1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetInstrInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #define DEBUG_TYPE "legalizer" 28 29 using namespace llvm; 30 using namespace LegalizeActions; 31 32 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 33 /// 34 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 35 /// with any leftover piece as type \p LeftoverTy 36 /// 37 /// Returns -1 in the first element of the pair if the breakdown is not 38 /// satisfiable. 39 static std::pair<int, int> 40 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 41 assert(!LeftoverTy.isValid() && "this is an out argument"); 42 43 unsigned Size = OrigTy.getSizeInBits(); 44 unsigned NarrowSize = NarrowTy.getSizeInBits(); 45 unsigned NumParts = Size / NarrowSize; 46 unsigned LeftoverSize = Size - NumParts * NarrowSize; 47 assert(Size > NarrowSize); 48 49 if (LeftoverSize == 0) 50 return {NumParts, 0}; 51 52 if (NarrowTy.isVector()) { 53 unsigned EltSize = OrigTy.getScalarSizeInBits(); 54 if (LeftoverSize % EltSize != 0) 55 return {-1, -1}; 56 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 57 } else { 58 LeftoverTy = LLT::scalar(LeftoverSize); 59 } 60 61 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 62 return std::make_pair(NumParts, NumLeftover); 63 } 64 65 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 66 GISelChangeObserver &Observer, 67 MachineIRBuilder &Builder) 68 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 69 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 70 MIRBuilder.setMF(MF); 71 MIRBuilder.setChangeObserver(Observer); 72 } 73 74 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 75 GISelChangeObserver &Observer, 76 MachineIRBuilder &B) 77 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 78 MIRBuilder.setMF(MF); 79 MIRBuilder.setChangeObserver(Observer); 80 } 81 LegalizerHelper::LegalizeResult 82 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 83 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 84 85 auto Step = LI.getAction(MI, MRI); 86 switch (Step.Action) { 87 case Legal: 88 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 89 return AlreadyLegal; 90 case Libcall: 91 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 92 return libcall(MI); 93 case NarrowScalar: 94 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 95 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 96 case WidenScalar: 97 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 98 return widenScalar(MI, Step.TypeIdx, Step.NewType); 99 case Lower: 100 LLVM_DEBUG(dbgs() << ".. Lower\n"); 101 return lower(MI, Step.TypeIdx, Step.NewType); 102 case FewerElements: 103 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 104 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 105 case MoreElements: 106 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 107 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 108 case Custom: 109 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 110 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 111 : UnableToLegalize; 112 default: 113 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 114 return UnableToLegalize; 115 } 116 } 117 118 void LegalizerHelper::extractParts(unsigned Reg, LLT Ty, int NumParts, 119 SmallVectorImpl<unsigned> &VRegs) { 120 for (int i = 0; i < NumParts; ++i) 121 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 122 MIRBuilder.buildUnmerge(VRegs, Reg); 123 } 124 125 bool LegalizerHelper::extractParts(unsigned Reg, LLT RegTy, 126 LLT MainTy, LLT &LeftoverTy, 127 SmallVectorImpl<unsigned> &VRegs, 128 SmallVectorImpl<unsigned> &LeftoverRegs) { 129 assert(!LeftoverTy.isValid() && "this is an out argument"); 130 131 unsigned RegSize = RegTy.getSizeInBits(); 132 unsigned MainSize = MainTy.getSizeInBits(); 133 unsigned NumParts = RegSize / MainSize; 134 unsigned LeftoverSize = RegSize - NumParts * MainSize; 135 136 // Use an unmerge when possible. 137 if (LeftoverSize == 0) { 138 for (unsigned I = 0; I < NumParts; ++I) 139 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 140 MIRBuilder.buildUnmerge(VRegs, Reg); 141 return true; 142 } 143 144 if (MainTy.isVector()) { 145 unsigned EltSize = MainTy.getScalarSizeInBits(); 146 if (LeftoverSize % EltSize != 0) 147 return false; 148 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 149 } else { 150 LeftoverTy = LLT::scalar(LeftoverSize); 151 } 152 153 // For irregular sizes, extract the individual parts. 154 for (unsigned I = 0; I != NumParts; ++I) { 155 unsigned NewReg = MRI.createGenericVirtualRegister(MainTy); 156 VRegs.push_back(NewReg); 157 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 158 } 159 160 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 161 Offset += LeftoverSize) { 162 unsigned NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 163 LeftoverRegs.push_back(NewReg); 164 MIRBuilder.buildExtract(NewReg, Reg, Offset); 165 } 166 167 return true; 168 } 169 170 void LegalizerHelper::insertParts(unsigned DstReg, 171 LLT ResultTy, LLT PartTy, 172 ArrayRef<unsigned> PartRegs, 173 LLT LeftoverTy, 174 ArrayRef<unsigned> LeftoverRegs) { 175 if (!LeftoverTy.isValid()) { 176 assert(LeftoverRegs.empty()); 177 178 if (!ResultTy.isVector()) { 179 MIRBuilder.buildMerge(DstReg, PartRegs); 180 return; 181 } 182 183 if (PartTy.isVector()) 184 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 185 else 186 MIRBuilder.buildBuildVector(DstReg, PartRegs); 187 return; 188 } 189 190 unsigned PartSize = PartTy.getSizeInBits(); 191 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 192 193 unsigned CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 194 MIRBuilder.buildUndef(CurResultReg); 195 196 unsigned Offset = 0; 197 for (unsigned PartReg : PartRegs) { 198 unsigned NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 199 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 200 CurResultReg = NewResultReg; 201 Offset += PartSize; 202 } 203 204 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 205 // Use the original output register for the final insert to avoid a copy. 206 unsigned NewResultReg = (I + 1 == E) ? 207 DstReg : MRI.createGenericVirtualRegister(ResultTy); 208 209 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 210 CurResultReg = NewResultReg; 211 Offset += LeftoverPartSize; 212 } 213 } 214 215 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 216 switch (Opcode) { 217 case TargetOpcode::G_SDIV: 218 assert((Size == 32 || Size == 64) && "Unsupported size"); 219 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32; 220 case TargetOpcode::G_UDIV: 221 assert((Size == 32 || Size == 64) && "Unsupported size"); 222 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32; 223 case TargetOpcode::G_SREM: 224 assert((Size == 32 || Size == 64) && "Unsupported size"); 225 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 226 case TargetOpcode::G_UREM: 227 assert((Size == 32 || Size == 64) && "Unsupported size"); 228 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 229 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 230 assert(Size == 32 && "Unsupported size"); 231 return RTLIB::CTLZ_I32; 232 case TargetOpcode::G_FADD: 233 assert((Size == 32 || Size == 64) && "Unsupported size"); 234 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 235 case TargetOpcode::G_FSUB: 236 assert((Size == 32 || Size == 64) && "Unsupported size"); 237 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 238 case TargetOpcode::G_FMUL: 239 assert((Size == 32 || Size == 64) && "Unsupported size"); 240 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 241 case TargetOpcode::G_FDIV: 242 assert((Size == 32 || Size == 64) && "Unsupported size"); 243 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 244 case TargetOpcode::G_FEXP: 245 assert((Size == 32 || Size == 64) && "Unsupported size"); 246 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 247 case TargetOpcode::G_FREM: 248 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 249 case TargetOpcode::G_FPOW: 250 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 251 case TargetOpcode::G_FMA: 252 assert((Size == 32 || Size == 64) && "Unsupported size"); 253 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 254 case TargetOpcode::G_FSIN: 255 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 256 return Size == 128 ? RTLIB::SIN_F128 257 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 258 case TargetOpcode::G_FCOS: 259 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 260 return Size == 128 ? RTLIB::COS_F128 261 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 262 case TargetOpcode::G_FLOG10: 263 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 264 return Size == 128 ? RTLIB::LOG10_F128 265 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 266 case TargetOpcode::G_FLOG: 267 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 268 return Size == 128 ? RTLIB::LOG_F128 269 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 270 case TargetOpcode::G_FLOG2: 271 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 272 return Size == 128 ? RTLIB::LOG2_F128 273 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 274 } 275 llvm_unreachable("Unknown libcall function"); 276 } 277 278 LegalizerHelper::LegalizeResult 279 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 280 const CallLowering::ArgInfo &Result, 281 ArrayRef<CallLowering::ArgInfo> Args) { 282 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 283 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 284 const char *Name = TLI.getLibcallName(Libcall); 285 286 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 287 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall), 288 MachineOperand::CreateES(Name), Result, Args)) 289 return LegalizerHelper::UnableToLegalize; 290 291 return LegalizerHelper::Legalized; 292 } 293 294 // Useful for libcalls where all operands have the same type. 295 static LegalizerHelper::LegalizeResult 296 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 297 Type *OpType) { 298 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 299 300 SmallVector<CallLowering::ArgInfo, 3> Args; 301 for (unsigned i = 1; i < MI.getNumOperands(); i++) 302 Args.push_back({MI.getOperand(i).getReg(), OpType}); 303 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 304 Args); 305 } 306 307 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 308 Type *FromType) { 309 auto ToMVT = MVT::getVT(ToType); 310 auto FromMVT = MVT::getVT(FromType); 311 312 switch (Opcode) { 313 case TargetOpcode::G_FPEXT: 314 return RTLIB::getFPEXT(FromMVT, ToMVT); 315 case TargetOpcode::G_FPTRUNC: 316 return RTLIB::getFPROUND(FromMVT, ToMVT); 317 case TargetOpcode::G_FPTOSI: 318 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 319 case TargetOpcode::G_FPTOUI: 320 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 321 case TargetOpcode::G_SITOFP: 322 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 323 case TargetOpcode::G_UITOFP: 324 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 325 } 326 llvm_unreachable("Unsupported libcall function"); 327 } 328 329 static LegalizerHelper::LegalizeResult 330 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 331 Type *FromType) { 332 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 333 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 334 {{MI.getOperand(1).getReg(), FromType}}); 335 } 336 337 LegalizerHelper::LegalizeResult 338 LegalizerHelper::libcall(MachineInstr &MI) { 339 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 340 unsigned Size = LLTy.getSizeInBits(); 341 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 342 343 MIRBuilder.setInstr(MI); 344 345 switch (MI.getOpcode()) { 346 default: 347 return UnableToLegalize; 348 case TargetOpcode::G_SDIV: 349 case TargetOpcode::G_UDIV: 350 case TargetOpcode::G_SREM: 351 case TargetOpcode::G_UREM: 352 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 353 Type *HLTy = IntegerType::get(Ctx, Size); 354 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 355 if (Status != Legalized) 356 return Status; 357 break; 358 } 359 case TargetOpcode::G_FADD: 360 case TargetOpcode::G_FSUB: 361 case TargetOpcode::G_FMUL: 362 case TargetOpcode::G_FDIV: 363 case TargetOpcode::G_FMA: 364 case TargetOpcode::G_FPOW: 365 case TargetOpcode::G_FREM: 366 case TargetOpcode::G_FCOS: 367 case TargetOpcode::G_FSIN: 368 case TargetOpcode::G_FLOG10: 369 case TargetOpcode::G_FLOG: 370 case TargetOpcode::G_FLOG2: 371 case TargetOpcode::G_FEXP: { 372 if (Size > 64) { 373 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 374 return UnableToLegalize; 375 } 376 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 377 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 378 if (Status != Legalized) 379 return Status; 380 break; 381 } 382 case TargetOpcode::G_FPEXT: { 383 // FIXME: Support other floating point types (half, fp128 etc) 384 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 385 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 386 if (ToSize != 64 || FromSize != 32) 387 return UnableToLegalize; 388 LegalizeResult Status = conversionLibcall( 389 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 390 if (Status != Legalized) 391 return Status; 392 break; 393 } 394 case TargetOpcode::G_FPTRUNC: { 395 // FIXME: Support other floating point types (half, fp128 etc) 396 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 397 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 398 if (ToSize != 32 || FromSize != 64) 399 return UnableToLegalize; 400 LegalizeResult Status = conversionLibcall( 401 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 402 if (Status != Legalized) 403 return Status; 404 break; 405 } 406 case TargetOpcode::G_FPTOSI: 407 case TargetOpcode::G_FPTOUI: { 408 // FIXME: Support other types 409 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 410 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 411 if (ToSize != 32 || (FromSize != 32 && FromSize != 64)) 412 return UnableToLegalize; 413 LegalizeResult Status = conversionLibcall( 414 MI, MIRBuilder, Type::getInt32Ty(Ctx), 415 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 416 if (Status != Legalized) 417 return Status; 418 break; 419 } 420 case TargetOpcode::G_SITOFP: 421 case TargetOpcode::G_UITOFP: { 422 // FIXME: Support other types 423 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 424 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 425 if (FromSize != 32 || (ToSize != 32 && ToSize != 64)) 426 return UnableToLegalize; 427 LegalizeResult Status = conversionLibcall( 428 MI, MIRBuilder, 429 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 430 Type::getInt32Ty(Ctx)); 431 if (Status != Legalized) 432 return Status; 433 break; 434 } 435 } 436 437 MI.eraseFromParent(); 438 return Legalized; 439 } 440 441 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 442 unsigned TypeIdx, 443 LLT NarrowTy) { 444 MIRBuilder.setInstr(MI); 445 446 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 447 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 448 449 switch (MI.getOpcode()) { 450 default: 451 return UnableToLegalize; 452 case TargetOpcode::G_IMPLICIT_DEF: { 453 // FIXME: add support for when SizeOp0 isn't an exact multiple of 454 // NarrowSize. 455 if (SizeOp0 % NarrowSize != 0) 456 return UnableToLegalize; 457 int NumParts = SizeOp0 / NarrowSize; 458 459 SmallVector<unsigned, 2> DstRegs; 460 for (int i = 0; i < NumParts; ++i) 461 DstRegs.push_back( 462 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 463 464 unsigned DstReg = MI.getOperand(0).getReg(); 465 if(MRI.getType(DstReg).isVector()) 466 MIRBuilder.buildBuildVector(DstReg, DstRegs); 467 else 468 MIRBuilder.buildMerge(DstReg, DstRegs); 469 MI.eraseFromParent(); 470 return Legalized; 471 } 472 case TargetOpcode::G_ADD: { 473 // FIXME: add support for when SizeOp0 isn't an exact multiple of 474 // NarrowSize. 475 if (SizeOp0 % NarrowSize != 0) 476 return UnableToLegalize; 477 // Expand in terms of carry-setting/consuming G_ADDE instructions. 478 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 479 480 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 481 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 482 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 483 484 unsigned CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); 485 MIRBuilder.buildConstant(CarryIn, 0); 486 487 for (int i = 0; i < NumParts; ++i) { 488 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 489 unsigned CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 490 491 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 492 Src2Regs[i], CarryIn); 493 494 DstRegs.push_back(DstReg); 495 CarryIn = CarryOut; 496 } 497 unsigned DstReg = MI.getOperand(0).getReg(); 498 if(MRI.getType(DstReg).isVector()) 499 MIRBuilder.buildBuildVector(DstReg, DstRegs); 500 else 501 MIRBuilder.buildMerge(DstReg, DstRegs); 502 MI.eraseFromParent(); 503 return Legalized; 504 } 505 case TargetOpcode::G_SUB: { 506 // FIXME: add support for when SizeOp0 isn't an exact multiple of 507 // NarrowSize. 508 if (SizeOp0 % NarrowSize != 0) 509 return UnableToLegalize; 510 511 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 512 513 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 514 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 515 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 516 517 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 518 unsigned BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 519 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 520 {Src1Regs[0], Src2Regs[0]}); 521 DstRegs.push_back(DstReg); 522 unsigned BorrowIn = BorrowOut; 523 for (int i = 1; i < NumParts; ++i) { 524 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 525 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 526 527 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 528 {Src1Regs[i], Src2Regs[i], BorrowIn}); 529 530 DstRegs.push_back(DstReg); 531 BorrowIn = BorrowOut; 532 } 533 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 534 MI.eraseFromParent(); 535 return Legalized; 536 } 537 case TargetOpcode::G_MUL: 538 case TargetOpcode::G_UMULH: 539 return narrowScalarMul(MI, NarrowTy); 540 case TargetOpcode::G_EXTRACT: 541 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 542 case TargetOpcode::G_INSERT: 543 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 544 case TargetOpcode::G_LOAD: { 545 const auto &MMO = **MI.memoperands_begin(); 546 unsigned DstReg = MI.getOperand(0).getReg(); 547 LLT DstTy = MRI.getType(DstReg); 548 if (DstTy.isVector()) 549 return UnableToLegalize; 550 551 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 552 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 553 auto &MMO = **MI.memoperands_begin(); 554 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 555 MIRBuilder.buildAnyExt(DstReg, TmpReg); 556 MI.eraseFromParent(); 557 return Legalized; 558 } 559 560 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 561 } 562 case TargetOpcode::G_ZEXTLOAD: 563 case TargetOpcode::G_SEXTLOAD: { 564 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 565 unsigned DstReg = MI.getOperand(0).getReg(); 566 unsigned PtrReg = MI.getOperand(1).getReg(); 567 568 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 569 auto &MMO = **MI.memoperands_begin(); 570 if (MMO.getSize() * 8 == NarrowSize) { 571 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 572 } else { 573 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 574 : TargetOpcode::G_SEXTLOAD; 575 MIRBuilder.buildInstr(ExtLoad) 576 .addDef(TmpReg) 577 .addUse(PtrReg) 578 .addMemOperand(&MMO); 579 } 580 581 if (ZExt) 582 MIRBuilder.buildZExt(DstReg, TmpReg); 583 else 584 MIRBuilder.buildSExt(DstReg, TmpReg); 585 586 MI.eraseFromParent(); 587 return Legalized; 588 } 589 case TargetOpcode::G_STORE: { 590 const auto &MMO = **MI.memoperands_begin(); 591 592 unsigned SrcReg = MI.getOperand(0).getReg(); 593 LLT SrcTy = MRI.getType(SrcReg); 594 if (SrcTy.isVector()) 595 return UnableToLegalize; 596 597 int NumParts = SizeOp0 / NarrowSize; 598 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 599 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 600 if (SrcTy.isVector() && LeftoverBits != 0) 601 return UnableToLegalize; 602 603 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 604 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 605 auto &MMO = **MI.memoperands_begin(); 606 MIRBuilder.buildTrunc(TmpReg, SrcReg); 607 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 608 MI.eraseFromParent(); 609 return Legalized; 610 } 611 612 return reduceLoadStoreWidth(MI, 0, NarrowTy); 613 } 614 case TargetOpcode::G_CONSTANT: { 615 // FIXME: add support for when SizeOp0 isn't an exact multiple of 616 // NarrowSize. 617 if (SizeOp0 % NarrowSize != 0) 618 return UnableToLegalize; 619 int NumParts = SizeOp0 / NarrowSize; 620 const APInt &Cst = MI.getOperand(1).getCImm()->getValue(); 621 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 622 623 SmallVector<unsigned, 2> DstRegs; 624 for (int i = 0; i < NumParts; ++i) { 625 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 626 ConstantInt *CI = 627 ConstantInt::get(Ctx, Cst.lshr(NarrowSize * i).trunc(NarrowSize)); 628 MIRBuilder.buildConstant(DstReg, *CI); 629 DstRegs.push_back(DstReg); 630 } 631 unsigned DstReg = MI.getOperand(0).getReg(); 632 if(MRI.getType(DstReg).isVector()) 633 MIRBuilder.buildBuildVector(DstReg, DstRegs); 634 else 635 MIRBuilder.buildMerge(DstReg, DstRegs); 636 MI.eraseFromParent(); 637 return Legalized; 638 } 639 case TargetOpcode::G_SELECT: 640 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 641 case TargetOpcode::G_AND: 642 case TargetOpcode::G_OR: 643 case TargetOpcode::G_XOR: { 644 // Legalize bitwise operation: 645 // A = BinOp<Ty> B, C 646 // into: 647 // B1, ..., BN = G_UNMERGE_VALUES B 648 // C1, ..., CN = G_UNMERGE_VALUES C 649 // A1 = BinOp<Ty/N> B1, C2 650 // ... 651 // AN = BinOp<Ty/N> BN, CN 652 // A = G_MERGE_VALUES A1, ..., AN 653 654 // FIXME: add support for when SizeOp0 isn't an exact multiple of 655 // NarrowSize. 656 if (SizeOp0 % NarrowSize != 0) 657 return UnableToLegalize; 658 int NumParts = SizeOp0 / NarrowSize; 659 660 // List the registers where the destination will be scattered. 661 SmallVector<unsigned, 2> DstRegs; 662 // List the registers where the first argument will be split. 663 SmallVector<unsigned, 2> SrcsReg1; 664 // List the registers where the second argument will be split. 665 SmallVector<unsigned, 2> SrcsReg2; 666 // Create all the temporary registers. 667 for (int i = 0; i < NumParts; ++i) { 668 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 669 unsigned SrcReg1 = MRI.createGenericVirtualRegister(NarrowTy); 670 unsigned SrcReg2 = MRI.createGenericVirtualRegister(NarrowTy); 671 672 DstRegs.push_back(DstReg); 673 SrcsReg1.push_back(SrcReg1); 674 SrcsReg2.push_back(SrcReg2); 675 } 676 // Explode the big arguments into smaller chunks. 677 MIRBuilder.buildUnmerge(SrcsReg1, MI.getOperand(1).getReg()); 678 MIRBuilder.buildUnmerge(SrcsReg2, MI.getOperand(2).getReg()); 679 680 // Do the operation on each small part. 681 for (int i = 0; i < NumParts; ++i) 682 MIRBuilder.buildInstr(MI.getOpcode(), {DstRegs[i]}, 683 {SrcsReg1[i], SrcsReg2[i]}); 684 685 // Gather the destination registers into the final destination. 686 unsigned DstReg = MI.getOperand(0).getReg(); 687 if(MRI.getType(DstReg).isVector()) 688 MIRBuilder.buildBuildVector(DstReg, DstRegs); 689 else 690 MIRBuilder.buildMerge(DstReg, DstRegs); 691 MI.eraseFromParent(); 692 return Legalized; 693 } 694 case TargetOpcode::G_SHL: 695 case TargetOpcode::G_LSHR: 696 case TargetOpcode::G_ASHR: 697 return narrowScalarShift(MI, TypeIdx, NarrowTy); 698 case TargetOpcode::G_CTLZ: 699 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 700 case TargetOpcode::G_CTTZ: 701 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 702 case TargetOpcode::G_CTPOP: 703 if (TypeIdx != 0) 704 return UnableToLegalize; // TODO 705 706 Observer.changingInstr(MI); 707 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 708 Observer.changedInstr(MI); 709 return Legalized; 710 case TargetOpcode::G_INTTOPTR: 711 if (TypeIdx != 1) 712 return UnableToLegalize; 713 714 Observer.changingInstr(MI); 715 narrowScalarSrc(MI, NarrowTy, 1); 716 Observer.changedInstr(MI); 717 return Legalized; 718 case TargetOpcode::G_PTRTOINT: 719 if (TypeIdx != 0) 720 return UnableToLegalize; 721 722 Observer.changingInstr(MI); 723 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 724 Observer.changedInstr(MI); 725 return Legalized; 726 } 727 } 728 729 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 730 unsigned OpIdx, unsigned ExtOpcode) { 731 MachineOperand &MO = MI.getOperand(OpIdx); 732 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 733 MO.setReg(ExtB->getOperand(0).getReg()); 734 } 735 736 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 737 unsigned OpIdx) { 738 MachineOperand &MO = MI.getOperand(OpIdx); 739 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 740 {MO.getReg()}); 741 MO.setReg(ExtB->getOperand(0).getReg()); 742 } 743 744 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 745 unsigned OpIdx, unsigned TruncOpcode) { 746 MachineOperand &MO = MI.getOperand(OpIdx); 747 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 748 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 749 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 750 MO.setReg(DstExt); 751 } 752 753 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 754 unsigned OpIdx, unsigned ExtOpcode) { 755 MachineOperand &MO = MI.getOperand(OpIdx); 756 unsigned DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 757 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 758 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 759 MO.setReg(DstTrunc); 760 } 761 762 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 763 unsigned OpIdx) { 764 MachineOperand &MO = MI.getOperand(OpIdx); 765 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 766 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 767 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 768 MO.setReg(DstExt); 769 } 770 771 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 772 unsigned OpIdx) { 773 MachineOperand &MO = MI.getOperand(OpIdx); 774 775 LLT OldTy = MRI.getType(MO.getReg()); 776 unsigned OldElts = OldTy.getNumElements(); 777 unsigned NewElts = MoreTy.getNumElements(); 778 779 unsigned NumParts = NewElts / OldElts; 780 781 // Use concat_vectors if the result is a multiple of the number of elements. 782 if (NumParts * OldElts == NewElts) { 783 SmallVector<unsigned, 8> Parts; 784 Parts.push_back(MO.getReg()); 785 786 unsigned ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 787 for (unsigned I = 1; I != NumParts; ++I) 788 Parts.push_back(ImpDef); 789 790 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 791 MO.setReg(Concat.getReg(0)); 792 return; 793 } 794 795 unsigned MoreReg = MRI.createGenericVirtualRegister(MoreTy); 796 unsigned ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 797 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 798 MO.setReg(MoreReg); 799 } 800 801 LegalizerHelper::LegalizeResult 802 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 803 LLT WideTy) { 804 if (TypeIdx != 1) 805 return UnableToLegalize; 806 807 unsigned DstReg = MI.getOperand(0).getReg(); 808 LLT DstTy = MRI.getType(DstReg); 809 if (!DstTy.isScalar()) 810 return UnableToLegalize; 811 812 unsigned NumOps = MI.getNumOperands(); 813 unsigned NumSrc = MI.getNumOperands() - 1; 814 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 815 816 unsigned Src1 = MI.getOperand(1).getReg(); 817 unsigned ResultReg = MIRBuilder.buildZExt(DstTy, Src1)->getOperand(0).getReg(); 818 819 for (unsigned I = 2; I != NumOps; ++I) { 820 const unsigned Offset = (I - 1) * PartSize; 821 822 unsigned SrcReg = MI.getOperand(I).getReg(); 823 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 824 825 auto ZextInput = MIRBuilder.buildZExt(DstTy, SrcReg); 826 827 unsigned NextResult = I + 1 == NumOps ? DstReg : 828 MRI.createGenericVirtualRegister(DstTy); 829 830 auto ShiftAmt = MIRBuilder.buildConstant(DstTy, Offset); 831 auto Shl = MIRBuilder.buildShl(DstTy, ZextInput, ShiftAmt); 832 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 833 ResultReg = NextResult; 834 } 835 836 MI.eraseFromParent(); 837 return Legalized; 838 } 839 840 LegalizerHelper::LegalizeResult 841 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 842 LLT WideTy) { 843 if (TypeIdx != 0) 844 return UnableToLegalize; 845 846 unsigned NumDst = MI.getNumOperands() - 1; 847 unsigned SrcReg = MI.getOperand(NumDst).getReg(); 848 LLT SrcTy = MRI.getType(SrcReg); 849 if (!SrcTy.isScalar()) 850 return UnableToLegalize; 851 852 unsigned Dst0Reg = MI.getOperand(0).getReg(); 853 LLT DstTy = MRI.getType(Dst0Reg); 854 if (!DstTy.isScalar()) 855 return UnableToLegalize; 856 857 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 858 LLT NewSrcTy = LLT::scalar(NewSrcSize); 859 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 860 861 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 862 863 for (unsigned I = 1; I != NumDst; ++I) { 864 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 865 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 866 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 867 } 868 869 Observer.changingInstr(MI); 870 871 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 872 for (unsigned I = 0; I != NumDst; ++I) 873 widenScalarDst(MI, WideTy, I); 874 875 Observer.changedInstr(MI); 876 877 return Legalized; 878 } 879 880 LegalizerHelper::LegalizeResult 881 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 882 LLT WideTy) { 883 unsigned DstReg = MI.getOperand(0).getReg(); 884 unsigned SrcReg = MI.getOperand(1).getReg(); 885 LLT SrcTy = MRI.getType(SrcReg); 886 887 LLT DstTy = MRI.getType(DstReg); 888 unsigned Offset = MI.getOperand(2).getImm(); 889 890 if (TypeIdx == 0) { 891 if (SrcTy.isVector() || DstTy.isVector()) 892 return UnableToLegalize; 893 894 SrcOp Src(SrcReg); 895 if (SrcTy.isPointer()) { 896 // Extracts from pointers can be handled only if they are really just 897 // simple integers. 898 const DataLayout &DL = MIRBuilder.getDataLayout(); 899 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 900 return UnableToLegalize; 901 902 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 903 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 904 SrcTy = SrcAsIntTy; 905 } 906 907 if (DstTy.isPointer()) 908 return UnableToLegalize; 909 910 if (Offset == 0) { 911 // Avoid a shift in the degenerate case. 912 MIRBuilder.buildTrunc(DstReg, 913 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 914 MI.eraseFromParent(); 915 return Legalized; 916 } 917 918 // Do a shift in the source type. 919 LLT ShiftTy = SrcTy; 920 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 921 Src = MIRBuilder.buildAnyExt(WideTy, Src); 922 ShiftTy = WideTy; 923 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 924 return UnableToLegalize; 925 926 auto LShr = MIRBuilder.buildLShr( 927 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 928 MIRBuilder.buildTrunc(DstReg, LShr); 929 MI.eraseFromParent(); 930 return Legalized; 931 } 932 933 if (!SrcTy.isVector()) 934 return UnableToLegalize; 935 936 if (DstTy != SrcTy.getElementType()) 937 return UnableToLegalize; 938 939 if (Offset % SrcTy.getScalarSizeInBits() != 0) 940 return UnableToLegalize; 941 942 Observer.changingInstr(MI); 943 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 944 945 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 946 Offset); 947 widenScalarDst(MI, WideTy.getScalarType(), 0); 948 Observer.changedInstr(MI); 949 return Legalized; 950 } 951 952 LegalizerHelper::LegalizeResult 953 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 954 LLT WideTy) { 955 if (TypeIdx != 0) 956 return UnableToLegalize; 957 Observer.changingInstr(MI); 958 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 959 widenScalarDst(MI, WideTy); 960 Observer.changedInstr(MI); 961 return Legalized; 962 } 963 964 LegalizerHelper::LegalizeResult 965 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 966 MIRBuilder.setInstr(MI); 967 968 switch (MI.getOpcode()) { 969 default: 970 return UnableToLegalize; 971 case TargetOpcode::G_EXTRACT: 972 return widenScalarExtract(MI, TypeIdx, WideTy); 973 case TargetOpcode::G_INSERT: 974 return widenScalarInsert(MI, TypeIdx, WideTy); 975 case TargetOpcode::G_MERGE_VALUES: 976 return widenScalarMergeValues(MI, TypeIdx, WideTy); 977 case TargetOpcode::G_UNMERGE_VALUES: 978 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 979 case TargetOpcode::G_UADDO: 980 case TargetOpcode::G_USUBO: { 981 if (TypeIdx == 1) 982 return UnableToLegalize; // TODO 983 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 984 {MI.getOperand(2).getReg()}); 985 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 986 {MI.getOperand(3).getReg()}); 987 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 988 ? TargetOpcode::G_ADD 989 : TargetOpcode::G_SUB; 990 // Do the arithmetic in the larger type. 991 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 992 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 993 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 994 auto AndOp = MIRBuilder.buildInstr( 995 TargetOpcode::G_AND, {WideTy}, 996 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 997 // There is no overflow if the AndOp is the same as NewOp. 998 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 999 AndOp); 1000 // Now trunc the NewOp to the original result. 1001 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 1002 MI.eraseFromParent(); 1003 return Legalized; 1004 } 1005 case TargetOpcode::G_CTTZ: 1006 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1007 case TargetOpcode::G_CTLZ: 1008 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1009 case TargetOpcode::G_CTPOP: { 1010 if (TypeIdx == 0) { 1011 Observer.changingInstr(MI); 1012 widenScalarDst(MI, WideTy, 0); 1013 Observer.changedInstr(MI); 1014 return Legalized; 1015 } 1016 1017 unsigned SrcReg = MI.getOperand(1).getReg(); 1018 1019 // First ZEXT the input. 1020 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1021 LLT CurTy = MRI.getType(SrcReg); 1022 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1023 // The count is the same in the larger type except if the original 1024 // value was zero. This can be handled by setting the bit just off 1025 // the top of the original type. 1026 auto TopBit = 1027 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1028 MIBSrc = MIRBuilder.buildOr( 1029 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1030 } 1031 1032 // Perform the operation at the larger size. 1033 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1034 // This is already the correct result for CTPOP and CTTZs 1035 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1036 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1037 // The correct result is NewOp - (Difference in widety and current ty). 1038 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1039 MIBNewOp = MIRBuilder.buildInstr( 1040 TargetOpcode::G_SUB, {WideTy}, 1041 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 1042 } 1043 1044 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1045 MI.eraseFromParent(); 1046 return Legalized; 1047 } 1048 case TargetOpcode::G_BSWAP: { 1049 Observer.changingInstr(MI); 1050 unsigned DstReg = MI.getOperand(0).getReg(); 1051 1052 unsigned ShrReg = MRI.createGenericVirtualRegister(WideTy); 1053 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 1054 unsigned ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1055 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1056 1057 MI.getOperand(0).setReg(DstExt); 1058 1059 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1060 1061 LLT Ty = MRI.getType(DstReg); 1062 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1063 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1064 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 1065 .addDef(ShrReg) 1066 .addUse(DstExt) 1067 .addUse(ShiftAmtReg); 1068 1069 MIRBuilder.buildTrunc(DstReg, ShrReg); 1070 Observer.changedInstr(MI); 1071 return Legalized; 1072 } 1073 case TargetOpcode::G_ADD: 1074 case TargetOpcode::G_AND: 1075 case TargetOpcode::G_MUL: 1076 case TargetOpcode::G_OR: 1077 case TargetOpcode::G_XOR: 1078 case TargetOpcode::G_SUB: 1079 // Perform operation at larger width (any extension is fines here, high bits 1080 // don't affect the result) and then truncate the result back to the 1081 // original type. 1082 Observer.changingInstr(MI); 1083 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1084 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1085 widenScalarDst(MI, WideTy); 1086 Observer.changedInstr(MI); 1087 return Legalized; 1088 1089 case TargetOpcode::G_SHL: 1090 Observer.changingInstr(MI); 1091 1092 if (TypeIdx == 0) { 1093 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1094 widenScalarDst(MI, WideTy); 1095 } else { 1096 assert(TypeIdx == 1); 1097 // The "number of bits to shift" operand must preserve its value as an 1098 // unsigned integer: 1099 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1100 } 1101 1102 Observer.changedInstr(MI); 1103 return Legalized; 1104 1105 case TargetOpcode::G_SDIV: 1106 case TargetOpcode::G_SREM: 1107 Observer.changingInstr(MI); 1108 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1109 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1110 widenScalarDst(MI, WideTy); 1111 Observer.changedInstr(MI); 1112 return Legalized; 1113 1114 case TargetOpcode::G_ASHR: 1115 case TargetOpcode::G_LSHR: 1116 Observer.changingInstr(MI); 1117 1118 if (TypeIdx == 0) { 1119 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1120 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1121 1122 widenScalarSrc(MI, WideTy, 1, CvtOp); 1123 widenScalarDst(MI, WideTy); 1124 } else { 1125 assert(TypeIdx == 1); 1126 // The "number of bits to shift" operand must preserve its value as an 1127 // unsigned integer: 1128 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1129 } 1130 1131 Observer.changedInstr(MI); 1132 return Legalized; 1133 case TargetOpcode::G_UDIV: 1134 case TargetOpcode::G_UREM: 1135 Observer.changingInstr(MI); 1136 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1137 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1138 widenScalarDst(MI, WideTy); 1139 Observer.changedInstr(MI); 1140 return Legalized; 1141 1142 case TargetOpcode::G_SELECT: 1143 Observer.changingInstr(MI); 1144 if (TypeIdx == 0) { 1145 // Perform operation at larger width (any extension is fine here, high 1146 // bits don't affect the result) and then truncate the result back to the 1147 // original type. 1148 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1149 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1150 widenScalarDst(MI, WideTy); 1151 } else { 1152 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1153 // Explicit extension is required here since high bits affect the result. 1154 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1155 } 1156 Observer.changedInstr(MI); 1157 return Legalized; 1158 1159 case TargetOpcode::G_FPTOSI: 1160 case TargetOpcode::G_FPTOUI: 1161 if (TypeIdx != 0) 1162 return UnableToLegalize; 1163 Observer.changingInstr(MI); 1164 widenScalarDst(MI, WideTy); 1165 Observer.changedInstr(MI); 1166 return Legalized; 1167 1168 case TargetOpcode::G_SITOFP: 1169 if (TypeIdx != 1) 1170 return UnableToLegalize; 1171 Observer.changingInstr(MI); 1172 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1173 Observer.changedInstr(MI); 1174 return Legalized; 1175 1176 case TargetOpcode::G_UITOFP: 1177 if (TypeIdx != 1) 1178 return UnableToLegalize; 1179 Observer.changingInstr(MI); 1180 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1181 Observer.changedInstr(MI); 1182 return Legalized; 1183 1184 case TargetOpcode::G_LOAD: 1185 case TargetOpcode::G_SEXTLOAD: 1186 case TargetOpcode::G_ZEXTLOAD: 1187 Observer.changingInstr(MI); 1188 widenScalarDst(MI, WideTy); 1189 Observer.changedInstr(MI); 1190 return Legalized; 1191 1192 case TargetOpcode::G_STORE: { 1193 if (TypeIdx != 0) 1194 return UnableToLegalize; 1195 1196 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1197 if (!isPowerOf2_32(Ty.getSizeInBits())) 1198 return UnableToLegalize; 1199 1200 Observer.changingInstr(MI); 1201 1202 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1203 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1204 widenScalarSrc(MI, WideTy, 0, ExtType); 1205 1206 Observer.changedInstr(MI); 1207 return Legalized; 1208 } 1209 case TargetOpcode::G_CONSTANT: { 1210 MachineOperand &SrcMO = MI.getOperand(1); 1211 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1212 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 1213 Observer.changingInstr(MI); 1214 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1215 1216 widenScalarDst(MI, WideTy); 1217 Observer.changedInstr(MI); 1218 return Legalized; 1219 } 1220 case TargetOpcode::G_FCONSTANT: { 1221 MachineOperand &SrcMO = MI.getOperand(1); 1222 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1223 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1224 bool LosesInfo; 1225 switch (WideTy.getSizeInBits()) { 1226 case 32: 1227 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1228 &LosesInfo); 1229 break; 1230 case 64: 1231 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1232 &LosesInfo); 1233 break; 1234 default: 1235 return UnableToLegalize; 1236 } 1237 1238 assert(!LosesInfo && "extend should always be lossless"); 1239 1240 Observer.changingInstr(MI); 1241 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1242 1243 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1244 Observer.changedInstr(MI); 1245 return Legalized; 1246 } 1247 case TargetOpcode::G_IMPLICIT_DEF: { 1248 Observer.changingInstr(MI); 1249 widenScalarDst(MI, WideTy); 1250 Observer.changedInstr(MI); 1251 return Legalized; 1252 } 1253 case TargetOpcode::G_BRCOND: 1254 Observer.changingInstr(MI); 1255 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1256 Observer.changedInstr(MI); 1257 return Legalized; 1258 1259 case TargetOpcode::G_FCMP: 1260 Observer.changingInstr(MI); 1261 if (TypeIdx == 0) 1262 widenScalarDst(MI, WideTy); 1263 else { 1264 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1265 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1266 } 1267 Observer.changedInstr(MI); 1268 return Legalized; 1269 1270 case TargetOpcode::G_ICMP: 1271 Observer.changingInstr(MI); 1272 if (TypeIdx == 0) 1273 widenScalarDst(MI, WideTy); 1274 else { 1275 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1276 MI.getOperand(1).getPredicate())) 1277 ? TargetOpcode::G_SEXT 1278 : TargetOpcode::G_ZEXT; 1279 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1280 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1281 } 1282 Observer.changedInstr(MI); 1283 return Legalized; 1284 1285 case TargetOpcode::G_GEP: 1286 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 1287 Observer.changingInstr(MI); 1288 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1289 Observer.changedInstr(MI); 1290 return Legalized; 1291 1292 case TargetOpcode::G_PHI: { 1293 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1294 1295 Observer.changingInstr(MI); 1296 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1297 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1298 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1299 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1300 } 1301 1302 MachineBasicBlock &MBB = *MI.getParent(); 1303 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1304 widenScalarDst(MI, WideTy); 1305 Observer.changedInstr(MI); 1306 return Legalized; 1307 } 1308 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1309 if (TypeIdx == 0) { 1310 unsigned VecReg = MI.getOperand(1).getReg(); 1311 LLT VecTy = MRI.getType(VecReg); 1312 Observer.changingInstr(MI); 1313 1314 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1315 WideTy.getSizeInBits()), 1316 1, TargetOpcode::G_SEXT); 1317 1318 widenScalarDst(MI, WideTy, 0); 1319 Observer.changedInstr(MI); 1320 return Legalized; 1321 } 1322 1323 if (TypeIdx != 2) 1324 return UnableToLegalize; 1325 Observer.changingInstr(MI); 1326 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1327 Observer.changedInstr(MI); 1328 return Legalized; 1329 } 1330 case TargetOpcode::G_FADD: 1331 case TargetOpcode::G_FMUL: 1332 case TargetOpcode::G_FSUB: 1333 case TargetOpcode::G_FMA: 1334 case TargetOpcode::G_FNEG: 1335 case TargetOpcode::G_FABS: 1336 case TargetOpcode::G_FCANONICALIZE: 1337 case TargetOpcode::G_FDIV: 1338 case TargetOpcode::G_FREM: 1339 case TargetOpcode::G_FCEIL: 1340 case TargetOpcode::G_FFLOOR: 1341 case TargetOpcode::G_FCOS: 1342 case TargetOpcode::G_FSIN: 1343 case TargetOpcode::G_FLOG10: 1344 case TargetOpcode::G_FLOG: 1345 case TargetOpcode::G_FLOG2: 1346 case TargetOpcode::G_FSQRT: 1347 case TargetOpcode::G_FEXP: 1348 assert(TypeIdx == 0); 1349 Observer.changingInstr(MI); 1350 1351 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1352 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1353 1354 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1355 Observer.changedInstr(MI); 1356 return Legalized; 1357 case TargetOpcode::G_INTTOPTR: 1358 if (TypeIdx != 1) 1359 return UnableToLegalize; 1360 1361 Observer.changingInstr(MI); 1362 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1363 Observer.changedInstr(MI); 1364 return Legalized; 1365 case TargetOpcode::G_PTRTOINT: 1366 if (TypeIdx != 0) 1367 return UnableToLegalize; 1368 1369 Observer.changingInstr(MI); 1370 widenScalarDst(MI, WideTy, 0); 1371 Observer.changedInstr(MI); 1372 return Legalized; 1373 } 1374 } 1375 1376 LegalizerHelper::LegalizeResult 1377 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1378 using namespace TargetOpcode; 1379 MIRBuilder.setInstr(MI); 1380 1381 switch(MI.getOpcode()) { 1382 default: 1383 return UnableToLegalize; 1384 case TargetOpcode::G_SREM: 1385 case TargetOpcode::G_UREM: { 1386 unsigned QuotReg = MRI.createGenericVirtualRegister(Ty); 1387 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1388 .addDef(QuotReg) 1389 .addUse(MI.getOperand(1).getReg()) 1390 .addUse(MI.getOperand(2).getReg()); 1391 1392 unsigned ProdReg = MRI.createGenericVirtualRegister(Ty); 1393 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1394 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1395 ProdReg); 1396 MI.eraseFromParent(); 1397 return Legalized; 1398 } 1399 case TargetOpcode::G_SMULO: 1400 case TargetOpcode::G_UMULO: { 1401 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1402 // result. 1403 unsigned Res = MI.getOperand(0).getReg(); 1404 unsigned Overflow = MI.getOperand(1).getReg(); 1405 unsigned LHS = MI.getOperand(2).getReg(); 1406 unsigned RHS = MI.getOperand(3).getReg(); 1407 1408 MIRBuilder.buildMul(Res, LHS, RHS); 1409 1410 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1411 ? TargetOpcode::G_SMULH 1412 : TargetOpcode::G_UMULH; 1413 1414 unsigned HiPart = MRI.createGenericVirtualRegister(Ty); 1415 MIRBuilder.buildInstr(Opcode) 1416 .addDef(HiPart) 1417 .addUse(LHS) 1418 .addUse(RHS); 1419 1420 unsigned Zero = MRI.createGenericVirtualRegister(Ty); 1421 MIRBuilder.buildConstant(Zero, 0); 1422 1423 // For *signed* multiply, overflow is detected by checking: 1424 // (hi != (lo >> bitwidth-1)) 1425 if (Opcode == TargetOpcode::G_SMULH) { 1426 unsigned Shifted = MRI.createGenericVirtualRegister(Ty); 1427 unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1428 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1429 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1430 .addDef(Shifted) 1431 .addUse(Res) 1432 .addUse(ShiftAmt); 1433 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1434 } else { 1435 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1436 } 1437 MI.eraseFromParent(); 1438 return Legalized; 1439 } 1440 case TargetOpcode::G_FNEG: { 1441 // TODO: Handle vector types once we are able to 1442 // represent them. 1443 if (Ty.isVector()) 1444 return UnableToLegalize; 1445 unsigned Res = MI.getOperand(0).getReg(); 1446 Type *ZeroTy; 1447 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1448 switch (Ty.getSizeInBits()) { 1449 case 16: 1450 ZeroTy = Type::getHalfTy(Ctx); 1451 break; 1452 case 32: 1453 ZeroTy = Type::getFloatTy(Ctx); 1454 break; 1455 case 64: 1456 ZeroTy = Type::getDoubleTy(Ctx); 1457 break; 1458 case 128: 1459 ZeroTy = Type::getFP128Ty(Ctx); 1460 break; 1461 default: 1462 llvm_unreachable("unexpected floating-point type"); 1463 } 1464 ConstantFP &ZeroForNegation = 1465 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1466 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1467 MIRBuilder.buildInstr(TargetOpcode::G_FSUB) 1468 .addDef(Res) 1469 .addUse(Zero->getOperand(0).getReg()) 1470 .addUse(MI.getOperand(1).getReg()); 1471 MI.eraseFromParent(); 1472 return Legalized; 1473 } 1474 case TargetOpcode::G_FSUB: { 1475 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1476 // First, check if G_FNEG is marked as Lower. If so, we may 1477 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1478 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1479 return UnableToLegalize; 1480 unsigned Res = MI.getOperand(0).getReg(); 1481 unsigned LHS = MI.getOperand(1).getReg(); 1482 unsigned RHS = MI.getOperand(2).getReg(); 1483 unsigned Neg = MRI.createGenericVirtualRegister(Ty); 1484 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1485 MIRBuilder.buildInstr(TargetOpcode::G_FADD) 1486 .addDef(Res) 1487 .addUse(LHS) 1488 .addUse(Neg); 1489 MI.eraseFromParent(); 1490 return Legalized; 1491 } 1492 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1493 unsigned OldValRes = MI.getOperand(0).getReg(); 1494 unsigned SuccessRes = MI.getOperand(1).getReg(); 1495 unsigned Addr = MI.getOperand(2).getReg(); 1496 unsigned CmpVal = MI.getOperand(3).getReg(); 1497 unsigned NewVal = MI.getOperand(4).getReg(); 1498 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 1499 **MI.memoperands_begin()); 1500 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 1501 MI.eraseFromParent(); 1502 return Legalized; 1503 } 1504 case TargetOpcode::G_LOAD: 1505 case TargetOpcode::G_SEXTLOAD: 1506 case TargetOpcode::G_ZEXTLOAD: { 1507 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 1508 unsigned DstReg = MI.getOperand(0).getReg(); 1509 unsigned PtrReg = MI.getOperand(1).getReg(); 1510 LLT DstTy = MRI.getType(DstReg); 1511 auto &MMO = **MI.memoperands_begin(); 1512 1513 if (DstTy.getSizeInBits() == MMO.getSize() /* in bytes */ * 8) { 1514 // In the case of G_LOAD, this was a non-extending load already and we're 1515 // about to lower to the same instruction. 1516 if (MI.getOpcode() == TargetOpcode::G_LOAD) 1517 return UnableToLegalize; 1518 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 1519 MI.eraseFromParent(); 1520 return Legalized; 1521 } 1522 1523 if (DstTy.isScalar()) { 1524 unsigned TmpReg = MRI.createGenericVirtualRegister( 1525 LLT::scalar(MMO.getSize() /* in bytes */ * 8)); 1526 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1527 switch (MI.getOpcode()) { 1528 default: 1529 llvm_unreachable("Unexpected opcode"); 1530 case TargetOpcode::G_LOAD: 1531 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1532 break; 1533 case TargetOpcode::G_SEXTLOAD: 1534 MIRBuilder.buildSExt(DstReg, TmpReg); 1535 break; 1536 case TargetOpcode::G_ZEXTLOAD: 1537 MIRBuilder.buildZExt(DstReg, TmpReg); 1538 break; 1539 } 1540 MI.eraseFromParent(); 1541 return Legalized; 1542 } 1543 1544 return UnableToLegalize; 1545 } 1546 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1547 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1548 case TargetOpcode::G_CTLZ: 1549 case TargetOpcode::G_CTTZ: 1550 case TargetOpcode::G_CTPOP: 1551 return lowerBitCount(MI, TypeIdx, Ty); 1552 case G_UADDO: { 1553 unsigned Res = MI.getOperand(0).getReg(); 1554 unsigned CarryOut = MI.getOperand(1).getReg(); 1555 unsigned LHS = MI.getOperand(2).getReg(); 1556 unsigned RHS = MI.getOperand(3).getReg(); 1557 1558 MIRBuilder.buildAdd(Res, LHS, RHS); 1559 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 1560 1561 MI.eraseFromParent(); 1562 return Legalized; 1563 } 1564 case G_UADDE: { 1565 unsigned Res = MI.getOperand(0).getReg(); 1566 unsigned CarryOut = MI.getOperand(1).getReg(); 1567 unsigned LHS = MI.getOperand(2).getReg(); 1568 unsigned RHS = MI.getOperand(3).getReg(); 1569 unsigned CarryIn = MI.getOperand(4).getReg(); 1570 1571 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1572 unsigned ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 1573 1574 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 1575 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 1576 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 1577 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 1578 1579 MI.eraseFromParent(); 1580 return Legalized; 1581 } 1582 case G_USUBO: { 1583 unsigned Res = MI.getOperand(0).getReg(); 1584 unsigned BorrowOut = MI.getOperand(1).getReg(); 1585 unsigned LHS = MI.getOperand(2).getReg(); 1586 unsigned RHS = MI.getOperand(3).getReg(); 1587 1588 MIRBuilder.buildSub(Res, LHS, RHS); 1589 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 1590 1591 MI.eraseFromParent(); 1592 return Legalized; 1593 } 1594 case G_USUBE: { 1595 unsigned Res = MI.getOperand(0).getReg(); 1596 unsigned BorrowOut = MI.getOperand(1).getReg(); 1597 unsigned LHS = MI.getOperand(2).getReg(); 1598 unsigned RHS = MI.getOperand(3).getReg(); 1599 unsigned BorrowIn = MI.getOperand(4).getReg(); 1600 1601 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1602 unsigned ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 1603 unsigned LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1604 unsigned LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1605 1606 MIRBuilder.buildSub(TmpRes, LHS, RHS); 1607 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 1608 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 1609 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 1610 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 1611 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 1612 1613 MI.eraseFromParent(); 1614 return Legalized; 1615 } 1616 } 1617 } 1618 1619 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 1620 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 1621 SmallVector<unsigned, 2> DstRegs; 1622 1623 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1624 unsigned DstReg = MI.getOperand(0).getReg(); 1625 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 1626 int NumParts = Size / NarrowSize; 1627 // FIXME: Don't know how to handle the situation where the small vectors 1628 // aren't all the same size yet. 1629 if (Size % NarrowSize != 0) 1630 return UnableToLegalize; 1631 1632 for (int i = 0; i < NumParts; ++i) { 1633 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1634 MIRBuilder.buildUndef(TmpReg); 1635 DstRegs.push_back(TmpReg); 1636 } 1637 1638 if (NarrowTy.isVector()) 1639 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1640 else 1641 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1642 1643 MI.eraseFromParent(); 1644 return Legalized; 1645 } 1646 1647 LegalizerHelper::LegalizeResult 1648 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 1649 LLT NarrowTy) { 1650 const unsigned Opc = MI.getOpcode(); 1651 const unsigned NumOps = MI.getNumOperands() - 1; 1652 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 1653 const unsigned DstReg = MI.getOperand(0).getReg(); 1654 const unsigned Flags = MI.getFlags(); 1655 const LLT DstTy = MRI.getType(DstReg); 1656 const unsigned Size = DstTy.getSizeInBits(); 1657 const int NumParts = Size / NarrowSize; 1658 const LLT EltTy = DstTy.getElementType(); 1659 const unsigned EltSize = EltTy.getSizeInBits(); 1660 const unsigned BitsForNumParts = NarrowSize * NumParts; 1661 1662 // Check if we have any leftovers. If we do, then only handle the case where 1663 // the leftover is one element. 1664 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 1665 return UnableToLegalize; 1666 1667 if (BitsForNumParts != Size) { 1668 unsigned AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 1669 MIRBuilder.buildUndef(AccumDstReg); 1670 1671 // Handle the pieces which evenly divide into the requested type with 1672 // extract/op/insert sequence. 1673 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 1674 SmallVector<SrcOp, 4> SrcOps; 1675 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1676 unsigned PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 1677 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 1678 SrcOps.push_back(PartOpReg); 1679 } 1680 1681 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 1682 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1683 1684 unsigned PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 1685 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 1686 AccumDstReg = PartInsertReg; 1687 } 1688 1689 // Handle the remaining element sized leftover piece. 1690 SmallVector<SrcOp, 4> SrcOps; 1691 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1692 unsigned PartOpReg = MRI.createGenericVirtualRegister(EltTy); 1693 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 1694 BitsForNumParts); 1695 SrcOps.push_back(PartOpReg); 1696 } 1697 1698 unsigned PartDstReg = MRI.createGenericVirtualRegister(EltTy); 1699 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1700 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 1701 MI.eraseFromParent(); 1702 1703 return Legalized; 1704 } 1705 1706 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 1707 1708 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 1709 1710 if (NumOps >= 2) 1711 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 1712 1713 if (NumOps >= 3) 1714 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 1715 1716 for (int i = 0; i < NumParts; ++i) { 1717 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 1718 1719 if (NumOps == 1) 1720 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 1721 else if (NumOps == 2) { 1722 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 1723 } else if (NumOps == 3) { 1724 MIRBuilder.buildInstr(Opc, {DstReg}, 1725 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 1726 } 1727 1728 DstRegs.push_back(DstReg); 1729 } 1730 1731 if (NarrowTy.isVector()) 1732 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1733 else 1734 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1735 1736 MI.eraseFromParent(); 1737 return Legalized; 1738 } 1739 1740 // Handle splitting vector operations which need to have the same number of 1741 // elements in each type index, but each type index may have a different element 1742 // type. 1743 // 1744 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 1745 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1746 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1747 // 1748 // Also handles some irregular breakdown cases, e.g. 1749 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 1750 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1751 // s64 = G_SHL s64, s32 1752 LegalizerHelper::LegalizeResult 1753 LegalizerHelper::fewerElementsVectorMultiEltType( 1754 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 1755 if (TypeIdx != 0) 1756 return UnableToLegalize; 1757 1758 const LLT NarrowTy0 = NarrowTyArg; 1759 const unsigned NewNumElts = 1760 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 1761 1762 const unsigned DstReg = MI.getOperand(0).getReg(); 1763 LLT DstTy = MRI.getType(DstReg); 1764 LLT LeftoverTy0; 1765 1766 int NumParts, NumLeftover; 1767 // All of the operands need to have the same number of elements, so if we can 1768 // determine a type breakdown for the result type, we can for all of the 1769 // source types. 1770 std::tie(NumParts, NumLeftover) 1771 = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0); 1772 if (NumParts < 0) 1773 return UnableToLegalize; 1774 1775 SmallVector<MachineInstrBuilder, 4> NewInsts; 1776 1777 SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs; 1778 SmallVector<unsigned, 4> PartRegs, LeftoverRegs; 1779 1780 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1781 LLT LeftoverTy; 1782 unsigned SrcReg = MI.getOperand(I).getReg(); 1783 LLT SrcTyI = MRI.getType(SrcReg); 1784 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 1785 LLT LeftoverTyI; 1786 1787 // Split this operand into the requested typed registers, and any leftover 1788 // required to reproduce the original type. 1789 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 1790 LeftoverRegs)) 1791 return UnableToLegalize; 1792 1793 if (I == 1) { 1794 // For the first operand, create an instruction for each part and setup 1795 // the result. 1796 for (unsigned PartReg : PartRegs) { 1797 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1798 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1799 .addDef(PartDstReg) 1800 .addUse(PartReg)); 1801 DstRegs.push_back(PartDstReg); 1802 } 1803 1804 for (unsigned LeftoverReg : LeftoverRegs) { 1805 unsigned PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 1806 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1807 .addDef(PartDstReg) 1808 .addUse(LeftoverReg)); 1809 LeftoverDstRegs.push_back(PartDstReg); 1810 } 1811 } else { 1812 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 1813 1814 // Add the newly created operand splits to the existing instructions. The 1815 // odd-sized pieces are ordered after the requested NarrowTyArg sized 1816 // pieces. 1817 unsigned InstCount = 0; 1818 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 1819 NewInsts[InstCount++].addUse(PartRegs[J]); 1820 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 1821 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 1822 } 1823 1824 PartRegs.clear(); 1825 LeftoverRegs.clear(); 1826 } 1827 1828 // Insert the newly built operations and rebuild the result register. 1829 for (auto &MIB : NewInsts) 1830 MIRBuilder.insertInstr(MIB); 1831 1832 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 1833 1834 MI.eraseFromParent(); 1835 return Legalized; 1836 } 1837 1838 LegalizerHelper::LegalizeResult 1839 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 1840 LLT NarrowTy) { 1841 if (TypeIdx != 0) 1842 return UnableToLegalize; 1843 1844 unsigned DstReg = MI.getOperand(0).getReg(); 1845 unsigned SrcReg = MI.getOperand(1).getReg(); 1846 LLT DstTy = MRI.getType(DstReg); 1847 LLT SrcTy = MRI.getType(SrcReg); 1848 1849 LLT NarrowTy0 = NarrowTy; 1850 LLT NarrowTy1; 1851 unsigned NumParts; 1852 1853 if (NarrowTy.isVector()) { 1854 // Uneven breakdown not handled. 1855 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 1856 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 1857 return UnableToLegalize; 1858 1859 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 1860 } else { 1861 NumParts = DstTy.getNumElements(); 1862 NarrowTy1 = SrcTy.getElementType(); 1863 } 1864 1865 SmallVector<unsigned, 4> SrcRegs, DstRegs; 1866 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 1867 1868 for (unsigned I = 0; I < NumParts; ++I) { 1869 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1870 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 1871 .addDef(DstReg) 1872 .addUse(SrcRegs[I]); 1873 1874 NewInst->setFlags(MI.getFlags()); 1875 DstRegs.push_back(DstReg); 1876 } 1877 1878 if (NarrowTy.isVector()) 1879 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1880 else 1881 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1882 1883 MI.eraseFromParent(); 1884 return Legalized; 1885 } 1886 1887 LegalizerHelper::LegalizeResult 1888 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 1889 LLT NarrowTy) { 1890 unsigned DstReg = MI.getOperand(0).getReg(); 1891 unsigned Src0Reg = MI.getOperand(2).getReg(); 1892 LLT DstTy = MRI.getType(DstReg); 1893 LLT SrcTy = MRI.getType(Src0Reg); 1894 1895 unsigned NumParts; 1896 LLT NarrowTy0, NarrowTy1; 1897 1898 if (TypeIdx == 0) { 1899 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1900 unsigned OldElts = DstTy.getNumElements(); 1901 1902 NarrowTy0 = NarrowTy; 1903 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 1904 NarrowTy1 = NarrowTy.isVector() ? 1905 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 1906 SrcTy.getElementType(); 1907 1908 } else { 1909 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1910 unsigned OldElts = SrcTy.getNumElements(); 1911 1912 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 1913 NarrowTy.getNumElements(); 1914 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 1915 DstTy.getScalarSizeInBits()); 1916 NarrowTy1 = NarrowTy; 1917 } 1918 1919 // FIXME: Don't know how to handle the situation where the small vectors 1920 // aren't all the same size yet. 1921 if (NarrowTy1.isVector() && 1922 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 1923 return UnableToLegalize; 1924 1925 CmpInst::Predicate Pred 1926 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1927 1928 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 1929 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 1930 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 1931 1932 for (unsigned I = 0; I < NumParts; ++I) { 1933 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1934 DstRegs.push_back(DstReg); 1935 1936 if (MI.getOpcode() == TargetOpcode::G_ICMP) 1937 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1938 else { 1939 MachineInstr *NewCmp 1940 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1941 NewCmp->setFlags(MI.getFlags()); 1942 } 1943 } 1944 1945 if (NarrowTy1.isVector()) 1946 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1947 else 1948 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1949 1950 MI.eraseFromParent(); 1951 return Legalized; 1952 } 1953 1954 LegalizerHelper::LegalizeResult 1955 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 1956 LLT NarrowTy) { 1957 unsigned DstReg = MI.getOperand(0).getReg(); 1958 unsigned CondReg = MI.getOperand(1).getReg(); 1959 1960 unsigned NumParts = 0; 1961 LLT NarrowTy0, NarrowTy1; 1962 1963 LLT DstTy = MRI.getType(DstReg); 1964 LLT CondTy = MRI.getType(CondReg); 1965 unsigned Size = DstTy.getSizeInBits(); 1966 1967 assert(TypeIdx == 0 || CondTy.isVector()); 1968 1969 if (TypeIdx == 0) { 1970 NarrowTy0 = NarrowTy; 1971 NarrowTy1 = CondTy; 1972 1973 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 1974 // FIXME: Don't know how to handle the situation where the small vectors 1975 // aren't all the same size yet. 1976 if (Size % NarrowSize != 0) 1977 return UnableToLegalize; 1978 1979 NumParts = Size / NarrowSize; 1980 1981 // Need to break down the condition type 1982 if (CondTy.isVector()) { 1983 if (CondTy.getNumElements() == NumParts) 1984 NarrowTy1 = CondTy.getElementType(); 1985 else 1986 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 1987 CondTy.getScalarSizeInBits()); 1988 } 1989 } else { 1990 NumParts = CondTy.getNumElements(); 1991 if (NarrowTy.isVector()) { 1992 // TODO: Handle uneven breakdown. 1993 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 1994 return UnableToLegalize; 1995 1996 return UnableToLegalize; 1997 } else { 1998 NarrowTy0 = DstTy.getElementType(); 1999 NarrowTy1 = NarrowTy; 2000 } 2001 } 2002 2003 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2004 if (CondTy.isVector()) 2005 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2006 2007 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2008 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2009 2010 for (unsigned i = 0; i < NumParts; ++i) { 2011 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2012 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2013 Src1Regs[i], Src2Regs[i]); 2014 DstRegs.push_back(DstReg); 2015 } 2016 2017 if (NarrowTy0.isVector()) 2018 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2019 else 2020 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2021 2022 MI.eraseFromParent(); 2023 return Legalized; 2024 } 2025 2026 LegalizerHelper::LegalizeResult 2027 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2028 LLT NarrowTy) { 2029 const unsigned DstReg = MI.getOperand(0).getReg(); 2030 LLT PhiTy = MRI.getType(DstReg); 2031 LLT LeftoverTy; 2032 2033 // All of the operands need to have the same number of elements, so if we can 2034 // determine a type breakdown for the result type, we can for all of the 2035 // source types. 2036 int NumParts, NumLeftover; 2037 std::tie(NumParts, NumLeftover) 2038 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2039 if (NumParts < 0) 2040 return UnableToLegalize; 2041 2042 SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs; 2043 SmallVector<MachineInstrBuilder, 4> NewInsts; 2044 2045 const int TotalNumParts = NumParts + NumLeftover; 2046 2047 // Insert the new phis in the result block first. 2048 for (int I = 0; I != TotalNumParts; ++I) { 2049 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2050 unsigned PartDstReg = MRI.createGenericVirtualRegister(Ty); 2051 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2052 .addDef(PartDstReg)); 2053 if (I < NumParts) 2054 DstRegs.push_back(PartDstReg); 2055 else 2056 LeftoverDstRegs.push_back(PartDstReg); 2057 } 2058 2059 MachineBasicBlock *MBB = MI.getParent(); 2060 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2061 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2062 2063 SmallVector<unsigned, 4> PartRegs, LeftoverRegs; 2064 2065 // Insert code to extract the incoming values in each predecessor block. 2066 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2067 PartRegs.clear(); 2068 LeftoverRegs.clear(); 2069 2070 unsigned SrcReg = MI.getOperand(I).getReg(); 2071 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2072 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2073 2074 LLT Unused; 2075 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2076 LeftoverRegs)) 2077 return UnableToLegalize; 2078 2079 // Add the newly created operand splits to the existing instructions. The 2080 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2081 // pieces. 2082 for (int J = 0; J != TotalNumParts; ++J) { 2083 MachineInstrBuilder MIB = NewInsts[J]; 2084 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2085 MIB.addMBB(&OpMBB); 2086 } 2087 } 2088 2089 MI.eraseFromParent(); 2090 return Legalized; 2091 } 2092 2093 LegalizerHelper::LegalizeResult 2094 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 2095 LLT NarrowTy) { 2096 // FIXME: Don't know how to handle secondary types yet. 2097 if (TypeIdx != 0) 2098 return UnableToLegalize; 2099 2100 MachineMemOperand *MMO = *MI.memoperands_begin(); 2101 2102 // This implementation doesn't work for atomics. Give up instead of doing 2103 // something invalid. 2104 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 2105 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 2106 return UnableToLegalize; 2107 2108 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 2109 unsigned ValReg = MI.getOperand(0).getReg(); 2110 unsigned AddrReg = MI.getOperand(1).getReg(); 2111 LLT ValTy = MRI.getType(ValReg); 2112 2113 int NumParts = -1; 2114 int NumLeftover = -1; 2115 LLT LeftoverTy; 2116 SmallVector<unsigned, 8> NarrowRegs, NarrowLeftoverRegs; 2117 if (IsLoad) { 2118 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 2119 } else { 2120 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 2121 NarrowLeftoverRegs)) { 2122 NumParts = NarrowRegs.size(); 2123 NumLeftover = NarrowLeftoverRegs.size(); 2124 } 2125 } 2126 2127 if (NumParts == -1) 2128 return UnableToLegalize; 2129 2130 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 2131 2132 unsigned TotalSize = ValTy.getSizeInBits(); 2133 2134 // Split the load/store into PartTy sized pieces starting at Offset. If this 2135 // is a load, return the new registers in ValRegs. For a store, each elements 2136 // of ValRegs should be PartTy. Returns the next offset that needs to be 2137 // handled. 2138 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<unsigned> &ValRegs, 2139 unsigned Offset) -> unsigned { 2140 MachineFunction &MF = MIRBuilder.getMF(); 2141 unsigned PartSize = PartTy.getSizeInBits(); 2142 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 2143 Offset += PartSize, ++Idx) { 2144 unsigned ByteSize = PartSize / 8; 2145 unsigned ByteOffset = Offset / 8; 2146 unsigned NewAddrReg = 0; 2147 2148 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 2149 2150 MachineMemOperand *NewMMO = 2151 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 2152 2153 if (IsLoad) { 2154 unsigned Dst = MRI.createGenericVirtualRegister(PartTy); 2155 ValRegs.push_back(Dst); 2156 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 2157 } else { 2158 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2159 } 2160 } 2161 2162 return Offset; 2163 }; 2164 2165 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2166 2167 // Handle the rest of the register if this isn't an even type breakdown. 2168 if (LeftoverTy.isValid()) 2169 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2170 2171 if (IsLoad) { 2172 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2173 LeftoverTy, NarrowLeftoverRegs); 2174 } 2175 2176 MI.eraseFromParent(); 2177 return Legalized; 2178 } 2179 2180 LegalizerHelper::LegalizeResult 2181 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2182 LLT NarrowTy) { 2183 using namespace TargetOpcode; 2184 2185 MIRBuilder.setInstr(MI); 2186 switch (MI.getOpcode()) { 2187 case G_IMPLICIT_DEF: 2188 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2189 case G_AND: 2190 case G_OR: 2191 case G_XOR: 2192 case G_ADD: 2193 case G_SUB: 2194 case G_MUL: 2195 case G_SMULH: 2196 case G_UMULH: 2197 case G_FADD: 2198 case G_FMUL: 2199 case G_FSUB: 2200 case G_FNEG: 2201 case G_FABS: 2202 case G_FCANONICALIZE: 2203 case G_FDIV: 2204 case G_FREM: 2205 case G_FMA: 2206 case G_FPOW: 2207 case G_FEXP: 2208 case G_FEXP2: 2209 case G_FLOG: 2210 case G_FLOG2: 2211 case G_FLOG10: 2212 case G_FCEIL: 2213 case G_FFLOOR: 2214 case G_INTRINSIC_ROUND: 2215 case G_INTRINSIC_TRUNC: 2216 case G_FCOS: 2217 case G_FSIN: 2218 case G_FSQRT: 2219 case G_BSWAP: 2220 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 2221 case G_SHL: 2222 case G_LSHR: 2223 case G_ASHR: 2224 case G_CTLZ: 2225 case G_CTLZ_ZERO_UNDEF: 2226 case G_CTTZ: 2227 case G_CTTZ_ZERO_UNDEF: 2228 case G_CTPOP: 2229 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 2230 case G_ZEXT: 2231 case G_SEXT: 2232 case G_ANYEXT: 2233 case G_FPEXT: 2234 case G_FPTRUNC: 2235 case G_SITOFP: 2236 case G_UITOFP: 2237 case G_FPTOSI: 2238 case G_FPTOUI: 2239 case G_INTTOPTR: 2240 case G_PTRTOINT: 2241 case G_ADDRSPACE_CAST: 2242 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 2243 case G_ICMP: 2244 case G_FCMP: 2245 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 2246 case G_SELECT: 2247 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 2248 case G_PHI: 2249 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 2250 case G_LOAD: 2251 case G_STORE: 2252 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 2253 default: 2254 return UnableToLegalize; 2255 } 2256 } 2257 2258 LegalizerHelper::LegalizeResult 2259 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 2260 const LLT HalfTy, const LLT AmtTy) { 2261 2262 unsigned InL = MRI.createGenericVirtualRegister(HalfTy); 2263 unsigned InH = MRI.createGenericVirtualRegister(HalfTy); 2264 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2265 2266 if (Amt.isNullValue()) { 2267 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 2268 MI.eraseFromParent(); 2269 return Legalized; 2270 } 2271 2272 LLT NVT = HalfTy; 2273 unsigned NVTBits = HalfTy.getSizeInBits(); 2274 unsigned VTBits = 2 * NVTBits; 2275 2276 SrcOp Lo(0), Hi(0); 2277 if (MI.getOpcode() == TargetOpcode::G_SHL) { 2278 if (Amt.ugt(VTBits)) { 2279 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2280 } else if (Amt.ugt(NVTBits)) { 2281 Lo = MIRBuilder.buildConstant(NVT, 0); 2282 Hi = MIRBuilder.buildShl(NVT, InL, 2283 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2284 } else if (Amt == NVTBits) { 2285 Lo = MIRBuilder.buildConstant(NVT, 0); 2286 Hi = InL; 2287 } else { 2288 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 2289 auto OrLHS = 2290 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 2291 auto OrRHS = MIRBuilder.buildLShr( 2292 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2293 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2294 } 2295 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2296 if (Amt.ugt(VTBits)) { 2297 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2298 } else if (Amt.ugt(NVTBits)) { 2299 Lo = MIRBuilder.buildLShr(NVT, InH, 2300 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2301 Hi = MIRBuilder.buildConstant(NVT, 0); 2302 } else if (Amt == NVTBits) { 2303 Lo = InH; 2304 Hi = MIRBuilder.buildConstant(NVT, 0); 2305 } else { 2306 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2307 2308 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2309 auto OrRHS = MIRBuilder.buildShl( 2310 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2311 2312 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2313 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 2314 } 2315 } else { 2316 if (Amt.ugt(VTBits)) { 2317 Hi = Lo = MIRBuilder.buildAShr( 2318 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2319 } else if (Amt.ugt(NVTBits)) { 2320 Lo = MIRBuilder.buildAShr(NVT, InH, 2321 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2322 Hi = MIRBuilder.buildAShr(NVT, InH, 2323 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2324 } else if (Amt == NVTBits) { 2325 Lo = InH; 2326 Hi = MIRBuilder.buildAShr(NVT, InH, 2327 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2328 } else { 2329 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2330 2331 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2332 auto OrRHS = MIRBuilder.buildShl( 2333 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2334 2335 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2336 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 2337 } 2338 } 2339 2340 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 2341 MI.eraseFromParent(); 2342 2343 return Legalized; 2344 } 2345 2346 // TODO: Optimize if constant shift amount. 2347 LegalizerHelper::LegalizeResult 2348 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 2349 LLT RequestedTy) { 2350 if (TypeIdx == 1) { 2351 Observer.changingInstr(MI); 2352 narrowScalarSrc(MI, RequestedTy, 2); 2353 Observer.changedInstr(MI); 2354 return Legalized; 2355 } 2356 2357 unsigned DstReg = MI.getOperand(0).getReg(); 2358 LLT DstTy = MRI.getType(DstReg); 2359 if (DstTy.isVector()) 2360 return UnableToLegalize; 2361 2362 unsigned Amt = MI.getOperand(2).getReg(); 2363 LLT ShiftAmtTy = MRI.getType(Amt); 2364 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 2365 if (DstEltSize % 2 != 0) 2366 return UnableToLegalize; 2367 2368 // Ignore the input type. We can only go to exactly half the size of the 2369 // input. If that isn't small enough, the resulting pieces will be further 2370 // legalized. 2371 const unsigned NewBitSize = DstEltSize / 2; 2372 const LLT HalfTy = LLT::scalar(NewBitSize); 2373 const LLT CondTy = LLT::scalar(1); 2374 2375 if (const MachineInstr *KShiftAmt = 2376 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 2377 return narrowScalarShiftByConstant( 2378 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 2379 } 2380 2381 // TODO: Expand with known bits. 2382 2383 // Handle the fully general expansion by an unknown amount. 2384 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 2385 2386 unsigned InL = MRI.createGenericVirtualRegister(HalfTy); 2387 unsigned InH = MRI.createGenericVirtualRegister(HalfTy); 2388 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2389 2390 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 2391 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 2392 2393 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 2394 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 2395 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 2396 2397 unsigned ResultRegs[2]; 2398 switch (MI.getOpcode()) { 2399 case TargetOpcode::G_SHL: { 2400 // Short: ShAmt < NewBitSize 2401 auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2402 2403 auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2404 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 2405 auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2406 2407 // Long: ShAmt >= NewBitSize 2408 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 2409 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 2410 2411 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 2412 auto Hi = MIRBuilder.buildSelect( 2413 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 2414 2415 ResultRegs[0] = Lo.getReg(0); 2416 ResultRegs[1] = Hi.getReg(0); 2417 break; 2418 } 2419 case TargetOpcode::G_LSHR: { 2420 // Short: ShAmt < NewBitSize 2421 auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt); 2422 2423 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2424 auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 2425 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2426 2427 // Long: ShAmt >= NewBitSize 2428 auto HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 2429 auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2430 2431 auto Lo = MIRBuilder.buildSelect( 2432 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2433 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2434 2435 ResultRegs[0] = Lo.getReg(0); 2436 ResultRegs[1] = Hi.getReg(0); 2437 break; 2438 } 2439 case TargetOpcode::G_ASHR: { 2440 // Short: ShAmt < NewBitSize 2441 auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt); 2442 2443 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2444 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack); 2445 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2446 2447 // Long: ShAmt >= NewBitSize 2448 2449 // Sign of Hi part. 2450 auto HiL = MIRBuilder.buildAShr( 2451 HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1)); 2452 2453 auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2454 2455 auto Lo = MIRBuilder.buildSelect( 2456 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2457 2458 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2459 2460 ResultRegs[0] = Lo.getReg(0); 2461 ResultRegs[1] = Hi.getReg(0); 2462 break; 2463 } 2464 default: 2465 llvm_unreachable("not a shift"); 2466 } 2467 2468 MIRBuilder.buildMerge(DstReg, ResultRegs); 2469 MI.eraseFromParent(); 2470 return Legalized; 2471 } 2472 2473 LegalizerHelper::LegalizeResult 2474 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2475 LLT MoreTy) { 2476 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2477 2478 Observer.changingInstr(MI); 2479 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2480 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2481 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2482 moreElementsVectorSrc(MI, MoreTy, I); 2483 } 2484 2485 MachineBasicBlock &MBB = *MI.getParent(); 2486 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2487 moreElementsVectorDst(MI, MoreTy, 0); 2488 Observer.changedInstr(MI); 2489 return Legalized; 2490 } 2491 2492 LegalizerHelper::LegalizeResult 2493 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 2494 LLT MoreTy) { 2495 MIRBuilder.setInstr(MI); 2496 unsigned Opc = MI.getOpcode(); 2497 switch (Opc) { 2498 case TargetOpcode::G_IMPLICIT_DEF: { 2499 Observer.changingInstr(MI); 2500 moreElementsVectorDst(MI, MoreTy, 0); 2501 Observer.changedInstr(MI); 2502 return Legalized; 2503 } 2504 case TargetOpcode::G_AND: 2505 case TargetOpcode::G_OR: 2506 case TargetOpcode::G_XOR: { 2507 Observer.changingInstr(MI); 2508 moreElementsVectorSrc(MI, MoreTy, 1); 2509 moreElementsVectorSrc(MI, MoreTy, 2); 2510 moreElementsVectorDst(MI, MoreTy, 0); 2511 Observer.changedInstr(MI); 2512 return Legalized; 2513 } 2514 case TargetOpcode::G_EXTRACT: 2515 if (TypeIdx != 1) 2516 return UnableToLegalize; 2517 Observer.changingInstr(MI); 2518 moreElementsVectorSrc(MI, MoreTy, 1); 2519 Observer.changedInstr(MI); 2520 return Legalized; 2521 case TargetOpcode::G_INSERT: 2522 if (TypeIdx != 0) 2523 return UnableToLegalize; 2524 Observer.changingInstr(MI); 2525 moreElementsVectorSrc(MI, MoreTy, 1); 2526 moreElementsVectorDst(MI, MoreTy, 0); 2527 Observer.changedInstr(MI); 2528 return Legalized; 2529 case TargetOpcode::G_SELECT: 2530 if (TypeIdx != 0) 2531 return UnableToLegalize; 2532 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 2533 return UnableToLegalize; 2534 2535 Observer.changingInstr(MI); 2536 moreElementsVectorSrc(MI, MoreTy, 2); 2537 moreElementsVectorSrc(MI, MoreTy, 3); 2538 moreElementsVectorDst(MI, MoreTy, 0); 2539 Observer.changedInstr(MI); 2540 return Legalized; 2541 case TargetOpcode::G_PHI: 2542 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 2543 default: 2544 return UnableToLegalize; 2545 } 2546 } 2547 2548 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<unsigned> &DstRegs, 2549 ArrayRef<unsigned> Src1Regs, 2550 ArrayRef<unsigned> Src2Regs, 2551 LLT NarrowTy) { 2552 MachineIRBuilder &B = MIRBuilder; 2553 unsigned SrcParts = Src1Regs.size(); 2554 unsigned DstParts = DstRegs.size(); 2555 2556 unsigned DstIdx = 0; // Low bits of the result. 2557 unsigned FactorSum = 2558 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 2559 DstRegs[DstIdx] = FactorSum; 2560 2561 unsigned CarrySumPrevDstIdx; 2562 SmallVector<unsigned, 4> Factors; 2563 2564 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 2565 // Collect low parts of muls for DstIdx. 2566 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 2567 i <= std::min(DstIdx, SrcParts - 1); ++i) { 2568 MachineInstrBuilder Mul = 2569 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 2570 Factors.push_back(Mul.getReg(0)); 2571 } 2572 // Collect high parts of muls from previous DstIdx. 2573 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 2574 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 2575 MachineInstrBuilder Umulh = 2576 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 2577 Factors.push_back(Umulh.getReg(0)); 2578 } 2579 // Add CarrySum from additons calculated for previous DstIdx. 2580 if (DstIdx != 1) { 2581 Factors.push_back(CarrySumPrevDstIdx); 2582 } 2583 2584 unsigned CarrySum = 0; 2585 // Add all factors and accumulate all carries into CarrySum. 2586 if (DstIdx != DstParts - 1) { 2587 MachineInstrBuilder Uaddo = 2588 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 2589 FactorSum = Uaddo.getReg(0); 2590 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 2591 for (unsigned i = 2; i < Factors.size(); ++i) { 2592 MachineInstrBuilder Uaddo = 2593 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 2594 FactorSum = Uaddo.getReg(0); 2595 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 2596 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 2597 } 2598 } else { 2599 // Since value for the next index is not calculated, neither is CarrySum. 2600 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 2601 for (unsigned i = 2; i < Factors.size(); ++i) 2602 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 2603 } 2604 2605 CarrySumPrevDstIdx = CarrySum; 2606 DstRegs[DstIdx] = FactorSum; 2607 Factors.clear(); 2608 } 2609 } 2610 2611 LegalizerHelper::LegalizeResult 2612 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 2613 unsigned DstReg = MI.getOperand(0).getReg(); 2614 unsigned Src1 = MI.getOperand(1).getReg(); 2615 unsigned Src2 = MI.getOperand(2).getReg(); 2616 2617 LLT Ty = MRI.getType(DstReg); 2618 if (Ty.isVector()) 2619 return UnableToLegalize; 2620 2621 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 2622 unsigned DstSize = Ty.getSizeInBits(); 2623 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2624 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 2625 return UnableToLegalize; 2626 2627 unsigned NumDstParts = DstSize / NarrowSize; 2628 unsigned NumSrcParts = SrcSize / NarrowSize; 2629 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 2630 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 2631 2632 SmallVector<unsigned, 2> Src1Parts, Src2Parts, DstTmpRegs; 2633 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 2634 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 2635 DstTmpRegs.resize(DstTmpParts); 2636 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 2637 2638 // Take only high half of registers if this is high mul. 2639 ArrayRef<unsigned> DstRegs( 2640 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 2641 MIRBuilder.buildMerge(DstReg, DstRegs); 2642 MI.eraseFromParent(); 2643 return Legalized; 2644 } 2645 2646 LegalizerHelper::LegalizeResult 2647 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 2648 LLT NarrowTy) { 2649 if (TypeIdx != 1) 2650 return UnableToLegalize; 2651 2652 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2653 2654 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 2655 // FIXME: add support for when SizeOp1 isn't an exact multiple of 2656 // NarrowSize. 2657 if (SizeOp1 % NarrowSize != 0) 2658 return UnableToLegalize; 2659 int NumParts = SizeOp1 / NarrowSize; 2660 2661 SmallVector<unsigned, 2> SrcRegs, DstRegs; 2662 SmallVector<uint64_t, 2> Indexes; 2663 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2664 2665 unsigned OpReg = MI.getOperand(0).getReg(); 2666 uint64_t OpStart = MI.getOperand(2).getImm(); 2667 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2668 for (int i = 0; i < NumParts; ++i) { 2669 unsigned SrcStart = i * NarrowSize; 2670 2671 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 2672 // No part of the extract uses this subregister, ignore it. 2673 continue; 2674 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2675 // The entire subregister is extracted, forward the value. 2676 DstRegs.push_back(SrcRegs[i]); 2677 continue; 2678 } 2679 2680 // OpSegStart is where this destination segment would start in OpReg if it 2681 // extended infinitely in both directions. 2682 int64_t ExtractOffset; 2683 uint64_t SegSize; 2684 if (OpStart < SrcStart) { 2685 ExtractOffset = 0; 2686 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 2687 } else { 2688 ExtractOffset = OpStart - SrcStart; 2689 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 2690 } 2691 2692 unsigned SegReg = SrcRegs[i]; 2693 if (ExtractOffset != 0 || SegSize != NarrowSize) { 2694 // A genuine extract is needed. 2695 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2696 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 2697 } 2698 2699 DstRegs.push_back(SegReg); 2700 } 2701 2702 unsigned DstReg = MI.getOperand(0).getReg(); 2703 if(MRI.getType(DstReg).isVector()) 2704 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2705 else 2706 MIRBuilder.buildMerge(DstReg, DstRegs); 2707 MI.eraseFromParent(); 2708 return Legalized; 2709 } 2710 2711 LegalizerHelper::LegalizeResult 2712 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 2713 LLT NarrowTy) { 2714 // FIXME: Don't know how to handle secondary types yet. 2715 if (TypeIdx != 0) 2716 return UnableToLegalize; 2717 2718 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 2719 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2720 2721 // FIXME: add support for when SizeOp0 isn't an exact multiple of 2722 // NarrowSize. 2723 if (SizeOp0 % NarrowSize != 0) 2724 return UnableToLegalize; 2725 2726 int NumParts = SizeOp0 / NarrowSize; 2727 2728 SmallVector<unsigned, 2> SrcRegs, DstRegs; 2729 SmallVector<uint64_t, 2> Indexes; 2730 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2731 2732 unsigned OpReg = MI.getOperand(2).getReg(); 2733 uint64_t OpStart = MI.getOperand(3).getImm(); 2734 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2735 for (int i = 0; i < NumParts; ++i) { 2736 unsigned DstStart = i * NarrowSize; 2737 2738 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 2739 // No part of the insert affects this subregister, forward the original. 2740 DstRegs.push_back(SrcRegs[i]); 2741 continue; 2742 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2743 // The entire subregister is defined by this insert, forward the new 2744 // value. 2745 DstRegs.push_back(OpReg); 2746 continue; 2747 } 2748 2749 // OpSegStart is where this destination segment would start in OpReg if it 2750 // extended infinitely in both directions. 2751 int64_t ExtractOffset, InsertOffset; 2752 uint64_t SegSize; 2753 if (OpStart < DstStart) { 2754 InsertOffset = 0; 2755 ExtractOffset = DstStart - OpStart; 2756 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 2757 } else { 2758 InsertOffset = OpStart - DstStart; 2759 ExtractOffset = 0; 2760 SegSize = 2761 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 2762 } 2763 2764 unsigned SegReg = OpReg; 2765 if (ExtractOffset != 0 || SegSize != OpSize) { 2766 // A genuine extract is needed. 2767 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2768 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 2769 } 2770 2771 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2772 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 2773 DstRegs.push_back(DstReg); 2774 } 2775 2776 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 2777 unsigned DstReg = MI.getOperand(0).getReg(); 2778 if(MRI.getType(DstReg).isVector()) 2779 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2780 else 2781 MIRBuilder.buildMerge(DstReg, DstRegs); 2782 MI.eraseFromParent(); 2783 return Legalized; 2784 } 2785 2786 LegalizerHelper::LegalizeResult 2787 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 2788 LLT NarrowTy) { 2789 if (TypeIdx != 0) 2790 return UnableToLegalize; 2791 2792 unsigned CondReg = MI.getOperand(1).getReg(); 2793 LLT CondTy = MRI.getType(CondReg); 2794 if (CondTy.isVector()) // TODO: Handle vselect 2795 return UnableToLegalize; 2796 2797 unsigned DstReg = MI.getOperand(0).getReg(); 2798 LLT DstTy = MRI.getType(DstReg); 2799 2800 SmallVector<unsigned, 4> DstRegs, DstLeftoverRegs; 2801 SmallVector<unsigned, 4> Src1Regs, Src1LeftoverRegs; 2802 SmallVector<unsigned, 4> Src2Regs, Src2LeftoverRegs; 2803 LLT LeftoverTy; 2804 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 2805 Src1Regs, Src1LeftoverRegs)) 2806 return UnableToLegalize; 2807 2808 LLT Unused; 2809 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 2810 Src2Regs, Src2LeftoverRegs)) 2811 llvm_unreachable("inconsistent extractParts result"); 2812 2813 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 2814 auto Select = MIRBuilder.buildSelect(NarrowTy, 2815 CondReg, Src1Regs[I], Src2Regs[I]); 2816 DstRegs.push_back(Select->getOperand(0).getReg()); 2817 } 2818 2819 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 2820 auto Select = MIRBuilder.buildSelect( 2821 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 2822 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 2823 } 2824 2825 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 2826 LeftoverTy, DstLeftoverRegs); 2827 2828 MI.eraseFromParent(); 2829 return Legalized; 2830 } 2831 2832 LegalizerHelper::LegalizeResult 2833 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2834 unsigned Opc = MI.getOpcode(); 2835 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2836 auto isSupported = [this](const LegalityQuery &Q) { 2837 auto QAction = LI.getAction(Q).Action; 2838 return QAction == Legal || QAction == Libcall || QAction == Custom; 2839 }; 2840 switch (Opc) { 2841 default: 2842 return UnableToLegalize; 2843 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 2844 // This trivially expands to CTLZ. 2845 Observer.changingInstr(MI); 2846 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 2847 Observer.changedInstr(MI); 2848 return Legalized; 2849 } 2850 case TargetOpcode::G_CTLZ: { 2851 unsigned SrcReg = MI.getOperand(1).getReg(); 2852 unsigned Len = Ty.getSizeInBits(); 2853 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 2854 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 2855 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 2856 {Ty}, {SrcReg}); 2857 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2858 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2859 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2860 SrcReg, MIBZero); 2861 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2862 MIBCtlzZU); 2863 MI.eraseFromParent(); 2864 return Legalized; 2865 } 2866 // for now, we do this: 2867 // NewLen = NextPowerOf2(Len); 2868 // x = x | (x >> 1); 2869 // x = x | (x >> 2); 2870 // ... 2871 // x = x | (x >>16); 2872 // x = x | (x >>32); // for 64-bit input 2873 // Upto NewLen/2 2874 // return Len - popcount(x); 2875 // 2876 // Ref: "Hacker's Delight" by Henry Warren 2877 unsigned Op = SrcReg; 2878 unsigned NewLen = PowerOf2Ceil(Len); 2879 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 2880 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 2881 auto MIBOp = MIRBuilder.buildInstr( 2882 TargetOpcode::G_OR, {Ty}, 2883 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 2884 {Op, MIBShiftAmt})}); 2885 Op = MIBOp->getOperand(0).getReg(); 2886 } 2887 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 2888 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2889 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 2890 MI.eraseFromParent(); 2891 return Legalized; 2892 } 2893 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 2894 // This trivially expands to CTTZ. 2895 Observer.changingInstr(MI); 2896 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 2897 Observer.changedInstr(MI); 2898 return Legalized; 2899 } 2900 case TargetOpcode::G_CTTZ: { 2901 unsigned SrcReg = MI.getOperand(1).getReg(); 2902 unsigned Len = Ty.getSizeInBits(); 2903 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 2904 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 2905 // zero. 2906 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 2907 {Ty}, {SrcReg}); 2908 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2909 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2910 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2911 SrcReg, MIBZero); 2912 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2913 MIBCttzZU); 2914 MI.eraseFromParent(); 2915 return Legalized; 2916 } 2917 // for now, we use: { return popcount(~x & (x - 1)); } 2918 // unless the target has ctlz but not ctpop, in which case we use: 2919 // { return 32 - nlz(~x & (x-1)); } 2920 // Ref: "Hacker's Delight" by Henry Warren 2921 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 2922 auto MIBNot = 2923 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 2924 auto MIBTmp = MIRBuilder.buildInstr( 2925 TargetOpcode::G_AND, {Ty}, 2926 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 2927 {SrcReg, MIBCstNeg1})}); 2928 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 2929 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 2930 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 2931 MIRBuilder.buildInstr( 2932 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2933 {MIBCstLen, 2934 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 2935 MI.eraseFromParent(); 2936 return Legalized; 2937 } 2938 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 2939 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 2940 return Legalized; 2941 } 2942 } 2943 } 2944