1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 #define DEBUG_TYPE "legalizer"
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace MIPatternMatch;
38 
39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
40 ///
41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
42 /// with any leftover piece as type \p LeftoverTy
43 ///
44 /// Returns -1 in the first element of the pair if the breakdown is not
45 /// satisfiable.
46 static std::pair<int, int>
47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
48   assert(!LeftoverTy.isValid() && "this is an out argument");
49 
50   unsigned Size = OrigTy.getSizeInBits();
51   unsigned NarrowSize = NarrowTy.getSizeInBits();
52   unsigned NumParts = Size / NarrowSize;
53   unsigned LeftoverSize = Size - NumParts * NarrowSize;
54   assert(Size > NarrowSize);
55 
56   if (LeftoverSize == 0)
57     return {NumParts, 0};
58 
59   if (NarrowTy.isVector()) {
60     unsigned EltSize = OrigTy.getScalarSizeInBits();
61     if (LeftoverSize % EltSize != 0)
62       return {-1, -1};
63     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
64   } else {
65     LeftoverTy = LLT::scalar(LeftoverSize);
66   }
67 
68   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
69   return std::make_pair(NumParts, NumLeftover);
70 }
71 
72 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
73 
74   if (!Ty.isScalar())
75     return nullptr;
76 
77   switch (Ty.getSizeInBits()) {
78   case 16:
79     return Type::getHalfTy(Ctx);
80   case 32:
81     return Type::getFloatTy(Ctx);
82   case 64:
83     return Type::getDoubleTy(Ctx);
84   case 80:
85     return Type::getX86_FP80Ty(Ctx);
86   case 128:
87     return Type::getFP128Ty(Ctx);
88   default:
89     return nullptr;
90   }
91 }
92 
93 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
94                                  GISelChangeObserver &Observer,
95                                  MachineIRBuilder &Builder)
96     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
97       LI(*MF.getSubtarget().getLegalizerInfo()),
98       TLI(*MF.getSubtarget().getTargetLowering()) { }
99 
100 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
101                                  GISelChangeObserver &Observer,
102                                  MachineIRBuilder &B)
103   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
104     TLI(*MF.getSubtarget().getTargetLowering()) { }
105 
106 LegalizerHelper::LegalizeResult
107 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
108                                    LostDebugLocObserver &LocObserver) {
109   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
110 
111   MIRBuilder.setInstrAndDebugLoc(MI);
112 
113   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
114       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
115     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
116   auto Step = LI.getAction(MI, MRI);
117   switch (Step.Action) {
118   case Legal:
119     LLVM_DEBUG(dbgs() << ".. Already legal\n");
120     return AlreadyLegal;
121   case Libcall:
122     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
123     return libcall(MI, LocObserver);
124   case NarrowScalar:
125     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
126     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
127   case WidenScalar:
128     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
129     return widenScalar(MI, Step.TypeIdx, Step.NewType);
130   case Bitcast:
131     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
132     return bitcast(MI, Step.TypeIdx, Step.NewType);
133   case Lower:
134     LLVM_DEBUG(dbgs() << ".. Lower\n");
135     return lower(MI, Step.TypeIdx, Step.NewType);
136   case FewerElements:
137     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
138     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
139   case MoreElements:
140     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
141     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
142   case Custom:
143     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
144     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
145   default:
146     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
147     return UnableToLegalize;
148   }
149 }
150 
151 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
152                                    SmallVectorImpl<Register> &VRegs) {
153   for (int i = 0; i < NumParts; ++i)
154     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
155   MIRBuilder.buildUnmerge(VRegs, Reg);
156 }
157 
158 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
159                                    LLT MainTy, LLT &LeftoverTy,
160                                    SmallVectorImpl<Register> &VRegs,
161                                    SmallVectorImpl<Register> &LeftoverRegs) {
162   assert(!LeftoverTy.isValid() && "this is an out argument");
163 
164   unsigned RegSize = RegTy.getSizeInBits();
165   unsigned MainSize = MainTy.getSizeInBits();
166   unsigned NumParts = RegSize / MainSize;
167   unsigned LeftoverSize = RegSize - NumParts * MainSize;
168 
169   // Use an unmerge when possible.
170   if (LeftoverSize == 0) {
171     for (unsigned I = 0; I < NumParts; ++I)
172       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
173     MIRBuilder.buildUnmerge(VRegs, Reg);
174     return true;
175   }
176 
177   if (MainTy.isVector()) {
178     unsigned EltSize = MainTy.getScalarSizeInBits();
179     if (LeftoverSize % EltSize != 0)
180       return false;
181     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
182   } else {
183     LeftoverTy = LLT::scalar(LeftoverSize);
184   }
185 
186   // For irregular sizes, extract the individual parts.
187   for (unsigned I = 0; I != NumParts; ++I) {
188     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
189     VRegs.push_back(NewReg);
190     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
191   }
192 
193   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
194        Offset += LeftoverSize) {
195     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
196     LeftoverRegs.push_back(NewReg);
197     MIRBuilder.buildExtract(NewReg, Reg, Offset);
198   }
199 
200   return true;
201 }
202 
203 void LegalizerHelper::insertParts(Register DstReg,
204                                   LLT ResultTy, LLT PartTy,
205                                   ArrayRef<Register> PartRegs,
206                                   LLT LeftoverTy,
207                                   ArrayRef<Register> LeftoverRegs) {
208   if (!LeftoverTy.isValid()) {
209     assert(LeftoverRegs.empty());
210 
211     if (!ResultTy.isVector()) {
212       MIRBuilder.buildMerge(DstReg, PartRegs);
213       return;
214     }
215 
216     if (PartTy.isVector())
217       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
218     else
219       MIRBuilder.buildBuildVector(DstReg, PartRegs);
220     return;
221   }
222 
223   unsigned PartSize = PartTy.getSizeInBits();
224   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
225 
226   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
227   MIRBuilder.buildUndef(CurResultReg);
228 
229   unsigned Offset = 0;
230   for (Register PartReg : PartRegs) {
231     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
232     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
233     CurResultReg = NewResultReg;
234     Offset += PartSize;
235   }
236 
237   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
238     // Use the original output register for the final insert to avoid a copy.
239     Register NewResultReg = (I + 1 == E) ?
240       DstReg : MRI.createGenericVirtualRegister(ResultTy);
241 
242     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
243     CurResultReg = NewResultReg;
244     Offset += LeftoverPartSize;
245   }
246 }
247 
248 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
249 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
250                               const MachineInstr &MI) {
251   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
252 
253   const int StartIdx = Regs.size();
254   const int NumResults = MI.getNumOperands() - 1;
255   Regs.resize(Regs.size() + NumResults);
256   for (int I = 0; I != NumResults; ++I)
257     Regs[StartIdx + I] = MI.getOperand(I).getReg();
258 }
259 
260 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
261                                      LLT GCDTy, Register SrcReg) {
262   LLT SrcTy = MRI.getType(SrcReg);
263   if (SrcTy == GCDTy) {
264     // If the source already evenly divides the result type, we don't need to do
265     // anything.
266     Parts.push_back(SrcReg);
267   } else {
268     // Need to split into common type sized pieces.
269     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
270     getUnmergeResults(Parts, *Unmerge);
271   }
272 }
273 
274 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
275                                     LLT NarrowTy, Register SrcReg) {
276   LLT SrcTy = MRI.getType(SrcReg);
277   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
278   extractGCDType(Parts, GCDTy, SrcReg);
279   return GCDTy;
280 }
281 
282 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
283                                          SmallVectorImpl<Register> &VRegs,
284                                          unsigned PadStrategy) {
285   LLT LCMTy = getLCMType(DstTy, NarrowTy);
286 
287   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
288   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
289   int NumOrigSrc = VRegs.size();
290 
291   Register PadReg;
292 
293   // Get a value we can use to pad the source value if the sources won't evenly
294   // cover the result type.
295   if (NumOrigSrc < NumParts * NumSubParts) {
296     if (PadStrategy == TargetOpcode::G_ZEXT)
297       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
298     else if (PadStrategy == TargetOpcode::G_ANYEXT)
299       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
300     else {
301       assert(PadStrategy == TargetOpcode::G_SEXT);
302 
303       // Shift the sign bit of the low register through the high register.
304       auto ShiftAmt =
305         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
306       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
307     }
308   }
309 
310   // Registers for the final merge to be produced.
311   SmallVector<Register, 4> Remerge(NumParts);
312 
313   // Registers needed for intermediate merges, which will be merged into a
314   // source for Remerge.
315   SmallVector<Register, 4> SubMerge(NumSubParts);
316 
317   // Once we've fully read off the end of the original source bits, we can reuse
318   // the same high bits for remaining padding elements.
319   Register AllPadReg;
320 
321   // Build merges to the LCM type to cover the original result type.
322   for (int I = 0; I != NumParts; ++I) {
323     bool AllMergePartsArePadding = true;
324 
325     // Build the requested merges to the requested type.
326     for (int J = 0; J != NumSubParts; ++J) {
327       int Idx = I * NumSubParts + J;
328       if (Idx >= NumOrigSrc) {
329         SubMerge[J] = PadReg;
330         continue;
331       }
332 
333       SubMerge[J] = VRegs[Idx];
334 
335       // There are meaningful bits here we can't reuse later.
336       AllMergePartsArePadding = false;
337     }
338 
339     // If we've filled up a complete piece with padding bits, we can directly
340     // emit the natural sized constant if applicable, rather than a merge of
341     // smaller constants.
342     if (AllMergePartsArePadding && !AllPadReg) {
343       if (PadStrategy == TargetOpcode::G_ANYEXT)
344         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
345       else if (PadStrategy == TargetOpcode::G_ZEXT)
346         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
347 
348       // If this is a sign extension, we can't materialize a trivial constant
349       // with the right type and have to produce a merge.
350     }
351 
352     if (AllPadReg) {
353       // Avoid creating additional instructions if we're just adding additional
354       // copies of padding bits.
355       Remerge[I] = AllPadReg;
356       continue;
357     }
358 
359     if (NumSubParts == 1)
360       Remerge[I] = SubMerge[0];
361     else
362       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
363 
364     // In the sign extend padding case, re-use the first all-signbit merge.
365     if (AllMergePartsArePadding && !AllPadReg)
366       AllPadReg = Remerge[I];
367   }
368 
369   VRegs = std::move(Remerge);
370   return LCMTy;
371 }
372 
373 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
374                                                ArrayRef<Register> RemergeRegs) {
375   LLT DstTy = MRI.getType(DstReg);
376 
377   // Create the merge to the widened source, and extract the relevant bits into
378   // the result.
379 
380   if (DstTy == LCMTy) {
381     MIRBuilder.buildMerge(DstReg, RemergeRegs);
382     return;
383   }
384 
385   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
386   if (DstTy.isScalar() && LCMTy.isScalar()) {
387     MIRBuilder.buildTrunc(DstReg, Remerge);
388     return;
389   }
390 
391   if (LCMTy.isVector()) {
392     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
393     SmallVector<Register, 8> UnmergeDefs(NumDefs);
394     UnmergeDefs[0] = DstReg;
395     for (unsigned I = 1; I != NumDefs; ++I)
396       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
397 
398     MIRBuilder.buildUnmerge(UnmergeDefs,
399                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
400     return;
401   }
402 
403   llvm_unreachable("unhandled case");
404 }
405 
406 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
407 #define RTLIBCASE_INT(LibcallPrefix)                                           \
408   do {                                                                         \
409     switch (Size) {                                                            \
410     case 32:                                                                   \
411       return RTLIB::LibcallPrefix##32;                                         \
412     case 64:                                                                   \
413       return RTLIB::LibcallPrefix##64;                                         \
414     case 128:                                                                  \
415       return RTLIB::LibcallPrefix##128;                                        \
416     default:                                                                   \
417       llvm_unreachable("unexpected size");                                     \
418     }                                                                          \
419   } while (0)
420 
421 #define RTLIBCASE(LibcallPrefix)                                               \
422   do {                                                                         \
423     switch (Size) {                                                            \
424     case 32:                                                                   \
425       return RTLIB::LibcallPrefix##32;                                         \
426     case 64:                                                                   \
427       return RTLIB::LibcallPrefix##64;                                         \
428     case 80:                                                                   \
429       return RTLIB::LibcallPrefix##80;                                         \
430     case 128:                                                                  \
431       return RTLIB::LibcallPrefix##128;                                        \
432     default:                                                                   \
433       llvm_unreachable("unexpected size");                                     \
434     }                                                                          \
435   } while (0)
436 
437   switch (Opcode) {
438   case TargetOpcode::G_SDIV:
439     RTLIBCASE_INT(SDIV_I);
440   case TargetOpcode::G_UDIV:
441     RTLIBCASE_INT(UDIV_I);
442   case TargetOpcode::G_SREM:
443     RTLIBCASE_INT(SREM_I);
444   case TargetOpcode::G_UREM:
445     RTLIBCASE_INT(UREM_I);
446   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
447     RTLIBCASE_INT(CTLZ_I);
448   case TargetOpcode::G_FADD:
449     RTLIBCASE(ADD_F);
450   case TargetOpcode::G_FSUB:
451     RTLIBCASE(SUB_F);
452   case TargetOpcode::G_FMUL:
453     RTLIBCASE(MUL_F);
454   case TargetOpcode::G_FDIV:
455     RTLIBCASE(DIV_F);
456   case TargetOpcode::G_FEXP:
457     RTLIBCASE(EXP_F);
458   case TargetOpcode::G_FEXP2:
459     RTLIBCASE(EXP2_F);
460   case TargetOpcode::G_FREM:
461     RTLIBCASE(REM_F);
462   case TargetOpcode::G_FPOW:
463     RTLIBCASE(POW_F);
464   case TargetOpcode::G_FMA:
465     RTLIBCASE(FMA_F);
466   case TargetOpcode::G_FSIN:
467     RTLIBCASE(SIN_F);
468   case TargetOpcode::G_FCOS:
469     RTLIBCASE(COS_F);
470   case TargetOpcode::G_FLOG10:
471     RTLIBCASE(LOG10_F);
472   case TargetOpcode::G_FLOG:
473     RTLIBCASE(LOG_F);
474   case TargetOpcode::G_FLOG2:
475     RTLIBCASE(LOG2_F);
476   case TargetOpcode::G_FCEIL:
477     RTLIBCASE(CEIL_F);
478   case TargetOpcode::G_FFLOOR:
479     RTLIBCASE(FLOOR_F);
480   case TargetOpcode::G_FMINNUM:
481     RTLIBCASE(FMIN_F);
482   case TargetOpcode::G_FMAXNUM:
483     RTLIBCASE(FMAX_F);
484   case TargetOpcode::G_FSQRT:
485     RTLIBCASE(SQRT_F);
486   case TargetOpcode::G_FRINT:
487     RTLIBCASE(RINT_F);
488   case TargetOpcode::G_FNEARBYINT:
489     RTLIBCASE(NEARBYINT_F);
490   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
491     RTLIBCASE(ROUNDEVEN_F);
492   }
493   llvm_unreachable("Unknown libcall function");
494 }
495 
496 /// True if an instruction is in tail position in its caller. Intended for
497 /// legalizing libcalls as tail calls when possible.
498 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
499                                     MachineInstr &MI) {
500   MachineBasicBlock &MBB = *MI.getParent();
501   const Function &F = MBB.getParent()->getFunction();
502 
503   // Conservatively require the attributes of the call to match those of
504   // the return. Ignore NoAlias and NonNull because they don't affect the
505   // call sequence.
506   AttributeList CallerAttrs = F.getAttributes();
507   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
508           .removeAttribute(Attribute::NoAlias)
509           .removeAttribute(Attribute::NonNull)
510           .hasAttributes())
511     return false;
512 
513   // It's not safe to eliminate the sign / zero extension of the return value.
514   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
515       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
516     return false;
517 
518   // Only tail call if the following instruction is a standard return.
519   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
520   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
521     return false;
522 
523   return true;
524 }
525 
526 LegalizerHelper::LegalizeResult
527 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
528                     const CallLowering::ArgInfo &Result,
529                     ArrayRef<CallLowering::ArgInfo> Args,
530                     const CallingConv::ID CC) {
531   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
532 
533   CallLowering::CallLoweringInfo Info;
534   Info.CallConv = CC;
535   Info.Callee = MachineOperand::CreateES(Name);
536   Info.OrigRet = Result;
537   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
538   if (!CLI.lowerCall(MIRBuilder, Info))
539     return LegalizerHelper::UnableToLegalize;
540 
541   return LegalizerHelper::Legalized;
542 }
543 
544 LegalizerHelper::LegalizeResult
545 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
546                     const CallLowering::ArgInfo &Result,
547                     ArrayRef<CallLowering::ArgInfo> Args) {
548   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
549   const char *Name = TLI.getLibcallName(Libcall);
550   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
551   return createLibcall(MIRBuilder, Name, Result, Args, CC);
552 }
553 
554 // Useful for libcalls where all operands have the same type.
555 static LegalizerHelper::LegalizeResult
556 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
557               Type *OpType) {
558   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
559 
560   SmallVector<CallLowering::ArgInfo, 3> Args;
561   for (unsigned i = 1; i < MI.getNumOperands(); i++)
562     Args.push_back({MI.getOperand(i).getReg(), OpType});
563   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
564                        Args);
565 }
566 
567 LegalizerHelper::LegalizeResult
568 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
569                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
570   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
571 
572   SmallVector<CallLowering::ArgInfo, 3> Args;
573   // Add all the args, except for the last which is an imm denoting 'tail'.
574   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
575     Register Reg = MI.getOperand(i).getReg();
576 
577     // Need derive an IR type for call lowering.
578     LLT OpLLT = MRI.getType(Reg);
579     Type *OpTy = nullptr;
580     if (OpLLT.isPointer())
581       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
582     else
583       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
584     Args.push_back({Reg, OpTy});
585   }
586 
587   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
588   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
589   RTLIB::Libcall RTLibcall;
590   unsigned Opc = MI.getOpcode();
591   switch (Opc) {
592   case TargetOpcode::G_BZERO:
593     RTLibcall = RTLIB::BZERO;
594     break;
595   case TargetOpcode::G_MEMCPY:
596     RTLibcall = RTLIB::MEMCPY;
597     break;
598   case TargetOpcode::G_MEMMOVE:
599     RTLibcall = RTLIB::MEMMOVE;
600     break;
601   case TargetOpcode::G_MEMSET:
602     RTLibcall = RTLIB::MEMSET;
603     break;
604   default:
605     return LegalizerHelper::UnableToLegalize;
606   }
607   const char *Name = TLI.getLibcallName(RTLibcall);
608 
609   // Unsupported libcall on the target.
610   if (!Name) {
611     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
612                       << MIRBuilder.getTII().getName(Opc) << "\n");
613     return LegalizerHelper::UnableToLegalize;
614   }
615 
616   CallLowering::CallLoweringInfo Info;
617   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
618   Info.Callee = MachineOperand::CreateES(Name);
619   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
620   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
621                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
622 
623   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
624   if (!CLI.lowerCall(MIRBuilder, Info))
625     return LegalizerHelper::UnableToLegalize;
626 
627 
628   if (Info.LoweredTailCall) {
629     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
630 
631     // Check debug locations before removing the return.
632     LocObserver.checkpoint(true);
633 
634     // We must have a return following the call (or debug insts) to get past
635     // isLibCallInTailPosition.
636     do {
637       MachineInstr *Next = MI.getNextNode();
638       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
639              "Expected instr following MI to be return or debug inst?");
640       // We lowered a tail call, so the call is now the return from the block.
641       // Delete the old return.
642       Next->eraseFromParent();
643     } while (MI.getNextNode());
644 
645     // We expect to lose the debug location from the return.
646     LocObserver.checkpoint(false);
647   }
648 
649   return LegalizerHelper::Legalized;
650 }
651 
652 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
653                                        Type *FromType) {
654   auto ToMVT = MVT::getVT(ToType);
655   auto FromMVT = MVT::getVT(FromType);
656 
657   switch (Opcode) {
658   case TargetOpcode::G_FPEXT:
659     return RTLIB::getFPEXT(FromMVT, ToMVT);
660   case TargetOpcode::G_FPTRUNC:
661     return RTLIB::getFPROUND(FromMVT, ToMVT);
662   case TargetOpcode::G_FPTOSI:
663     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
664   case TargetOpcode::G_FPTOUI:
665     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
666   case TargetOpcode::G_SITOFP:
667     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
668   case TargetOpcode::G_UITOFP:
669     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
670   }
671   llvm_unreachable("Unsupported libcall function");
672 }
673 
674 static LegalizerHelper::LegalizeResult
675 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
676                   Type *FromType) {
677   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
678   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
679                        {{MI.getOperand(1).getReg(), FromType}});
680 }
681 
682 LegalizerHelper::LegalizeResult
683 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
684   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
685   unsigned Size = LLTy.getSizeInBits();
686   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
687 
688   switch (MI.getOpcode()) {
689   default:
690     return UnableToLegalize;
691   case TargetOpcode::G_SDIV:
692   case TargetOpcode::G_UDIV:
693   case TargetOpcode::G_SREM:
694   case TargetOpcode::G_UREM:
695   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
696     Type *HLTy = IntegerType::get(Ctx, Size);
697     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
698     if (Status != Legalized)
699       return Status;
700     break;
701   }
702   case TargetOpcode::G_FADD:
703   case TargetOpcode::G_FSUB:
704   case TargetOpcode::G_FMUL:
705   case TargetOpcode::G_FDIV:
706   case TargetOpcode::G_FMA:
707   case TargetOpcode::G_FPOW:
708   case TargetOpcode::G_FREM:
709   case TargetOpcode::G_FCOS:
710   case TargetOpcode::G_FSIN:
711   case TargetOpcode::G_FLOG10:
712   case TargetOpcode::G_FLOG:
713   case TargetOpcode::G_FLOG2:
714   case TargetOpcode::G_FEXP:
715   case TargetOpcode::G_FEXP2:
716   case TargetOpcode::G_FCEIL:
717   case TargetOpcode::G_FFLOOR:
718   case TargetOpcode::G_FMINNUM:
719   case TargetOpcode::G_FMAXNUM:
720   case TargetOpcode::G_FSQRT:
721   case TargetOpcode::G_FRINT:
722   case TargetOpcode::G_FNEARBYINT:
723   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
724     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
725     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
726       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
727       return UnableToLegalize;
728     }
729     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
730     if (Status != Legalized)
731       return Status;
732     break;
733   }
734   case TargetOpcode::G_FPEXT:
735   case TargetOpcode::G_FPTRUNC: {
736     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
737     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
738     if (!FromTy || !ToTy)
739       return UnableToLegalize;
740     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
741     if (Status != Legalized)
742       return Status;
743     break;
744   }
745   case TargetOpcode::G_FPTOSI:
746   case TargetOpcode::G_FPTOUI: {
747     // FIXME: Support other types
748     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
749     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
750     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
751       return UnableToLegalize;
752     LegalizeResult Status = conversionLibcall(
753         MI, MIRBuilder,
754         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
755         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
756     if (Status != Legalized)
757       return Status;
758     break;
759   }
760   case TargetOpcode::G_SITOFP:
761   case TargetOpcode::G_UITOFP: {
762     // FIXME: Support other types
763     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
764     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
765     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
766       return UnableToLegalize;
767     LegalizeResult Status = conversionLibcall(
768         MI, MIRBuilder,
769         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
770         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
771     if (Status != Legalized)
772       return Status;
773     break;
774   }
775   case TargetOpcode::G_BZERO:
776   case TargetOpcode::G_MEMCPY:
777   case TargetOpcode::G_MEMMOVE:
778   case TargetOpcode::G_MEMSET: {
779     LegalizeResult Result =
780         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
781     if (Result != Legalized)
782       return Result;
783     MI.eraseFromParent();
784     return Result;
785   }
786   }
787 
788   MI.eraseFromParent();
789   return Legalized;
790 }
791 
792 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
793                                                               unsigned TypeIdx,
794                                                               LLT NarrowTy) {
795   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
796   uint64_t NarrowSize = NarrowTy.getSizeInBits();
797 
798   switch (MI.getOpcode()) {
799   default:
800     return UnableToLegalize;
801   case TargetOpcode::G_IMPLICIT_DEF: {
802     Register DstReg = MI.getOperand(0).getReg();
803     LLT DstTy = MRI.getType(DstReg);
804 
805     // If SizeOp0 is not an exact multiple of NarrowSize, emit
806     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
807     // FIXME: Although this would also be legal for the general case, it causes
808     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
809     //  combines not being hit). This seems to be a problem related to the
810     //  artifact combiner.
811     if (SizeOp0 % NarrowSize != 0) {
812       LLT ImplicitTy = NarrowTy;
813       if (DstTy.isVector())
814         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
815 
816       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
817       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
818 
819       MI.eraseFromParent();
820       return Legalized;
821     }
822 
823     int NumParts = SizeOp0 / NarrowSize;
824 
825     SmallVector<Register, 2> DstRegs;
826     for (int i = 0; i < NumParts; ++i)
827       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
828 
829     if (DstTy.isVector())
830       MIRBuilder.buildBuildVector(DstReg, DstRegs);
831     else
832       MIRBuilder.buildMerge(DstReg, DstRegs);
833     MI.eraseFromParent();
834     return Legalized;
835   }
836   case TargetOpcode::G_CONSTANT: {
837     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
838     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
839     unsigned TotalSize = Ty.getSizeInBits();
840     unsigned NarrowSize = NarrowTy.getSizeInBits();
841     int NumParts = TotalSize / NarrowSize;
842 
843     SmallVector<Register, 4> PartRegs;
844     for (int I = 0; I != NumParts; ++I) {
845       unsigned Offset = I * NarrowSize;
846       auto K = MIRBuilder.buildConstant(NarrowTy,
847                                         Val.lshr(Offset).trunc(NarrowSize));
848       PartRegs.push_back(K.getReg(0));
849     }
850 
851     LLT LeftoverTy;
852     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
853     SmallVector<Register, 1> LeftoverRegs;
854     if (LeftoverBits != 0) {
855       LeftoverTy = LLT::scalar(LeftoverBits);
856       auto K = MIRBuilder.buildConstant(
857         LeftoverTy,
858         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
859       LeftoverRegs.push_back(K.getReg(0));
860     }
861 
862     insertParts(MI.getOperand(0).getReg(),
863                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
864 
865     MI.eraseFromParent();
866     return Legalized;
867   }
868   case TargetOpcode::G_SEXT:
869   case TargetOpcode::G_ZEXT:
870   case TargetOpcode::G_ANYEXT:
871     return narrowScalarExt(MI, TypeIdx, NarrowTy);
872   case TargetOpcode::G_TRUNC: {
873     if (TypeIdx != 1)
874       return UnableToLegalize;
875 
876     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
877     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
878       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
879       return UnableToLegalize;
880     }
881 
882     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
883     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
884     MI.eraseFromParent();
885     return Legalized;
886   }
887 
888   case TargetOpcode::G_FREEZE:
889     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
890   case TargetOpcode::G_ADD:
891   case TargetOpcode::G_SUB:
892   case TargetOpcode::G_SADDO:
893   case TargetOpcode::G_SSUBO:
894   case TargetOpcode::G_SADDE:
895   case TargetOpcode::G_SSUBE:
896   case TargetOpcode::G_UADDO:
897   case TargetOpcode::G_USUBO:
898   case TargetOpcode::G_UADDE:
899   case TargetOpcode::G_USUBE:
900     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
901   case TargetOpcode::G_MUL:
902   case TargetOpcode::G_UMULH:
903     return narrowScalarMul(MI, NarrowTy);
904   case TargetOpcode::G_EXTRACT:
905     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
906   case TargetOpcode::G_INSERT:
907     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
908   case TargetOpcode::G_LOAD: {
909     auto &MMO = **MI.memoperands_begin();
910     Register DstReg = MI.getOperand(0).getReg();
911     LLT DstTy = MRI.getType(DstReg);
912     if (DstTy.isVector())
913       return UnableToLegalize;
914 
915     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
916       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
917       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
918       MIRBuilder.buildAnyExt(DstReg, TmpReg);
919       MI.eraseFromParent();
920       return Legalized;
921     }
922 
923     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
924   }
925   case TargetOpcode::G_ZEXTLOAD:
926   case TargetOpcode::G_SEXTLOAD: {
927     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
928     Register DstReg = MI.getOperand(0).getReg();
929     Register PtrReg = MI.getOperand(1).getReg();
930 
931     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
932     auto &MMO = **MI.memoperands_begin();
933     unsigned MemSize = MMO.getSizeInBits();
934 
935     if (MemSize == NarrowSize) {
936       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
937     } else if (MemSize < NarrowSize) {
938       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
939     } else if (MemSize > NarrowSize) {
940       // FIXME: Need to split the load.
941       return UnableToLegalize;
942     }
943 
944     if (ZExt)
945       MIRBuilder.buildZExt(DstReg, TmpReg);
946     else
947       MIRBuilder.buildSExt(DstReg, TmpReg);
948 
949     MI.eraseFromParent();
950     return Legalized;
951   }
952   case TargetOpcode::G_STORE: {
953     const auto &MMO = **MI.memoperands_begin();
954 
955     Register SrcReg = MI.getOperand(0).getReg();
956     LLT SrcTy = MRI.getType(SrcReg);
957     if (SrcTy.isVector())
958       return UnableToLegalize;
959 
960     int NumParts = SizeOp0 / NarrowSize;
961     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
962     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
963     if (SrcTy.isVector() && LeftoverBits != 0)
964       return UnableToLegalize;
965 
966     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
967       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
968       auto &MMO = **MI.memoperands_begin();
969       MIRBuilder.buildTrunc(TmpReg, SrcReg);
970       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
971       MI.eraseFromParent();
972       return Legalized;
973     }
974 
975     return reduceLoadStoreWidth(MI, 0, NarrowTy);
976   }
977   case TargetOpcode::G_SELECT:
978     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
979   case TargetOpcode::G_AND:
980   case TargetOpcode::G_OR:
981   case TargetOpcode::G_XOR: {
982     // Legalize bitwise operation:
983     // A = BinOp<Ty> B, C
984     // into:
985     // B1, ..., BN = G_UNMERGE_VALUES B
986     // C1, ..., CN = G_UNMERGE_VALUES C
987     // A1 = BinOp<Ty/N> B1, C2
988     // ...
989     // AN = BinOp<Ty/N> BN, CN
990     // A = G_MERGE_VALUES A1, ..., AN
991     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
992   }
993   case TargetOpcode::G_SHL:
994   case TargetOpcode::G_LSHR:
995   case TargetOpcode::G_ASHR:
996     return narrowScalarShift(MI, TypeIdx, NarrowTy);
997   case TargetOpcode::G_CTLZ:
998   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
999   case TargetOpcode::G_CTTZ:
1000   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1001   case TargetOpcode::G_CTPOP:
1002     if (TypeIdx == 1)
1003       switch (MI.getOpcode()) {
1004       case TargetOpcode::G_CTLZ:
1005       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1006         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1007       case TargetOpcode::G_CTTZ:
1008       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1009         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1010       case TargetOpcode::G_CTPOP:
1011         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1012       default:
1013         return UnableToLegalize;
1014       }
1015 
1016     Observer.changingInstr(MI);
1017     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1018     Observer.changedInstr(MI);
1019     return Legalized;
1020   case TargetOpcode::G_INTTOPTR:
1021     if (TypeIdx != 1)
1022       return UnableToLegalize;
1023 
1024     Observer.changingInstr(MI);
1025     narrowScalarSrc(MI, NarrowTy, 1);
1026     Observer.changedInstr(MI);
1027     return Legalized;
1028   case TargetOpcode::G_PTRTOINT:
1029     if (TypeIdx != 0)
1030       return UnableToLegalize;
1031 
1032     Observer.changingInstr(MI);
1033     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1034     Observer.changedInstr(MI);
1035     return Legalized;
1036   case TargetOpcode::G_PHI: {
1037     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1038     // NarrowSize.
1039     if (SizeOp0 % NarrowSize != 0)
1040       return UnableToLegalize;
1041 
1042     unsigned NumParts = SizeOp0 / NarrowSize;
1043     SmallVector<Register, 2> DstRegs(NumParts);
1044     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1045     Observer.changingInstr(MI);
1046     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1047       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1048       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1049       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1050                    SrcRegs[i / 2]);
1051     }
1052     MachineBasicBlock &MBB = *MI.getParent();
1053     MIRBuilder.setInsertPt(MBB, MI);
1054     for (unsigned i = 0; i < NumParts; ++i) {
1055       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1056       MachineInstrBuilder MIB =
1057           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1058       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1059         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1060     }
1061     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1062     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1063     Observer.changedInstr(MI);
1064     MI.eraseFromParent();
1065     return Legalized;
1066   }
1067   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1068   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1069     if (TypeIdx != 2)
1070       return UnableToLegalize;
1071 
1072     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1073     Observer.changingInstr(MI);
1074     narrowScalarSrc(MI, NarrowTy, OpIdx);
1075     Observer.changedInstr(MI);
1076     return Legalized;
1077   }
1078   case TargetOpcode::G_ICMP: {
1079     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1080     if (NarrowSize * 2 != SrcSize)
1081       return UnableToLegalize;
1082 
1083     Observer.changingInstr(MI);
1084     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1085     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1086     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1087 
1088     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1089     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1090     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1091 
1092     CmpInst::Predicate Pred =
1093         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1094     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1095 
1096     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1097       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1098       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1099       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1100       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1101       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1102     } else {
1103       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1104       MachineInstrBuilder CmpHEQ =
1105           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1106       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1107           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1108       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1109     }
1110     Observer.changedInstr(MI);
1111     MI.eraseFromParent();
1112     return Legalized;
1113   }
1114   case TargetOpcode::G_SEXT_INREG: {
1115     if (TypeIdx != 0)
1116       return UnableToLegalize;
1117 
1118     int64_t SizeInBits = MI.getOperand(2).getImm();
1119 
1120     // So long as the new type has more bits than the bits we're extending we
1121     // don't need to break it apart.
1122     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1123       Observer.changingInstr(MI);
1124       // We don't lose any non-extension bits by truncating the src and
1125       // sign-extending the dst.
1126       MachineOperand &MO1 = MI.getOperand(1);
1127       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1128       MO1.setReg(TruncMIB.getReg(0));
1129 
1130       MachineOperand &MO2 = MI.getOperand(0);
1131       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1132       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1133       MIRBuilder.buildSExt(MO2, DstExt);
1134       MO2.setReg(DstExt);
1135       Observer.changedInstr(MI);
1136       return Legalized;
1137     }
1138 
1139     // Break it apart. Components below the extension point are unmodified. The
1140     // component containing the extension point becomes a narrower SEXT_INREG.
1141     // Components above it are ashr'd from the component containing the
1142     // extension point.
1143     if (SizeOp0 % NarrowSize != 0)
1144       return UnableToLegalize;
1145     int NumParts = SizeOp0 / NarrowSize;
1146 
1147     // List the registers where the destination will be scattered.
1148     SmallVector<Register, 2> DstRegs;
1149     // List the registers where the source will be split.
1150     SmallVector<Register, 2> SrcRegs;
1151 
1152     // Create all the temporary registers.
1153     for (int i = 0; i < NumParts; ++i) {
1154       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1155 
1156       SrcRegs.push_back(SrcReg);
1157     }
1158 
1159     // Explode the big arguments into smaller chunks.
1160     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1161 
1162     Register AshrCstReg =
1163         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1164             .getReg(0);
1165     Register FullExtensionReg = 0;
1166     Register PartialExtensionReg = 0;
1167 
1168     // Do the operation on each small part.
1169     for (int i = 0; i < NumParts; ++i) {
1170       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1171         DstRegs.push_back(SrcRegs[i]);
1172       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1173         assert(PartialExtensionReg &&
1174                "Expected to visit partial extension before full");
1175         if (FullExtensionReg) {
1176           DstRegs.push_back(FullExtensionReg);
1177           continue;
1178         }
1179         DstRegs.push_back(
1180             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1181                 .getReg(0));
1182         FullExtensionReg = DstRegs.back();
1183       } else {
1184         DstRegs.push_back(
1185             MIRBuilder
1186                 .buildInstr(
1187                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1188                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1189                 .getReg(0));
1190         PartialExtensionReg = DstRegs.back();
1191       }
1192     }
1193 
1194     // Gather the destination registers into the final destination.
1195     Register DstReg = MI.getOperand(0).getReg();
1196     MIRBuilder.buildMerge(DstReg, DstRegs);
1197     MI.eraseFromParent();
1198     return Legalized;
1199   }
1200   case TargetOpcode::G_BSWAP:
1201   case TargetOpcode::G_BITREVERSE: {
1202     if (SizeOp0 % NarrowSize != 0)
1203       return UnableToLegalize;
1204 
1205     Observer.changingInstr(MI);
1206     SmallVector<Register, 2> SrcRegs, DstRegs;
1207     unsigned NumParts = SizeOp0 / NarrowSize;
1208     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1209 
1210     for (unsigned i = 0; i < NumParts; ++i) {
1211       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1212                                            {SrcRegs[NumParts - 1 - i]});
1213       DstRegs.push_back(DstPart.getReg(0));
1214     }
1215 
1216     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1217 
1218     Observer.changedInstr(MI);
1219     MI.eraseFromParent();
1220     return Legalized;
1221   }
1222   case TargetOpcode::G_PTR_ADD:
1223   case TargetOpcode::G_PTRMASK: {
1224     if (TypeIdx != 1)
1225       return UnableToLegalize;
1226     Observer.changingInstr(MI);
1227     narrowScalarSrc(MI, NarrowTy, 2);
1228     Observer.changedInstr(MI);
1229     return Legalized;
1230   }
1231   case TargetOpcode::G_FPTOUI:
1232   case TargetOpcode::G_FPTOSI:
1233     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1234   case TargetOpcode::G_FPEXT:
1235     if (TypeIdx != 0)
1236       return UnableToLegalize;
1237     Observer.changingInstr(MI);
1238     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1239     Observer.changedInstr(MI);
1240     return Legalized;
1241   }
1242 }
1243 
1244 Register LegalizerHelper::coerceToScalar(Register Val) {
1245   LLT Ty = MRI.getType(Val);
1246   if (Ty.isScalar())
1247     return Val;
1248 
1249   const DataLayout &DL = MIRBuilder.getDataLayout();
1250   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1251   if (Ty.isPointer()) {
1252     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1253       return Register();
1254     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1255   }
1256 
1257   Register NewVal = Val;
1258 
1259   assert(Ty.isVector());
1260   LLT EltTy = Ty.getElementType();
1261   if (EltTy.isPointer())
1262     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1263   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1264 }
1265 
1266 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1267                                      unsigned OpIdx, unsigned ExtOpcode) {
1268   MachineOperand &MO = MI.getOperand(OpIdx);
1269   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1270   MO.setReg(ExtB.getReg(0));
1271 }
1272 
1273 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1274                                       unsigned OpIdx) {
1275   MachineOperand &MO = MI.getOperand(OpIdx);
1276   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1277   MO.setReg(ExtB.getReg(0));
1278 }
1279 
1280 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1281                                      unsigned OpIdx, unsigned TruncOpcode) {
1282   MachineOperand &MO = MI.getOperand(OpIdx);
1283   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1284   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1285   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1286   MO.setReg(DstExt);
1287 }
1288 
1289 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1290                                       unsigned OpIdx, unsigned ExtOpcode) {
1291   MachineOperand &MO = MI.getOperand(OpIdx);
1292   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1293   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1294   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1295   MO.setReg(DstTrunc);
1296 }
1297 
1298 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1299                                             unsigned OpIdx) {
1300   MachineOperand &MO = MI.getOperand(OpIdx);
1301   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1302   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1303 }
1304 
1305 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1306                                             unsigned OpIdx) {
1307   MachineOperand &MO = MI.getOperand(OpIdx);
1308 
1309   LLT OldTy = MRI.getType(MO.getReg());
1310   unsigned OldElts = OldTy.getNumElements();
1311   unsigned NewElts = MoreTy.getNumElements();
1312 
1313   unsigned NumParts = NewElts / OldElts;
1314 
1315   // Use concat_vectors if the result is a multiple of the number of elements.
1316   if (NumParts * OldElts == NewElts) {
1317     SmallVector<Register, 8> Parts;
1318     Parts.push_back(MO.getReg());
1319 
1320     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1321     for (unsigned I = 1; I != NumParts; ++I)
1322       Parts.push_back(ImpDef);
1323 
1324     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1325     MO.setReg(Concat.getReg(0));
1326     return;
1327   }
1328 
1329   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1330   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1331   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1332   MO.setReg(MoreReg);
1333 }
1334 
1335 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1336   MachineOperand &Op = MI.getOperand(OpIdx);
1337   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1338 }
1339 
1340 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1341   MachineOperand &MO = MI.getOperand(OpIdx);
1342   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1343   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1344   MIRBuilder.buildBitcast(MO, CastDst);
1345   MO.setReg(CastDst);
1346 }
1347 
1348 LegalizerHelper::LegalizeResult
1349 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1350                                         LLT WideTy) {
1351   if (TypeIdx != 1)
1352     return UnableToLegalize;
1353 
1354   Register DstReg = MI.getOperand(0).getReg();
1355   LLT DstTy = MRI.getType(DstReg);
1356   if (DstTy.isVector())
1357     return UnableToLegalize;
1358 
1359   Register Src1 = MI.getOperand(1).getReg();
1360   LLT SrcTy = MRI.getType(Src1);
1361   const int DstSize = DstTy.getSizeInBits();
1362   const int SrcSize = SrcTy.getSizeInBits();
1363   const int WideSize = WideTy.getSizeInBits();
1364   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1365 
1366   unsigned NumOps = MI.getNumOperands();
1367   unsigned NumSrc = MI.getNumOperands() - 1;
1368   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1369 
1370   if (WideSize >= DstSize) {
1371     // Directly pack the bits in the target type.
1372     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1373 
1374     for (unsigned I = 2; I != NumOps; ++I) {
1375       const unsigned Offset = (I - 1) * PartSize;
1376 
1377       Register SrcReg = MI.getOperand(I).getReg();
1378       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1379 
1380       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1381 
1382       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1383         MRI.createGenericVirtualRegister(WideTy);
1384 
1385       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1386       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1387       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1388       ResultReg = NextResult;
1389     }
1390 
1391     if (WideSize > DstSize)
1392       MIRBuilder.buildTrunc(DstReg, ResultReg);
1393     else if (DstTy.isPointer())
1394       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1395 
1396     MI.eraseFromParent();
1397     return Legalized;
1398   }
1399 
1400   // Unmerge the original values to the GCD type, and recombine to the next
1401   // multiple greater than the original type.
1402   //
1403   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1404   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1405   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1406   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1407   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1408   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1409   // %12:_(s12) = G_MERGE_VALUES %10, %11
1410   //
1411   // Padding with undef if necessary:
1412   //
1413   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1414   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1415   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1416   // %7:_(s2) = G_IMPLICIT_DEF
1417   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1418   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1419   // %10:_(s12) = G_MERGE_VALUES %8, %9
1420 
1421   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1422   LLT GCDTy = LLT::scalar(GCD);
1423 
1424   SmallVector<Register, 8> Parts;
1425   SmallVector<Register, 8> NewMergeRegs;
1426   SmallVector<Register, 8> Unmerges;
1427   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1428 
1429   // Decompose the original operands if they don't evenly divide.
1430   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1431     Register SrcReg = MI.getOperand(I).getReg();
1432     if (GCD == SrcSize) {
1433       Unmerges.push_back(SrcReg);
1434     } else {
1435       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1436       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1437         Unmerges.push_back(Unmerge.getReg(J));
1438     }
1439   }
1440 
1441   // Pad with undef to the next size that is a multiple of the requested size.
1442   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1443     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1444     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1445       Unmerges.push_back(UndefReg);
1446   }
1447 
1448   const int PartsPerGCD = WideSize / GCD;
1449 
1450   // Build merges of each piece.
1451   ArrayRef<Register> Slicer(Unmerges);
1452   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1453     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1454     NewMergeRegs.push_back(Merge.getReg(0));
1455   }
1456 
1457   // A truncate may be necessary if the requested type doesn't evenly divide the
1458   // original result type.
1459   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1460     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1461   } else {
1462     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1463     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1464   }
1465 
1466   MI.eraseFromParent();
1467   return Legalized;
1468 }
1469 
1470 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1471   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1472   LLT OrigTy = MRI.getType(OrigReg);
1473   LLT LCMTy = getLCMType(WideTy, OrigTy);
1474 
1475   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1476   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1477 
1478   Register UnmergeSrc = WideReg;
1479 
1480   // Create a merge to the LCM type, padding with undef
1481   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1482   // =>
1483   // %1:_(<4 x s32>) = G_FOO
1484   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1485   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1486   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1487   if (NumMergeParts > 1) {
1488     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1489     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1490     MergeParts[0] = WideReg;
1491     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1492   }
1493 
1494   // Unmerge to the original register and pad with dead defs.
1495   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1496   UnmergeResults[0] = OrigReg;
1497   for (int I = 1; I != NumUnmergeParts; ++I)
1498     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1499 
1500   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1501   return WideReg;
1502 }
1503 
1504 LegalizerHelper::LegalizeResult
1505 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1506                                           LLT WideTy) {
1507   if (TypeIdx != 0)
1508     return UnableToLegalize;
1509 
1510   int NumDst = MI.getNumOperands() - 1;
1511   Register SrcReg = MI.getOperand(NumDst).getReg();
1512   LLT SrcTy = MRI.getType(SrcReg);
1513   if (SrcTy.isVector())
1514     return UnableToLegalize;
1515 
1516   Register Dst0Reg = MI.getOperand(0).getReg();
1517   LLT DstTy = MRI.getType(Dst0Reg);
1518   if (!DstTy.isScalar())
1519     return UnableToLegalize;
1520 
1521   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1522     if (SrcTy.isPointer()) {
1523       const DataLayout &DL = MIRBuilder.getDataLayout();
1524       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1525         LLVM_DEBUG(
1526             dbgs() << "Not casting non-integral address space integer\n");
1527         return UnableToLegalize;
1528       }
1529 
1530       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1531       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1532     }
1533 
1534     // Widen SrcTy to WideTy. This does not affect the result, but since the
1535     // user requested this size, it is probably better handled than SrcTy and
1536     // should reduce the total number of legalization artifacts
1537     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1538       SrcTy = WideTy;
1539       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1540     }
1541 
1542     // Theres no unmerge type to target. Directly extract the bits from the
1543     // source type
1544     unsigned DstSize = DstTy.getSizeInBits();
1545 
1546     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1547     for (int I = 1; I != NumDst; ++I) {
1548       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1549       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1550       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1551     }
1552 
1553     MI.eraseFromParent();
1554     return Legalized;
1555   }
1556 
1557   // Extend the source to a wider type.
1558   LLT LCMTy = getLCMType(SrcTy, WideTy);
1559 
1560   Register WideSrc = SrcReg;
1561   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1562     // TODO: If this is an integral address space, cast to integer and anyext.
1563     if (SrcTy.isPointer()) {
1564       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1565       return UnableToLegalize;
1566     }
1567 
1568     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1569   }
1570 
1571   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1572 
1573   // Create a sequence of unmerges and merges to the original results. Since we
1574   // may have widened the source, we will need to pad the results with dead defs
1575   // to cover the source register.
1576   // e.g. widen s48 to s64:
1577   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1578   //
1579   // =>
1580   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1581   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1582   //  ; unpack to GCD type, with extra dead defs
1583   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1584   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1585   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1586   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1587   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1588   const LLT GCDTy = getGCDType(WideTy, DstTy);
1589   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1590   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1591 
1592   // Directly unmerge to the destination without going through a GCD type
1593   // if possible
1594   if (PartsPerRemerge == 1) {
1595     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1596 
1597     for (int I = 0; I != NumUnmerge; ++I) {
1598       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1599 
1600       for (int J = 0; J != PartsPerUnmerge; ++J) {
1601         int Idx = I * PartsPerUnmerge + J;
1602         if (Idx < NumDst)
1603           MIB.addDef(MI.getOperand(Idx).getReg());
1604         else {
1605           // Create dead def for excess components.
1606           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1607         }
1608       }
1609 
1610       MIB.addUse(Unmerge.getReg(I));
1611     }
1612   } else {
1613     SmallVector<Register, 16> Parts;
1614     for (int J = 0; J != NumUnmerge; ++J)
1615       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1616 
1617     SmallVector<Register, 8> RemergeParts;
1618     for (int I = 0; I != NumDst; ++I) {
1619       for (int J = 0; J < PartsPerRemerge; ++J) {
1620         const int Idx = I * PartsPerRemerge + J;
1621         RemergeParts.emplace_back(Parts[Idx]);
1622       }
1623 
1624       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1625       RemergeParts.clear();
1626     }
1627   }
1628 
1629   MI.eraseFromParent();
1630   return Legalized;
1631 }
1632 
1633 LegalizerHelper::LegalizeResult
1634 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1635                                     LLT WideTy) {
1636   Register DstReg = MI.getOperand(0).getReg();
1637   Register SrcReg = MI.getOperand(1).getReg();
1638   LLT SrcTy = MRI.getType(SrcReg);
1639 
1640   LLT DstTy = MRI.getType(DstReg);
1641   unsigned Offset = MI.getOperand(2).getImm();
1642 
1643   if (TypeIdx == 0) {
1644     if (SrcTy.isVector() || DstTy.isVector())
1645       return UnableToLegalize;
1646 
1647     SrcOp Src(SrcReg);
1648     if (SrcTy.isPointer()) {
1649       // Extracts from pointers can be handled only if they are really just
1650       // simple integers.
1651       const DataLayout &DL = MIRBuilder.getDataLayout();
1652       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1653         return UnableToLegalize;
1654 
1655       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1656       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1657       SrcTy = SrcAsIntTy;
1658     }
1659 
1660     if (DstTy.isPointer())
1661       return UnableToLegalize;
1662 
1663     if (Offset == 0) {
1664       // Avoid a shift in the degenerate case.
1665       MIRBuilder.buildTrunc(DstReg,
1666                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1667       MI.eraseFromParent();
1668       return Legalized;
1669     }
1670 
1671     // Do a shift in the source type.
1672     LLT ShiftTy = SrcTy;
1673     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1674       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1675       ShiftTy = WideTy;
1676     }
1677 
1678     auto LShr = MIRBuilder.buildLShr(
1679       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1680     MIRBuilder.buildTrunc(DstReg, LShr);
1681     MI.eraseFromParent();
1682     return Legalized;
1683   }
1684 
1685   if (SrcTy.isScalar()) {
1686     Observer.changingInstr(MI);
1687     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1688     Observer.changedInstr(MI);
1689     return Legalized;
1690   }
1691 
1692   if (!SrcTy.isVector())
1693     return UnableToLegalize;
1694 
1695   if (DstTy != SrcTy.getElementType())
1696     return UnableToLegalize;
1697 
1698   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1699     return UnableToLegalize;
1700 
1701   Observer.changingInstr(MI);
1702   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1703 
1704   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1705                           Offset);
1706   widenScalarDst(MI, WideTy.getScalarType(), 0);
1707   Observer.changedInstr(MI);
1708   return Legalized;
1709 }
1710 
1711 LegalizerHelper::LegalizeResult
1712 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1713                                    LLT WideTy) {
1714   if (TypeIdx != 0 || WideTy.isVector())
1715     return UnableToLegalize;
1716   Observer.changingInstr(MI);
1717   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1718   widenScalarDst(MI, WideTy);
1719   Observer.changedInstr(MI);
1720   return Legalized;
1721 }
1722 
1723 LegalizerHelper::LegalizeResult
1724 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1725                                            LLT WideTy) {
1726   if (TypeIdx == 1)
1727     return UnableToLegalize; // TODO
1728 
1729   unsigned Opcode;
1730   unsigned ExtOpcode;
1731   Optional<Register> CarryIn = None;
1732   switch (MI.getOpcode()) {
1733   default:
1734     llvm_unreachable("Unexpected opcode!");
1735   case TargetOpcode::G_SADDO:
1736     Opcode = TargetOpcode::G_ADD;
1737     ExtOpcode = TargetOpcode::G_SEXT;
1738     break;
1739   case TargetOpcode::G_SSUBO:
1740     Opcode = TargetOpcode::G_SUB;
1741     ExtOpcode = TargetOpcode::G_SEXT;
1742     break;
1743   case TargetOpcode::G_UADDO:
1744     Opcode = TargetOpcode::G_ADD;
1745     ExtOpcode = TargetOpcode::G_ZEXT;
1746     break;
1747   case TargetOpcode::G_USUBO:
1748     Opcode = TargetOpcode::G_SUB;
1749     ExtOpcode = TargetOpcode::G_ZEXT;
1750     break;
1751   case TargetOpcode::G_SADDE:
1752     Opcode = TargetOpcode::G_UADDE;
1753     ExtOpcode = TargetOpcode::G_SEXT;
1754     CarryIn = MI.getOperand(4).getReg();
1755     break;
1756   case TargetOpcode::G_SSUBE:
1757     Opcode = TargetOpcode::G_USUBE;
1758     ExtOpcode = TargetOpcode::G_SEXT;
1759     CarryIn = MI.getOperand(4).getReg();
1760     break;
1761   case TargetOpcode::G_UADDE:
1762     Opcode = TargetOpcode::G_UADDE;
1763     ExtOpcode = TargetOpcode::G_ZEXT;
1764     CarryIn = MI.getOperand(4).getReg();
1765     break;
1766   case TargetOpcode::G_USUBE:
1767     Opcode = TargetOpcode::G_USUBE;
1768     ExtOpcode = TargetOpcode::G_ZEXT;
1769     CarryIn = MI.getOperand(4).getReg();
1770     break;
1771   }
1772 
1773   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1774   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1775   // Do the arithmetic in the larger type.
1776   Register NewOp;
1777   if (CarryIn) {
1778     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1779     NewOp = MIRBuilder
1780                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1781                             {LHSExt, RHSExt, *CarryIn})
1782                 .getReg(0);
1783   } else {
1784     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1785   }
1786   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1787   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1788   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1789   // There is no overflow if the ExtOp is the same as NewOp.
1790   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1791   // Now trunc the NewOp to the original result.
1792   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1793   MI.eraseFromParent();
1794   return Legalized;
1795 }
1796 
1797 LegalizerHelper::LegalizeResult
1798 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1799                                          LLT WideTy) {
1800   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1801                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1802                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1803   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1804                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1805   // We can convert this to:
1806   //   1. Any extend iN to iM
1807   //   2. SHL by M-N
1808   //   3. [US][ADD|SUB|SHL]SAT
1809   //   4. L/ASHR by M-N
1810   //
1811   // It may be more efficient to lower this to a min and a max operation in
1812   // the higher precision arithmetic if the promoted operation isn't legal,
1813   // but this decision is up to the target's lowering request.
1814   Register DstReg = MI.getOperand(0).getReg();
1815 
1816   unsigned NewBits = WideTy.getScalarSizeInBits();
1817   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1818 
1819   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1820   // must not left shift the RHS to preserve the shift amount.
1821   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1822   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1823                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1824   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1825   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1826   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1827 
1828   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1829                                         {ShiftL, ShiftR}, MI.getFlags());
1830 
1831   // Use a shift that will preserve the number of sign bits when the trunc is
1832   // folded away.
1833   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1834                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1835 
1836   MIRBuilder.buildTrunc(DstReg, Result);
1837   MI.eraseFromParent();
1838   return Legalized;
1839 }
1840 
1841 LegalizerHelper::LegalizeResult
1842 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1843                                  LLT WideTy) {
1844   if (TypeIdx == 1)
1845     return UnableToLegalize;
1846 
1847   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1848   Register Result = MI.getOperand(0).getReg();
1849   Register OriginalOverflow = MI.getOperand(1).getReg();
1850   Register LHS = MI.getOperand(2).getReg();
1851   Register RHS = MI.getOperand(3).getReg();
1852   LLT SrcTy = MRI.getType(LHS);
1853   LLT OverflowTy = MRI.getType(OriginalOverflow);
1854   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1855 
1856   // To determine if the result overflowed in the larger type, we extend the
1857   // input to the larger type, do the multiply (checking if it overflows),
1858   // then also check the high bits of the result to see if overflow happened
1859   // there.
1860   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1861   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1862   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1863 
1864   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1865                                     {LeftOperand, RightOperand});
1866   auto Mul = Mulo->getOperand(0);
1867   MIRBuilder.buildTrunc(Result, Mul);
1868 
1869   MachineInstrBuilder ExtResult;
1870   // Overflow occurred if it occurred in the larger type, or if the high part
1871   // of the result does not zero/sign-extend the low part.  Check this second
1872   // possibility first.
1873   if (IsSigned) {
1874     // For signed, overflow occurred when the high part does not sign-extend
1875     // the low part.
1876     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1877   } else {
1878     // Unsigned overflow occurred when the high part does not zero-extend the
1879     // low part.
1880     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1881   }
1882 
1883   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1884   // so we don't need to check the overflow result of larger type Mulo.
1885   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1886     auto Overflow =
1887         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1888     // Finally check if the multiplication in the larger type itself overflowed.
1889     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1890   } else {
1891     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1892   }
1893   MI.eraseFromParent();
1894   return Legalized;
1895 }
1896 
1897 LegalizerHelper::LegalizeResult
1898 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1899   switch (MI.getOpcode()) {
1900   default:
1901     return UnableToLegalize;
1902   case TargetOpcode::G_EXTRACT:
1903     return widenScalarExtract(MI, TypeIdx, WideTy);
1904   case TargetOpcode::G_INSERT:
1905     return widenScalarInsert(MI, TypeIdx, WideTy);
1906   case TargetOpcode::G_MERGE_VALUES:
1907     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1908   case TargetOpcode::G_UNMERGE_VALUES:
1909     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1910   case TargetOpcode::G_SADDO:
1911   case TargetOpcode::G_SSUBO:
1912   case TargetOpcode::G_UADDO:
1913   case TargetOpcode::G_USUBO:
1914   case TargetOpcode::G_SADDE:
1915   case TargetOpcode::G_SSUBE:
1916   case TargetOpcode::G_UADDE:
1917   case TargetOpcode::G_USUBE:
1918     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1919   case TargetOpcode::G_UMULO:
1920   case TargetOpcode::G_SMULO:
1921     return widenScalarMulo(MI, TypeIdx, WideTy);
1922   case TargetOpcode::G_SADDSAT:
1923   case TargetOpcode::G_SSUBSAT:
1924   case TargetOpcode::G_SSHLSAT:
1925   case TargetOpcode::G_UADDSAT:
1926   case TargetOpcode::G_USUBSAT:
1927   case TargetOpcode::G_USHLSAT:
1928     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1929   case TargetOpcode::G_CTTZ:
1930   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1931   case TargetOpcode::G_CTLZ:
1932   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1933   case TargetOpcode::G_CTPOP: {
1934     if (TypeIdx == 0) {
1935       Observer.changingInstr(MI);
1936       widenScalarDst(MI, WideTy, 0);
1937       Observer.changedInstr(MI);
1938       return Legalized;
1939     }
1940 
1941     Register SrcReg = MI.getOperand(1).getReg();
1942 
1943     // First ZEXT the input.
1944     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1945     LLT CurTy = MRI.getType(SrcReg);
1946     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1947       // The count is the same in the larger type except if the original
1948       // value was zero.  This can be handled by setting the bit just off
1949       // the top of the original type.
1950       auto TopBit =
1951           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1952       MIBSrc = MIRBuilder.buildOr(
1953         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1954     }
1955 
1956     // Perform the operation at the larger size.
1957     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1958     // This is already the correct result for CTPOP and CTTZs
1959     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1960         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1961       // The correct result is NewOp - (Difference in widety and current ty).
1962       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1963       MIBNewOp = MIRBuilder.buildSub(
1964           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1965     }
1966 
1967     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1968     MI.eraseFromParent();
1969     return Legalized;
1970   }
1971   case TargetOpcode::G_BSWAP: {
1972     Observer.changingInstr(MI);
1973     Register DstReg = MI.getOperand(0).getReg();
1974 
1975     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1976     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1977     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1978     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1979 
1980     MI.getOperand(0).setReg(DstExt);
1981 
1982     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1983 
1984     LLT Ty = MRI.getType(DstReg);
1985     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1986     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1987     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1988 
1989     MIRBuilder.buildTrunc(DstReg, ShrReg);
1990     Observer.changedInstr(MI);
1991     return Legalized;
1992   }
1993   case TargetOpcode::G_BITREVERSE: {
1994     Observer.changingInstr(MI);
1995 
1996     Register DstReg = MI.getOperand(0).getReg();
1997     LLT Ty = MRI.getType(DstReg);
1998     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1999 
2000     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2001     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2002     MI.getOperand(0).setReg(DstExt);
2003     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2004 
2005     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2006     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2007     MIRBuilder.buildTrunc(DstReg, Shift);
2008     Observer.changedInstr(MI);
2009     return Legalized;
2010   }
2011   case TargetOpcode::G_FREEZE:
2012     Observer.changingInstr(MI);
2013     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2014     widenScalarDst(MI, WideTy);
2015     Observer.changedInstr(MI);
2016     return Legalized;
2017 
2018   case TargetOpcode::G_ADD:
2019   case TargetOpcode::G_AND:
2020   case TargetOpcode::G_MUL:
2021   case TargetOpcode::G_OR:
2022   case TargetOpcode::G_XOR:
2023   case TargetOpcode::G_SUB:
2024     // Perform operation at larger width (any extension is fines here, high bits
2025     // don't affect the result) and then truncate the result back to the
2026     // original type.
2027     Observer.changingInstr(MI);
2028     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2029     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2030     widenScalarDst(MI, WideTy);
2031     Observer.changedInstr(MI);
2032     return Legalized;
2033 
2034   case TargetOpcode::G_SHL:
2035     Observer.changingInstr(MI);
2036 
2037     if (TypeIdx == 0) {
2038       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2039       widenScalarDst(MI, WideTy);
2040     } else {
2041       assert(TypeIdx == 1);
2042       // The "number of bits to shift" operand must preserve its value as an
2043       // unsigned integer:
2044       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2045     }
2046 
2047     Observer.changedInstr(MI);
2048     return Legalized;
2049 
2050   case TargetOpcode::G_SDIV:
2051   case TargetOpcode::G_SREM:
2052   case TargetOpcode::G_SMIN:
2053   case TargetOpcode::G_SMAX:
2054     Observer.changingInstr(MI);
2055     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2056     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2057     widenScalarDst(MI, WideTy);
2058     Observer.changedInstr(MI);
2059     return Legalized;
2060 
2061   case TargetOpcode::G_SDIVREM:
2062     Observer.changingInstr(MI);
2063     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2064     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2065     widenScalarDst(MI, WideTy);
2066     widenScalarDst(MI, WideTy, 1);
2067     Observer.changedInstr(MI);
2068     return Legalized;
2069 
2070   case TargetOpcode::G_ASHR:
2071   case TargetOpcode::G_LSHR:
2072     Observer.changingInstr(MI);
2073 
2074     if (TypeIdx == 0) {
2075       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2076         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2077 
2078       widenScalarSrc(MI, WideTy, 1, CvtOp);
2079       widenScalarDst(MI, WideTy);
2080     } else {
2081       assert(TypeIdx == 1);
2082       // The "number of bits to shift" operand must preserve its value as an
2083       // unsigned integer:
2084       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2085     }
2086 
2087     Observer.changedInstr(MI);
2088     return Legalized;
2089   case TargetOpcode::G_UDIV:
2090   case TargetOpcode::G_UREM:
2091   case TargetOpcode::G_UMIN:
2092   case TargetOpcode::G_UMAX:
2093     Observer.changingInstr(MI);
2094     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2095     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2096     widenScalarDst(MI, WideTy);
2097     Observer.changedInstr(MI);
2098     return Legalized;
2099 
2100   case TargetOpcode::G_UDIVREM:
2101     Observer.changingInstr(MI);
2102     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2103     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2104     widenScalarDst(MI, WideTy);
2105     widenScalarDst(MI, WideTy, 1);
2106     Observer.changedInstr(MI);
2107     return Legalized;
2108 
2109   case TargetOpcode::G_SELECT:
2110     Observer.changingInstr(MI);
2111     if (TypeIdx == 0) {
2112       // Perform operation at larger width (any extension is fine here, high
2113       // bits don't affect the result) and then truncate the result back to the
2114       // original type.
2115       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2116       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2117       widenScalarDst(MI, WideTy);
2118     } else {
2119       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2120       // Explicit extension is required here since high bits affect the result.
2121       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2122     }
2123     Observer.changedInstr(MI);
2124     return Legalized;
2125 
2126   case TargetOpcode::G_FPTOSI:
2127   case TargetOpcode::G_FPTOUI:
2128     Observer.changingInstr(MI);
2129 
2130     if (TypeIdx == 0)
2131       widenScalarDst(MI, WideTy);
2132     else
2133       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2134 
2135     Observer.changedInstr(MI);
2136     return Legalized;
2137   case TargetOpcode::G_SITOFP:
2138     Observer.changingInstr(MI);
2139 
2140     if (TypeIdx == 0)
2141       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2142     else
2143       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2144 
2145     Observer.changedInstr(MI);
2146     return Legalized;
2147   case TargetOpcode::G_UITOFP:
2148     Observer.changingInstr(MI);
2149 
2150     if (TypeIdx == 0)
2151       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2152     else
2153       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2154 
2155     Observer.changedInstr(MI);
2156     return Legalized;
2157   case TargetOpcode::G_LOAD:
2158   case TargetOpcode::G_SEXTLOAD:
2159   case TargetOpcode::G_ZEXTLOAD:
2160     Observer.changingInstr(MI);
2161     widenScalarDst(MI, WideTy);
2162     Observer.changedInstr(MI);
2163     return Legalized;
2164 
2165   case TargetOpcode::G_STORE: {
2166     if (TypeIdx != 0)
2167       return UnableToLegalize;
2168 
2169     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2170     if (!Ty.isScalar())
2171       return UnableToLegalize;
2172 
2173     Observer.changingInstr(MI);
2174 
2175     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2176       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2177     widenScalarSrc(MI, WideTy, 0, ExtType);
2178 
2179     Observer.changedInstr(MI);
2180     return Legalized;
2181   }
2182   case TargetOpcode::G_CONSTANT: {
2183     MachineOperand &SrcMO = MI.getOperand(1);
2184     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2185     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2186         MRI.getType(MI.getOperand(0).getReg()));
2187     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2188             ExtOpc == TargetOpcode::G_ANYEXT) &&
2189            "Illegal Extend");
2190     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2191     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2192                            ? SrcVal.sext(WideTy.getSizeInBits())
2193                            : SrcVal.zext(WideTy.getSizeInBits());
2194     Observer.changingInstr(MI);
2195     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2196 
2197     widenScalarDst(MI, WideTy);
2198     Observer.changedInstr(MI);
2199     return Legalized;
2200   }
2201   case TargetOpcode::G_FCONSTANT: {
2202     MachineOperand &SrcMO = MI.getOperand(1);
2203     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2204     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2205     bool LosesInfo;
2206     switch (WideTy.getSizeInBits()) {
2207     case 32:
2208       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2209                   &LosesInfo);
2210       break;
2211     case 64:
2212       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2213                   &LosesInfo);
2214       break;
2215     default:
2216       return UnableToLegalize;
2217     }
2218 
2219     assert(!LosesInfo && "extend should always be lossless");
2220 
2221     Observer.changingInstr(MI);
2222     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2223 
2224     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2225     Observer.changedInstr(MI);
2226     return Legalized;
2227   }
2228   case TargetOpcode::G_IMPLICIT_DEF: {
2229     Observer.changingInstr(MI);
2230     widenScalarDst(MI, WideTy);
2231     Observer.changedInstr(MI);
2232     return Legalized;
2233   }
2234   case TargetOpcode::G_BRCOND:
2235     Observer.changingInstr(MI);
2236     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2237     Observer.changedInstr(MI);
2238     return Legalized;
2239 
2240   case TargetOpcode::G_FCMP:
2241     Observer.changingInstr(MI);
2242     if (TypeIdx == 0)
2243       widenScalarDst(MI, WideTy);
2244     else {
2245       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2246       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2247     }
2248     Observer.changedInstr(MI);
2249     return Legalized;
2250 
2251   case TargetOpcode::G_ICMP:
2252     Observer.changingInstr(MI);
2253     if (TypeIdx == 0)
2254       widenScalarDst(MI, WideTy);
2255     else {
2256       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2257                                MI.getOperand(1).getPredicate()))
2258                                ? TargetOpcode::G_SEXT
2259                                : TargetOpcode::G_ZEXT;
2260       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2261       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2262     }
2263     Observer.changedInstr(MI);
2264     return Legalized;
2265 
2266   case TargetOpcode::G_PTR_ADD:
2267     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2268     Observer.changingInstr(MI);
2269     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2270     Observer.changedInstr(MI);
2271     return Legalized;
2272 
2273   case TargetOpcode::G_PHI: {
2274     assert(TypeIdx == 0 && "Expecting only Idx 0");
2275 
2276     Observer.changingInstr(MI);
2277     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2278       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2279       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2280       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2281     }
2282 
2283     MachineBasicBlock &MBB = *MI.getParent();
2284     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2285     widenScalarDst(MI, WideTy);
2286     Observer.changedInstr(MI);
2287     return Legalized;
2288   }
2289   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2290     if (TypeIdx == 0) {
2291       Register VecReg = MI.getOperand(1).getReg();
2292       LLT VecTy = MRI.getType(VecReg);
2293       Observer.changingInstr(MI);
2294 
2295       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2296                                      WideTy.getSizeInBits()),
2297                      1, TargetOpcode::G_SEXT);
2298 
2299       widenScalarDst(MI, WideTy, 0);
2300       Observer.changedInstr(MI);
2301       return Legalized;
2302     }
2303 
2304     if (TypeIdx != 2)
2305       return UnableToLegalize;
2306     Observer.changingInstr(MI);
2307     // TODO: Probably should be zext
2308     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2309     Observer.changedInstr(MI);
2310     return Legalized;
2311   }
2312   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2313     if (TypeIdx == 1) {
2314       Observer.changingInstr(MI);
2315 
2316       Register VecReg = MI.getOperand(1).getReg();
2317       LLT VecTy = MRI.getType(VecReg);
2318       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2319 
2320       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2321       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2322       widenScalarDst(MI, WideVecTy, 0);
2323       Observer.changedInstr(MI);
2324       return Legalized;
2325     }
2326 
2327     if (TypeIdx == 2) {
2328       Observer.changingInstr(MI);
2329       // TODO: Probably should be zext
2330       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2331       Observer.changedInstr(MI);
2332       return Legalized;
2333     }
2334 
2335     return UnableToLegalize;
2336   }
2337   case TargetOpcode::G_FADD:
2338   case TargetOpcode::G_FMUL:
2339   case TargetOpcode::G_FSUB:
2340   case TargetOpcode::G_FMA:
2341   case TargetOpcode::G_FMAD:
2342   case TargetOpcode::G_FNEG:
2343   case TargetOpcode::G_FABS:
2344   case TargetOpcode::G_FCANONICALIZE:
2345   case TargetOpcode::G_FMINNUM:
2346   case TargetOpcode::G_FMAXNUM:
2347   case TargetOpcode::G_FMINNUM_IEEE:
2348   case TargetOpcode::G_FMAXNUM_IEEE:
2349   case TargetOpcode::G_FMINIMUM:
2350   case TargetOpcode::G_FMAXIMUM:
2351   case TargetOpcode::G_FDIV:
2352   case TargetOpcode::G_FREM:
2353   case TargetOpcode::G_FCEIL:
2354   case TargetOpcode::G_FFLOOR:
2355   case TargetOpcode::G_FCOS:
2356   case TargetOpcode::G_FSIN:
2357   case TargetOpcode::G_FLOG10:
2358   case TargetOpcode::G_FLOG:
2359   case TargetOpcode::G_FLOG2:
2360   case TargetOpcode::G_FRINT:
2361   case TargetOpcode::G_FNEARBYINT:
2362   case TargetOpcode::G_FSQRT:
2363   case TargetOpcode::G_FEXP:
2364   case TargetOpcode::G_FEXP2:
2365   case TargetOpcode::G_FPOW:
2366   case TargetOpcode::G_INTRINSIC_TRUNC:
2367   case TargetOpcode::G_INTRINSIC_ROUND:
2368   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2369     assert(TypeIdx == 0);
2370     Observer.changingInstr(MI);
2371 
2372     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2373       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2374 
2375     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2376     Observer.changedInstr(MI);
2377     return Legalized;
2378   case TargetOpcode::G_FPOWI: {
2379     if (TypeIdx != 0)
2380       return UnableToLegalize;
2381     Observer.changingInstr(MI);
2382     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2383     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2384     Observer.changedInstr(MI);
2385     return Legalized;
2386   }
2387   case TargetOpcode::G_INTTOPTR:
2388     if (TypeIdx != 1)
2389       return UnableToLegalize;
2390 
2391     Observer.changingInstr(MI);
2392     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2393     Observer.changedInstr(MI);
2394     return Legalized;
2395   case TargetOpcode::G_PTRTOINT:
2396     if (TypeIdx != 0)
2397       return UnableToLegalize;
2398 
2399     Observer.changingInstr(MI);
2400     widenScalarDst(MI, WideTy, 0);
2401     Observer.changedInstr(MI);
2402     return Legalized;
2403   case TargetOpcode::G_BUILD_VECTOR: {
2404     Observer.changingInstr(MI);
2405 
2406     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2407     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2408       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2409 
2410     // Avoid changing the result vector type if the source element type was
2411     // requested.
2412     if (TypeIdx == 1) {
2413       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2414     } else {
2415       widenScalarDst(MI, WideTy, 0);
2416     }
2417 
2418     Observer.changedInstr(MI);
2419     return Legalized;
2420   }
2421   case TargetOpcode::G_SEXT_INREG:
2422     if (TypeIdx != 0)
2423       return UnableToLegalize;
2424 
2425     Observer.changingInstr(MI);
2426     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2427     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2428     Observer.changedInstr(MI);
2429     return Legalized;
2430   case TargetOpcode::G_PTRMASK: {
2431     if (TypeIdx != 1)
2432       return UnableToLegalize;
2433     Observer.changingInstr(MI);
2434     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2435     Observer.changedInstr(MI);
2436     return Legalized;
2437   }
2438   }
2439 }
2440 
2441 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2442                              MachineIRBuilder &B, Register Src, LLT Ty) {
2443   auto Unmerge = B.buildUnmerge(Ty, Src);
2444   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2445     Pieces.push_back(Unmerge.getReg(I));
2446 }
2447 
2448 LegalizerHelper::LegalizeResult
2449 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2450   Register Dst = MI.getOperand(0).getReg();
2451   Register Src = MI.getOperand(1).getReg();
2452   LLT DstTy = MRI.getType(Dst);
2453   LLT SrcTy = MRI.getType(Src);
2454 
2455   if (SrcTy.isVector()) {
2456     LLT SrcEltTy = SrcTy.getElementType();
2457     SmallVector<Register, 8> SrcRegs;
2458 
2459     if (DstTy.isVector()) {
2460       int NumDstElt = DstTy.getNumElements();
2461       int NumSrcElt = SrcTy.getNumElements();
2462 
2463       LLT DstEltTy = DstTy.getElementType();
2464       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2465       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2466 
2467       // If there's an element size mismatch, insert intermediate casts to match
2468       // the result element type.
2469       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2470         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2471         //
2472         // =>
2473         //
2474         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2475         // %3:_(<2 x s8>) = G_BITCAST %2
2476         // %4:_(<2 x s8>) = G_BITCAST %3
2477         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2478         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2479         SrcPartTy = SrcEltTy;
2480       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2481         //
2482         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2483         //
2484         // =>
2485         //
2486         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2487         // %3:_(s16) = G_BITCAST %2
2488         // %4:_(s16) = G_BITCAST %3
2489         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2490         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2491         DstCastTy = DstEltTy;
2492       }
2493 
2494       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2495       for (Register &SrcReg : SrcRegs)
2496         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2497     } else
2498       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2499 
2500     MIRBuilder.buildMerge(Dst, SrcRegs);
2501     MI.eraseFromParent();
2502     return Legalized;
2503   }
2504 
2505   if (DstTy.isVector()) {
2506     SmallVector<Register, 8> SrcRegs;
2507     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2508     MIRBuilder.buildMerge(Dst, SrcRegs);
2509     MI.eraseFromParent();
2510     return Legalized;
2511   }
2512 
2513   return UnableToLegalize;
2514 }
2515 
2516 /// Figure out the bit offset into a register when coercing a vector index for
2517 /// the wide element type. This is only for the case when promoting vector to
2518 /// one with larger elements.
2519 //
2520 ///
2521 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2522 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2523 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2524                                                    Register Idx,
2525                                                    unsigned NewEltSize,
2526                                                    unsigned OldEltSize) {
2527   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2528   LLT IdxTy = B.getMRI()->getType(Idx);
2529 
2530   // Now figure out the amount we need to shift to get the target bits.
2531   auto OffsetMask = B.buildConstant(
2532     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2533   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2534   return B.buildShl(IdxTy, OffsetIdx,
2535                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2536 }
2537 
2538 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2539 /// is casting to a vector with a smaller element size, perform multiple element
2540 /// extracts and merge the results. If this is coercing to a vector with larger
2541 /// elements, index the bitcasted vector and extract the target element with bit
2542 /// operations. This is intended to force the indexing in the native register
2543 /// size for architectures that can dynamically index the register file.
2544 LegalizerHelper::LegalizeResult
2545 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2546                                          LLT CastTy) {
2547   if (TypeIdx != 1)
2548     return UnableToLegalize;
2549 
2550   Register Dst = MI.getOperand(0).getReg();
2551   Register SrcVec = MI.getOperand(1).getReg();
2552   Register Idx = MI.getOperand(2).getReg();
2553   LLT SrcVecTy = MRI.getType(SrcVec);
2554   LLT IdxTy = MRI.getType(Idx);
2555 
2556   LLT SrcEltTy = SrcVecTy.getElementType();
2557   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2558   unsigned OldNumElts = SrcVecTy.getNumElements();
2559 
2560   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2561   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2562 
2563   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2564   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2565   if (NewNumElts > OldNumElts) {
2566     // Decreasing the vector element size
2567     //
2568     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2569     //  =>
2570     //  v4i32:castx = bitcast x:v2i64
2571     //
2572     // i64 = bitcast
2573     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2574     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2575     //
2576     if (NewNumElts % OldNumElts != 0)
2577       return UnableToLegalize;
2578 
2579     // Type of the intermediate result vector.
2580     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2581     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2582 
2583     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2584 
2585     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2586     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2587 
2588     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2589       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2590       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2591       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2592       NewOps[I] = Elt.getReg(0);
2593     }
2594 
2595     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2596     MIRBuilder.buildBitcast(Dst, NewVec);
2597     MI.eraseFromParent();
2598     return Legalized;
2599   }
2600 
2601   if (NewNumElts < OldNumElts) {
2602     if (NewEltSize % OldEltSize != 0)
2603       return UnableToLegalize;
2604 
2605     // This only depends on powers of 2 because we use bit tricks to figure out
2606     // the bit offset we need to shift to get the target element. A general
2607     // expansion could emit division/multiply.
2608     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2609       return UnableToLegalize;
2610 
2611     // Increasing the vector element size.
2612     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2613     //
2614     //   =>
2615     //
2616     // %cast = G_BITCAST %vec
2617     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2618     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2619     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2620     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2621     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2622     // %elt = G_TRUNC %elt_bits
2623 
2624     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2625     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2626 
2627     // Divide to get the index in the wider element type.
2628     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2629 
2630     Register WideElt = CastVec;
2631     if (CastTy.isVector()) {
2632       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2633                                                      ScaledIdx).getReg(0);
2634     }
2635 
2636     // Compute the bit offset into the register of the target element.
2637     Register OffsetBits = getBitcastWiderVectorElementOffset(
2638       MIRBuilder, Idx, NewEltSize, OldEltSize);
2639 
2640     // Shift the wide element to get the target element.
2641     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2642     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2643     MI.eraseFromParent();
2644     return Legalized;
2645   }
2646 
2647   return UnableToLegalize;
2648 }
2649 
2650 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2651 /// TargetReg, while preserving other bits in \p TargetReg.
2652 ///
2653 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2654 static Register buildBitFieldInsert(MachineIRBuilder &B,
2655                                     Register TargetReg, Register InsertReg,
2656                                     Register OffsetBits) {
2657   LLT TargetTy = B.getMRI()->getType(TargetReg);
2658   LLT InsertTy = B.getMRI()->getType(InsertReg);
2659   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2660   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2661 
2662   // Produce a bitmask of the value to insert
2663   auto EltMask = B.buildConstant(
2664     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2665                                    InsertTy.getSizeInBits()));
2666   // Shift it into position
2667   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2668   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2669 
2670   // Clear out the bits in the wide element
2671   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2672 
2673   // The value to insert has all zeros already, so stick it into the masked
2674   // wide element.
2675   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2676 }
2677 
2678 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2679 /// is increasing the element size, perform the indexing in the target element
2680 /// type, and use bit operations to insert at the element position. This is
2681 /// intended for architectures that can dynamically index the register file and
2682 /// want to force indexing in the native register size.
2683 LegalizerHelper::LegalizeResult
2684 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2685                                         LLT CastTy) {
2686   if (TypeIdx != 0)
2687     return UnableToLegalize;
2688 
2689   Register Dst = MI.getOperand(0).getReg();
2690   Register SrcVec = MI.getOperand(1).getReg();
2691   Register Val = MI.getOperand(2).getReg();
2692   Register Idx = MI.getOperand(3).getReg();
2693 
2694   LLT VecTy = MRI.getType(Dst);
2695   LLT IdxTy = MRI.getType(Idx);
2696 
2697   LLT VecEltTy = VecTy.getElementType();
2698   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2699   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2700   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2701 
2702   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2703   unsigned OldNumElts = VecTy.getNumElements();
2704 
2705   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2706   if (NewNumElts < OldNumElts) {
2707     if (NewEltSize % OldEltSize != 0)
2708       return UnableToLegalize;
2709 
2710     // This only depends on powers of 2 because we use bit tricks to figure out
2711     // the bit offset we need to shift to get the target element. A general
2712     // expansion could emit division/multiply.
2713     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2714       return UnableToLegalize;
2715 
2716     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2717     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2718 
2719     // Divide to get the index in the wider element type.
2720     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2721 
2722     Register ExtractedElt = CastVec;
2723     if (CastTy.isVector()) {
2724       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2725                                                           ScaledIdx).getReg(0);
2726     }
2727 
2728     // Compute the bit offset into the register of the target element.
2729     Register OffsetBits = getBitcastWiderVectorElementOffset(
2730       MIRBuilder, Idx, NewEltSize, OldEltSize);
2731 
2732     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2733                                                Val, OffsetBits);
2734     if (CastTy.isVector()) {
2735       InsertedElt = MIRBuilder.buildInsertVectorElement(
2736         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2737     }
2738 
2739     MIRBuilder.buildBitcast(Dst, InsertedElt);
2740     MI.eraseFromParent();
2741     return Legalized;
2742   }
2743 
2744   return UnableToLegalize;
2745 }
2746 
2747 LegalizerHelper::LegalizeResult
2748 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2749   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2750   Register DstReg = MI.getOperand(0).getReg();
2751   Register PtrReg = MI.getOperand(1).getReg();
2752   LLT DstTy = MRI.getType(DstReg);
2753   auto &MMO = **MI.memoperands_begin();
2754 
2755   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2756     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2757       // This load needs splitting into power of 2 sized loads.
2758       if (DstTy.isVector())
2759         return UnableToLegalize;
2760       if (isPowerOf2_32(DstTy.getSizeInBits()))
2761         return UnableToLegalize; // Don't know what we're being asked to do.
2762 
2763       // Our strategy here is to generate anyextending loads for the smaller
2764       // types up to next power-2 result type, and then combine the two larger
2765       // result values together, before truncating back down to the non-pow-2
2766       // type.
2767       // E.g. v1 = i24 load =>
2768       // v2 = i32 zextload (2 byte)
2769       // v3 = i32 load (1 byte)
2770       // v4 = i32 shl v3, 16
2771       // v5 = i32 or v4, v2
2772       // v1 = i24 trunc v5
2773       // By doing this we generate the correct truncate which should get
2774       // combined away as an artifact with a matching extend.
2775       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2776       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2777 
2778       MachineFunction &MF = MIRBuilder.getMF();
2779       MachineMemOperand *LargeMMO =
2780         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2781       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2782         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2783 
2784       LLT PtrTy = MRI.getType(PtrReg);
2785       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2786       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2787       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2788       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2789       auto LargeLoad = MIRBuilder.buildLoadInstr(
2790         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2791 
2792       auto OffsetCst = MIRBuilder.buildConstant(
2793         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2794       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2795       auto SmallPtr =
2796         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2797       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2798                                             *SmallMMO);
2799 
2800       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2801       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2802       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2803       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2804       MI.eraseFromParent();
2805       return Legalized;
2806     }
2807 
2808     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2809     MI.eraseFromParent();
2810     return Legalized;
2811   }
2812 
2813   return UnableToLegalize;
2814 }
2815 
2816 LegalizerHelper::LegalizeResult
2817 LegalizerHelper::lowerStore(MachineInstr &MI) {
2818   // Lower a non-power of 2 store into multiple pow-2 stores.
2819   // E.g. split an i24 store into an i16 store + i8 store.
2820   // We do this by first extending the stored value to the next largest power
2821   // of 2 type, and then using truncating stores to store the components.
2822   // By doing this, likewise with G_LOAD, generate an extend that can be
2823   // artifact-combined away instead of leaving behind extracts.
2824   Register SrcReg = MI.getOperand(0).getReg();
2825   Register PtrReg = MI.getOperand(1).getReg();
2826   LLT SrcTy = MRI.getType(SrcReg);
2827   MachineMemOperand &MMO = **MI.memoperands_begin();
2828   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2829     return UnableToLegalize;
2830   if (SrcTy.isVector())
2831     return UnableToLegalize;
2832   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2833     return UnableToLegalize; // Don't know what we're being asked to do.
2834 
2835   // Extend to the next pow-2.
2836   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2837   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2838 
2839   // Obtain the smaller value by shifting away the larger value.
2840   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2841   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2842   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2843   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2844 
2845   // Generate the PtrAdd and truncating stores.
2846   LLT PtrTy = MRI.getType(PtrReg);
2847   auto OffsetCst = MIRBuilder.buildConstant(
2848     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2849   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2850   auto SmallPtr =
2851     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2852 
2853   MachineFunction &MF = MIRBuilder.getMF();
2854   MachineMemOperand *LargeMMO =
2855     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2856   MachineMemOperand *SmallMMO =
2857     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2858   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2859   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2860   MI.eraseFromParent();
2861   return Legalized;
2862 }
2863 
2864 LegalizerHelper::LegalizeResult
2865 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2866   switch (MI.getOpcode()) {
2867   case TargetOpcode::G_LOAD: {
2868     if (TypeIdx != 0)
2869       return UnableToLegalize;
2870 
2871     Observer.changingInstr(MI);
2872     bitcastDst(MI, CastTy, 0);
2873     Observer.changedInstr(MI);
2874     return Legalized;
2875   }
2876   case TargetOpcode::G_STORE: {
2877     if (TypeIdx != 0)
2878       return UnableToLegalize;
2879 
2880     Observer.changingInstr(MI);
2881     bitcastSrc(MI, CastTy, 0);
2882     Observer.changedInstr(MI);
2883     return Legalized;
2884   }
2885   case TargetOpcode::G_SELECT: {
2886     if (TypeIdx != 0)
2887       return UnableToLegalize;
2888 
2889     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2890       LLVM_DEBUG(
2891           dbgs() << "bitcast action not implemented for vector select\n");
2892       return UnableToLegalize;
2893     }
2894 
2895     Observer.changingInstr(MI);
2896     bitcastSrc(MI, CastTy, 2);
2897     bitcastSrc(MI, CastTy, 3);
2898     bitcastDst(MI, CastTy, 0);
2899     Observer.changedInstr(MI);
2900     return Legalized;
2901   }
2902   case TargetOpcode::G_AND:
2903   case TargetOpcode::G_OR:
2904   case TargetOpcode::G_XOR: {
2905     Observer.changingInstr(MI);
2906     bitcastSrc(MI, CastTy, 1);
2907     bitcastSrc(MI, CastTy, 2);
2908     bitcastDst(MI, CastTy, 0);
2909     Observer.changedInstr(MI);
2910     return Legalized;
2911   }
2912   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2913     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2914   case TargetOpcode::G_INSERT_VECTOR_ELT:
2915     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2916   default:
2917     return UnableToLegalize;
2918   }
2919 }
2920 
2921 // Legalize an instruction by changing the opcode in place.
2922 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2923     Observer.changingInstr(MI);
2924     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2925     Observer.changedInstr(MI);
2926 }
2927 
2928 LegalizerHelper::LegalizeResult
2929 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2930   using namespace TargetOpcode;
2931 
2932   switch(MI.getOpcode()) {
2933   default:
2934     return UnableToLegalize;
2935   case TargetOpcode::G_BITCAST:
2936     return lowerBitcast(MI);
2937   case TargetOpcode::G_SREM:
2938   case TargetOpcode::G_UREM: {
2939     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2940     auto Quot =
2941         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2942                               {MI.getOperand(1), MI.getOperand(2)});
2943 
2944     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2945     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2946     MI.eraseFromParent();
2947     return Legalized;
2948   }
2949   case TargetOpcode::G_SADDO:
2950   case TargetOpcode::G_SSUBO:
2951     return lowerSADDO_SSUBO(MI);
2952   case TargetOpcode::G_UMULH:
2953   case TargetOpcode::G_SMULH:
2954     return lowerSMULH_UMULH(MI);
2955   case TargetOpcode::G_SMULO:
2956   case TargetOpcode::G_UMULO: {
2957     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2958     // result.
2959     Register Res = MI.getOperand(0).getReg();
2960     Register Overflow = MI.getOperand(1).getReg();
2961     Register LHS = MI.getOperand(2).getReg();
2962     Register RHS = MI.getOperand(3).getReg();
2963     LLT Ty = MRI.getType(Res);
2964 
2965     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2966                           ? TargetOpcode::G_SMULH
2967                           : TargetOpcode::G_UMULH;
2968 
2969     Observer.changingInstr(MI);
2970     const auto &TII = MIRBuilder.getTII();
2971     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2972     MI.RemoveOperand(1);
2973     Observer.changedInstr(MI);
2974 
2975     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2976     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2977 
2978     // Move insert point forward so we can use the Res register if needed.
2979     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2980 
2981     // For *signed* multiply, overflow is detected by checking:
2982     // (hi != (lo >> bitwidth-1))
2983     if (Opcode == TargetOpcode::G_SMULH) {
2984       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2985       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2986       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2987     } else {
2988       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2989     }
2990     return Legalized;
2991   }
2992   case TargetOpcode::G_FNEG: {
2993     Register Res = MI.getOperand(0).getReg();
2994     LLT Ty = MRI.getType(Res);
2995 
2996     // TODO: Handle vector types once we are able to
2997     // represent them.
2998     if (Ty.isVector())
2999       return UnableToLegalize;
3000     auto SignMask =
3001         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3002     Register SubByReg = MI.getOperand(1).getReg();
3003     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3004     MI.eraseFromParent();
3005     return Legalized;
3006   }
3007   case TargetOpcode::G_FSUB: {
3008     Register Res = MI.getOperand(0).getReg();
3009     LLT Ty = MRI.getType(Res);
3010 
3011     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3012     // First, check if G_FNEG is marked as Lower. If so, we may
3013     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3014     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3015       return UnableToLegalize;
3016     Register LHS = MI.getOperand(1).getReg();
3017     Register RHS = MI.getOperand(2).getReg();
3018     Register Neg = MRI.createGenericVirtualRegister(Ty);
3019     MIRBuilder.buildFNeg(Neg, RHS);
3020     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3021     MI.eraseFromParent();
3022     return Legalized;
3023   }
3024   case TargetOpcode::G_FMAD:
3025     return lowerFMad(MI);
3026   case TargetOpcode::G_FFLOOR:
3027     return lowerFFloor(MI);
3028   case TargetOpcode::G_INTRINSIC_ROUND:
3029     return lowerIntrinsicRound(MI);
3030   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3031     // Since round even is the assumed rounding mode for unconstrained FP
3032     // operations, rint and roundeven are the same operation.
3033     changeOpcode(MI, TargetOpcode::G_FRINT);
3034     return Legalized;
3035   }
3036   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3037     Register OldValRes = MI.getOperand(0).getReg();
3038     Register SuccessRes = MI.getOperand(1).getReg();
3039     Register Addr = MI.getOperand(2).getReg();
3040     Register CmpVal = MI.getOperand(3).getReg();
3041     Register NewVal = MI.getOperand(4).getReg();
3042     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3043                                   **MI.memoperands_begin());
3044     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3045     MI.eraseFromParent();
3046     return Legalized;
3047   }
3048   case TargetOpcode::G_LOAD:
3049   case TargetOpcode::G_SEXTLOAD:
3050   case TargetOpcode::G_ZEXTLOAD:
3051     return lowerLoad(MI);
3052   case TargetOpcode::G_STORE:
3053     return lowerStore(MI);
3054   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3055   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3056   case TargetOpcode::G_CTLZ:
3057   case TargetOpcode::G_CTTZ:
3058   case TargetOpcode::G_CTPOP:
3059     return lowerBitCount(MI);
3060   case G_UADDO: {
3061     Register Res = MI.getOperand(0).getReg();
3062     Register CarryOut = MI.getOperand(1).getReg();
3063     Register LHS = MI.getOperand(2).getReg();
3064     Register RHS = MI.getOperand(3).getReg();
3065 
3066     MIRBuilder.buildAdd(Res, LHS, RHS);
3067     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3068 
3069     MI.eraseFromParent();
3070     return Legalized;
3071   }
3072   case G_UADDE: {
3073     Register Res = MI.getOperand(0).getReg();
3074     Register CarryOut = MI.getOperand(1).getReg();
3075     Register LHS = MI.getOperand(2).getReg();
3076     Register RHS = MI.getOperand(3).getReg();
3077     Register CarryIn = MI.getOperand(4).getReg();
3078     LLT Ty = MRI.getType(Res);
3079 
3080     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3081     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3082     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3083     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3084 
3085     MI.eraseFromParent();
3086     return Legalized;
3087   }
3088   case G_USUBO: {
3089     Register Res = MI.getOperand(0).getReg();
3090     Register BorrowOut = MI.getOperand(1).getReg();
3091     Register LHS = MI.getOperand(2).getReg();
3092     Register RHS = MI.getOperand(3).getReg();
3093 
3094     MIRBuilder.buildSub(Res, LHS, RHS);
3095     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3096 
3097     MI.eraseFromParent();
3098     return Legalized;
3099   }
3100   case G_USUBE: {
3101     Register Res = MI.getOperand(0).getReg();
3102     Register BorrowOut = MI.getOperand(1).getReg();
3103     Register LHS = MI.getOperand(2).getReg();
3104     Register RHS = MI.getOperand(3).getReg();
3105     Register BorrowIn = MI.getOperand(4).getReg();
3106     const LLT CondTy = MRI.getType(BorrowOut);
3107     const LLT Ty = MRI.getType(Res);
3108 
3109     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3110     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3111     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3112 
3113     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3114     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3115     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3116 
3117     MI.eraseFromParent();
3118     return Legalized;
3119   }
3120   case G_UITOFP:
3121     return lowerUITOFP(MI);
3122   case G_SITOFP:
3123     return lowerSITOFP(MI);
3124   case G_FPTOUI:
3125     return lowerFPTOUI(MI);
3126   case G_FPTOSI:
3127     return lowerFPTOSI(MI);
3128   case G_FPTRUNC:
3129     return lowerFPTRUNC(MI);
3130   case G_FPOWI:
3131     return lowerFPOWI(MI);
3132   case G_SMIN:
3133   case G_SMAX:
3134   case G_UMIN:
3135   case G_UMAX:
3136     return lowerMinMax(MI);
3137   case G_FCOPYSIGN:
3138     return lowerFCopySign(MI);
3139   case G_FMINNUM:
3140   case G_FMAXNUM:
3141     return lowerFMinNumMaxNum(MI);
3142   case G_MERGE_VALUES:
3143     return lowerMergeValues(MI);
3144   case G_UNMERGE_VALUES:
3145     return lowerUnmergeValues(MI);
3146   case TargetOpcode::G_SEXT_INREG: {
3147     assert(MI.getOperand(2).isImm() && "Expected immediate");
3148     int64_t SizeInBits = MI.getOperand(2).getImm();
3149 
3150     Register DstReg = MI.getOperand(0).getReg();
3151     Register SrcReg = MI.getOperand(1).getReg();
3152     LLT DstTy = MRI.getType(DstReg);
3153     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3154 
3155     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3156     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3157     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3158     MI.eraseFromParent();
3159     return Legalized;
3160   }
3161   case G_EXTRACT_VECTOR_ELT:
3162   case G_INSERT_VECTOR_ELT:
3163     return lowerExtractInsertVectorElt(MI);
3164   case G_SHUFFLE_VECTOR:
3165     return lowerShuffleVector(MI);
3166   case G_DYN_STACKALLOC:
3167     return lowerDynStackAlloc(MI);
3168   case G_EXTRACT:
3169     return lowerExtract(MI);
3170   case G_INSERT:
3171     return lowerInsert(MI);
3172   case G_BSWAP:
3173     return lowerBswap(MI);
3174   case G_BITREVERSE:
3175     return lowerBitreverse(MI);
3176   case G_READ_REGISTER:
3177   case G_WRITE_REGISTER:
3178     return lowerReadWriteRegister(MI);
3179   case G_UADDSAT:
3180   case G_USUBSAT: {
3181     // Try to make a reasonable guess about which lowering strategy to use. The
3182     // target can override this with custom lowering and calling the
3183     // implementation functions.
3184     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3185     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3186       return lowerAddSubSatToMinMax(MI);
3187     return lowerAddSubSatToAddoSubo(MI);
3188   }
3189   case G_SADDSAT:
3190   case G_SSUBSAT: {
3191     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3192 
3193     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3194     // since it's a shorter expansion. However, we would need to figure out the
3195     // preferred boolean type for the carry out for the query.
3196     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3197       return lowerAddSubSatToMinMax(MI);
3198     return lowerAddSubSatToAddoSubo(MI);
3199   }
3200   case G_SSHLSAT:
3201   case G_USHLSAT:
3202     return lowerShlSat(MI);
3203   case G_ABS: {
3204     // Expand %res = G_ABS %a into:
3205     // %v1 = G_ASHR %a, scalar_size-1
3206     // %v2 = G_ADD %a, %v1
3207     // %res = G_XOR %v2, %v1
3208     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3209     Register OpReg = MI.getOperand(1).getReg();
3210     auto ShiftAmt =
3211         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3212     auto Shift =
3213         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3214     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3215     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3216     MI.eraseFromParent();
3217     return Legalized;
3218   }
3219   case G_SELECT:
3220     return lowerSelect(MI);
3221   case G_SDIVREM:
3222   case G_UDIVREM:
3223     return lowerDIVREM(MI);
3224   case G_FSHL:
3225   case G_FSHR:
3226     return lowerFunnelShift(MI);
3227   case G_ROTL:
3228   case G_ROTR:
3229     return lowerRotate(MI);
3230   }
3231 }
3232 
3233 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3234                                                   Align MinAlign) const {
3235   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3236   // datalayout for the preferred alignment. Also there should be a target hook
3237   // for this to allow targets to reduce the alignment and ignore the
3238   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3239   // the type.
3240   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3241 }
3242 
3243 MachineInstrBuilder
3244 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3245                                       MachinePointerInfo &PtrInfo) {
3246   MachineFunction &MF = MIRBuilder.getMF();
3247   const DataLayout &DL = MIRBuilder.getDataLayout();
3248   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3249 
3250   unsigned AddrSpace = DL.getAllocaAddrSpace();
3251   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3252 
3253   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3254   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3255 }
3256 
3257 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3258                                         LLT VecTy) {
3259   int64_t IdxVal;
3260   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3261     return IdxReg;
3262 
3263   LLT IdxTy = B.getMRI()->getType(IdxReg);
3264   unsigned NElts = VecTy.getNumElements();
3265   if (isPowerOf2_32(NElts)) {
3266     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3267     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3268   }
3269 
3270   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3271       .getReg(0);
3272 }
3273 
3274 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3275                                                   Register Index) {
3276   LLT EltTy = VecTy.getElementType();
3277 
3278   // Calculate the element offset and add it to the pointer.
3279   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3280   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3281          "Converting bits to bytes lost precision");
3282 
3283   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3284 
3285   LLT IdxTy = MRI.getType(Index);
3286   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3287                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3288 
3289   LLT PtrTy = MRI.getType(VecPtr);
3290   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3291 }
3292 
3293 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3294     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3295   Register DstReg = MI.getOperand(0).getReg();
3296   LLT DstTy = MRI.getType(DstReg);
3297   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3298 
3299   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3300 
3301   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3302   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3303 
3304   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3305   MI.eraseFromParent();
3306   return Legalized;
3307 }
3308 
3309 // Handle splitting vector operations which need to have the same number of
3310 // elements in each type index, but each type index may have a different element
3311 // type.
3312 //
3313 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3314 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3315 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3316 //
3317 // Also handles some irregular breakdown cases, e.g.
3318 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3319 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3320 //             s64 = G_SHL s64, s32
3321 LegalizerHelper::LegalizeResult
3322 LegalizerHelper::fewerElementsVectorMultiEltType(
3323   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3324   if (TypeIdx != 0)
3325     return UnableToLegalize;
3326 
3327   const LLT NarrowTy0 = NarrowTyArg;
3328   const unsigned NewNumElts =
3329       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3330 
3331   const Register DstReg = MI.getOperand(0).getReg();
3332   LLT DstTy = MRI.getType(DstReg);
3333   LLT LeftoverTy0;
3334 
3335   // All of the operands need to have the same number of elements, so if we can
3336   // determine a type breakdown for the result type, we can for all of the
3337   // source types.
3338   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3339   if (NumParts < 0)
3340     return UnableToLegalize;
3341 
3342   SmallVector<MachineInstrBuilder, 4> NewInsts;
3343 
3344   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3345   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3346 
3347   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3348     Register SrcReg = MI.getOperand(I).getReg();
3349     LLT SrcTyI = MRI.getType(SrcReg);
3350     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3351     LLT LeftoverTyI;
3352 
3353     // Split this operand into the requested typed registers, and any leftover
3354     // required to reproduce the original type.
3355     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3356                       LeftoverRegs))
3357       return UnableToLegalize;
3358 
3359     if (I == 1) {
3360       // For the first operand, create an instruction for each part and setup
3361       // the result.
3362       for (Register PartReg : PartRegs) {
3363         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3364         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3365                                .addDef(PartDstReg)
3366                                .addUse(PartReg));
3367         DstRegs.push_back(PartDstReg);
3368       }
3369 
3370       for (Register LeftoverReg : LeftoverRegs) {
3371         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3372         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3373                                .addDef(PartDstReg)
3374                                .addUse(LeftoverReg));
3375         LeftoverDstRegs.push_back(PartDstReg);
3376       }
3377     } else {
3378       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3379 
3380       // Add the newly created operand splits to the existing instructions. The
3381       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3382       // pieces.
3383       unsigned InstCount = 0;
3384       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3385         NewInsts[InstCount++].addUse(PartRegs[J]);
3386       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3387         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3388     }
3389 
3390     PartRegs.clear();
3391     LeftoverRegs.clear();
3392   }
3393 
3394   // Insert the newly built operations and rebuild the result register.
3395   for (auto &MIB : NewInsts)
3396     MIRBuilder.insertInstr(MIB);
3397 
3398   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3399 
3400   MI.eraseFromParent();
3401   return Legalized;
3402 }
3403 
3404 LegalizerHelper::LegalizeResult
3405 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3406                                           LLT NarrowTy) {
3407   if (TypeIdx != 0)
3408     return UnableToLegalize;
3409 
3410   Register DstReg = MI.getOperand(0).getReg();
3411   Register SrcReg = MI.getOperand(1).getReg();
3412   LLT DstTy = MRI.getType(DstReg);
3413   LLT SrcTy = MRI.getType(SrcReg);
3414 
3415   LLT NarrowTy0 = NarrowTy;
3416   LLT NarrowTy1;
3417   unsigned NumParts;
3418 
3419   if (NarrowTy.isVector()) {
3420     // Uneven breakdown not handled.
3421     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3422     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3423       return UnableToLegalize;
3424 
3425     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3426   } else {
3427     NumParts = DstTy.getNumElements();
3428     NarrowTy1 = SrcTy.getElementType();
3429   }
3430 
3431   SmallVector<Register, 4> SrcRegs, DstRegs;
3432   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3433 
3434   for (unsigned I = 0; I < NumParts; ++I) {
3435     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3436     MachineInstr *NewInst =
3437         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3438 
3439     NewInst->setFlags(MI.getFlags());
3440     DstRegs.push_back(DstReg);
3441   }
3442 
3443   if (NarrowTy.isVector())
3444     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3445   else
3446     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3447 
3448   MI.eraseFromParent();
3449   return Legalized;
3450 }
3451 
3452 LegalizerHelper::LegalizeResult
3453 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3454                                         LLT NarrowTy) {
3455   Register DstReg = MI.getOperand(0).getReg();
3456   Register Src0Reg = MI.getOperand(2).getReg();
3457   LLT DstTy = MRI.getType(DstReg);
3458   LLT SrcTy = MRI.getType(Src0Reg);
3459 
3460   unsigned NumParts;
3461   LLT NarrowTy0, NarrowTy1;
3462 
3463   if (TypeIdx == 0) {
3464     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3465     unsigned OldElts = DstTy.getNumElements();
3466 
3467     NarrowTy0 = NarrowTy;
3468     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3469     NarrowTy1 = NarrowTy.isVector() ?
3470       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3471       SrcTy.getElementType();
3472 
3473   } else {
3474     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3475     unsigned OldElts = SrcTy.getNumElements();
3476 
3477     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3478       NarrowTy.getNumElements();
3479     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3480                             DstTy.getScalarSizeInBits());
3481     NarrowTy1 = NarrowTy;
3482   }
3483 
3484   // FIXME: Don't know how to handle the situation where the small vectors
3485   // aren't all the same size yet.
3486   if (NarrowTy1.isVector() &&
3487       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3488     return UnableToLegalize;
3489 
3490   CmpInst::Predicate Pred
3491     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3492 
3493   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3494   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3495   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3496 
3497   for (unsigned I = 0; I < NumParts; ++I) {
3498     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3499     DstRegs.push_back(DstReg);
3500 
3501     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3502       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3503     else {
3504       MachineInstr *NewCmp
3505         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3506       NewCmp->setFlags(MI.getFlags());
3507     }
3508   }
3509 
3510   if (NarrowTy1.isVector())
3511     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3512   else
3513     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3514 
3515   MI.eraseFromParent();
3516   return Legalized;
3517 }
3518 
3519 LegalizerHelper::LegalizeResult
3520 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3521                                            LLT NarrowTy) {
3522   Register DstReg = MI.getOperand(0).getReg();
3523   Register CondReg = MI.getOperand(1).getReg();
3524 
3525   unsigned NumParts = 0;
3526   LLT NarrowTy0, NarrowTy1;
3527 
3528   LLT DstTy = MRI.getType(DstReg);
3529   LLT CondTy = MRI.getType(CondReg);
3530   unsigned Size = DstTy.getSizeInBits();
3531 
3532   assert(TypeIdx == 0 || CondTy.isVector());
3533 
3534   if (TypeIdx == 0) {
3535     NarrowTy0 = NarrowTy;
3536     NarrowTy1 = CondTy;
3537 
3538     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3539     // FIXME: Don't know how to handle the situation where the small vectors
3540     // aren't all the same size yet.
3541     if (Size % NarrowSize != 0)
3542       return UnableToLegalize;
3543 
3544     NumParts = Size / NarrowSize;
3545 
3546     // Need to break down the condition type
3547     if (CondTy.isVector()) {
3548       if (CondTy.getNumElements() == NumParts)
3549         NarrowTy1 = CondTy.getElementType();
3550       else
3551         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3552                                 CondTy.getScalarSizeInBits());
3553     }
3554   } else {
3555     NumParts = CondTy.getNumElements();
3556     if (NarrowTy.isVector()) {
3557       // TODO: Handle uneven breakdown.
3558       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3559         return UnableToLegalize;
3560 
3561       return UnableToLegalize;
3562     } else {
3563       NarrowTy0 = DstTy.getElementType();
3564       NarrowTy1 = NarrowTy;
3565     }
3566   }
3567 
3568   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3569   if (CondTy.isVector())
3570     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3571 
3572   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3573   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3574 
3575   for (unsigned i = 0; i < NumParts; ++i) {
3576     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3577     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3578                            Src1Regs[i], Src2Regs[i]);
3579     DstRegs.push_back(DstReg);
3580   }
3581 
3582   if (NarrowTy0.isVector())
3583     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3584   else
3585     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3586 
3587   MI.eraseFromParent();
3588   return Legalized;
3589 }
3590 
3591 LegalizerHelper::LegalizeResult
3592 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3593                                         LLT NarrowTy) {
3594   const Register DstReg = MI.getOperand(0).getReg();
3595   LLT PhiTy = MRI.getType(DstReg);
3596   LLT LeftoverTy;
3597 
3598   // All of the operands need to have the same number of elements, so if we can
3599   // determine a type breakdown for the result type, we can for all of the
3600   // source types.
3601   int NumParts, NumLeftover;
3602   std::tie(NumParts, NumLeftover)
3603     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3604   if (NumParts < 0)
3605     return UnableToLegalize;
3606 
3607   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3608   SmallVector<MachineInstrBuilder, 4> NewInsts;
3609 
3610   const int TotalNumParts = NumParts + NumLeftover;
3611 
3612   // Insert the new phis in the result block first.
3613   for (int I = 0; I != TotalNumParts; ++I) {
3614     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3615     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3616     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3617                        .addDef(PartDstReg));
3618     if (I < NumParts)
3619       DstRegs.push_back(PartDstReg);
3620     else
3621       LeftoverDstRegs.push_back(PartDstReg);
3622   }
3623 
3624   MachineBasicBlock *MBB = MI.getParent();
3625   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3626   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3627 
3628   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3629 
3630   // Insert code to extract the incoming values in each predecessor block.
3631   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3632     PartRegs.clear();
3633     LeftoverRegs.clear();
3634 
3635     Register SrcReg = MI.getOperand(I).getReg();
3636     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3637     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3638 
3639     LLT Unused;
3640     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3641                       LeftoverRegs))
3642       return UnableToLegalize;
3643 
3644     // Add the newly created operand splits to the existing instructions. The
3645     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3646     // pieces.
3647     for (int J = 0; J != TotalNumParts; ++J) {
3648       MachineInstrBuilder MIB = NewInsts[J];
3649       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3650       MIB.addMBB(&OpMBB);
3651     }
3652   }
3653 
3654   MI.eraseFromParent();
3655   return Legalized;
3656 }
3657 
3658 LegalizerHelper::LegalizeResult
3659 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3660                                                   unsigned TypeIdx,
3661                                                   LLT NarrowTy) {
3662   if (TypeIdx != 1)
3663     return UnableToLegalize;
3664 
3665   const int NumDst = MI.getNumOperands() - 1;
3666   const Register SrcReg = MI.getOperand(NumDst).getReg();
3667   LLT SrcTy = MRI.getType(SrcReg);
3668 
3669   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3670 
3671   // TODO: Create sequence of extracts.
3672   if (DstTy == NarrowTy)
3673     return UnableToLegalize;
3674 
3675   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3676   if (DstTy == GCDTy) {
3677     // This would just be a copy of the same unmerge.
3678     // TODO: Create extracts, pad with undef and create intermediate merges.
3679     return UnableToLegalize;
3680   }
3681 
3682   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3683   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3684   const int PartsPerUnmerge = NumDst / NumUnmerge;
3685 
3686   for (int I = 0; I != NumUnmerge; ++I) {
3687     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3688 
3689     for (int J = 0; J != PartsPerUnmerge; ++J)
3690       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3691     MIB.addUse(Unmerge.getReg(I));
3692   }
3693 
3694   MI.eraseFromParent();
3695   return Legalized;
3696 }
3697 
3698 LegalizerHelper::LegalizeResult
3699 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3700                                          LLT NarrowTy) {
3701   Register Result = MI.getOperand(0).getReg();
3702   Register Overflow = MI.getOperand(1).getReg();
3703   Register LHS = MI.getOperand(2).getReg();
3704   Register RHS = MI.getOperand(3).getReg();
3705 
3706   LLT SrcTy = MRI.getType(LHS);
3707   if (!SrcTy.isVector())
3708     return UnableToLegalize;
3709 
3710   LLT ElementType = SrcTy.getElementType();
3711   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3712   const int NumResult = SrcTy.getNumElements();
3713   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3714 
3715   // Unmerge the operands to smaller parts of GCD type.
3716   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3717   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3718 
3719   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3720   const int PartsPerUnmerge = NumResult / NumOps;
3721   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3722   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3723 
3724   // Perform the operation over unmerged parts.
3725   SmallVector<Register, 8> ResultParts;
3726   SmallVector<Register, 8> OverflowParts;
3727   for (int I = 0; I != NumOps; ++I) {
3728     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3729     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3730     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3731                                          {Operand1, Operand2});
3732     ResultParts.push_back(PartMul->getOperand(0).getReg());
3733     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3734   }
3735 
3736   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3737   LLT OverflowLCMTy =
3738       LLT::scalarOrVector(ResultLCMTy.getNumElements(), OverflowElementTy);
3739 
3740   // Recombine the pieces to the original result and overflow registers.
3741   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3742   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3743   MI.eraseFromParent();
3744   return Legalized;
3745 }
3746 
3747 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3748 // a vector
3749 //
3750 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3751 // undef as necessary.
3752 //
3753 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3754 //   -> <2 x s16>
3755 //
3756 // %4:_(s16) = G_IMPLICIT_DEF
3757 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3758 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3759 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3760 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3761 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3762 LegalizerHelper::LegalizeResult
3763 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3764                                           LLT NarrowTy) {
3765   Register DstReg = MI.getOperand(0).getReg();
3766   LLT DstTy = MRI.getType(DstReg);
3767   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3768   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3769 
3770   // Break into a common type
3771   SmallVector<Register, 16> Parts;
3772   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3773     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3774 
3775   // Build the requested new merge, padding with undef.
3776   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3777                                   TargetOpcode::G_ANYEXT);
3778 
3779   // Pack into the original result register.
3780   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3781 
3782   MI.eraseFromParent();
3783   return Legalized;
3784 }
3785 
3786 LegalizerHelper::LegalizeResult
3787 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3788                                                            unsigned TypeIdx,
3789                                                            LLT NarrowVecTy) {
3790   Register DstReg = MI.getOperand(0).getReg();
3791   Register SrcVec = MI.getOperand(1).getReg();
3792   Register InsertVal;
3793   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3794 
3795   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3796   if (IsInsert)
3797     InsertVal = MI.getOperand(2).getReg();
3798 
3799   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3800 
3801   // TODO: Handle total scalarization case.
3802   if (!NarrowVecTy.isVector())
3803     return UnableToLegalize;
3804 
3805   LLT VecTy = MRI.getType(SrcVec);
3806 
3807   // If the index is a constant, we can really break this down as you would
3808   // expect, and index into the target size pieces.
3809   int64_t IdxVal;
3810   auto MaybeCst =
3811       getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true,
3812                                         /*HandleFConstants*/ false);
3813   if (MaybeCst) {
3814     IdxVal = MaybeCst->Value.getSExtValue();
3815     // Avoid out of bounds indexing the pieces.
3816     if (IdxVal >= VecTy.getNumElements()) {
3817       MIRBuilder.buildUndef(DstReg);
3818       MI.eraseFromParent();
3819       return Legalized;
3820     }
3821 
3822     SmallVector<Register, 8> VecParts;
3823     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3824 
3825     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3826     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3827                                     TargetOpcode::G_ANYEXT);
3828 
3829     unsigned NewNumElts = NarrowVecTy.getNumElements();
3830 
3831     LLT IdxTy = MRI.getType(Idx);
3832     int64_t PartIdx = IdxVal / NewNumElts;
3833     auto NewIdx =
3834         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3835 
3836     if (IsInsert) {
3837       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3838 
3839       // Use the adjusted index to insert into one of the subvectors.
3840       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3841           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3842       VecParts[PartIdx] = InsertPart.getReg(0);
3843 
3844       // Recombine the inserted subvector with the others to reform the result
3845       // vector.
3846       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3847     } else {
3848       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3849     }
3850 
3851     MI.eraseFromParent();
3852     return Legalized;
3853   }
3854 
3855   // With a variable index, we can't perform the operation in a smaller type, so
3856   // we're forced to expand this.
3857   //
3858   // TODO: We could emit a chain of compare/select to figure out which piece to
3859   // index.
3860   return lowerExtractInsertVectorElt(MI);
3861 }
3862 
3863 LegalizerHelper::LegalizeResult
3864 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3865                                       LLT NarrowTy) {
3866   // FIXME: Don't know how to handle secondary types yet.
3867   if (TypeIdx != 0)
3868     return UnableToLegalize;
3869 
3870   MachineMemOperand *MMO = *MI.memoperands_begin();
3871 
3872   // This implementation doesn't work for atomics. Give up instead of doing
3873   // something invalid.
3874   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3875       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3876     return UnableToLegalize;
3877 
3878   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3879   Register ValReg = MI.getOperand(0).getReg();
3880   Register AddrReg = MI.getOperand(1).getReg();
3881   LLT ValTy = MRI.getType(ValReg);
3882 
3883   // FIXME: Do we need a distinct NarrowMemory legalize action?
3884   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3885     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3886     return UnableToLegalize;
3887   }
3888 
3889   int NumParts = -1;
3890   int NumLeftover = -1;
3891   LLT LeftoverTy;
3892   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3893   if (IsLoad) {
3894     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3895   } else {
3896     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3897                      NarrowLeftoverRegs)) {
3898       NumParts = NarrowRegs.size();
3899       NumLeftover = NarrowLeftoverRegs.size();
3900     }
3901   }
3902 
3903   if (NumParts == -1)
3904     return UnableToLegalize;
3905 
3906   LLT PtrTy = MRI.getType(AddrReg);
3907   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3908 
3909   unsigned TotalSize = ValTy.getSizeInBits();
3910 
3911   // Split the load/store into PartTy sized pieces starting at Offset. If this
3912   // is a load, return the new registers in ValRegs. For a store, each elements
3913   // of ValRegs should be PartTy. Returns the next offset that needs to be
3914   // handled.
3915   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3916                              unsigned Offset) -> unsigned {
3917     MachineFunction &MF = MIRBuilder.getMF();
3918     unsigned PartSize = PartTy.getSizeInBits();
3919     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3920          Offset += PartSize, ++Idx) {
3921       unsigned ByteSize = PartSize / 8;
3922       unsigned ByteOffset = Offset / 8;
3923       Register NewAddrReg;
3924 
3925       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3926 
3927       MachineMemOperand *NewMMO =
3928         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3929 
3930       if (IsLoad) {
3931         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3932         ValRegs.push_back(Dst);
3933         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3934       } else {
3935         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3936       }
3937     }
3938 
3939     return Offset;
3940   };
3941 
3942   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3943 
3944   // Handle the rest of the register if this isn't an even type breakdown.
3945   if (LeftoverTy.isValid())
3946     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3947 
3948   if (IsLoad) {
3949     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3950                 LeftoverTy, NarrowLeftoverRegs);
3951   }
3952 
3953   MI.eraseFromParent();
3954   return Legalized;
3955 }
3956 
3957 LegalizerHelper::LegalizeResult
3958 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3959                                       LLT NarrowTy) {
3960   assert(TypeIdx == 0 && "only one type index expected");
3961 
3962   const unsigned Opc = MI.getOpcode();
3963   const int NumDefOps = MI.getNumExplicitDefs();
3964   const int NumSrcOps = MI.getNumOperands() - NumDefOps;
3965   const unsigned Flags = MI.getFlags();
3966   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3967   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3968 
3969   assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
3970                                      "result and 1-3 sources or 2 results and "
3971                                      "1-2 sources");
3972 
3973   SmallVector<Register, 2> DstRegs;
3974   for (int I = 0; I < NumDefOps; ++I)
3975     DstRegs.push_back(MI.getOperand(I).getReg());
3976 
3977   // First of all check whether we are narrowing (changing the element type)
3978   // or reducing the vector elements
3979   const LLT DstTy = MRI.getType(DstRegs[0]);
3980   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3981 
3982   SmallVector<Register, 8> ExtractedRegs[3];
3983   SmallVector<Register, 8> Parts;
3984 
3985   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3986 
3987   // Break down all the sources into NarrowTy pieces we can operate on. This may
3988   // involve creating merges to a wider type, padded with undef.
3989   for (int I = 0; I != NumSrcOps; ++I) {
3990     Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
3991     LLT SrcTy = MRI.getType(SrcReg);
3992 
3993     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3994     // For fewerElements, this is a smaller vector with the same element type.
3995     LLT OpNarrowTy;
3996     if (IsNarrow) {
3997       OpNarrowTy = NarrowScalarTy;
3998 
3999       // In case of narrowing, we need to cast vectors to scalars for this to
4000       // work properly
4001       // FIXME: Can we do without the bitcast here if we're narrowing?
4002       if (SrcTy.isVector()) {
4003         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
4004         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
4005       }
4006     } else {
4007       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
4008     }
4009 
4010     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
4011 
4012     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
4013     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
4014                         TargetOpcode::G_ANYEXT);
4015   }
4016 
4017   SmallVector<Register, 8> ResultRegs[2];
4018 
4019   // Input operands for each sub-instruction.
4020   SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
4021 
4022   int NumParts = ExtractedRegs[0].size();
4023   const unsigned DstSize = DstTy.getSizeInBits();
4024   const LLT DstScalarTy = LLT::scalar(DstSize);
4025 
4026   // Narrowing needs to use scalar types
4027   LLT DstLCMTy, NarrowDstTy;
4028   if (IsNarrow) {
4029     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4030     NarrowDstTy = NarrowScalarTy;
4031   } else {
4032     DstLCMTy = getLCMType(DstTy, NarrowTy);
4033     NarrowDstTy = NarrowTy;
4034   }
4035 
4036   // We widened the source registers to satisfy merge/unmerge size
4037   // constraints. We'll have some extra fully undef parts.
4038   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4039 
4040   for (int I = 0; I != NumRealParts; ++I) {
4041     // Emit this instruction on each of the split pieces.
4042     for (int J = 0; J != NumSrcOps; ++J)
4043       InputRegs[J] = ExtractedRegs[J][I];
4044 
4045     MachineInstrBuilder Inst;
4046     if (NumDefOps == 1)
4047       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4048     else
4049       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4050                                    Flags);
4051 
4052     for (int J = 0; J != NumDefOps; ++J)
4053       ResultRegs[J].push_back(Inst.getReg(J));
4054   }
4055 
4056   // Fill out the widened result with undef instead of creating instructions
4057   // with undef inputs.
4058   int NumUndefParts = NumParts - NumRealParts;
4059   if (NumUndefParts != 0) {
4060     Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4061     for (int I = 0; I != NumDefOps; ++I)
4062       ResultRegs[I].append(NumUndefParts, Undef);
4063   }
4064 
4065   // Extract the possibly padded result. Use a scratch register if we need to do
4066   // a final bitcast, otherwise use the original result register.
4067   Register MergeDstReg;
4068   for (int I = 0; I != NumDefOps; ++I) {
4069     if (IsNarrow && DstTy.isVector())
4070       MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4071     else
4072       MergeDstReg = DstRegs[I];
4073 
4074     buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4075 
4076     // Recast to vector if we narrowed a vector
4077     if (IsNarrow && DstTy.isVector())
4078       MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4079   }
4080 
4081   MI.eraseFromParent();
4082   return Legalized;
4083 }
4084 
4085 LegalizerHelper::LegalizeResult
4086 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4087                                               LLT NarrowTy) {
4088   Register DstReg = MI.getOperand(0).getReg();
4089   Register SrcReg = MI.getOperand(1).getReg();
4090   int64_t Imm = MI.getOperand(2).getImm();
4091 
4092   LLT DstTy = MRI.getType(DstReg);
4093 
4094   SmallVector<Register, 8> Parts;
4095   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4096   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4097 
4098   for (Register &R : Parts)
4099     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4100 
4101   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4102 
4103   MI.eraseFromParent();
4104   return Legalized;
4105 }
4106 
4107 LegalizerHelper::LegalizeResult
4108 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4109                                      LLT NarrowTy) {
4110   using namespace TargetOpcode;
4111 
4112   switch (MI.getOpcode()) {
4113   case G_IMPLICIT_DEF:
4114     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4115   case G_TRUNC:
4116   case G_AND:
4117   case G_OR:
4118   case G_XOR:
4119   case G_ADD:
4120   case G_SUB:
4121   case G_MUL:
4122   case G_PTR_ADD:
4123   case G_SMULH:
4124   case G_UMULH:
4125   case G_FADD:
4126   case G_FMUL:
4127   case G_FSUB:
4128   case G_FNEG:
4129   case G_FABS:
4130   case G_FCANONICALIZE:
4131   case G_FDIV:
4132   case G_FREM:
4133   case G_FMA:
4134   case G_FMAD:
4135   case G_FPOW:
4136   case G_FEXP:
4137   case G_FEXP2:
4138   case G_FLOG:
4139   case G_FLOG2:
4140   case G_FLOG10:
4141   case G_FNEARBYINT:
4142   case G_FCEIL:
4143   case G_FFLOOR:
4144   case G_FRINT:
4145   case G_INTRINSIC_ROUND:
4146   case G_INTRINSIC_ROUNDEVEN:
4147   case G_INTRINSIC_TRUNC:
4148   case G_FCOS:
4149   case G_FSIN:
4150   case G_FSQRT:
4151   case G_BSWAP:
4152   case G_BITREVERSE:
4153   case G_SDIV:
4154   case G_UDIV:
4155   case G_SREM:
4156   case G_UREM:
4157   case G_SDIVREM:
4158   case G_UDIVREM:
4159   case G_SMIN:
4160   case G_SMAX:
4161   case G_UMIN:
4162   case G_UMAX:
4163   case G_FMINNUM:
4164   case G_FMAXNUM:
4165   case G_FMINNUM_IEEE:
4166   case G_FMAXNUM_IEEE:
4167   case G_FMINIMUM:
4168   case G_FMAXIMUM:
4169   case G_FSHL:
4170   case G_FSHR:
4171   case G_FREEZE:
4172   case G_SADDSAT:
4173   case G_SSUBSAT:
4174   case G_UADDSAT:
4175   case G_USUBSAT:
4176     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4177   case G_UMULO:
4178   case G_SMULO:
4179     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4180   case G_SHL:
4181   case G_LSHR:
4182   case G_ASHR:
4183   case G_SSHLSAT:
4184   case G_USHLSAT:
4185   case G_CTLZ:
4186   case G_CTLZ_ZERO_UNDEF:
4187   case G_CTTZ:
4188   case G_CTTZ_ZERO_UNDEF:
4189   case G_CTPOP:
4190   case G_FCOPYSIGN:
4191     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4192   case G_ZEXT:
4193   case G_SEXT:
4194   case G_ANYEXT:
4195   case G_FPEXT:
4196   case G_FPTRUNC:
4197   case G_SITOFP:
4198   case G_UITOFP:
4199   case G_FPTOSI:
4200   case G_FPTOUI:
4201   case G_INTTOPTR:
4202   case G_PTRTOINT:
4203   case G_ADDRSPACE_CAST:
4204     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4205   case G_ICMP:
4206   case G_FCMP:
4207     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4208   case G_SELECT:
4209     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4210   case G_PHI:
4211     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4212   case G_UNMERGE_VALUES:
4213     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4214   case G_BUILD_VECTOR:
4215     assert(TypeIdx == 0 && "not a vector type index");
4216     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4217   case G_CONCAT_VECTORS:
4218     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4219       return UnableToLegalize;
4220     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4221   case G_EXTRACT_VECTOR_ELT:
4222   case G_INSERT_VECTOR_ELT:
4223     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4224   case G_LOAD:
4225   case G_STORE:
4226     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4227   case G_SEXT_INREG:
4228     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4229   GISEL_VECREDUCE_CASES_NONSEQ
4230     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4231   case G_SHUFFLE_VECTOR:
4232     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4233   default:
4234     return UnableToLegalize;
4235   }
4236 }
4237 
4238 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4239     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4240   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4241   if (TypeIdx != 0)
4242     return UnableToLegalize;
4243 
4244   Register DstReg = MI.getOperand(0).getReg();
4245   Register Src1Reg = MI.getOperand(1).getReg();
4246   Register Src2Reg = MI.getOperand(2).getReg();
4247   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4248   LLT DstTy = MRI.getType(DstReg);
4249   LLT Src1Ty = MRI.getType(Src1Reg);
4250   LLT Src2Ty = MRI.getType(Src2Reg);
4251   // The shuffle should be canonicalized by now.
4252   if (DstTy != Src1Ty)
4253     return UnableToLegalize;
4254   if (DstTy != Src2Ty)
4255     return UnableToLegalize;
4256 
4257   if (!isPowerOf2_32(DstTy.getNumElements()))
4258     return UnableToLegalize;
4259 
4260   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4261   // Further legalization attempts will be needed to do split further.
4262   NarrowTy = DstTy.changeNumElements(DstTy.getNumElements() / 2);
4263   unsigned NewElts = NarrowTy.getNumElements();
4264 
4265   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4266   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4267   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4268   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4269                         SplitSrc2Regs[1]};
4270 
4271   Register Hi, Lo;
4272 
4273   // If Lo or Hi uses elements from at most two of the four input vectors, then
4274   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4275   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4276   SmallVector<int, 16> Ops;
4277   for (unsigned High = 0; High < 2; ++High) {
4278     Register &Output = High ? Hi : Lo;
4279 
4280     // Build a shuffle mask for the output, discovering on the fly which
4281     // input vectors to use as shuffle operands (recorded in InputUsed).
4282     // If building a suitable shuffle vector proves too hard, then bail
4283     // out with useBuildVector set.
4284     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4285     unsigned FirstMaskIdx = High * NewElts;
4286     bool UseBuildVector = false;
4287     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4288       // The mask element.  This indexes into the input.
4289       int Idx = Mask[FirstMaskIdx + MaskOffset];
4290 
4291       // The input vector this mask element indexes into.
4292       unsigned Input = (unsigned)Idx / NewElts;
4293 
4294       if (Input >= array_lengthof(Inputs)) {
4295         // The mask element does not index into any input vector.
4296         Ops.push_back(-1);
4297         continue;
4298       }
4299 
4300       // Turn the index into an offset from the start of the input vector.
4301       Idx -= Input * NewElts;
4302 
4303       // Find or create a shuffle vector operand to hold this input.
4304       unsigned OpNo;
4305       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4306         if (InputUsed[OpNo] == Input) {
4307           // This input vector is already an operand.
4308           break;
4309         } else if (InputUsed[OpNo] == -1U) {
4310           // Create a new operand for this input vector.
4311           InputUsed[OpNo] = Input;
4312           break;
4313         }
4314       }
4315 
4316       if (OpNo >= array_lengthof(InputUsed)) {
4317         // More than two input vectors used!  Give up on trying to create a
4318         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4319         UseBuildVector = true;
4320         break;
4321       }
4322 
4323       // Add the mask index for the new shuffle vector.
4324       Ops.push_back(Idx + OpNo * NewElts);
4325     }
4326 
4327     if (UseBuildVector) {
4328       LLT EltTy = NarrowTy.getElementType();
4329       SmallVector<Register, 16> SVOps;
4330 
4331       // Extract the input elements by hand.
4332       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4333         // The mask element.  This indexes into the input.
4334         int Idx = Mask[FirstMaskIdx + MaskOffset];
4335 
4336         // The input vector this mask element indexes into.
4337         unsigned Input = (unsigned)Idx / NewElts;
4338 
4339         if (Input >= array_lengthof(Inputs)) {
4340           // The mask element is "undef" or indexes off the end of the input.
4341           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4342           continue;
4343         }
4344 
4345         // Turn the index into an offset from the start of the input vector.
4346         Idx -= Input * NewElts;
4347 
4348         // Extract the vector element by hand.
4349         SVOps.push_back(MIRBuilder
4350                             .buildExtractVectorElement(
4351                                 EltTy, Inputs[Input],
4352                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4353                             .getReg(0));
4354       }
4355 
4356       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4357       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4358     } else if (InputUsed[0] == -1U) {
4359       // No input vectors were used! The result is undefined.
4360       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4361     } else {
4362       Register Op0 = Inputs[InputUsed[0]];
4363       // If only one input was used, use an undefined vector for the other.
4364       Register Op1 = InputUsed[1] == -1U
4365                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4366                          : Inputs[InputUsed[1]];
4367       // At least one input vector was used. Create a new shuffle vector.
4368       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4369     }
4370 
4371     Ops.clear();
4372   }
4373 
4374   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4375   MI.eraseFromParent();
4376   return Legalized;
4377 }
4378 
4379 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4380     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4381   unsigned Opc = MI.getOpcode();
4382   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4383          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4384          "Sequential reductions not expected");
4385 
4386   if (TypeIdx != 1)
4387     return UnableToLegalize;
4388 
4389   // The semantics of the normal non-sequential reductions allow us to freely
4390   // re-associate the operation.
4391   Register SrcReg = MI.getOperand(1).getReg();
4392   LLT SrcTy = MRI.getType(SrcReg);
4393   Register DstReg = MI.getOperand(0).getReg();
4394   LLT DstTy = MRI.getType(DstReg);
4395 
4396   if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4397     return UnableToLegalize;
4398 
4399   SmallVector<Register> SplitSrcs;
4400   const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4401   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4402   SmallVector<Register> PartialReductions;
4403   for (unsigned Part = 0; Part < NumParts; ++Part) {
4404     PartialReductions.push_back(
4405         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4406   }
4407 
4408   unsigned ScalarOpc;
4409   switch (Opc) {
4410   case TargetOpcode::G_VECREDUCE_FADD:
4411     ScalarOpc = TargetOpcode::G_FADD;
4412     break;
4413   case TargetOpcode::G_VECREDUCE_FMUL:
4414     ScalarOpc = TargetOpcode::G_FMUL;
4415     break;
4416   case TargetOpcode::G_VECREDUCE_FMAX:
4417     ScalarOpc = TargetOpcode::G_FMAXNUM;
4418     break;
4419   case TargetOpcode::G_VECREDUCE_FMIN:
4420     ScalarOpc = TargetOpcode::G_FMINNUM;
4421     break;
4422   case TargetOpcode::G_VECREDUCE_ADD:
4423     ScalarOpc = TargetOpcode::G_ADD;
4424     break;
4425   case TargetOpcode::G_VECREDUCE_MUL:
4426     ScalarOpc = TargetOpcode::G_MUL;
4427     break;
4428   case TargetOpcode::G_VECREDUCE_AND:
4429     ScalarOpc = TargetOpcode::G_AND;
4430     break;
4431   case TargetOpcode::G_VECREDUCE_OR:
4432     ScalarOpc = TargetOpcode::G_OR;
4433     break;
4434   case TargetOpcode::G_VECREDUCE_XOR:
4435     ScalarOpc = TargetOpcode::G_XOR;
4436     break;
4437   case TargetOpcode::G_VECREDUCE_SMAX:
4438     ScalarOpc = TargetOpcode::G_SMAX;
4439     break;
4440   case TargetOpcode::G_VECREDUCE_SMIN:
4441     ScalarOpc = TargetOpcode::G_SMIN;
4442     break;
4443   case TargetOpcode::G_VECREDUCE_UMAX:
4444     ScalarOpc = TargetOpcode::G_UMAX;
4445     break;
4446   case TargetOpcode::G_VECREDUCE_UMIN:
4447     ScalarOpc = TargetOpcode::G_UMIN;
4448     break;
4449   default:
4450     LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4451     return UnableToLegalize;
4452   }
4453 
4454   // If the types involved are powers of 2, we can generate intermediate vector
4455   // ops, before generating a final reduction operation.
4456   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4457       isPowerOf2_32(NarrowTy.getNumElements())) {
4458     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4459   }
4460 
4461   Register Acc = PartialReductions[0];
4462   for (unsigned Part = 1; Part < NumParts; ++Part) {
4463     if (Part == NumParts - 1) {
4464       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4465                             {Acc, PartialReductions[Part]});
4466     } else {
4467       Acc = MIRBuilder
4468                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4469                 .getReg(0);
4470     }
4471   }
4472   MI.eraseFromParent();
4473   return Legalized;
4474 }
4475 
4476 LegalizerHelper::LegalizeResult
4477 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4478                                         LLT SrcTy, LLT NarrowTy,
4479                                         unsigned ScalarOpc) {
4480   SmallVector<Register> SplitSrcs;
4481   // Split the sources into NarrowTy size pieces.
4482   extractParts(SrcReg, NarrowTy,
4483                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4484   // We're going to do a tree reduction using vector operations until we have
4485   // one NarrowTy size value left.
4486   while (SplitSrcs.size() > 1) {
4487     SmallVector<Register> PartialRdxs;
4488     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4489       Register LHS = SplitSrcs[Idx];
4490       Register RHS = SplitSrcs[Idx + 1];
4491       // Create the intermediate vector op.
4492       Register Res =
4493           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4494       PartialRdxs.push_back(Res);
4495     }
4496     SplitSrcs = std::move(PartialRdxs);
4497   }
4498   // Finally generate the requested NarrowTy based reduction.
4499   Observer.changingInstr(MI);
4500   MI.getOperand(1).setReg(SplitSrcs[0]);
4501   Observer.changedInstr(MI);
4502   return Legalized;
4503 }
4504 
4505 LegalizerHelper::LegalizeResult
4506 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4507                                              const LLT HalfTy, const LLT AmtTy) {
4508 
4509   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4510   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4511   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4512 
4513   if (Amt.isNullValue()) {
4514     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4515     MI.eraseFromParent();
4516     return Legalized;
4517   }
4518 
4519   LLT NVT = HalfTy;
4520   unsigned NVTBits = HalfTy.getSizeInBits();
4521   unsigned VTBits = 2 * NVTBits;
4522 
4523   SrcOp Lo(Register(0)), Hi(Register(0));
4524   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4525     if (Amt.ugt(VTBits)) {
4526       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4527     } else if (Amt.ugt(NVTBits)) {
4528       Lo = MIRBuilder.buildConstant(NVT, 0);
4529       Hi = MIRBuilder.buildShl(NVT, InL,
4530                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4531     } else if (Amt == NVTBits) {
4532       Lo = MIRBuilder.buildConstant(NVT, 0);
4533       Hi = InL;
4534     } else {
4535       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4536       auto OrLHS =
4537           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4538       auto OrRHS = MIRBuilder.buildLShr(
4539           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4540       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4541     }
4542   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4543     if (Amt.ugt(VTBits)) {
4544       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4545     } else if (Amt.ugt(NVTBits)) {
4546       Lo = MIRBuilder.buildLShr(NVT, InH,
4547                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4548       Hi = MIRBuilder.buildConstant(NVT, 0);
4549     } else if (Amt == NVTBits) {
4550       Lo = InH;
4551       Hi = MIRBuilder.buildConstant(NVT, 0);
4552     } else {
4553       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4554 
4555       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4556       auto OrRHS = MIRBuilder.buildShl(
4557           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4558 
4559       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4560       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4561     }
4562   } else {
4563     if (Amt.ugt(VTBits)) {
4564       Hi = Lo = MIRBuilder.buildAShr(
4565           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4566     } else if (Amt.ugt(NVTBits)) {
4567       Lo = MIRBuilder.buildAShr(NVT, InH,
4568                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4569       Hi = MIRBuilder.buildAShr(NVT, InH,
4570                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4571     } else if (Amt == NVTBits) {
4572       Lo = InH;
4573       Hi = MIRBuilder.buildAShr(NVT, InH,
4574                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4575     } else {
4576       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4577 
4578       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4579       auto OrRHS = MIRBuilder.buildShl(
4580           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4581 
4582       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4583       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4584     }
4585   }
4586 
4587   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4588   MI.eraseFromParent();
4589 
4590   return Legalized;
4591 }
4592 
4593 // TODO: Optimize if constant shift amount.
4594 LegalizerHelper::LegalizeResult
4595 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4596                                    LLT RequestedTy) {
4597   if (TypeIdx == 1) {
4598     Observer.changingInstr(MI);
4599     narrowScalarSrc(MI, RequestedTy, 2);
4600     Observer.changedInstr(MI);
4601     return Legalized;
4602   }
4603 
4604   Register DstReg = MI.getOperand(0).getReg();
4605   LLT DstTy = MRI.getType(DstReg);
4606   if (DstTy.isVector())
4607     return UnableToLegalize;
4608 
4609   Register Amt = MI.getOperand(2).getReg();
4610   LLT ShiftAmtTy = MRI.getType(Amt);
4611   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4612   if (DstEltSize % 2 != 0)
4613     return UnableToLegalize;
4614 
4615   // Ignore the input type. We can only go to exactly half the size of the
4616   // input. If that isn't small enough, the resulting pieces will be further
4617   // legalized.
4618   const unsigned NewBitSize = DstEltSize / 2;
4619   const LLT HalfTy = LLT::scalar(NewBitSize);
4620   const LLT CondTy = LLT::scalar(1);
4621 
4622   if (const MachineInstr *KShiftAmt =
4623           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4624     return narrowScalarShiftByConstant(
4625         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4626   }
4627 
4628   // TODO: Expand with known bits.
4629 
4630   // Handle the fully general expansion by an unknown amount.
4631   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4632 
4633   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4634   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4635   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4636 
4637   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4638   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4639 
4640   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4641   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4642   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4643 
4644   Register ResultRegs[2];
4645   switch (MI.getOpcode()) {
4646   case TargetOpcode::G_SHL: {
4647     // Short: ShAmt < NewBitSize
4648     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4649 
4650     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4651     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4652     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4653 
4654     // Long: ShAmt >= NewBitSize
4655     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4656     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4657 
4658     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4659     auto Hi = MIRBuilder.buildSelect(
4660         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4661 
4662     ResultRegs[0] = Lo.getReg(0);
4663     ResultRegs[1] = Hi.getReg(0);
4664     break;
4665   }
4666   case TargetOpcode::G_LSHR:
4667   case TargetOpcode::G_ASHR: {
4668     // Short: ShAmt < NewBitSize
4669     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4670 
4671     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4672     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4673     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4674 
4675     // Long: ShAmt >= NewBitSize
4676     MachineInstrBuilder HiL;
4677     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4678       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4679     } else {
4680       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4681       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4682     }
4683     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4684                                      {InH, AmtExcess});     // Lo from Hi part.
4685 
4686     auto Lo = MIRBuilder.buildSelect(
4687         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4688 
4689     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4690 
4691     ResultRegs[0] = Lo.getReg(0);
4692     ResultRegs[1] = Hi.getReg(0);
4693     break;
4694   }
4695   default:
4696     llvm_unreachable("not a shift");
4697   }
4698 
4699   MIRBuilder.buildMerge(DstReg, ResultRegs);
4700   MI.eraseFromParent();
4701   return Legalized;
4702 }
4703 
4704 LegalizerHelper::LegalizeResult
4705 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4706                                        LLT MoreTy) {
4707   assert(TypeIdx == 0 && "Expecting only Idx 0");
4708 
4709   Observer.changingInstr(MI);
4710   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4711     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4712     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4713     moreElementsVectorSrc(MI, MoreTy, I);
4714   }
4715 
4716   MachineBasicBlock &MBB = *MI.getParent();
4717   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4718   moreElementsVectorDst(MI, MoreTy, 0);
4719   Observer.changedInstr(MI);
4720   return Legalized;
4721 }
4722 
4723 LegalizerHelper::LegalizeResult
4724 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4725                                     LLT MoreTy) {
4726   unsigned Opc = MI.getOpcode();
4727   switch (Opc) {
4728   case TargetOpcode::G_IMPLICIT_DEF:
4729   case TargetOpcode::G_LOAD: {
4730     if (TypeIdx != 0)
4731       return UnableToLegalize;
4732     Observer.changingInstr(MI);
4733     moreElementsVectorDst(MI, MoreTy, 0);
4734     Observer.changedInstr(MI);
4735     return Legalized;
4736   }
4737   case TargetOpcode::G_STORE:
4738     if (TypeIdx != 0)
4739       return UnableToLegalize;
4740     Observer.changingInstr(MI);
4741     moreElementsVectorSrc(MI, MoreTy, 0);
4742     Observer.changedInstr(MI);
4743     return Legalized;
4744   case TargetOpcode::G_AND:
4745   case TargetOpcode::G_OR:
4746   case TargetOpcode::G_XOR:
4747   case TargetOpcode::G_SMIN:
4748   case TargetOpcode::G_SMAX:
4749   case TargetOpcode::G_UMIN:
4750   case TargetOpcode::G_UMAX:
4751   case TargetOpcode::G_FMINNUM:
4752   case TargetOpcode::G_FMAXNUM:
4753   case TargetOpcode::G_FMINNUM_IEEE:
4754   case TargetOpcode::G_FMAXNUM_IEEE:
4755   case TargetOpcode::G_FMINIMUM:
4756   case TargetOpcode::G_FMAXIMUM: {
4757     Observer.changingInstr(MI);
4758     moreElementsVectorSrc(MI, MoreTy, 1);
4759     moreElementsVectorSrc(MI, MoreTy, 2);
4760     moreElementsVectorDst(MI, MoreTy, 0);
4761     Observer.changedInstr(MI);
4762     return Legalized;
4763   }
4764   case TargetOpcode::G_EXTRACT:
4765     if (TypeIdx != 1)
4766       return UnableToLegalize;
4767     Observer.changingInstr(MI);
4768     moreElementsVectorSrc(MI, MoreTy, 1);
4769     Observer.changedInstr(MI);
4770     return Legalized;
4771   case TargetOpcode::G_INSERT:
4772   case TargetOpcode::G_FREEZE:
4773     if (TypeIdx != 0)
4774       return UnableToLegalize;
4775     Observer.changingInstr(MI);
4776     moreElementsVectorSrc(MI, MoreTy, 1);
4777     moreElementsVectorDst(MI, MoreTy, 0);
4778     Observer.changedInstr(MI);
4779     return Legalized;
4780   case TargetOpcode::G_SELECT:
4781     if (TypeIdx != 0)
4782       return UnableToLegalize;
4783     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4784       return UnableToLegalize;
4785 
4786     Observer.changingInstr(MI);
4787     moreElementsVectorSrc(MI, MoreTy, 2);
4788     moreElementsVectorSrc(MI, MoreTy, 3);
4789     moreElementsVectorDst(MI, MoreTy, 0);
4790     Observer.changedInstr(MI);
4791     return Legalized;
4792   case TargetOpcode::G_UNMERGE_VALUES: {
4793     if (TypeIdx != 1)
4794       return UnableToLegalize;
4795 
4796     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4797     int NumDst = MI.getNumOperands() - 1;
4798     moreElementsVectorSrc(MI, MoreTy, NumDst);
4799 
4800     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4801     for (int I = 0; I != NumDst; ++I)
4802       MIB.addDef(MI.getOperand(I).getReg());
4803 
4804     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4805     for (int I = NumDst; I != NewNumDst; ++I)
4806       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4807 
4808     MIB.addUse(MI.getOperand(NumDst).getReg());
4809     MI.eraseFromParent();
4810     return Legalized;
4811   }
4812   case TargetOpcode::G_PHI:
4813     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4814   default:
4815     return UnableToLegalize;
4816   }
4817 }
4818 
4819 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4820                                         ArrayRef<Register> Src1Regs,
4821                                         ArrayRef<Register> Src2Regs,
4822                                         LLT NarrowTy) {
4823   MachineIRBuilder &B = MIRBuilder;
4824   unsigned SrcParts = Src1Regs.size();
4825   unsigned DstParts = DstRegs.size();
4826 
4827   unsigned DstIdx = 0; // Low bits of the result.
4828   Register FactorSum =
4829       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4830   DstRegs[DstIdx] = FactorSum;
4831 
4832   unsigned CarrySumPrevDstIdx;
4833   SmallVector<Register, 4> Factors;
4834 
4835   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4836     // Collect low parts of muls for DstIdx.
4837     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4838          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4839       MachineInstrBuilder Mul =
4840           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4841       Factors.push_back(Mul.getReg(0));
4842     }
4843     // Collect high parts of muls from previous DstIdx.
4844     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4845          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4846       MachineInstrBuilder Umulh =
4847           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4848       Factors.push_back(Umulh.getReg(0));
4849     }
4850     // Add CarrySum from additions calculated for previous DstIdx.
4851     if (DstIdx != 1) {
4852       Factors.push_back(CarrySumPrevDstIdx);
4853     }
4854 
4855     Register CarrySum;
4856     // Add all factors and accumulate all carries into CarrySum.
4857     if (DstIdx != DstParts - 1) {
4858       MachineInstrBuilder Uaddo =
4859           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4860       FactorSum = Uaddo.getReg(0);
4861       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4862       for (unsigned i = 2; i < Factors.size(); ++i) {
4863         MachineInstrBuilder Uaddo =
4864             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4865         FactorSum = Uaddo.getReg(0);
4866         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4867         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4868       }
4869     } else {
4870       // Since value for the next index is not calculated, neither is CarrySum.
4871       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4872       for (unsigned i = 2; i < Factors.size(); ++i)
4873         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4874     }
4875 
4876     CarrySumPrevDstIdx = CarrySum;
4877     DstRegs[DstIdx] = FactorSum;
4878     Factors.clear();
4879   }
4880 }
4881 
4882 LegalizerHelper::LegalizeResult
4883 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4884                                     LLT NarrowTy) {
4885   if (TypeIdx != 0)
4886     return UnableToLegalize;
4887 
4888   Register DstReg = MI.getOperand(0).getReg();
4889   LLT DstType = MRI.getType(DstReg);
4890   // FIXME: add support for vector types
4891   if (DstType.isVector())
4892     return UnableToLegalize;
4893 
4894   uint64_t SizeOp0 = DstType.getSizeInBits();
4895   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4896 
4897   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4898   // NarrowSize.
4899   if (SizeOp0 % NarrowSize != 0)
4900     return UnableToLegalize;
4901 
4902   // Expand in terms of carry-setting/consuming G_<Op>E instructions.
4903   int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
4904 
4905   unsigned Opcode = MI.getOpcode();
4906   unsigned OpO, OpE, OpF;
4907   switch (Opcode) {
4908   case TargetOpcode::G_SADDO:
4909   case TargetOpcode::G_SADDE:
4910   case TargetOpcode::G_UADDO:
4911   case TargetOpcode::G_UADDE:
4912   case TargetOpcode::G_ADD:
4913     OpO = TargetOpcode::G_UADDO;
4914     OpE = TargetOpcode::G_UADDE;
4915     OpF = TargetOpcode::G_UADDE;
4916     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
4917       OpF = TargetOpcode::G_SADDE;
4918     break;
4919   case TargetOpcode::G_SSUBO:
4920   case TargetOpcode::G_SSUBE:
4921   case TargetOpcode::G_USUBO:
4922   case TargetOpcode::G_USUBE:
4923   case TargetOpcode::G_SUB:
4924     OpO = TargetOpcode::G_USUBO;
4925     OpE = TargetOpcode::G_USUBE;
4926     OpF = TargetOpcode::G_USUBE;
4927     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
4928       OpF = TargetOpcode::G_SSUBE;
4929     break;
4930   default:
4931     llvm_unreachable("Unexpected add/sub opcode!");
4932   }
4933 
4934   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
4935   unsigned NumDefs = MI.getNumExplicitDefs();
4936   Register Src1 = MI.getOperand(NumDefs).getReg();
4937   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
4938   Register CarryDst;
4939   if (NumDefs == 2)
4940     CarryDst = MI.getOperand(1).getReg();
4941   Register CarryIn;
4942   if (MI.getNumOperands() == NumDefs + 3)
4943     CarryIn = MI.getOperand(NumDefs + 2).getReg();
4944 
4945   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
4946   extractParts(Src1, NarrowTy, NumParts, Src1Regs);
4947   extractParts(Src2, NarrowTy, NumParts, Src2Regs);
4948 
4949   for (int i = 0; i < NumParts; ++i) {
4950     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4951     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
4952     // Forward the final carry-out to the destination register
4953     if (i == NumParts - 1 && CarryDst)
4954       CarryOut = CarryDst;
4955 
4956     if (!CarryIn) {
4957       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
4958                             {Src1Regs[i], Src2Regs[i]});
4959     } else if (i == NumParts - 1) {
4960       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
4961                             {Src1Regs[i], Src2Regs[i], CarryIn});
4962     } else {
4963       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
4964                             {Src1Regs[i], Src2Regs[i], CarryIn});
4965     }
4966 
4967     DstRegs.push_back(DstReg);
4968     CarryIn = CarryOut;
4969   }
4970   MIRBuilder.buildMerge(DstReg, DstRegs);
4971   MI.eraseFromParent();
4972   return Legalized;
4973 }
4974 
4975 LegalizerHelper::LegalizeResult
4976 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4977   Register DstReg = MI.getOperand(0).getReg();
4978   Register Src1 = MI.getOperand(1).getReg();
4979   Register Src2 = MI.getOperand(2).getReg();
4980 
4981   LLT Ty = MRI.getType(DstReg);
4982   if (Ty.isVector())
4983     return UnableToLegalize;
4984 
4985   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4986   unsigned DstSize = Ty.getSizeInBits();
4987   unsigned NarrowSize = NarrowTy.getSizeInBits();
4988   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4989     return UnableToLegalize;
4990 
4991   unsigned NumDstParts = DstSize / NarrowSize;
4992   unsigned NumSrcParts = SrcSize / NarrowSize;
4993   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4994   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4995 
4996   SmallVector<Register, 2> Src1Parts, Src2Parts;
4997   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4998   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4999   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
5000   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5001 
5002   // Take only high half of registers if this is high mul.
5003   ArrayRef<Register> DstRegs(
5004       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
5005   MIRBuilder.buildMerge(DstReg, DstRegs);
5006   MI.eraseFromParent();
5007   return Legalized;
5008 }
5009 
5010 LegalizerHelper::LegalizeResult
5011 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5012                                    LLT NarrowTy) {
5013   if (TypeIdx != 0)
5014     return UnableToLegalize;
5015 
5016   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5017 
5018   Register Src = MI.getOperand(1).getReg();
5019   LLT SrcTy = MRI.getType(Src);
5020 
5021   // If all finite floats fit into the narrowed integer type, we can just swap
5022   // out the result type. This is practically only useful for conversions from
5023   // half to at least 16-bits, so just handle the one case.
5024   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5025       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5026     return UnableToLegalize;
5027 
5028   Observer.changingInstr(MI);
5029   narrowScalarDst(MI, NarrowTy, 0,
5030                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5031   Observer.changedInstr(MI);
5032   return Legalized;
5033 }
5034 
5035 LegalizerHelper::LegalizeResult
5036 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5037                                      LLT NarrowTy) {
5038   if (TypeIdx != 1)
5039     return UnableToLegalize;
5040 
5041   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5042 
5043   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5044   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5045   // NarrowSize.
5046   if (SizeOp1 % NarrowSize != 0)
5047     return UnableToLegalize;
5048   int NumParts = SizeOp1 / NarrowSize;
5049 
5050   SmallVector<Register, 2> SrcRegs, DstRegs;
5051   SmallVector<uint64_t, 2> Indexes;
5052   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5053 
5054   Register OpReg = MI.getOperand(0).getReg();
5055   uint64_t OpStart = MI.getOperand(2).getImm();
5056   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5057   for (int i = 0; i < NumParts; ++i) {
5058     unsigned SrcStart = i * NarrowSize;
5059 
5060     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5061       // No part of the extract uses this subregister, ignore it.
5062       continue;
5063     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5064       // The entire subregister is extracted, forward the value.
5065       DstRegs.push_back(SrcRegs[i]);
5066       continue;
5067     }
5068 
5069     // OpSegStart is where this destination segment would start in OpReg if it
5070     // extended infinitely in both directions.
5071     int64_t ExtractOffset;
5072     uint64_t SegSize;
5073     if (OpStart < SrcStart) {
5074       ExtractOffset = 0;
5075       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5076     } else {
5077       ExtractOffset = OpStart - SrcStart;
5078       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5079     }
5080 
5081     Register SegReg = SrcRegs[i];
5082     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5083       // A genuine extract is needed.
5084       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5085       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5086     }
5087 
5088     DstRegs.push_back(SegReg);
5089   }
5090 
5091   Register DstReg = MI.getOperand(0).getReg();
5092   if (MRI.getType(DstReg).isVector())
5093     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5094   else if (DstRegs.size() > 1)
5095     MIRBuilder.buildMerge(DstReg, DstRegs);
5096   else
5097     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5098   MI.eraseFromParent();
5099   return Legalized;
5100 }
5101 
5102 LegalizerHelper::LegalizeResult
5103 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5104                                     LLT NarrowTy) {
5105   // FIXME: Don't know how to handle secondary types yet.
5106   if (TypeIdx != 0)
5107     return UnableToLegalize;
5108 
5109   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
5110   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5111 
5112   // FIXME: add support for when SizeOp0 isn't an exact multiple of
5113   // NarrowSize.
5114   if (SizeOp0 % NarrowSize != 0)
5115     return UnableToLegalize;
5116 
5117   int NumParts = SizeOp0 / NarrowSize;
5118 
5119   SmallVector<Register, 2> SrcRegs, DstRegs;
5120   SmallVector<uint64_t, 2> Indexes;
5121   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5122 
5123   Register OpReg = MI.getOperand(2).getReg();
5124   uint64_t OpStart = MI.getOperand(3).getImm();
5125   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5126   for (int i = 0; i < NumParts; ++i) {
5127     unsigned DstStart = i * NarrowSize;
5128 
5129     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5130       // No part of the insert affects this subregister, forward the original.
5131       DstRegs.push_back(SrcRegs[i]);
5132       continue;
5133     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5134       // The entire subregister is defined by this insert, forward the new
5135       // value.
5136       DstRegs.push_back(OpReg);
5137       continue;
5138     }
5139 
5140     // OpSegStart is where this destination segment would start in OpReg if it
5141     // extended infinitely in both directions.
5142     int64_t ExtractOffset, InsertOffset;
5143     uint64_t SegSize;
5144     if (OpStart < DstStart) {
5145       InsertOffset = 0;
5146       ExtractOffset = DstStart - OpStart;
5147       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5148     } else {
5149       InsertOffset = OpStart - DstStart;
5150       ExtractOffset = 0;
5151       SegSize =
5152         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5153     }
5154 
5155     Register SegReg = OpReg;
5156     if (ExtractOffset != 0 || SegSize != OpSize) {
5157       // A genuine extract is needed.
5158       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5159       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5160     }
5161 
5162     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5163     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
5164     DstRegs.push_back(DstReg);
5165   }
5166 
5167   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
5168   Register DstReg = MI.getOperand(0).getReg();
5169   if(MRI.getType(DstReg).isVector())
5170     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5171   else
5172     MIRBuilder.buildMerge(DstReg, DstRegs);
5173   MI.eraseFromParent();
5174   return Legalized;
5175 }
5176 
5177 LegalizerHelper::LegalizeResult
5178 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5179                                    LLT NarrowTy) {
5180   Register DstReg = MI.getOperand(0).getReg();
5181   LLT DstTy = MRI.getType(DstReg);
5182 
5183   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5184 
5185   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5186   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5187   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5188   LLT LeftoverTy;
5189   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5190                     Src0Regs, Src0LeftoverRegs))
5191     return UnableToLegalize;
5192 
5193   LLT Unused;
5194   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5195                     Src1Regs, Src1LeftoverRegs))
5196     llvm_unreachable("inconsistent extractParts result");
5197 
5198   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5199     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5200                                         {Src0Regs[I], Src1Regs[I]});
5201     DstRegs.push_back(Inst.getReg(0));
5202   }
5203 
5204   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5205     auto Inst = MIRBuilder.buildInstr(
5206       MI.getOpcode(),
5207       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5208     DstLeftoverRegs.push_back(Inst.getReg(0));
5209   }
5210 
5211   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5212               LeftoverTy, DstLeftoverRegs);
5213 
5214   MI.eraseFromParent();
5215   return Legalized;
5216 }
5217 
5218 LegalizerHelper::LegalizeResult
5219 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5220                                  LLT NarrowTy) {
5221   if (TypeIdx != 0)
5222     return UnableToLegalize;
5223 
5224   Register DstReg = MI.getOperand(0).getReg();
5225   Register SrcReg = MI.getOperand(1).getReg();
5226 
5227   LLT DstTy = MRI.getType(DstReg);
5228   if (DstTy.isVector())
5229     return UnableToLegalize;
5230 
5231   SmallVector<Register, 8> Parts;
5232   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5233   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5234   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5235 
5236   MI.eraseFromParent();
5237   return Legalized;
5238 }
5239 
5240 LegalizerHelper::LegalizeResult
5241 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5242                                     LLT NarrowTy) {
5243   if (TypeIdx != 0)
5244     return UnableToLegalize;
5245 
5246   Register CondReg = MI.getOperand(1).getReg();
5247   LLT CondTy = MRI.getType(CondReg);
5248   if (CondTy.isVector()) // TODO: Handle vselect
5249     return UnableToLegalize;
5250 
5251   Register DstReg = MI.getOperand(0).getReg();
5252   LLT DstTy = MRI.getType(DstReg);
5253 
5254   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5255   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5256   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5257   LLT LeftoverTy;
5258   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5259                     Src1Regs, Src1LeftoverRegs))
5260     return UnableToLegalize;
5261 
5262   LLT Unused;
5263   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5264                     Src2Regs, Src2LeftoverRegs))
5265     llvm_unreachable("inconsistent extractParts result");
5266 
5267   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5268     auto Select = MIRBuilder.buildSelect(NarrowTy,
5269                                          CondReg, Src1Regs[I], Src2Regs[I]);
5270     DstRegs.push_back(Select.getReg(0));
5271   }
5272 
5273   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5274     auto Select = MIRBuilder.buildSelect(
5275       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5276     DstLeftoverRegs.push_back(Select.getReg(0));
5277   }
5278 
5279   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5280               LeftoverTy, DstLeftoverRegs);
5281 
5282   MI.eraseFromParent();
5283   return Legalized;
5284 }
5285 
5286 LegalizerHelper::LegalizeResult
5287 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5288                                   LLT NarrowTy) {
5289   if (TypeIdx != 1)
5290     return UnableToLegalize;
5291 
5292   Register DstReg = MI.getOperand(0).getReg();
5293   Register SrcReg = MI.getOperand(1).getReg();
5294   LLT DstTy = MRI.getType(DstReg);
5295   LLT SrcTy = MRI.getType(SrcReg);
5296   unsigned NarrowSize = NarrowTy.getSizeInBits();
5297 
5298   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5299     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5300 
5301     MachineIRBuilder &B = MIRBuilder;
5302     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5303     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5304     auto C_0 = B.buildConstant(NarrowTy, 0);
5305     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5306                                 UnmergeSrc.getReg(1), C_0);
5307     auto LoCTLZ = IsUndef ?
5308       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5309       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5310     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5311     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5312     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5313     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5314 
5315     MI.eraseFromParent();
5316     return Legalized;
5317   }
5318 
5319   return UnableToLegalize;
5320 }
5321 
5322 LegalizerHelper::LegalizeResult
5323 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5324                                   LLT NarrowTy) {
5325   if (TypeIdx != 1)
5326     return UnableToLegalize;
5327 
5328   Register DstReg = MI.getOperand(0).getReg();
5329   Register SrcReg = MI.getOperand(1).getReg();
5330   LLT DstTy = MRI.getType(DstReg);
5331   LLT SrcTy = MRI.getType(SrcReg);
5332   unsigned NarrowSize = NarrowTy.getSizeInBits();
5333 
5334   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5335     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5336 
5337     MachineIRBuilder &B = MIRBuilder;
5338     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5339     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5340     auto C_0 = B.buildConstant(NarrowTy, 0);
5341     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5342                                 UnmergeSrc.getReg(0), C_0);
5343     auto HiCTTZ = IsUndef ?
5344       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5345       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5346     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5347     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5348     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5349     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5350 
5351     MI.eraseFromParent();
5352     return Legalized;
5353   }
5354 
5355   return UnableToLegalize;
5356 }
5357 
5358 LegalizerHelper::LegalizeResult
5359 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5360                                    LLT NarrowTy) {
5361   if (TypeIdx != 1)
5362     return UnableToLegalize;
5363 
5364   Register DstReg = MI.getOperand(0).getReg();
5365   LLT DstTy = MRI.getType(DstReg);
5366   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5367   unsigned NarrowSize = NarrowTy.getSizeInBits();
5368 
5369   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5370     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5371 
5372     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5373     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5374     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5375 
5376     MI.eraseFromParent();
5377     return Legalized;
5378   }
5379 
5380   return UnableToLegalize;
5381 }
5382 
5383 LegalizerHelper::LegalizeResult
5384 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5385   unsigned Opc = MI.getOpcode();
5386   const auto &TII = MIRBuilder.getTII();
5387   auto isSupported = [this](const LegalityQuery &Q) {
5388     auto QAction = LI.getAction(Q).Action;
5389     return QAction == Legal || QAction == Libcall || QAction == Custom;
5390   };
5391   switch (Opc) {
5392   default:
5393     return UnableToLegalize;
5394   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5395     // This trivially expands to CTLZ.
5396     Observer.changingInstr(MI);
5397     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5398     Observer.changedInstr(MI);
5399     return Legalized;
5400   }
5401   case TargetOpcode::G_CTLZ: {
5402     Register DstReg = MI.getOperand(0).getReg();
5403     Register SrcReg = MI.getOperand(1).getReg();
5404     LLT DstTy = MRI.getType(DstReg);
5405     LLT SrcTy = MRI.getType(SrcReg);
5406     unsigned Len = SrcTy.getSizeInBits();
5407 
5408     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5409       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5410       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5411       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5412       auto ICmp = MIRBuilder.buildICmp(
5413           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5414       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5415       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5416       MI.eraseFromParent();
5417       return Legalized;
5418     }
5419     // for now, we do this:
5420     // NewLen = NextPowerOf2(Len);
5421     // x = x | (x >> 1);
5422     // x = x | (x >> 2);
5423     // ...
5424     // x = x | (x >>16);
5425     // x = x | (x >>32); // for 64-bit input
5426     // Upto NewLen/2
5427     // return Len - popcount(x);
5428     //
5429     // Ref: "Hacker's Delight" by Henry Warren
5430     Register Op = SrcReg;
5431     unsigned NewLen = PowerOf2Ceil(Len);
5432     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5433       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5434       auto MIBOp = MIRBuilder.buildOr(
5435           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5436       Op = MIBOp.getReg(0);
5437     }
5438     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5439     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5440                         MIBPop);
5441     MI.eraseFromParent();
5442     return Legalized;
5443   }
5444   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5445     // This trivially expands to CTTZ.
5446     Observer.changingInstr(MI);
5447     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5448     Observer.changedInstr(MI);
5449     return Legalized;
5450   }
5451   case TargetOpcode::G_CTTZ: {
5452     Register DstReg = MI.getOperand(0).getReg();
5453     Register SrcReg = MI.getOperand(1).getReg();
5454     LLT DstTy = MRI.getType(DstReg);
5455     LLT SrcTy = MRI.getType(SrcReg);
5456 
5457     unsigned Len = SrcTy.getSizeInBits();
5458     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5459       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5460       // zero.
5461       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5462       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5463       auto ICmp = MIRBuilder.buildICmp(
5464           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5465       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5466       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5467       MI.eraseFromParent();
5468       return Legalized;
5469     }
5470     // for now, we use: { return popcount(~x & (x - 1)); }
5471     // unless the target has ctlz but not ctpop, in which case we use:
5472     // { return 32 - nlz(~x & (x-1)); }
5473     // Ref: "Hacker's Delight" by Henry Warren
5474     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5475     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5476     auto MIBTmp = MIRBuilder.buildAnd(
5477         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5478     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5479         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5480       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5481       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5482                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5483       MI.eraseFromParent();
5484       return Legalized;
5485     }
5486     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5487     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5488     return Legalized;
5489   }
5490   case TargetOpcode::G_CTPOP: {
5491     Register SrcReg = MI.getOperand(1).getReg();
5492     LLT Ty = MRI.getType(SrcReg);
5493     unsigned Size = Ty.getSizeInBits();
5494     MachineIRBuilder &B = MIRBuilder;
5495 
5496     // Count set bits in blocks of 2 bits. Default approach would be
5497     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5498     // We use following formula instead:
5499     // B2Count = val - { (val >> 1) & 0x55555555 }
5500     // since it gives same result in blocks of 2 with one instruction less.
5501     auto C_1 = B.buildConstant(Ty, 1);
5502     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5503     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5504     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5505     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5506     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5507 
5508     // In order to get count in blocks of 4 add values from adjacent block of 2.
5509     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5510     auto C_2 = B.buildConstant(Ty, 2);
5511     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5512     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5513     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5514     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5515     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5516     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5517 
5518     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5519     // addition since count value sits in range {0,...,8} and 4 bits are enough
5520     // to hold such binary values. After addition high 4 bits still hold count
5521     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5522     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5523     auto C_4 = B.buildConstant(Ty, 4);
5524     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5525     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5526     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5527     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5528     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5529 
5530     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5531     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5532     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5533     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5534     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5535 
5536     // Shift count result from 8 high bits to low bits.
5537     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5538     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5539 
5540     MI.eraseFromParent();
5541     return Legalized;
5542   }
5543   }
5544 }
5545 
5546 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5547 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5548                                         Register Reg, unsigned BW) {
5549   return matchUnaryPredicate(
5550       MRI, Reg,
5551       [=](const Constant *C) {
5552         // Null constant here means an undef.
5553         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5554         return !CI || CI->getValue().urem(BW) != 0;
5555       },
5556       /*AllowUndefs*/ true);
5557 }
5558 
5559 LegalizerHelper::LegalizeResult
5560 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5561   Register Dst = MI.getOperand(0).getReg();
5562   Register X = MI.getOperand(1).getReg();
5563   Register Y = MI.getOperand(2).getReg();
5564   Register Z = MI.getOperand(3).getReg();
5565   LLT Ty = MRI.getType(Dst);
5566   LLT ShTy = MRI.getType(Z);
5567 
5568   unsigned BW = Ty.getScalarSizeInBits();
5569 
5570   if (!isPowerOf2_32(BW))
5571     return UnableToLegalize;
5572 
5573   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5574   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5575 
5576   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5577     // fshl X, Y, Z -> fshr X, Y, -Z
5578     // fshr X, Y, Z -> fshl X, Y, -Z
5579     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5580     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5581   } else {
5582     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5583     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5584     auto One = MIRBuilder.buildConstant(ShTy, 1);
5585     if (IsFSHL) {
5586       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5587       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5588     } else {
5589       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5590       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5591     }
5592 
5593     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5594   }
5595 
5596   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5597   MI.eraseFromParent();
5598   return Legalized;
5599 }
5600 
5601 LegalizerHelper::LegalizeResult
5602 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5603   Register Dst = MI.getOperand(0).getReg();
5604   Register X = MI.getOperand(1).getReg();
5605   Register Y = MI.getOperand(2).getReg();
5606   Register Z = MI.getOperand(3).getReg();
5607   LLT Ty = MRI.getType(Dst);
5608   LLT ShTy = MRI.getType(Z);
5609 
5610   const unsigned BW = Ty.getScalarSizeInBits();
5611   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5612 
5613   Register ShX, ShY;
5614   Register ShAmt, InvShAmt;
5615 
5616   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5617   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5618     // fshl: X << C | Y >> (BW - C)
5619     // fshr: X << (BW - C) | Y >> C
5620     // where C = Z % BW is not zero
5621     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5622     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5623     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5624     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5625     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5626   } else {
5627     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5628     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5629     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5630     if (isPowerOf2_32(BW)) {
5631       // Z % BW -> Z & (BW - 1)
5632       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5633       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5634       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5635       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5636     } else {
5637       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5638       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5639       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5640     }
5641 
5642     auto One = MIRBuilder.buildConstant(ShTy, 1);
5643     if (IsFSHL) {
5644       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5645       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5646       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5647     } else {
5648       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5649       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5650       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5651     }
5652   }
5653 
5654   MIRBuilder.buildOr(Dst, ShX, ShY);
5655   MI.eraseFromParent();
5656   return Legalized;
5657 }
5658 
5659 LegalizerHelper::LegalizeResult
5660 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5661   // These operations approximately do the following (while avoiding undefined
5662   // shifts by BW):
5663   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5664   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5665   Register Dst = MI.getOperand(0).getReg();
5666   LLT Ty = MRI.getType(Dst);
5667   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5668 
5669   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5670   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5671 
5672   // TODO: Use smarter heuristic that accounts for vector legalization.
5673   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5674     return lowerFunnelShiftAsShifts(MI);
5675 
5676   // This only works for powers of 2, fallback to shifts if it fails.
5677   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5678   if (Result == UnableToLegalize)
5679     return lowerFunnelShiftAsShifts(MI);
5680   return Result;
5681 }
5682 
5683 LegalizerHelper::LegalizeResult
5684 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5685   Register Dst = MI.getOperand(0).getReg();
5686   Register Src = MI.getOperand(1).getReg();
5687   Register Amt = MI.getOperand(2).getReg();
5688   LLT AmtTy = MRI.getType(Amt);
5689   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5690   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5691   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5692   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5693   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5694   MI.eraseFromParent();
5695   return Legalized;
5696 }
5697 
5698 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5699   Register Dst = MI.getOperand(0).getReg();
5700   Register Src = MI.getOperand(1).getReg();
5701   Register Amt = MI.getOperand(2).getReg();
5702   LLT DstTy = MRI.getType(Dst);
5703   LLT SrcTy = MRI.getType(Dst);
5704   LLT AmtTy = MRI.getType(Amt);
5705 
5706   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5707   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5708 
5709   MIRBuilder.setInstrAndDebugLoc(MI);
5710 
5711   // If a rotate in the other direction is supported, use it.
5712   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5713   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5714       isPowerOf2_32(EltSizeInBits))
5715     return lowerRotateWithReverseRotate(MI);
5716 
5717   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5718   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5719   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5720   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5721   Register ShVal;
5722   Register RevShiftVal;
5723   if (isPowerOf2_32(EltSizeInBits)) {
5724     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5725     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5726     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5727     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5728     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5729     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5730     RevShiftVal =
5731         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5732   } else {
5733     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5734     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5735     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5736     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5737     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5738     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5739     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5740     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5741     RevShiftVal =
5742         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5743   }
5744   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5745   MI.eraseFromParent();
5746   return Legalized;
5747 }
5748 
5749 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5750 // representation.
5751 LegalizerHelper::LegalizeResult
5752 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5753   Register Dst = MI.getOperand(0).getReg();
5754   Register Src = MI.getOperand(1).getReg();
5755   const LLT S64 = LLT::scalar(64);
5756   const LLT S32 = LLT::scalar(32);
5757   const LLT S1 = LLT::scalar(1);
5758 
5759   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5760 
5761   // unsigned cul2f(ulong u) {
5762   //   uint lz = clz(u);
5763   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5764   //   u = (u << lz) & 0x7fffffffffffffffUL;
5765   //   ulong t = u & 0xffffffffffUL;
5766   //   uint v = (e << 23) | (uint)(u >> 40);
5767   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5768   //   return as_float(v + r);
5769   // }
5770 
5771   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5772   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5773 
5774   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5775 
5776   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5777   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5778 
5779   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5780   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5781 
5782   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5783   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5784 
5785   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5786 
5787   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5788   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5789 
5790   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5791   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5792   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5793 
5794   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5795   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5796   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5797   auto One = MIRBuilder.buildConstant(S32, 1);
5798 
5799   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5800   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5801   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5802   MIRBuilder.buildAdd(Dst, V, R);
5803 
5804   MI.eraseFromParent();
5805   return Legalized;
5806 }
5807 
5808 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5809   Register Dst = MI.getOperand(0).getReg();
5810   Register Src = MI.getOperand(1).getReg();
5811   LLT DstTy = MRI.getType(Dst);
5812   LLT SrcTy = MRI.getType(Src);
5813 
5814   if (SrcTy == LLT::scalar(1)) {
5815     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5816     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5817     MIRBuilder.buildSelect(Dst, Src, True, False);
5818     MI.eraseFromParent();
5819     return Legalized;
5820   }
5821 
5822   if (SrcTy != LLT::scalar(64))
5823     return UnableToLegalize;
5824 
5825   if (DstTy == LLT::scalar(32)) {
5826     // TODO: SelectionDAG has several alternative expansions to port which may
5827     // be more reasonble depending on the available instructions. If a target
5828     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5829     // intermediate type, this is probably worse.
5830     return lowerU64ToF32BitOps(MI);
5831   }
5832 
5833   return UnableToLegalize;
5834 }
5835 
5836 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5837   Register Dst = MI.getOperand(0).getReg();
5838   Register Src = MI.getOperand(1).getReg();
5839   LLT DstTy = MRI.getType(Dst);
5840   LLT SrcTy = MRI.getType(Src);
5841 
5842   const LLT S64 = LLT::scalar(64);
5843   const LLT S32 = LLT::scalar(32);
5844   const LLT S1 = LLT::scalar(1);
5845 
5846   if (SrcTy == S1) {
5847     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5848     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5849     MIRBuilder.buildSelect(Dst, Src, True, False);
5850     MI.eraseFromParent();
5851     return Legalized;
5852   }
5853 
5854   if (SrcTy != S64)
5855     return UnableToLegalize;
5856 
5857   if (DstTy == S32) {
5858     // signed cl2f(long l) {
5859     //   long s = l >> 63;
5860     //   float r = cul2f((l + s) ^ s);
5861     //   return s ? -r : r;
5862     // }
5863     Register L = Src;
5864     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5865     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5866 
5867     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5868     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5869     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5870 
5871     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5872     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5873                                             MIRBuilder.buildConstant(S64, 0));
5874     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5875     MI.eraseFromParent();
5876     return Legalized;
5877   }
5878 
5879   return UnableToLegalize;
5880 }
5881 
5882 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5883   Register Dst = MI.getOperand(0).getReg();
5884   Register Src = MI.getOperand(1).getReg();
5885   LLT DstTy = MRI.getType(Dst);
5886   LLT SrcTy = MRI.getType(Src);
5887   const LLT S64 = LLT::scalar(64);
5888   const LLT S32 = LLT::scalar(32);
5889 
5890   if (SrcTy != S64 && SrcTy != S32)
5891     return UnableToLegalize;
5892   if (DstTy != S32 && DstTy != S64)
5893     return UnableToLegalize;
5894 
5895   // FPTOSI gives same result as FPTOUI for positive signed integers.
5896   // FPTOUI needs to deal with fp values that convert to unsigned integers
5897   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5898 
5899   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5900   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5901                                                 : APFloat::IEEEdouble(),
5902                     APInt::getNullValue(SrcTy.getSizeInBits()));
5903   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5904 
5905   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5906 
5907   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5908   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5909   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5910   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5911   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5912   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5913   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5914 
5915   const LLT S1 = LLT::scalar(1);
5916 
5917   MachineInstrBuilder FCMP =
5918       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5919   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5920 
5921   MI.eraseFromParent();
5922   return Legalized;
5923 }
5924 
5925 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5926   Register Dst = MI.getOperand(0).getReg();
5927   Register Src = MI.getOperand(1).getReg();
5928   LLT DstTy = MRI.getType(Dst);
5929   LLT SrcTy = MRI.getType(Src);
5930   const LLT S64 = LLT::scalar(64);
5931   const LLT S32 = LLT::scalar(32);
5932 
5933   // FIXME: Only f32 to i64 conversions are supported.
5934   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5935     return UnableToLegalize;
5936 
5937   // Expand f32 -> i64 conversion
5938   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5939   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
5940 
5941   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5942 
5943   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5944   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5945 
5946   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5947   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5948 
5949   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5950                                            APInt::getSignMask(SrcEltBits));
5951   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5952   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5953   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5954   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5955 
5956   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5957   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5958   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5959 
5960   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5961   R = MIRBuilder.buildZExt(DstTy, R);
5962 
5963   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5964   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5965   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5966   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5967 
5968   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5969   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5970 
5971   const LLT S1 = LLT::scalar(1);
5972   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5973                                     S1, Exponent, ExponentLoBit);
5974 
5975   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5976 
5977   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5978   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5979 
5980   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5981 
5982   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5983                                           S1, Exponent, ZeroSrcTy);
5984 
5985   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5986   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5987 
5988   MI.eraseFromParent();
5989   return Legalized;
5990 }
5991 
5992 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5993 LegalizerHelper::LegalizeResult
5994 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5995   Register Dst = MI.getOperand(0).getReg();
5996   Register Src = MI.getOperand(1).getReg();
5997 
5998   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5999     return UnableToLegalize;
6000 
6001   const unsigned ExpMask = 0x7ff;
6002   const unsigned ExpBiasf64 = 1023;
6003   const unsigned ExpBiasf16 = 15;
6004   const LLT S32 = LLT::scalar(32);
6005   const LLT S1 = LLT::scalar(1);
6006 
6007   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6008   Register U = Unmerge.getReg(0);
6009   Register UH = Unmerge.getReg(1);
6010 
6011   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6012   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6013 
6014   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6015   // add the f16 bias (15) to get the biased exponent for the f16 format.
6016   E = MIRBuilder.buildAdd(
6017     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6018 
6019   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6020   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6021 
6022   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6023                                        MIRBuilder.buildConstant(S32, 0x1ff));
6024   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6025 
6026   auto Zero = MIRBuilder.buildConstant(S32, 0);
6027   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6028   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6029   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6030 
6031   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6032   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6033   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6034   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6035 
6036   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6037   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6038 
6039   // N = M | (E << 12);
6040   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6041   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6042 
6043   // B = clamp(1-E, 0, 13);
6044   auto One = MIRBuilder.buildConstant(S32, 1);
6045   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6046   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6047   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6048 
6049   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6050                                        MIRBuilder.buildConstant(S32, 0x1000));
6051 
6052   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6053   auto D0 = MIRBuilder.buildShl(S32, D, B);
6054 
6055   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6056                                              D0, SigSetHigh);
6057   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6058   D = MIRBuilder.buildOr(S32, D, D1);
6059 
6060   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6061   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6062 
6063   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6064   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6065 
6066   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6067                                        MIRBuilder.buildConstant(S32, 3));
6068   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6069 
6070   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6071                                        MIRBuilder.buildConstant(S32, 5));
6072   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6073 
6074   V1 = MIRBuilder.buildOr(S32, V0, V1);
6075   V = MIRBuilder.buildAdd(S32, V, V1);
6076 
6077   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6078                                        E, MIRBuilder.buildConstant(S32, 30));
6079   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6080                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6081 
6082   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6083                                          E, MIRBuilder.buildConstant(S32, 1039));
6084   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6085 
6086   // Extract the sign bit.
6087   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6088   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6089 
6090   // Insert the sign bit
6091   V = MIRBuilder.buildOr(S32, Sign, V);
6092 
6093   MIRBuilder.buildTrunc(Dst, V);
6094   MI.eraseFromParent();
6095   return Legalized;
6096 }
6097 
6098 LegalizerHelper::LegalizeResult
6099 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6100   Register Dst = MI.getOperand(0).getReg();
6101   Register Src = MI.getOperand(1).getReg();
6102 
6103   LLT DstTy = MRI.getType(Dst);
6104   LLT SrcTy = MRI.getType(Src);
6105   const LLT S64 = LLT::scalar(64);
6106   const LLT S16 = LLT::scalar(16);
6107 
6108   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6109     return lowerFPTRUNC_F64_TO_F16(MI);
6110 
6111   return UnableToLegalize;
6112 }
6113 
6114 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6115 // multiplication tree.
6116 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6117   Register Dst = MI.getOperand(0).getReg();
6118   Register Src0 = MI.getOperand(1).getReg();
6119   Register Src1 = MI.getOperand(2).getReg();
6120   LLT Ty = MRI.getType(Dst);
6121 
6122   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6123   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6124   MI.eraseFromParent();
6125   return Legalized;
6126 }
6127 
6128 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6129   switch (Opc) {
6130   case TargetOpcode::G_SMIN:
6131     return CmpInst::ICMP_SLT;
6132   case TargetOpcode::G_SMAX:
6133     return CmpInst::ICMP_SGT;
6134   case TargetOpcode::G_UMIN:
6135     return CmpInst::ICMP_ULT;
6136   case TargetOpcode::G_UMAX:
6137     return CmpInst::ICMP_UGT;
6138   default:
6139     llvm_unreachable("not in integer min/max");
6140   }
6141 }
6142 
6143 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6144   Register Dst = MI.getOperand(0).getReg();
6145   Register Src0 = MI.getOperand(1).getReg();
6146   Register Src1 = MI.getOperand(2).getReg();
6147 
6148   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6149   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6150 
6151   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6152   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6153 
6154   MI.eraseFromParent();
6155   return Legalized;
6156 }
6157 
6158 LegalizerHelper::LegalizeResult
6159 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6160   Register Dst = MI.getOperand(0).getReg();
6161   Register Src0 = MI.getOperand(1).getReg();
6162   Register Src1 = MI.getOperand(2).getReg();
6163 
6164   const LLT Src0Ty = MRI.getType(Src0);
6165   const LLT Src1Ty = MRI.getType(Src1);
6166 
6167   const int Src0Size = Src0Ty.getScalarSizeInBits();
6168   const int Src1Size = Src1Ty.getScalarSizeInBits();
6169 
6170   auto SignBitMask = MIRBuilder.buildConstant(
6171     Src0Ty, APInt::getSignMask(Src0Size));
6172 
6173   auto NotSignBitMask = MIRBuilder.buildConstant(
6174     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6175 
6176   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6177   Register And1;
6178   if (Src0Ty == Src1Ty) {
6179     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6180   } else if (Src0Size > Src1Size) {
6181     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6182     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6183     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6184     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6185   } else {
6186     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6187     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6188     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6189     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6190   }
6191 
6192   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6193   // constants are a nan and -0.0, but the final result should preserve
6194   // everything.
6195   unsigned Flags = MI.getFlags();
6196   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6197 
6198   MI.eraseFromParent();
6199   return Legalized;
6200 }
6201 
6202 LegalizerHelper::LegalizeResult
6203 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6204   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6205     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6206 
6207   Register Dst = MI.getOperand(0).getReg();
6208   Register Src0 = MI.getOperand(1).getReg();
6209   Register Src1 = MI.getOperand(2).getReg();
6210   LLT Ty = MRI.getType(Dst);
6211 
6212   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6213     // Insert canonicalizes if it's possible we need to quiet to get correct
6214     // sNaN behavior.
6215 
6216     // Note this must be done here, and not as an optimization combine in the
6217     // absence of a dedicate quiet-snan instruction as we're using an
6218     // omni-purpose G_FCANONICALIZE.
6219     if (!isKnownNeverSNaN(Src0, MRI))
6220       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6221 
6222     if (!isKnownNeverSNaN(Src1, MRI))
6223       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6224   }
6225 
6226   // If there are no nans, it's safe to simply replace this with the non-IEEE
6227   // version.
6228   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6229   MI.eraseFromParent();
6230   return Legalized;
6231 }
6232 
6233 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6234   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6235   Register DstReg = MI.getOperand(0).getReg();
6236   LLT Ty = MRI.getType(DstReg);
6237   unsigned Flags = MI.getFlags();
6238 
6239   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6240                                   Flags);
6241   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6242   MI.eraseFromParent();
6243   return Legalized;
6244 }
6245 
6246 LegalizerHelper::LegalizeResult
6247 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6248   Register DstReg = MI.getOperand(0).getReg();
6249   Register X = MI.getOperand(1).getReg();
6250   const unsigned Flags = MI.getFlags();
6251   const LLT Ty = MRI.getType(DstReg);
6252   const LLT CondTy = Ty.changeElementSize(1);
6253 
6254   // round(x) =>
6255   //  t = trunc(x);
6256   //  d = fabs(x - t);
6257   //  o = copysign(1.0f, x);
6258   //  return t + (d >= 0.5 ? o : 0.0);
6259 
6260   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6261 
6262   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6263   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6264   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6265   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6266   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6267   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6268 
6269   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6270                                   Flags);
6271   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6272 
6273   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6274 
6275   MI.eraseFromParent();
6276   return Legalized;
6277 }
6278 
6279 LegalizerHelper::LegalizeResult
6280 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6281   Register DstReg = MI.getOperand(0).getReg();
6282   Register SrcReg = MI.getOperand(1).getReg();
6283   unsigned Flags = MI.getFlags();
6284   LLT Ty = MRI.getType(DstReg);
6285   const LLT CondTy = Ty.changeElementSize(1);
6286 
6287   // result = trunc(src);
6288   // if (src < 0.0 && src != result)
6289   //   result += -1.0.
6290 
6291   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6292   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6293 
6294   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6295                                   SrcReg, Zero, Flags);
6296   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6297                                       SrcReg, Trunc, Flags);
6298   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6299   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6300 
6301   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6302   MI.eraseFromParent();
6303   return Legalized;
6304 }
6305 
6306 LegalizerHelper::LegalizeResult
6307 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6308   const unsigned NumOps = MI.getNumOperands();
6309   Register DstReg = MI.getOperand(0).getReg();
6310   Register Src0Reg = MI.getOperand(1).getReg();
6311   LLT DstTy = MRI.getType(DstReg);
6312   LLT SrcTy = MRI.getType(Src0Reg);
6313   unsigned PartSize = SrcTy.getSizeInBits();
6314 
6315   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6316   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6317 
6318   for (unsigned I = 2; I != NumOps; ++I) {
6319     const unsigned Offset = (I - 1) * PartSize;
6320 
6321     Register SrcReg = MI.getOperand(I).getReg();
6322     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6323 
6324     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6325       MRI.createGenericVirtualRegister(WideTy);
6326 
6327     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6328     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6329     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6330     ResultReg = NextResult;
6331   }
6332 
6333   if (DstTy.isPointer()) {
6334     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6335           DstTy.getAddressSpace())) {
6336       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6337       return UnableToLegalize;
6338     }
6339 
6340     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6341   }
6342 
6343   MI.eraseFromParent();
6344   return Legalized;
6345 }
6346 
6347 LegalizerHelper::LegalizeResult
6348 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6349   const unsigned NumDst = MI.getNumOperands() - 1;
6350   Register SrcReg = MI.getOperand(NumDst).getReg();
6351   Register Dst0Reg = MI.getOperand(0).getReg();
6352   LLT DstTy = MRI.getType(Dst0Reg);
6353   if (DstTy.isPointer())
6354     return UnableToLegalize; // TODO
6355 
6356   SrcReg = coerceToScalar(SrcReg);
6357   if (!SrcReg)
6358     return UnableToLegalize;
6359 
6360   // Expand scalarizing unmerge as bitcast to integer and shift.
6361   LLT IntTy = MRI.getType(SrcReg);
6362 
6363   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6364 
6365   const unsigned DstSize = DstTy.getSizeInBits();
6366   unsigned Offset = DstSize;
6367   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6368     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6369     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6370     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6371   }
6372 
6373   MI.eraseFromParent();
6374   return Legalized;
6375 }
6376 
6377 /// Lower a vector extract or insert by writing the vector to a stack temporary
6378 /// and reloading the element or vector.
6379 ///
6380 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6381 ///  =>
6382 ///  %stack_temp = G_FRAME_INDEX
6383 ///  G_STORE %vec, %stack_temp
6384 ///  %idx = clamp(%idx, %vec.getNumElements())
6385 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6386 ///  %dst = G_LOAD %element_ptr
6387 LegalizerHelper::LegalizeResult
6388 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6389   Register DstReg = MI.getOperand(0).getReg();
6390   Register SrcVec = MI.getOperand(1).getReg();
6391   Register InsertVal;
6392   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6393     InsertVal = MI.getOperand(2).getReg();
6394 
6395   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6396 
6397   LLT VecTy = MRI.getType(SrcVec);
6398   LLT EltTy = VecTy.getElementType();
6399   if (!EltTy.isByteSized()) { // Not implemented.
6400     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6401     return UnableToLegalize;
6402   }
6403 
6404   unsigned EltBytes = EltTy.getSizeInBytes();
6405   Align VecAlign = getStackTemporaryAlignment(VecTy);
6406   Align EltAlign;
6407 
6408   MachinePointerInfo PtrInfo;
6409   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6410                                         VecAlign, PtrInfo);
6411   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6412 
6413   // Get the pointer to the element, and be sure not to hit undefined behavior
6414   // if the index is out of bounds.
6415   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6416 
6417   int64_t IdxVal;
6418   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6419     int64_t Offset = IdxVal * EltBytes;
6420     PtrInfo = PtrInfo.getWithOffset(Offset);
6421     EltAlign = commonAlignment(VecAlign, Offset);
6422   } else {
6423     // We lose information with a variable offset.
6424     EltAlign = getStackTemporaryAlignment(EltTy);
6425     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6426   }
6427 
6428   if (InsertVal) {
6429     // Write the inserted element
6430     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6431 
6432     // Reload the whole vector.
6433     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6434   } else {
6435     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6436   }
6437 
6438   MI.eraseFromParent();
6439   return Legalized;
6440 }
6441 
6442 LegalizerHelper::LegalizeResult
6443 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6444   Register DstReg = MI.getOperand(0).getReg();
6445   Register Src0Reg = MI.getOperand(1).getReg();
6446   Register Src1Reg = MI.getOperand(2).getReg();
6447   LLT Src0Ty = MRI.getType(Src0Reg);
6448   LLT DstTy = MRI.getType(DstReg);
6449   LLT IdxTy = LLT::scalar(32);
6450 
6451   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6452 
6453   if (DstTy.isScalar()) {
6454     if (Src0Ty.isVector())
6455       return UnableToLegalize;
6456 
6457     // This is just a SELECT.
6458     assert(Mask.size() == 1 && "Expected a single mask element");
6459     Register Val;
6460     if (Mask[0] < 0 || Mask[0] > 1)
6461       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6462     else
6463       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6464     MIRBuilder.buildCopy(DstReg, Val);
6465     MI.eraseFromParent();
6466     return Legalized;
6467   }
6468 
6469   Register Undef;
6470   SmallVector<Register, 32> BuildVec;
6471   LLT EltTy = DstTy.getElementType();
6472 
6473   for (int Idx : Mask) {
6474     if (Idx < 0) {
6475       if (!Undef.isValid())
6476         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6477       BuildVec.push_back(Undef);
6478       continue;
6479     }
6480 
6481     if (Src0Ty.isScalar()) {
6482       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6483     } else {
6484       int NumElts = Src0Ty.getNumElements();
6485       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6486       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6487       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6488       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6489       BuildVec.push_back(Extract.getReg(0));
6490     }
6491   }
6492 
6493   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6494   MI.eraseFromParent();
6495   return Legalized;
6496 }
6497 
6498 LegalizerHelper::LegalizeResult
6499 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6500   const auto &MF = *MI.getMF();
6501   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6502   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6503     return UnableToLegalize;
6504 
6505   Register Dst = MI.getOperand(0).getReg();
6506   Register AllocSize = MI.getOperand(1).getReg();
6507   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6508 
6509   LLT PtrTy = MRI.getType(Dst);
6510   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6511 
6512   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6513   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6514   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6515 
6516   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6517   // have to generate an extra instruction to negate the alloc and then use
6518   // G_PTR_ADD to add the negative offset.
6519   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6520   if (Alignment > Align(1)) {
6521     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6522     AlignMask.negate();
6523     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6524     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6525   }
6526 
6527   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6528   MIRBuilder.buildCopy(SPReg, SPTmp);
6529   MIRBuilder.buildCopy(Dst, SPTmp);
6530 
6531   MI.eraseFromParent();
6532   return Legalized;
6533 }
6534 
6535 LegalizerHelper::LegalizeResult
6536 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6537   Register Dst = MI.getOperand(0).getReg();
6538   Register Src = MI.getOperand(1).getReg();
6539   unsigned Offset = MI.getOperand(2).getImm();
6540 
6541   LLT DstTy = MRI.getType(Dst);
6542   LLT SrcTy = MRI.getType(Src);
6543 
6544   if (DstTy.isScalar() &&
6545       (SrcTy.isScalar() ||
6546        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6547     LLT SrcIntTy = SrcTy;
6548     if (!SrcTy.isScalar()) {
6549       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6550       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6551     }
6552 
6553     if (Offset == 0)
6554       MIRBuilder.buildTrunc(Dst, Src);
6555     else {
6556       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6557       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6558       MIRBuilder.buildTrunc(Dst, Shr);
6559     }
6560 
6561     MI.eraseFromParent();
6562     return Legalized;
6563   }
6564 
6565   return UnableToLegalize;
6566 }
6567 
6568 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6569   Register Dst = MI.getOperand(0).getReg();
6570   Register Src = MI.getOperand(1).getReg();
6571   Register InsertSrc = MI.getOperand(2).getReg();
6572   uint64_t Offset = MI.getOperand(3).getImm();
6573 
6574   LLT DstTy = MRI.getType(Src);
6575   LLT InsertTy = MRI.getType(InsertSrc);
6576 
6577   if (InsertTy.isVector() ||
6578       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6579     return UnableToLegalize;
6580 
6581   const DataLayout &DL = MIRBuilder.getDataLayout();
6582   if ((DstTy.isPointer() &&
6583        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6584       (InsertTy.isPointer() &&
6585        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6586     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6587     return UnableToLegalize;
6588   }
6589 
6590   LLT IntDstTy = DstTy;
6591 
6592   if (!DstTy.isScalar()) {
6593     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6594     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6595   }
6596 
6597   if (!InsertTy.isScalar()) {
6598     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6599     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6600   }
6601 
6602   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6603   if (Offset != 0) {
6604     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6605     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6606   }
6607 
6608   APInt MaskVal = APInt::getBitsSetWithWrap(
6609       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6610 
6611   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6612   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6613   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6614 
6615   MIRBuilder.buildCast(Dst, Or);
6616   MI.eraseFromParent();
6617   return Legalized;
6618 }
6619 
6620 LegalizerHelper::LegalizeResult
6621 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6622   Register Dst0 = MI.getOperand(0).getReg();
6623   Register Dst1 = MI.getOperand(1).getReg();
6624   Register LHS = MI.getOperand(2).getReg();
6625   Register RHS = MI.getOperand(3).getReg();
6626   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6627 
6628   LLT Ty = MRI.getType(Dst0);
6629   LLT BoolTy = MRI.getType(Dst1);
6630 
6631   if (IsAdd)
6632     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6633   else
6634     MIRBuilder.buildSub(Dst0, LHS, RHS);
6635 
6636   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6637 
6638   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6639 
6640   // For an addition, the result should be less than one of the operands (LHS)
6641   // if and only if the other operand (RHS) is negative, otherwise there will
6642   // be overflow.
6643   // For a subtraction, the result should be less than one of the operands
6644   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6645   // otherwise there will be overflow.
6646   auto ResultLowerThanLHS =
6647       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6648   auto ConditionRHS = MIRBuilder.buildICmp(
6649       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6650 
6651   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6652   MI.eraseFromParent();
6653   return Legalized;
6654 }
6655 
6656 LegalizerHelper::LegalizeResult
6657 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6658   Register Res = MI.getOperand(0).getReg();
6659   Register LHS = MI.getOperand(1).getReg();
6660   Register RHS = MI.getOperand(2).getReg();
6661   LLT Ty = MRI.getType(Res);
6662   bool IsSigned;
6663   bool IsAdd;
6664   unsigned BaseOp;
6665   switch (MI.getOpcode()) {
6666   default:
6667     llvm_unreachable("unexpected addsat/subsat opcode");
6668   case TargetOpcode::G_UADDSAT:
6669     IsSigned = false;
6670     IsAdd = true;
6671     BaseOp = TargetOpcode::G_ADD;
6672     break;
6673   case TargetOpcode::G_SADDSAT:
6674     IsSigned = true;
6675     IsAdd = true;
6676     BaseOp = TargetOpcode::G_ADD;
6677     break;
6678   case TargetOpcode::G_USUBSAT:
6679     IsSigned = false;
6680     IsAdd = false;
6681     BaseOp = TargetOpcode::G_SUB;
6682     break;
6683   case TargetOpcode::G_SSUBSAT:
6684     IsSigned = true;
6685     IsAdd = false;
6686     BaseOp = TargetOpcode::G_SUB;
6687     break;
6688   }
6689 
6690   if (IsSigned) {
6691     // sadd.sat(a, b) ->
6692     //   hi = 0x7fffffff - smax(a, 0)
6693     //   lo = 0x80000000 - smin(a, 0)
6694     //   a + smin(smax(lo, b), hi)
6695     // ssub.sat(a, b) ->
6696     //   lo = smax(a, -1) - 0x7fffffff
6697     //   hi = smin(a, -1) - 0x80000000
6698     //   a - smin(smax(lo, b), hi)
6699     // TODO: AMDGPU can use a "median of 3" instruction here:
6700     //   a +/- med3(lo, b, hi)
6701     uint64_t NumBits = Ty.getScalarSizeInBits();
6702     auto MaxVal =
6703         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6704     auto MinVal =
6705         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6706     MachineInstrBuilder Hi, Lo;
6707     if (IsAdd) {
6708       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6709       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6710       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6711     } else {
6712       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6713       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6714                                MaxVal);
6715       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6716                                MinVal);
6717     }
6718     auto RHSClamped =
6719         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6720     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6721   } else {
6722     // uadd.sat(a, b) -> a + umin(~a, b)
6723     // usub.sat(a, b) -> a - umin(a, b)
6724     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6725     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6726     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6727   }
6728 
6729   MI.eraseFromParent();
6730   return Legalized;
6731 }
6732 
6733 LegalizerHelper::LegalizeResult
6734 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6735   Register Res = MI.getOperand(0).getReg();
6736   Register LHS = MI.getOperand(1).getReg();
6737   Register RHS = MI.getOperand(2).getReg();
6738   LLT Ty = MRI.getType(Res);
6739   LLT BoolTy = Ty.changeElementSize(1);
6740   bool IsSigned;
6741   bool IsAdd;
6742   unsigned OverflowOp;
6743   switch (MI.getOpcode()) {
6744   default:
6745     llvm_unreachable("unexpected addsat/subsat opcode");
6746   case TargetOpcode::G_UADDSAT:
6747     IsSigned = false;
6748     IsAdd = true;
6749     OverflowOp = TargetOpcode::G_UADDO;
6750     break;
6751   case TargetOpcode::G_SADDSAT:
6752     IsSigned = true;
6753     IsAdd = true;
6754     OverflowOp = TargetOpcode::G_SADDO;
6755     break;
6756   case TargetOpcode::G_USUBSAT:
6757     IsSigned = false;
6758     IsAdd = false;
6759     OverflowOp = TargetOpcode::G_USUBO;
6760     break;
6761   case TargetOpcode::G_SSUBSAT:
6762     IsSigned = true;
6763     IsAdd = false;
6764     OverflowOp = TargetOpcode::G_SSUBO;
6765     break;
6766   }
6767 
6768   auto OverflowRes =
6769       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6770   Register Tmp = OverflowRes.getReg(0);
6771   Register Ov = OverflowRes.getReg(1);
6772   MachineInstrBuilder Clamp;
6773   if (IsSigned) {
6774     // sadd.sat(a, b) ->
6775     //   {tmp, ov} = saddo(a, b)
6776     //   ov ? (tmp >>s 31) + 0x80000000 : r
6777     // ssub.sat(a, b) ->
6778     //   {tmp, ov} = ssubo(a, b)
6779     //   ov ? (tmp >>s 31) + 0x80000000 : r
6780     uint64_t NumBits = Ty.getScalarSizeInBits();
6781     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6782     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6783     auto MinVal =
6784         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6785     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6786   } else {
6787     // uadd.sat(a, b) ->
6788     //   {tmp, ov} = uaddo(a, b)
6789     //   ov ? 0xffffffff : tmp
6790     // usub.sat(a, b) ->
6791     //   {tmp, ov} = usubo(a, b)
6792     //   ov ? 0 : tmp
6793     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6794   }
6795   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6796 
6797   MI.eraseFromParent();
6798   return Legalized;
6799 }
6800 
6801 LegalizerHelper::LegalizeResult
6802 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6803   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6804           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6805          "Expected shlsat opcode!");
6806   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6807   Register Res = MI.getOperand(0).getReg();
6808   Register LHS = MI.getOperand(1).getReg();
6809   Register RHS = MI.getOperand(2).getReg();
6810   LLT Ty = MRI.getType(Res);
6811   LLT BoolTy = Ty.changeElementSize(1);
6812 
6813   unsigned BW = Ty.getScalarSizeInBits();
6814   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6815   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6816                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6817 
6818   MachineInstrBuilder SatVal;
6819   if (IsSigned) {
6820     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6821     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6822     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6823                                     MIRBuilder.buildConstant(Ty, 0));
6824     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6825   } else {
6826     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6827   }
6828   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6829   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6830 
6831   MI.eraseFromParent();
6832   return Legalized;
6833 }
6834 
6835 LegalizerHelper::LegalizeResult
6836 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6837   Register Dst = MI.getOperand(0).getReg();
6838   Register Src = MI.getOperand(1).getReg();
6839   const LLT Ty = MRI.getType(Src);
6840   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6841   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6842 
6843   // Swap most and least significant byte, set remaining bytes in Res to zero.
6844   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6845   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6846   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6847   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6848 
6849   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6850   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6851     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6852     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6853     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6854     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6855     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6856     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6857     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6858     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6859     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6860     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6861     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6862     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6863   }
6864   Res.getInstr()->getOperand(0).setReg(Dst);
6865 
6866   MI.eraseFromParent();
6867   return Legalized;
6868 }
6869 
6870 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6871 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6872                                  MachineInstrBuilder Src, APInt Mask) {
6873   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6874   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6875   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6876   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6877   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6878   return B.buildOr(Dst, LHS, RHS);
6879 }
6880 
6881 LegalizerHelper::LegalizeResult
6882 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6883   Register Dst = MI.getOperand(0).getReg();
6884   Register Src = MI.getOperand(1).getReg();
6885   const LLT Ty = MRI.getType(Src);
6886   unsigned Size = Ty.getSizeInBits();
6887 
6888   MachineInstrBuilder BSWAP =
6889       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6890 
6891   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6892   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6893   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6894   MachineInstrBuilder Swap4 =
6895       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6896 
6897   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6898   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6899   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6900   MachineInstrBuilder Swap2 =
6901       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6902 
6903   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6904   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6905   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6906   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6907 
6908   MI.eraseFromParent();
6909   return Legalized;
6910 }
6911 
6912 LegalizerHelper::LegalizeResult
6913 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6914   MachineFunction &MF = MIRBuilder.getMF();
6915 
6916   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6917   int NameOpIdx = IsRead ? 1 : 0;
6918   int ValRegIndex = IsRead ? 0 : 1;
6919 
6920   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6921   const LLT Ty = MRI.getType(ValReg);
6922   const MDString *RegStr = cast<MDString>(
6923     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6924 
6925   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6926   if (!PhysReg.isValid())
6927     return UnableToLegalize;
6928 
6929   if (IsRead)
6930     MIRBuilder.buildCopy(ValReg, PhysReg);
6931   else
6932     MIRBuilder.buildCopy(PhysReg, ValReg);
6933 
6934   MI.eraseFromParent();
6935   return Legalized;
6936 }
6937 
6938 LegalizerHelper::LegalizeResult
6939 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6940   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6941   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6942   Register Result = MI.getOperand(0).getReg();
6943   LLT OrigTy = MRI.getType(Result);
6944   auto SizeInBits = OrigTy.getScalarSizeInBits();
6945   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6946 
6947   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6948   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6949   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6950   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6951 
6952   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6953   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6954   MIRBuilder.buildTrunc(Result, Shifted);
6955 
6956   MI.eraseFromParent();
6957   return Legalized;
6958 }
6959 
6960 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6961   // Implement vector G_SELECT in terms of XOR, AND, OR.
6962   Register DstReg = MI.getOperand(0).getReg();
6963   Register MaskReg = MI.getOperand(1).getReg();
6964   Register Op1Reg = MI.getOperand(2).getReg();
6965   Register Op2Reg = MI.getOperand(3).getReg();
6966   LLT DstTy = MRI.getType(DstReg);
6967   LLT MaskTy = MRI.getType(MaskReg);
6968   LLT Op1Ty = MRI.getType(Op1Reg);
6969   if (!DstTy.isVector())
6970     return UnableToLegalize;
6971 
6972   // Vector selects can have a scalar predicate. If so, splat into a vector and
6973   // finish for later legalization attempts to try again.
6974   if (MaskTy.isScalar()) {
6975     Register MaskElt = MaskReg;
6976     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6977       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6978     // Generate a vector splat idiom to be pattern matched later.
6979     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6980     Observer.changingInstr(MI);
6981     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6982     Observer.changedInstr(MI);
6983     return Legalized;
6984   }
6985 
6986   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6987     return UnableToLegalize;
6988   }
6989 
6990   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6991   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6992   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6993   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6994   MI.eraseFromParent();
6995   return Legalized;
6996 }
6997 
6998 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
6999   // Split DIVREM into individual instructions.
7000   unsigned Opcode = MI.getOpcode();
7001 
7002   MIRBuilder.buildInstr(
7003       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7004                                         : TargetOpcode::G_UDIV,
7005       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7006   MIRBuilder.buildInstr(
7007       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7008                                         : TargetOpcode::G_UREM,
7009       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7010   MI.eraseFromParent();
7011   return Legalized;
7012 }
7013