalized; 1863 1864 case TargetOpcode::G_LOAD: 1865 case TargetOpcode::G_SEXTLOAD: 1866 case TargetOpcode::G_ZEXTLOAD: 1867 Observer.changingInstr(MI); 1868 widenScalarDst(MI, WideTy); 1869 Observer.changedInstr(MI); 1870 return Legalized; 1871 1872 case TargetOpcode::G_STORE: { 1873 if (TypeIdx != 0) 1874 return UnableToLegalize; 1875 1876 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1877 if (!isPowerOf2_32(Ty.getSizeInBits())) 1878 return UnableToLegalize; 1879 1880 Observer.changingInstr(MI); 1881 1882 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1883 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1884 widenScalarSrc(MI, WideTy, 0, ExtType); 1885 1886 Observer.changedInstr(MI); 1887 return Legalized; 1888 } 1889 case TargetOpcode::G_CONSTANT: { 1890 MachineOperand &SrcMO = MI.getOperand(1); 1891 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1892 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1893 MRI.getType(MI.getOperand(0).getReg())); 1894 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1895 ExtOpc == TargetOpcode::G_ANYEXT) && 1896 "Illegal Extend"); 1897 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1898 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1899 ? SrcVal.sext(WideTy.getSizeInBits()) 1900 : SrcVal.zext(WideTy.getSizeInBits()); 1901 Observer.changingInstr(MI); 1902 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1903 1904 widenScalarDst(MI, WideTy); 1905 Observer.changedInstr(MI); 1906 return Legalized; 1907 } 1908 case TargetOpcode::G_FCONSTANT: { 1909 MachineOperand &SrcMO = MI.getOperand(1); 1910 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1911 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1912 bool LosesInfo; 1913 switch (WideTy.getSizeInBits()) { 1914 case 32: 1915 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1916 &LosesInfo); 1917 break; 1918 case 64: 1919 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1920 &LosesInfo); 1921 break; 1922 default: 1923 return UnableToLegalize; 1924 } 1925 1926 assert(!LosesInfo && "extend should always be lossless"); 1927 1928 Observer.changingInstr(MI); 1929 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1930 1931 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1932 Observer.changedInstr(MI); 1933 return Legalized; 1934 } 1935 case TargetOpcode::G_IMPLICIT_DEF: { 1936 Observer.changingInstr(MI); 1937 widenScalarDst(MI, WideTy); 1938 Observer.changedInstr(MI); 1939 return Legalized; 1940 } 1941 case TargetOpcode::G_BRCOND: 1942 Observer.changingInstr(MI); 1943 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1944 Observer.changedInstr(MI); 1945 return Legalized; 1946 1947 case TargetOpcode::G_FCMP: 1948 Observer.changingInstr(MI); 1949 if (TypeIdx == 0) 1950 widenScalarDst(MI, WideTy); 1951 else { 1952 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1953 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1954 } 1955 Observer.changedInstr(MI); 1956 return Legalized; 1957 1958 case TargetOpcode::G_ICMP: 1959 Observer.changingInstr(MI); 1960 if (TypeIdx == 0) 1961 widenScalarDst(MI, WideTy); 1962 else { 1963 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1964 MI.getOperand(1).getPredicate())) 1965 ? TargetOpcode::G_SEXT 1966 : TargetOpcode::G_ZEXT; 1967 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1968 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1969 } 1970 Observer.changedInstr(MI); 1971 return Legalized; 1972 1973 case TargetOpcode::G_PTR_ADD: 1974 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1975 Observer.changingInstr(MI); 1976 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1977 Observer.changedInstr(MI); 1978 return Legalized; 1979 1980 case TargetOpcode::G_PHI: { 1981 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1982 1983 Observer.changingInstr(MI); 1984 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1985 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1986 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1987 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1988 } 1989 1990 MachineBasicBlock &MBB = *MI.getParent(); 1991 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1992 widenScalarDst(MI, WideTy); 1993 Observer.changedInstr(MI); 1994 return Legalized; 1995 } 1996 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1997 if (TypeIdx == 0) { 1998 Register VecReg = MI.getOperand(1).getReg(); 1999 LLT VecTy = MRI.getType(VecReg); 2000 Observer.changingInstr(MI); 2001 2002 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2003 WideTy.getSizeInBits()), 2004 1, TargetOpcode::G_SEXT); 2005 2006 widenScalarDst(MI, WideTy, 0); 2007 Observer.changedInstr(MI); 2008 return Legalized; 2009 } 2010 2011 if (TypeIdx != 2) 2012 return UnableToLegalize; 2013 Observer.changingInstr(MI); 2014 // TODO: Probably should be zext 2015 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2016 Observer.changedInstr(MI); 2017 return Legalized; 2018 } 2019 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2020 if (TypeIdx == 1) { 2021 Observer.changingInstr(MI); 2022 2023 Register VecReg = MI.getOperand(1).getReg(); 2024 LLT VecTy = MRI.getType(VecReg); 2025 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2026 2027 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2028 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2029 widenScalarDst(MI, WideVecTy, 0); 2030 Observer.changedInstr(MI); 2031 return Legalized; 2032 } 2033 2034 if (TypeIdx == 2) { 2035 Observer.changingInstr(MI); 2036 // TODO: Probably should be zext 2037 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2038 Observer.changedInstr(MI); 2039 } 2040 2041 return Legalized; 2042 } 2043 case TargetOpcode::G_FADD: 2044 case TargetOpcode::G_FMUL: 2045 case TargetOpcode::G_FSUB: 2046 case TargetOpcode::G_FMA: 2047 case TargetOpcode::G_FMAD: 2048 case TargetOpcode::G_FNEG: 2049 case TargetOpcode::G_FABS: 2050 case TargetOpcode::G_FCANONICALIZE: 2051 case TargetOpcode::G_FMINNUM: 2052 case TargetOpcode::G_FMAXNUM: 2053 case TargetOpcode::G_FMINNUM_IEEE: 2054 case TargetOpcode::G_FMAXNUM_IEEE: 2055 case TargetOpcode::G_FMINIMUM: 2056 case TargetOpcode::G_FMAXIMUM: 2057 case TargetOpcode::G_FDIV: 2058 case TargetOpcode::G_FREM: 2059 case TargetOpcode::G_FCEIL: 2060 case TargetOpcode::G_FFLOOR: 2061 case TargetOpcode::G_FCOS: 2062 case TargetOpcode::G_FSIN: 2063 case TargetOpcode::G_FLOG10: 2064 case TargetOpcode::G_FLOG: 2065 case TargetOpcode::G_FLOG2: 2066 case TargetOpcode::G_FRINT: 2067 case TargetOpcode::G_FNEARBYINT: 2068 case TargetOpcode::G_FSQRT: 2069 case TargetOpcode::G_FEXP: 2070 case TargetOpcode::G_FEXP2: 2071 case TargetOpcode::G_FPOW: 2072 case TargetOpcode::G_INTRINSIC_TRUNC: 2073 case TargetOpcode::G_INTRINSIC_ROUND: 2074 assert(TypeIdx == 0); 2075 Observer.changingInstr(MI); 2076 2077 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2078 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2079 2080 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2081 Observer.changedInstr(MI); 2082 return Legalized; 2083 case TargetOpcode::G_INTTOPTR: 2084 if (TypeIdx != 1) 2085 return UnableToLegalize; 2086 2087 Observer.changingInstr(MI); 2088 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2089 Observer.changedInstr(MI); 2090 return Legalized; 2091 case TargetOpcode::G_PTRTOINT: 2092 if (TypeIdx != 0) 2093 return UnableToLegalize; 2094 2095 Observer.changingInstr(MI); 2096 widenScalarDst(MI, WideTy, 0); 2097 Observer.changedInstr(MI); 2098 return Legalized; 2099 case TargetOpcode::G_BUILD_VECTOR: { 2100 Observer.changingInstr(MI); 2101 2102 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2103 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2104 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2105 2106 // Avoid changing the result vector type if the source element type was 2107 // requested. 2108 if (TypeIdx == 1) { 2109 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2110 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2111 } else { 2112 widenScalarDst(MI, WideTy, 0); 2113 } 2114 2115 Observer.changedInstr(MI); 2116 return Legalized; 2117 } 2118 case TargetOpcode::G_SEXT_INREG: 2119 if (TypeIdx != 0) 2120 return UnableToLegalize; 2121 2122 Observer.changingInstr(MI); 2123 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2124 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2125 Observer.changedInstr(MI); 2126 return Legalized; 2127 } 2128 } 2129 2130 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2131 MachineIRBuilder &B, Register Src, LLT Ty) { 2132 auto Unmerge = B.buildUnmerge(Ty, Src); 2133 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2134 Pieces.push_back(Unmerge.getReg(I)); 2135 } 2136 2137 LegalizerHelper::LegalizeResult 2138 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2139 Register Dst = MI.getOperand(0).getReg(); 2140 Register Src = MI.getOperand(1).getReg(); 2141 LLT DstTy = MRI.getType(Dst); 2142 LLT SrcTy = MRI.getType(Src); 2143 2144 if (SrcTy.isVector() && !DstTy.isVector()) { 2145 SmallVector<Register, 8> SrcRegs; 2146 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2147 MIRBuilder.buildMerge(Dst, SrcRegs); 2148 MI.eraseFromParent(); 2149 return Legalized; 2150 } 2151 2152 if (DstTy.isVector() && !SrcTy.isVector()) { 2153 SmallVector<Register, 8> SrcRegs; 2154 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2155 MIRBuilder.buildMerge(Dst, SrcRegs); 2156 MI.eraseFromParent(); 2157 return Legalized; 2158 } 2159 2160 return UnableToLegalize; 2161 } 2162 2163 LegalizerHelper::LegalizeResult 2164 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2165 using namespace TargetOpcode; 2166 MIRBuilder.setInstr(MI); 2167 2168 switch(MI.getOpcode()) { 2169 default: 2170 return UnableToLegalize; 2171 case TargetOpcode::G_BITCAST: 2172 return lowerBitcast(MI); 2173 case TargetOpcode::G_SREM: 2174 case TargetOpcode::G_UREM: { 2175 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 2176 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {QuotReg}, 2177 {MI.getOperand(1), MI.getOperand(2)}); 2178 2179 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 2180 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2)); 2181 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), ProdReg); 2182 MI.eraseFromParent(); 2183 return Legalized; 2184 } 2185 case TargetOpcode::G_SADDO: 2186 case TargetOpcode::G_SSUBO: 2187 return lowerSADDO_SSUBO(MI); 2188 case TargetOpcode::G_SMULO: 2189 case TargetOpcode::G_UMULO: { 2190 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2191 // result. 2192 Register Res = MI.getOperand(0).getReg(); 2193 Register Overflow = MI.getOperand(1).getReg(); 2194 Register LHS = MI.getOperand(2).getReg(); 2195 Register RHS = MI.getOperand(3).getReg(); 2196 2197 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2198 ? TargetOpcode::G_SMULH 2199 : TargetOpcode::G_UMULH; 2200 2201 Observer.changingInstr(MI); 2202 const auto &TII = MIRBuilder.getTII(); 2203 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2204 MI.RemoveOperand(1); 2205 Observer.changedInstr(MI); 2206 2207 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2208 2209 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2210 2211 Register Zero = MRI.createGenericVirtualRegister(Ty); 2212 MIRBuilder.buildConstant(Zero, 0); 2213 2214 // For *signed* multiply, overflow is detected by checking: 2215 // (hi != (lo >> bitwidth-1)) 2216 if (Opcode == TargetOpcode::G_SMULH) { 2217 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2218 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2219 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2220 } else { 2221 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2222 } 2223 return Legalized; 2224 } 2225 case TargetOpcode::G_FNEG: { 2226 // TODO: Handle vector types once we are able to 2227 // represent them. 2228 if (Ty.isVector()) 2229 return UnableToLegalize; 2230 Register Res = MI.getOperand(0).getReg(); 2231 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2232 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2233 if (!ZeroTy) 2234 return UnableToLegalize; 2235 ConstantFP &ZeroForNegation = 2236 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2237 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2238 Register SubByReg = MI.getOperand(1).getReg(); 2239 Register ZeroReg = Zero.getReg(0); 2240 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2241 MI.eraseFromParent(); 2242 return Legalized; 2243 } 2244 case TargetOpcode::G_FSUB: { 2245 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2246 // First, check if G_FNEG is marked as Lower. If so, we may 2247 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2248 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2249 return UnableToLegalize; 2250 Register Res = MI.getOperand(0).getReg(); 2251 Register LHS = MI.getOperand(1).getReg(); 2252 Register RHS = MI.getOperand(2).getReg(); 2253 Register Neg = MRI.createGenericVirtualRegister(Ty); 2254 MIRBuilder.buildFNeg(Neg, RHS); 2255 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2256 MI.eraseFromParent(); 2257 return Legalized; 2258 } 2259 case TargetOpcode::G_FMAD: 2260 return lowerFMad(MI); 2261 case TargetOpcode::G_INTRINSIC_ROUND: 2262 return lowerIntrinsicRound(MI); 2263 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2264 Register OldValRes = MI.getOperand(0).getReg(); 2265 Register SuccessRes = MI.getOperand(1).getReg(); 2266 Register Addr = MI.getOperand(2).getReg(); 2267 Register CmpVal = MI.getOperand(3).getReg(); 2268 Register NewVal = MI.getOperand(4).getReg(); 2269 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2270 **MI.memoperands_begin()); 2271 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2272 MI.eraseFromParent(); 2273 return Legalized; 2274 } 2275 case TargetOpcode::G_LOAD: 2276 case TargetOpcode::G_SEXTLOAD: 2277 case TargetOpcode::G_ZEXTLOAD: { 2278 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2279 Register DstReg = MI.getOperand(0).getReg(); 2280 Register PtrReg = MI.getOperand(1).getReg(); 2281 LLT DstTy = MRI.getType(DstReg); 2282 auto &MMO = **MI.memoperands_begin(); 2283 2284 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2285 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2286 // This load needs splitting into power of 2 sized loads. 2287 if (DstTy.isVector()) 2288 return UnableToLegalize; 2289 if (isPowerOf2_32(DstTy.getSizeInBits())) 2290 return UnableToLegalize; // Don't know what we're being asked to do. 2291 2292 // Our strategy here is to generate anyextending loads for the smaller 2293 // types up to next power-2 result type, and then combine the two larger 2294 // result values together, before truncating back down to the non-pow-2 2295 // type. 2296 // E.g. v1 = i24 load => 2297 // v2 = i32 zextload (2 byte) 2298 // v3 = i32 load (1 byte) 2299 // v4 = i32 shl v3, 16 2300 // v5 = i32 or v4, v2 2301 // v1 = i24 trunc v5 2302 // By doing this we generate the correct truncate which should get 2303 // combined away as an artifact with a matching extend. 2304 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2305 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2306 2307 MachineFunction &MF = MIRBuilder.getMF(); 2308 MachineMemOperand *LargeMMO = 2309 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2310 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2311 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2312 2313 LLT PtrTy = MRI.getType(PtrReg); 2314 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2315 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2316 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2317 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2318 auto LargeLoad = MIRBuilder.buildLoadInstr( 2319 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2320 2321 auto OffsetCst = MIRBuilder.buildConstant( 2322 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2323 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2324 auto SmallPtr = 2325 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2326 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2327 *SmallMMO); 2328 2329 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2330 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2331 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2332 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2333 MI.eraseFromParent(); 2334 return Legalized; 2335 } 2336 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2337 MI.eraseFromParent(); 2338 return Legalized; 2339 } 2340 2341 if (DstTy.isScalar()) { 2342 Register TmpReg = 2343 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2344 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2345 switch (MI.getOpcode()) { 2346 default: 2347 llvm_unreachable("Unexpected opcode"); 2348 case TargetOpcode::G_LOAD: 2349 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2350 break; 2351 case TargetOpcode::G_SEXTLOAD: 2352 MIRBuilder.buildSExt(DstReg, TmpReg); 2353 break; 2354 case TargetOpcode::G_ZEXTLOAD: 2355 MIRBuilder.buildZExt(DstReg, TmpReg); 2356 break; 2357 } 2358 MI.eraseFromParent(); 2359 return Legalized; 2360 } 2361 2362 return UnableToLegalize; 2363 } 2364 case TargetOpcode::G_STORE: { 2365 // Lower a non-power of 2 store into multiple pow-2 stores. 2366 // E.g. split an i24 store into an i16 store + i8 store. 2367 // We do this by first extending the stored value to the next largest power 2368 // of 2 type, and then using truncating stores to store the components. 2369 // By doing this, likewise with G_LOAD, generate an extend that can be 2370 // artifact-combined away instead of leaving behind extracts. 2371 Register SrcReg = MI.getOperand(0).getReg(); 2372 Register PtrReg = MI.getOperand(1).getReg(); 2373 LLT SrcTy = MRI.getType(SrcReg); 2374 MachineMemOperand &MMO = **MI.memoperands_begin(); 2375 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2376 return UnableToLegalize; 2377 if (SrcTy.isVector()) 2378 return UnableToLegalize; 2379 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2380 return UnableToLegalize; // Don't know what we're being asked to do. 2381 2382 // Extend to the next pow-2. 2383 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2384 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2385 2386 // Obtain the smaller value by shifting away the larger value. 2387 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2388 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2389 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2390 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2391 2392 // Generate the PtrAdd and truncating stores. 2393 LLT PtrTy = MRI.getType(PtrReg); 2394 auto OffsetCst = MIRBuilder.buildConstant( 2395 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2396 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2397 auto SmallPtr = 2398 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2399 2400 MachineFunction &MF = MIRBuilder.getMF(); 2401 MachineMemOperand *LargeMMO = 2402 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2403 MachineMemOperand *SmallMMO = 2404 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2405 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2406 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2407 MI.eraseFromParent(); 2408 return Legalized; 2409 } 2410 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2411 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2412 case TargetOpcode::G_CTLZ: 2413 case TargetOpcode::G_CTTZ: 2414 case TargetOpcode::G_CTPOP: 2415 return lowerBitCount(MI, TypeIdx, Ty); 2416 case G_UADDO: { 2417 Register Res = MI.getOperand(0).getReg(); 2418 Register CarryOut = MI.getOperand(1).getReg(); 2419 Register LHS = MI.getOperand(2).getReg(); 2420 Register RHS = MI.getOperand(3).getReg(); 2421 2422 MIRBuilder.buildAdd(Res, LHS, RHS); 2423 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2424 2425 MI.eraseFromParent(); 2426 return Legalized; 2427 } 2428 case G_UADDE: { 2429 Register Res = MI.getOperand(0).getReg(); 2430 Register CarryOut = MI.getOperand(1).getReg(); 2431 Register LHS = MI.getOperand(2).getReg(); 2432 Register RHS = MI.getOperand(3).getReg(); 2433 Register CarryIn = MI.getOperand(4).getReg(); 2434 2435 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2436 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 2437 2438 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 2439 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 2440 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2441 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2442 2443 MI.eraseFromParent(); 2444 return Legalized; 2445 } 2446 case G_USUBO: { 2447 Register Res = MI.getOperand(0).getReg(); 2448 Register BorrowOut = MI.getOperand(1).getReg(); 2449 Register LHS = MI.getOperand(2).getReg(); 2450 Register RHS = MI.getOperand(3).getReg(); 2451 2452 MIRBuilder.buildSub(Res, LHS, RHS); 2453 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2454 2455 MI.eraseFromParent(); 2456 return Legalized; 2457 } 2458 case G_USUBE: { 2459 Register Res = MI.getOperand(0).getReg(); 2460 Register BorrowOut = MI.getOperand(1).getReg(); 2461 Register LHS = MI.getOperand(2).getReg(); 2462 Register RHS = MI.getOperand(3).getReg(); 2463 Register BorrowIn = MI.getOperand(4).getReg(); 2464 2465 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2466 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 2467 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2468 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2469 2470 MIRBuilder.buildSub(TmpRes, LHS, RHS); 2471 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 2472 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2473 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 2474 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 2475 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2476 2477 MI.eraseFromParent(); 2478 return Legalized; 2479 } 2480 case G_UITOFP: 2481 return lowerUITOFP(MI, TypeIdx, Ty); 2482 case G_SITOFP: 2483 return lowerSITOFP(MI, TypeIdx, Ty); 2484 case G_FPTOUI: 2485 return lowerFPTOUI(MI, TypeIdx, Ty); 2486 case G_FPTOSI: 2487 return lowerFPTOSI(MI); 2488 case G_SMIN: 2489 case G_SMAX: 2490 case G_UMIN: 2491 case G_UMAX: 2492 return lowerMinMax(MI, TypeIdx, Ty); 2493 case G_FCOPYSIGN: 2494 return lowerFCopySign(MI, TypeIdx, Ty); 2495 case G_FMINNUM: 2496 case G_FMAXNUM: 2497 return lowerFMinNumMaxNum(MI); 2498 case G_UNMERGE_VALUES: 2499 return lowerUnmergeValues(MI); 2500 case TargetOpcode::G_SEXT_INREG: { 2501 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2502 int64_t SizeInBits = MI.getOperand(2).getImm(); 2503 2504 Register DstReg = MI.getOperand(0).getReg(); 2505 Register SrcReg = MI.getOperand(1).getReg(); 2506 LLT DstTy = MRI.getType(DstReg); 2507 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2508 2509 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2510 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2511 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2512 MI.eraseFromParent(); 2513 return Legalized; 2514 } 2515 case G_SHUFFLE_VECTOR: 2516 return lowerShuffleVector(MI); 2517 case G_DYN_STACKALLOC: 2518 return lowerDynStackAlloc(MI); 2519 case G_EXTRACT: 2520 return lowerExtract(MI); 2521 case G_INSERT: 2522 return lowerInsert(MI); 2523 case G_BSWAP: 2524 return lowerBswap(MI); 2525 case G_BITREVERSE: 2526 return lowerBitreverse(MI); 2527 case G_READ_REGISTER: 2528 case G_WRITE_REGISTER: 2529 return lowerReadWriteRegister(MI); 2530 } 2531 } 2532 2533 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2534 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2535 SmallVector<Register, 2> DstRegs; 2536 2537 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2538 Register DstReg = MI.getOperand(0).getReg(); 2539 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2540 int NumParts = Size / NarrowSize; 2541 // FIXME: Don't know how to handle the situation where the small vectors 2542 // aren't all the same size yet. 2543 if (Size % NarrowSize != 0) 2544 return UnableToLegalize; 2545 2546 for (int i = 0; i < NumParts; ++i) { 2547 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2548 MIRBuilder.buildUndef(TmpReg); 2549 DstRegs.push_back(TmpReg); 2550 } 2551 2552 if (NarrowTy.isVector()) 2553 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2554 else 2555 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2556 2557 MI.eraseFromParent(); 2558 return Legalized; 2559 } 2560 2561 LegalizerHelper::LegalizeResult 2562 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2563 LLT NarrowTy) { 2564 const unsigned Opc = MI.getOpcode(); 2565 const unsigned NumOps = MI.getNumOperands() - 1; 2566 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2567 const Register DstReg = MI.getOperand(0).getReg(); 2568 const unsigned Flags = MI.getFlags(); 2569 const LLT DstTy = MRI.getType(DstReg); 2570 const unsigned Size = DstTy.getSizeInBits(); 2571 const int NumParts = Size / NarrowSize; 2572 const LLT EltTy = DstTy.getElementType(); 2573 const unsigned EltSize = EltTy.getSizeInBits(); 2574 const unsigned BitsForNumParts = NarrowSize * NumParts; 2575 2576 // Check if we have any leftovers. If we do, then only handle the case where 2577 // the leftover is one element. 2578 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 2579 return UnableToLegalize; 2580 2581 if (BitsForNumParts != Size) { 2582 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 2583 MIRBuilder.buildUndef(AccumDstReg); 2584 2585 // Handle the pieces which evenly divide into the requested type with 2586 // extract/op/insert sequence. 2587 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 2588 SmallVector<SrcOp, 4> SrcOps; 2589 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2590 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 2591 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), Offset); 2592 SrcOps.push_back(PartOpReg); 2593 } 2594 2595 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 2596 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2597 2598 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 2599 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 2600 AccumDstReg = PartInsertReg; 2601 } 2602 2603 // Handle the remaining element sized leftover piece. 2604 SmallVector<SrcOp, 4> SrcOps; 2605 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2606 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 2607 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), BitsForNumParts); 2608 SrcOps.push_back(PartOpReg); 2609 } 2610 2611 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 2612 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2613 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 2614 MI.eraseFromParent(); 2615 2616 return Legalized; 2617 } 2618 2619 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2620 2621 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 2622 2623 if (NumOps >= 2) 2624 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 2625 2626 if (NumOps >= 3) 2627 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 2628 2629 for (int i = 0; i < NumParts; ++i) { 2630 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2631 2632 if (NumOps == 1) 2633 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 2634 else if (NumOps == 2) { 2635 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 2636 } else if (NumOps == 3) { 2637 MIRBuilder.buildInstr(Opc, {DstReg}, 2638 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 2639 } 2640 2641 DstRegs.push_back(DstReg); 2642 } 2643 2644 if (NarrowTy.isVector()) 2645 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2646 else 2647 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2648 2649 MI.eraseFromParent(); 2650 return Legalized; 2651 } 2652 2653 // Handle splitting vector operations which need to have the same number of 2654 // elements in each type index, but each type index may have a different element 2655 // type. 2656 // 2657 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2658 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2659 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2660 // 2661 // Also handles some irregular breakdown cases, e.g. 2662 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2663 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2664 // s64 = G_SHL s64, s32 2665 LegalizerHelper::LegalizeResult 2666 LegalizerHelper::fewerElementsVectorMultiEltType( 2667 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2668 if (TypeIdx != 0) 2669 return UnableToLegalize; 2670 2671 const LLT NarrowTy0 = NarrowTyArg; 2672 const unsigned NewNumElts = 2673 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2674 2675 const Register DstReg = MI.getOperand(0).getReg(); 2676 LLT DstTy = MRI.getType(DstReg); 2677 LLT LeftoverTy0; 2678 2679 // All of the operands need to have the same number of elements, so if we can 2680 // determine a type breakdown for the result type, we can for all of the 2681 // source types. 2682 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2683 if (NumParts < 0) 2684 return UnableToLegalize; 2685 2686 SmallVector<MachineInstrBuilder, 4> NewInsts; 2687 2688 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2689 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2690 2691 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2692 LLT LeftoverTy; 2693 Register SrcReg = MI.getOperand(I).getReg(); 2694 LLT SrcTyI = MRI.getType(SrcReg); 2695 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2696 LLT LeftoverTyI; 2697 2698 // Split this operand into the requested typed registers, and any leftover 2699 // required to reproduce the original type. 2700 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2701 LeftoverRegs)) 2702 return UnableToLegalize; 2703 2704 if (I == 1) { 2705 // For the first operand, create an instruction for each part and setup 2706 // the result. 2707 for (Register PartReg : PartRegs) { 2708 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2709 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2710 .addDef(PartDstReg) 2711 .addUse(PartReg)); 2712 DstRegs.push_back(PartDstReg); 2713 } 2714 2715 for (Register LeftoverReg : LeftoverRegs) { 2716 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2717 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2718 .addDef(PartDstReg) 2719 .addUse(LeftoverReg)); 2720 LeftoverDstRegs.push_back(PartDstReg); 2721 } 2722 } else { 2723 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2724 2725 // Add the newly created operand splits to the existing instructions. The 2726 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2727 // pieces. 2728 unsigned InstCount = 0; 2729 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2730 NewInsts[InstCount++].addUse(PartRegs[J]); 2731 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2732 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2733 } 2734 2735 PartRegs.clear(); 2736 LeftoverRegs.clear(); 2737 } 2738 2739 // Insert the newly built operations and rebuild the result register. 2740 for (auto &MIB : NewInsts) 2741 MIRBuilder.insertInstr(MIB); 2742 2743 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2744 2745 MI.eraseFromParent(); 2746 return Legalized; 2747 } 2748 2749 LegalizerHelper::LegalizeResult 2750 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2751 LLT NarrowTy) { 2752 if (TypeIdx != 0) 2753 return UnableToLegalize; 2754 2755 Register DstReg = MI.getOperand(0).getReg(); 2756 Register SrcReg = MI.getOperand(1).getReg(); 2757 LLT DstTy = MRI.getType(DstReg); 2758 LLT SrcTy = MRI.getType(SrcReg); 2759 2760 LLT NarrowTy0 = NarrowTy; 2761 LLT NarrowTy1; 2762 unsigned NumParts; 2763 2764 if (NarrowTy.isVector()) { 2765 // Uneven breakdown not handled. 2766 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2767 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2768 return UnableToLegalize; 2769 2770 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2771 } else { 2772 NumParts = DstTy.getNumElements(); 2773 NarrowTy1 = SrcTy.getElementType(); 2774 } 2775 2776 SmallVector<Register, 4> SrcRegs, DstRegs; 2777 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2778 2779 for (unsigned I = 0; I < NumParts; ++I) { 2780 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2781 MachineInstr *NewInst = 2782 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2783 2784 NewInst->setFlags(MI.getFlags()); 2785 DstRegs.push_back(DstReg); 2786 } 2787 2788 if (NarrowTy.isVector()) 2789 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2790 else 2791 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2792 2793 MI.eraseFromParent(); 2794 return Legalized; 2795 } 2796 2797 LegalizerHelper::LegalizeResult 2798 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2799 LLT NarrowTy) { 2800 Register DstReg = MI.getOperand(0).getReg(); 2801 Register Src0Reg = MI.getOperand(2).getReg(); 2802 LLT DstTy = MRI.getType(DstReg); 2803 LLT SrcTy = MRI.getType(Src0Reg); 2804 2805 unsigned NumParts; 2806 LLT NarrowTy0, NarrowTy1; 2807 2808 if (TypeIdx == 0) { 2809 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2810 unsigned OldElts = DstTy.getNumElements(); 2811 2812 NarrowTy0 = NarrowTy; 2813 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2814 NarrowTy1 = NarrowTy.isVector() ? 2815 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2816 SrcTy.getElementType(); 2817 2818 } else { 2819 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2820 unsigned OldElts = SrcTy.getNumElements(); 2821 2822 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2823 NarrowTy.getNumElements(); 2824 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2825 DstTy.getScalarSizeInBits()); 2826 NarrowTy1 = NarrowTy; 2827 } 2828 2829 // FIXME: Don't know how to handle the situation where the small vectors 2830 // aren't all the same size yet. 2831 if (NarrowTy1.isVector() && 2832 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2833 return UnableToLegalize; 2834 2835 CmpInst::Predicate Pred 2836 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2837 2838 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2839 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2840 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2841 2842 for (unsigned I = 0; I < NumParts; ++I) { 2843 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2844 DstRegs.push_back(DstReg); 2845 2846 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2847 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2848 else { 2849 MachineInstr *NewCmp 2850 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2851 NewCmp->setFlags(MI.getFlags()); 2852 } 2853 } 2854 2855 if (NarrowTy1.isVector()) 2856 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2857 else 2858 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2859 2860 MI.eraseFromParent(); 2861 return Legalized; 2862 } 2863 2864 LegalizerHelper::LegalizeResult 2865 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2866 LLT NarrowTy) { 2867 Register DstReg = MI.getOperand(0).getReg(); 2868 Register CondReg = MI.getOperand(1).getReg(); 2869 2870 unsigned NumParts = 0; 2871 LLT NarrowTy0, NarrowTy1; 2872 2873 LLT DstTy = MRI.getType(DstReg); 2874 LLT CondTy = MRI.getType(CondReg); 2875 unsigned Size = DstTy.getSizeInBits(); 2876 2877 assert(TypeIdx == 0 || CondTy.isVector()); 2878 2879 if (TypeIdx == 0) { 2880 NarrowTy0 = NarrowTy; 2881 NarrowTy1 = CondTy; 2882 2883 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2884 // FIXME: Don't know how to handle the situation where the small vectors 2885 // aren't all the same size yet. 2886 if (Size % NarrowSize != 0) 2887 return UnableToLegalize; 2888 2889 NumParts = Size / NarrowSize; 2890 2891 // Need to break down the condition type 2892 if (CondTy.isVector()) { 2893 if (CondTy.getNumElements() == NumParts) 2894 NarrowTy1 = CondTy.getElementType(); 2895 else 2896 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2897 CondTy.getScalarSizeInBits()); 2898 } 2899 } else { 2900 NumParts = CondTy.getNumElements(); 2901 if (NarrowTy.isVector()) { 2902 // TODO: Handle uneven breakdown. 2903 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2904 return UnableToLegalize; 2905 2906 return UnableToLegalize; 2907 } else { 2908 NarrowTy0 = DstTy.getElementType(); 2909 NarrowTy1 = NarrowTy; 2910 } 2911 } 2912 2913 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2914 if (CondTy.isVector()) 2915 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2916 2917 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2918 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2919 2920 for (unsigned i = 0; i < NumParts; ++i) { 2921 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2922 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2923 Src1Regs[i], Src2Regs[i]); 2924 DstRegs.push_back(DstReg); 2925 } 2926 2927 if (NarrowTy0.isVector()) 2928 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2929 else 2930 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2931 2932 MI.eraseFromParent(); 2933 return Legalized; 2934 } 2935 2936 LegalizerHelper::LegalizeResult 2937 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2938 LLT NarrowTy) { 2939 const Register DstReg = MI.getOperand(0).getReg(); 2940 LLT PhiTy = MRI.getType(DstReg); 2941 LLT LeftoverTy; 2942 2943 // All of the operands need to have the same number of elements, so if we can 2944 // determine a type breakdown for the result type, we can for all of the 2945 // source types. 2946 int NumParts, NumLeftover; 2947 std::tie(NumParts, NumLeftover) 2948 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2949 if (NumParts < 0) 2950 return UnableToLegalize; 2951 2952 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2953 SmallVector<MachineInstrBuilder, 4> NewInsts; 2954 2955 const int TotalNumParts = NumParts + NumLeftover; 2956 2957 // Insert the new phis in the result block first. 2958 for (int I = 0; I != TotalNumParts; ++I) { 2959 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2960 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2961 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2962 .addDef(PartDstReg)); 2963 if (I < NumParts) 2964 DstRegs.push_back(PartDstReg); 2965 else 2966 LeftoverDstRegs.push_back(PartDstReg); 2967 } 2968 2969 MachineBasicBlock *MBB = MI.getParent(); 2970 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2971 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2972 2973 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2974 2975 // Insert code to extract the incoming values in each predecessor block. 2976 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2977 PartRegs.clear(); 2978 LeftoverRegs.clear(); 2979 2980 Register SrcReg = MI.getOperand(I).getReg(); 2981 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2982 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2983 2984 LLT Unused; 2985 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2986 LeftoverRegs)) 2987 return UnableToLegalize; 2988 2989 // Add the newly created operand splits to the existing instructions. The 2990 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2991 // pieces. 2992 for (int J = 0; J != TotalNumParts; ++J) { 2993 MachineInstrBuilder MIB = NewInsts[J]; 2994 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2995 MIB.addMBB(&OpMBB); 2996 } 2997 } 2998 2999 MI.eraseFromParent(); 3000 return Legalized; 3001 } 3002 3003 LegalizerHelper::LegalizeResult 3004 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3005 unsigned TypeIdx, 3006 LLT NarrowTy) { 3007 if (TypeIdx != 1) 3008 return UnableToLegalize; 3009 3010 const int NumDst = MI.getNumOperands() - 1; 3011 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3012 LLT SrcTy = MRI.getType(SrcReg); 3013 3014 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3015 3016 // TODO: Create sequence of extracts. 3017 if (DstTy == NarrowTy) 3018 return UnableToLegalize; 3019 3020 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3021 if (DstTy == GCDTy) { 3022 // This would just be a copy of the same unmerge. 3023 // TODO: Create extracts, pad with undef and create intermediate merges. 3024 return UnableToLegalize; 3025 } 3026 3027 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3028 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3029 const int PartsPerUnmerge = NumDst / NumUnmerge; 3030 3031 for (int I = 0; I != NumUnmerge; ++I) { 3032 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3033 3034 for (int J = 0; J != PartsPerUnmerge; ++J) 3035 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3036 MIB.addUse(Unmerge.getReg(I)); 3037 } 3038 3039 MI.eraseFromParent(); 3040 return Legalized; 3041 } 3042 3043 LegalizerHelper::LegalizeResult 3044 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3045 unsigned TypeIdx, 3046 LLT NarrowTy) { 3047 assert(TypeIdx == 0 && "not a vector type index"); 3048 Register DstReg = MI.getOperand(0).getReg(); 3049 LLT DstTy = MRI.getType(DstReg); 3050 LLT SrcTy = DstTy.getElementType(); 3051 3052 int DstNumElts = DstTy.getNumElements(); 3053 int NarrowNumElts = NarrowTy.getNumElements(); 3054 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3055 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3056 3057 SmallVector<Register, 8> ConcatOps; 3058 SmallVector<Register, 8> SubBuildVector; 3059 3060 Register UndefReg; 3061 if (WidenedDstTy != DstTy) 3062 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3063 3064 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3065 // necessary. 3066 // 3067 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3068 // -> <2 x s16> 3069 // 3070 // %4:_(s16) = G_IMPLICIT_DEF 3071 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3072 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3073 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3074 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3075 for (int I = 0; I != NumConcat; ++I) { 3076 for (int J = 0; J != NarrowNumElts; ++J) { 3077 int SrcIdx = NarrowNumElts * I + J; 3078 3079 if (SrcIdx < DstNumElts) { 3080 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3081 SubBuildVector.push_back(SrcReg); 3082 } else 3083 SubBuildVector.push_back(UndefReg); 3084 } 3085 3086 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3087 ConcatOps.push_back(BuildVec.getReg(0)); 3088 SubBuildVector.clear(); 3089 } 3090 3091 if (DstTy == WidenedDstTy) 3092 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3093 else { 3094 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3095 MIRBuilder.buildExtract(DstReg, Concat, 0); 3096 } 3097 3098 MI.eraseFromParent(); 3099 return Legalized; 3100 } 3101 3102 LegalizerHelper::LegalizeResult 3103 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3104 LLT NarrowTy) { 3105 // FIXME: Don't know how to handle secondary types yet. 3106 if (TypeIdx != 0) 3107 return UnableToLegalize; 3108 3109 MachineMemOperand *MMO = *MI.memoperands_begin(); 3110 3111 // This implementation doesn't work for atomics. Give up instead of doing 3112 // something invalid. 3113 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3114 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3115 return UnableToLegalize; 3116 3117 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3118 Register ValReg = MI.getOperand(0).getReg(); 3119 Register AddrReg = MI.getOperand(1).getReg(); 3120 LLT ValTy = MRI.getType(ValReg); 3121 3122 int NumParts = -1; 3123 int NumLeftover = -1; 3124 LLT LeftoverTy; 3125 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3126 if (IsLoad) { 3127 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3128 } else { 3129 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3130 NarrowLeftoverRegs)) { 3131 NumParts = NarrowRegs.size(); 3132 NumLeftover = NarrowLeftoverRegs.size(); 3133 } 3134 } 3135 3136 if (NumParts == -1) 3137 return UnableToLegalize; 3138 3139 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3140 3141 unsigned TotalSize = ValTy.getSizeInBits(); 3142 3143 // Split the load/store into PartTy sized pieces starting at Offset. If this 3144 // is a load, return the new registers in ValRegs. For a store, each elements 3145 // of ValRegs should be PartTy. Returns the next offset that needs to be 3146 // handled. 3147 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3148 unsigned Offset) -> unsigned { 3149 MachineFunction &MF = MIRBuilder.getMF(); 3150 unsigned PartSize = PartTy.getSizeInBits(); 3151 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3152 Offset += PartSize, ++Idx) { 3153 unsigned ByteSize = PartSize / 8; 3154 unsigned ByteOffset = Offset / 8; 3155 Register NewAddrReg; 3156 3157 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3158 3159 MachineMemOperand *NewMMO = 3160 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3161 3162 if (IsLoad) { 3163 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3164 ValRegs.push_back(Dst); 3165 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3166 } else { 3167 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3168 } 3169 } 3170 3171 return Offset; 3172 }; 3173 3174 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3175 3176 // Handle the rest of the register if this isn't an even type breakdown. 3177 if (LeftoverTy.isValid()) 3178 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3179 3180 if (IsLoad) { 3181 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3182 LeftoverTy, NarrowLeftoverRegs); 3183 } 3184 3185 MI.eraseFromParent(); 3186 return Legalized; 3187 } 3188 3189 LegalizerHelper::LegalizeResult 3190 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3191 LLT NarrowTy) { 3192 Register DstReg = MI.getOperand(0).getReg(); 3193 Register SrcReg = MI.getOperand(1).getReg(); 3194 int64_t Imm = MI.getOperand(2).getImm(); 3195 3196 LLT DstTy = MRI.getType(DstReg); 3197 3198 SmallVector<Register, 8> Parts; 3199 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3200 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3201 3202 for (Register &R : Parts) 3203 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3204 3205 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3206 3207 MI.eraseFromParent(); 3208 return Legalized; 3209 } 3210 3211 LegalizerHelper::LegalizeResult 3212 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3213 LLT NarrowTy) { 3214 using namespace TargetOpcode; 3215 3216 MIRBuilder.setInstr(MI); 3217 switch (MI.getOpcode()) { 3218 case G_IMPLICIT_DEF: 3219 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3220 case G_AND: 3221 case G_OR: 3222 case G_XOR: 3223 case G_ADD: 3224 case G_SUB: 3225 case G_MUL: 3226 case G_SMULH: 3227 case G_UMULH: 3228 case G_FADD: 3229 case G_FMUL: 3230 case G_FSUB: 3231 case G_FNEG: 3232 case G_FABS: 3233 case G_FCANONICALIZE: 3234 case G_FDIV: 3235 case G_FREM: 3236 case G_FMA: 3237 case G_FMAD: 3238 case G_FPOW: 3239 case G_FEXP: 3240 case G_FEXP2: 3241 case G_FLOG: 3242 case G_FLOG2: 3243 case G_FLOG10: 3244 case G_FNEARBYINT: 3245 case G_FCEIL: 3246 case G_FFLOOR: 3247 case G_FRINT: 3248 case G_INTRINSIC_ROUND: 3249 case G_INTRINSIC_TRUNC: 3250 case G_FCOS: 3251 case G_FSIN: 3252 case G_FSQRT: 3253 case G_BSWAP: 3254 case G_BITREVERSE: 3255 case G_SDIV: 3256 case G_UDIV: 3257 case G_SREM: 3258 case G_UREM: 3259 case G_SMIN: 3260 case G_SMAX: 3261 case G_UMIN: 3262 case G_UMAX: 3263 case G_FMINNUM: 3264 case G_FMAXNUM: 3265 case G_FMINNUM_IEEE: 3266 case G_FMAXNUM_IEEE: 3267 case G_FMINIMUM: 3268 case G_FMAXIMUM: 3269 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3270 case G_SHL: 3271 case G_LSHR: 3272 case G_ASHR: 3273 case G_CTLZ: 3274 case G_CTLZ_ZERO_UNDEF: 3275 case G_CTTZ: 3276 case G_CTTZ_ZERO_UNDEF: 3277 case G_CTPOP: 3278 case G_FCOPYSIGN: 3279 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3280 case G_ZEXT: 3281 case G_SEXT: 3282 case G_ANYEXT: 3283 case G_FPEXT: 3284 case G_FPTRUNC: 3285 case G_SITOFP: 3286 case G_UITOFP: 3287 case G_FPTOSI: 3288 case G_FPTOUI: 3289 case G_INTTOPTR: 3290 case G_PTRTOINT: 3291 case G_ADDRSPACE_CAST: 3292 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3293 case G_ICMP: 3294 case G_FCMP: 3295 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3296 case G_SELECT: 3297 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3298 case G_PHI: 3299 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3300 case G_UNMERGE_VALUES: 3301 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3302 case G_BUILD_VECTOR: 3303 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3304 case G_LOAD: 3305 case G_STORE: 3306 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3307 case G_SEXT_INREG: 3308 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3309 default: 3310 return UnableToLegalize; 3311 } 3312 } 3313 3314 LegalizerHelper::LegalizeResult 3315 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3316 const LLT HalfTy, const LLT AmtTy) { 3317 3318 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3319 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3320 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3321 3322 if (Amt.isNullValue()) { 3323 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3324 MI.eraseFromParent(); 3325 return Legalized; 3326 } 3327 3328 LLT NVT = HalfTy; 3329 unsigned NVTBits = HalfTy.getSizeInBits(); 3330 unsigned VTBits = 2 * NVTBits; 3331 3332 SrcOp Lo(Register(0)), Hi(Register(0)); 3333 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3334 if (Amt.ugt(VTBits)) { 3335 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3336 } else if (Amt.ugt(NVTBits)) { 3337 Lo = MIRBuilder.buildConstant(NVT, 0); 3338 Hi = MIRBuilder.buildShl(NVT, InL, 3339 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3340 } else if (Amt == NVTBits) { 3341 Lo = MIRBuilder.buildConstant(NVT, 0); 3342 Hi = InL; 3343 } else { 3344 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3345 auto OrLHS = 3346 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3347 auto OrRHS = MIRBuilder.buildLShr( 3348 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3349 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3350 } 3351 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3352 if (Amt.ugt(VTBits)) { 3353 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3354 } else if (Amt.ugt(NVTBits)) { 3355 Lo = MIRBuilder.buildLShr(NVT, InH, 3356 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3357 Hi = MIRBuilder.buildConstant(NVT, 0); 3358 } else if (Amt == NVTBits) { 3359 Lo = InH; 3360 Hi = MIRBuilder.buildConstant(NVT, 0); 3361 } else { 3362 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3363 3364 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3365 auto OrRHS = MIRBuilder.buildShl( 3366 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3367 3368 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3369 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3370 } 3371 } else { 3372 if (Amt.ugt(VTBits)) { 3373 Hi = Lo = MIRBuilder.buildAShr( 3374 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3375 } else if (Amt.ugt(NVTBits)) { 3376 Lo = MIRBuilder.buildAShr(NVT, InH, 3377 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3378 Hi = MIRBuilder.buildAShr(NVT, InH, 3379 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3380 } else if (Amt == NVTBits) { 3381 Lo = InH; 3382 Hi = MIRBuilder.buildAShr(NVT, InH, 3383 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3384 } else { 3385 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3386 3387 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3388 auto OrRHS = MIRBuilder.buildShl( 3389 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3390 3391 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3392 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3393 } 3394 } 3395 3396 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3397 MI.eraseFromParent(); 3398 3399 return Legalized; 3400 } 3401 3402 // TODO: Optimize if constant shift amount. 3403 LegalizerHelper::LegalizeResult 3404 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3405 LLT RequestedTy) { 3406 if (TypeIdx == 1) { 3407 Observer.changingInstr(MI); 3408 narrowScalarSrc(MI, RequestedTy, 2); 3409 Observer.changedInstr(MI); 3410 return Legalized; 3411 } 3412 3413 Register DstReg = MI.getOperand(0).getReg(); 3414 LLT DstTy = MRI.getType(DstReg); 3415 if (DstTy.isVector()) 3416 return UnableToLegalize; 3417 3418 Register Amt = MI.getOperand(2).getReg(); 3419 LLT ShiftAmtTy = MRI.getType(Amt); 3420 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3421 if (DstEltSize % 2 != 0) 3422 return UnableToLegalize; 3423 3424 // Ignore the input type. We can only go to exactly half the size of the 3425 // input. If that isn't small enough, the resulting pieces will be further 3426 // legalized. 3427 const unsigned NewBitSize = DstEltSize / 2; 3428 const LLT HalfTy = LLT::scalar(NewBitSize); 3429 const LLT CondTy = LLT::scalar(1); 3430 3431 if (const MachineInstr *KShiftAmt = 3432 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3433 return narrowScalarShiftByConstant( 3434 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3435 } 3436 3437 // TODO: Expand with known bits. 3438 3439 // Handle the fully general expansion by an unknown amount. 3440 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3441 3442 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3443 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3444 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3445 3446 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3447 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3448 3449 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3450 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3451 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3452 3453 Register ResultRegs[2]; 3454 switch (MI.getOpcode()) { 3455 case TargetOpcode::G_SHL: { 3456 // Short: ShAmt < NewBitSize 3457 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3458 3459 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3460 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3461 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3462 3463 // Long: ShAmt >= NewBitSize 3464 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3465 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3466 3467 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3468 auto Hi = MIRBuilder.buildSelect( 3469 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3470 3471 ResultRegs[0] = Lo.getReg(0); 3472 ResultRegs[1] = Hi.getReg(0); 3473 break; 3474 } 3475 case TargetOpcode::G_LSHR: 3476 case TargetOpcode::G_ASHR: { 3477 // Short: ShAmt < NewBitSize 3478 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3479 3480 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3481 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3482 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3483 3484 // Long: ShAmt >= NewBitSize 3485 MachineInstrBuilder HiL; 3486 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3487 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3488 } else { 3489 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3490 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3491 } 3492 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3493 {InH, AmtExcess}); // Lo from Hi part. 3494 3495 auto Lo = MIRBuilder.buildSelect( 3496 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3497 3498 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3499 3500 ResultRegs[0] = Lo.getReg(0); 3501 ResultRegs[1] = Hi.getReg(0); 3502 break; 3503 } 3504 default: 3505 llvm_unreachable("not a shift"); 3506 } 3507 3508 MIRBuilder.buildMerge(DstReg, ResultRegs); 3509 MI.eraseFromParent(); 3510 return Legalized; 3511 } 3512 3513 LegalizerHelper::LegalizeResult 3514 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3515 LLT MoreTy) { 3516 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3517 3518 Observer.changingInstr(MI); 3519 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3520 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3521 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3522 moreElementsVectorSrc(MI, MoreTy, I); 3523 } 3524 3525 MachineBasicBlock &MBB = *MI.getParent(); 3526 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3527 moreElementsVectorDst(MI, MoreTy, 0); 3528 Observer.changedInstr(MI); 3529 return Legalized; 3530 } 3531 3532 LegalizerHelper::LegalizeResult 3533 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3534 LLT MoreTy) { 3535 MIRBuilder.setInstr(MI); 3536 unsigned Opc = MI.getOpcode(); 3537 switch (Opc) { 3538 case TargetOpcode::G_IMPLICIT_DEF: 3539 case TargetOpcode::G_LOAD: { 3540 if (TypeIdx != 0) 3541 return UnableToLegalize; 3542 Observer.changingInstr(MI); 3543 moreElementsVectorDst(MI, MoreTy, 0); 3544 Observer.changedInstr(MI); 3545 return Legalized; 3546 } 3547 case TargetOpcode::G_STORE: 3548 if (TypeIdx != 0) 3549 return UnableToLegalize; 3550 Observer.changingInstr(MI); 3551 moreElementsVectorSrc(MI, MoreTy, 0); 3552 Observer.changedInstr(MI); 3553 return Legalized; 3554 case TargetOpcode::G_AND: 3555 case TargetOpcode::G_OR: 3556 case TargetOpcode::G_XOR: 3557 case TargetOpcode::G_SMIN: 3558 case TargetOpcode::G_SMAX: 3559 case TargetOpcode::G_UMIN: 3560 case TargetOpcode::G_UMAX: 3561 case TargetOpcode::G_FMINNUM: 3562 case TargetOpcode::G_FMAXNUM: 3563 case TargetOpcode::G_FMINNUM_IEEE: 3564 case TargetOpcode::G_FMAXNUM_IEEE: 3565 case TargetOpcode::G_FMINIMUM: 3566 case TargetOpcode::G_FMAXIMUM: { 3567 Observer.changingInstr(MI); 3568 moreElementsVectorSrc(MI, MoreTy, 1); 3569 moreElementsVectorSrc(MI, MoreTy, 2); 3570 moreElementsVectorDst(MI, MoreTy, 0); 3571 Observer.changedInstr(MI); 3572 return Legalized; 3573 } 3574 case TargetOpcode::G_EXTRACT: 3575 if (TypeIdx != 1) 3576 return UnableToLegalize; 3577 Observer.changingInstr(MI); 3578 moreElementsVectorSrc(MI, MoreTy, 1); 3579 Observer.changedInstr(MI); 3580 return Legalized; 3581 case TargetOpcode::G_INSERT: 3582 if (TypeIdx != 0) 3583 return UnableToLegalize; 3584 Observer.changingInstr(MI); 3585 moreElementsVectorSrc(MI, MoreTy, 1); 3586 moreElementsVectorDst(MI, MoreTy, 0); 3587 Observer.changedInstr(MI); 3588 return Legalized; 3589 case TargetOpcode::G_SELECT: 3590 if (TypeIdx != 0) 3591 return UnableToLegalize; 3592 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3593 return UnableToLegalize; 3594 3595 Observer.changingInstr(MI); 3596 moreElementsVectorSrc(MI, MoreTy, 2); 3597 moreElementsVectorSrc(MI, MoreTy, 3); 3598 moreElementsVectorDst(MI, MoreTy, 0); 3599 Observer.changedInstr(MI); 3600 return Legalized; 3601 case TargetOpcode::G_UNMERGE_VALUES: { 3602 if (TypeIdx != 1) 3603 return UnableToLegalize; 3604 3605 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3606 int NumDst = MI.getNumOperands() - 1; 3607 moreElementsVectorSrc(MI, MoreTy, NumDst); 3608 3609 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3610 for (int I = 0; I != NumDst; ++I) 3611 MIB.addDef(MI.getOperand(I).getReg()); 3612 3613 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3614 for (int I = NumDst; I != NewNumDst; ++I) 3615 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3616 3617 MIB.addUse(MI.getOperand(NumDst).getReg()); 3618 MI.eraseFromParent(); 3619 return Legalized; 3620 } 3621 case TargetOpcode::G_PHI: 3622 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3623 default: 3624 return UnableToLegalize; 3625 } 3626 } 3627 3628 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3629 ArrayRef<Register> Src1Regs, 3630 ArrayRef<Register> Src2Regs, 3631 LLT NarrowTy) { 3632 MachineIRBuilder &B = MIRBuilder; 3633 unsigned SrcParts = Src1Regs.size(); 3634 unsigned DstParts = DstRegs.size(); 3635 3636 unsigned DstIdx = 0; // Low bits of the result. 3637 Register FactorSum = 3638 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3639 DstRegs[DstIdx] = FactorSum; 3640 3641 unsigned CarrySumPrevDstIdx; 3642 SmallVector<Register, 4> Factors; 3643 3644 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3645 // Collect low parts of muls for DstIdx. 3646 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3647 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3648 MachineInstrBuilder Mul = 3649 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3650 Factors.push_back(Mul.getReg(0)); 3651 } 3652 // Collect high parts of muls from previous DstIdx. 3653 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3654 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3655 MachineInstrBuilder Umulh = 3656 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3657 Factors.push_back(Umulh.getReg(0)); 3658 } 3659 // Add CarrySum from additions calculated for previous DstIdx. 3660 if (DstIdx != 1) { 3661 Factors.push_back(CarrySumPrevDstIdx); 3662 } 3663 3664 Register CarrySum; 3665 // Add all factors and accumulate all carries into CarrySum. 3666 if (DstIdx != DstParts - 1) { 3667 MachineInstrBuilder Uaddo = 3668 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3669 FactorSum = Uaddo.getReg(0); 3670 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3671 for (unsigned i = 2; i < Factors.size(); ++i) { 3672 MachineInstrBuilder Uaddo = 3673 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3674 FactorSum = Uaddo.getReg(0); 3675 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3676 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3677 } 3678 } else { 3679 // Since value for the next index is not calculated, neither is CarrySum. 3680 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3681 for (unsigned i = 2; i < Factors.size(); ++i) 3682 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3683 } 3684 3685 CarrySumPrevDstIdx = CarrySum; 3686 DstRegs[DstIdx] = FactorSum; 3687 Factors.clear(); 3688 } 3689 } 3690 3691 LegalizerHelper::LegalizeResult 3692 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3693 Register DstReg = MI.getOperand(0).getReg(); 3694 Register Src1 = MI.getOperand(1).getReg(); 3695 Register Src2 = MI.getOperand(2).getReg(); 3696 3697 LLT Ty = MRI.getType(DstReg); 3698 if (Ty.isVector()) 3699 return UnableToLegalize; 3700 3701 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3702 unsigned DstSize = Ty.getSizeInBits(); 3703 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3704 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3705 return UnableToLegalize; 3706 3707 unsigned NumDstParts = DstSize / NarrowSize; 3708 unsigned NumSrcParts = SrcSize / NarrowSize; 3709 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3710 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3711 3712 SmallVector<Register, 2> Src1Parts, Src2Parts; 3713 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3714 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3715 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3716 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3717 3718 // Take only high half of registers if this is high mul. 3719 ArrayRef<Register> DstRegs( 3720 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3721 MIRBuilder.buildMerge(DstReg, DstRegs); 3722 MI.eraseFromParent(); 3723 return Legalized; 3724 } 3725 3726 LegalizerHelper::LegalizeResult 3727 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3728 LLT NarrowTy) { 3729 if (TypeIdx != 1) 3730 return UnableToLegalize; 3731 3732 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3733 3734 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3735 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3736 // NarrowSize. 3737 if (SizeOp1 % NarrowSize != 0) 3738 return UnableToLegalize; 3739 int NumParts = SizeOp1 / NarrowSize; 3740 3741 SmallVector<Register, 2> SrcRegs, DstRegs; 3742 SmallVector<uint64_t, 2> Indexes; 3743 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3744 3745 Register OpReg = MI.getOperand(0).getReg(); 3746 uint64_t OpStart = MI.getOperand(2).getImm(); 3747 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3748 for (int i = 0; i < NumParts; ++i) { 3749 unsigned SrcStart = i * NarrowSize; 3750 3751 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3752 // No part of the extract uses this subregister, ignore it. 3753 continue; 3754 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3755 // The entire subregister is extracted, forward the value. 3756 DstRegs.push_back(SrcRegs[i]); 3757 continue; 3758 } 3759 3760 // OpSegStart is where this destination segment would start in OpReg if it 3761 // extended infinitely in both directions. 3762 int64_t ExtractOffset; 3763 uint64_t SegSize; 3764 if (OpStart < SrcStart) { 3765 ExtractOffset = 0; 3766 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3767 } else { 3768 ExtractOffset = OpStart - SrcStart; 3769 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3770 } 3771 3772 Register SegReg = SrcRegs[i]; 3773 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3774 // A genuine extract is needed. 3775 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3776 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3777 } 3778 3779 DstRegs.push_back(SegReg); 3780 } 3781 3782 Register DstReg = MI.getOperand(0).getReg(); 3783 if(MRI.getType(DstReg).isVector()) 3784 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3785 else 3786 MIRBuilder.buildMerge(DstReg, DstRegs); 3787 MI.eraseFromParent(); 3788 return Legalized; 3789 } 3790 3791 LegalizerHelper::LegalizeResult 3792 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3793 LLT NarrowTy) { 3794 // FIXME: Don't know how to handle secondary types yet. 3795 if (TypeIdx != 0) 3796 return UnableToLegalize; 3797 3798 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3799 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3800 3801 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3802 // NarrowSize. 3803 if (SizeOp0 % NarrowSize != 0) 3804 return UnableToLegalize; 3805 3806 int NumParts = SizeOp0 / NarrowSize; 3807 3808 SmallVector<Register, 2> SrcRegs, DstRegs; 3809 SmallVector<uint64_t, 2> Indexes; 3810 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3811 3812 Register OpReg = MI.getOperand(2).getReg(); 3813 uint64_t OpStart = MI.getOperand(3).getImm(); 3814 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3815 for (int i = 0; i < NumParts; ++i) { 3816 unsigned DstStart = i * NarrowSize; 3817 3818 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3819 // No part of the insert affects this subregister, forward the original. 3820 DstRegs.push_back(SrcRegs[i]); 3821 continue; 3822 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3823 // The entire subregister is defined by this insert, forward the new 3824 // value. 3825 DstRegs.push_back(OpReg); 3826 continue; 3827 } 3828 3829 // OpSegStart is where this destination segment would start in OpReg if it 3830 // extended infinitely in both directions. 3831 int64_t ExtractOffset, InsertOffset; 3832 uint64_t SegSize; 3833 if (OpStart < DstStart) { 3834 InsertOffset = 0; 3835 ExtractOffset = DstStart - OpStart; 3836 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3837 } else { 3838 InsertOffset = OpStart - DstStart; 3839 ExtractOffset = 0; 3840 SegSize = 3841 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3842 } 3843 3844 Register SegReg = OpReg; 3845 if (ExtractOffset != 0 || SegSize != OpSize) { 3846 // A genuine extract is needed. 3847 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3848 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3849 } 3850 3851 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3852 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3853 DstRegs.push_back(DstReg); 3854 } 3855 3856 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3857 Register DstReg = MI.getOperand(0).getReg(); 3858 if(MRI.getType(DstReg).isVector()) 3859 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3860 else 3861 MIRBuilder.buildMerge(DstReg, DstRegs); 3862 MI.eraseFromParent(); 3863 return Legalized; 3864 } 3865 3866 LegalizerHelper::LegalizeResult 3867 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3868 LLT NarrowTy) { 3869 Register DstReg = MI.getOperand(0).getReg(); 3870 LLT DstTy = MRI.getType(DstReg); 3871 3872 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3873 3874 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3875 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3876 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3877 LLT LeftoverTy; 3878 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3879 Src0Regs, Src0LeftoverRegs)) 3880 return UnableToLegalize; 3881 3882 LLT Unused; 3883 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3884 Src1Regs, Src1LeftoverRegs)) 3885 llvm_unreachable("inconsistent extractParts result"); 3886 3887 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3888 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3889 {Src0Regs[I], Src1Regs[I]}); 3890 DstRegs.push_back(Inst.getReg(0)); 3891 } 3892 3893 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3894 auto Inst = MIRBuilder.buildInstr( 3895 MI.getOpcode(), 3896 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3897 DstLeftoverRegs.push_back(Inst.getReg(0)); 3898 } 3899 3900 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3901 LeftoverTy, DstLeftoverRegs); 3902 3903 MI.eraseFromParent(); 3904 return Legalized; 3905 } 3906 3907 LegalizerHelper::LegalizeResult 3908 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 3909 LLT NarrowTy) { 3910 if (TypeIdx != 0) 3911 return UnableToLegalize; 3912 3913 Register DstReg = MI.getOperand(0).getReg(); 3914 Register SrcReg = MI.getOperand(1).getReg(); 3915 3916 LLT DstTy = MRI.getType(DstReg); 3917 if (DstTy.isVector()) 3918 return UnableToLegalize; 3919 3920 SmallVector<Register, 8> Parts; 3921 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3922 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 3923 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3924 3925 MI.eraseFromParent(); 3926 return Legalized; 3927 } 3928 3929 LegalizerHelper::LegalizeResult 3930 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3931 LLT NarrowTy) { 3932 if (TypeIdx != 0) 3933 return UnableToLegalize; 3934 3935 Register CondReg = MI.getOperand(1).getReg(); 3936 LLT CondTy = MRI.getType(CondReg); 3937 if (CondTy.isVector()) // TODO: Handle vselect 3938 return UnableToLegalize; 3939 3940 Register DstReg = MI.getOperand(0).getReg(); 3941 LLT DstTy = MRI.getType(DstReg); 3942 3943 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3944 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3945 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3946 LLT LeftoverTy; 3947 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3948 Src1Regs, Src1LeftoverRegs)) 3949 return UnableToLegalize; 3950 3951 LLT Unused; 3952 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3953 Src2Regs, Src2LeftoverRegs)) 3954 llvm_unreachable("inconsistent extractParts result"); 3955 3956 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3957 auto Select = MIRBuilder.buildSelect(NarrowTy, 3958 CondReg, Src1Regs[I], Src2Regs[I]); 3959 DstRegs.push_back(Select.getReg(0)); 3960 } 3961 3962 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3963 auto Select = MIRBuilder.buildSelect( 3964 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3965 DstLeftoverRegs.push_back(Select.getReg(0)); 3966 } 3967 3968 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3969 LeftoverTy, DstLeftoverRegs); 3970 3971 MI.eraseFromParent(); 3972 return Legalized; 3973 } 3974 3975 LegalizerHelper::LegalizeResult 3976 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 3977 LLT NarrowTy) { 3978 if (TypeIdx != 1) 3979 return UnableToLegalize; 3980 3981 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3982 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3983 3984 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 3985 MachineIRBuilder &B = MIRBuilder; 3986 auto UnmergeSrc = B.buildUnmerge(NarrowTy, MI.getOperand(1)); 3987 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 3988 auto C_0 = B.buildConstant(NarrowTy, 0); 3989 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3990 UnmergeSrc.getReg(1), C_0); 3991 auto LoCTLZ = B.buildCTLZ(NarrowTy, UnmergeSrc.getReg(0)); 3992 auto C_NarrowSize = B.buildConstant(NarrowTy, NarrowSize); 3993 auto HiIsZeroCTLZ = B.buildAdd(NarrowTy, LoCTLZ, C_NarrowSize); 3994 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(NarrowTy, UnmergeSrc.getReg(1)); 3995 auto LoOut = B.buildSelect(NarrowTy, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 3996 3997 B.buildMerge(MI.getOperand(0), {LoOut, C_0}); 3998 3999 MI.eraseFromParent(); 4000 return Legalized; 4001 } 4002 4003 return UnableToLegalize; 4004 } 4005 4006 LegalizerHelper::LegalizeResult 4007 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4008 LLT NarrowTy) { 4009 if (TypeIdx != 1) 4010 return UnableToLegalize; 4011 4012 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4013 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4014 4015 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4016 MachineIRBuilder &B = MIRBuilder; 4017 auto UnmergeSrc = B.buildUnmerge(NarrowTy, MI.getOperand(1)); 4018 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4019 auto C_0 = B.buildConstant(NarrowTy, 0); 4020 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4021 UnmergeSrc.getReg(0), C_0); 4022 auto HiCTTZ = B.buildCTTZ(NarrowTy, UnmergeSrc.getReg(1)); 4023 auto C_NarrowSize = B.buildConstant(NarrowTy, NarrowSize); 4024 auto LoIsZeroCTTZ = B.buildAdd(NarrowTy, HiCTTZ, C_NarrowSize); 4025 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(NarrowTy, UnmergeSrc.getReg(0)); 4026 auto LoOut = B.buildSelect(NarrowTy, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4027 4028 B.buildMerge(MI.getOperand(0), {LoOut, C_0}); 4029 4030 MI.eraseFromParent(); 4031 return Legalized; 4032 } 4033 4034 return UnableToLegalize; 4035 } 4036 4037 LegalizerHelper::LegalizeResult 4038 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4039 LLT NarrowTy) { 4040 if (TypeIdx != 1) 4041 return UnableToLegalize; 4042 4043 Register DstReg = MI.getOperand(0).getReg(); 4044 LLT DstTy = MRI.getType(DstReg); 4045 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4046 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4047 4048 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4049 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4050 4051 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4052 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4053 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4054 4055 MI.eraseFromParent(); 4056 return Legalized; 4057 } 4058 4059 return UnableToLegalize; 4060 } 4061 4062 LegalizerHelper::LegalizeResult 4063 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4064 unsigned Opc = MI.getOpcode(); 4065 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4066 auto isSupported = [this](const LegalityQuery &Q) { 4067 auto QAction = LI.getAction(Q).Action; 4068 return QAction == Legal || QAction == Libcall || QAction == Custom; 4069 }; 4070 switch (Opc) { 4071 default: 4072 return UnableToLegalize; 4073 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4074 // This trivially expands to CTLZ. 4075 Observer.changingInstr(MI); 4076 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4077 Observer.changedInstr(MI); 4078 return Legalized; 4079 } 4080 case TargetOpcode::G_CTLZ: { 4081 Register DstReg = MI.getOperand(0).getReg(); 4082 Register SrcReg = MI.getOperand(1).getReg(); 4083 LLT DstTy = MRI.getType(DstReg); 4084 LLT SrcTy = MRI.getType(SrcReg); 4085 unsigned Len = SrcTy.getSizeInBits(); 4086 4087 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4088 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4089 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4090 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4091 auto ICmp = MIRBuilder.buildICmp( 4092 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4093 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4094 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4095 MI.eraseFromParent(); 4096 return Legalized; 4097 } 4098 // for now, we do this: 4099 // NewLen = NextPowerOf2(Len); 4100 // x = x | (x >> 1); 4101 // x = x | (x >> 2); 4102 // ... 4103 // x = x | (x >>16); 4104 // x = x | (x >>32); // for 64-bit input 4105 // Upto NewLen/2 4106 // return Len - popcount(x); 4107 // 4108 // Ref: "Hacker's Delight" by Henry Warren 4109 Register Op = SrcReg; 4110 unsigned NewLen = PowerOf2Ceil(Len); 4111 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4112 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4113 auto MIBOp = MIRBuilder.buildOr( 4114 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4115 Op = MIBOp.getReg(0); 4116 } 4117 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4118 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4119 MIBPop); 4120 MI.eraseFromParent(); 4121 return Legalized; 4122 } 4123 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4124 // This trivially expands to CTTZ. 4125 Observer.changingInstr(MI); 4126 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4127 Observer.changedInstr(MI); 4128 return Legalized; 4129 } 4130 case TargetOpcode::G_CTTZ: { 4131 Register DstReg = MI.getOperand(0).getReg(); 4132 Register SrcReg = MI.getOperand(1).getReg(); 4133 LLT DstTy = MRI.getType(DstReg); 4134 LLT SrcTy = MRI.getType(SrcReg); 4135 4136 unsigned Len = SrcTy.getSizeInBits(); 4137 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4138 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4139 // zero. 4140 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4141 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4142 auto ICmp = MIRBuilder.buildICmp( 4143 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4144 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4145 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4146 MI.eraseFromParent(); 4147 return Legalized; 4148 } 4149 // for now, we use: { return popcount(~x & (x - 1)); } 4150 // unless the target has ctlz but not ctpop, in which case we use: 4151 // { return 32 - nlz(~x & (x-1)); } 4152 // Ref: "Hacker's Delight" by Henry Warren 4153 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4154 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4155 auto MIBTmp = MIRBuilder.buildAnd( 4156 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4157 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4158 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4159 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4160 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4161 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4162 MI.eraseFromParent(); 4163 return Legalized; 4164 } 4165 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4166 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4167 return Legalized; 4168 } 4169 case TargetOpcode::G_CTPOP: { 4170 unsigned Size = Ty.getSizeInBits(); 4171 MachineIRBuilder &B = MIRBuilder; 4172 4173 // Count set bits in blocks of 2 bits. Default approach would be 4174 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4175 // We use following formula instead: 4176 // B2Count = val - { (val >> 1) & 0x55555555 } 4177 // since it gives same result in blocks of 2 with one instruction less. 4178 auto C_1 = B.buildConstant(Ty, 1); 4179 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4180 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4181 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4182 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4183 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4184 4185 // In order to get count in blocks of 4 add values from adjacent block of 2. 4186 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4187 auto C_2 = B.buildConstant(Ty, 2); 4188 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4189 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4190 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4191 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4192 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4193 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4194 4195 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4196 // addition since count value sits in range {0,...,8} and 4 bits are enough 4197 // to hold such binary values. After addition high 4 bits still hold count 4198 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4199 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4200 auto C_4 = B.buildConstant(Ty, 4); 4201 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4202 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4203 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4204 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4205 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4206 4207 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4208 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4209 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4210 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4211 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4212 4213 // Shift count result from 8 high bits to low bits. 4214 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4215 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4216 4217 MI.eraseFromParent(); 4218 return Legalized; 4219 } 4220 } 4221 } 4222 4223 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4224 // representation. 4225 LegalizerHelper::LegalizeResult 4226 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4227 Register Dst = MI.getOperand(0).getReg(); 4228 Register Src = MI.getOperand(1).getReg(); 4229 const LLT S64 = LLT::scalar(64); 4230 const LLT S32 = LLT::scalar(32); 4231 const LLT S1 = LLT::scalar(1); 4232 4233 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4234 4235 // unsigned cul2f(ulong u) { 4236 // uint lz = clz(u); 4237 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4238 // u = (u << lz) & 0x7fffffffffffffffUL; 4239 // ulong t = u & 0xffffffffffUL; 4240 // uint v = (e << 23) | (uint)(u >> 40); 4241 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4242 // return as_float(v + r); 4243 // } 4244 4245 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4246 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4247 4248 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4249 4250 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4251 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4252 4253 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4254 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4255 4256 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4257 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4258 4259 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4260 4261 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4262 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4263 4264 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4265 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4266 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4267 4268 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4269 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4270 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4271 auto One = MIRBuilder.buildConstant(S32, 1); 4272 4273 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4274 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4275 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4276 MIRBuilder.buildAdd(Dst, V, R); 4277 4278 return Legalized; 4279 } 4280 4281 LegalizerHelper::LegalizeResult 4282 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4283 Register Dst = MI.getOperand(0).getReg(); 4284 Register Src = MI.getOperand(1).getReg(); 4285 LLT DstTy = MRI.getType(Dst); 4286 LLT SrcTy = MRI.getType(Src); 4287 4288 if (SrcTy == LLT::scalar(1)) { 4289 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4290 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4291 MIRBuilder.buildSelect(Dst, Src, True, False); 4292 MI.eraseFromParent(); 4293 return Legalized; 4294 } 4295 4296 if (SrcTy != LLT::scalar(64)) 4297 return UnableToLegalize; 4298 4299 if (DstTy == LLT::scalar(32)) { 4300 // TODO: SelectionDAG has several alternative expansions to port which may 4301 // be more reasonble depending on the available instructions. If a target 4302 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4303 // intermediate type, this is probably worse. 4304 return lowerU64ToF32BitOps(MI); 4305 } 4306 4307 return UnableToLegalize; 4308 } 4309 4310 LegalizerHelper::LegalizeResult 4311 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4312 Register Dst = MI.getOperand(0).getReg(); 4313 Register Src = MI.getOperand(1).getReg(); 4314 LLT DstTy = MRI.getType(Dst); 4315 LLT SrcTy = MRI.getType(Src); 4316 4317 const LLT S64 = LLT::scalar(64); 4318 const LLT S32 = LLT::scalar(32); 4319 const LLT S1 = LLT::scalar(1); 4320 4321 if (SrcTy == S1) { 4322 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4323 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4324 MIRBuilder.buildSelect(Dst, Src, True, False); 4325 MI.eraseFromParent(); 4326 return Legalized; 4327 } 4328 4329 if (SrcTy != S64) 4330 return UnableToLegalize; 4331 4332 if (DstTy == S32) { 4333 // signed cl2f(long l) { 4334 // long s = l >> 63; 4335 // float r = cul2f((l + s) ^ s); 4336 // return s ? -r : r; 4337 // } 4338 Register L = Src; 4339 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4340 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4341 4342 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4343 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4344 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4345 4346 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4347 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4348 MIRBuilder.buildConstant(S64, 0)); 4349 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4350 return Legalized; 4351 } 4352 4353 return UnableToLegalize; 4354 } 4355 4356 LegalizerHelper::LegalizeResult 4357 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4358 Register Dst = MI.getOperand(0).getReg(); 4359 Register Src = MI.getOperand(1).getReg(); 4360 LLT DstTy = MRI.getType(Dst); 4361 LLT SrcTy = MRI.getType(Src); 4362 const LLT S64 = LLT::scalar(64); 4363 const LLT S32 = LLT::scalar(32); 4364 4365 if (SrcTy != S64 && SrcTy != S32) 4366 return UnableToLegalize; 4367 if (DstTy != S32 && DstTy != S64) 4368 return UnableToLegalize; 4369 4370 // FPTOSI gives same result as FPTOUI for positive signed integers. 4371 // FPTOUI needs to deal with fp values that convert to unsigned integers 4372 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4373 4374 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4375 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4376 : APFloat::IEEEdouble(), 4377 APInt::getNullValue(SrcTy.getSizeInBits())); 4378 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4379 4380 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4381 4382 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4383 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4384 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4385 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4386 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4387 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4388 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4389 4390 const LLT S1 = LLT::scalar(1); 4391 4392 MachineInstrBuilder FCMP = 4393 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4394 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4395 4396 MI.eraseFromParent(); 4397 return Legalized; 4398 } 4399 4400 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4401 Register Dst = MI.getOperand(0).getReg(); 4402 Register Src = MI.getOperand(1).getReg(); 4403 LLT DstTy = MRI.getType(Dst); 4404 LLT SrcTy = MRI.getType(Src); 4405 const LLT S64 = LLT::scalar(64); 4406 const LLT S32 = LLT::scalar(32); 4407 4408 // FIXME: Only f32 to i64 conversions are supported. 4409 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4410 return UnableToLegalize; 4411 4412 // Expand f32 -> i64 conversion 4413 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4414 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4415 4416 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4417 4418 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4419 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4420 4421 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4422 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4423 4424 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4425 APInt::getSignMask(SrcEltBits)); 4426 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4427 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4428 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4429 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4430 4431 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4432 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4433 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4434 4435 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4436 R = MIRBuilder.buildZExt(DstTy, R); 4437 4438 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4439 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4440 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4441 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4442 4443 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4444 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4445 4446 const LLT S1 = LLT::scalar(1); 4447 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4448 S1, Exponent, ExponentLoBit); 4449 4450 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4451 4452 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4453 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4454 4455 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4456 4457 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4458 S1, Exponent, ZeroSrcTy); 4459 4460 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4461 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4462 4463 MI.eraseFromParent(); 4464 return Legalized; 4465 } 4466 4467 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4468 switch (Opc) { 4469 case TargetOpcode::G_SMIN: 4470 return CmpInst::ICMP_SLT; 4471 case TargetOpcode::G_SMAX: 4472 return CmpInst::ICMP_SGT; 4473 case TargetOpcode::G_UMIN: 4474 return CmpInst::ICMP_ULT; 4475 case TargetOpcode::G_UMAX: 4476 return CmpInst::ICMP_UGT; 4477 default: 4478 llvm_unreachable("not in integer min/max"); 4479 } 4480 } 4481 4482 LegalizerHelper::LegalizeResult 4483 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4484 Register Dst = MI.getOperand(0).getReg(); 4485 Register Src0 = MI.getOperand(1).getReg(); 4486 Register Src1 = MI.getOperand(2).getReg(); 4487 4488 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4489 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4490 4491 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4492 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4493 4494 MI.eraseFromParent(); 4495 return Legalized; 4496 } 4497 4498 LegalizerHelper::LegalizeResult 4499 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4500 Register Dst = MI.getOperand(0).getReg(); 4501 Register Src0 = MI.getOperand(1).getReg(); 4502 Register Src1 = MI.getOperand(2).getReg(); 4503 4504 const LLT Src0Ty = MRI.getType(Src0); 4505 const LLT Src1Ty = MRI.getType(Src1); 4506 4507 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4508 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4509 4510 auto SignBitMask = MIRBuilder.buildConstant( 4511 Src0Ty, APInt::getSignMask(Src0Size)); 4512 4513 auto NotSignBitMask = MIRBuilder.buildConstant( 4514 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4515 4516 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4517 MachineInstr *Or; 4518 4519 if (Src0Ty == Src1Ty) { 4520 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 4521 Or = MIRBuilder.buildOr(Dst, And0, And1); 4522 } else if (Src0Size > Src1Size) { 4523 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4524 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4525 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4526 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4527 Or = MIRBuilder.buildOr(Dst, And0, And1); 4528 } else { 4529 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4530 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4531 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4532 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4533 Or = MIRBuilder.buildOr(Dst, And0, And1); 4534 } 4535 4536 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4537 // constants are a nan and -0.0, but the final result should preserve 4538 // everything. 4539 if (unsigned Flags = MI.getFlags()) 4540 Or->setFlags(Flags); 4541 4542 MI.eraseFromParent(); 4543 return Legalized; 4544 } 4545 4546 LegalizerHelper::LegalizeResult 4547 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4548 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4549 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4550 4551 Register Dst = MI.getOperand(0).getReg(); 4552 Register Src0 = MI.getOperand(1).getReg(); 4553 Register Src1 = MI.getOperand(2).getReg(); 4554 LLT Ty = MRI.getType(Dst); 4555 4556 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4557 // Insert canonicalizes if it's possible we need to quiet to get correct 4558 // sNaN behavior. 4559 4560 // Note this must be done here, and not as an optimization combine in the 4561 // absence of a dedicate quiet-snan instruction as we're using an 4562 // omni-purpose G_FCANONICALIZE. 4563 if (!isKnownNeverSNaN(Src0, MRI)) 4564 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4565 4566 if (!isKnownNeverSNaN(Src1, MRI)) 4567 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4568 } 4569 4570 // If there are no nans, it's safe to simply replace this with the non-IEEE 4571 // version. 4572 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4573 MI.eraseFromParent(); 4574 return Legalized; 4575 } 4576 4577 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4578 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4579 Register DstReg = MI.getOperand(0).getReg(); 4580 LLT Ty = MRI.getType(DstReg); 4581 unsigned Flags = MI.getFlags(); 4582 4583 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4584 Flags); 4585 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4586 MI.eraseFromParent(); 4587 return Legalized; 4588 } 4589 4590 LegalizerHelper::LegalizeResult 4591 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4592 Register DstReg = MI.getOperand(0).getReg(); 4593 Register SrcReg = MI.getOperand(1).getReg(); 4594 unsigned Flags = MI.getFlags(); 4595 LLT Ty = MRI.getType(DstReg); 4596 const LLT CondTy = Ty.changeElementSize(1); 4597 4598 // result = trunc(src); 4599 // if (src < 0.0 && src != result) 4600 // result += -1.0. 4601 4602 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4603 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4604 4605 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4606 SrcReg, Zero, Flags); 4607 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4608 SrcReg, Trunc, Flags); 4609 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4610 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4611 4612 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal); 4613 MI.eraseFromParent(); 4614 return Legalized; 4615 } 4616 4617 LegalizerHelper::LegalizeResult 4618 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4619 const unsigned NumDst = MI.getNumOperands() - 1; 4620 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4621 LLT SrcTy = MRI.getType(SrcReg); 4622 4623 Register Dst0Reg = MI.getOperand(0).getReg(); 4624 LLT DstTy = MRI.getType(Dst0Reg); 4625 4626 4627 // Expand scalarizing unmerge as bitcast to integer and shift. 4628 if (!DstTy.isVector() && SrcTy.isVector() && 4629 SrcTy.getElementType() == DstTy) { 4630 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4631 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4632 4633 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4634 4635 const unsigned DstSize = DstTy.getSizeInBits(); 4636 unsigned Offset = DstSize; 4637 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4638 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4639 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4640 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4641 } 4642 4643 MI.eraseFromParent(); 4644 return Legalized; 4645 } 4646 4647 return UnableToLegalize; 4648 } 4649 4650 LegalizerHelper::LegalizeResult 4651 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4652 Register DstReg = MI.getOperand(0).getReg(); 4653 Register Src0Reg = MI.getOperand(1).getReg(); 4654 Register Src1Reg = MI.getOperand(2).getReg(); 4655 LLT Src0Ty = MRI.getType(Src0Reg); 4656 LLT DstTy = MRI.getType(DstReg); 4657 LLT IdxTy = LLT::scalar(32); 4658 4659 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4660 4661 if (DstTy.isScalar()) { 4662 if (Src0Ty.isVector()) 4663 return UnableToLegalize; 4664 4665 // This is just a SELECT. 4666 assert(Mask.size() == 1 && "Expected a single mask element"); 4667 Register Val; 4668 if (Mask[0] < 0 || Mask[0] > 1) 4669 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4670 else 4671 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4672 MIRBuilder.buildCopy(DstReg, Val); 4673 MI.eraseFromParent(); 4674 return Legalized; 4675 } 4676 4677 Register Undef; 4678 SmallVector<Register, 32> BuildVec; 4679 LLT EltTy = DstTy.getElementType(); 4680 4681 for (int Idx : Mask) { 4682 if (Idx < 0) { 4683 if (!Undef.isValid()) 4684 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4685 BuildVec.push_back(Undef); 4686 continue; 4687 } 4688 4689 if (Src0Ty.isScalar()) { 4690 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4691 } else { 4692 int NumElts = Src0Ty.getNumElements(); 4693 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4694 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4695 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4696 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4697 BuildVec.push_back(Extract.getReg(0)); 4698 } 4699 } 4700 4701 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4702 MI.eraseFromParent(); 4703 return Legalized; 4704 } 4705 4706 LegalizerHelper::LegalizeResult 4707 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4708 Register Dst = MI.getOperand(0).getReg(); 4709 Register AllocSize = MI.getOperand(1).getReg(); 4710 unsigned Align = MI.getOperand(2).getImm(); 4711 4712 const auto &MF = *MI.getMF(); 4713 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4714 4715 LLT PtrTy = MRI.getType(Dst); 4716 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4717 4718 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4719 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4720 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4721 4722 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4723 // have to generate an extra instruction to negate the alloc and then use 4724 // G_PTR_ADD to add the negative offset. 4725 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4726 if (Align) { 4727 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4728 AlignMask.negate(); 4729 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4730 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4731 } 4732 4733 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4734 MIRBuilder.buildCopy(SPReg, SPTmp); 4735 MIRBuilder.buildCopy(Dst, SPTmp); 4736 4737 MI.eraseFromParent(); 4738 return Legalized; 4739 } 4740 4741 LegalizerHelper::LegalizeResult 4742 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4743 Register Dst = MI.getOperand(0).getReg(); 4744 Register Src = MI.getOperand(1).getReg(); 4745 unsigned Offset = MI.getOperand(2).getImm(); 4746 4747 LLT DstTy = MRI.getType(Dst); 4748 LLT SrcTy = MRI.getType(Src); 4749 4750 if (DstTy.isScalar() && 4751 (SrcTy.isScalar() || 4752 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4753 LLT SrcIntTy = SrcTy; 4754 if (!SrcTy.isScalar()) { 4755 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4756 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4757 } 4758 4759 if (Offset == 0) 4760 MIRBuilder.buildTrunc(Dst, Src); 4761 else { 4762 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4763 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4764 MIRBuilder.buildTrunc(Dst, Shr); 4765 } 4766 4767 MI.eraseFromParent(); 4768 return Legalized; 4769 } 4770 4771 return UnableToLegalize; 4772 } 4773 4774 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4775 Register Dst = MI.getOperand(0).getReg(); 4776 Register Src = MI.getOperand(1).getReg(); 4777 Register InsertSrc = MI.getOperand(2).getReg(); 4778 uint64_t Offset = MI.getOperand(3).getImm(); 4779 4780 LLT DstTy = MRI.getType(Src); 4781 LLT InsertTy = MRI.getType(InsertSrc); 4782 4783 if (InsertTy.isScalar() && 4784 (DstTy.isScalar() || 4785 (DstTy.isVector() && DstTy.getElementType() == InsertTy))) { 4786 LLT IntDstTy = DstTy; 4787 if (!DstTy.isScalar()) { 4788 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4789 Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0); 4790 } 4791 4792 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 4793 if (Offset != 0) { 4794 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 4795 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 4796 } 4797 4798 APInt MaskVal = APInt::getBitsSetWithWrap(DstTy.getSizeInBits(), 4799 Offset + InsertTy.getSizeInBits(), 4800 Offset); 4801 4802 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 4803 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 4804 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 4805 4806 MIRBuilder.buildBitcast(Dst, Or); 4807 MI.eraseFromParent(); 4808 return Legalized; 4809 } 4810 4811 return UnableToLegalize; 4812 } 4813 4814 LegalizerHelper::LegalizeResult 4815 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 4816 Register Dst0 = MI.getOperand(0).getReg(); 4817 Register Dst1 = MI.getOperand(1).getReg(); 4818 Register LHS = MI.getOperand(2).getReg(); 4819 Register RHS = MI.getOperand(3).getReg(); 4820 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 4821 4822 LLT Ty = MRI.getType(Dst0); 4823 LLT BoolTy = MRI.getType(Dst1); 4824 4825 if (IsAdd) 4826 MIRBuilder.buildAdd(Dst0, LHS, RHS); 4827 else 4828 MIRBuilder.buildSub(Dst0, LHS, RHS); 4829 4830 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 4831 4832 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4833 4834 // For an addition, the result should be less than one of the operands (LHS) 4835 // if and only if the other operand (RHS) is negative, otherwise there will 4836 // be overflow. 4837 // For a subtraction, the result should be less than one of the operands 4838 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 4839 // otherwise there will be overflow. 4840 auto ResultLowerThanLHS = 4841 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 4842 auto ConditionRHS = MIRBuilder.buildICmp( 4843 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 4844 4845 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 4846 MI.eraseFromParent(); 4847 return Legalized; 4848 } 4849 4850 LegalizerHelper::LegalizeResult 4851 LegalizerHelper::lowerBswap(MachineInstr &MI) { 4852 Register Dst = MI.getOperand(0).getReg(); 4853 Register Src = MI.getOperand(1).getReg(); 4854 const LLT Ty = MRI.getType(Src); 4855 unsigned SizeInBytes = Ty.getSizeInBytes(); 4856 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 4857 4858 // Swap most and least significant byte, set remaining bytes in Res to zero. 4859 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 4860 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 4861 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4862 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 4863 4864 // Set i-th high/low byte in Res to i-th low/high byte from Src. 4865 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 4866 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 4867 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 4868 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 4869 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 4870 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 4871 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 4872 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 4873 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 4874 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 4875 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4876 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 4877 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 4878 } 4879 Res.getInstr()->getOperand(0).setReg(Dst); 4880 4881 MI.eraseFromParent(); 4882 return Legalized; 4883 } 4884 4885 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 4886 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 4887 MachineInstrBuilder Src, APInt Mask) { 4888 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 4889 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 4890 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 4891 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 4892 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 4893 return B.buildOr(Dst, LHS, RHS); 4894 } 4895 4896 LegalizerHelper::LegalizeResult 4897 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 4898 Register Dst = MI.getOperand(0).getReg(); 4899 Register Src = MI.getOperand(1).getReg(); 4900 const LLT Ty = MRI.getType(Src); 4901 unsigned Size = Ty.getSizeInBits(); 4902 4903 MachineInstrBuilder BSWAP = 4904 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 4905 4906 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 4907 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 4908 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 4909 MachineInstrBuilder Swap4 = 4910 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 4911 4912 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 4913 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 4914 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 4915 MachineInstrBuilder Swap2 = 4916 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 4917 4918 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 4919 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 4920 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 4921 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 4922 4923 MI.eraseFromParent(); 4924 return Legalized; 4925 } 4926 4927 LegalizerHelper::LegalizeResult 4928 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 4929 MachineFunction &MF = MIRBuilder.getMF(); 4930 const TargetSubtargetInfo &STI = MF.getSubtarget(); 4931 const TargetLowering *TLI = STI.getTargetLowering(); 4932 4933 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 4934 int NameOpIdx = IsRead ? 1 : 0; 4935 int ValRegIndex = IsRead ? 0 : 1; 4936 4937 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 4938 const LLT Ty = MRI.getType(ValReg); 4939 const MDString *RegStr = cast<MDString>( 4940 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 4941 4942 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 4943 if (!PhysReg.isValid()) 4944 return UnableToLegalize; 4945 4946 if (IsRead) 4947 MIRBuilder.buildCopy(ValReg, PhysReg); 4948 else 4949 MIRBuilder.buildCopy(PhysReg, ValReg); 4950 4951 MI.eraseFromParent(); 4952 return Legalized; 4953 } 4954