1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 67 GISelChangeObserver &Observer, 68 MachineIRBuilder &Builder) 69 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 70 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 71 MIRBuilder.setMF(MF); 72 MIRBuilder.setChangeObserver(Observer); 73 } 74 75 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 76 GISelChangeObserver &Observer, 77 MachineIRBuilder &B) 78 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 79 MIRBuilder.setMF(MF); 80 MIRBuilder.setChangeObserver(Observer); 81 } 82 LegalizerHelper::LegalizeResult 83 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 84 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 85 86 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 87 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 88 return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized 89 : UnableToLegalize; 90 auto Step = LI.getAction(MI, MRI); 91 switch (Step.Action) { 92 case Legal: 93 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 94 return AlreadyLegal; 95 case Libcall: 96 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 97 return libcall(MI); 98 case NarrowScalar: 99 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 100 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 101 case WidenScalar: 102 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 103 return widenScalar(MI, Step.TypeIdx, Step.NewType); 104 case Lower: 105 LLVM_DEBUG(dbgs() << ".. Lower\n"); 106 return lower(MI, Step.TypeIdx, Step.NewType); 107 case FewerElements: 108 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 109 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 110 case MoreElements: 111 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 112 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 113 case Custom: 114 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 115 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 116 : UnableToLegalize; 117 default: 118 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 119 return UnableToLegalize; 120 } 121 } 122 123 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 124 SmallVectorImpl<Register> &VRegs) { 125 for (int i = 0; i < NumParts; ++i) 126 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 127 MIRBuilder.buildUnmerge(VRegs, Reg); 128 } 129 130 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 131 LLT MainTy, LLT &LeftoverTy, 132 SmallVectorImpl<Register> &VRegs, 133 SmallVectorImpl<Register> &LeftoverRegs) { 134 assert(!LeftoverTy.isValid() && "this is an out argument"); 135 136 unsigned RegSize = RegTy.getSizeInBits(); 137 unsigned MainSize = MainTy.getSizeInBits(); 138 unsigned NumParts = RegSize / MainSize; 139 unsigned LeftoverSize = RegSize - NumParts * MainSize; 140 141 // Use an unmerge when possible. 142 if (LeftoverSize == 0) { 143 for (unsigned I = 0; I < NumParts; ++I) 144 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 145 MIRBuilder.buildUnmerge(VRegs, Reg); 146 return true; 147 } 148 149 if (MainTy.isVector()) { 150 unsigned EltSize = MainTy.getScalarSizeInBits(); 151 if (LeftoverSize % EltSize != 0) 152 return false; 153 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 154 } else { 155 LeftoverTy = LLT::scalar(LeftoverSize); 156 } 157 158 // For irregular sizes, extract the individual parts. 159 for (unsigned I = 0; I != NumParts; ++I) { 160 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 161 VRegs.push_back(NewReg); 162 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 163 } 164 165 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 166 Offset += LeftoverSize) { 167 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 168 LeftoverRegs.push_back(NewReg); 169 MIRBuilder.buildExtract(NewReg, Reg, Offset); 170 } 171 172 return true; 173 } 174 175 static LLT getGCDType(LLT OrigTy, LLT TargetTy) { 176 if (OrigTy.isVector() && TargetTy.isVector()) { 177 assert(OrigTy.getElementType() == TargetTy.getElementType()); 178 int GCD = greatestCommonDivisor(OrigTy.getNumElements(), 179 TargetTy.getNumElements()); 180 return LLT::scalarOrVector(GCD, OrigTy.getElementType()); 181 } 182 183 if (OrigTy.isVector() && !TargetTy.isVector()) { 184 assert(OrigTy.getElementType() == TargetTy); 185 return TargetTy; 186 } 187 188 assert(!OrigTy.isVector() && !TargetTy.isVector()); 189 190 int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(), 191 TargetTy.getSizeInBits()); 192 return LLT::scalar(GCD); 193 } 194 195 void LegalizerHelper::insertParts(Register DstReg, 196 LLT ResultTy, LLT PartTy, 197 ArrayRef<Register> PartRegs, 198 LLT LeftoverTy, 199 ArrayRef<Register> LeftoverRegs) { 200 if (!LeftoverTy.isValid()) { 201 assert(LeftoverRegs.empty()); 202 203 if (!ResultTy.isVector()) { 204 MIRBuilder.buildMerge(DstReg, PartRegs); 205 return; 206 } 207 208 if (PartTy.isVector()) 209 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 210 else 211 MIRBuilder.buildBuildVector(DstReg, PartRegs); 212 return; 213 } 214 215 unsigned PartSize = PartTy.getSizeInBits(); 216 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 217 218 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 219 MIRBuilder.buildUndef(CurResultReg); 220 221 unsigned Offset = 0; 222 for (Register PartReg : PartRegs) { 223 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 224 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 225 CurResultReg = NewResultReg; 226 Offset += PartSize; 227 } 228 229 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 230 // Use the original output register for the final insert to avoid a copy. 231 Register NewResultReg = (I + 1 == E) ? 232 DstReg : MRI.createGenericVirtualRegister(ResultTy); 233 234 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 235 CurResultReg = NewResultReg; 236 Offset += LeftoverPartSize; 237 } 238 } 239 240 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 241 switch (Opcode) { 242 case TargetOpcode::G_SDIV: 243 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 244 switch (Size) { 245 case 32: 246 return RTLIB::SDIV_I32; 247 case 64: 248 return RTLIB::SDIV_I64; 249 case 128: 250 return RTLIB::SDIV_I128; 251 default: 252 llvm_unreachable("unexpected size"); 253 } 254 case TargetOpcode::G_UDIV: 255 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 256 switch (Size) { 257 case 32: 258 return RTLIB::UDIV_I32; 259 case 64: 260 return RTLIB::UDIV_I64; 261 case 128: 262 return RTLIB::UDIV_I128; 263 default: 264 llvm_unreachable("unexpected size"); 265 } 266 case TargetOpcode::G_SREM: 267 assert((Size == 32 || Size == 64) && "Unsupported size"); 268 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 269 case TargetOpcode::G_UREM: 270 assert((Size == 32 || Size == 64) && "Unsupported size"); 271 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 272 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 273 assert(Size == 32 && "Unsupported size"); 274 return RTLIB::CTLZ_I32; 275 case TargetOpcode::G_FADD: 276 assert((Size == 32 || Size == 64) && "Unsupported size"); 277 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 278 case TargetOpcode::G_FSUB: 279 assert((Size == 32 || Size == 64) && "Unsupported size"); 280 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 281 case TargetOpcode::G_FMUL: 282 assert((Size == 32 || Size == 64) && "Unsupported size"); 283 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 284 case TargetOpcode::G_FDIV: 285 assert((Size == 32 || Size == 64) && "Unsupported size"); 286 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 287 case TargetOpcode::G_FEXP: 288 assert((Size == 32 || Size == 64) && "Unsupported size"); 289 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 290 case TargetOpcode::G_FEXP2: 291 assert((Size == 32 || Size == 64) && "Unsupported size"); 292 return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; 293 case TargetOpcode::G_FREM: 294 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 295 case TargetOpcode::G_FPOW: 296 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 297 case TargetOpcode::G_FMA: 298 assert((Size == 32 || Size == 64) && "Unsupported size"); 299 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 300 case TargetOpcode::G_FSIN: 301 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 302 return Size == 128 ? RTLIB::SIN_F128 303 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 304 case TargetOpcode::G_FCOS: 305 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 306 return Size == 128 ? RTLIB::COS_F128 307 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 308 case TargetOpcode::G_FLOG10: 309 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 310 return Size == 128 ? RTLIB::LOG10_F128 311 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 312 case TargetOpcode::G_FLOG: 313 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 314 return Size == 128 ? RTLIB::LOG_F128 315 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 316 case TargetOpcode::G_FLOG2: 317 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 318 return Size == 128 ? RTLIB::LOG2_F128 319 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 320 case TargetOpcode::G_FCEIL: 321 assert((Size == 32 || Size == 64) && "Unsupported size"); 322 return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; 323 case TargetOpcode::G_FFLOOR: 324 assert((Size == 32 || Size == 64) && "Unsupported size"); 325 return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; 326 } 327 llvm_unreachable("Unknown libcall function"); 328 } 329 330 /// True if an instruction is in tail position in its caller. Intended for 331 /// legalizing libcalls as tail calls when possible. 332 static bool isLibCallInTailPosition(MachineInstr &MI) { 333 const Function &F = MI.getParent()->getParent()->getFunction(); 334 335 // Conservatively require the attributes of the call to match those of 336 // the return. Ignore NoAlias and NonNull because they don't affect the 337 // call sequence. 338 AttributeList CallerAttrs = F.getAttributes(); 339 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 340 .removeAttribute(Attribute::NoAlias) 341 .removeAttribute(Attribute::NonNull) 342 .hasAttributes()) 343 return false; 344 345 // It's not safe to eliminate the sign / zero extension of the return value. 346 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 347 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 348 return false; 349 350 // Only tail call if the following instruction is a standard return. 351 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 352 MachineInstr *Next = MI.getNextNode(); 353 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 354 return false; 355 356 return true; 357 } 358 359 LegalizerHelper::LegalizeResult 360 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 361 const CallLowering::ArgInfo &Result, 362 ArrayRef<CallLowering::ArgInfo> Args) { 363 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 364 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 365 const char *Name = TLI.getLibcallName(Libcall); 366 367 CallLowering::CallLoweringInfo Info; 368 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 369 Info.Callee = MachineOperand::CreateES(Name); 370 Info.OrigRet = Result; 371 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 372 if (!CLI.lowerCall(MIRBuilder, Info)) 373 return LegalizerHelper::UnableToLegalize; 374 375 return LegalizerHelper::Legalized; 376 } 377 378 // Useful for libcalls where all operands have the same type. 379 static LegalizerHelper::LegalizeResult 380 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 381 Type *OpType) { 382 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 383 384 SmallVector<CallLowering::ArgInfo, 3> Args; 385 for (unsigned i = 1; i < MI.getNumOperands(); i++) 386 Args.push_back({MI.getOperand(i).getReg(), OpType}); 387 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 388 Args); 389 } 390 391 LegalizerHelper::LegalizeResult 392 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 393 MachineInstr &MI) { 394 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 395 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 396 397 SmallVector<CallLowering::ArgInfo, 3> Args; 398 // Add all the args, except for the last which is an imm denoting 'tail'. 399 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 400 Register Reg = MI.getOperand(i).getReg(); 401 402 // Need derive an IR type for call lowering. 403 LLT OpLLT = MRI.getType(Reg); 404 Type *OpTy = nullptr; 405 if (OpLLT.isPointer()) 406 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 407 else 408 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 409 Args.push_back({Reg, OpTy}); 410 } 411 412 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 413 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 414 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 415 RTLIB::Libcall RTLibcall; 416 switch (ID) { 417 case Intrinsic::memcpy: 418 RTLibcall = RTLIB::MEMCPY; 419 break; 420 case Intrinsic::memset: 421 RTLibcall = RTLIB::MEMSET; 422 break; 423 case Intrinsic::memmove: 424 RTLibcall = RTLIB::MEMMOVE; 425 break; 426 default: 427 return LegalizerHelper::UnableToLegalize; 428 } 429 const char *Name = TLI.getLibcallName(RTLibcall); 430 431 MIRBuilder.setInstr(MI); 432 433 CallLowering::CallLoweringInfo Info; 434 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 435 Info.Callee = MachineOperand::CreateES(Name); 436 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 437 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 438 isLibCallInTailPosition(MI); 439 440 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 441 if (!CLI.lowerCall(MIRBuilder, Info)) 442 return LegalizerHelper::UnableToLegalize; 443 444 if (Info.LoweredTailCall) { 445 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 446 // We must have a return following the call to get past 447 // isLibCallInTailPosition. 448 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 449 "Expected instr following MI to be a return?"); 450 451 // We lowered a tail call, so the call is now the return from the block. 452 // Delete the old return. 453 MI.getNextNode()->eraseFromParent(); 454 } 455 456 return LegalizerHelper::Legalized; 457 } 458 459 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 460 Type *FromType) { 461 auto ToMVT = MVT::getVT(ToType); 462 auto FromMVT = MVT::getVT(FromType); 463 464 switch (Opcode) { 465 case TargetOpcode::G_FPEXT: 466 return RTLIB::getFPEXT(FromMVT, ToMVT); 467 case TargetOpcode::G_FPTRUNC: 468 return RTLIB::getFPROUND(FromMVT, ToMVT); 469 case TargetOpcode::G_FPTOSI: 470 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 471 case TargetOpcode::G_FPTOUI: 472 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 473 case TargetOpcode::G_SITOFP: 474 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 475 case TargetOpcode::G_UITOFP: 476 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 477 } 478 llvm_unreachable("Unsupported libcall function"); 479 } 480 481 static LegalizerHelper::LegalizeResult 482 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 483 Type *FromType) { 484 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 485 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 486 {{MI.getOperand(1).getReg(), FromType}}); 487 } 488 489 LegalizerHelper::LegalizeResult 490 LegalizerHelper::libcall(MachineInstr &MI) { 491 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 492 unsigned Size = LLTy.getSizeInBits(); 493 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 494 495 MIRBuilder.setInstr(MI); 496 497 switch (MI.getOpcode()) { 498 default: 499 return UnableToLegalize; 500 case TargetOpcode::G_SDIV: 501 case TargetOpcode::G_UDIV: 502 case TargetOpcode::G_SREM: 503 case TargetOpcode::G_UREM: 504 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 505 Type *HLTy = IntegerType::get(Ctx, Size); 506 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 507 if (Status != Legalized) 508 return Status; 509 break; 510 } 511 case TargetOpcode::G_FADD: 512 case TargetOpcode::G_FSUB: 513 case TargetOpcode::G_FMUL: 514 case TargetOpcode::G_FDIV: 515 case TargetOpcode::G_FMA: 516 case TargetOpcode::G_FPOW: 517 case TargetOpcode::G_FREM: 518 case TargetOpcode::G_FCOS: 519 case TargetOpcode::G_FSIN: 520 case TargetOpcode::G_FLOG10: 521 case TargetOpcode::G_FLOG: 522 case TargetOpcode::G_FLOG2: 523 case TargetOpcode::G_FEXP: 524 case TargetOpcode::G_FEXP2: 525 case TargetOpcode::G_FCEIL: 526 case TargetOpcode::G_FFLOOR: { 527 if (Size > 64) { 528 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 529 return UnableToLegalize; 530 } 531 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 532 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 533 if (Status != Legalized) 534 return Status; 535 break; 536 } 537 case TargetOpcode::G_FPEXT: { 538 // FIXME: Support other floating point types (half, fp128 etc) 539 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 540 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 541 if (ToSize != 64 || FromSize != 32) 542 return UnableToLegalize; 543 LegalizeResult Status = conversionLibcall( 544 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 545 if (Status != Legalized) 546 return Status; 547 break; 548 } 549 case TargetOpcode::G_FPTRUNC: { 550 // FIXME: Support other floating point types (half, fp128 etc) 551 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 552 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 553 if (ToSize != 32 || FromSize != 64) 554 return UnableToLegalize; 555 LegalizeResult Status = conversionLibcall( 556 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 557 if (Status != Legalized) 558 return Status; 559 break; 560 } 561 case TargetOpcode::G_FPTOSI: 562 case TargetOpcode::G_FPTOUI: { 563 // FIXME: Support other types 564 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 565 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 566 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 567 return UnableToLegalize; 568 LegalizeResult Status = conversionLibcall( 569 MI, MIRBuilder, 570 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 571 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 572 if (Status != Legalized) 573 return Status; 574 break; 575 } 576 case TargetOpcode::G_SITOFP: 577 case TargetOpcode::G_UITOFP: { 578 // FIXME: Support other types 579 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 580 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 581 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 582 return UnableToLegalize; 583 LegalizeResult Status = conversionLibcall( 584 MI, MIRBuilder, 585 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 586 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 587 if (Status != Legalized) 588 return Status; 589 break; 590 } 591 } 592 593 MI.eraseFromParent(); 594 return Legalized; 595 } 596 597 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 598 unsigned TypeIdx, 599 LLT NarrowTy) { 600 MIRBuilder.setInstr(MI); 601 602 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 603 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 604 605 switch (MI.getOpcode()) { 606 default: 607 return UnableToLegalize; 608 case TargetOpcode::G_IMPLICIT_DEF: { 609 // FIXME: add support for when SizeOp0 isn't an exact multiple of 610 // NarrowSize. 611 if (SizeOp0 % NarrowSize != 0) 612 return UnableToLegalize; 613 int NumParts = SizeOp0 / NarrowSize; 614 615 SmallVector<Register, 2> DstRegs; 616 for (int i = 0; i < NumParts; ++i) 617 DstRegs.push_back( 618 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 619 620 Register DstReg = MI.getOperand(0).getReg(); 621 if(MRI.getType(DstReg).isVector()) 622 MIRBuilder.buildBuildVector(DstReg, DstRegs); 623 else 624 MIRBuilder.buildMerge(DstReg, DstRegs); 625 MI.eraseFromParent(); 626 return Legalized; 627 } 628 case TargetOpcode::G_CONSTANT: { 629 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 630 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 631 unsigned TotalSize = Ty.getSizeInBits(); 632 unsigned NarrowSize = NarrowTy.getSizeInBits(); 633 int NumParts = TotalSize / NarrowSize; 634 635 SmallVector<Register, 4> PartRegs; 636 for (int I = 0; I != NumParts; ++I) { 637 unsigned Offset = I * NarrowSize; 638 auto K = MIRBuilder.buildConstant(NarrowTy, 639 Val.lshr(Offset).trunc(NarrowSize)); 640 PartRegs.push_back(K.getReg(0)); 641 } 642 643 LLT LeftoverTy; 644 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 645 SmallVector<Register, 1> LeftoverRegs; 646 if (LeftoverBits != 0) { 647 LeftoverTy = LLT::scalar(LeftoverBits); 648 auto K = MIRBuilder.buildConstant( 649 LeftoverTy, 650 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 651 LeftoverRegs.push_back(K.getReg(0)); 652 } 653 654 insertParts(MI.getOperand(0).getReg(), 655 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 656 657 MI.eraseFromParent(); 658 return Legalized; 659 } 660 case TargetOpcode::G_SEXT: { 661 if (TypeIdx != 0) 662 return UnableToLegalize; 663 664 Register SrcReg = MI.getOperand(1).getReg(); 665 LLT SrcTy = MRI.getType(SrcReg); 666 667 // FIXME: support the general case where the requested NarrowTy may not be 668 // the same as the source type. E.g. s128 = sext(s32) 669 if ((SrcTy.getSizeInBits() != SizeOp0 / 2) || 670 SrcTy.getSizeInBits() != NarrowTy.getSizeInBits()) { 671 LLVM_DEBUG(dbgs() << "Can't narrow sext to type " << NarrowTy << "\n"); 672 return UnableToLegalize; 673 } 674 675 // Shift the sign bit of the low register through the high register. 676 auto ShiftAmt = 677 MIRBuilder.buildConstant(LLT::scalar(64), NarrowTy.getSizeInBits() - 1); 678 auto Shift = MIRBuilder.buildAShr(NarrowTy, SrcReg, ShiftAmt); 679 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {SrcReg, Shift.getReg(0)}); 680 MI.eraseFromParent(); 681 return Legalized; 682 } 683 case TargetOpcode::G_ZEXT: { 684 if (TypeIdx != 0) 685 return UnableToLegalize; 686 687 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 688 uint64_t SizeOp1 = SrcTy.getSizeInBits(); 689 if (SizeOp0 % SizeOp1 != 0) 690 return UnableToLegalize; 691 692 // Generate a merge where the bottom bits are taken from the source, and 693 // zero everything else. 694 Register ZeroReg = MIRBuilder.buildConstant(SrcTy, 0).getReg(0); 695 unsigned NumParts = SizeOp0 / SizeOp1; 696 SmallVector<Register, 4> Srcs = {MI.getOperand(1).getReg()}; 697 for (unsigned Part = 1; Part < NumParts; ++Part) 698 Srcs.push_back(ZeroReg); 699 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Srcs); 700 MI.eraseFromParent(); 701 return Legalized; 702 } 703 case TargetOpcode::G_TRUNC: { 704 if (TypeIdx != 1) 705 return UnableToLegalize; 706 707 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 708 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 709 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 710 return UnableToLegalize; 711 } 712 713 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); 714 MIRBuilder.buildCopy(MI.getOperand(0).getReg(), Unmerge.getReg(0)); 715 MI.eraseFromParent(); 716 return Legalized; 717 } 718 719 case TargetOpcode::G_ADD: { 720 // FIXME: add support for when SizeOp0 isn't an exact multiple of 721 // NarrowSize. 722 if (SizeOp0 % NarrowSize != 0) 723 return UnableToLegalize; 724 // Expand in terms of carry-setting/consuming G_ADDE instructions. 725 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 726 727 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 728 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 729 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 730 731 Register CarryIn; 732 for (int i = 0; i < NumParts; ++i) { 733 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 734 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 735 736 if (i == 0) 737 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 738 else { 739 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 740 Src2Regs[i], CarryIn); 741 } 742 743 DstRegs.push_back(DstReg); 744 CarryIn = CarryOut; 745 } 746 Register DstReg = MI.getOperand(0).getReg(); 747 if(MRI.getType(DstReg).isVector()) 748 MIRBuilder.buildBuildVector(DstReg, DstRegs); 749 else 750 MIRBuilder.buildMerge(DstReg, DstRegs); 751 MI.eraseFromParent(); 752 return Legalized; 753 } 754 case TargetOpcode::G_SUB: { 755 // FIXME: add support for when SizeOp0 isn't an exact multiple of 756 // NarrowSize. 757 if (SizeOp0 % NarrowSize != 0) 758 return UnableToLegalize; 759 760 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 761 762 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 763 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 764 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 765 766 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 767 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 768 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 769 {Src1Regs[0], Src2Regs[0]}); 770 DstRegs.push_back(DstReg); 771 Register BorrowIn = BorrowOut; 772 for (int i = 1; i < NumParts; ++i) { 773 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 774 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 775 776 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 777 {Src1Regs[i], Src2Regs[i], BorrowIn}); 778 779 DstRegs.push_back(DstReg); 780 BorrowIn = BorrowOut; 781 } 782 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 783 MI.eraseFromParent(); 784 return Legalized; 785 } 786 case TargetOpcode::G_MUL: 787 case TargetOpcode::G_UMULH: 788 return narrowScalarMul(MI, NarrowTy); 789 case TargetOpcode::G_EXTRACT: 790 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 791 case TargetOpcode::G_INSERT: 792 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 793 case TargetOpcode::G_LOAD: { 794 const auto &MMO = **MI.memoperands_begin(); 795 Register DstReg = MI.getOperand(0).getReg(); 796 LLT DstTy = MRI.getType(DstReg); 797 if (DstTy.isVector()) 798 return UnableToLegalize; 799 800 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 801 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 802 auto &MMO = **MI.memoperands_begin(); 803 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 804 MIRBuilder.buildAnyExt(DstReg, TmpReg); 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 809 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 810 } 811 case TargetOpcode::G_ZEXTLOAD: 812 case TargetOpcode::G_SEXTLOAD: { 813 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 814 Register DstReg = MI.getOperand(0).getReg(); 815 Register PtrReg = MI.getOperand(1).getReg(); 816 817 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 818 auto &MMO = **MI.memoperands_begin(); 819 if (MMO.getSizeInBits() == NarrowSize) { 820 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 821 } else { 822 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 823 : TargetOpcode::G_SEXTLOAD; 824 MIRBuilder.buildInstr(ExtLoad) 825 .addDef(TmpReg) 826 .addUse(PtrReg) 827 .addMemOperand(&MMO); 828 } 829 830 if (ZExt) 831 MIRBuilder.buildZExt(DstReg, TmpReg); 832 else 833 MIRBuilder.buildSExt(DstReg, TmpReg); 834 835 MI.eraseFromParent(); 836 return Legalized; 837 } 838 case TargetOpcode::G_STORE: { 839 const auto &MMO = **MI.memoperands_begin(); 840 841 Register SrcReg = MI.getOperand(0).getReg(); 842 LLT SrcTy = MRI.getType(SrcReg); 843 if (SrcTy.isVector()) 844 return UnableToLegalize; 845 846 int NumParts = SizeOp0 / NarrowSize; 847 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 848 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 849 if (SrcTy.isVector() && LeftoverBits != 0) 850 return UnableToLegalize; 851 852 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 853 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 854 auto &MMO = **MI.memoperands_begin(); 855 MIRBuilder.buildTrunc(TmpReg, SrcReg); 856 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 857 MI.eraseFromParent(); 858 return Legalized; 859 } 860 861 return reduceLoadStoreWidth(MI, 0, NarrowTy); 862 } 863 case TargetOpcode::G_SELECT: 864 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 865 case TargetOpcode::G_AND: 866 case TargetOpcode::G_OR: 867 case TargetOpcode::G_XOR: { 868 // Legalize bitwise operation: 869 // A = BinOp<Ty> B, C 870 // into: 871 // B1, ..., BN = G_UNMERGE_VALUES B 872 // C1, ..., CN = G_UNMERGE_VALUES C 873 // A1 = BinOp<Ty/N> B1, C2 874 // ... 875 // AN = BinOp<Ty/N> BN, CN 876 // A = G_MERGE_VALUES A1, ..., AN 877 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 878 } 879 case TargetOpcode::G_SHL: 880 case TargetOpcode::G_LSHR: 881 case TargetOpcode::G_ASHR: 882 return narrowScalarShift(MI, TypeIdx, NarrowTy); 883 case TargetOpcode::G_CTLZ: 884 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 885 case TargetOpcode::G_CTTZ: 886 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 887 case TargetOpcode::G_CTPOP: 888 if (TypeIdx != 0) 889 return UnableToLegalize; // TODO 890 891 Observer.changingInstr(MI); 892 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 893 Observer.changedInstr(MI); 894 return Legalized; 895 case TargetOpcode::G_INTTOPTR: 896 if (TypeIdx != 1) 897 return UnableToLegalize; 898 899 Observer.changingInstr(MI); 900 narrowScalarSrc(MI, NarrowTy, 1); 901 Observer.changedInstr(MI); 902 return Legalized; 903 case TargetOpcode::G_PTRTOINT: 904 if (TypeIdx != 0) 905 return UnableToLegalize; 906 907 Observer.changingInstr(MI); 908 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 909 Observer.changedInstr(MI); 910 return Legalized; 911 case TargetOpcode::G_PHI: { 912 unsigned NumParts = SizeOp0 / NarrowSize; 913 SmallVector<Register, 2> DstRegs; 914 SmallVector<SmallVector<Register, 2>, 2> SrcRegs; 915 DstRegs.resize(NumParts); 916 SrcRegs.resize(MI.getNumOperands() / 2); 917 Observer.changingInstr(MI); 918 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 919 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 920 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 921 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 922 SrcRegs[i / 2]); 923 } 924 MachineBasicBlock &MBB = *MI.getParent(); 925 MIRBuilder.setInsertPt(MBB, MI); 926 for (unsigned i = 0; i < NumParts; ++i) { 927 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 928 MachineInstrBuilder MIB = 929 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 930 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 931 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 932 } 933 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 934 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 935 Observer.changedInstr(MI); 936 MI.eraseFromParent(); 937 return Legalized; 938 } 939 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 940 case TargetOpcode::G_INSERT_VECTOR_ELT: { 941 if (TypeIdx != 2) 942 return UnableToLegalize; 943 944 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 945 Observer.changingInstr(MI); 946 narrowScalarSrc(MI, NarrowTy, OpIdx); 947 Observer.changedInstr(MI); 948 return Legalized; 949 } 950 case TargetOpcode::G_ICMP: { 951 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 952 if (NarrowSize * 2 != SrcSize) 953 return UnableToLegalize; 954 955 Observer.changingInstr(MI); 956 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 957 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 958 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2).getReg()); 959 960 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 961 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 962 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3).getReg()); 963 964 CmpInst::Predicate Pred = 965 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 966 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 967 968 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 969 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 970 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 971 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 972 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 973 MIRBuilder.buildICmp(Pred, MI.getOperand(0).getReg(), Or, Zero); 974 } else { 975 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 976 MachineInstrBuilder CmpHEQ = 977 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 978 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 979 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 980 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), CmpHEQ, CmpLU, CmpH); 981 } 982 Observer.changedInstr(MI); 983 MI.eraseFromParent(); 984 return Legalized; 985 } 986 case TargetOpcode::G_SEXT_INREG: { 987 if (TypeIdx != 0) 988 return UnableToLegalize; 989 990 if (!MI.getOperand(2).isImm()) 991 return UnableToLegalize; 992 int64_t SizeInBits = MI.getOperand(2).getImm(); 993 994 // So long as the new type has more bits than the bits we're extending we 995 // don't need to break it apart. 996 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 997 Observer.changingInstr(MI); 998 // We don't lose any non-extension bits by truncating the src and 999 // sign-extending the dst. 1000 MachineOperand &MO1 = MI.getOperand(1); 1001 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1.getReg()); 1002 MO1.setReg(TruncMIB->getOperand(0).getReg()); 1003 1004 MachineOperand &MO2 = MI.getOperand(0); 1005 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1006 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1007 MIRBuilder.buildInstr(TargetOpcode::G_SEXT, {MO2.getReg()}, {DstExt}); 1008 MO2.setReg(DstExt); 1009 Observer.changedInstr(MI); 1010 return Legalized; 1011 } 1012 1013 // Break it apart. Components below the extension point are unmodified. The 1014 // component containing the extension point becomes a narrower SEXT_INREG. 1015 // Components above it are ashr'd from the component containing the 1016 // extension point. 1017 if (SizeOp0 % NarrowSize != 0) 1018 return UnableToLegalize; 1019 int NumParts = SizeOp0 / NarrowSize; 1020 1021 // List the registers where the destination will be scattered. 1022 SmallVector<Register, 2> DstRegs; 1023 // List the registers where the source will be split. 1024 SmallVector<Register, 2> SrcRegs; 1025 1026 // Create all the temporary registers. 1027 for (int i = 0; i < NumParts; ++i) { 1028 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1029 1030 SrcRegs.push_back(SrcReg); 1031 } 1032 1033 // Explode the big arguments into smaller chunks. 1034 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1).getReg()); 1035 1036 Register AshrCstReg = 1037 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1038 ->getOperand(0) 1039 .getReg(); 1040 Register FullExtensionReg = 0; 1041 Register PartialExtensionReg = 0; 1042 1043 // Do the operation on each small part. 1044 for (int i = 0; i < NumParts; ++i) { 1045 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1046 DstRegs.push_back(SrcRegs[i]); 1047 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1048 assert(PartialExtensionReg && 1049 "Expected to visit partial extension before full"); 1050 if (FullExtensionReg) { 1051 DstRegs.push_back(FullExtensionReg); 1052 continue; 1053 } 1054 DstRegs.push_back(MIRBuilder 1055 .buildInstr(TargetOpcode::G_ASHR, {NarrowTy}, 1056 {PartialExtensionReg, AshrCstReg}) 1057 ->getOperand(0) 1058 .getReg()); 1059 FullExtensionReg = DstRegs.back(); 1060 } else { 1061 DstRegs.push_back( 1062 MIRBuilder 1063 .buildInstr( 1064 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1065 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1066 ->getOperand(0) 1067 .getReg()); 1068 PartialExtensionReg = DstRegs.back(); 1069 } 1070 } 1071 1072 // Gather the destination registers into the final destination. 1073 Register DstReg = MI.getOperand(0).getReg(); 1074 MIRBuilder.buildMerge(DstReg, DstRegs); 1075 MI.eraseFromParent(); 1076 return Legalized; 1077 } 1078 } 1079 } 1080 1081 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1082 unsigned OpIdx, unsigned ExtOpcode) { 1083 MachineOperand &MO = MI.getOperand(OpIdx); 1084 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 1085 MO.setReg(ExtB->getOperand(0).getReg()); 1086 } 1087 1088 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1089 unsigned OpIdx) { 1090 MachineOperand &MO = MI.getOperand(OpIdx); 1091 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 1092 {MO.getReg()}); 1093 MO.setReg(ExtB->getOperand(0).getReg()); 1094 } 1095 1096 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1097 unsigned OpIdx, unsigned TruncOpcode) { 1098 MachineOperand &MO = MI.getOperand(OpIdx); 1099 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1100 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1101 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 1102 MO.setReg(DstExt); 1103 } 1104 1105 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1106 unsigned OpIdx, unsigned ExtOpcode) { 1107 MachineOperand &MO = MI.getOperand(OpIdx); 1108 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1109 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1110 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 1111 MO.setReg(DstTrunc); 1112 } 1113 1114 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1115 unsigned OpIdx) { 1116 MachineOperand &MO = MI.getOperand(OpIdx); 1117 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1118 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1119 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 1120 MO.setReg(DstExt); 1121 } 1122 1123 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1124 unsigned OpIdx) { 1125 MachineOperand &MO = MI.getOperand(OpIdx); 1126 1127 LLT OldTy = MRI.getType(MO.getReg()); 1128 unsigned OldElts = OldTy.getNumElements(); 1129 unsigned NewElts = MoreTy.getNumElements(); 1130 1131 unsigned NumParts = NewElts / OldElts; 1132 1133 // Use concat_vectors if the result is a multiple of the number of elements. 1134 if (NumParts * OldElts == NewElts) { 1135 SmallVector<Register, 8> Parts; 1136 Parts.push_back(MO.getReg()); 1137 1138 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1139 for (unsigned I = 1; I != NumParts; ++I) 1140 Parts.push_back(ImpDef); 1141 1142 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1143 MO.setReg(Concat.getReg(0)); 1144 return; 1145 } 1146 1147 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1148 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1149 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1150 MO.setReg(MoreReg); 1151 } 1152 1153 LegalizerHelper::LegalizeResult 1154 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1155 LLT WideTy) { 1156 if (TypeIdx != 1) 1157 return UnableToLegalize; 1158 1159 Register DstReg = MI.getOperand(0).getReg(); 1160 LLT DstTy = MRI.getType(DstReg); 1161 if (DstTy.isVector()) 1162 return UnableToLegalize; 1163 1164 Register Src1 = MI.getOperand(1).getReg(); 1165 LLT SrcTy = MRI.getType(Src1); 1166 const int DstSize = DstTy.getSizeInBits(); 1167 const int SrcSize = SrcTy.getSizeInBits(); 1168 const int WideSize = WideTy.getSizeInBits(); 1169 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1170 1171 unsigned NumOps = MI.getNumOperands(); 1172 unsigned NumSrc = MI.getNumOperands() - 1; 1173 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1174 1175 if (WideSize >= DstSize) { 1176 // Directly pack the bits in the target type. 1177 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1178 1179 for (unsigned I = 2; I != NumOps; ++I) { 1180 const unsigned Offset = (I - 1) * PartSize; 1181 1182 Register SrcReg = MI.getOperand(I).getReg(); 1183 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1184 1185 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1186 1187 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1188 MRI.createGenericVirtualRegister(WideTy); 1189 1190 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1191 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1192 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1193 ResultReg = NextResult; 1194 } 1195 1196 if (WideSize > DstSize) 1197 MIRBuilder.buildTrunc(DstReg, ResultReg); 1198 else if (DstTy.isPointer()) 1199 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1200 1201 MI.eraseFromParent(); 1202 return Legalized; 1203 } 1204 1205 // Unmerge the original values to the GCD type, and recombine to the next 1206 // multiple greater than the original type. 1207 // 1208 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1209 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1210 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1211 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1212 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1213 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1214 // %12:_(s12) = G_MERGE_VALUES %10, %11 1215 // 1216 // Padding with undef if necessary: 1217 // 1218 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1219 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1220 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1221 // %7:_(s2) = G_IMPLICIT_DEF 1222 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1223 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1224 // %10:_(s12) = G_MERGE_VALUES %8, %9 1225 1226 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1227 LLT GCDTy = LLT::scalar(GCD); 1228 1229 SmallVector<Register, 8> Parts; 1230 SmallVector<Register, 8> NewMergeRegs; 1231 SmallVector<Register, 8> Unmerges; 1232 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1233 1234 // Decompose the original operands if they don't evenly divide. 1235 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1236 Register SrcReg = MI.getOperand(I).getReg(); 1237 if (GCD == SrcSize) { 1238 Unmerges.push_back(SrcReg); 1239 } else { 1240 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1241 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1242 Unmerges.push_back(Unmerge.getReg(J)); 1243 } 1244 } 1245 1246 // Pad with undef to the next size that is a multiple of the requested size. 1247 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1248 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1249 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1250 Unmerges.push_back(UndefReg); 1251 } 1252 1253 const int PartsPerGCD = WideSize / GCD; 1254 1255 // Build merges of each piece. 1256 ArrayRef<Register> Slicer(Unmerges); 1257 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1258 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1259 NewMergeRegs.push_back(Merge.getReg(0)); 1260 } 1261 1262 // A truncate may be necessary if the requested type doesn't evenly divide the 1263 // original result type. 1264 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1265 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1266 } else { 1267 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1268 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1269 } 1270 1271 MI.eraseFromParent(); 1272 return Legalized; 1273 } 1274 1275 LegalizerHelper::LegalizeResult 1276 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1277 LLT WideTy) { 1278 if (TypeIdx != 0) 1279 return UnableToLegalize; 1280 1281 unsigned NumDst = MI.getNumOperands() - 1; 1282 Register SrcReg = MI.getOperand(NumDst).getReg(); 1283 LLT SrcTy = MRI.getType(SrcReg); 1284 if (!SrcTy.isScalar()) 1285 return UnableToLegalize; 1286 1287 Register Dst0Reg = MI.getOperand(0).getReg(); 1288 LLT DstTy = MRI.getType(Dst0Reg); 1289 if (!DstTy.isScalar()) 1290 return UnableToLegalize; 1291 1292 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 1293 LLT NewSrcTy = LLT::scalar(NewSrcSize); 1294 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 1295 1296 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 1297 1298 for (unsigned I = 1; I != NumDst; ++I) { 1299 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 1300 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 1301 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 1302 } 1303 1304 Observer.changingInstr(MI); 1305 1306 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 1307 for (unsigned I = 0; I != NumDst; ++I) 1308 widenScalarDst(MI, WideTy, I); 1309 1310 Observer.changedInstr(MI); 1311 1312 return Legalized; 1313 } 1314 1315 LegalizerHelper::LegalizeResult 1316 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1317 LLT WideTy) { 1318 Register DstReg = MI.getOperand(0).getReg(); 1319 Register SrcReg = MI.getOperand(1).getReg(); 1320 LLT SrcTy = MRI.getType(SrcReg); 1321 1322 LLT DstTy = MRI.getType(DstReg); 1323 unsigned Offset = MI.getOperand(2).getImm(); 1324 1325 if (TypeIdx == 0) { 1326 if (SrcTy.isVector() || DstTy.isVector()) 1327 return UnableToLegalize; 1328 1329 SrcOp Src(SrcReg); 1330 if (SrcTy.isPointer()) { 1331 // Extracts from pointers can be handled only if they are really just 1332 // simple integers. 1333 const DataLayout &DL = MIRBuilder.getDataLayout(); 1334 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1335 return UnableToLegalize; 1336 1337 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1338 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1339 SrcTy = SrcAsIntTy; 1340 } 1341 1342 if (DstTy.isPointer()) 1343 return UnableToLegalize; 1344 1345 if (Offset == 0) { 1346 // Avoid a shift in the degenerate case. 1347 MIRBuilder.buildTrunc(DstReg, 1348 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1349 MI.eraseFromParent(); 1350 return Legalized; 1351 } 1352 1353 // Do a shift in the source type. 1354 LLT ShiftTy = SrcTy; 1355 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1356 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1357 ShiftTy = WideTy; 1358 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1359 return UnableToLegalize; 1360 1361 auto LShr = MIRBuilder.buildLShr( 1362 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1363 MIRBuilder.buildTrunc(DstReg, LShr); 1364 MI.eraseFromParent(); 1365 return Legalized; 1366 } 1367 1368 if (SrcTy.isScalar()) { 1369 Observer.changingInstr(MI); 1370 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1371 Observer.changedInstr(MI); 1372 return Legalized; 1373 } 1374 1375 if (!SrcTy.isVector()) 1376 return UnableToLegalize; 1377 1378 if (DstTy != SrcTy.getElementType()) 1379 return UnableToLegalize; 1380 1381 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1382 return UnableToLegalize; 1383 1384 Observer.changingInstr(MI); 1385 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1386 1387 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1388 Offset); 1389 widenScalarDst(MI, WideTy.getScalarType(), 0); 1390 Observer.changedInstr(MI); 1391 return Legalized; 1392 } 1393 1394 LegalizerHelper::LegalizeResult 1395 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1396 LLT WideTy) { 1397 if (TypeIdx != 0) 1398 return UnableToLegalize; 1399 Observer.changingInstr(MI); 1400 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1401 widenScalarDst(MI, WideTy); 1402 Observer.changedInstr(MI); 1403 return Legalized; 1404 } 1405 1406 LegalizerHelper::LegalizeResult 1407 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1408 MIRBuilder.setInstr(MI); 1409 1410 switch (MI.getOpcode()) { 1411 default: 1412 return UnableToLegalize; 1413 case TargetOpcode::G_EXTRACT: 1414 return widenScalarExtract(MI, TypeIdx, WideTy); 1415 case TargetOpcode::G_INSERT: 1416 return widenScalarInsert(MI, TypeIdx, WideTy); 1417 case TargetOpcode::G_MERGE_VALUES: 1418 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1419 case TargetOpcode::G_UNMERGE_VALUES: 1420 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1421 case TargetOpcode::G_UADDO: 1422 case TargetOpcode::G_USUBO: { 1423 if (TypeIdx == 1) 1424 return UnableToLegalize; // TODO 1425 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1426 {MI.getOperand(2).getReg()}); 1427 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 1428 {MI.getOperand(3).getReg()}); 1429 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1430 ? TargetOpcode::G_ADD 1431 : TargetOpcode::G_SUB; 1432 // Do the arithmetic in the larger type. 1433 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1434 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1435 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 1436 auto AndOp = MIRBuilder.buildInstr( 1437 TargetOpcode::G_AND, {WideTy}, 1438 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 1439 // There is no overflow if the AndOp is the same as NewOp. 1440 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 1441 AndOp); 1442 // Now trunc the NewOp to the original result. 1443 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 1444 MI.eraseFromParent(); 1445 return Legalized; 1446 } 1447 case TargetOpcode::G_CTTZ: 1448 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1449 case TargetOpcode::G_CTLZ: 1450 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1451 case TargetOpcode::G_CTPOP: { 1452 if (TypeIdx == 0) { 1453 Observer.changingInstr(MI); 1454 widenScalarDst(MI, WideTy, 0); 1455 Observer.changedInstr(MI); 1456 return Legalized; 1457 } 1458 1459 Register SrcReg = MI.getOperand(1).getReg(); 1460 1461 // First ZEXT the input. 1462 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1463 LLT CurTy = MRI.getType(SrcReg); 1464 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1465 // The count is the same in the larger type except if the original 1466 // value was zero. This can be handled by setting the bit just off 1467 // the top of the original type. 1468 auto TopBit = 1469 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1470 MIBSrc = MIRBuilder.buildOr( 1471 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1472 } 1473 1474 // Perform the operation at the larger size. 1475 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1476 // This is already the correct result for CTPOP and CTTZs 1477 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1478 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1479 // The correct result is NewOp - (Difference in widety and current ty). 1480 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1481 MIBNewOp = MIRBuilder.buildInstr( 1482 TargetOpcode::G_SUB, {WideTy}, 1483 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1484 } 1485 1486 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1487 MI.eraseFromParent(); 1488 return Legalized; 1489 } 1490 case TargetOpcode::G_BSWAP: { 1491 Observer.changingInstr(MI); 1492 Register DstReg = MI.getOperand(0).getReg(); 1493 1494 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1495 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1496 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1497 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1498 1499 MI.getOperand(0).setReg(DstExt); 1500 1501 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1502 1503 LLT Ty = MRI.getType(DstReg); 1504 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1505 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1506 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1507 .addDef(ShrReg) 1508 .addUse(DstExt) 1509 .addUse(ShiftAmtReg); 1510 1511 MIRBuilder.buildTrunc(DstReg, ShrReg); 1512 Observer.changedInstr(MI); 1513 return Legalized; 1514 } 1515 case TargetOpcode::G_BITREVERSE: { 1516 Observer.changingInstr(MI); 1517 1518 Register DstReg = MI.getOperand(0).getReg(); 1519 LLT Ty = MRI.getType(DstReg); 1520 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1521 1522 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1523 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1524 MI.getOperand(0).setReg(DstExt); 1525 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1526 1527 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1528 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1529 MIRBuilder.buildTrunc(DstReg, Shift); 1530 Observer.changedInstr(MI); 1531 return Legalized; 1532 } 1533 case TargetOpcode::G_ADD: 1534 case TargetOpcode::G_AND: 1535 case TargetOpcode::G_MUL: 1536 case TargetOpcode::G_OR: 1537 case TargetOpcode::G_XOR: 1538 case TargetOpcode::G_SUB: 1539 // Perform operation at larger width (any extension is fines here, high bits 1540 // don't affect the result) and then truncate the result back to the 1541 // original type. 1542 Observer.changingInstr(MI); 1543 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1544 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1545 widenScalarDst(MI, WideTy); 1546 Observer.changedInstr(MI); 1547 return Legalized; 1548 1549 case TargetOpcode::G_SHL: 1550 Observer.changingInstr(MI); 1551 1552 if (TypeIdx == 0) { 1553 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1554 widenScalarDst(MI, WideTy); 1555 } else { 1556 assert(TypeIdx == 1); 1557 // The "number of bits to shift" operand must preserve its value as an 1558 // unsigned integer: 1559 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1560 } 1561 1562 Observer.changedInstr(MI); 1563 return Legalized; 1564 1565 case TargetOpcode::G_SDIV: 1566 case TargetOpcode::G_SREM: 1567 case TargetOpcode::G_SMIN: 1568 case TargetOpcode::G_SMAX: 1569 Observer.changingInstr(MI); 1570 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1571 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1572 widenScalarDst(MI, WideTy); 1573 Observer.changedInstr(MI); 1574 return Legalized; 1575 1576 case TargetOpcode::G_ASHR: 1577 case TargetOpcode::G_LSHR: 1578 Observer.changingInstr(MI); 1579 1580 if (TypeIdx == 0) { 1581 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1582 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1583 1584 widenScalarSrc(MI, WideTy, 1, CvtOp); 1585 widenScalarDst(MI, WideTy); 1586 } else { 1587 assert(TypeIdx == 1); 1588 // The "number of bits to shift" operand must preserve its value as an 1589 // unsigned integer: 1590 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1591 } 1592 1593 Observer.changedInstr(MI); 1594 return Legalized; 1595 case TargetOpcode::G_UDIV: 1596 case TargetOpcode::G_UREM: 1597 case TargetOpcode::G_UMIN: 1598 case TargetOpcode::G_UMAX: 1599 Observer.changingInstr(MI); 1600 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1601 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1602 widenScalarDst(MI, WideTy); 1603 Observer.changedInstr(MI); 1604 return Legalized; 1605 1606 case TargetOpcode::G_SELECT: 1607 Observer.changingInstr(MI); 1608 if (TypeIdx == 0) { 1609 // Perform operation at larger width (any extension is fine here, high 1610 // bits don't affect the result) and then truncate the result back to the 1611 // original type. 1612 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1613 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1614 widenScalarDst(MI, WideTy); 1615 } else { 1616 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1617 // Explicit extension is required here since high bits affect the result. 1618 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1619 } 1620 Observer.changedInstr(MI); 1621 return Legalized; 1622 1623 case TargetOpcode::G_FPTOSI: 1624 case TargetOpcode::G_FPTOUI: 1625 if (TypeIdx != 0) 1626 return UnableToLegalize; 1627 Observer.changingInstr(MI); 1628 widenScalarDst(MI, WideTy); 1629 Observer.changedInstr(MI); 1630 return Legalized; 1631 1632 case TargetOpcode::G_SITOFP: 1633 if (TypeIdx != 1) 1634 return UnableToLegalize; 1635 Observer.changingInstr(MI); 1636 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1637 Observer.changedInstr(MI); 1638 return Legalized; 1639 1640 case TargetOpcode::G_UITOFP: 1641 if (TypeIdx != 1) 1642 return UnableToLegalize; 1643 Observer.changingInstr(MI); 1644 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1645 Observer.changedInstr(MI); 1646 return Legalized; 1647 1648 case TargetOpcode::G_LOAD: 1649 case TargetOpcode::G_SEXTLOAD: 1650 case TargetOpcode::G_ZEXTLOAD: 1651 Observer.changingInstr(MI); 1652 widenScalarDst(MI, WideTy); 1653 Observer.changedInstr(MI); 1654 return Legalized; 1655 1656 case TargetOpcode::G_STORE: { 1657 if (TypeIdx != 0) 1658 return UnableToLegalize; 1659 1660 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1661 if (!isPowerOf2_32(Ty.getSizeInBits())) 1662 return UnableToLegalize; 1663 1664 Observer.changingInstr(MI); 1665 1666 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1667 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1668 widenScalarSrc(MI, WideTy, 0, ExtType); 1669 1670 Observer.changedInstr(MI); 1671 return Legalized; 1672 } 1673 case TargetOpcode::G_CONSTANT: { 1674 MachineOperand &SrcMO = MI.getOperand(1); 1675 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1676 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 1677 Observer.changingInstr(MI); 1678 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1679 1680 widenScalarDst(MI, WideTy); 1681 Observer.changedInstr(MI); 1682 return Legalized; 1683 } 1684 case TargetOpcode::G_FCONSTANT: { 1685 MachineOperand &SrcMO = MI.getOperand(1); 1686 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1687 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1688 bool LosesInfo; 1689 switch (WideTy.getSizeInBits()) { 1690 case 32: 1691 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1692 &LosesInfo); 1693 break; 1694 case 64: 1695 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1696 &LosesInfo); 1697 break; 1698 default: 1699 return UnableToLegalize; 1700 } 1701 1702 assert(!LosesInfo && "extend should always be lossless"); 1703 1704 Observer.changingInstr(MI); 1705 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1706 1707 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1708 Observer.changedInstr(MI); 1709 return Legalized; 1710 } 1711 case TargetOpcode::G_IMPLICIT_DEF: { 1712 Observer.changingInstr(MI); 1713 widenScalarDst(MI, WideTy); 1714 Observer.changedInstr(MI); 1715 return Legalized; 1716 } 1717 case TargetOpcode::G_BRCOND: 1718 Observer.changingInstr(MI); 1719 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1720 Observer.changedInstr(MI); 1721 return Legalized; 1722 1723 case TargetOpcode::G_FCMP: 1724 Observer.changingInstr(MI); 1725 if (TypeIdx == 0) 1726 widenScalarDst(MI, WideTy); 1727 else { 1728 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1729 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1730 } 1731 Observer.changedInstr(MI); 1732 return Legalized; 1733 1734 case TargetOpcode::G_ICMP: 1735 Observer.changingInstr(MI); 1736 if (TypeIdx == 0) 1737 widenScalarDst(MI, WideTy); 1738 else { 1739 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1740 MI.getOperand(1).getPredicate())) 1741 ? TargetOpcode::G_SEXT 1742 : TargetOpcode::G_ZEXT; 1743 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1744 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1745 } 1746 Observer.changedInstr(MI); 1747 return Legalized; 1748 1749 case TargetOpcode::G_GEP: 1750 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 1751 Observer.changingInstr(MI); 1752 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1753 Observer.changedInstr(MI); 1754 return Legalized; 1755 1756 case TargetOpcode::G_PHI: { 1757 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1758 1759 Observer.changingInstr(MI); 1760 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1761 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1762 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1763 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1764 } 1765 1766 MachineBasicBlock &MBB = *MI.getParent(); 1767 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1768 widenScalarDst(MI, WideTy); 1769 Observer.changedInstr(MI); 1770 return Legalized; 1771 } 1772 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1773 if (TypeIdx == 0) { 1774 Register VecReg = MI.getOperand(1).getReg(); 1775 LLT VecTy = MRI.getType(VecReg); 1776 Observer.changingInstr(MI); 1777 1778 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1779 WideTy.getSizeInBits()), 1780 1, TargetOpcode::G_SEXT); 1781 1782 widenScalarDst(MI, WideTy, 0); 1783 Observer.changedInstr(MI); 1784 return Legalized; 1785 } 1786 1787 if (TypeIdx != 2) 1788 return UnableToLegalize; 1789 Observer.changingInstr(MI); 1790 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1791 Observer.changedInstr(MI); 1792 return Legalized; 1793 } 1794 case TargetOpcode::G_FADD: 1795 case TargetOpcode::G_FMUL: 1796 case TargetOpcode::G_FSUB: 1797 case TargetOpcode::G_FMA: 1798 case TargetOpcode::G_FMAD: 1799 case TargetOpcode::G_FNEG: 1800 case TargetOpcode::G_FABS: 1801 case TargetOpcode::G_FCANONICALIZE: 1802 case TargetOpcode::G_FMINNUM: 1803 case TargetOpcode::G_FMAXNUM: 1804 case TargetOpcode::G_FMINNUM_IEEE: 1805 case TargetOpcode::G_FMAXNUM_IEEE: 1806 case TargetOpcode::G_FMINIMUM: 1807 case TargetOpcode::G_FMAXIMUM: 1808 case TargetOpcode::G_FDIV: 1809 case TargetOpcode::G_FREM: 1810 case TargetOpcode::G_FCEIL: 1811 case TargetOpcode::G_FFLOOR: 1812 case TargetOpcode::G_FCOS: 1813 case TargetOpcode::G_FSIN: 1814 case TargetOpcode::G_FLOG10: 1815 case TargetOpcode::G_FLOG: 1816 case TargetOpcode::G_FLOG2: 1817 case TargetOpcode::G_FRINT: 1818 case TargetOpcode::G_FNEARBYINT: 1819 case TargetOpcode::G_FSQRT: 1820 case TargetOpcode::G_FEXP: 1821 case TargetOpcode::G_FEXP2: 1822 case TargetOpcode::G_FPOW: 1823 case TargetOpcode::G_INTRINSIC_TRUNC: 1824 case TargetOpcode::G_INTRINSIC_ROUND: 1825 assert(TypeIdx == 0); 1826 Observer.changingInstr(MI); 1827 1828 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1829 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1830 1831 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1832 Observer.changedInstr(MI); 1833 return Legalized; 1834 case TargetOpcode::G_INTTOPTR: 1835 if (TypeIdx != 1) 1836 return UnableToLegalize; 1837 1838 Observer.changingInstr(MI); 1839 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1840 Observer.changedInstr(MI); 1841 return Legalized; 1842 case TargetOpcode::G_PTRTOINT: 1843 if (TypeIdx != 0) 1844 return UnableToLegalize; 1845 1846 Observer.changingInstr(MI); 1847 widenScalarDst(MI, WideTy, 0); 1848 Observer.changedInstr(MI); 1849 return Legalized; 1850 case TargetOpcode::G_BUILD_VECTOR: { 1851 Observer.changingInstr(MI); 1852 1853 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 1854 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 1855 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 1856 1857 // Avoid changing the result vector type if the source element type was 1858 // requested. 1859 if (TypeIdx == 1) { 1860 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 1861 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 1862 } else { 1863 widenScalarDst(MI, WideTy, 0); 1864 } 1865 1866 Observer.changedInstr(MI); 1867 return Legalized; 1868 } 1869 case TargetOpcode::G_SEXT_INREG: 1870 if (TypeIdx != 0) 1871 return UnableToLegalize; 1872 1873 Observer.changingInstr(MI); 1874 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1875 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 1876 Observer.changedInstr(MI); 1877 return Legalized; 1878 } 1879 } 1880 1881 LegalizerHelper::LegalizeResult 1882 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1883 using namespace TargetOpcode; 1884 MIRBuilder.setInstr(MI); 1885 1886 switch(MI.getOpcode()) { 1887 default: 1888 return UnableToLegalize; 1889 case TargetOpcode::G_SREM: 1890 case TargetOpcode::G_UREM: { 1891 Register QuotReg = MRI.createGenericVirtualRegister(Ty); 1892 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1893 .addDef(QuotReg) 1894 .addUse(MI.getOperand(1).getReg()) 1895 .addUse(MI.getOperand(2).getReg()); 1896 1897 Register ProdReg = MRI.createGenericVirtualRegister(Ty); 1898 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1899 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1900 ProdReg); 1901 MI.eraseFromParent(); 1902 return Legalized; 1903 } 1904 case TargetOpcode::G_SMULO: 1905 case TargetOpcode::G_UMULO: { 1906 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1907 // result. 1908 Register Res = MI.getOperand(0).getReg(); 1909 Register Overflow = MI.getOperand(1).getReg(); 1910 Register LHS = MI.getOperand(2).getReg(); 1911 Register RHS = MI.getOperand(3).getReg(); 1912 1913 MIRBuilder.buildMul(Res, LHS, RHS); 1914 1915 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1916 ? TargetOpcode::G_SMULH 1917 : TargetOpcode::G_UMULH; 1918 1919 Register HiPart = MRI.createGenericVirtualRegister(Ty); 1920 MIRBuilder.buildInstr(Opcode) 1921 .addDef(HiPart) 1922 .addUse(LHS) 1923 .addUse(RHS); 1924 1925 Register Zero = MRI.createGenericVirtualRegister(Ty); 1926 MIRBuilder.buildConstant(Zero, 0); 1927 1928 // For *signed* multiply, overflow is detected by checking: 1929 // (hi != (lo >> bitwidth-1)) 1930 if (Opcode == TargetOpcode::G_SMULH) { 1931 Register Shifted = MRI.createGenericVirtualRegister(Ty); 1932 Register ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1933 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1934 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1935 .addDef(Shifted) 1936 .addUse(Res) 1937 .addUse(ShiftAmt); 1938 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1939 } else { 1940 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1941 } 1942 MI.eraseFromParent(); 1943 return Legalized; 1944 } 1945 case TargetOpcode::G_FNEG: { 1946 // TODO: Handle vector types once we are able to 1947 // represent them. 1948 if (Ty.isVector()) 1949 return UnableToLegalize; 1950 Register Res = MI.getOperand(0).getReg(); 1951 Type *ZeroTy; 1952 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1953 switch (Ty.getSizeInBits()) { 1954 case 16: 1955 ZeroTy = Type::getHalfTy(Ctx); 1956 break; 1957 case 32: 1958 ZeroTy = Type::getFloatTy(Ctx); 1959 break; 1960 case 64: 1961 ZeroTy = Type::getDoubleTy(Ctx); 1962 break; 1963 case 128: 1964 ZeroTy = Type::getFP128Ty(Ctx); 1965 break; 1966 default: 1967 llvm_unreachable("unexpected floating-point type"); 1968 } 1969 ConstantFP &ZeroForNegation = 1970 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1971 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1972 Register SubByReg = MI.getOperand(1).getReg(); 1973 Register ZeroReg = Zero->getOperand(0).getReg(); 1974 MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg}, 1975 MI.getFlags()); 1976 MI.eraseFromParent(); 1977 return Legalized; 1978 } 1979 case TargetOpcode::G_FSUB: { 1980 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1981 // First, check if G_FNEG is marked as Lower. If so, we may 1982 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1983 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1984 return UnableToLegalize; 1985 Register Res = MI.getOperand(0).getReg(); 1986 Register LHS = MI.getOperand(1).getReg(); 1987 Register RHS = MI.getOperand(2).getReg(); 1988 Register Neg = MRI.createGenericVirtualRegister(Ty); 1989 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1990 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags()); 1991 MI.eraseFromParent(); 1992 return Legalized; 1993 } 1994 case TargetOpcode::G_FMAD: 1995 return lowerFMad(MI); 1996 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1997 Register OldValRes = MI.getOperand(0).getReg(); 1998 Register SuccessRes = MI.getOperand(1).getReg(); 1999 Register Addr = MI.getOperand(2).getReg(); 2000 Register CmpVal = MI.getOperand(3).getReg(); 2001 Register NewVal = MI.getOperand(4).getReg(); 2002 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2003 **MI.memoperands_begin()); 2004 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2005 MI.eraseFromParent(); 2006 return Legalized; 2007 } 2008 case TargetOpcode::G_LOAD: 2009 case TargetOpcode::G_SEXTLOAD: 2010 case TargetOpcode::G_ZEXTLOAD: { 2011 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2012 Register DstReg = MI.getOperand(0).getReg(); 2013 Register PtrReg = MI.getOperand(1).getReg(); 2014 LLT DstTy = MRI.getType(DstReg); 2015 auto &MMO = **MI.memoperands_begin(); 2016 2017 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2018 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2019 // This load needs splitting into power of 2 sized loads. 2020 if (DstTy.isVector()) 2021 return UnableToLegalize; 2022 if (isPowerOf2_32(DstTy.getSizeInBits())) 2023 return UnableToLegalize; // Don't know what we're being asked to do. 2024 2025 // Our strategy here is to generate anyextending loads for the smaller 2026 // types up to next power-2 result type, and then combine the two larger 2027 // result values together, before truncating back down to the non-pow-2 2028 // type. 2029 // E.g. v1 = i24 load => 2030 // v2 = i32 load (2 byte) 2031 // v3 = i32 load (1 byte) 2032 // v4 = i32 shl v3, 16 2033 // v5 = i32 or v4, v2 2034 // v1 = i24 trunc v5 2035 // By doing this we generate the correct truncate which should get 2036 // combined away as an artifact with a matching extend. 2037 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2038 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2039 2040 MachineFunction &MF = MIRBuilder.getMF(); 2041 MachineMemOperand *LargeMMO = 2042 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2043 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2044 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2045 2046 LLT PtrTy = MRI.getType(PtrReg); 2047 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2048 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2049 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2050 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2051 auto LargeLoad = 2052 MIRBuilder.buildLoad(LargeLdReg, PtrReg, *LargeMMO); 2053 2054 auto OffsetCst = 2055 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2056 Register GEPReg = MRI.createGenericVirtualRegister(PtrTy); 2057 auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0)); 2058 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2059 *SmallMMO); 2060 2061 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2062 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2063 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2064 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2065 MI.eraseFromParent(); 2066 return Legalized; 2067 } 2068 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2069 MI.eraseFromParent(); 2070 return Legalized; 2071 } 2072 2073 if (DstTy.isScalar()) { 2074 Register TmpReg = 2075 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2076 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2077 switch (MI.getOpcode()) { 2078 default: 2079 llvm_unreachable("Unexpected opcode"); 2080 case TargetOpcode::G_LOAD: 2081 MIRBuilder.buildAnyExt(DstReg, TmpReg); 2082 break; 2083 case TargetOpcode::G_SEXTLOAD: 2084 MIRBuilder.buildSExt(DstReg, TmpReg); 2085 break; 2086 case TargetOpcode::G_ZEXTLOAD: 2087 MIRBuilder.buildZExt(DstReg, TmpReg); 2088 break; 2089 } 2090 MI.eraseFromParent(); 2091 return Legalized; 2092 } 2093 2094 return UnableToLegalize; 2095 } 2096 case TargetOpcode::G_STORE: { 2097 // Lower a non-power of 2 store into multiple pow-2 stores. 2098 // E.g. split an i24 store into an i16 store + i8 store. 2099 // We do this by first extending the stored value to the next largest power 2100 // of 2 type, and then using truncating stores to store the components. 2101 // By doing this, likewise with G_LOAD, generate an extend that can be 2102 // artifact-combined away instead of leaving behind extracts. 2103 Register SrcReg = MI.getOperand(0).getReg(); 2104 Register PtrReg = MI.getOperand(1).getReg(); 2105 LLT SrcTy = MRI.getType(SrcReg); 2106 MachineMemOperand &MMO = **MI.memoperands_begin(); 2107 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2108 return UnableToLegalize; 2109 if (SrcTy.isVector()) 2110 return UnableToLegalize; 2111 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2112 return UnableToLegalize; // Don't know what we're being asked to do. 2113 2114 // Extend to the next pow-2. 2115 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2116 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2117 2118 // Obtain the smaller value by shifting away the larger value. 2119 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2120 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2121 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2122 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2123 2124 // Generate the GEP and truncating stores. 2125 LLT PtrTy = MRI.getType(PtrReg); 2126 auto OffsetCst = 2127 MIRBuilder.buildConstant(LLT::scalar(64), LargeSplitSize / 8); 2128 Register GEPReg = MRI.createGenericVirtualRegister(PtrTy); 2129 auto SmallPtr = MIRBuilder.buildGEP(GEPReg, PtrReg, OffsetCst.getReg(0)); 2130 2131 MachineFunction &MF = MIRBuilder.getMF(); 2132 MachineMemOperand *LargeMMO = 2133 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2134 MachineMemOperand *SmallMMO = 2135 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2136 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2137 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2138 MI.eraseFromParent(); 2139 return Legalized; 2140 } 2141 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2142 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2143 case TargetOpcode::G_CTLZ: 2144 case TargetOpcode::G_CTTZ: 2145 case TargetOpcode::G_CTPOP: 2146 return lowerBitCount(MI, TypeIdx, Ty); 2147 case G_UADDO: { 2148 Register Res = MI.getOperand(0).getReg(); 2149 Register CarryOut = MI.getOperand(1).getReg(); 2150 Register LHS = MI.getOperand(2).getReg(); 2151 Register RHS = MI.getOperand(3).getReg(); 2152 2153 MIRBuilder.buildAdd(Res, LHS, RHS); 2154 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2155 2156 MI.eraseFromParent(); 2157 return Legalized; 2158 } 2159 case G_UADDE: { 2160 Register Res = MI.getOperand(0).getReg(); 2161 Register CarryOut = MI.getOperand(1).getReg(); 2162 Register LHS = MI.getOperand(2).getReg(); 2163 Register RHS = MI.getOperand(3).getReg(); 2164 Register CarryIn = MI.getOperand(4).getReg(); 2165 2166 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2167 Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 2168 2169 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 2170 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 2171 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2172 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2173 2174 MI.eraseFromParent(); 2175 return Legalized; 2176 } 2177 case G_USUBO: { 2178 Register Res = MI.getOperand(0).getReg(); 2179 Register BorrowOut = MI.getOperand(1).getReg(); 2180 Register LHS = MI.getOperand(2).getReg(); 2181 Register RHS = MI.getOperand(3).getReg(); 2182 2183 MIRBuilder.buildSub(Res, LHS, RHS); 2184 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2185 2186 MI.eraseFromParent(); 2187 return Legalized; 2188 } 2189 case G_USUBE: { 2190 Register Res = MI.getOperand(0).getReg(); 2191 Register BorrowOut = MI.getOperand(1).getReg(); 2192 Register LHS = MI.getOperand(2).getReg(); 2193 Register RHS = MI.getOperand(3).getReg(); 2194 Register BorrowIn = MI.getOperand(4).getReg(); 2195 2196 Register TmpRes = MRI.createGenericVirtualRegister(Ty); 2197 Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 2198 Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2199 Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 2200 2201 MIRBuilder.buildSub(TmpRes, LHS, RHS); 2202 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 2203 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2204 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 2205 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 2206 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2207 2208 MI.eraseFromParent(); 2209 return Legalized; 2210 } 2211 case G_UITOFP: 2212 return lowerUITOFP(MI, TypeIdx, Ty); 2213 case G_SITOFP: 2214 return lowerSITOFP(MI, TypeIdx, Ty); 2215 case G_FPTOUI: 2216 return lowerFPTOUI(MI, TypeIdx, Ty); 2217 case G_SMIN: 2218 case G_SMAX: 2219 case G_UMIN: 2220 case G_UMAX: 2221 return lowerMinMax(MI, TypeIdx, Ty); 2222 case G_FCOPYSIGN: 2223 return lowerFCopySign(MI, TypeIdx, Ty); 2224 case G_FMINNUM: 2225 case G_FMAXNUM: 2226 return lowerFMinNumMaxNum(MI); 2227 case G_UNMERGE_VALUES: 2228 return lowerUnmergeValues(MI); 2229 case TargetOpcode::G_SEXT_INREG: { 2230 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2231 int64_t SizeInBits = MI.getOperand(2).getImm(); 2232 2233 Register DstReg = MI.getOperand(0).getReg(); 2234 Register SrcReg = MI.getOperand(1).getReg(); 2235 LLT DstTy = MRI.getType(DstReg); 2236 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2237 2238 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2239 MIRBuilder.buildInstr(TargetOpcode::G_SHL, {TmpRes}, {SrcReg, MIBSz->getOperand(0).getReg()}); 2240 MIRBuilder.buildInstr(TargetOpcode::G_ASHR, {DstReg}, {TmpRes, MIBSz->getOperand(0).getReg()}); 2241 MI.eraseFromParent(); 2242 return Legalized; 2243 } 2244 case G_SHUFFLE_VECTOR: 2245 return lowerShuffleVector(MI); 2246 case G_DYN_STACKALLOC: 2247 return lowerDynStackAlloc(MI); 2248 } 2249 } 2250 2251 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2252 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2253 SmallVector<Register, 2> DstRegs; 2254 2255 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2256 Register DstReg = MI.getOperand(0).getReg(); 2257 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2258 int NumParts = Size / NarrowSize; 2259 // FIXME: Don't know how to handle the situation where the small vectors 2260 // aren't all the same size yet. 2261 if (Size % NarrowSize != 0) 2262 return UnableToLegalize; 2263 2264 for (int i = 0; i < NumParts; ++i) { 2265 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2266 MIRBuilder.buildUndef(TmpReg); 2267 DstRegs.push_back(TmpReg); 2268 } 2269 2270 if (NarrowTy.isVector()) 2271 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2272 else 2273 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2274 2275 MI.eraseFromParent(); 2276 return Legalized; 2277 } 2278 2279 LegalizerHelper::LegalizeResult 2280 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2281 LLT NarrowTy) { 2282 const unsigned Opc = MI.getOpcode(); 2283 const unsigned NumOps = MI.getNumOperands() - 1; 2284 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2285 const Register DstReg = MI.getOperand(0).getReg(); 2286 const unsigned Flags = MI.getFlags(); 2287 const LLT DstTy = MRI.getType(DstReg); 2288 const unsigned Size = DstTy.getSizeInBits(); 2289 const int NumParts = Size / NarrowSize; 2290 const LLT EltTy = DstTy.getElementType(); 2291 const unsigned EltSize = EltTy.getSizeInBits(); 2292 const unsigned BitsForNumParts = NarrowSize * NumParts; 2293 2294 // Check if we have any leftovers. If we do, then only handle the case where 2295 // the leftover is one element. 2296 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 2297 return UnableToLegalize; 2298 2299 if (BitsForNumParts != Size) { 2300 Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 2301 MIRBuilder.buildUndef(AccumDstReg); 2302 2303 // Handle the pieces which evenly divide into the requested type with 2304 // extract/op/insert sequence. 2305 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 2306 SmallVector<SrcOp, 4> SrcOps; 2307 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2308 Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 2309 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 2310 SrcOps.push_back(PartOpReg); 2311 } 2312 2313 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 2314 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2315 2316 Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 2317 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 2318 AccumDstReg = PartInsertReg; 2319 } 2320 2321 // Handle the remaining element sized leftover piece. 2322 SmallVector<SrcOp, 4> SrcOps; 2323 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2324 Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); 2325 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 2326 BitsForNumParts); 2327 SrcOps.push_back(PartOpReg); 2328 } 2329 2330 Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); 2331 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 2332 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 2333 MI.eraseFromParent(); 2334 2335 return Legalized; 2336 } 2337 2338 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2339 2340 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 2341 2342 if (NumOps >= 2) 2343 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 2344 2345 if (NumOps >= 3) 2346 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 2347 2348 for (int i = 0; i < NumParts; ++i) { 2349 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2350 2351 if (NumOps == 1) 2352 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 2353 else if (NumOps == 2) { 2354 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 2355 } else if (NumOps == 3) { 2356 MIRBuilder.buildInstr(Opc, {DstReg}, 2357 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 2358 } 2359 2360 DstRegs.push_back(DstReg); 2361 } 2362 2363 if (NarrowTy.isVector()) 2364 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2365 else 2366 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2367 2368 MI.eraseFromParent(); 2369 return Legalized; 2370 } 2371 2372 // Handle splitting vector operations which need to have the same number of 2373 // elements in each type index, but each type index may have a different element 2374 // type. 2375 // 2376 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2377 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2378 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2379 // 2380 // Also handles some irregular breakdown cases, e.g. 2381 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2382 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2383 // s64 = G_SHL s64, s32 2384 LegalizerHelper::LegalizeResult 2385 LegalizerHelper::fewerElementsVectorMultiEltType( 2386 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2387 if (TypeIdx != 0) 2388 return UnableToLegalize; 2389 2390 const LLT NarrowTy0 = NarrowTyArg; 2391 const unsigned NewNumElts = 2392 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2393 2394 const Register DstReg = MI.getOperand(0).getReg(); 2395 LLT DstTy = MRI.getType(DstReg); 2396 LLT LeftoverTy0; 2397 2398 // All of the operands need to have the same number of elements, so if we can 2399 // determine a type breakdown for the result type, we can for all of the 2400 // source types. 2401 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2402 if (NumParts < 0) 2403 return UnableToLegalize; 2404 2405 SmallVector<MachineInstrBuilder, 4> NewInsts; 2406 2407 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2408 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2409 2410 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2411 LLT LeftoverTy; 2412 Register SrcReg = MI.getOperand(I).getReg(); 2413 LLT SrcTyI = MRI.getType(SrcReg); 2414 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2415 LLT LeftoverTyI; 2416 2417 // Split this operand into the requested typed registers, and any leftover 2418 // required to reproduce the original type. 2419 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2420 LeftoverRegs)) 2421 return UnableToLegalize; 2422 2423 if (I == 1) { 2424 // For the first operand, create an instruction for each part and setup 2425 // the result. 2426 for (Register PartReg : PartRegs) { 2427 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2428 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2429 .addDef(PartDstReg) 2430 .addUse(PartReg)); 2431 DstRegs.push_back(PartDstReg); 2432 } 2433 2434 for (Register LeftoverReg : LeftoverRegs) { 2435 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2436 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2437 .addDef(PartDstReg) 2438 .addUse(LeftoverReg)); 2439 LeftoverDstRegs.push_back(PartDstReg); 2440 } 2441 } else { 2442 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2443 2444 // Add the newly created operand splits to the existing instructions. The 2445 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2446 // pieces. 2447 unsigned InstCount = 0; 2448 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2449 NewInsts[InstCount++].addUse(PartRegs[J]); 2450 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2451 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2452 } 2453 2454 PartRegs.clear(); 2455 LeftoverRegs.clear(); 2456 } 2457 2458 // Insert the newly built operations and rebuild the result register. 2459 for (auto &MIB : NewInsts) 2460 MIRBuilder.insertInstr(MIB); 2461 2462 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2463 2464 MI.eraseFromParent(); 2465 return Legalized; 2466 } 2467 2468 LegalizerHelper::LegalizeResult 2469 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2470 LLT NarrowTy) { 2471 if (TypeIdx != 0) 2472 return UnableToLegalize; 2473 2474 Register DstReg = MI.getOperand(0).getReg(); 2475 Register SrcReg = MI.getOperand(1).getReg(); 2476 LLT DstTy = MRI.getType(DstReg); 2477 LLT SrcTy = MRI.getType(SrcReg); 2478 2479 LLT NarrowTy0 = NarrowTy; 2480 LLT NarrowTy1; 2481 unsigned NumParts; 2482 2483 if (NarrowTy.isVector()) { 2484 // Uneven breakdown not handled. 2485 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2486 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2487 return UnableToLegalize; 2488 2489 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2490 } else { 2491 NumParts = DstTy.getNumElements(); 2492 NarrowTy1 = SrcTy.getElementType(); 2493 } 2494 2495 SmallVector<Register, 4> SrcRegs, DstRegs; 2496 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2497 2498 for (unsigned I = 0; I < NumParts; ++I) { 2499 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2500 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 2501 .addDef(DstReg) 2502 .addUse(SrcRegs[I]); 2503 2504 NewInst->setFlags(MI.getFlags()); 2505 DstRegs.push_back(DstReg); 2506 } 2507 2508 if (NarrowTy.isVector()) 2509 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2510 else 2511 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2512 2513 MI.eraseFromParent(); 2514 return Legalized; 2515 } 2516 2517 LegalizerHelper::LegalizeResult 2518 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2519 LLT NarrowTy) { 2520 Register DstReg = MI.getOperand(0).getReg(); 2521 Register Src0Reg = MI.getOperand(2).getReg(); 2522 LLT DstTy = MRI.getType(DstReg); 2523 LLT SrcTy = MRI.getType(Src0Reg); 2524 2525 unsigned NumParts; 2526 LLT NarrowTy0, NarrowTy1; 2527 2528 if (TypeIdx == 0) { 2529 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2530 unsigned OldElts = DstTy.getNumElements(); 2531 2532 NarrowTy0 = NarrowTy; 2533 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2534 NarrowTy1 = NarrowTy.isVector() ? 2535 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2536 SrcTy.getElementType(); 2537 2538 } else { 2539 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2540 unsigned OldElts = SrcTy.getNumElements(); 2541 2542 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2543 NarrowTy.getNumElements(); 2544 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2545 DstTy.getScalarSizeInBits()); 2546 NarrowTy1 = NarrowTy; 2547 } 2548 2549 // FIXME: Don't know how to handle the situation where the small vectors 2550 // aren't all the same size yet. 2551 if (NarrowTy1.isVector() && 2552 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2553 return UnableToLegalize; 2554 2555 CmpInst::Predicate Pred 2556 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2557 2558 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2559 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2560 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2561 2562 for (unsigned I = 0; I < NumParts; ++I) { 2563 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2564 DstRegs.push_back(DstReg); 2565 2566 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2567 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2568 else { 2569 MachineInstr *NewCmp 2570 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2571 NewCmp->setFlags(MI.getFlags()); 2572 } 2573 } 2574 2575 if (NarrowTy1.isVector()) 2576 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2577 else 2578 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2579 2580 MI.eraseFromParent(); 2581 return Legalized; 2582 } 2583 2584 LegalizerHelper::LegalizeResult 2585 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2586 LLT NarrowTy) { 2587 Register DstReg = MI.getOperand(0).getReg(); 2588 Register CondReg = MI.getOperand(1).getReg(); 2589 2590 unsigned NumParts = 0; 2591 LLT NarrowTy0, NarrowTy1; 2592 2593 LLT DstTy = MRI.getType(DstReg); 2594 LLT CondTy = MRI.getType(CondReg); 2595 unsigned Size = DstTy.getSizeInBits(); 2596 2597 assert(TypeIdx == 0 || CondTy.isVector()); 2598 2599 if (TypeIdx == 0) { 2600 NarrowTy0 = NarrowTy; 2601 NarrowTy1 = CondTy; 2602 2603 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2604 // FIXME: Don't know how to handle the situation where the small vectors 2605 // aren't all the same size yet. 2606 if (Size % NarrowSize != 0) 2607 return UnableToLegalize; 2608 2609 NumParts = Size / NarrowSize; 2610 2611 // Need to break down the condition type 2612 if (CondTy.isVector()) { 2613 if (CondTy.getNumElements() == NumParts) 2614 NarrowTy1 = CondTy.getElementType(); 2615 else 2616 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2617 CondTy.getScalarSizeInBits()); 2618 } 2619 } else { 2620 NumParts = CondTy.getNumElements(); 2621 if (NarrowTy.isVector()) { 2622 // TODO: Handle uneven breakdown. 2623 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2624 return UnableToLegalize; 2625 2626 return UnableToLegalize; 2627 } else { 2628 NarrowTy0 = DstTy.getElementType(); 2629 NarrowTy1 = NarrowTy; 2630 } 2631 } 2632 2633 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2634 if (CondTy.isVector()) 2635 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2636 2637 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2638 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2639 2640 for (unsigned i = 0; i < NumParts; ++i) { 2641 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2642 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2643 Src1Regs[i], Src2Regs[i]); 2644 DstRegs.push_back(DstReg); 2645 } 2646 2647 if (NarrowTy0.isVector()) 2648 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2649 else 2650 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2651 2652 MI.eraseFromParent(); 2653 return Legalized; 2654 } 2655 2656 LegalizerHelper::LegalizeResult 2657 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2658 LLT NarrowTy) { 2659 const Register DstReg = MI.getOperand(0).getReg(); 2660 LLT PhiTy = MRI.getType(DstReg); 2661 LLT LeftoverTy; 2662 2663 // All of the operands need to have the same number of elements, so if we can 2664 // determine a type breakdown for the result type, we can for all of the 2665 // source types. 2666 int NumParts, NumLeftover; 2667 std::tie(NumParts, NumLeftover) 2668 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2669 if (NumParts < 0) 2670 return UnableToLegalize; 2671 2672 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2673 SmallVector<MachineInstrBuilder, 4> NewInsts; 2674 2675 const int TotalNumParts = NumParts + NumLeftover; 2676 2677 // Insert the new phis in the result block first. 2678 for (int I = 0; I != TotalNumParts; ++I) { 2679 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2680 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2681 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2682 .addDef(PartDstReg)); 2683 if (I < NumParts) 2684 DstRegs.push_back(PartDstReg); 2685 else 2686 LeftoverDstRegs.push_back(PartDstReg); 2687 } 2688 2689 MachineBasicBlock *MBB = MI.getParent(); 2690 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2691 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2692 2693 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2694 2695 // Insert code to extract the incoming values in each predecessor block. 2696 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2697 PartRegs.clear(); 2698 LeftoverRegs.clear(); 2699 2700 Register SrcReg = MI.getOperand(I).getReg(); 2701 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2702 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2703 2704 LLT Unused; 2705 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2706 LeftoverRegs)) 2707 return UnableToLegalize; 2708 2709 // Add the newly created operand splits to the existing instructions. The 2710 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2711 // pieces. 2712 for (int J = 0; J != TotalNumParts; ++J) { 2713 MachineInstrBuilder MIB = NewInsts[J]; 2714 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2715 MIB.addMBB(&OpMBB); 2716 } 2717 } 2718 2719 MI.eraseFromParent(); 2720 return Legalized; 2721 } 2722 2723 LegalizerHelper::LegalizeResult 2724 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 2725 unsigned TypeIdx, 2726 LLT NarrowTy) { 2727 if (TypeIdx != 1) 2728 return UnableToLegalize; 2729 2730 const int NumDst = MI.getNumOperands() - 1; 2731 const Register SrcReg = MI.getOperand(NumDst).getReg(); 2732 LLT SrcTy = MRI.getType(SrcReg); 2733 2734 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2735 2736 // TODO: Create sequence of extracts. 2737 if (DstTy == NarrowTy) 2738 return UnableToLegalize; 2739 2740 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 2741 if (DstTy == GCDTy) { 2742 // This would just be a copy of the same unmerge. 2743 // TODO: Create extracts, pad with undef and create intermediate merges. 2744 return UnableToLegalize; 2745 } 2746 2747 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 2748 const int NumUnmerge = Unmerge->getNumOperands() - 1; 2749 const int PartsPerUnmerge = NumDst / NumUnmerge; 2750 2751 for (int I = 0; I != NumUnmerge; ++I) { 2752 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 2753 2754 for (int J = 0; J != PartsPerUnmerge; ++J) 2755 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 2756 MIB.addUse(Unmerge.getReg(I)); 2757 } 2758 2759 MI.eraseFromParent(); 2760 return Legalized; 2761 } 2762 2763 LegalizerHelper::LegalizeResult 2764 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2765 LLT NarrowTy) { 2766 // FIXME: Don't know how to handle secondary types yet. 2767 if (TypeIdx != 0) 2768 return UnableToLegalize; 2769 2770 MachineMemOperand *MMO = *MI.memoperands_begin(); 2771 2772 // This implementation doesn't work for atomics. Give up instead of doing 2773 // something invalid. 2774 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2775 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2776 return UnableToLegalize; 2777 2778 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2779 Register ValReg = MI.getOperand(0).getReg(); 2780 Register AddrReg = MI.getOperand(1).getReg(); 2781 LLT ValTy = MRI.getType(ValReg); 2782 2783 int NumParts = -1; 2784 int NumLeftover = -1; 2785 LLT LeftoverTy; 2786 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 2787 if (IsLoad) { 2788 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2789 } else { 2790 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2791 NarrowLeftoverRegs)) { 2792 NumParts = NarrowRegs.size(); 2793 NumLeftover = NarrowLeftoverRegs.size(); 2794 } 2795 } 2796 2797 if (NumParts == -1) 2798 return UnableToLegalize; 2799 2800 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2801 2802 unsigned TotalSize = ValTy.getSizeInBits(); 2803 2804 // Split the load/store into PartTy sized pieces starting at Offset. If this 2805 // is a load, return the new registers in ValRegs. For a store, each elements 2806 // of ValRegs should be PartTy. Returns the next offset that needs to be 2807 // handled. 2808 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 2809 unsigned Offset) -> unsigned { 2810 MachineFunction &MF = MIRBuilder.getMF(); 2811 unsigned PartSize = PartTy.getSizeInBits(); 2812 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2813 Offset += PartSize, ++Idx) { 2814 unsigned ByteSize = PartSize / 8; 2815 unsigned ByteOffset = Offset / 8; 2816 Register NewAddrReg; 2817 2818 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2819 2820 MachineMemOperand *NewMMO = 2821 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2822 2823 if (IsLoad) { 2824 Register Dst = MRI.createGenericVirtualRegister(PartTy); 2825 ValRegs.push_back(Dst); 2826 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2827 } else { 2828 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2829 } 2830 } 2831 2832 return Offset; 2833 }; 2834 2835 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2836 2837 // Handle the rest of the register if this isn't an even type breakdown. 2838 if (LeftoverTy.isValid()) 2839 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2840 2841 if (IsLoad) { 2842 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2843 LeftoverTy, NarrowLeftoverRegs); 2844 } 2845 2846 MI.eraseFromParent(); 2847 return Legalized; 2848 } 2849 2850 LegalizerHelper::LegalizeResult 2851 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2852 LLT NarrowTy) { 2853 using namespace TargetOpcode; 2854 2855 MIRBuilder.setInstr(MI); 2856 switch (MI.getOpcode()) { 2857 case G_IMPLICIT_DEF: 2858 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2859 case G_AND: 2860 case G_OR: 2861 case G_XOR: 2862 case G_ADD: 2863 case G_SUB: 2864 case G_MUL: 2865 case G_SMULH: 2866 case G_UMULH: 2867 case G_FADD: 2868 case G_FMUL: 2869 case G_FSUB: 2870 case G_FNEG: 2871 case G_FABS: 2872 case G_FCANONICALIZE: 2873 case G_FDIV: 2874 case G_FREM: 2875 case G_FMA: 2876 case G_FMAD: 2877 case G_FPOW: 2878 case G_FEXP: 2879 case G_FEXP2: 2880 case G_FLOG: 2881 case G_FLOG2: 2882 case G_FLOG10: 2883 case G_FNEARBYINT: 2884 case G_FCEIL: 2885 case G_FFLOOR: 2886 case G_FRINT: 2887 case G_INTRINSIC_ROUND: 2888 case G_INTRINSIC_TRUNC: 2889 case G_FCOS: 2890 case G_FSIN: 2891 case G_FSQRT: 2892 case G_BSWAP: 2893 case G_BITREVERSE: 2894 case G_SDIV: 2895 case G_SMIN: 2896 case G_SMAX: 2897 case G_UMIN: 2898 case G_UMAX: 2899 case G_FMINNUM: 2900 case G_FMAXNUM: 2901 case G_FMINNUM_IEEE: 2902 case G_FMAXNUM_IEEE: 2903 case G_FMINIMUM: 2904 case G_FMAXIMUM: 2905 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 2906 case G_SHL: 2907 case G_LSHR: 2908 case G_ASHR: 2909 case G_CTLZ: 2910 case G_CTLZ_ZERO_UNDEF: 2911 case G_CTTZ: 2912 case G_CTTZ_ZERO_UNDEF: 2913 case G_CTPOP: 2914 case G_FCOPYSIGN: 2915 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 2916 case G_ZEXT: 2917 case G_SEXT: 2918 case G_ANYEXT: 2919 case G_FPEXT: 2920 case G_FPTRUNC: 2921 case G_SITOFP: 2922 case G_UITOFP: 2923 case G_FPTOSI: 2924 case G_FPTOUI: 2925 case G_INTTOPTR: 2926 case G_PTRTOINT: 2927 case G_ADDRSPACE_CAST: 2928 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 2929 case G_ICMP: 2930 case G_FCMP: 2931 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 2932 case G_SELECT: 2933 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 2934 case G_PHI: 2935 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 2936 case G_UNMERGE_VALUES: 2937 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 2938 case G_LOAD: 2939 case G_STORE: 2940 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 2941 default: 2942 return UnableToLegalize; 2943 } 2944 } 2945 2946 LegalizerHelper::LegalizeResult 2947 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 2948 const LLT HalfTy, const LLT AmtTy) { 2949 2950 Register InL = MRI.createGenericVirtualRegister(HalfTy); 2951 Register InH = MRI.createGenericVirtualRegister(HalfTy); 2952 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2953 2954 if (Amt.isNullValue()) { 2955 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 2956 MI.eraseFromParent(); 2957 return Legalized; 2958 } 2959 2960 LLT NVT = HalfTy; 2961 unsigned NVTBits = HalfTy.getSizeInBits(); 2962 unsigned VTBits = 2 * NVTBits; 2963 2964 SrcOp Lo(Register(0)), Hi(Register(0)); 2965 if (MI.getOpcode() == TargetOpcode::G_SHL) { 2966 if (Amt.ugt(VTBits)) { 2967 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2968 } else if (Amt.ugt(NVTBits)) { 2969 Lo = MIRBuilder.buildConstant(NVT, 0); 2970 Hi = MIRBuilder.buildShl(NVT, InL, 2971 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2972 } else if (Amt == NVTBits) { 2973 Lo = MIRBuilder.buildConstant(NVT, 0); 2974 Hi = InL; 2975 } else { 2976 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 2977 auto OrLHS = 2978 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 2979 auto OrRHS = MIRBuilder.buildLShr( 2980 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2981 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2982 } 2983 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2984 if (Amt.ugt(VTBits)) { 2985 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2986 } else if (Amt.ugt(NVTBits)) { 2987 Lo = MIRBuilder.buildLShr(NVT, InH, 2988 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2989 Hi = MIRBuilder.buildConstant(NVT, 0); 2990 } else if (Amt == NVTBits) { 2991 Lo = InH; 2992 Hi = MIRBuilder.buildConstant(NVT, 0); 2993 } else { 2994 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2995 2996 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2997 auto OrRHS = MIRBuilder.buildShl( 2998 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2999 3000 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3001 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3002 } 3003 } else { 3004 if (Amt.ugt(VTBits)) { 3005 Hi = Lo = MIRBuilder.buildAShr( 3006 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3007 } else if (Amt.ugt(NVTBits)) { 3008 Lo = MIRBuilder.buildAShr(NVT, InH, 3009 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3010 Hi = MIRBuilder.buildAShr(NVT, InH, 3011 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3012 } else if (Amt == NVTBits) { 3013 Lo = InH; 3014 Hi = MIRBuilder.buildAShr(NVT, InH, 3015 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3016 } else { 3017 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3018 3019 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3020 auto OrRHS = MIRBuilder.buildShl( 3021 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3022 3023 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3024 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3025 } 3026 } 3027 3028 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 3029 MI.eraseFromParent(); 3030 3031 return Legalized; 3032 } 3033 3034 // TODO: Optimize if constant shift amount. 3035 LegalizerHelper::LegalizeResult 3036 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3037 LLT RequestedTy) { 3038 if (TypeIdx == 1) { 3039 Observer.changingInstr(MI); 3040 narrowScalarSrc(MI, RequestedTy, 2); 3041 Observer.changedInstr(MI); 3042 return Legalized; 3043 } 3044 3045 Register DstReg = MI.getOperand(0).getReg(); 3046 LLT DstTy = MRI.getType(DstReg); 3047 if (DstTy.isVector()) 3048 return UnableToLegalize; 3049 3050 Register Amt = MI.getOperand(2).getReg(); 3051 LLT ShiftAmtTy = MRI.getType(Amt); 3052 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3053 if (DstEltSize % 2 != 0) 3054 return UnableToLegalize; 3055 3056 // Ignore the input type. We can only go to exactly half the size of the 3057 // input. If that isn't small enough, the resulting pieces will be further 3058 // legalized. 3059 const unsigned NewBitSize = DstEltSize / 2; 3060 const LLT HalfTy = LLT::scalar(NewBitSize); 3061 const LLT CondTy = LLT::scalar(1); 3062 3063 if (const MachineInstr *KShiftAmt = 3064 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3065 return narrowScalarShiftByConstant( 3066 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3067 } 3068 3069 // TODO: Expand with known bits. 3070 3071 // Handle the fully general expansion by an unknown amount. 3072 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3073 3074 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3075 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3076 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 3077 3078 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3079 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3080 3081 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3082 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3083 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3084 3085 Register ResultRegs[2]; 3086 switch (MI.getOpcode()) { 3087 case TargetOpcode::G_SHL: { 3088 // Short: ShAmt < NewBitSize 3089 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3090 3091 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3092 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3093 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3094 3095 // Long: ShAmt >= NewBitSize 3096 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3097 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3098 3099 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3100 auto Hi = MIRBuilder.buildSelect( 3101 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3102 3103 ResultRegs[0] = Lo.getReg(0); 3104 ResultRegs[1] = Hi.getReg(0); 3105 break; 3106 } 3107 case TargetOpcode::G_LSHR: 3108 case TargetOpcode::G_ASHR: { 3109 // Short: ShAmt < NewBitSize 3110 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3111 3112 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3113 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3114 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3115 3116 // Long: ShAmt >= NewBitSize 3117 MachineInstrBuilder HiL; 3118 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3119 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3120 } else { 3121 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3122 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3123 } 3124 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3125 {InH, AmtExcess}); // Lo from Hi part. 3126 3127 auto Lo = MIRBuilder.buildSelect( 3128 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3129 3130 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3131 3132 ResultRegs[0] = Lo.getReg(0); 3133 ResultRegs[1] = Hi.getReg(0); 3134 break; 3135 } 3136 default: 3137 llvm_unreachable("not a shift"); 3138 } 3139 3140 MIRBuilder.buildMerge(DstReg, ResultRegs); 3141 MI.eraseFromParent(); 3142 return Legalized; 3143 } 3144 3145 LegalizerHelper::LegalizeResult 3146 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3147 LLT MoreTy) { 3148 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3149 3150 Observer.changingInstr(MI); 3151 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3152 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3153 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3154 moreElementsVectorSrc(MI, MoreTy, I); 3155 } 3156 3157 MachineBasicBlock &MBB = *MI.getParent(); 3158 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3159 moreElementsVectorDst(MI, MoreTy, 0); 3160 Observer.changedInstr(MI); 3161 return Legalized; 3162 } 3163 3164 LegalizerHelper::LegalizeResult 3165 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3166 LLT MoreTy) { 3167 MIRBuilder.setInstr(MI); 3168 unsigned Opc = MI.getOpcode(); 3169 switch (Opc) { 3170 case TargetOpcode::G_IMPLICIT_DEF: 3171 case TargetOpcode::G_LOAD: { 3172 if (TypeIdx != 0) 3173 return UnableToLegalize; 3174 Observer.changingInstr(MI); 3175 moreElementsVectorDst(MI, MoreTy, 0); 3176 Observer.changedInstr(MI); 3177 return Legalized; 3178 } 3179 case TargetOpcode::G_STORE: 3180 if (TypeIdx != 0) 3181 return UnableToLegalize; 3182 Observer.changingInstr(MI); 3183 moreElementsVectorSrc(MI, MoreTy, 0); 3184 Observer.changedInstr(MI); 3185 return Legalized; 3186 case TargetOpcode::G_AND: 3187 case TargetOpcode::G_OR: 3188 case TargetOpcode::G_XOR: 3189 case TargetOpcode::G_SMIN: 3190 case TargetOpcode::G_SMAX: 3191 case TargetOpcode::G_UMIN: 3192 case TargetOpcode::G_UMAX: { 3193 Observer.changingInstr(MI); 3194 moreElementsVectorSrc(MI, MoreTy, 1); 3195 moreElementsVectorSrc(MI, MoreTy, 2); 3196 moreElementsVectorDst(MI, MoreTy, 0); 3197 Observer.changedInstr(MI); 3198 return Legalized; 3199 } 3200 case TargetOpcode::G_EXTRACT: 3201 if (TypeIdx != 1) 3202 return UnableToLegalize; 3203 Observer.changingInstr(MI); 3204 moreElementsVectorSrc(MI, MoreTy, 1); 3205 Observer.changedInstr(MI); 3206 return Legalized; 3207 case TargetOpcode::G_INSERT: 3208 if (TypeIdx != 0) 3209 return UnableToLegalize; 3210 Observer.changingInstr(MI); 3211 moreElementsVectorSrc(MI, MoreTy, 1); 3212 moreElementsVectorDst(MI, MoreTy, 0); 3213 Observer.changedInstr(MI); 3214 return Legalized; 3215 case TargetOpcode::G_SELECT: 3216 if (TypeIdx != 0) 3217 return UnableToLegalize; 3218 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3219 return UnableToLegalize; 3220 3221 Observer.changingInstr(MI); 3222 moreElementsVectorSrc(MI, MoreTy, 2); 3223 moreElementsVectorSrc(MI, MoreTy, 3); 3224 moreElementsVectorDst(MI, MoreTy, 0); 3225 Observer.changedInstr(MI); 3226 return Legalized; 3227 case TargetOpcode::G_UNMERGE_VALUES: { 3228 if (TypeIdx != 1) 3229 return UnableToLegalize; 3230 3231 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3232 int NumDst = MI.getNumOperands() - 1; 3233 moreElementsVectorSrc(MI, MoreTy, NumDst); 3234 3235 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3236 for (int I = 0; I != NumDst; ++I) 3237 MIB.addDef(MI.getOperand(I).getReg()); 3238 3239 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3240 for (int I = NumDst; I != NewNumDst; ++I) 3241 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3242 3243 MIB.addUse(MI.getOperand(NumDst).getReg()); 3244 MI.eraseFromParent(); 3245 return Legalized; 3246 } 3247 case TargetOpcode::G_PHI: 3248 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3249 default: 3250 return UnableToLegalize; 3251 } 3252 } 3253 3254 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3255 ArrayRef<Register> Src1Regs, 3256 ArrayRef<Register> Src2Regs, 3257 LLT NarrowTy) { 3258 MachineIRBuilder &B = MIRBuilder; 3259 unsigned SrcParts = Src1Regs.size(); 3260 unsigned DstParts = DstRegs.size(); 3261 3262 unsigned DstIdx = 0; // Low bits of the result. 3263 Register FactorSum = 3264 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3265 DstRegs[DstIdx] = FactorSum; 3266 3267 unsigned CarrySumPrevDstIdx; 3268 SmallVector<Register, 4> Factors; 3269 3270 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3271 // Collect low parts of muls for DstIdx. 3272 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3273 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3274 MachineInstrBuilder Mul = 3275 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3276 Factors.push_back(Mul.getReg(0)); 3277 } 3278 // Collect high parts of muls from previous DstIdx. 3279 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3280 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3281 MachineInstrBuilder Umulh = 3282 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3283 Factors.push_back(Umulh.getReg(0)); 3284 } 3285 // Add CarrySum from additons calculated for previous DstIdx. 3286 if (DstIdx != 1) { 3287 Factors.push_back(CarrySumPrevDstIdx); 3288 } 3289 3290 Register CarrySum; 3291 // Add all factors and accumulate all carries into CarrySum. 3292 if (DstIdx != DstParts - 1) { 3293 MachineInstrBuilder Uaddo = 3294 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3295 FactorSum = Uaddo.getReg(0); 3296 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3297 for (unsigned i = 2; i < Factors.size(); ++i) { 3298 MachineInstrBuilder Uaddo = 3299 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3300 FactorSum = Uaddo.getReg(0); 3301 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3302 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3303 } 3304 } else { 3305 // Since value for the next index is not calculated, neither is CarrySum. 3306 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3307 for (unsigned i = 2; i < Factors.size(); ++i) 3308 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3309 } 3310 3311 CarrySumPrevDstIdx = CarrySum; 3312 DstRegs[DstIdx] = FactorSum; 3313 Factors.clear(); 3314 } 3315 } 3316 3317 LegalizerHelper::LegalizeResult 3318 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3319 Register DstReg = MI.getOperand(0).getReg(); 3320 Register Src1 = MI.getOperand(1).getReg(); 3321 Register Src2 = MI.getOperand(2).getReg(); 3322 3323 LLT Ty = MRI.getType(DstReg); 3324 if (Ty.isVector()) 3325 return UnableToLegalize; 3326 3327 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3328 unsigned DstSize = Ty.getSizeInBits(); 3329 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3330 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3331 return UnableToLegalize; 3332 3333 unsigned NumDstParts = DstSize / NarrowSize; 3334 unsigned NumSrcParts = SrcSize / NarrowSize; 3335 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3336 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3337 3338 SmallVector<Register, 2> Src1Parts, Src2Parts, DstTmpRegs; 3339 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3340 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3341 DstTmpRegs.resize(DstTmpParts); 3342 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3343 3344 // Take only high half of registers if this is high mul. 3345 ArrayRef<Register> DstRegs( 3346 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3347 MIRBuilder.buildMerge(DstReg, DstRegs); 3348 MI.eraseFromParent(); 3349 return Legalized; 3350 } 3351 3352 LegalizerHelper::LegalizeResult 3353 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3354 LLT NarrowTy) { 3355 if (TypeIdx != 1) 3356 return UnableToLegalize; 3357 3358 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3359 3360 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3361 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3362 // NarrowSize. 3363 if (SizeOp1 % NarrowSize != 0) 3364 return UnableToLegalize; 3365 int NumParts = SizeOp1 / NarrowSize; 3366 3367 SmallVector<Register, 2> SrcRegs, DstRegs; 3368 SmallVector<uint64_t, 2> Indexes; 3369 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3370 3371 Register OpReg = MI.getOperand(0).getReg(); 3372 uint64_t OpStart = MI.getOperand(2).getImm(); 3373 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3374 for (int i = 0; i < NumParts; ++i) { 3375 unsigned SrcStart = i * NarrowSize; 3376 3377 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3378 // No part of the extract uses this subregister, ignore it. 3379 continue; 3380 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3381 // The entire subregister is extracted, forward the value. 3382 DstRegs.push_back(SrcRegs[i]); 3383 continue; 3384 } 3385 3386 // OpSegStart is where this destination segment would start in OpReg if it 3387 // extended infinitely in both directions. 3388 int64_t ExtractOffset; 3389 uint64_t SegSize; 3390 if (OpStart < SrcStart) { 3391 ExtractOffset = 0; 3392 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3393 } else { 3394 ExtractOffset = OpStart - SrcStart; 3395 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3396 } 3397 3398 Register SegReg = SrcRegs[i]; 3399 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3400 // A genuine extract is needed. 3401 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3402 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3403 } 3404 3405 DstRegs.push_back(SegReg); 3406 } 3407 3408 Register DstReg = MI.getOperand(0).getReg(); 3409 if(MRI.getType(DstReg).isVector()) 3410 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3411 else 3412 MIRBuilder.buildMerge(DstReg, DstRegs); 3413 MI.eraseFromParent(); 3414 return Legalized; 3415 } 3416 3417 LegalizerHelper::LegalizeResult 3418 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3419 LLT NarrowTy) { 3420 // FIXME: Don't know how to handle secondary types yet. 3421 if (TypeIdx != 0) 3422 return UnableToLegalize; 3423 3424 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3425 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3426 3427 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3428 // NarrowSize. 3429 if (SizeOp0 % NarrowSize != 0) 3430 return UnableToLegalize; 3431 3432 int NumParts = SizeOp0 / NarrowSize; 3433 3434 SmallVector<Register, 2> SrcRegs, DstRegs; 3435 SmallVector<uint64_t, 2> Indexes; 3436 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3437 3438 Register OpReg = MI.getOperand(2).getReg(); 3439 uint64_t OpStart = MI.getOperand(3).getImm(); 3440 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3441 for (int i = 0; i < NumParts; ++i) { 3442 unsigned DstStart = i * NarrowSize; 3443 3444 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3445 // No part of the insert affects this subregister, forward the original. 3446 DstRegs.push_back(SrcRegs[i]); 3447 continue; 3448 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3449 // The entire subregister is defined by this insert, forward the new 3450 // value. 3451 DstRegs.push_back(OpReg); 3452 continue; 3453 } 3454 3455 // OpSegStart is where this destination segment would start in OpReg if it 3456 // extended infinitely in both directions. 3457 int64_t ExtractOffset, InsertOffset; 3458 uint64_t SegSize; 3459 if (OpStart < DstStart) { 3460 InsertOffset = 0; 3461 ExtractOffset = DstStart - OpStart; 3462 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3463 } else { 3464 InsertOffset = OpStart - DstStart; 3465 ExtractOffset = 0; 3466 SegSize = 3467 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3468 } 3469 3470 Register SegReg = OpReg; 3471 if (ExtractOffset != 0 || SegSize != OpSize) { 3472 // A genuine extract is needed. 3473 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3474 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3475 } 3476 3477 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3478 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3479 DstRegs.push_back(DstReg); 3480 } 3481 3482 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3483 Register DstReg = MI.getOperand(0).getReg(); 3484 if(MRI.getType(DstReg).isVector()) 3485 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3486 else 3487 MIRBuilder.buildMerge(DstReg, DstRegs); 3488 MI.eraseFromParent(); 3489 return Legalized; 3490 } 3491 3492 LegalizerHelper::LegalizeResult 3493 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3494 LLT NarrowTy) { 3495 Register DstReg = MI.getOperand(0).getReg(); 3496 LLT DstTy = MRI.getType(DstReg); 3497 3498 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3499 3500 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3501 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3502 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3503 LLT LeftoverTy; 3504 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3505 Src0Regs, Src0LeftoverRegs)) 3506 return UnableToLegalize; 3507 3508 LLT Unused; 3509 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3510 Src1Regs, Src1LeftoverRegs)) 3511 llvm_unreachable("inconsistent extractParts result"); 3512 3513 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3514 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3515 {Src0Regs[I], Src1Regs[I]}); 3516 DstRegs.push_back(Inst->getOperand(0).getReg()); 3517 } 3518 3519 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3520 auto Inst = MIRBuilder.buildInstr( 3521 MI.getOpcode(), 3522 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3523 DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); 3524 } 3525 3526 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3527 LeftoverTy, DstLeftoverRegs); 3528 3529 MI.eraseFromParent(); 3530 return Legalized; 3531 } 3532 3533 LegalizerHelper::LegalizeResult 3534 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3535 LLT NarrowTy) { 3536 if (TypeIdx != 0) 3537 return UnableToLegalize; 3538 3539 Register CondReg = MI.getOperand(1).getReg(); 3540 LLT CondTy = MRI.getType(CondReg); 3541 if (CondTy.isVector()) // TODO: Handle vselect 3542 return UnableToLegalize; 3543 3544 Register DstReg = MI.getOperand(0).getReg(); 3545 LLT DstTy = MRI.getType(DstReg); 3546 3547 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3548 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3549 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3550 LLT LeftoverTy; 3551 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3552 Src1Regs, Src1LeftoverRegs)) 3553 return UnableToLegalize; 3554 3555 LLT Unused; 3556 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3557 Src2Regs, Src2LeftoverRegs)) 3558 llvm_unreachable("inconsistent extractParts result"); 3559 3560 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3561 auto Select = MIRBuilder.buildSelect(NarrowTy, 3562 CondReg, Src1Regs[I], Src2Regs[I]); 3563 DstRegs.push_back(Select->getOperand(0).getReg()); 3564 } 3565 3566 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3567 auto Select = MIRBuilder.buildSelect( 3568 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3569 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 3570 } 3571 3572 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3573 LeftoverTy, DstLeftoverRegs); 3574 3575 MI.eraseFromParent(); 3576 return Legalized; 3577 } 3578 3579 LegalizerHelper::LegalizeResult 3580 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3581 unsigned Opc = MI.getOpcode(); 3582 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 3583 auto isSupported = [this](const LegalityQuery &Q) { 3584 auto QAction = LI.getAction(Q).Action; 3585 return QAction == Legal || QAction == Libcall || QAction == Custom; 3586 }; 3587 switch (Opc) { 3588 default: 3589 return UnableToLegalize; 3590 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 3591 // This trivially expands to CTLZ. 3592 Observer.changingInstr(MI); 3593 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 3594 Observer.changedInstr(MI); 3595 return Legalized; 3596 } 3597 case TargetOpcode::G_CTLZ: { 3598 Register SrcReg = MI.getOperand(1).getReg(); 3599 unsigned Len = Ty.getSizeInBits(); 3600 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 3601 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 3602 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 3603 {Ty}, {SrcReg}); 3604 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3605 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3606 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3607 SrcReg, MIBZero); 3608 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3609 MIBCtlzZU); 3610 MI.eraseFromParent(); 3611 return Legalized; 3612 } 3613 // for now, we do this: 3614 // NewLen = NextPowerOf2(Len); 3615 // x = x | (x >> 1); 3616 // x = x | (x >> 2); 3617 // ... 3618 // x = x | (x >>16); 3619 // x = x | (x >>32); // for 64-bit input 3620 // Upto NewLen/2 3621 // return Len - popcount(x); 3622 // 3623 // Ref: "Hacker's Delight" by Henry Warren 3624 Register Op = SrcReg; 3625 unsigned NewLen = PowerOf2Ceil(Len); 3626 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 3627 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 3628 auto MIBOp = MIRBuilder.buildInstr( 3629 TargetOpcode::G_OR, {Ty}, 3630 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 3631 {Op, MIBShiftAmt})}); 3632 Op = MIBOp->getOperand(0).getReg(); 3633 } 3634 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 3635 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3636 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 3637 MI.eraseFromParent(); 3638 return Legalized; 3639 } 3640 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 3641 // This trivially expands to CTTZ. 3642 Observer.changingInstr(MI); 3643 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 3644 Observer.changedInstr(MI); 3645 return Legalized; 3646 } 3647 case TargetOpcode::G_CTTZ: { 3648 Register SrcReg = MI.getOperand(1).getReg(); 3649 unsigned Len = Ty.getSizeInBits(); 3650 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 3651 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 3652 // zero. 3653 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 3654 {Ty}, {SrcReg}); 3655 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 3656 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 3657 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3658 SrcReg, MIBZero); 3659 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 3660 MIBCttzZU); 3661 MI.eraseFromParent(); 3662 return Legalized; 3663 } 3664 // for now, we use: { return popcount(~x & (x - 1)); } 3665 // unless the target has ctlz but not ctpop, in which case we use: 3666 // { return 32 - nlz(~x & (x-1)); } 3667 // Ref: "Hacker's Delight" by Henry Warren 3668 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 3669 auto MIBNot = 3670 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 3671 auto MIBTmp = MIRBuilder.buildInstr( 3672 TargetOpcode::G_AND, {Ty}, 3673 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 3674 {SrcReg, MIBCstNeg1})}); 3675 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 3676 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 3677 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 3678 MIRBuilder.buildInstr( 3679 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 3680 {MIBCstLen, 3681 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 3682 MI.eraseFromParent(); 3683 return Legalized; 3684 } 3685 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 3686 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 3687 return Legalized; 3688 } 3689 } 3690 } 3691 3692 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 3693 // representation. 3694 LegalizerHelper::LegalizeResult 3695 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 3696 Register Dst = MI.getOperand(0).getReg(); 3697 Register Src = MI.getOperand(1).getReg(); 3698 const LLT S64 = LLT::scalar(64); 3699 const LLT S32 = LLT::scalar(32); 3700 const LLT S1 = LLT::scalar(1); 3701 3702 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 3703 3704 // unsigned cul2f(ulong u) { 3705 // uint lz = clz(u); 3706 // uint e = (u != 0) ? 127U + 63U - lz : 0; 3707 // u = (u << lz) & 0x7fffffffffffffffUL; 3708 // ulong t = u & 0xffffffffffUL; 3709 // uint v = (e << 23) | (uint)(u >> 40); 3710 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 3711 // return as_float(v + r); 3712 // } 3713 3714 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 3715 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 3716 3717 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 3718 3719 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 3720 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 3721 3722 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 3723 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 3724 3725 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 3726 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 3727 3728 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 3729 3730 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 3731 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 3732 3733 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 3734 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 3735 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 3736 3737 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 3738 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 3739 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 3740 auto One = MIRBuilder.buildConstant(S32, 1); 3741 3742 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 3743 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 3744 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 3745 MIRBuilder.buildAdd(Dst, V, R); 3746 3747 return Legalized; 3748 } 3749 3750 LegalizerHelper::LegalizeResult 3751 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3752 Register Dst = MI.getOperand(0).getReg(); 3753 Register Src = MI.getOperand(1).getReg(); 3754 LLT DstTy = MRI.getType(Dst); 3755 LLT SrcTy = MRI.getType(Src); 3756 3757 if (SrcTy != LLT::scalar(64)) 3758 return UnableToLegalize; 3759 3760 if (DstTy == LLT::scalar(32)) { 3761 // TODO: SelectionDAG has several alternative expansions to port which may 3762 // be more reasonble depending on the available instructions. If a target 3763 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 3764 // intermediate type, this is probably worse. 3765 return lowerU64ToF32BitOps(MI); 3766 } 3767 3768 return UnableToLegalize; 3769 } 3770 3771 LegalizerHelper::LegalizeResult 3772 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3773 Register Dst = MI.getOperand(0).getReg(); 3774 Register Src = MI.getOperand(1).getReg(); 3775 LLT DstTy = MRI.getType(Dst); 3776 LLT SrcTy = MRI.getType(Src); 3777 3778 const LLT S64 = LLT::scalar(64); 3779 const LLT S32 = LLT::scalar(32); 3780 const LLT S1 = LLT::scalar(1); 3781 3782 if (SrcTy != S64) 3783 return UnableToLegalize; 3784 3785 if (DstTy == S32) { 3786 // signed cl2f(long l) { 3787 // long s = l >> 63; 3788 // float r = cul2f((l + s) ^ s); 3789 // return s ? -r : r; 3790 // } 3791 Register L = Src; 3792 auto SignBit = MIRBuilder.buildConstant(S64, 63); 3793 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 3794 3795 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 3796 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 3797 auto R = MIRBuilder.buildUITOFP(S32, Xor); 3798 3799 auto RNeg = MIRBuilder.buildFNeg(S32, R); 3800 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 3801 MIRBuilder.buildConstant(S64, 0)); 3802 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 3803 return Legalized; 3804 } 3805 3806 return UnableToLegalize; 3807 } 3808 3809 LegalizerHelper::LegalizeResult 3810 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3811 Register Dst = MI.getOperand(0).getReg(); 3812 Register Src = MI.getOperand(1).getReg(); 3813 LLT DstTy = MRI.getType(Dst); 3814 LLT SrcTy = MRI.getType(Src); 3815 const LLT S64 = LLT::scalar(64); 3816 const LLT S32 = LLT::scalar(32); 3817 3818 if (SrcTy != S64 && SrcTy != S32) 3819 return UnableToLegalize; 3820 if (DstTy != S32 && DstTy != S64) 3821 return UnableToLegalize; 3822 3823 // FPTOSI gives same result as FPTOUI for positive signed integers. 3824 // FPTOUI needs to deal with fp values that convert to unsigned integers 3825 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 3826 3827 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 3828 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 3829 : APFloat::IEEEdouble(), 3830 APInt::getNullValue(SrcTy.getSizeInBits())); 3831 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 3832 3833 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 3834 3835 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 3836 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 3837 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 3838 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 3839 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 3840 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 3841 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 3842 3843 MachineInstrBuilder FCMP = 3844 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, DstTy, Src, Threshold); 3845 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 3846 3847 MI.eraseFromParent(); 3848 return Legalized; 3849 } 3850 3851 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 3852 switch (Opc) { 3853 case TargetOpcode::G_SMIN: 3854 return CmpInst::ICMP_SLT; 3855 case TargetOpcode::G_SMAX: 3856 return CmpInst::ICMP_SGT; 3857 case TargetOpcode::G_UMIN: 3858 return CmpInst::ICMP_ULT; 3859 case TargetOpcode::G_UMAX: 3860 return CmpInst::ICMP_UGT; 3861 default: 3862 llvm_unreachable("not in integer min/max"); 3863 } 3864 } 3865 3866 LegalizerHelper::LegalizeResult 3867 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3868 Register Dst = MI.getOperand(0).getReg(); 3869 Register Src0 = MI.getOperand(1).getReg(); 3870 Register Src1 = MI.getOperand(2).getReg(); 3871 3872 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 3873 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 3874 3875 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 3876 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 3877 3878 MI.eraseFromParent(); 3879 return Legalized; 3880 } 3881 3882 LegalizerHelper::LegalizeResult 3883 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3884 Register Dst = MI.getOperand(0).getReg(); 3885 Register Src0 = MI.getOperand(1).getReg(); 3886 Register Src1 = MI.getOperand(2).getReg(); 3887 3888 const LLT Src0Ty = MRI.getType(Src0); 3889 const LLT Src1Ty = MRI.getType(Src1); 3890 3891 const int Src0Size = Src0Ty.getScalarSizeInBits(); 3892 const int Src1Size = Src1Ty.getScalarSizeInBits(); 3893 3894 auto SignBitMask = MIRBuilder.buildConstant( 3895 Src0Ty, APInt::getSignMask(Src0Size)); 3896 3897 auto NotSignBitMask = MIRBuilder.buildConstant( 3898 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 3899 3900 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 3901 MachineInstr *Or; 3902 3903 if (Src0Ty == Src1Ty) { 3904 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 3905 Or = MIRBuilder.buildOr(Dst, And0, And1); 3906 } else if (Src0Size > Src1Size) { 3907 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 3908 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 3909 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 3910 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 3911 Or = MIRBuilder.buildOr(Dst, And0, And1); 3912 } else { 3913 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 3914 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 3915 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 3916 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 3917 Or = MIRBuilder.buildOr(Dst, And0, And1); 3918 } 3919 3920 // Be careful about setting nsz/nnan/ninf on every instruction, since the 3921 // constants are a nan and -0.0, but the final result should preserve 3922 // everything. 3923 if (unsigned Flags = MI.getFlags()) 3924 Or->setFlags(Flags); 3925 3926 MI.eraseFromParent(); 3927 return Legalized; 3928 } 3929 3930 LegalizerHelper::LegalizeResult 3931 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 3932 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 3933 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 3934 3935 Register Dst = MI.getOperand(0).getReg(); 3936 Register Src0 = MI.getOperand(1).getReg(); 3937 Register Src1 = MI.getOperand(2).getReg(); 3938 LLT Ty = MRI.getType(Dst); 3939 3940 if (!MI.getFlag(MachineInstr::FmNoNans)) { 3941 // Insert canonicalizes if it's possible we need to quiet to get correct 3942 // sNaN behavior. 3943 3944 // Note this must be done here, and not as an optimization combine in the 3945 // absence of a dedicate quiet-snan instruction as we're using an 3946 // omni-purpose G_FCANONICALIZE. 3947 if (!isKnownNeverSNaN(Src0, MRI)) 3948 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 3949 3950 if (!isKnownNeverSNaN(Src1, MRI)) 3951 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 3952 } 3953 3954 // If there are no nans, it's safe to simply replace this with the non-IEEE 3955 // version. 3956 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 3957 MI.eraseFromParent(); 3958 return Legalized; 3959 } 3960 3961 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 3962 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 3963 Register DstReg = MI.getOperand(0).getReg(); 3964 LLT Ty = MRI.getType(DstReg); 3965 unsigned Flags = MI.getFlags(); 3966 3967 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 3968 Flags); 3969 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 3970 MI.eraseFromParent(); 3971 return Legalized; 3972 } 3973 3974 LegalizerHelper::LegalizeResult 3975 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 3976 const unsigned NumDst = MI.getNumOperands() - 1; 3977 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3978 LLT SrcTy = MRI.getType(SrcReg); 3979 3980 Register Dst0Reg = MI.getOperand(0).getReg(); 3981 LLT DstTy = MRI.getType(Dst0Reg); 3982 3983 3984 // Expand scalarizing unmerge as bitcast to integer and shift. 3985 if (!DstTy.isVector() && SrcTy.isVector() && 3986 SrcTy.getElementType() == DstTy) { 3987 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 3988 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 3989 3990 MIRBuilder.buildTrunc(Dst0Reg, Cast); 3991 3992 const unsigned DstSize = DstTy.getSizeInBits(); 3993 unsigned Offset = DstSize; 3994 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 3995 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 3996 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 3997 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 3998 } 3999 4000 MI.eraseFromParent(); 4001 return Legalized; 4002 } 4003 4004 return UnableToLegalize; 4005 } 4006 4007 LegalizerHelper::LegalizeResult 4008 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4009 Register DstReg = MI.getOperand(0).getReg(); 4010 Register Src0Reg = MI.getOperand(1).getReg(); 4011 Register Src1Reg = MI.getOperand(2).getReg(); 4012 LLT Src0Ty = MRI.getType(Src0Reg); 4013 LLT DstTy = MRI.getType(DstReg); 4014 LLT IdxTy = LLT::scalar(32); 4015 4016 const Constant *ShufMask = MI.getOperand(3).getShuffleMask(); 4017 4018 SmallVector<int, 32> Mask; 4019 ShuffleVectorInst::getShuffleMask(ShufMask, Mask); 4020 4021 if (DstTy.isScalar()) { 4022 if (Src0Ty.isVector()) 4023 return UnableToLegalize; 4024 4025 // This is just a SELECT. 4026 assert(Mask.size() == 1 && "Expected a single mask element"); 4027 Register Val; 4028 if (Mask[0] < 0 || Mask[0] > 1) 4029 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4030 else 4031 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4032 MIRBuilder.buildCopy(DstReg, Val); 4033 MI.eraseFromParent(); 4034 return Legalized; 4035 } 4036 4037 Register Undef; 4038 SmallVector<Register, 32> BuildVec; 4039 LLT EltTy = DstTy.getElementType(); 4040 4041 for (int Idx : Mask) { 4042 if (Idx < 0) { 4043 if (!Undef.isValid()) 4044 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4045 BuildVec.push_back(Undef); 4046 continue; 4047 } 4048 4049 if (Src0Ty.isScalar()) { 4050 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4051 } else { 4052 int NumElts = Src0Ty.getNumElements(); 4053 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4054 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4055 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4056 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4057 BuildVec.push_back(Extract.getReg(0)); 4058 } 4059 } 4060 4061 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4062 MI.eraseFromParent(); 4063 return Legalized; 4064 } 4065 4066 LegalizerHelper::LegalizeResult 4067 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4068 Register Dst = MI.getOperand(0).getReg(); 4069 Register AllocSize = MI.getOperand(1).getReg(); 4070 unsigned Align = MI.getOperand(2).getImm(); 4071 4072 const auto &MF = *MI.getMF(); 4073 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4074 4075 LLT PtrTy = MRI.getType(Dst); 4076 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4077 4078 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4079 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4080 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4081 4082 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4083 // have to generate an extra instruction to negate the alloc and then use 4084 // G_GEP to add the negative offset. 4085 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4086 if (Align) { 4087 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4088 AlignMask.negate(); 4089 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4090 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4091 } 4092 4093 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4094 MIRBuilder.buildCopy(SPReg, SPTmp); 4095 MIRBuilder.buildCopy(Dst, SPTmp); 4096 4097 MI.eraseFromParent(); 4098 return Legalized; 4099 } 4100