1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static LLT getGCDType(LLT OrigTy, LLT TargetTy) { 67 if (OrigTy.isVector() && TargetTy.isVector()) { 68 assert(OrigTy.getElementType() == TargetTy.getElementType()); 69 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 70 TargetTy.getNumElements()); 71 return LLT::scalarOrVector(GCD, OrigTy.getElementType()); 72 } 73 74 if (OrigTy.isVector() && !TargetTy.isVector()) { 75 assert(OrigTy.getElementType() == TargetTy); 76 return TargetTy; 77 } 78 79 assert(!OrigTy.isVector() && !TargetTy.isVector() && 80 "GCD type of vector and scalar not implemented"); 81 82 int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(), 83 TargetTy.getSizeInBits()); 84 return LLT::scalar(GCD); 85 } 86 87 static LLT getLCMType(LLT Ty0, LLT Ty1) { 88 if (!Ty0.isVector() && !Ty1.isVector()) { 89 unsigned Mul = Ty0.getSizeInBits() * Ty1.getSizeInBits(); 90 int GCDSize = greatestCommonDivisor(Ty0.getSizeInBits(), 91 Ty1.getSizeInBits()); 92 return LLT::scalar(Mul / GCDSize); 93 } 94 95 if (Ty0.isVector() && !Ty1.isVector()) { 96 assert(Ty0.getElementType() == Ty1 && "not yet handled"); 97 return Ty0; 98 } 99 100 if (Ty1.isVector() && !Ty0.isVector()) { 101 assert(Ty1.getElementType() == Ty0 && "not yet handled"); 102 return Ty1; 103 } 104 105 if (Ty0.isVector() && Ty1.isVector()) { 106 assert(Ty0.getElementType() == Ty1.getElementType() && "not yet handled"); 107 108 int GCDElts = greatestCommonDivisor(Ty0.getNumElements(), 109 Ty1.getNumElements()); 110 111 int Mul = Ty0.getNumElements() * Ty1.getNumElements(); 112 return LLT::vector(Mul / GCDElts, Ty0.getElementType()); 113 } 114 115 llvm_unreachable("not yet handled"); 116 } 117 118 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 119 GISelChangeObserver &Observer, 120 MachineIRBuilder &Builder) 121 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 122 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 123 MIRBuilder.setMF(MF); 124 MIRBuilder.setChangeObserver(Observer); 125 } 126 127 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 128 GISelChangeObserver &Observer, 129 MachineIRBuilder &B) 130 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 131 MIRBuilder.setMF(MF); 132 MIRBuilder.setChangeObserver(Observer); 133 } 134 LegalizerHelper::LegalizeResult 135 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 136 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 137 138 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 139 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 140 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 141 : UnableToLegalize; 142 auto Step = LI.getAction(MI, MRI); 143 switch (Step.Action) { 144 case Legal: 145 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 146 return AlreadyLegal; 147 case Libcall: 148 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 149 return libcall(MI); 150 case NarrowScalar: 151 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 152 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 153 case WidenScalar: 154 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 155 return widenScalar(MI, Step.TypeIdx, Step.NewType); 156 case Lower: 157 LLVM_DEBUG(dbgs() << ".. Lower\n"); 158 return lower(MI, Step.TypeIdx, Step.NewType); 159 case FewerElements: 160 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 161 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 162 case MoreElements: 163 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 164 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 165 case Custom: 166 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 167 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 168 : UnableToLegalize; 169 default: 170 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 171 return UnableToLegalize; 172 } 173 } 174 175 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 176 SmallVectorImpl<Register> &VRegs) { 177 for (int i = 0; i < NumParts; ++i) 178 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 179 MIRBuilder.buildUnmerge(VRegs, Reg); 180 } 181 182 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 183 LLT MainTy, LLT &LeftoverTy, 184 SmallVectorImpl<Register> &VRegs, 185 SmallVectorImpl<Register> &LeftoverRegs) { 186 assert(!LeftoverTy.isValid() && "this is an out argument"); 187 188 unsigned RegSize = RegTy.getSizeInBits(); 189 unsigned MainSize = MainTy.getSizeInBits(); 190 unsigned NumParts = RegSize / MainSize; 191 unsigned LeftoverSize = RegSize - NumParts * MainSize; 192 193 // Use an unmerge when possible. 194 if (LeftoverSize == 0) { 195 for (unsigned I = 0; I < NumParts; ++I) 196 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 197 MIRBuilder.buildUnmerge(VRegs, Reg); 198 return true; 199 } 200 201 if (MainTy.isVector()) { 202 unsigned EltSize = MainTy.getScalarSizeInBits(); 203 if (LeftoverSize % EltSize != 0) 204 return false; 205 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 206 } else { 207 LeftoverTy = LLT::scalar(LeftoverSize); 208 } 209 210 // For irregular sizes, extract the individual parts. 211 for (unsigned I = 0; I != NumParts; ++I) { 212 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 213 VRegs.push_back(NewReg); 214 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 215 } 216 217 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 218 Offset += LeftoverSize) { 219 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 220 LeftoverRegs.push_back(NewReg); 221 MIRBuilder.buildExtract(NewReg, Reg, Offset); 222 } 223 224 return true; 225 } 226 227 void LegalizerHelper::insertParts(Register DstReg, 228 LLT ResultTy, LLT PartTy, 229 ArrayRef<Register> PartRegs, 230 LLT LeftoverTy, 231 ArrayRef<Register> LeftoverRegs) { 232 if (!LeftoverTy.isValid()) { 233 assert(LeftoverRegs.empty()); 234 235 if (!ResultTy.isVector()) { 236 MIRBuilder.buildMerge(DstReg, PartRegs); 237 return; 238 } 239 240 if (PartTy.isVector()) 241 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 242 else 243 MIRBuilder.buildBuildVector(DstReg, PartRegs); 244 return; 245 } 246 247 unsigned PartSize = PartTy.getSizeInBits(); 248 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 249 250 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 251 MIRBuilder.buildUndef(CurResultReg); 252 253 unsigned Offset = 0; 254 for (Register PartReg : PartRegs) { 255 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 256 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 257 CurResultReg = NewResultReg; 258 Offset += PartSize; 259 } 260 261 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 262 // Use the original output register for the final insert to avoid a copy. 263 Register NewResultReg = (I + 1 == E) ? 264 DstReg : MRI.createGenericVirtualRegister(ResultTy); 265 266 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 267 CurResultReg = NewResultReg; 268 Offset += LeftoverPartSize; 269 } 270 } 271 272 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 273 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 274 const MachineInstr &MI) { 275 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 276 277 const int NumResults = MI.getNumOperands() - 1; 278 Regs.resize(NumResults); 279 for (int I = 0; I != NumResults; ++I) 280 Regs[I] = MI.getOperand(I).getReg(); 281 } 282 283 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 284 LLT NarrowTy, Register SrcReg) { 285 LLT SrcTy = MRI.getType(SrcReg); 286 287 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 288 if (SrcTy == GCDTy) { 289 // If the source already evenly divides the result type, we don't need to do 290 // anything. 291 Parts.push_back(SrcReg); 292 } else { 293 // Need to split into common type sized pieces. 294 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 295 getUnmergeResults(Parts, *Unmerge); 296 } 297 298 return GCDTy; 299 } 300 301 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 302 SmallVectorImpl<Register> &VRegs, 303 unsigned PadStrategy) { 304 LLT LCMTy = getLCMType(DstTy, NarrowTy); 305 306 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 307 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 308 int NumOrigSrc = VRegs.size(); 309 310 Register PadReg; 311 312 // Get a value we can use to pad the source value if the sources won't evenly 313 // cover the result type. 314 if (NumOrigSrc < NumParts * NumSubParts) { 315 if (PadStrategy == TargetOpcode::G_ZEXT) 316 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 317 else if (PadStrategy == TargetOpcode::G_ANYEXT) 318 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 319 else { 320 assert(PadStrategy == TargetOpcode::G_SEXT); 321 322 // Shift the sign bit of the low register through the high register. 323 auto ShiftAmt = 324 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 325 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 326 } 327 } 328 329 // Registers for the final merge to be produced. 330 SmallVector<Register, 4> Remerge(NumParts); 331 332 // Registers needed for intermediate merges, which will be merged into a 333 // source for Remerge. 334 SmallVector<Register, 4> SubMerge(NumSubParts); 335 336 // Once we've fully read off the end of the original source bits, we can reuse 337 // the same high bits for remaining padding elements. 338 Register AllPadReg; 339 340 // Build merges to the LCM type to cover the original result type. 341 for (int I = 0; I != NumParts; ++I) { 342 bool AllMergePartsArePadding = true; 343 344 // Build the requested merges to the requested type. 345 for (int J = 0; J != NumSubParts; ++J) { 346 int Idx = I * NumSubParts + J; 347 if (Idx >= NumOrigSrc) { 348 SubMerge[J] = PadReg; 349 continue; 350 } 351 352 SubMerge[J] = VRegs[Idx]; 353 354 // There are meaningful bits here we can't reuse later. 355 AllMergePartsArePadding = false; 356 } 357 358 // If we've filled up a complete piece with padding bits, we can directly 359 // emit the natural sized constant if applicable, rather than a merge of 360 // smaller constants. 361 if (AllMergePartsArePadding && !AllPadReg) { 362 if (PadStrategy == TargetOpcode::G_ANYEXT) 363 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 364 else if (PadStrategy == TargetOpcode::G_ZEXT) 365 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 366 367 // If this is a sign extension, we can't materialize a trivial constant 368 // with the right type and have to produce a merge. 369 } 370 371 if (AllPadReg) { 372 // Avoid creating additional instructions if we're just adding additional 373 // copies of padding bits. 374 Remerge[I] = AllPadReg; 375 continue; 376 } 377 378 if (NumSubParts == 1) 379 Remerge[I] = SubMerge[0]; 380 else 381 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 382 383 // In the sign extend padding case, re-use the first all-signbit merge. 384 if (AllMergePartsArePadding && !AllPadReg) 385 AllPadReg = Remerge[I]; 386 } 387 388 VRegs = std::move(Remerge); 389 return LCMTy; 390 } 391 392 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 393 ArrayRef<Register> RemergeRegs) { 394 LLT DstTy = MRI.getType(DstReg); 395 396 // Create the merge to the widened source, and extract the relevant bits into 397 // the result. 398 399 if (DstTy == LCMTy) { 400 MIRBuilder.buildMerge(DstReg, RemergeRegs); 401 return; 402 } 403 404 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 405 if (DstTy.isScalar() && LCMTy.isScalar()) { 406 MIRBuilder.buildTrunc(DstReg, Remerge); 407 return; 408 } 409 410 if (LCMTy.isVector()) { 411 MIRBuilder.buildExtract(DstReg, Remerge, 0); 412 return; 413 } 414 415 llvm_unreachable("unhandled case"); 416 } 417 418 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 419 switch (Opcode) { 420 case TargetOpcode::G_SDIV: 421 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 422 switch (Size) { 423 case 32: 424 return RTLIB::SDIV_I32; 425 case 64: 426 return RTLIB::SDIV_I64; 427 case 128: 428 return RTLIB::SDIV_I128; 429 default: 430 llvm_unreachable("unexpected size"); 431 } 432 case TargetOpcode::G_UDIV: 433 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 434 switch (Size) { 435 case 32: 436 return RTLIB::UDIV_I32; 437 case 64: 438 return RTLIB::UDIV_I64; 439 case 128: 440 return RTLIB::UDIV_I128; 441 default: 442 llvm_unreachable("unexpected size"); 443 } 444 case TargetOpcode::G_SREM: 445 assert((Size == 32 || Size == 64) && "Unsupported size"); 446 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 447 case TargetOpcode::G_UREM: 448 assert((Size == 32 || Size == 64) && "Unsupported size"); 449 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 450 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 451 assert(Size == 32 && "Unsupported size"); 452 return RTLIB::CTLZ_I32; 453 case TargetOpcode::G_FADD: 454 assert((Size == 32 || Size == 64) && "Unsupported size"); 455 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 456 case TargetOpcode::G_FSUB: 457 assert((Size == 32 || Size == 64) && "Unsupported size"); 458 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 459 case TargetOpcode::G_FMUL: 460 assert((Size == 32 || Size == 64) && "Unsupported size"); 461 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 462 case TargetOpcode::G_FDIV: 463 assert((Size == 32 || Size == 64) && "Unsupported size"); 464 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 465 case TargetOpcode::G_FEXP: 466 assert((Size == 32 || Size == 64) && "Unsupported size"); 467 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 468 case TargetOpcode::G_FEXP2: 469 assert((Size == 32 || Size == 64) && "Unsupported size"); 470 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 471 case TargetOpcode::G_FREM: 472 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 473 case TargetOpcode::G_FPOW: 474 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 475 case TargetOpcode::G_FMA: 476 assert((Size == 32 || Size == 64) && "Unsupported size"); 477 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 478 case TargetOpcode::G_FSIN: 479 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 480 return Size == 128 ? RTLIB::SIN_F128 481 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 482 case TargetOpcode::G_FCOS: 483 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 484 return Size == 128 ? RTLIB::COS_F128 485 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 486 case TargetOpcode::G_FLOG10: 487 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 488 return Size == 128 ? RTLIB::LOG10_F128 489 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 490 case TargetOpcode::G_FLOG: 491 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 492 return Size == 128 ? RTLIB::LOG_F128 493 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 494 case TargetOpcode::G_FLOG2: 495 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 496 return Size == 128 ? RTLIB::LOG2_F128 497 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 498 case TargetOpcode::G_FCEIL: 499 assert((Size == 32 || Size == 64) && "Unsupported size"); 500 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 501 case TargetOpcode::G_FFLOOR: 502 assert((Size == 32 || Size == 64) && "Unsupported size"); 503 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 504 } 505 llvm_unreachable("Unknown libcall function"); 506 } 507 508 /// True if an instruction is in tail position in its caller. Intended for 509 /// legalizing libcalls as tail calls when possible. 510 static bool isLibCallInTailPosition(MachineInstr &MI) { 511 const Function &F = MI.getParent()->getParent()->getFunction(); 512 513 // Conservatively require the attributes of the call to match those of 514 // the return. Ignore NoAlias and NonNull because they don't affect the 515 // call sequence. 516 AttributeList CallerAttrs = F.getAttributes(); 517 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 518 .removeAttribute(Attribute::NoAlias) 519 .removeAttribute(Attribute::NonNull) 520 .hasAttributes()) 521 return false; 522 523 // It's not safe to eliminate the sign / zero extension of the return value. 524 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 525 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 526 return false; 527 528 // Only tail call if the following instruction is a standard return. 529 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 530 MachineInstr *Next = MI.getNextNode(); 531 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 532 return false; 533 534 return true; 535 } 536 537 LegalizerHelper::LegalizeResult 538 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 539 const CallLowering::ArgInfo &Result, 540 ArrayRef<CallLowering::ArgInfo> Args) { 541 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 542 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 543 const char *Name = TLI.getLibcallName(Libcall); 544 545 CallLowering::CallLoweringInfo Info; 546 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 547 Info.Callee = MachineOperand::CreateES(Name); 548 Info.OrigRet = Result; 549 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 550 if (!CLI.lowerCall(MIRBuilder, Info)) 551 return LegalizerHelper::UnableToLegalize; 552 553 return LegalizerHelper::Legalized; 554 } 555 556 // Useful for libcalls where all operands have the same type. 557 static LegalizerHelper::LegalizeResult 558 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 559 Type *OpType) { 560 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 561 562 SmallVector<CallLowering::ArgInfo, 3> Args; 563 for (unsigned i = 1; i < MI.getNumOperands(); i++) 564 Args.push_back({MI.getOperand(i).getReg(), OpType}); 565 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 566 Args); 567 } 568 569 LegalizerHelper::LegalizeResult 570 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 571 MachineInstr &MI) { 572 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 573 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 574 575 SmallVector<CallLowering::ArgInfo, 3> Args; 576 // Add all the args, except for the last which is an imm denoting 'tail'. 577 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 578 Register Reg = MI.getOperand(i).getReg(); 579 580 // Need derive an IR type for call lowering. 581 LLT OpLLT = MRI.getType(Reg); 582 Type *OpTy = nullptr; 583 if (OpLLT.isPointer()) 584 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 585 else 586 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 587 Args.push_back({Reg, OpTy}); 588 } 589 590 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 591 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 592 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 593 RTLIB::Libcall RTLibcall; 594 switch (ID) { 595 case Intrinsic::memcpy: 596 RTLibcall = RTLIB::MEMCPY; 597 break; 598 case Intrinsic::memset: 599 RTLibcall = RTLIB::MEMSET; 600 break; 601 case Intrinsic::memmove: 602 RTLibcall = RTLIB::MEMMOVE; 603 break; 604 default: 605 return LegalizerHelper::UnableToLegalize; 606 } 607 const char *Name = TLI.getLibcallName(RTLibcall); 608 609 MIRBuilder.setInstr(MI); 610 611 CallLowering::CallLoweringInfo Info; 612 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 613 Info.Callee = MachineOperand::CreateES(Name); 614 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 615 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 616 isLibCallInTailPosition(MI); 617 618 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 619 if (!CLI.lowerCall(MIRBuilder, Info)) 620 return LegalizerHelper::UnableToLegalize; 621 622 if (Info.LoweredTailCall) { 623 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 624 // We must have a return following the call to get past 625 // isLibCallInTailPosition. 626 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 627 "Expected instr following MI to be a return?"); 628 629 // We lowered a tail call, so the call is now the return from the block. 630 // Delete the old return. 631 MI.getNextNode()->eraseFromParent(); 632 } 633 634 return LegalizerHelper::Legalized; 635 } 636 637 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 638 Type *FromType) { 639 auto ToMVT = MVT::getVT(ToType); 640 auto FromMVT = MVT::getVT(FromType); 641 642 switch (Opcode) { 643 case TargetOpcode::G_FPEXT: 644 return RTLIB::getFPEXT(FromMVT, ToMVT); 645 case TargetOpcode::G_FPTRUNC: 646 return RTLIB::getFPROUND(FromMVT, ToMVT); 647 case TargetOpcode::G_FPTOSI: 648 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 649 case TargetOpcode::G_FPTOUI: 650 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 651 case TargetOpcode::G_SITOFP: 652 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 653 case TargetOpcode::G_UITOFP: 654 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 655 } 656 llvm_unreachable("Unsupported libcall function"); 657 } 658 659 static LegalizerHelper::LegalizeResult 660 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 661 Type *FromType) { 662 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 663 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 664 {{MI.getOperand(1).getReg(), FromType}}); 665 } 666 667 LegalizerHelper::LegalizeResult 668 LegalizerHelper::libcall(MachineInstr &MI) { 669 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 670 unsigned Size = LLTy.getSizeInBits(); 671 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 672 673 MIRBuilder.setInstr(MI); 674 675 switch (MI.getOpcode()) { 676 default: 677 return UnableToLegalize; 678 case TargetOpcode::G_SDIV: 679 case TargetOpcode::G_UDIV: 680 case TargetOpcode::G_SREM: 681 case TargetOpcode::G_UREM: 682 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 683 Type *HLTy = IntegerType::get(Ctx, Size); 684 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 685 if (Status != Legalized) 686 return Status; 687 break; 688 } 689 case TargetOpcode::G_FADD: 690 case TargetOpcode::G_FSUB: 691 case TargetOpcode::G_FMUL: 692 case TargetOpcode::G_FDIV: 693 case TargetOpcode::G_FMA: 694 case TargetOpcode::G_FPOW: 695 case TargetOpcode::G_FREM: 696 case TargetOpcode::G_FCOS: 697 case TargetOpcode::G_FSIN: 698 case TargetOpcode::G_FLOG10: 699 case TargetOpcode::G_FLOG: 700 case TargetOpcode::G_FLOG2: 701 case TargetOpcode::G_FEXP: 702 case TargetOpcode::G_FEXP2: 703 case TargetOpcode::G_FCEIL: 704 case TargetOpcode::G_FFLOOR: { 705 if (Size > 64) { 706 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 707 return UnableToLegalize; 708 } 709 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 710 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 711 if (Status != Legalized) 712 return Status; 713 break; 714 } 715 case TargetOpcode::G_FPEXT: { 716 // FIXME: Support other floating point types (half, fp128 etc) 717 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 718 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 719 if (ToSize != 64 || FromSize != 32) 720 return UnableToLegalize; 721 LegalizeResult Status = conversionLibcall( 722 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 723 if (Status != Legalized) 724 return Status; 725 break; 726 } 727 case TargetOpcode::G_FPTRUNC: { 728 // FIXME: Support other floating point types (half, fp128 etc) 729 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 730 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 731 if (ToSize != 32 || FromSize != 64) 732 return UnableToLegalize; 733 LegalizeResult Status = conversionLibcall( 734 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 735 if (Status != Legalized) 736 return Status; 737 break; 738 } 739 case TargetOpcode::G_FPTOSI: 740 case TargetOpcode::G_FPTOUI: { 741 // FIXME: Support other types 742 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 743 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 744 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 745 return UnableToLegalize; 746 LegalizeResult Status = conversionLibcall( 747 MI, MIRBuilder, 748 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 749 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 750 if (Status != Legalized) 751 return Status; 752 break; 753 } 754 case TargetOpcode::G_SITOFP: 755 case TargetOpcode::G_UITOFP: { 756 // FIXME: Support other types 757 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 758 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 759 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 760 return UnableToLegalize; 761 LegalizeResult Status = conversionLibcall( 762 MI, MIRBuilder, 763 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 764 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 765 if (Status != Legalized) 766 return Status; 767 break; 768 } 769 } 770 771 MI.eraseFromParent(); 772 return Legalized; 773 } 774 775 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 776 unsigned TypeIdx, 777 LLT NarrowTy) { 778 MIRBuilder.setInstr(MI); 779 780 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 781 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 782 783 switch (MI.getOpcode()) { 784 default: 785 return UnableToLegalize; 786 case TargetOpcode::G_IMPLICIT_DEF: { 787 // FIXME: add support for when SizeOp0 isn't an exact multiple of 788 // NarrowSize. 789 if (SizeOp0 % NarrowSize != 0) 790 return UnableToLegalize; 791 int NumParts = SizeOp0 / NarrowSize; 792 793 SmallVector<Register, 2> DstRegs; 794 for (int i = 0; i < NumParts; ++i) 795 DstRegs.push_back( 796 MIRBuilder.buildUndef(NarrowTy).getReg(0)); 797 798 Register DstReg = MI.getOperand(0).getReg(); 799 if(MRI.getType(DstReg).isVector()) 800 MIRBuilder.buildBuildVector(DstReg, DstRegs); 801 else 802 MIRBuilder.buildMerge(DstReg, DstRegs); 803 MI.eraseFromParent(); 804 return Legalized; 805 } 806 case TargetOpcode::G_CONSTANT: { 807 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 808 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 809 unsigned TotalSize = Ty.getSizeInBits(); 810 unsigned NarrowSize = NarrowTy.getSizeInBits(); 811 int NumParts = TotalSize / NarrowSize; 812 813 SmallVector<Register, 4> PartRegs; 814 for (int I = 0; I != NumParts; ++I) { 815 unsigned Offset = I * NarrowSize; 816 auto K = MIRBuilder.buildConstant(NarrowTy, 817 Val.lshr(Offset).trunc(NarrowSize)); 818 PartRegs.push_back(K.getReg(0)); 819 } 820 821 LLT LeftoverTy; 822 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 823 SmallVector<Register, 1> LeftoverRegs; 824 if (LeftoverBits != 0) { 825 LeftoverTy = LLT::scalar(LeftoverBits); 826 auto K = MIRBuilder.buildConstant( 827 LeftoverTy, 828 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 829 LeftoverRegs.push_back(K.getReg(0)); 830 } 831 832 insertParts(MI.getOperand(0).getReg(), 833 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 834 835 MI.eraseFromParent(); 836 return Legalized; 837 } 838 case TargetOpcode::G_SEXT: 839 case TargetOpcode::G_ZEXT: 840 case TargetOpcode::G_ANYEXT: 841 return narrowScalarExt(MI, TypeIdx, NarrowTy); 842 case TargetOpcode::G_TRUNC: { 843 if (TypeIdx != 1) 844 return UnableToLegalize; 845 846 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 847 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 848 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 849 return UnableToLegalize; 850 } 851 852 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 853 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 854 MI.eraseFromParent(); 855 return Legalized; 856 } 857 858 case TargetOpcode::G_ADD: { 859 // FIXME: add support for when SizeOp0 isn't an exact multiple of 860 // NarrowSize. 861 if (SizeOp0 % NarrowSize != 0) 862 return UnableToLegalize; 863 // Expand in terms of carry-setting/consuming G_ADDE instructions. 864 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 865 866 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 867 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 868 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 869 870 Register CarryIn; 871 for (int i = 0; i < NumParts; ++i) { 872 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 873 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 874 875 if (i == 0) 876 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 877 else { 878 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 879 Src2Regs[i], CarryIn); 880 } 881 882 DstRegs.push_back(DstReg); 883 CarryIn = CarryOut; 884 } 885 Register DstReg = MI.getOperand(0).getReg(); 886 if(MRI.getType(DstReg).isVector()) 887 MIRBuilder.buildBuildVector(DstReg, DstRegs); 888 else 889 MIRBuilder.buildMerge(DstReg, DstRegs); 890 MI.eraseFromParent(); 891 return Legalized; 892 } 893 case TargetOpcode::G_SUB: { 894 // FIXME: add support for when SizeOp0 isn't an exact multiple of 895 // NarrowSize. 896 if (SizeOp0 % NarrowSize != 0) 897 return UnableToLegalize; 898 899 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 900 901 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 902 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 903 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 904 905 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 906 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 907 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 908 {Src1Regs[0], Src2Regs[0]}); 909 DstRegs.push_back(DstReg); 910 Register BorrowIn = BorrowOut; 911 for (int i = 1; i < NumParts; ++i) { 912 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 913 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 914 915 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 916 {Src1Regs[i], Src2Regs[i], BorrowIn}); 917 918 DstRegs.push_back(DstReg); 919 BorrowIn = BorrowOut; 920 } 921 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 922 MI.eraseFromParent(); 923 return Legalized; 924 } 925 case TargetOpcode::G_MUL: 926 case TargetOpcode::G_UMULH: 927 return narrowScalarMul(MI, NarrowTy); 928 case TargetOpcode::G_EXTRACT: 929 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 930 case TargetOpcode::G_INSERT: 931 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 932 case TargetOpcode::G_LOAD: { 933 const auto &MMO = **MI.memoperands_begin(); 934 Register DstReg = MI.getOperand(0).getReg(); 935 LLT DstTy = MRI.getType(DstReg); 936 if (DstTy.isVector()) 937 return UnableToLegalize; 938 939 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 940 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 941 auto &MMO = **MI.memoperands_begin(); 942 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 943 MIRBuilder.buildAnyExt(DstReg, TmpReg); 944 MI.eraseFromParent(); 945 return Legalized; 946 } 947 948 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 949 } 950 case TargetOpcode::G_ZEXTLOAD: 951 case TargetOpcode::G_SEXTLOAD: { 952 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 953 Register DstReg = MI.getOperand(0).getReg(); 954 Register PtrReg = MI.getOperand(1).getReg(); 955 956 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 957 auto &MMO = **MI.memoperands_begin(); 958 if (MMO.getSizeInBits() == NarrowSize) { 959 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 960 } else { 961 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 962 } 963 964 if (ZExt) 965 MIRBuilder.buildZExt(DstReg, TmpReg); 966 else 967 MIRBuilder.buildSExt(DstReg, TmpReg); 968 969 MI.eraseFromParent(); 970 return Legalized; 971 } 972 case TargetOpcode::G_STORE: { 973 const auto &MMO = **MI.memoperands_begin(); 974 975 Register SrcReg = MI.getOperand(0).getReg(); 976 LLT SrcTy = MRI.getType(SrcReg); 977 if (SrcTy.isVector()) 978 return UnableToLegalize; 979 980 int NumParts = SizeOp0 / NarrowSize; 981 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 982 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 983 if (SrcTy.isVector() && LeftoverBits != 0) 984 return UnableToLegalize; 985 986 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 987 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 988 auto &MMO = **MI.memoperands_begin(); 989 MIRBuilder.buildTrunc(TmpReg, SrcReg); 990 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 991 MI.eraseFromParent(); 992 return Legalized; 993 } 994 995 return reduceLoadStoreWidth(MI, 0, NarrowTy); 996 } 997 case TargetOpcode::G_SELECT: 998 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 999 case TargetOpcode::G_AND: 1000 case TargetOpcode::G_OR: 1001 case TargetOpcode::G_XOR: { 1002 // Legalize bitwise operation: 1003 // A = BinOp<Ty> B, C 1004 // into: 1005 // B1, ..., BN = G_UNMERGE_VALUES B 1006 // C1, ..., CN = G_UNMERGE_VALUES C 1007 // A1 = BinOp<Ty/N> B1, C2 1008 // ... 1009 // AN = BinOp<Ty/N> BN, CN 1010 // A = G_MERGE_VALUES A1, ..., AN 1011 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 1012 } 1013 case TargetOpcode::G_SHL: 1014 case TargetOpcode::G_LSHR: 1015 case TargetOpcode::G_ASHR: 1016 return narrowScalarShift(MI, TypeIdx, NarrowTy); 1017 case TargetOpcode::G_CTLZ: 1018 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1019 case TargetOpcode::G_CTTZ: 1020 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1021 case TargetOpcode::G_CTPOP: 1022 if (TypeIdx == 1) 1023 switch (MI.getOpcode()) { 1024 case TargetOpcode::G_CTLZ: 1025 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 1026 case TargetOpcode::G_CTTZ: 1027 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1028 case TargetOpcode::G_CTPOP: 1029 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1030 default: 1031 return UnableToLegalize; 1032 } 1033 1034 Observer.changingInstr(MI); 1035 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1036 Observer.changedInstr(MI); 1037 return Legalized; 1038 case TargetOpcode::G_INTTOPTR: 1039 if (TypeIdx != 1) 1040 return UnableToLegalize; 1041 1042 Observer.changingInstr(MI); 1043 narrowScalarSrc(MI, NarrowTy, 1); 1044 Observer.changedInstr(MI); 1045 return Legalized; 1046 case TargetOpcode::G_PTRTOINT: 1047 if (TypeIdx != 0) 1048 return UnableToLegalize; 1049 1050 Observer.changingInstr(MI); 1051 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1052 Observer.changedInstr(MI); 1053 return Legalized; 1054 case TargetOpcode::G_PHI: { 1055 unsigned NumParts = SizeOp0 / NarrowSize; 1056 SmallVector<Register, 2> DstRegs(NumParts); 1057 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1058 Observer.changingInstr(MI); 1059 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1060 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1061 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1062 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1063 SrcRegs[i / 2]); 1064 } 1065 MachineBasicBlock &MBB = *MI.getParent(); 1066 MIRBuilder.setInsertPt(MBB, MI); 1067 for (unsigned i = 0; i < NumParts; ++i) { 1068 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1069 MachineInstrBuilder MIB = 1070 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1071 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1072 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1073 } 1074 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1075 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1076 Observer.changedInstr(MI); 1077 MI.eraseFromParent(); 1078 return Legalized; 1079 } 1080 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1081 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1082 if (TypeIdx != 2) 1083 return UnableToLegalize; 1084 1085 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1086 Observer.changingInstr(MI); 1087 narrowScalarSrc(MI, NarrowTy, OpIdx); 1088 Observer.changedInstr(MI); 1089 return Legalized; 1090 } 1091 case TargetOpcode::G_ICMP: { 1092 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1093 if (NarrowSize * 2 != SrcSize) 1094 return UnableToLegalize; 1095 1096 Observer.changingInstr(MI); 1097 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1098 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1099 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1100 1101 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1102 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1103 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1104 1105 CmpInst::Predicate Pred = 1106 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1107 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1108 1109 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1110 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1111 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1112 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1113 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1114 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1115 } else { 1116 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1117 MachineInstrBuilder CmpHEQ = 1118 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1119 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1120 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1121 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1122 } 1123 Observer.changedInstr(MI); 1124 MI.eraseFromParent(); 1125 return Legalized; 1126 } 1127 case TargetOpcode::G_SEXT_INREG: { 1128 if (TypeIdx != 0) 1129 return UnableToLegalize; 1130 1131 if (!MI.getOperand(2).isImm()) 1132 return UnableToLegalize; 1133 int64_t SizeInBits = MI.getOperand(2).getImm(); 1134 1135 // So long as the new type has more bits than the bits we're extending we 1136 // don't need to break it apart. 1137 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1138 Observer.changingInstr(MI); 1139 // We don't lose any non-extension bits by truncating the src and 1140 // sign-extending the dst. 1141 MachineOperand &MO1 = MI.getOperand(1); 1142 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1143 MO1.setReg(TruncMIB.getReg(0)); 1144 1145 MachineOperand &MO2 = MI.getOperand(0); 1146 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1147 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1148 MIRBuilder.buildSExt(MO2, DstExt); 1149 MO2.setReg(DstExt); 1150 Observer.changedInstr(MI); 1151 return Legalized; 1152 } 1153 1154 // Break it apart. Components below the extension point are unmodified. The 1155 // component containing the extension point becomes a narrower SEXT_INREG. 1156 // Components above it are ashr'd from the component containing the 1157 // extension point. 1158 if (SizeOp0 % NarrowSize != 0) 1159 return UnableToLegalize; 1160 int NumParts = SizeOp0 / NarrowSize; 1161 1162 // List the registers where the destination will be scattered. 1163 SmallVector<Register, 2> DstRegs; 1164 // List the registers where the source will be split. 1165 SmallVector<Register, 2> SrcRegs; 1166 1167 // Create all the temporary registers. 1168 for (int i = 0; i < NumParts; ++i) { 1169 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1170 1171 SrcRegs.push_back(SrcReg); 1172 } 1173 1174 // Explode the big arguments into smaller chunks. 1175 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1176 1177 Register AshrCstReg = 1178 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1179 .getReg(0); 1180 Register FullExtensionReg = 0; 1181 Register PartialExtensionReg = 0; 1182 1183 // Do the operation on each small part. 1184 for (int i = 0; i < NumParts; ++i) { 1185 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1186 DstRegs.push_back(SrcRegs[i]); 1187 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1188 assert(PartialExtensionReg && 1189 "Expected to visit partial extension before full"); 1190 if (FullExtensionReg) { 1191 DstRegs.push_back(FullExtensionReg); 1192 continue; 1193 } 1194 DstRegs.push_back( 1195 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1196 .getReg(0)); 1197 FullExtensionReg = DstRegs.back(); 1198 } else { 1199 DstRegs.push_back( 1200 MIRBuilder 1201 .buildInstr( 1202 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1203 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1204 .getReg(0)); 1205 PartialExtensionReg = DstRegs.back(); 1206 } 1207 } 1208 1209 // Gather the destination registers into the final destination. 1210 Register DstReg = MI.getOperand(0).getReg(); 1211 MIRBuilder.buildMerge(DstReg, DstRegs); 1212 MI.eraseFromParent(); 1213 return Legalized; 1214 } 1215 case TargetOpcode::G_BSWAP: 1216 case TargetOpcode::G_BITREVERSE: { 1217 if (SizeOp0 % NarrowSize != 0) 1218 return UnableToLegalize; 1219 1220 Observer.changingInstr(MI); 1221 SmallVector<Register, 2> SrcRegs, DstRegs; 1222 unsigned NumParts = SizeOp0 / NarrowSize; 1223 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1224 1225 for (unsigned i = 0; i < NumParts; ++i) { 1226 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1227 {SrcRegs[NumParts - 1 - i]}); 1228 DstRegs.push_back(DstPart.getReg(0)); 1229 } 1230 1231 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1232 1233 Observer.changedInstr(MI); 1234 MI.eraseFromParent(); 1235 return Legalized; 1236 } 1237 } 1238 } 1239 1240 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1241 unsigned OpIdx, unsigned ExtOpcode) { 1242 MachineOperand &MO = MI.getOperand(OpIdx); 1243 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1244 MO.setReg(ExtB.getReg(0)); 1245 } 1246 1247 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1248 unsigned OpIdx) { 1249 MachineOperand &MO = MI.getOperand(OpIdx); 1250 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1251 MO.setReg(ExtB.getReg(0)); 1252 } 1253 1254 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1255 unsigned OpIdx, unsigned TruncOpcode) { 1256 MachineOperand &MO = MI.getOperand(OpIdx); 1257 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1258 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1259 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1260 MO.setReg(DstExt); 1261 } 1262 1263 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1264 unsigned OpIdx, unsigned ExtOpcode) { 1265 MachineOperand &MO = MI.getOperand(OpIdx); 1266 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1267 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1268 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1269 MO.setReg(DstTrunc); 1270 } 1271 1272 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1273 unsigned OpIdx) { 1274 MachineOperand &MO = MI.getOperand(OpIdx); 1275 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1276 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1277 MIRBuilder.buildExtract(MO, DstExt, 0); 1278 MO.setReg(DstExt); 1279 } 1280 1281 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1282 unsigned OpIdx) { 1283 MachineOperand &MO = MI.getOperand(OpIdx); 1284 1285 LLT OldTy = MRI.getType(MO.getReg()); 1286 unsigned OldElts = OldTy.getNumElements(); 1287 unsigned NewElts = MoreTy.getNumElements(); 1288 1289 unsigned NumParts = NewElts / OldElts; 1290 1291 // Use concat_vectors if the result is a multiple of the number of elements. 1292 if (NumParts * OldElts == NewElts) { 1293 SmallVector<Register, 8> Parts; 1294 Parts.push_back(MO.getReg()); 1295 1296 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1297 for (unsigned I = 1; I != NumParts; ++I) 1298 Parts.push_back(ImpDef); 1299 1300 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1301 MO.setReg(Concat.getReg(0)); 1302 return; 1303 } 1304 1305 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1306 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1307 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1308 MO.setReg(MoreReg); 1309 } 1310 1311 LegalizerHelper::LegalizeResult 1312 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1313 LLT WideTy) { 1314 if (TypeIdx != 1) 1315 return UnableToLegalize; 1316 1317 Register DstReg = MI.getOperand(0).getReg(); 1318 LLT DstTy = MRI.getType(DstReg); 1319 if (DstTy.isVector()) 1320 return UnableToLegalize; 1321 1322 Register Src1 = MI.getOperand(1).getReg(); 1323 LLT SrcTy = MRI.getType(Src1); 1324 const int DstSize = DstTy.getSizeInBits(); 1325 const int SrcSize = SrcTy.getSizeInBits(); 1326 const int WideSize = WideTy.getSizeInBits(); 1327 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1328 1329 unsigned NumOps = MI.getNumOperands(); 1330 unsigned NumSrc = MI.getNumOperands() - 1; 1331 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1332 1333 if (WideSize >= DstSize) { 1334 // Directly pack the bits in the target type. 1335 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1336 1337 for (unsigned I = 2; I != NumOps; ++I) { 1338 const unsigned Offset = (I - 1) * PartSize; 1339 1340 Register SrcReg = MI.getOperand(I).getReg(); 1341 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1342 1343 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1344 1345 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1346 MRI.createGenericVirtualRegister(WideTy); 1347 1348 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1349 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1350 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1351 ResultReg = NextResult; 1352 } 1353 1354 if (WideSize > DstSize) 1355 MIRBuilder.buildTrunc(DstReg, ResultReg); 1356 else if (DstTy.isPointer()) 1357 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1358 1359 MI.eraseFromParent(); 1360 return Legalized; 1361 } 1362 1363 // Unmerge the original values to the GCD type, and recombine to the next 1364 // multiple greater than the original type. 1365 // 1366 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1367 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1368 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1369 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1370 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1371 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1372 // %12:_(s12) = G_MERGE_VALUES %10, %11 1373 // 1374 // Padding with undef if necessary: 1375 // 1376 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1377 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1378 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1379 // %7:_(s2) = G_IMPLICIT_DEF 1380 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1381 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1382 // %10:_(s12) = G_MERGE_VALUES %8, %9 1383 1384 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1385 LLT GCDTy = LLT::scalar(GCD); 1386 1387 SmallVector<Register, 8> Parts; 1388 SmallVector<Register, 8> NewMergeRegs; 1389 SmallVector<Register, 8> Unmerges; 1390 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1391 1392 // Decompose the original operands if they don't evenly divide. 1393 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1394 Register SrcReg = MI.getOperand(I).getReg(); 1395 if (GCD == SrcSize) { 1396 Unmerges.push_back(SrcReg); 1397 } else { 1398 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1399 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1400 Unmerges.push_back(Unmerge.getReg(J)); 1401 } 1402 } 1403 1404 // Pad with undef to the next size that is a multiple of the requested size. 1405 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1406 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1407 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1408 Unmerges.push_back(UndefReg); 1409 } 1410 1411 const int PartsPerGCD = WideSize / GCD; 1412 1413 // Build merges of each piece. 1414 ArrayRef<Register> Slicer(Unmerges); 1415 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1416 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1417 NewMergeRegs.push_back(Merge.getReg(0)); 1418 } 1419 1420 // A truncate may be necessary if the requested type doesn't evenly divide the 1421 // original result type. 1422 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1423 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1424 } else { 1425 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1426 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1427 } 1428 1429 MI.eraseFromParent(); 1430 return Legalized; 1431 } 1432 1433 LegalizerHelper::LegalizeResult 1434 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1435 LLT WideTy) { 1436 if (TypeIdx != 0) 1437 return UnableToLegalize; 1438 1439 int NumDst = MI.getNumOperands() - 1; 1440 Register SrcReg = MI.getOperand(NumDst).getReg(); 1441 LLT SrcTy = MRI.getType(SrcReg); 1442 if (SrcTy.isVector()) 1443 return UnableToLegalize; 1444 1445 Register Dst0Reg = MI.getOperand(0).getReg(); 1446 LLT DstTy = MRI.getType(Dst0Reg); 1447 if (!DstTy.isScalar()) 1448 return UnableToLegalize; 1449 1450 if (WideTy.getSizeInBits() == SrcTy.getSizeInBits()) { 1451 if (SrcTy.isPointer()) { 1452 const DataLayout &DL = MIRBuilder.getDataLayout(); 1453 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1454 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 1455 return UnableToLegalize; 1456 } 1457 1458 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1459 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1460 } 1461 1462 // Theres no unmerge type to target. Directly extract the bits from the 1463 // source type 1464 unsigned DstSize = DstTy.getSizeInBits(); 1465 1466 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1467 for (int I = 1; I != NumDst; ++I) { 1468 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1469 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1470 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1471 } 1472 1473 MI.eraseFromParent(); 1474 return Legalized; 1475 } 1476 1477 // TODO 1478 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1479 return UnableToLegalize; 1480 1481 // Extend the source to a wider type. 1482 LLT LCMTy = getLCMType(SrcTy, WideTy); 1483 1484 Register WideSrc = SrcReg; 1485 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1486 // TODO: If this is an integral address space, cast to integer and anyext. 1487 if (SrcTy.isPointer()) { 1488 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1489 return UnableToLegalize; 1490 } 1491 1492 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1493 } 1494 1495 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1496 1497 // Create a sequence of unmerges to the original results. since we may have 1498 // widened the source, we will need to pad the results with dead defs to cover 1499 // the source register. 1500 // e.g. widen s16 to s32: 1501 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1502 // 1503 // => 1504 // %4:_(s64) = G_ANYEXT %0:_(s48) 1505 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1506 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1507 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1508 1509 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1510 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1511 1512 for (int I = 0; I != NumUnmerge; ++I) { 1513 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1514 1515 for (int J = 0; J != PartsPerUnmerge; ++J) { 1516 int Idx = I * PartsPerUnmerge + J; 1517 if (Idx < NumDst) 1518 MIB.addDef(MI.getOperand(Idx).getReg()); 1519 else { 1520 // Create dead def for excess components. 1521 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1522 } 1523 } 1524 1525 MIB.addUse(Unmerge.getReg(I)); 1526 } 1527 1528 MI.eraseFromParent(); 1529 return Legalized; 1530 } 1531 1532 LegalizerHelper::LegalizeResult 1533 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1534 LLT WideTy) { 1535 Register DstReg = MI.getOperand(0).getReg(); 1536 Register SrcReg = MI.getOperand(1).getReg(); 1537 LLT SrcTy = MRI.getType(SrcReg); 1538 1539 LLT DstTy = MRI.getType(DstReg); 1540 unsigned Offset = MI.getOperand(2).getImm(); 1541 1542 if (TypeIdx == 0) { 1543 if (SrcTy.isVector() || DstTy.isVector()) 1544 return UnableToLegalize; 1545 1546 SrcOp Src(SrcReg); 1547 if (SrcTy.isPointer()) { 1548 // Extracts from pointers can be handled only if they are really just 1549 // simple integers. 1550 const DataLayout &DL = MIRBuilder.getDataLayout(); 1551 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1552 return UnableToLegalize; 1553 1554 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1555 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1556 SrcTy = SrcAsIntTy; 1557 } 1558 1559 if (DstTy.isPointer()) 1560 return UnableToLegalize; 1561 1562 if (Offset == 0) { 1563 // Avoid a shift in the degenerate case. 1564 MIRBuilder.buildTrunc(DstReg, 1565 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1566 MI.eraseFromParent(); 1567 return Legalized; 1568 } 1569 1570 // Do a shift in the source type. 1571 LLT ShiftTy = SrcTy; 1572 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1573 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1574 ShiftTy = WideTy; 1575 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1576 return UnableToLegalize; 1577 1578 auto LShr = MIRBuilder.buildLShr( 1579 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1580 MIRBuilder.buildTrunc(DstReg, LShr); 1581 MI.eraseFromParent(); 1582 return Legalized; 1583 } 1584 1585 if (SrcTy.isScalar()) { 1586 Observer.changingInstr(MI); 1587 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1588 Observer.changedInstr(MI); 1589 return Legalized; 1590 } 1591 1592 if (!SrcTy.isVector()) 1593 return UnableToLegalize; 1594 1595 if (DstTy != SrcTy.getElementType()) 1596 return UnableToLegalize; 1597 1598 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1599 return UnableToLegalize; 1600 1601 Observer.changingInstr(MI); 1602 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1603 1604 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1605 Offset); 1606 widenScalarDst(MI, WideTy.getScalarType(), 0); 1607 Observer.changedInstr(MI); 1608 return Legalized; 1609 } 1610 1611 LegalizerHelper::LegalizeResult 1612 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1613 LLT WideTy) { 1614 if (TypeIdx != 0) 1615 return UnableToLegalize; 1616 Observer.changingInstr(MI); 1617 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1618 widenScalarDst(MI, WideTy); 1619 Observer.changedInstr(MI); 1620 return Legalized; 1621 } 1622 1623 LegalizerHelper::LegalizeResult 1624 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1625 MIRBuilder.setInstr(MI); 1626 1627 switch (MI.getOpcode()) { 1628 default: 1629 return UnableToLegalize; 1630 case TargetOpcode::G_EXTRACT: 1631 return widenScalarExtract(MI, TypeIdx, WideTy); 1632 case TargetOpcode::G_INSERT: 1633 return widenScalarInsert(MI, TypeIdx, WideTy); 1634 case TargetOpcode::G_MERGE_VALUES: 1635 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1636 case TargetOpcode::G_UNMERGE_VALUES: 1637 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1638 case TargetOpcode::G_UADDO: 1639 case TargetOpcode::G_USUBO: { 1640 if (TypeIdx == 1) 1641 return UnableToLegalize; // TODO 1642 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1643 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1644 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1645 ? TargetOpcode::G_ADD 1646 : TargetOpcode::G_SUB; 1647 // Do the arithmetic in the larger type. 1648 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1649 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1650 APInt Mask = 1651 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1652 auto AndOp = MIRBuilder.buildAnd( 1653 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1654 // There is no overflow if the AndOp is the same as NewOp. 1655 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1656 // Now trunc the NewOp to the original result. 1657 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1658 MI.eraseFromParent(); 1659 return Legalized; 1660 } 1661 case TargetOpcode::G_CTTZ: 1662 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1663 case TargetOpcode::G_CTLZ: 1664 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1665 case TargetOpcode::G_CTPOP: { 1666 if (TypeIdx == 0) { 1667 Observer.changingInstr(MI); 1668 widenScalarDst(MI, WideTy, 0); 1669 Observer.changedInstr(MI); 1670 return Legalized; 1671 } 1672 1673 Register SrcReg = MI.getOperand(1).getReg(); 1674 1675 // First ZEXT the input. 1676 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1677 LLT CurTy = MRI.getType(SrcReg); 1678 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1679 // The count is the same in the larger type except if the original 1680 // value was zero. This can be handled by setting the bit just off 1681 // the top of the original type. 1682 auto TopBit = 1683 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1684 MIBSrc = MIRBuilder.buildOr( 1685 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1686 } 1687 1688 // Perform the operation at the larger size. 1689 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1690 // This is already the correct result for CTPOP and CTTZs 1691 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1692 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1693 // The correct result is NewOp - (Difference in widety and current ty). 1694 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1695 MIBNewOp = MIRBuilder.buildSub( 1696 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1697 } 1698 1699 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1700 MI.eraseFromParent(); 1701 return Legalized; 1702 } 1703 case TargetOpcode::G_BSWAP: { 1704 Observer.changingInstr(MI); 1705 Register DstReg = MI.getOperand(0).getReg(); 1706 1707 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1708 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1709 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1710 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1711 1712 MI.getOperand(0).setReg(DstExt); 1713 1714 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1715 1716 LLT Ty = MRI.getType(DstReg); 1717 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1718 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1719 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1720 1721 MIRBuilder.buildTrunc(DstReg, ShrReg); 1722 Observer.changedInstr(MI); 1723 return Legalized; 1724 } 1725 case TargetOpcode::G_BITREVERSE: { 1726 Observer.changingInstr(MI); 1727 1728 Register DstReg = MI.getOperand(0).getReg(); 1729 LLT Ty = MRI.getType(DstReg); 1730 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1731 1732 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1733 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1734 MI.getOperand(0).setReg(DstExt); 1735 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1736 1737 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1738 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1739 MIRBuilder.buildTrunc(DstReg, Shift); 1740 Observer.changedInstr(MI); 1741 return Legalized; 1742 } 1743 case TargetOpcode::G_ADD: 1744 case TargetOpcode::G_AND: 1745 case TargetOpcode::G_MUL: 1746 case TargetOpcode::G_OR: 1747 case TargetOpcode::G_XOR: 1748 case TargetOpcode::G_SUB: 1749 // Perform operation at larger width (any extension is fines here, high bits 1750 // don't affect the result) and then truncate the result back to the 1751 // original type. 1752 Observer.changingInstr(MI); 1753 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1754 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1755 widenScalarDst(MI, WideTy); 1756 Observer.changedInstr(MI); 1757 return Legalized; 1758 1759 case TargetOpcode::G_SHL: 1760 Observer.changingInstr(MI); 1761 1762 if (TypeIdx == 0) { 1763 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1764 widenScalarDst(MI, WideTy); 1765 } else { 1766 assert(TypeIdx == 1); 1767 // The "number of bits to shift" operand must preserve its value as an 1768 // unsigned integer: 1769 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1770 } 1771 1772 Observer.changedInstr(MI); 1773 return Legalized; 1774 1775 case TargetOpcode::G_SDIV: 1776 case TargetOpcode::G_SREM: 1777 case TargetOpcode::G_SMIN: 1778 case TargetOpcode::G_SMAX: 1779 Observer.changingInstr(MI); 1780 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1781 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1782 widenScalarDst(MI, WideTy); 1783 Observer.changedInstr(MI); 1784 return Legalized; 1785 1786 case TargetOpcode::G_ASHR: 1787 case TargetOpcode::G_LSHR: 1788 Observer.changingInstr(MI); 1789 1790 if (TypeIdx == 0) { 1791 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1792 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1793 1794 widenScalarSrc(MI, WideTy, 1, CvtOp); 1795 widenScalarDst(MI, WideTy); 1796 } else { 1797 assert(TypeIdx == 1); 1798 // The "number of bits to shift" operand must preserve its value as an 1799 // unsigned integer: 1800 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1801 } 1802 1803 Observer.changedInstr(MI); 1804 return Legalized; 1805 case TargetOpcode::G_UDIV: 1806 case TargetOpcode::G_UREM: 1807 case TargetOpcode::G_UMIN: 1808 case TargetOpcode::G_UMAX: 1809 Observer.changingInstr(MI); 1810 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1811 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1812 widenScalarDst(MI, WideTy); 1813 Observer.changedInstr(MI); 1814 return Legalized; 1815 1816 case TargetOpcode::G_SELECT: 1817 Observer.changingInstr(MI); 1818 if (TypeIdx == 0) { 1819 // Perform operation at larger width (any extension is fine here, high 1820 // bits don't affect the result) and then truncate the result back to the 1821 // original type. 1822 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1823 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1824 widenScalarDst(MI, WideTy); 1825 } else { 1826 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1827 // Explicit extension is required here since high bits affect the result. 1828 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1829 } 1830 Observer.changedInstr(MI); 1831 return Legalized; 1832 1833 case TargetOpcode::G_FPTOSI: 1834 case TargetOpcode::G_FPTOUI: 1835 Observer.changingInstr(MI); 1836 1837 if (TypeIdx == 0) 1838 widenScalarDst(MI, WideTy); 1839 else 1840 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1841 1842 Observer.changedInstr(MI); 1843 return Legalized; 1844 case TargetOpcode::G_SITOFP: 1845 if (TypeIdx != 1) 1846 return UnableToLegalize; 1847 Observer.changingInstr(MI); 1848 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1849 Observer.changedInstr(MI); 1850 return Legalized; 1851 1852 case TargetOpcode::G_UITOFP: 1853 if (TypeIdx != 1) 1854 return UnableToLegalize; 1855 Observer.changingInstr(MI); 1856 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1857 Observer.changedInstr(MI); 1858 return Legalized; 1859 1860 case TargetOpcode::G_LOAD: 1861 case TargetOpcode::G_SEXTLOAD: 1862 case TargetOpcode::G_ZEXTLOAD: 1863 Observer.changingInstr(MI); 1864 widenScalarDst(MI, WideTy); 1865 Observer.changedInstr(MI); 1866 return Legalized; 1867 1868 case TargetOpcode::G_STORE: { 1869 if (TypeIdx != 0) 1870 return UnableToLegalize; 1871 1872 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1873 if (!isPowerOf2_32(Ty.getSizeInBits())) 1874 return UnableToLegalize; 1875 1876 Observer.changingInstr(MI); 1877 1878 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1879 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1880 widenScalarSrc(MI, WideTy, 0, ExtType); 1881 1882 Observer.changedInstr(MI); 1883 return Legalized; 1884 } 1885 case TargetOpcode::G_CONSTANT: { 1886 MachineOperand &SrcMO = MI.getOperand(1); 1887 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1888 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1889 MRI.getType(MI.getOperand(0).getReg())); 1890 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1891 ExtOpc == TargetOpcode::G_ANYEXT) && 1892 "Illegal Extend"); 1893 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1894 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1895 ? SrcVal.sext(WideTy.getSizeInBits()) 1896 : SrcVal.zext(WideTy.getSizeInBits()); 1897 Observer.changingInstr(MI); 1898 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1899 1900 widenScalarDst(MI, WideTy); 1901 Observer.changedInstr(MI); 1902 return Legalized; 1903 } 1904 case TargetOpcode::G_FCONSTANT: { 1905 MachineOperand &SrcMO = MI.getOperand(1); 1906 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1907 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1908 bool LosesInfo; 1909 switch (WideTy.getSizeInBits()) { 1910 case 32: 1911 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1912 &LosesInfo); 1913 break; 1914 case 64: 1915 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1916 &LosesInfo); 1917 break; 1918 default: 1919 return UnableToLegalize; 1920 } 1921 1922 assert(!LosesInfo && "extend should always be lossless"); 1923 1924 Observer.changingInstr(MI); 1925 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1926 1927 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1928 Observer.changedInstr(MI); 1929 return Legalized; 1930 } 1931 case TargetOpcode::G_IMPLICIT_DEF: { 1932 Observer.changingInstr(MI); 1933 widenScalarDst(MI, WideTy); 1934 Observer.changedInstr(MI); 1935 return Legalized; 1936 } 1937 case TargetOpcode::G_BRCOND: 1938 Observer.changingInstr(MI); 1939 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1940 Observer.changedInstr(MI); 1941 return Legalized; 1942 1943 case TargetOpcode::G_FCMP: 1944 Observer.changingInstr(MI); 1945 if (TypeIdx == 0) 1946 widenScalarDst(MI, WideTy); 1947 else { 1948 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1949 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1950 } 1951 Observer.changedInstr(MI); 1952 return Legalized; 1953 1954 case TargetOpcode::G_ICMP: 1955 Observer.changingInstr(MI); 1956 if (TypeIdx == 0) 1957 widenScalarDst(MI, WideTy); 1958 else { 1959 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1960 MI.getOperand(1).getPredicate())) 1961 ? TargetOpcode::G_SEXT 1962 : TargetOpcode::G_ZEXT; 1963 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1964 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1965 } 1966 Observer.changedInstr(MI); 1967 return Legalized; 1968 1969 case TargetOpcode::G_PTR_ADD: 1970 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1971 Observer.changingInstr(MI); 1972 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1973 Observer.changedInstr(MI); 1974 return Legalized; 1975 1976 case TargetOpcode::G_PHI: { 1977 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1978 1979 Observer.changingInstr(MI); 1980 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1981 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1982 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1983 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1984 } 1985 1986 MachineBasicBlock &MBB = *MI.getParent(); 1987 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1988 widenScalarDst(MI, WideTy); 1989 Observer.changedInstr(MI); 1990 return Legalized; 1991 } 1992 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1993 if (TypeIdx == 0) { 1994 Register VecReg = MI.getOperand(1).getReg(); 1995 LLT VecTy = MRI.getType(VecReg); 1996 Observer.changingInstr(MI); 1997 1998 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1999 WideTy.getSizeInBits()), 2000 1, TargetOpcode::G_SEXT); 2001 2002 widenScalarDst(MI, WideTy, 0); 2003 Observer.changedInstr(MI); 2004 return Legalized; 2005 } 2006 2007 if (TypeIdx != 2) 2008 return UnableToLegalize; 2009 Observer.changingInstr(MI); 2010 // TODO: Probably should be zext 2011 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2012 Observer.changedInstr(MI); 2013 return Legalized; 2014 } 2015 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2016 if (TypeIdx == 1) { 2017 Observer.changingInstr(MI); 2018 2019 Register VecReg = MI.getOperand(1).getReg(); 2020 LLT VecTy = MRI.getType(VecReg); 2021 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2022 2023 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2024 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2025 widenScalarDst(MI, WideVecTy, 0); 2026 Observer.changedInstr(MI); 2027 return Legalized; 2028 } 2029 2030 if (TypeIdx == 2) { 2031 Observer.changingInstr(MI); 2032 // TODO: Probably should be zext 2033 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2034 Observer.changedInstr(MI); 2035 } 2036 2037 return Legalized; 2038 } 2039 case TargetOpcode::G_FADD: 2040 case TargetOpcode::G_FMUL: 2041 case TargetOpcode::G_FSUB: 2042 case TargetOpcode::G_FMA: 2043 case TargetOpcode::G_FMAD: 2044 case TargetOpcode::G_FNEG: 2045 case TargetOpcode::G_FABS: 2046 case TargetOpcode::G_FCANONICALIZE: 2047 case TargetOpcode::G_FMINNUM: 2048 case TargetOpcode::G_FMAXNUM: 2049 case TargetOpcode::G_FMINNUM_IEEE: 2050 case TargetOpcode::G_FMAXNUM_IEEE: 2051 case TargetOpcode::G_FMINIMUM: 2052 case TargetOpcode::G_FMAXIMUM: 2053 case TargetOpcode::G_FDIV: 2054 case TargetOpcode::G_FREM: 2055 case TargetOpcode::G_FCEIL: 2056 case TargetOpcode::G_FFLOOR: 2057 case TargetOpcode::G_FCOS: 2058 case TargetOpcode::G_FSIN: 2059 case TargetOpcode::G_FLOG10: 2060 case TargetOpcode::G_FLOG: 2061 case TargetOpcode::G_FLOG2: 2062 case TargetOpcode::G_FRINT: 2063 case TargetOpcode::G_FNEARBYINT: 2064 case TargetOpcode::G_FSQRT: 2065 case TargetOpcode::G_FEXP: 2066 case TargetOpcode::G_FEXP2: 2067 case TargetOpcode::G_FPOW: 2068 case TargetOpcode::G_INTRINSIC_TRUNC: 2069 case TargetOpcode::G_INTRINSIC_ROUND: 2070 assert(TypeIdx == 0); 2071 Observer.changingInstr(MI); 2072 2073 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2074 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2075 2076 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2077 Observer.changedInstr(MI); 2078 return Legalized; 2079 case TargetOpcode::G_INTTOPTR: 2080 if (TypeIdx != 1) 2081 return UnableToLegalize; 2082 2083 Observer.changingInstr(MI); 2084 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2085 Observer.changedInstr(MI); 2086 return Legalized; 2087 case TargetOpcode::G_PTRTOINT: 2088 if (TypeIdx != 0) 2089 return UnableToLegalize; 2090 2091 Observer.changingInstr(MI); 2092 widenScalarDst(MI, WideTy, 0); 2093 Observer.changedInstr(MI); 2094 return Legalized; 2095 case TargetOpcode::G_BUILD_VECTOR: { 2096 Observer.changingInstr(MI); 2097 2098 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2099 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2100 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2101 2102 // Avoid changing the result vector type if the source element type was 2103 // requested. 2104 if (TypeIdx == 1) { 2105 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2106 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2107 } else { 2108 widenScalarDst(MI, WideTy, 0); 2109 } 2110 2111 Observer.changedInstr(MI); 2112 return Legalized; 2113 } 2114 case TargetOpcode::G_SEXT_INREG: 2115 if (TypeIdx != 0) 2116 return UnableToLegalize; 2117 2118 Observer.changingInstr(MI); 2119 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2120 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2121 Observer.changedInstr(MI); 2122 return Legalized; 2123 } 2124 } 2125 2126 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2127 MachineIRBuilder &B, Register Src, LLT Ty) { 2128 auto Unmerge = B.buildUnmerge(Ty, Src); 2129 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2130 Pieces.push_back(Unmerge.getReg(I)); 2131 } 2132 2133 LegalizerHelper::LegalizeResult 2134 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2135 Register Dst = MI.getOperand(0).getReg(); 2136 Register Src = MI.getOperand(1).getReg(); 2137 LLT DstTy = MRI.getType(Dst); 2138 LLT SrcTy = MRI.getType(Src); 2139 2140 if (SrcTy.isVector() && !DstTy.isVector()) { 2141 SmallVector<Register, 8> SrcRegs; 2142 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2143 MIRBuilder.buildMerge(Dst, SrcRegs); 2144 MI.eraseFromParent(); 2145 return Legalized; 2146 } 2147 2148 if (DstTy.isVector() && !SrcTy.isVector()) { 2149 SmallVector<Register, 8> SrcRegs; 2150 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2151 MIRBuilder.buildMerge(Dst, SrcRegs); 2152 MI.eraseFromParent(); 2153 return Legalized; 2154 } 2155 2156 return UnableToLegalize; 2157 } 2158 2159 LegalizerHelper::LegalizeResult 2160 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2161 using namespace TargetOpcode; 2162 MIRBuilder.setInstr(MI); 2163 2164 switch(MI.getOpcode()) { 2165 default: 2166 return UnableToLegalize; 2167 case TargetOpcode::G_BITCAST: 2168 return lowerBitcast(MI); 2169 case TargetOpcode::G_SREM: 2170 case TargetOpcode::G_UREM: { 2171 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 2172 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {QuotReg}, 2173 {MI.getOperand(1), MI.getOperand(2)}); 2174 2175 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 2176 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2)); 2177 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), ProdReg); 2178 MI.eraseFromParent(); 2179 return Legalized; 2180 } 2181 case TargetOpcode::G_SADDO: 2182 case TargetOpcode::G_SSUBO: 2183 return lowerSADDO_SSUBO(MI); 2184 case TargetOpcode::G_SMULO: 2185 case TargetOpcode::G_UMULO: { 2186 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2187 // result. 2188 Register Res = MI.getOperand(0).getReg(); 2189 Register Overflow = MI.getOperand(1).getReg(); 2190 Register LHS = MI.getOperand(2).getReg(); 2191 Register RHS = MI.getOperand(3).getReg(); 2192 2193 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2194 ? TargetOpcode::G_SMULH 2195 : TargetOpcode::G_UMULH; 2196 2197 Observer.changingInstr(MI); 2198 const auto &TII = MIRBuilder.getTII(); 2199 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2200 MI.RemoveOperand(1); 2201 Observer.changedInstr(MI); 2202 2203 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2204 2205 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2206 2207 Register Zero = MRI.createGenericVirtualRegister(Ty); 2208 MIRBuilder.buildConstant(Zero, 0); 2209 2210 // For *signed* multiply, overflow is detected by checking: 2211 // (hi != (lo >> bitwidth-1)) 2212 if (Opcode == TargetOpcode::G_SMULH) { 2213 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2214 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2215 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2216 } else { 2217 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2218 } 2219 return Legalized; 2220 } 2221 case TargetOpcode::G_FNEG: { 2222 // TODO: Handle vector types once we are able to 2223 // represent them. 2224 if (Ty.isVector()) 2225 return UnableToLegalize; 2226 Register Res = MI.getOperand(0).getReg(); 2227 Type *ZeroTy; 2228 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2229 switch (Ty.getSizeInBits()) { 2230 case 16: 2231 ZeroTy = Type::getHalfTy(Ctx); 2232 break; 2233 case 32: 2234 ZeroTy = Type::getFloatTy(Ctx); 2235 break; 2236 case 64: 2237 ZeroTy = Type::getDoubleTy(Ctx); 2238 break; 2239 case 128: 2240 ZeroTy = Type::getFP128Ty(Ctx); 2241 break; 2242 default: 2243 llvm_unreachable("unexpected floating-point type"); 2244 } 2245 ConstantFP &ZeroForNegation = 2246 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2247 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2248 Register SubByReg = MI.getOperand(1).getReg(); 2249 Register ZeroReg = Zero.getReg(0); 2250 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2251 MI.eraseFromParent(); 2252 return Legalized; 2253 } 2254 case TargetOpcode::G_FSUB: { 2255 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2256 // First, check if G_FNEG is marked as Lower. If so, we may 2257 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2258 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2259 return UnableToLegalize; 2260 Register Res = MI.getOperand(0).getReg(); 2261 Register LHS = MI.getOperand(1).getReg(); 2262 Register RHS = MI.getOperand(2).getReg(); 2263 Register Neg = MRI.createGenericVirtualRegister(Ty); 2264 MIRBuilder.buildFNeg(Neg, RHS); 2265 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2266 MI.eraseFromParent(); 2267 return Legalized; 2268 } 2269 case TargetOpcode::G_FMAD: 2270 return lowerFMad(MI); 2271 case TargetOpcode::G_INTRINSIC_ROUND: 2272 return lowerIntrinsicRound(MI); 2273 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2274 Register OldValRes = MI.getOperand(0).getReg(); 2275 Register SuccessRes = MI.getOperand(1).getReg(); 2276 Register Addr = MI.getOperand(2).getReg(); 2277 Register CmpVal = MI.getOperand(3).getReg(); 2278 Register NewVal = MI.getOperand(4).getReg(); 2279 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2280 **MI.memoperands_begin()); 2281 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2282 MI.eraseFromParent(); 2283 return Legalized; 2284 } 2285 case TargetOpcode::G_LOAD: 2286 case TargetOpcode::G_SEXTLOAD: 2287 case TargetOpcode::G_ZEXTLOAD: { 2288 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2289 Register DstReg = MI.getOperand(0).getReg(); 2290 Register PtrReg = MI.getOperand(1).getReg(); 2291 LLT DstTy = MRI.getType(DstReg); 2292 auto &MMO = **MI.memoperands_begin(); 2293 2294 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2295 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2296 // This load needs splitting into power of 2 sized loads. 2297 if (DstTy.isVector()) 2298 return UnableToLegalize; 2299 if (isPowerOf2_32(DstTy.getSizeInBits())) 2300 return UnableToLegalize; // Don't know what we're being asked to do. 2301 2302 // Our strategy here is to generate anyextending loads for the smaller 2303 // types up to next power-2 result type, and then combine the two larger 2304 // result values together, before truncating back down to the non-pow-2 2305 // type. 2306 // E.g. v1 = i24 load => 2307 // v2 = i32 load (2 byte) 2308 // v3 = i32 load (1 byte) 2309 // v4 = i32 shl v3, 16 2310 // v5 = i32 or v4, v2 2311 // v1 = i24 trunc v5 2312 // By doing this we generate the correct truncate which should get 2313 // combined away as an artifact with a matching extend. 2314 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2315 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2316 2317 MachineFunction &MF = MIRBuilder.getMF(); 2318 MachineMemOperand *LargeMMO = 2319 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2320 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2321 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2322 2323 LLT PtrTy = MRI.getType(PtrReg); 2324 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2325 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2326 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2327 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2328 auto LargeLoad = 2329 MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO); 2330 2331 auto OffsetCst = MIRBuilder.buildConstant( 2332 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2333 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2334 auto SmallPtr = 2335 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2336 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2337 *SmallMMO); 2338 2339 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2340 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2341 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2342 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2343 MI.eraseFromParent(); 2344 return Legalized; 2345 } 2346 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2347 MI.eraseFromParent(); 2348 return Legalized; 2349 } 2350 2351 if (DstTy.isScalar()) { 2352 Register TmpReg = 2353 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2354 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2355 switch (MI.getOpcode()) { 2356 default: 2357 llvm_unreachable("Unexpected opcode"); 2358 case TargetOpcode::G_LOAD: 2359 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2360 break; 2361 case TargetOpcode::G_SEXTLOAD: 2362 MIRBuilder.buildSExt(DstReg, TmpReg); 2363 break; 2364 case TargetOpcode::G_ZEXTLOAD: 2365 MIRBuilder.buildZExt(DstReg, TmpReg); 2366 break; 2367 } 2368 MI.eraseFromParent(); 2369 return Legalized; 2370 } 2371 2372 return UnableToLegalize; 2373 } 2374 case TargetOpcode::G_STORE: { 2375 // Lower a non-power of 2 store into multiple pow-2 stores. 2376 // E.g. split an i24 store into an i16 store + i8 store. 2377 // We do this by first extending the stored value to the next largest power 2378 // of 2 type, and then using truncating stores to store the components. 2379 // By doing this, likewise with G_LOAD, generate an extend that can be 2380 // artifact-combined away instead of leaving behind extracts. 2381 Register SrcReg = MI.getOperand(0).getReg(); 2382 Register PtrReg = MI.getOperand(1).getReg(); 2383 LLT SrcTy = MRI.getType(SrcReg); 2384 MachineMemOperand &MMO = **MI.memoperands_begin(); 2385 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2386 return UnableToLegalize; 2387 if (SrcTy.isVector()) 2388 return UnableToLegalize; 2389 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2390 return UnableToLegalize; // Don't know what we're being asked to do. 2391 2392 // Extend to the next pow-2. 2393 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2394 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2395 2396 // Obtain the smaller value by shifting away the larger value. 2397 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2398 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2399 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2400 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2401 2402 // Generate the PtrAdd and truncating stores. 2403 LLT PtrTy = MRI.getType(PtrReg); 2404 auto OffsetCst = MIRBuilder.buildConstant( 2405 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2406 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2407 auto SmallPtr = 2408 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2409 2410 MachineFunction &MF = MIRBuilder.getMF(); 2411 MachineMemOperand *LargeMMO = 2412 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2413 MachineMemOperand *SmallMMO = 2414 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2415 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2416 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2417 MI.eraseFromParent(); 2418 return Legalized; 2419 } 2420 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2421 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2422 case TargetOpcode::G_CTLZ: 2423 case TargetOpcode::G_CTTZ: 2424 case TargetOpcode::G_CTPOP: 2425 return lowerBitCount(MI, TypeIdx, Ty); 2426 case G_UADDO: { 2427 Register Res = MI.getOperand(0).getReg(); 2428 Register CarryOut = MI.getOperand(1).getReg(); 2429 Register LHS = MI.getOperand(2).getReg(); 2430 Register RHS = MI.getOperand(3).getReg(); 2431 2432 MIRBuilder.buildAdd(Res, LHS, RHS); 2433 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2434 2435 MI.eraseFromParent(); 2436 return Legalized; 2437 } 2438 case G_UADDE: { 2439 Register Res = MI.getOperand(0).getReg(); 2440 Register CarryOut = MI.getOperand(1).getReg(); 2441 Register LHS = MI.getOperand(2).getReg(); 2442 Register RHS = MI.getOperand(3).getReg(); 2443 Register CarryIn = MI.getOperand(4).getReg(); 2444 2445 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2446 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 2447 2448 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 2449 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 2450 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2451 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2452 2453 MI.eraseFromParent(); 2454 return Legalized; 2455 } 2456 case G_USUBO: { 2457 Register Res = MI.getOperand(0).getReg(); 2458 Register BorrowOut = MI.getOperand(1).getReg(); 2459 Register LHS = MI.getOperand(2).getReg(); 2460 Register RHS = MI.getOperand(3).getReg(); 2461 2462 MIRBuilder.buildSub(Res, LHS, RHS); 2463 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2464 2465 MI.eraseFromParent(); 2466 return Legalized; 2467 } 2468 case G_USUBE: { 2469 Register Res = MI.getOperand(0).getReg(); 2470 Register BorrowOut = MI.getOperand(1).getReg(); 2471 Register LHS = MI.getOperand(2).getReg(); 2472 Register RHS = MI.getOperand(3).getReg(); 2473 Register BorrowIn = MI.getOperand(4).getReg(); 2474 2475 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2476 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 2477 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2478 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2479 2480 MIRBuilder.buildSub(TmpRes, LHS, RHS); 2481 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 2482 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2483 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 2484 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 2485 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2486 2487 MI.eraseFromParent(); 2488 return Legalized; 2489 } 2490 case G_UITOFP: 2491 return lowerUITOFP(MI, TypeIdx, Ty); 2492 case G_SITOFP: 2493 return lowerSITOFP(MI, TypeIdx, Ty); 2494 case G_FPTOUI: 2495 return lowerFPTOUI(MI, TypeIdx, Ty); 2496 case G_FPTOSI: 2497 return lowerFPTOSI(MI); 2498 case G_SMIN: 2499 case G_SMAX: 2500 case G_UMIN: 2501 case G_UMAX: 2502 return lowerMinMax(MI, TypeIdx, Ty); 2503 case G_FCOPYSIGN: 2504 return lowerFCopySign(MI, TypeIdx, Ty); 2505 case G_FMINNUM: 2506 case G_FMAXNUM: 2507 return lowerFMinNumMaxNum(MI); 2508 case G_UNMERGE_VALUES: 2509 return lowerUnmergeValues(MI); 2510 case TargetOpcode::G_SEXT_INREG: { 2511 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2512 int64_t SizeInBits = MI.getOperand(2).getImm(); 2513 2514 Register DstReg = MI.getOperand(0).getReg(); 2515 Register SrcReg = MI.getOperand(1).getReg(); 2516 LLT DstTy = MRI.getType(DstReg); 2517 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2518 2519 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2520 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2521 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2522 MI.eraseFromParent(); 2523 return Legalized; 2524 } 2525 case G_SHUFFLE_VECTOR: 2526 return lowerShuffleVector(MI); 2527 case G_DYN_STACKALLOC: 2528 return lowerDynStackAlloc(MI); 2529 case G_EXTRACT: 2530 return lowerExtract(MI); 2531 case G_INSERT: 2532 return lowerInsert(MI); 2533 case G_BSWAP: 2534 return lowerBswap(MI); 2535 case G_BITREVERSE: 2536 return lowerBitreverse(MI); 2537 case G_READ_REGISTER: 2538 case G_WRITE_REGISTER: 2539 return lowerReadWriteRegister(MI); 2540 } 2541 } 2542 2543 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2544 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2545 SmallVector<Register, 2> DstRegs; 2546 2547 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2548 Register DstReg = MI.getOperand(0).getReg(); 2549 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2550 int NumParts = Size / NarrowSize; 2551 // FIXME: Don't know how to handle the situation where the small vectors 2552 // aren't all the same size yet. 2553 if (Size % NarrowSize != 0) 2554 return UnableToLegalize; 2555 2556 for (int i = 0; i < NumParts; ++i) { 2557 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2558 MIRBuilder.buildUndef(TmpReg); 2559 DstRegs.push_back(TmpReg); 2560 } 2561 2562 if (NarrowTy.isVector()) 2563 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2564 else 2565 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2566 2567 MI.eraseFromParent(); 2568 return Legalized; 2569 } 2570 2571 LegalizerHelper::LegalizeResult 2572 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2573 LLT NarrowTy) { 2574 const unsigned Opc = MI.getOpcode(); 2575 const unsigned NumOps = MI.getNumOperands() - 1; 2576 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2577 const Register DstReg = MI.getOperand(0).getReg(); 2578 const unsigned Flags = MI.getFlags(); 2579 const LLT DstTy = MRI.getType(DstReg); 2580 const unsigned Size = DstTy.getSizeInBits(); 2581 const int NumParts = Size / NarrowSize; 2582 const LLT EltTy = DstTy.getElementType(); 2583 const unsigned EltSize = EltTy.getSizeInBits(); 2584 const unsigned BitsForNumParts = NarrowSize * NumParts; 2585 2586 // Check if we have any leftovers. If we do, then only handle the case where 2587 // the leftover is one element. 2588 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 2589 return UnableToLegalize; 2590 2591 if (BitsForNumParts != Size) { 2592 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 2593 MIRBuilder.buildUndef(AccumDstReg); 2594 2595 // Handle the pieces which evenly divide into the requested type with 2596 // extract/op/insert sequence. 2597 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 2598 SmallVector<SrcOp, 4> SrcOps; 2599 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2600 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 2601 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), Offset); 2602 SrcOps.push_back(PartOpReg); 2603 } 2604 2605 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 2606 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2607 2608 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 2609 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 2610 AccumDstReg = PartInsertReg; 2611 } 2612 2613 // Handle the remaining element sized leftover piece. 2614 SmallVector<SrcOp, 4> SrcOps; 2615 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2616 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 2617 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I), BitsForNumParts); 2618 SrcOps.push_back(PartOpReg); 2619 } 2620 2621 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 2622 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2623 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 2624 MI.eraseFromParent(); 2625 2626 return Legalized; 2627 } 2628 2629 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2630 2631 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 2632 2633 if (NumOps >= 2) 2634 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 2635 2636 if (NumOps >= 3) 2637 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 2638 2639 for (int i = 0; i < NumParts; ++i) { 2640 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2641 2642 if (NumOps == 1) 2643 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 2644 else if (NumOps == 2) { 2645 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 2646 } else if (NumOps == 3) { 2647 MIRBuilder.buildInstr(Opc, {DstReg}, 2648 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 2649 } 2650 2651 DstRegs.push_back(DstReg); 2652 } 2653 2654 if (NarrowTy.isVector()) 2655 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2656 else 2657 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2658 2659 MI.eraseFromParent(); 2660 return Legalized; 2661 } 2662 2663 // Handle splitting vector operations which need to have the same number of 2664 // elements in each type index, but each type index may have a different element 2665 // type. 2666 // 2667 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2668 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2669 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2670 // 2671 // Also handles some irregular breakdown cases, e.g. 2672 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2673 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2674 // s64 = G_SHL s64, s32 2675 LegalizerHelper::LegalizeResult 2676 LegalizerHelper::fewerElementsVectorMultiEltType( 2677 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2678 if (TypeIdx != 0) 2679 return UnableToLegalize; 2680 2681 const LLT NarrowTy0 = NarrowTyArg; 2682 const unsigned NewNumElts = 2683 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2684 2685 const Register DstReg = MI.getOperand(0).getReg(); 2686 LLT DstTy = MRI.getType(DstReg); 2687 LLT LeftoverTy0; 2688 2689 // All of the operands need to have the same number of elements, so if we can 2690 // determine a type breakdown for the result type, we can for all of the 2691 // source types. 2692 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2693 if (NumParts < 0) 2694 return UnableToLegalize; 2695 2696 SmallVector<MachineInstrBuilder, 4> NewInsts; 2697 2698 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2699 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2700 2701 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2702 LLT LeftoverTy; 2703 Register SrcReg = MI.getOperand(I).getReg(); 2704 LLT SrcTyI = MRI.getType(SrcReg); 2705 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2706 LLT LeftoverTyI; 2707 2708 // Split this operand into the requested typed registers, and any leftover 2709 // required to reproduce the original type. 2710 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2711 LeftoverRegs)) 2712 return UnableToLegalize; 2713 2714 if (I == 1) { 2715 // For the first operand, create an instruction for each part and setup 2716 // the result. 2717 for (Register PartReg : PartRegs) { 2718 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2719 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2720 .addDef(PartDstReg) 2721 .addUse(PartReg)); 2722 DstRegs.push_back(PartDstReg); 2723 } 2724 2725 for (Register LeftoverReg : LeftoverRegs) { 2726 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2727 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2728 .addDef(PartDstReg) 2729 .addUse(LeftoverReg)); 2730 LeftoverDstRegs.push_back(PartDstReg); 2731 } 2732 } else { 2733 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2734 2735 // Add the newly created operand splits to the existing instructions. The 2736 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2737 // pieces. 2738 unsigned InstCount = 0; 2739 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2740 NewInsts[InstCount++].addUse(PartRegs[J]); 2741 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2742 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2743 } 2744 2745 PartRegs.clear(); 2746 LeftoverRegs.clear(); 2747 } 2748 2749 // Insert the newly built operations and rebuild the result register. 2750 for (auto &MIB : NewInsts) 2751 MIRBuilder.insertInstr(MIB); 2752 2753 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2754 2755 MI.eraseFromParent(); 2756 return Legalized; 2757 } 2758 2759 LegalizerHelper::LegalizeResult 2760 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2761 LLT NarrowTy) { 2762 if (TypeIdx != 0) 2763 return UnableToLegalize; 2764 2765 Register DstReg = MI.getOperand(0).getReg(); 2766 Register SrcReg = MI.getOperand(1).getReg(); 2767 LLT DstTy = MRI.getType(DstReg); 2768 LLT SrcTy = MRI.getType(SrcReg); 2769 2770 LLT NarrowTy0 = NarrowTy; 2771 LLT NarrowTy1; 2772 unsigned NumParts; 2773 2774 if (NarrowTy.isVector()) { 2775 // Uneven breakdown not handled. 2776 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2777 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2778 return UnableToLegalize; 2779 2780 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2781 } else { 2782 NumParts = DstTy.getNumElements(); 2783 NarrowTy1 = SrcTy.getElementType(); 2784 } 2785 2786 SmallVector<Register, 4> SrcRegs, DstRegs; 2787 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2788 2789 for (unsigned I = 0; I < NumParts; ++I) { 2790 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2791 MachineInstr *NewInst = 2792 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2793 2794 NewInst->setFlags(MI.getFlags()); 2795 DstRegs.push_back(DstReg); 2796 } 2797 2798 if (NarrowTy.isVector()) 2799 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2800 else 2801 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2802 2803 MI.eraseFromParent(); 2804 return Legalized; 2805 } 2806 2807 LegalizerHelper::LegalizeResult 2808 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2809 LLT NarrowTy) { 2810 Register DstReg = MI.getOperand(0).getReg(); 2811 Register Src0Reg = MI.getOperand(2).getReg(); 2812 LLT DstTy = MRI.getType(DstReg); 2813 LLT SrcTy = MRI.getType(Src0Reg); 2814 2815 unsigned NumParts; 2816 LLT NarrowTy0, NarrowTy1; 2817 2818 if (TypeIdx == 0) { 2819 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2820 unsigned OldElts = DstTy.getNumElements(); 2821 2822 NarrowTy0 = NarrowTy; 2823 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2824 NarrowTy1 = NarrowTy.isVector() ? 2825 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2826 SrcTy.getElementType(); 2827 2828 } else { 2829 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2830 unsigned OldElts = SrcTy.getNumElements(); 2831 2832 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2833 NarrowTy.getNumElements(); 2834 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2835 DstTy.getScalarSizeInBits()); 2836 NarrowTy1 = NarrowTy; 2837 } 2838 2839 // FIXME: Don't know how to handle the situation where the small vectors 2840 // aren't all the same size yet. 2841 if (NarrowTy1.isVector() && 2842 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2843 return UnableToLegalize; 2844 2845 CmpInst::Predicate Pred 2846 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2847 2848 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2849 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2850 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2851 2852 for (unsigned I = 0; I < NumParts; ++I) { 2853 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2854 DstRegs.push_back(DstReg); 2855 2856 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2857 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2858 else { 2859 MachineInstr *NewCmp 2860 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2861 NewCmp->setFlags(MI.getFlags()); 2862 } 2863 } 2864 2865 if (NarrowTy1.isVector()) 2866 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2867 else 2868 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2869 2870 MI.eraseFromParent(); 2871 return Legalized; 2872 } 2873 2874 LegalizerHelper::LegalizeResult 2875 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2876 LLT NarrowTy) { 2877 Register DstReg = MI.getOperand(0).getReg(); 2878 Register CondReg = MI.getOperand(1).getReg(); 2879 2880 unsigned NumParts = 0; 2881 LLT NarrowTy0, NarrowTy1; 2882 2883 LLT DstTy = MRI.getType(DstReg); 2884 LLT CondTy = MRI.getType(CondReg); 2885 unsigned Size = DstTy.getSizeInBits(); 2886 2887 assert(TypeIdx == 0 || CondTy.isVector()); 2888 2889 if (TypeIdx == 0) { 2890 NarrowTy0 = NarrowTy; 2891 NarrowTy1 = CondTy; 2892 2893 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2894 // FIXME: Don't know how to handle the situation where the small vectors 2895 // aren't all the same size yet. 2896 if (Size % NarrowSize != 0) 2897 return UnableToLegalize; 2898 2899 NumParts = Size / NarrowSize; 2900 2901 // Need to break down the condition type 2902 if (CondTy.isVector()) { 2903 if (CondTy.getNumElements() == NumParts) 2904 NarrowTy1 = CondTy.getElementType(); 2905 else 2906 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2907 CondTy.getScalarSizeInBits()); 2908 } 2909 } else { 2910 NumParts = CondTy.getNumElements(); 2911 if (NarrowTy.isVector()) { 2912 // TODO: Handle uneven breakdown. 2913 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2914 return UnableToLegalize; 2915 2916 return UnableToLegalize; 2917 } else { 2918 NarrowTy0 = DstTy.getElementType(); 2919 NarrowTy1 = NarrowTy; 2920 } 2921 } 2922 2923 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2924 if (CondTy.isVector()) 2925 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2926 2927 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2928 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2929 2930 for (unsigned i = 0; i < NumParts; ++i) { 2931 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2932 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2933 Src1Regs[i], Src2Regs[i]); 2934 DstRegs.push_back(DstReg); 2935 } 2936 2937 if (NarrowTy0.isVector()) 2938 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2939 else 2940 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2941 2942 MI.eraseFromParent(); 2943 return Legalized; 2944 } 2945 2946 LegalizerHelper::LegalizeResult 2947 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2948 LLT NarrowTy) { 2949 const Register DstReg = MI.getOperand(0).getReg(); 2950 LLT PhiTy = MRI.getType(DstReg); 2951 LLT LeftoverTy; 2952 2953 // All of the operands need to have the same number of elements, so if we can 2954 // determine a type breakdown for the result type, we can for all of the 2955 // source types. 2956 int NumParts, NumLeftover; 2957 std::tie(NumParts, NumLeftover) 2958 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2959 if (NumParts < 0) 2960 return UnableToLegalize; 2961 2962 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2963 SmallVector<MachineInstrBuilder, 4> NewInsts; 2964 2965 const int TotalNumParts = NumParts + NumLeftover; 2966 2967 // Insert the new phis in the result block first. 2968 for (int I = 0; I != TotalNumParts; ++I) { 2969 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2970 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2971 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2972 .addDef(PartDstReg)); 2973 if (I < NumParts) 2974 DstRegs.push_back(PartDstReg); 2975 else 2976 LeftoverDstRegs.push_back(PartDstReg); 2977 } 2978 2979 MachineBasicBlock *MBB = MI.getParent(); 2980 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2981 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2982 2983 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2984 2985 // Insert code to extract the incoming values in each predecessor block. 2986 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2987 PartRegs.clear(); 2988 LeftoverRegs.clear(); 2989 2990 Register SrcReg = MI.getOperand(I).getReg(); 2991 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2992 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2993 2994 LLT Unused; 2995 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2996 LeftoverRegs)) 2997 return UnableToLegalize; 2998 2999 // Add the newly created operand splits to the existing instructions. The 3000 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3001 // pieces. 3002 for (int J = 0; J != TotalNumParts; ++J) { 3003 MachineInstrBuilder MIB = NewInsts[J]; 3004 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3005 MIB.addMBB(&OpMBB); 3006 } 3007 } 3008 3009 MI.eraseFromParent(); 3010 return Legalized; 3011 } 3012 3013 LegalizerHelper::LegalizeResult 3014 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3015 unsigned TypeIdx, 3016 LLT NarrowTy) { 3017 if (TypeIdx != 1) 3018 return UnableToLegalize; 3019 3020 const int NumDst = MI.getNumOperands() - 1; 3021 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3022 LLT SrcTy = MRI.getType(SrcReg); 3023 3024 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3025 3026 // TODO: Create sequence of extracts. 3027 if (DstTy == NarrowTy) 3028 return UnableToLegalize; 3029 3030 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3031 if (DstTy == GCDTy) { 3032 // This would just be a copy of the same unmerge. 3033 // TODO: Create extracts, pad with undef and create intermediate merges. 3034 return UnableToLegalize; 3035 } 3036 3037 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3038 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3039 const int PartsPerUnmerge = NumDst / NumUnmerge; 3040 3041 for (int I = 0; I != NumUnmerge; ++I) { 3042 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3043 3044 for (int J = 0; J != PartsPerUnmerge; ++J) 3045 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3046 MIB.addUse(Unmerge.getReg(I)); 3047 } 3048 3049 MI.eraseFromParent(); 3050 return Legalized; 3051 } 3052 3053 LegalizerHelper::LegalizeResult 3054 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3055 unsigned TypeIdx, 3056 LLT NarrowTy) { 3057 assert(TypeIdx == 0 && "not a vector type index"); 3058 Register DstReg = MI.getOperand(0).getReg(); 3059 LLT DstTy = MRI.getType(DstReg); 3060 LLT SrcTy = DstTy.getElementType(); 3061 3062 int DstNumElts = DstTy.getNumElements(); 3063 int NarrowNumElts = NarrowTy.getNumElements(); 3064 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3065 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3066 3067 SmallVector<Register, 8> ConcatOps; 3068 SmallVector<Register, 8> SubBuildVector; 3069 3070 Register UndefReg; 3071 if (WidenedDstTy != DstTy) 3072 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3073 3074 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3075 // necessary. 3076 // 3077 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3078 // -> <2 x s16> 3079 // 3080 // %4:_(s16) = G_IMPLICIT_DEF 3081 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3082 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3083 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3084 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3085 for (int I = 0; I != NumConcat; ++I) { 3086 for (int J = 0; J != NarrowNumElts; ++J) { 3087 int SrcIdx = NarrowNumElts * I + J; 3088 3089 if (SrcIdx < DstNumElts) { 3090 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3091 SubBuildVector.push_back(SrcReg); 3092 } else 3093 SubBuildVector.push_back(UndefReg); 3094 } 3095 3096 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3097 ConcatOps.push_back(BuildVec.getReg(0)); 3098 SubBuildVector.clear(); 3099 } 3100 3101 if (DstTy == WidenedDstTy) 3102 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3103 else { 3104 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3105 MIRBuilder.buildExtract(DstReg, Concat, 0); 3106 } 3107 3108 MI.eraseFromParent(); 3109 return Legalized; 3110 } 3111 3112 LegalizerHelper::LegalizeResult 3113 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3114 LLT NarrowTy) { 3115 // FIXME: Don't know how to handle secondary types yet. 3116 if (TypeIdx != 0) 3117 return UnableToLegalize; 3118 3119 MachineMemOperand *MMO = *MI.memoperands_begin(); 3120 3121 // This implementation doesn't work for atomics. Give up instead of doing 3122 // something invalid. 3123 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3124 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3125 return UnableToLegalize; 3126 3127 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3128 Register ValReg = MI.getOperand(0).getReg(); 3129 Register AddrReg = MI.getOperand(1).getReg(); 3130 LLT ValTy = MRI.getType(ValReg); 3131 3132 int NumParts = -1; 3133 int NumLeftover = -1; 3134 LLT LeftoverTy; 3135 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3136 if (IsLoad) { 3137 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3138 } else { 3139 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3140 NarrowLeftoverRegs)) { 3141 NumParts = NarrowRegs.size(); 3142 NumLeftover = NarrowLeftoverRegs.size(); 3143 } 3144 } 3145 3146 if (NumParts == -1) 3147 return UnableToLegalize; 3148 3149 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3150 3151 unsigned TotalSize = ValTy.getSizeInBits(); 3152 3153 // Split the load/store into PartTy sized pieces starting at Offset. If this 3154 // is a load, return the new registers in ValRegs. For a store, each elements 3155 // of ValRegs should be PartTy. Returns the next offset that needs to be 3156 // handled. 3157 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3158 unsigned Offset) -> unsigned { 3159 MachineFunction &MF = MIRBuilder.getMF(); 3160 unsigned PartSize = PartTy.getSizeInBits(); 3161 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3162 Offset += PartSize, ++Idx) { 3163 unsigned ByteSize = PartSize / 8; 3164 unsigned ByteOffset = Offset / 8; 3165 Register NewAddrReg; 3166 3167 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3168 3169 MachineMemOperand *NewMMO = 3170 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3171 3172 if (IsLoad) { 3173 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3174 ValRegs.push_back(Dst); 3175 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3176 } else { 3177 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3178 } 3179 } 3180 3181 return Offset; 3182 }; 3183 3184 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3185 3186 // Handle the rest of the register if this isn't an even type breakdown. 3187 if (LeftoverTy.isValid()) 3188 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3189 3190 if (IsLoad) { 3191 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3192 LeftoverTy, NarrowLeftoverRegs); 3193 } 3194 3195 MI.eraseFromParent(); 3196 return Legalized; 3197 } 3198 3199 LegalizerHelper::LegalizeResult 3200 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3201 LLT NarrowTy) { 3202 Register DstReg = MI.getOperand(0).getReg(); 3203 Register SrcReg = MI.getOperand(1).getReg(); 3204 int64_t Imm = MI.getOperand(2).getImm(); 3205 3206 LLT DstTy = MRI.getType(DstReg); 3207 3208 SmallVector<Register, 8> Parts; 3209 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3210 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3211 3212 for (Register &R : Parts) 3213 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3214 3215 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3216 3217 MI.eraseFromParent(); 3218 return Legalized; 3219 } 3220 3221 LegalizerHelper::LegalizeResult 3222 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3223 LLT NarrowTy) { 3224 using namespace TargetOpcode; 3225 3226 MIRBuilder.setInstr(MI); 3227 switch (MI.getOpcode()) { 3228 case G_IMPLICIT_DEF: 3229 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3230 case G_AND: 3231 case G_OR: 3232 case G_XOR: 3233 case G_ADD: 3234 case G_SUB: 3235 case G_MUL: 3236 case G_SMULH: 3237 case G_UMULH: 3238 case G_FADD: 3239 case G_FMUL: 3240 case G_FSUB: 3241 case G_FNEG: 3242 case G_FABS: 3243 case G_FCANONICALIZE: 3244 case G_FDIV: 3245 case G_FREM: 3246 case G_FMA: 3247 case G_FMAD: 3248 case G_FPOW: 3249 case G_FEXP: 3250 case G_FEXP2: 3251 case G_FLOG: 3252 case G_FLOG2: 3253 case G_FLOG10: 3254 case G_FNEARBYINT: 3255 case G_FCEIL: 3256 case G_FFLOOR: 3257 case G_FRINT: 3258 case G_INTRINSIC_ROUND: 3259 case G_INTRINSIC_TRUNC: 3260 case G_FCOS: 3261 case G_FSIN: 3262 case G_FSQRT: 3263 case G_BSWAP: 3264 case G_BITREVERSE: 3265 case G_SDIV: 3266 case G_UDIV: 3267 case G_SREM: 3268 case G_UREM: 3269 case G_SMIN: 3270 case G_SMAX: 3271 case G_UMIN: 3272 case G_UMAX: 3273 case G_FMINNUM: 3274 case G_FMAXNUM: 3275 case G_FMINNUM_IEEE: 3276 case G_FMAXNUM_IEEE: 3277 case G_FMINIMUM: 3278 case G_FMAXIMUM: 3279 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3280 case G_SHL: 3281 case G_LSHR: 3282 case G_ASHR: 3283 case G_CTLZ: 3284 case G_CTLZ_ZERO_UNDEF: 3285 case G_CTTZ: 3286 case G_CTTZ_ZERO_UNDEF: 3287 case G_CTPOP: 3288 case G_FCOPYSIGN: 3289 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3290 case G_ZEXT: 3291 case G_SEXT: 3292 case G_ANYEXT: 3293 case G_FPEXT: 3294 case G_FPTRUNC: 3295 case G_SITOFP: 3296 case G_UITOFP: 3297 case G_FPTOSI: 3298 case G_FPTOUI: 3299 case G_INTTOPTR: 3300 case G_PTRTOINT: 3301 case G_ADDRSPACE_CAST: 3302 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3303 case G_ICMP: 3304 case G_FCMP: 3305 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3306 case G_SELECT: 3307 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3308 case G_PHI: 3309 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3310 case G_UNMERGE_VALUES: 3311 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3312 case G_BUILD_VECTOR: 3313 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3314 case G_LOAD: 3315 case G_STORE: 3316 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3317 case G_SEXT_INREG: 3318 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3319 default: 3320 return UnableToLegalize; 3321 } 3322 } 3323 3324 LegalizerHelper::LegalizeResult 3325 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3326 const LLT HalfTy, const LLT AmtTy) { 3327 3328 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3329 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3330 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3331 3332 if (Amt.isNullValue()) { 3333 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3334 MI.eraseFromParent(); 3335 return Legalized; 3336 } 3337 3338 LLT NVT = HalfTy; 3339 unsigned NVTBits = HalfTy.getSizeInBits(); 3340 unsigned VTBits = 2 * NVTBits; 3341 3342 SrcOp Lo(Register(0)), Hi(Register(0)); 3343 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3344 if (Amt.ugt(VTBits)) { 3345 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3346 } else if (Amt.ugt(NVTBits)) { 3347 Lo = MIRBuilder.buildConstant(NVT, 0); 3348 Hi = MIRBuilder.buildShl(NVT, InL, 3349 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3350 } else if (Amt == NVTBits) { 3351 Lo = MIRBuilder.buildConstant(NVT, 0); 3352 Hi = InL; 3353 } else { 3354 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3355 auto OrLHS = 3356 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3357 auto OrRHS = MIRBuilder.buildLShr( 3358 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3359 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3360 } 3361 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3362 if (Amt.ugt(VTBits)) { 3363 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3364 } else if (Amt.ugt(NVTBits)) { 3365 Lo = MIRBuilder.buildLShr(NVT, InH, 3366 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3367 Hi = MIRBuilder.buildConstant(NVT, 0); 3368 } else if (Amt == NVTBits) { 3369 Lo = InH; 3370 Hi = MIRBuilder.buildConstant(NVT, 0); 3371 } else { 3372 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3373 3374 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3375 auto OrRHS = MIRBuilder.buildShl( 3376 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3377 3378 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3379 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3380 } 3381 } else { 3382 if (Amt.ugt(VTBits)) { 3383 Hi = Lo = MIRBuilder.buildAShr( 3384 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3385 } else if (Amt.ugt(NVTBits)) { 3386 Lo = MIRBuilder.buildAShr(NVT, InH, 3387 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3388 Hi = MIRBuilder.buildAShr(NVT, InH, 3389 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3390 } else if (Amt == NVTBits) { 3391 Lo = InH; 3392 Hi = MIRBuilder.buildAShr(NVT, InH, 3393 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3394 } else { 3395 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3396 3397 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3398 auto OrRHS = MIRBuilder.buildShl( 3399 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3400 3401 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3402 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3403 } 3404 } 3405 3406 MIRBuilder.buildMerge(MI.getOperand(0), {Lo.getReg(), Hi.getReg()}); 3407 MI.eraseFromParent(); 3408 3409 return Legalized; 3410 } 3411 3412 // TODO: Optimize if constant shift amount. 3413 LegalizerHelper::LegalizeResult 3414 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3415 LLT RequestedTy) { 3416 if (TypeIdx == 1) { 3417 Observer.changingInstr(MI); 3418 narrowScalarSrc(MI, RequestedTy, 2); 3419 Observer.changedInstr(MI); 3420 return Legalized; 3421 } 3422 3423 Register DstReg = MI.getOperand(0).getReg(); 3424 LLT DstTy = MRI.getType(DstReg); 3425 if (DstTy.isVector()) 3426 return UnableToLegalize; 3427 3428 Register Amt = MI.getOperand(2).getReg(); 3429 LLT ShiftAmtTy = MRI.getType(Amt); 3430 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3431 if (DstEltSize % 2 != 0) 3432 return UnableToLegalize; 3433 3434 // Ignore the input type. We can only go to exactly half the size of the 3435 // input. If that isn't small enough, the resulting pieces will be further 3436 // legalized. 3437 const unsigned NewBitSize = DstEltSize / 2; 3438 const LLT HalfTy = LLT::scalar(NewBitSize); 3439 const LLT CondTy = LLT::scalar(1); 3440 3441 if (const MachineInstr *KShiftAmt = 3442 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3443 return narrowScalarShiftByConstant( 3444 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3445 } 3446 3447 // TODO: Expand with known bits. 3448 3449 // Handle the fully general expansion by an unknown amount. 3450 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3451 3452 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3453 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3454 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3455 3456 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3457 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3458 3459 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3460 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3461 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3462 3463 Register ResultRegs[2]; 3464 switch (MI.getOpcode()) { 3465 case TargetOpcode::G_SHL: { 3466 // Short: ShAmt < NewBitSize 3467 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3468 3469 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3470 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3471 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3472 3473 // Long: ShAmt >= NewBitSize 3474 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3475 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3476 3477 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3478 auto Hi = MIRBuilder.buildSelect( 3479 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3480 3481 ResultRegs[0] = Lo.getReg(0); 3482 ResultRegs[1] = Hi.getReg(0); 3483 break; 3484 } 3485 case TargetOpcode::G_LSHR: 3486 case TargetOpcode::G_ASHR: { 3487 // Short: ShAmt < NewBitSize 3488 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3489 3490 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3491 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3492 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3493 3494 // Long: ShAmt >= NewBitSize 3495 MachineInstrBuilder HiL; 3496 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3497 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3498 } else { 3499 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3500 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3501 } 3502 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3503 {InH, AmtExcess}); // Lo from Hi part. 3504 3505 auto Lo = MIRBuilder.buildSelect( 3506 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3507 3508 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3509 3510 ResultRegs[0] = Lo.getReg(0); 3511 ResultRegs[1] = Hi.getReg(0); 3512 break; 3513 } 3514 default: 3515 llvm_unreachable("not a shift"); 3516 } 3517 3518 MIRBuilder.buildMerge(DstReg, ResultRegs); 3519 MI.eraseFromParent(); 3520 return Legalized; 3521 } 3522 3523 LegalizerHelper::LegalizeResult 3524 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3525 LLT MoreTy) { 3526 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3527 3528 Observer.changingInstr(MI); 3529 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3530 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3531 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3532 moreElementsVectorSrc(MI, MoreTy, I); 3533 } 3534 3535 MachineBasicBlock &MBB = *MI.getParent(); 3536 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3537 moreElementsVectorDst(MI, MoreTy, 0); 3538 Observer.changedInstr(MI); 3539 return Legalized; 3540 } 3541 3542 LegalizerHelper::LegalizeResult 3543 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3544 LLT MoreTy) { 3545 MIRBuilder.setInstr(MI); 3546 unsigned Opc = MI.getOpcode(); 3547 switch (Opc) { 3548 case TargetOpcode::G_IMPLICIT_DEF: 3549 case TargetOpcode::G_LOAD: { 3550 if (TypeIdx != 0) 3551 return UnableToLegalize; 3552 Observer.changingInstr(MI); 3553 moreElementsVectorDst(MI, MoreTy, 0); 3554 Observer.changedInstr(MI); 3555 return Legalized; 3556 } 3557 case TargetOpcode::G_STORE: 3558 if (TypeIdx != 0) 3559 return UnableToLegalize; 3560 Observer.changingInstr(MI); 3561 moreElementsVectorSrc(MI, MoreTy, 0); 3562 Observer.changedInstr(MI); 3563 return Legalized; 3564 case TargetOpcode::G_AND: 3565 case TargetOpcode::G_OR: 3566 case TargetOpcode::G_XOR: 3567 case TargetOpcode::G_SMIN: 3568 case TargetOpcode::G_SMAX: 3569 case TargetOpcode::G_UMIN: 3570 case TargetOpcode::G_UMAX: 3571 case TargetOpcode::G_FMINNUM: 3572 case TargetOpcode::G_FMAXNUM: 3573 case TargetOpcode::G_FMINNUM_IEEE: 3574 case TargetOpcode::G_FMAXNUM_IEEE: 3575 case TargetOpcode::G_FMINIMUM: 3576 case TargetOpcode::G_FMAXIMUM: { 3577 Observer.changingInstr(MI); 3578 moreElementsVectorSrc(MI, MoreTy, 1); 3579 moreElementsVectorSrc(MI, MoreTy, 2); 3580 moreElementsVectorDst(MI, MoreTy, 0); 3581 Observer.changedInstr(MI); 3582 return Legalized; 3583 } 3584 case TargetOpcode::G_EXTRACT: 3585 if (TypeIdx != 1) 3586 return UnableToLegalize; 3587 Observer.changingInstr(MI); 3588 moreElementsVectorSrc(MI, MoreTy, 1); 3589 Observer.changedInstr(MI); 3590 return Legalized; 3591 case TargetOpcode::G_INSERT: 3592 if (TypeIdx != 0) 3593 return UnableToLegalize; 3594 Observer.changingInstr(MI); 3595 moreElementsVectorSrc(MI, MoreTy, 1); 3596 moreElementsVectorDst(MI, MoreTy, 0); 3597 Observer.changedInstr(MI); 3598 return Legalized; 3599 case TargetOpcode::G_SELECT: 3600 if (TypeIdx != 0) 3601 return UnableToLegalize; 3602 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3603 return UnableToLegalize; 3604 3605 Observer.changingInstr(MI); 3606 moreElementsVectorSrc(MI, MoreTy, 2); 3607 moreElementsVectorSrc(MI, MoreTy, 3); 3608 moreElementsVectorDst(MI, MoreTy, 0); 3609 Observer.changedInstr(MI); 3610 return Legalized; 3611 case TargetOpcode::G_UNMERGE_VALUES: { 3612 if (TypeIdx != 1) 3613 return UnableToLegalize; 3614 3615 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3616 int NumDst = MI.getNumOperands() - 1; 3617 moreElementsVectorSrc(MI, MoreTy, NumDst); 3618 3619 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3620 for (int I = 0; I != NumDst; ++I) 3621 MIB.addDef(MI.getOperand(I).getReg()); 3622 3623 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3624 for (int I = NumDst; I != NewNumDst; ++I) 3625 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3626 3627 MIB.addUse(MI.getOperand(NumDst).getReg()); 3628 MI.eraseFromParent(); 3629 return Legalized; 3630 } 3631 case TargetOpcode::G_PHI: 3632 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3633 default: 3634 return UnableToLegalize; 3635 } 3636 } 3637 3638 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3639 ArrayRef<Register> Src1Regs, 3640 ArrayRef<Register> Src2Regs, 3641 LLT NarrowTy) { 3642 MachineIRBuilder &B = MIRBuilder; 3643 unsigned SrcParts = Src1Regs.size(); 3644 unsigned DstParts = DstRegs.size(); 3645 3646 unsigned DstIdx = 0; // Low bits of the result. 3647 Register FactorSum = 3648 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3649 DstRegs[DstIdx] = FactorSum; 3650 3651 unsigned CarrySumPrevDstIdx; 3652 SmallVector<Register, 4> Factors; 3653 3654 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3655 // Collect low parts of muls for DstIdx. 3656 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3657 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3658 MachineInstrBuilder Mul = 3659 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3660 Factors.push_back(Mul.getReg(0)); 3661 } 3662 // Collect high parts of muls from previous DstIdx. 3663 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3664 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3665 MachineInstrBuilder Umulh = 3666 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3667 Factors.push_back(Umulh.getReg(0)); 3668 } 3669 // Add CarrySum from additions calculated for previous DstIdx. 3670 if (DstIdx != 1) { 3671 Factors.push_back(CarrySumPrevDstIdx); 3672 } 3673 3674 Register CarrySum; 3675 // Add all factors and accumulate all carries into CarrySum. 3676 if (DstIdx != DstParts - 1) { 3677 MachineInstrBuilder Uaddo = 3678 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3679 FactorSum = Uaddo.getReg(0); 3680 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3681 for (unsigned i = 2; i < Factors.size(); ++i) { 3682 MachineInstrBuilder Uaddo = 3683 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3684 FactorSum = Uaddo.getReg(0); 3685 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3686 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3687 } 3688 } else { 3689 // Since value for the next index is not calculated, neither is CarrySum. 3690 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3691 for (unsigned i = 2; i < Factors.size(); ++i) 3692 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3693 } 3694 3695 CarrySumPrevDstIdx = CarrySum; 3696 DstRegs[DstIdx] = FactorSum; 3697 Factors.clear(); 3698 } 3699 } 3700 3701 LegalizerHelper::LegalizeResult 3702 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3703 Register DstReg = MI.getOperand(0).getReg(); 3704 Register Src1 = MI.getOperand(1).getReg(); 3705 Register Src2 = MI.getOperand(2).getReg(); 3706 3707 LLT Ty = MRI.getType(DstReg); 3708 if (Ty.isVector()) 3709 return UnableToLegalize; 3710 3711 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3712 unsigned DstSize = Ty.getSizeInBits(); 3713 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3714 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3715 return UnableToLegalize; 3716 3717 unsigned NumDstParts = DstSize / NarrowSize; 3718 unsigned NumSrcParts = SrcSize / NarrowSize; 3719 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3720 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3721 3722 SmallVector<Register, 2> Src1Parts, Src2Parts; 3723 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3724 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3725 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3726 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3727 3728 // Take only high half of registers if this is high mul. 3729 ArrayRef<Register> DstRegs( 3730 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3731 MIRBuilder.buildMerge(DstReg, DstRegs); 3732 MI.eraseFromParent(); 3733 return Legalized; 3734 } 3735 3736 LegalizerHelper::LegalizeResult 3737 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3738 LLT NarrowTy) { 3739 if (TypeIdx != 1) 3740 return UnableToLegalize; 3741 3742 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3743 3744 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3745 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3746 // NarrowSize. 3747 if (SizeOp1 % NarrowSize != 0) 3748 return UnableToLegalize; 3749 int NumParts = SizeOp1 / NarrowSize; 3750 3751 SmallVector<Register, 2> SrcRegs, DstRegs; 3752 SmallVector<uint64_t, 2> Indexes; 3753 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3754 3755 Register OpReg = MI.getOperand(0).getReg(); 3756 uint64_t OpStart = MI.getOperand(2).getImm(); 3757 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3758 for (int i = 0; i < NumParts; ++i) { 3759 unsigned SrcStart = i * NarrowSize; 3760 3761 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3762 // No part of the extract uses this subregister, ignore it. 3763 continue; 3764 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3765 // The entire subregister is extracted, forward the value. 3766 DstRegs.push_back(SrcRegs[i]); 3767 continue; 3768 } 3769 3770 // OpSegStart is where this destination segment would start in OpReg if it 3771 // extended infinitely in both directions. 3772 int64_t ExtractOffset; 3773 uint64_t SegSize; 3774 if (OpStart < SrcStart) { 3775 ExtractOffset = 0; 3776 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3777 } else { 3778 ExtractOffset = OpStart - SrcStart; 3779 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3780 } 3781 3782 Register SegReg = SrcRegs[i]; 3783 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3784 // A genuine extract is needed. 3785 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3786 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3787 } 3788 3789 DstRegs.push_back(SegReg); 3790 } 3791 3792 Register DstReg = MI.getOperand(0).getReg(); 3793 if(MRI.getType(DstReg).isVector()) 3794 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3795 else 3796 MIRBuilder.buildMerge(DstReg, DstRegs); 3797 MI.eraseFromParent(); 3798 return Legalized; 3799 } 3800 3801 LegalizerHelper::LegalizeResult 3802 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3803 LLT NarrowTy) { 3804 // FIXME: Don't know how to handle secondary types yet. 3805 if (TypeIdx != 0) 3806 return UnableToLegalize; 3807 3808 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3809 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3810 3811 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3812 // NarrowSize. 3813 if (SizeOp0 % NarrowSize != 0) 3814 return UnableToLegalize; 3815 3816 int NumParts = SizeOp0 / NarrowSize; 3817 3818 SmallVector<Register, 2> SrcRegs, DstRegs; 3819 SmallVector<uint64_t, 2> Indexes; 3820 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3821 3822 Register OpReg = MI.getOperand(2).getReg(); 3823 uint64_t OpStart = MI.getOperand(3).getImm(); 3824 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3825 for (int i = 0; i < NumParts; ++i) { 3826 unsigned DstStart = i * NarrowSize; 3827 3828 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3829 // No part of the insert affects this subregister, forward the original. 3830 DstRegs.push_back(SrcRegs[i]); 3831 continue; 3832 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3833 // The entire subregister is defined by this insert, forward the new 3834 // value. 3835 DstRegs.push_back(OpReg); 3836 continue; 3837 } 3838 3839 // OpSegStart is where this destination segment would start in OpReg if it 3840 // extended infinitely in both directions. 3841 int64_t ExtractOffset, InsertOffset; 3842 uint64_t SegSize; 3843 if (OpStart < DstStart) { 3844 InsertOffset = 0; 3845 ExtractOffset = DstStart - OpStart; 3846 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3847 } else { 3848 InsertOffset = OpStart - DstStart; 3849 ExtractOffset = 0; 3850 SegSize = 3851 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3852 } 3853 3854 Register SegReg = OpReg; 3855 if (ExtractOffset != 0 || SegSize != OpSize) { 3856 // A genuine extract is needed. 3857 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3858 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3859 } 3860 3861 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3862 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3863 DstRegs.push_back(DstReg); 3864 } 3865 3866 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3867 Register DstReg = MI.getOperand(0).getReg(); 3868 if(MRI.getType(DstReg).isVector()) 3869 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3870 else 3871 MIRBuilder.buildMerge(DstReg, DstRegs); 3872 MI.eraseFromParent(); 3873 return Legalized; 3874 } 3875 3876 LegalizerHelper::LegalizeResult 3877 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3878 LLT NarrowTy) { 3879 Register DstReg = MI.getOperand(0).getReg(); 3880 LLT DstTy = MRI.getType(DstReg); 3881 3882 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3883 3884 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3885 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3886 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3887 LLT LeftoverTy; 3888 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3889 Src0Regs, Src0LeftoverRegs)) 3890 return UnableToLegalize; 3891 3892 LLT Unused; 3893 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3894 Src1Regs, Src1LeftoverRegs)) 3895 llvm_unreachable("inconsistent extractParts result"); 3896 3897 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3898 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3899 {Src0Regs[I], Src1Regs[I]}); 3900 DstRegs.push_back(Inst.getReg(0)); 3901 } 3902 3903 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3904 auto Inst = MIRBuilder.buildInstr( 3905 MI.getOpcode(), 3906 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3907 DstLeftoverRegs.push_back(Inst.getReg(0)); 3908 } 3909 3910 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3911 LeftoverTy, DstLeftoverRegs); 3912 3913 MI.eraseFromParent(); 3914 return Legalized; 3915 } 3916 3917 LegalizerHelper::LegalizeResult 3918 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 3919 LLT NarrowTy) { 3920 if (TypeIdx != 0) 3921 return UnableToLegalize; 3922 3923 Register DstReg = MI.getOperand(0).getReg(); 3924 Register SrcReg = MI.getOperand(1).getReg(); 3925 3926 LLT DstTy = MRI.getType(DstReg); 3927 if (DstTy.isVector()) 3928 return UnableToLegalize; 3929 3930 SmallVector<Register, 8> Parts; 3931 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3932 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 3933 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3934 3935 MI.eraseFromParent(); 3936 return Legalized; 3937 } 3938 3939 LegalizerHelper::LegalizeResult 3940 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3941 LLT NarrowTy) { 3942 if (TypeIdx != 0) 3943 return UnableToLegalize; 3944 3945 Register CondReg = MI.getOperand(1).getReg(); 3946 LLT CondTy = MRI.getType(CondReg); 3947 if (CondTy.isVector()) // TODO: Handle vselect 3948 return UnableToLegalize; 3949 3950 Register DstReg = MI.getOperand(0).getReg(); 3951 LLT DstTy = MRI.getType(DstReg); 3952 3953 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3954 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3955 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3956 LLT LeftoverTy; 3957 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3958 Src1Regs, Src1LeftoverRegs)) 3959 return UnableToLegalize; 3960 3961 LLT Unused; 3962 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3963 Src2Regs, Src2LeftoverRegs)) 3964 llvm_unreachable("inconsistent extractParts result"); 3965 3966 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3967 auto Select = MIRBuilder.buildSelect(NarrowTy, 3968 CondReg, Src1Regs[I], Src2Regs[I]); 3969 DstRegs.push_back(Select.getReg(0)); 3970 } 3971 3972 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3973 auto Select = MIRBuilder.buildSelect( 3974 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3975 DstLeftoverRegs.push_back(Select.getReg(0)); 3976 } 3977 3978 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3979 LeftoverTy, DstLeftoverRegs); 3980 3981 MI.eraseFromParent(); 3982 return Legalized; 3983 } 3984 3985 LegalizerHelper::LegalizeResult 3986 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 3987 LLT NarrowTy) { 3988 if (TypeIdx != 1) 3989 return UnableToLegalize; 3990 3991 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3992 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3993 3994 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 3995 MachineIRBuilder &B = MIRBuilder; 3996 auto UnmergeSrc = B.buildUnmerge(NarrowTy, MI.getOperand(1)); 3997 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 3998 auto C_0 = B.buildConstant(NarrowTy, 0); 3999 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4000 UnmergeSrc.getReg(1), C_0); 4001 auto LoCTLZ = B.buildCTLZ(NarrowTy, UnmergeSrc.getReg(0)); 4002 auto C_NarrowSize = B.buildConstant(NarrowTy, NarrowSize); 4003 auto HiIsZeroCTLZ = B.buildAdd(NarrowTy, LoCTLZ, C_NarrowSize); 4004 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(NarrowTy, UnmergeSrc.getReg(1)); 4005 auto LoOut = B.buildSelect(NarrowTy, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4006 4007 B.buildMerge(MI.getOperand(0), {LoOut.getReg(0), C_0.getReg(0)}); 4008 4009 MI.eraseFromParent(); 4010 return Legalized; 4011 } 4012 4013 return UnableToLegalize; 4014 } 4015 4016 LegalizerHelper::LegalizeResult 4017 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4018 LLT NarrowTy) { 4019 if (TypeIdx != 1) 4020 return UnableToLegalize; 4021 4022 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4023 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4024 4025 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4026 MachineIRBuilder &B = MIRBuilder; 4027 auto UnmergeSrc = B.buildUnmerge(NarrowTy, MI.getOperand(1)); 4028 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4029 auto C_0 = B.buildConstant(NarrowTy, 0); 4030 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4031 UnmergeSrc.getReg(0), C_0); 4032 auto HiCTTZ = B.buildCTTZ(NarrowTy, UnmergeSrc.getReg(1)); 4033 auto C_NarrowSize = B.buildConstant(NarrowTy, NarrowSize); 4034 auto LoIsZeroCTTZ = B.buildAdd(NarrowTy, HiCTTZ, C_NarrowSize); 4035 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(NarrowTy, UnmergeSrc.getReg(0)); 4036 auto LoOut = B.buildSelect(NarrowTy, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4037 4038 B.buildMerge(MI.getOperand(0), {LoOut.getReg(0), C_0.getReg(0)}); 4039 4040 MI.eraseFromParent(); 4041 return Legalized; 4042 } 4043 4044 return UnableToLegalize; 4045 } 4046 4047 LegalizerHelper::LegalizeResult 4048 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4049 LLT NarrowTy) { 4050 if (TypeIdx != 1) 4051 return UnableToLegalize; 4052 4053 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4054 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4055 4056 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4057 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4058 4059 auto LoCTPOP = MIRBuilder.buildCTPOP(NarrowTy, UnmergeSrc.getReg(0)); 4060 auto HiCTPOP = MIRBuilder.buildCTPOP(NarrowTy, UnmergeSrc.getReg(1)); 4061 auto Out = MIRBuilder.buildAdd(NarrowTy, HiCTPOP, LoCTPOP); 4062 MIRBuilder.buildZExt(MI.getOperand(0), Out); 4063 4064 MI.eraseFromParent(); 4065 return Legalized; 4066 } 4067 4068 return UnableToLegalize; 4069 } 4070 4071 LegalizerHelper::LegalizeResult 4072 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4073 unsigned Opc = MI.getOpcode(); 4074 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4075 auto isSupported = [this](const LegalityQuery &Q) { 4076 auto QAction = LI.getAction(Q).Action; 4077 return QAction == Legal || QAction == Libcall || QAction == Custom; 4078 }; 4079 switch (Opc) { 4080 default: 4081 return UnableToLegalize; 4082 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4083 // This trivially expands to CTLZ. 4084 Observer.changingInstr(MI); 4085 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4086 Observer.changedInstr(MI); 4087 return Legalized; 4088 } 4089 case TargetOpcode::G_CTLZ: { 4090 Register SrcReg = MI.getOperand(1).getReg(); 4091 unsigned Len = Ty.getSizeInBits(); 4092 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 4093 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4094 auto MIBCtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(Ty, SrcReg); 4095 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 4096 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 4097 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4098 SrcReg, MIBZero); 4099 MIRBuilder.buildSelect(MI.getOperand(0), MIBICmp, MIBLen, MIBCtlzZU); 4100 MI.eraseFromParent(); 4101 return Legalized; 4102 } 4103 // for now, we do this: 4104 // NewLen = NextPowerOf2(Len); 4105 // x = x | (x >> 1); 4106 // x = x | (x >> 2); 4107 // ... 4108 // x = x | (x >>16); 4109 // x = x | (x >>32); // for 64-bit input 4110 // Upto NewLen/2 4111 // return Len - popcount(x); 4112 // 4113 // Ref: "Hacker's Delight" by Henry Warren 4114 Register Op = SrcReg; 4115 unsigned NewLen = PowerOf2Ceil(Len); 4116 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4117 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 4118 auto MIBOp = 4119 MIRBuilder.buildOr(Ty, Op, MIRBuilder.buildLShr(Ty, Op, MIBShiftAmt)); 4120 Op = MIBOp.getReg(0); 4121 } 4122 auto MIBPop = MIRBuilder.buildCTPOP(Ty, Op); 4123 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(Ty, Len), 4124 MIBPop); 4125 MI.eraseFromParent(); 4126 return Legalized; 4127 } 4128 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4129 // This trivially expands to CTTZ. 4130 Observer.changingInstr(MI); 4131 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4132 Observer.changedInstr(MI); 4133 return Legalized; 4134 } 4135 case TargetOpcode::G_CTTZ: { 4136 Register SrcReg = MI.getOperand(1).getReg(); 4137 unsigned Len = Ty.getSizeInBits(); 4138 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 4139 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4140 // zero. 4141 auto MIBCttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(Ty, SrcReg); 4142 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 4143 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 4144 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4145 SrcReg, MIBZero); 4146 MIRBuilder.buildSelect(MI.getOperand(0), MIBICmp, MIBLen, MIBCttzZU); 4147 MI.eraseFromParent(); 4148 return Legalized; 4149 } 4150 // for now, we use: { return popcount(~x & (x - 1)); } 4151 // unless the target has ctlz but not ctpop, in which case we use: 4152 // { return 32 - nlz(~x & (x-1)); } 4153 // Ref: "Hacker's Delight" by Henry Warren 4154 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4155 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4156 auto MIBTmp = MIRBuilder.buildAnd( 4157 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4158 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4159 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4160 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4161 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4162 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4163 MI.eraseFromParent(); 4164 return Legalized; 4165 } 4166 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4167 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4168 return Legalized; 4169 } 4170 case TargetOpcode::G_CTPOP: { 4171 unsigned Size = Ty.getSizeInBits(); 4172 MachineIRBuilder &B = MIRBuilder; 4173 4174 // Count set bits in blocks of 2 bits. Default approach would be 4175 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4176 // We use following formula instead: 4177 // B2Count = val - { (val >> 1) & 0x55555555 } 4178 // since it gives same result in blocks of 2 with one instruction less. 4179 auto C_1 = B.buildConstant(Ty, 1); 4180 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4181 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4182 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4183 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4184 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4185 4186 // In order to get count in blocks of 4 add values from adjacent block of 2. 4187 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4188 auto C_2 = B.buildConstant(Ty, 2); 4189 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4190 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4191 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4192 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4193 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4194 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4195 4196 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4197 // addition since count value sits in range {0,...,8} and 4 bits are enough 4198 // to hold such binary values. After addition high 4 bits still hold count 4199 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4200 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4201 auto C_4 = B.buildConstant(Ty, 4); 4202 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4203 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4204 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4205 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4206 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4207 4208 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4209 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4210 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4211 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4212 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4213 4214 // Shift count result from 8 high bits to low bits. 4215 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4216 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4217 4218 MI.eraseFromParent(); 4219 return Legalized; 4220 } 4221 } 4222 } 4223 4224 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4225 // representation. 4226 LegalizerHelper::LegalizeResult 4227 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4228 Register Dst = MI.getOperand(0).getReg(); 4229 Register Src = MI.getOperand(1).getReg(); 4230 const LLT S64 = LLT::scalar(64); 4231 const LLT S32 = LLT::scalar(32); 4232 const LLT S1 = LLT::scalar(1); 4233 4234 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4235 4236 // unsigned cul2f(ulong u) { 4237 // uint lz = clz(u); 4238 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4239 // u = (u << lz) & 0x7fffffffffffffffUL; 4240 // ulong t = u & 0xffffffffffUL; 4241 // uint v = (e << 23) | (uint)(u >> 40); 4242 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4243 // return as_float(v + r); 4244 // } 4245 4246 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4247 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4248 4249 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4250 4251 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4252 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4253 4254 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4255 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4256 4257 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4258 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4259 4260 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4261 4262 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4263 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4264 4265 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4266 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4267 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4268 4269 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4270 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4271 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4272 auto One = MIRBuilder.buildConstant(S32, 1); 4273 4274 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4275 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4276 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4277 MIRBuilder.buildAdd(Dst, V, R); 4278 4279 return Legalized; 4280 } 4281 4282 LegalizerHelper::LegalizeResult 4283 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4284 Register Dst = MI.getOperand(0).getReg(); 4285 Register Src = MI.getOperand(1).getReg(); 4286 LLT DstTy = MRI.getType(Dst); 4287 LLT SrcTy = MRI.getType(Src); 4288 4289 if (SrcTy == LLT::scalar(1)) { 4290 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4291 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4292 MIRBuilder.buildSelect(Dst, Src, True, False); 4293 MI.eraseFromParent(); 4294 return Legalized; 4295 } 4296 4297 if (SrcTy != LLT::scalar(64)) 4298 return UnableToLegalize; 4299 4300 if (DstTy == LLT::scalar(32)) { 4301 // TODO: SelectionDAG has several alternative expansions to port which may 4302 // be more reasonble depending on the available instructions. If a target 4303 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4304 // intermediate type, this is probably worse. 4305 return lowerU64ToF32BitOps(MI); 4306 } 4307 4308 return UnableToLegalize; 4309 } 4310 4311 LegalizerHelper::LegalizeResult 4312 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4313 Register Dst = MI.getOperand(0).getReg(); 4314 Register Src = MI.getOperand(1).getReg(); 4315 LLT DstTy = MRI.getType(Dst); 4316 LLT SrcTy = MRI.getType(Src); 4317 4318 const LLT S64 = LLT::scalar(64); 4319 const LLT S32 = LLT::scalar(32); 4320 const LLT S1 = LLT::scalar(1); 4321 4322 if (SrcTy == S1) { 4323 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4324 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4325 MIRBuilder.buildSelect(Dst, Src, True, False); 4326 MI.eraseFromParent(); 4327 return Legalized; 4328 } 4329 4330 if (SrcTy != S64) 4331 return UnableToLegalize; 4332 4333 if (DstTy == S32) { 4334 // signed cl2f(long l) { 4335 // long s = l >> 63; 4336 // float r = cul2f((l + s) ^ s); 4337 // return s ? -r : r; 4338 // } 4339 Register L = Src; 4340 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4341 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4342 4343 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4344 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4345 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4346 4347 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4348 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4349 MIRBuilder.buildConstant(S64, 0)); 4350 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4351 return Legalized; 4352 } 4353 4354 return UnableToLegalize; 4355 } 4356 4357 LegalizerHelper::LegalizeResult 4358 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4359 Register Dst = MI.getOperand(0).getReg(); 4360 Register Src = MI.getOperand(1).getReg(); 4361 LLT DstTy = MRI.getType(Dst); 4362 LLT SrcTy = MRI.getType(Src); 4363 const LLT S64 = LLT::scalar(64); 4364 const LLT S32 = LLT::scalar(32); 4365 4366 if (SrcTy != S64 && SrcTy != S32) 4367 return UnableToLegalize; 4368 if (DstTy != S32 && DstTy != S64) 4369 return UnableToLegalize; 4370 4371 // FPTOSI gives same result as FPTOUI for positive signed integers. 4372 // FPTOUI needs to deal with fp values that convert to unsigned integers 4373 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4374 4375 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4376 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4377 : APFloat::IEEEdouble(), 4378 APInt::getNullValue(SrcTy.getSizeInBits())); 4379 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4380 4381 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4382 4383 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4384 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4385 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4386 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4387 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4388 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4389 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4390 4391 const LLT S1 = LLT::scalar(1); 4392 4393 MachineInstrBuilder FCMP = 4394 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4395 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4396 4397 MI.eraseFromParent(); 4398 return Legalized; 4399 } 4400 4401 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4402 Register Dst = MI.getOperand(0).getReg(); 4403 Register Src = MI.getOperand(1).getReg(); 4404 LLT DstTy = MRI.getType(Dst); 4405 LLT SrcTy = MRI.getType(Src); 4406 const LLT S64 = LLT::scalar(64); 4407 const LLT S32 = LLT::scalar(32); 4408 4409 // FIXME: Only f32 to i64 conversions are supported. 4410 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4411 return UnableToLegalize; 4412 4413 // Expand f32 -> i64 conversion 4414 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4415 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4416 4417 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4418 4419 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4420 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4421 4422 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4423 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4424 4425 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4426 APInt::getSignMask(SrcEltBits)); 4427 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4428 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4429 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4430 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4431 4432 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4433 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4434 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4435 4436 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4437 R = MIRBuilder.buildZExt(DstTy, R); 4438 4439 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4440 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4441 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4442 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4443 4444 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4445 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4446 4447 const LLT S1 = LLT::scalar(1); 4448 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4449 S1, Exponent, ExponentLoBit); 4450 4451 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4452 4453 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4454 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4455 4456 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4457 4458 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4459 S1, Exponent, ZeroSrcTy); 4460 4461 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4462 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4463 4464 MI.eraseFromParent(); 4465 return Legalized; 4466 } 4467 4468 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4469 switch (Opc) { 4470 case TargetOpcode::G_SMIN: 4471 return CmpInst::ICMP_SLT; 4472 case TargetOpcode::G_SMAX: 4473 return CmpInst::ICMP_SGT; 4474 case TargetOpcode::G_UMIN: 4475 return CmpInst::ICMP_ULT; 4476 case TargetOpcode::G_UMAX: 4477 return CmpInst::ICMP_UGT; 4478 default: 4479 llvm_unreachable("not in integer min/max"); 4480 } 4481 } 4482 4483 LegalizerHelper::LegalizeResult 4484 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4485 Register Dst = MI.getOperand(0).getReg(); 4486 Register Src0 = MI.getOperand(1).getReg(); 4487 Register Src1 = MI.getOperand(2).getReg(); 4488 4489 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4490 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4491 4492 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4493 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4494 4495 MI.eraseFromParent(); 4496 return Legalized; 4497 } 4498 4499 LegalizerHelper::LegalizeResult 4500 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4501 Register Dst = MI.getOperand(0).getReg(); 4502 Register Src0 = MI.getOperand(1).getReg(); 4503 Register Src1 = MI.getOperand(2).getReg(); 4504 4505 const LLT Src0Ty = MRI.getType(Src0); 4506 const LLT Src1Ty = MRI.getType(Src1); 4507 4508 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4509 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4510 4511 auto SignBitMask = MIRBuilder.buildConstant( 4512 Src0Ty, APInt::getSignMask(Src0Size)); 4513 4514 auto NotSignBitMask = MIRBuilder.buildConstant( 4515 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4516 4517 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4518 MachineInstr *Or; 4519 4520 if (Src0Ty == Src1Ty) { 4521 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 4522 Or = MIRBuilder.buildOr(Dst, And0, And1); 4523 } else if (Src0Size > Src1Size) { 4524 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4525 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4526 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4527 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4528 Or = MIRBuilder.buildOr(Dst, And0, And1); 4529 } else { 4530 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4531 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4532 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4533 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4534 Or = MIRBuilder.buildOr(Dst, And0, And1); 4535 } 4536 4537 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4538 // constants are a nan and -0.0, but the final result should preserve 4539 // everything. 4540 if (unsigned Flags = MI.getFlags()) 4541 Or->setFlags(Flags); 4542 4543 MI.eraseFromParent(); 4544 return Legalized; 4545 } 4546 4547 LegalizerHelper::LegalizeResult 4548 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4549 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4550 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4551 4552 Register Dst = MI.getOperand(0).getReg(); 4553 Register Src0 = MI.getOperand(1).getReg(); 4554 Register Src1 = MI.getOperand(2).getReg(); 4555 LLT Ty = MRI.getType(Dst); 4556 4557 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4558 // Insert canonicalizes if it's possible we need to quiet to get correct 4559 // sNaN behavior. 4560 4561 // Note this must be done here, and not as an optimization combine in the 4562 // absence of a dedicate quiet-snan instruction as we're using an 4563 // omni-purpose G_FCANONICALIZE. 4564 if (!isKnownNeverSNaN(Src0, MRI)) 4565 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4566 4567 if (!isKnownNeverSNaN(Src1, MRI)) 4568 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4569 } 4570 4571 // If there are no nans, it's safe to simply replace this with the non-IEEE 4572 // version. 4573 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4574 MI.eraseFromParent(); 4575 return Legalized; 4576 } 4577 4578 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4579 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4580 Register DstReg = MI.getOperand(0).getReg(); 4581 LLT Ty = MRI.getType(DstReg); 4582 unsigned Flags = MI.getFlags(); 4583 4584 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4585 Flags); 4586 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4587 MI.eraseFromParent(); 4588 return Legalized; 4589 } 4590 4591 LegalizerHelper::LegalizeResult 4592 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4593 Register DstReg = MI.getOperand(0).getReg(); 4594 Register SrcReg = MI.getOperand(1).getReg(); 4595 unsigned Flags = MI.getFlags(); 4596 LLT Ty = MRI.getType(DstReg); 4597 const LLT CondTy = Ty.changeElementSize(1); 4598 4599 // result = trunc(src); 4600 // if (src < 0.0 && src != result) 4601 // result += -1.0. 4602 4603 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4604 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4605 4606 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4607 SrcReg, Zero, Flags); 4608 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4609 SrcReg, Trunc, Flags); 4610 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4611 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4612 4613 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal); 4614 MI.eraseFromParent(); 4615 return Legalized; 4616 } 4617 4618 LegalizerHelper::LegalizeResult 4619 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4620 const unsigned NumDst = MI.getNumOperands() - 1; 4621 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4622 LLT SrcTy = MRI.getType(SrcReg); 4623 4624 Register Dst0Reg = MI.getOperand(0).getReg(); 4625 LLT DstTy = MRI.getType(Dst0Reg); 4626 4627 4628 // Expand scalarizing unmerge as bitcast to integer and shift. 4629 if (!DstTy.isVector() && SrcTy.isVector() && 4630 SrcTy.getElementType() == DstTy) { 4631 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4632 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4633 4634 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4635 4636 const unsigned DstSize = DstTy.getSizeInBits(); 4637 unsigned Offset = DstSize; 4638 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4639 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4640 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4641 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4642 } 4643 4644 MI.eraseFromParent(); 4645 return Legalized; 4646 } 4647 4648 return UnableToLegalize; 4649 } 4650 4651 LegalizerHelper::LegalizeResult 4652 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4653 Register DstReg = MI.getOperand(0).getReg(); 4654 Register Src0Reg = MI.getOperand(1).getReg(); 4655 Register Src1Reg = MI.getOperand(2).getReg(); 4656 LLT Src0Ty = MRI.getType(Src0Reg); 4657 LLT DstTy = MRI.getType(DstReg); 4658 LLT IdxTy = LLT::scalar(32); 4659 4660 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4661 4662 if (DstTy.isScalar()) { 4663 if (Src0Ty.isVector()) 4664 return UnableToLegalize; 4665 4666 // This is just a SELECT. 4667 assert(Mask.size() == 1 && "Expected a single mask element"); 4668 Register Val; 4669 if (Mask[0] < 0 || Mask[0] > 1) 4670 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4671 else 4672 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4673 MIRBuilder.buildCopy(DstReg, Val); 4674 MI.eraseFromParent(); 4675 return Legalized; 4676 } 4677 4678 Register Undef; 4679 SmallVector<Register, 32> BuildVec; 4680 LLT EltTy = DstTy.getElementType(); 4681 4682 for (int Idx : Mask) { 4683 if (Idx < 0) { 4684 if (!Undef.isValid()) 4685 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4686 BuildVec.push_back(Undef); 4687 continue; 4688 } 4689 4690 if (Src0Ty.isScalar()) { 4691 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4692 } else { 4693 int NumElts = Src0Ty.getNumElements(); 4694 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4695 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4696 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4697 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4698 BuildVec.push_back(Extract.getReg(0)); 4699 } 4700 } 4701 4702 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4703 MI.eraseFromParent(); 4704 return Legalized; 4705 } 4706 4707 LegalizerHelper::LegalizeResult 4708 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4709 Register Dst = MI.getOperand(0).getReg(); 4710 Register AllocSize = MI.getOperand(1).getReg(); 4711 unsigned Align = MI.getOperand(2).getImm(); 4712 4713 const auto &MF = *MI.getMF(); 4714 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4715 4716 LLT PtrTy = MRI.getType(Dst); 4717 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4718 4719 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4720 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4721 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4722 4723 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4724 // have to generate an extra instruction to negate the alloc and then use 4725 // G_PTR_ADD to add the negative offset. 4726 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4727 if (Align) { 4728 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4729 AlignMask.negate(); 4730 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4731 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4732 } 4733 4734 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4735 MIRBuilder.buildCopy(SPReg, SPTmp); 4736 MIRBuilder.buildCopy(Dst, SPTmp); 4737 4738 MI.eraseFromParent(); 4739 return Legalized; 4740 } 4741 4742 LegalizerHelper::LegalizeResult 4743 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4744 Register Dst = MI.getOperand(0).getReg(); 4745 Register Src = MI.getOperand(1).getReg(); 4746 unsigned Offset = MI.getOperand(2).getImm(); 4747 4748 LLT DstTy = MRI.getType(Dst); 4749 LLT SrcTy = MRI.getType(Src); 4750 4751 if (DstTy.isScalar() && 4752 (SrcTy.isScalar() || 4753 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4754 LLT SrcIntTy = SrcTy; 4755 if (!SrcTy.isScalar()) { 4756 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4757 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4758 } 4759 4760 if (Offset == 0) 4761 MIRBuilder.buildTrunc(Dst, Src); 4762 else { 4763 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4764 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4765 MIRBuilder.buildTrunc(Dst, Shr); 4766 } 4767 4768 MI.eraseFromParent(); 4769 return Legalized; 4770 } 4771 4772 return UnableToLegalize; 4773 } 4774 4775 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4776 Register Dst = MI.getOperand(0).getReg(); 4777 Register Src = MI.getOperand(1).getReg(); 4778 Register InsertSrc = MI.getOperand(2).getReg(); 4779 uint64_t Offset = MI.getOperand(3).getImm(); 4780 4781 LLT DstTy = MRI.getType(Src); 4782 LLT InsertTy = MRI.getType(InsertSrc); 4783 4784 if (InsertTy.isScalar() && 4785 (DstTy.isScalar() || 4786 (DstTy.isVector() && DstTy.getElementType() == InsertTy))) { 4787 LLT IntDstTy = DstTy; 4788 if (!DstTy.isScalar()) { 4789 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4790 Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0); 4791 } 4792 4793 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 4794 if (Offset != 0) { 4795 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 4796 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 4797 } 4798 4799 APInt MaskVal = APInt::getBitsSetWithWrap(DstTy.getSizeInBits(), 4800 Offset + InsertTy.getSizeInBits(), 4801 Offset); 4802 4803 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 4804 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 4805 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 4806 4807 MIRBuilder.buildBitcast(Dst, Or); 4808 MI.eraseFromParent(); 4809 return Legalized; 4810 } 4811 4812 return UnableToLegalize; 4813 } 4814 4815 LegalizerHelper::LegalizeResult 4816 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 4817 Register Dst0 = MI.getOperand(0).getReg(); 4818 Register Dst1 = MI.getOperand(1).getReg(); 4819 Register LHS = MI.getOperand(2).getReg(); 4820 Register RHS = MI.getOperand(3).getReg(); 4821 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 4822 4823 LLT Ty = MRI.getType(Dst0); 4824 LLT BoolTy = MRI.getType(Dst1); 4825 4826 if (IsAdd) 4827 MIRBuilder.buildAdd(Dst0, LHS, RHS); 4828 else 4829 MIRBuilder.buildSub(Dst0, LHS, RHS); 4830 4831 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 4832 4833 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4834 4835 // For an addition, the result should be less than one of the operands (LHS) 4836 // if and only if the other operand (RHS) is negative, otherwise there will 4837 // be overflow. 4838 // For a subtraction, the result should be less than one of the operands 4839 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 4840 // otherwise there will be overflow. 4841 auto ResultLowerThanLHS = 4842 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 4843 auto ConditionRHS = MIRBuilder.buildICmp( 4844 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 4845 4846 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 4847 MI.eraseFromParent(); 4848 return Legalized; 4849 } 4850 4851 LegalizerHelper::LegalizeResult 4852 LegalizerHelper::lowerBswap(MachineInstr &MI) { 4853 Register Dst = MI.getOperand(0).getReg(); 4854 Register Src = MI.getOperand(1).getReg(); 4855 const LLT Ty = MRI.getType(Src); 4856 unsigned SizeInBytes = Ty.getSizeInBytes(); 4857 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 4858 4859 // Swap most and least significant byte, set remaining bytes in Res to zero. 4860 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 4861 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 4862 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4863 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 4864 4865 // Set i-th high/low byte in Res to i-th low/high byte from Src. 4866 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 4867 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 4868 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 4869 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 4870 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 4871 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 4872 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 4873 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 4874 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 4875 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 4876 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4877 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 4878 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 4879 } 4880 Res.getInstr()->getOperand(0).setReg(Dst); 4881 4882 MI.eraseFromParent(); 4883 return Legalized; 4884 } 4885 4886 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 4887 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 4888 MachineInstrBuilder Src, APInt Mask) { 4889 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 4890 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 4891 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 4892 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 4893 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 4894 return B.buildOr(Dst, LHS, RHS); 4895 } 4896 4897 LegalizerHelper::LegalizeResult 4898 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 4899 Register Dst = MI.getOperand(0).getReg(); 4900 Register Src = MI.getOperand(1).getReg(); 4901 const LLT Ty = MRI.getType(Src); 4902 unsigned Size = Ty.getSizeInBits(); 4903 4904 MachineInstrBuilder BSWAP = 4905 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 4906 4907 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 4908 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 4909 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 4910 MachineInstrBuilder Swap4 = 4911 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 4912 4913 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 4914 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 4915 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 4916 MachineInstrBuilder Swap2 = 4917 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 4918 4919 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 4920 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 4921 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 4922 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 4923 4924 MI.eraseFromParent(); 4925 return Legalized; 4926 } 4927 4928 LegalizerHelper::LegalizeResult 4929 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 4930 MachineFunction &MF = MIRBuilder.getMF(); 4931 const TargetSubtargetInfo &STI = MF.getSubtarget(); 4932 const TargetLowering *TLI = STI.getTargetLowering(); 4933 4934 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 4935 int NameOpIdx = IsRead ? 1 : 0; 4936 int ValRegIndex = IsRead ? 0 : 1; 4937 4938 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 4939 const LLT Ty = MRI.getType(ValReg); 4940 const MDString *RegStr = cast<MDString>( 4941 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 4942 4943 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 4944 if (!PhysReg.isValid()) 4945 return UnableToLegalize; 4946 4947 if (IsRead) 4948 MIRBuilder.buildCopy(ValReg, PhysReg); 4949 else 4950 MIRBuilder.buildCopy(PhysReg, ValReg); 4951 4952 MI.eraseFromParent(); 4953 return Legalized; 4954 } 4955