1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 90 MIRBuilder.setMF(MF); 91 MIRBuilder.setChangeObserver(Observer); 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &B) 97 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 98 MIRBuilder.setMF(MF); 99 MIRBuilder.setChangeObserver(Observer); 100 } 101 LegalizerHelper::LegalizeResult 102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 103 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 108 : UnableToLegalize; 109 auto Step = LI.getAction(MI, MRI); 110 switch (Step.Action) { 111 case Legal: 112 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 113 return AlreadyLegal; 114 case Libcall: 115 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 116 return libcall(MI); 117 case NarrowScalar: 118 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 119 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 120 case WidenScalar: 121 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 122 return widenScalar(MI, Step.TypeIdx, Step.NewType); 123 case Bitcast: 124 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 125 return bitcast(MI, Step.TypeIdx, Step.NewType); 126 case Lower: 127 LLVM_DEBUG(dbgs() << ".. Lower\n"); 128 return lower(MI, Step.TypeIdx, Step.NewType); 129 case FewerElements: 130 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 131 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 132 case MoreElements: 133 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 134 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 135 case Custom: 136 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 137 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 138 : UnableToLegalize; 139 default: 140 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 141 return UnableToLegalize; 142 } 143 } 144 145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 146 SmallVectorImpl<Register> &VRegs) { 147 for (int i = 0; i < NumParts; ++i) 148 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 149 MIRBuilder.buildUnmerge(VRegs, Reg); 150 } 151 152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 153 LLT MainTy, LLT &LeftoverTy, 154 SmallVectorImpl<Register> &VRegs, 155 SmallVectorImpl<Register> &LeftoverRegs) { 156 assert(!LeftoverTy.isValid() && "this is an out argument"); 157 158 unsigned RegSize = RegTy.getSizeInBits(); 159 unsigned MainSize = MainTy.getSizeInBits(); 160 unsigned NumParts = RegSize / MainSize; 161 unsigned LeftoverSize = RegSize - NumParts * MainSize; 162 163 // Use an unmerge when possible. 164 if (LeftoverSize == 0) { 165 for (unsigned I = 0; I < NumParts; ++I) 166 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 167 MIRBuilder.buildUnmerge(VRegs, Reg); 168 return true; 169 } 170 171 if (MainTy.isVector()) { 172 unsigned EltSize = MainTy.getScalarSizeInBits(); 173 if (LeftoverSize % EltSize != 0) 174 return false; 175 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 176 } else { 177 LeftoverTy = LLT::scalar(LeftoverSize); 178 } 179 180 // For irregular sizes, extract the individual parts. 181 for (unsigned I = 0; I != NumParts; ++I) { 182 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 183 VRegs.push_back(NewReg); 184 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 185 } 186 187 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 188 Offset += LeftoverSize) { 189 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 190 LeftoverRegs.push_back(NewReg); 191 MIRBuilder.buildExtract(NewReg, Reg, Offset); 192 } 193 194 return true; 195 } 196 197 void LegalizerHelper::insertParts(Register DstReg, 198 LLT ResultTy, LLT PartTy, 199 ArrayRef<Register> PartRegs, 200 LLT LeftoverTy, 201 ArrayRef<Register> LeftoverRegs) { 202 if (!LeftoverTy.isValid()) { 203 assert(LeftoverRegs.empty()); 204 205 if (!ResultTy.isVector()) { 206 MIRBuilder.buildMerge(DstReg, PartRegs); 207 return; 208 } 209 210 if (PartTy.isVector()) 211 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 212 else 213 MIRBuilder.buildBuildVector(DstReg, PartRegs); 214 return; 215 } 216 217 unsigned PartSize = PartTy.getSizeInBits(); 218 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 219 220 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 221 MIRBuilder.buildUndef(CurResultReg); 222 223 unsigned Offset = 0; 224 for (Register PartReg : PartRegs) { 225 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 226 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 227 CurResultReg = NewResultReg; 228 Offset += PartSize; 229 } 230 231 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 232 // Use the original output register for the final insert to avoid a copy. 233 Register NewResultReg = (I + 1 == E) ? 234 DstReg : MRI.createGenericVirtualRegister(ResultTy); 235 236 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 237 CurResultReg = NewResultReg; 238 Offset += LeftoverPartSize; 239 } 240 } 241 242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 244 const MachineInstr &MI) { 245 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 246 247 const int NumResults = MI.getNumOperands() - 1; 248 Regs.resize(NumResults); 249 for (int I = 0; I != NumResults; ++I) 250 Regs[I] = MI.getOperand(I).getReg(); 251 } 252 253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 254 LLT NarrowTy, Register SrcReg) { 255 LLT SrcTy = MRI.getType(SrcReg); 256 257 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 268 return GCDTy; 269 } 270 271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 272 SmallVectorImpl<Register> &VRegs, 273 unsigned PadStrategy) { 274 LLT LCMTy = getLCMType(DstTy, NarrowTy); 275 276 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 277 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 278 int NumOrigSrc = VRegs.size(); 279 280 Register PadReg; 281 282 // Get a value we can use to pad the source value if the sources won't evenly 283 // cover the result type. 284 if (NumOrigSrc < NumParts * NumSubParts) { 285 if (PadStrategy == TargetOpcode::G_ZEXT) 286 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 287 else if (PadStrategy == TargetOpcode::G_ANYEXT) 288 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 289 else { 290 assert(PadStrategy == TargetOpcode::G_SEXT); 291 292 // Shift the sign bit of the low register through the high register. 293 auto ShiftAmt = 294 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 295 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 296 } 297 } 298 299 // Registers for the final merge to be produced. 300 SmallVector<Register, 4> Remerge(NumParts); 301 302 // Registers needed for intermediate merges, which will be merged into a 303 // source for Remerge. 304 SmallVector<Register, 4> SubMerge(NumSubParts); 305 306 // Once we've fully read off the end of the original source bits, we can reuse 307 // the same high bits for remaining padding elements. 308 Register AllPadReg; 309 310 // Build merges to the LCM type to cover the original result type. 311 for (int I = 0; I != NumParts; ++I) { 312 bool AllMergePartsArePadding = true; 313 314 // Build the requested merges to the requested type. 315 for (int J = 0; J != NumSubParts; ++J) { 316 int Idx = I * NumSubParts + J; 317 if (Idx >= NumOrigSrc) { 318 SubMerge[J] = PadReg; 319 continue; 320 } 321 322 SubMerge[J] = VRegs[Idx]; 323 324 // There are meaningful bits here we can't reuse later. 325 AllMergePartsArePadding = false; 326 } 327 328 // If we've filled up a complete piece with padding bits, we can directly 329 // emit the natural sized constant if applicable, rather than a merge of 330 // smaller constants. 331 if (AllMergePartsArePadding && !AllPadReg) { 332 if (PadStrategy == TargetOpcode::G_ANYEXT) 333 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 334 else if (PadStrategy == TargetOpcode::G_ZEXT) 335 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 336 337 // If this is a sign extension, we can't materialize a trivial constant 338 // with the right type and have to produce a merge. 339 } 340 341 if (AllPadReg) { 342 // Avoid creating additional instructions if we're just adding additional 343 // copies of padding bits. 344 Remerge[I] = AllPadReg; 345 continue; 346 } 347 348 if (NumSubParts == 1) 349 Remerge[I] = SubMerge[0]; 350 else 351 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 352 353 // In the sign extend padding case, re-use the first all-signbit merge. 354 if (AllMergePartsArePadding && !AllPadReg) 355 AllPadReg = Remerge[I]; 356 } 357 358 VRegs = std::move(Remerge); 359 return LCMTy; 360 } 361 362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 363 ArrayRef<Register> RemergeRegs) { 364 LLT DstTy = MRI.getType(DstReg); 365 366 // Create the merge to the widened source, and extract the relevant bits into 367 // the result. 368 369 if (DstTy == LCMTy) { 370 MIRBuilder.buildMerge(DstReg, RemergeRegs); 371 return; 372 } 373 374 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 375 if (DstTy.isScalar() && LCMTy.isScalar()) { 376 MIRBuilder.buildTrunc(DstReg, Remerge); 377 return; 378 } 379 380 if (LCMTy.isVector()) { 381 MIRBuilder.buildExtract(DstReg, Remerge, 0); 382 return; 383 } 384 385 llvm_unreachable("unhandled case"); 386 } 387 388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 389 #define RTLIBCASE(LibcallPrefix) \ 390 do { \ 391 switch (Size) { \ 392 case 32: \ 393 return RTLIB::LibcallPrefix##32; \ 394 case 64: \ 395 return RTLIB::LibcallPrefix##64; \ 396 case 128: \ 397 return RTLIB::LibcallPrefix##128; \ 398 default: \ 399 llvm_unreachable("unexpected size"); \ 400 } \ 401 } while (0) 402 403 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 404 405 switch (Opcode) { 406 case TargetOpcode::G_SDIV: 407 RTLIBCASE(SDIV_I); 408 case TargetOpcode::G_UDIV: 409 RTLIBCASE(UDIV_I); 410 case TargetOpcode::G_SREM: 411 RTLIBCASE(SREM_I); 412 case TargetOpcode::G_UREM: 413 RTLIBCASE(UREM_I); 414 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 415 RTLIBCASE(CTLZ_I); 416 case TargetOpcode::G_FADD: 417 RTLIBCASE(ADD_F); 418 case TargetOpcode::G_FSUB: 419 RTLIBCASE(SUB_F); 420 case TargetOpcode::G_FMUL: 421 RTLIBCASE(MUL_F); 422 case TargetOpcode::G_FDIV: 423 RTLIBCASE(DIV_F); 424 case TargetOpcode::G_FEXP: 425 RTLIBCASE(EXP_F); 426 case TargetOpcode::G_FEXP2: 427 RTLIBCASE(EXP2_F); 428 case TargetOpcode::G_FREM: 429 RTLIBCASE(REM_F); 430 case TargetOpcode::G_FPOW: 431 RTLIBCASE(POW_F); 432 case TargetOpcode::G_FMA: 433 RTLIBCASE(FMA_F); 434 case TargetOpcode::G_FSIN: 435 RTLIBCASE(SIN_F); 436 case TargetOpcode::G_FCOS: 437 RTLIBCASE(COS_F); 438 case TargetOpcode::G_FLOG10: 439 RTLIBCASE(LOG10_F); 440 case TargetOpcode::G_FLOG: 441 RTLIBCASE(LOG_F); 442 case TargetOpcode::G_FLOG2: 443 RTLIBCASE(LOG2_F); 444 case TargetOpcode::G_FCEIL: 445 RTLIBCASE(CEIL_F); 446 case TargetOpcode::G_FFLOOR: 447 RTLIBCASE(FLOOR_F); 448 case TargetOpcode::G_FMINNUM: 449 RTLIBCASE(FMIN_F); 450 case TargetOpcode::G_FMAXNUM: 451 RTLIBCASE(FMAX_F); 452 case TargetOpcode::G_FSQRT: 453 RTLIBCASE(SQRT_F); 454 case TargetOpcode::G_FRINT: 455 RTLIBCASE(RINT_F); 456 case TargetOpcode::G_FNEARBYINT: 457 RTLIBCASE(NEARBYINT_F); 458 } 459 llvm_unreachable("Unknown libcall function"); 460 } 461 462 /// True if an instruction is in tail position in its caller. Intended for 463 /// legalizing libcalls as tail calls when possible. 464 static bool isLibCallInTailPosition(MachineInstr &MI) { 465 const Function &F = MI.getParent()->getParent()->getFunction(); 466 467 // Conservatively require the attributes of the call to match those of 468 // the return. Ignore NoAlias and NonNull because they don't affect the 469 // call sequence. 470 AttributeList CallerAttrs = F.getAttributes(); 471 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 472 .removeAttribute(Attribute::NoAlias) 473 .removeAttribute(Attribute::NonNull) 474 .hasAttributes()) 475 return false; 476 477 // It's not safe to eliminate the sign / zero extension of the return value. 478 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 479 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 480 return false; 481 482 // Only tail call if the following instruction is a standard return. 483 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 484 MachineInstr *Next = MI.getNextNode(); 485 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 486 return false; 487 488 return true; 489 } 490 491 LegalizerHelper::LegalizeResult 492 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 493 const CallLowering::ArgInfo &Result, 494 ArrayRef<CallLowering::ArgInfo> Args, 495 const CallingConv::ID CC) { 496 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 497 498 CallLowering::CallLoweringInfo Info; 499 Info.CallConv = CC; 500 Info.Callee = MachineOperand::CreateES(Name); 501 Info.OrigRet = Result; 502 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 503 if (!CLI.lowerCall(MIRBuilder, Info)) 504 return LegalizerHelper::UnableToLegalize; 505 506 return LegalizerHelper::Legalized; 507 } 508 509 LegalizerHelper::LegalizeResult 510 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 511 const CallLowering::ArgInfo &Result, 512 ArrayRef<CallLowering::ArgInfo> Args) { 513 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 514 const char *Name = TLI.getLibcallName(Libcall); 515 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 516 return createLibcall(MIRBuilder, Name, Result, Args, CC); 517 } 518 519 // Useful for libcalls where all operands have the same type. 520 static LegalizerHelper::LegalizeResult 521 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 522 Type *OpType) { 523 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 524 525 SmallVector<CallLowering::ArgInfo, 3> Args; 526 for (unsigned i = 1; i < MI.getNumOperands(); i++) 527 Args.push_back({MI.getOperand(i).getReg(), OpType}); 528 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 529 Args); 530 } 531 532 LegalizerHelper::LegalizeResult 533 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 534 MachineInstr &MI) { 535 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 536 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 537 538 SmallVector<CallLowering::ArgInfo, 3> Args; 539 // Add all the args, except for the last which is an imm denoting 'tail'. 540 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 541 Register Reg = MI.getOperand(i).getReg(); 542 543 // Need derive an IR type for call lowering. 544 LLT OpLLT = MRI.getType(Reg); 545 Type *OpTy = nullptr; 546 if (OpLLT.isPointer()) 547 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 548 else 549 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 550 Args.push_back({Reg, OpTy}); 551 } 552 553 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 554 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 555 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 556 RTLIB::Libcall RTLibcall; 557 switch (ID) { 558 case Intrinsic::memcpy: 559 RTLibcall = RTLIB::MEMCPY; 560 break; 561 case Intrinsic::memset: 562 RTLibcall = RTLIB::MEMSET; 563 break; 564 case Intrinsic::memmove: 565 RTLibcall = RTLIB::MEMMOVE; 566 break; 567 default: 568 return LegalizerHelper::UnableToLegalize; 569 } 570 const char *Name = TLI.getLibcallName(RTLibcall); 571 572 MIRBuilder.setInstr(MI); 573 574 CallLowering::CallLoweringInfo Info; 575 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 576 Info.Callee = MachineOperand::CreateES(Name); 577 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 578 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 579 isLibCallInTailPosition(MI); 580 581 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 582 if (!CLI.lowerCall(MIRBuilder, Info)) 583 return LegalizerHelper::UnableToLegalize; 584 585 if (Info.LoweredTailCall) { 586 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 587 // We must have a return following the call to get past 588 // isLibCallInTailPosition. 589 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 590 "Expected instr following MI to be a return?"); 591 592 // We lowered a tail call, so the call is now the return from the block. 593 // Delete the old return. 594 MI.getNextNode()->eraseFromParent(); 595 } 596 597 return LegalizerHelper::Legalized; 598 } 599 600 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 601 Type *FromType) { 602 auto ToMVT = MVT::getVT(ToType); 603 auto FromMVT = MVT::getVT(FromType); 604 605 switch (Opcode) { 606 case TargetOpcode::G_FPEXT: 607 return RTLIB::getFPEXT(FromMVT, ToMVT); 608 case TargetOpcode::G_FPTRUNC: 609 return RTLIB::getFPROUND(FromMVT, ToMVT); 610 case TargetOpcode::G_FPTOSI: 611 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 612 case TargetOpcode::G_FPTOUI: 613 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 614 case TargetOpcode::G_SITOFP: 615 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 616 case TargetOpcode::G_UITOFP: 617 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 618 } 619 llvm_unreachable("Unsupported libcall function"); 620 } 621 622 static LegalizerHelper::LegalizeResult 623 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 624 Type *FromType) { 625 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 626 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 627 {{MI.getOperand(1).getReg(), FromType}}); 628 } 629 630 LegalizerHelper::LegalizeResult 631 LegalizerHelper::libcall(MachineInstr &MI) { 632 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 633 unsigned Size = LLTy.getSizeInBits(); 634 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 635 636 MIRBuilder.setInstr(MI); 637 638 switch (MI.getOpcode()) { 639 default: 640 return UnableToLegalize; 641 case TargetOpcode::G_SDIV: 642 case TargetOpcode::G_UDIV: 643 case TargetOpcode::G_SREM: 644 case TargetOpcode::G_UREM: 645 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 646 Type *HLTy = IntegerType::get(Ctx, Size); 647 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 648 if (Status != Legalized) 649 return Status; 650 break; 651 } 652 case TargetOpcode::G_FADD: 653 case TargetOpcode::G_FSUB: 654 case TargetOpcode::G_FMUL: 655 case TargetOpcode::G_FDIV: 656 case TargetOpcode::G_FMA: 657 case TargetOpcode::G_FPOW: 658 case TargetOpcode::G_FREM: 659 case TargetOpcode::G_FCOS: 660 case TargetOpcode::G_FSIN: 661 case TargetOpcode::G_FLOG10: 662 case TargetOpcode::G_FLOG: 663 case TargetOpcode::G_FLOG2: 664 case TargetOpcode::G_FEXP: 665 case TargetOpcode::G_FEXP2: 666 case TargetOpcode::G_FCEIL: 667 case TargetOpcode::G_FFLOOR: 668 case TargetOpcode::G_FMINNUM: 669 case TargetOpcode::G_FMAXNUM: 670 case TargetOpcode::G_FSQRT: 671 case TargetOpcode::G_FRINT: 672 case TargetOpcode::G_FNEARBYINT: { 673 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 674 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 675 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 676 return UnableToLegalize; 677 } 678 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 679 if (Status != Legalized) 680 return Status; 681 break; 682 } 683 case TargetOpcode::G_FPEXT: 684 case TargetOpcode::G_FPTRUNC: { 685 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 686 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 687 if (!FromTy || !ToTy) 688 return UnableToLegalize; 689 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 690 if (Status != Legalized) 691 return Status; 692 break; 693 } 694 case TargetOpcode::G_FPTOSI: 695 case TargetOpcode::G_FPTOUI: { 696 // FIXME: Support other types 697 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 698 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 699 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 700 return UnableToLegalize; 701 LegalizeResult Status = conversionLibcall( 702 MI, MIRBuilder, 703 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 704 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 705 if (Status != Legalized) 706 return Status; 707 break; 708 } 709 case TargetOpcode::G_SITOFP: 710 case TargetOpcode::G_UITOFP: { 711 // FIXME: Support other types 712 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 713 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 714 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 715 return UnableToLegalize; 716 LegalizeResult Status = conversionLibcall( 717 MI, MIRBuilder, 718 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 719 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 720 if (Status != Legalized) 721 return Status; 722 break; 723 } 724 } 725 726 MI.eraseFromParent(); 727 return Legalized; 728 } 729 730 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 731 unsigned TypeIdx, 732 LLT NarrowTy) { 733 MIRBuilder.setInstr(MI); 734 735 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 736 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 737 738 switch (MI.getOpcode()) { 739 default: 740 return UnableToLegalize; 741 case TargetOpcode::G_IMPLICIT_DEF: { 742 // FIXME: add support for when SizeOp0 isn't an exact multiple of 743 // NarrowSize. 744 if (SizeOp0 % NarrowSize != 0) 745 return UnableToLegalize; 746 int NumParts = SizeOp0 / NarrowSize; 747 748 SmallVector<Register, 2> DstRegs; 749 for (int i = 0; i < NumParts; ++i) 750 DstRegs.push_back( 751 MIRBuilder.buildUndef(NarrowTy).getReg(0)); 752 753 Register DstReg = MI.getOperand(0).getReg(); 754 if(MRI.getType(DstReg).isVector()) 755 MIRBuilder.buildBuildVector(DstReg, DstRegs); 756 else 757 MIRBuilder.buildMerge(DstReg, DstRegs); 758 MI.eraseFromParent(); 759 return Legalized; 760 } 761 case TargetOpcode::G_CONSTANT: { 762 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 763 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 764 unsigned TotalSize = Ty.getSizeInBits(); 765 unsigned NarrowSize = NarrowTy.getSizeInBits(); 766 int NumParts = TotalSize / NarrowSize; 767 768 SmallVector<Register, 4> PartRegs; 769 for (int I = 0; I != NumParts; ++I) { 770 unsigned Offset = I * NarrowSize; 771 auto K = MIRBuilder.buildConstant(NarrowTy, 772 Val.lshr(Offset).trunc(NarrowSize)); 773 PartRegs.push_back(K.getReg(0)); 774 } 775 776 LLT LeftoverTy; 777 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 778 SmallVector<Register, 1> LeftoverRegs; 779 if (LeftoverBits != 0) { 780 LeftoverTy = LLT::scalar(LeftoverBits); 781 auto K = MIRBuilder.buildConstant( 782 LeftoverTy, 783 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 784 LeftoverRegs.push_back(K.getReg(0)); 785 } 786 787 insertParts(MI.getOperand(0).getReg(), 788 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 789 790 MI.eraseFromParent(); 791 return Legalized; 792 } 793 case TargetOpcode::G_SEXT: 794 case TargetOpcode::G_ZEXT: 795 case TargetOpcode::G_ANYEXT: 796 return narrowScalarExt(MI, TypeIdx, NarrowTy); 797 case TargetOpcode::G_TRUNC: { 798 if (TypeIdx != 1) 799 return UnableToLegalize; 800 801 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 802 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 803 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 804 return UnableToLegalize; 805 } 806 807 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 808 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 809 MI.eraseFromParent(); 810 return Legalized; 811 } 812 813 case TargetOpcode::G_ADD: { 814 // FIXME: add support for when SizeOp0 isn't an exact multiple of 815 // NarrowSize. 816 if (SizeOp0 % NarrowSize != 0) 817 return UnableToLegalize; 818 // Expand in terms of carry-setting/consuming G_ADDE instructions. 819 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 820 821 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 822 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 823 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 824 825 Register CarryIn; 826 for (int i = 0; i < NumParts; ++i) { 827 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 828 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 829 830 if (i == 0) 831 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 832 else { 833 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 834 Src2Regs[i], CarryIn); 835 } 836 837 DstRegs.push_back(DstReg); 838 CarryIn = CarryOut; 839 } 840 Register DstReg = MI.getOperand(0).getReg(); 841 if(MRI.getType(DstReg).isVector()) 842 MIRBuilder.buildBuildVector(DstReg, DstRegs); 843 else 844 MIRBuilder.buildMerge(DstReg, DstRegs); 845 MI.eraseFromParent(); 846 return Legalized; 847 } 848 case TargetOpcode::G_SUB: { 849 // FIXME: add support for when SizeOp0 isn't an exact multiple of 850 // NarrowSize. 851 if (SizeOp0 % NarrowSize != 0) 852 return UnableToLegalize; 853 854 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 855 856 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 857 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 858 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 859 860 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 861 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 862 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 863 {Src1Regs[0], Src2Regs[0]}); 864 DstRegs.push_back(DstReg); 865 Register BorrowIn = BorrowOut; 866 for (int i = 1; i < NumParts; ++i) { 867 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 868 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 869 870 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 871 {Src1Regs[i], Src2Regs[i], BorrowIn}); 872 873 DstRegs.push_back(DstReg); 874 BorrowIn = BorrowOut; 875 } 876 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 877 MI.eraseFromParent(); 878 return Legalized; 879 } 880 case TargetOpcode::G_MUL: 881 case TargetOpcode::G_UMULH: 882 return narrowScalarMul(MI, NarrowTy); 883 case TargetOpcode::G_EXTRACT: 884 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 885 case TargetOpcode::G_INSERT: 886 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 887 case TargetOpcode::G_LOAD: { 888 const auto &MMO = **MI.memoperands_begin(); 889 Register DstReg = MI.getOperand(0).getReg(); 890 LLT DstTy = MRI.getType(DstReg); 891 if (DstTy.isVector()) 892 return UnableToLegalize; 893 894 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 895 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 896 auto &MMO = **MI.memoperands_begin(); 897 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 898 MIRBuilder.buildAnyExt(DstReg, TmpReg); 899 MI.eraseFromParent(); 900 return Legalized; 901 } 902 903 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 904 } 905 case TargetOpcode::G_ZEXTLOAD: 906 case TargetOpcode::G_SEXTLOAD: { 907 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 908 Register DstReg = MI.getOperand(0).getReg(); 909 Register PtrReg = MI.getOperand(1).getReg(); 910 911 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 912 auto &MMO = **MI.memoperands_begin(); 913 if (MMO.getSizeInBits() == NarrowSize) { 914 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 915 } else { 916 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 917 } 918 919 if (ZExt) 920 MIRBuilder.buildZExt(DstReg, TmpReg); 921 else 922 MIRBuilder.buildSExt(DstReg, TmpReg); 923 924 MI.eraseFromParent(); 925 return Legalized; 926 } 927 case TargetOpcode::G_STORE: { 928 const auto &MMO = **MI.memoperands_begin(); 929 930 Register SrcReg = MI.getOperand(0).getReg(); 931 LLT SrcTy = MRI.getType(SrcReg); 932 if (SrcTy.isVector()) 933 return UnableToLegalize; 934 935 int NumParts = SizeOp0 / NarrowSize; 936 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 937 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 938 if (SrcTy.isVector() && LeftoverBits != 0) 939 return UnableToLegalize; 940 941 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 942 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 943 auto &MMO = **MI.memoperands_begin(); 944 MIRBuilder.buildTrunc(TmpReg, SrcReg); 945 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 946 MI.eraseFromParent(); 947 return Legalized; 948 } 949 950 return reduceLoadStoreWidth(MI, 0, NarrowTy); 951 } 952 case TargetOpcode::G_SELECT: 953 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 954 case TargetOpcode::G_AND: 955 case TargetOpcode::G_OR: 956 case TargetOpcode::G_XOR: { 957 // Legalize bitwise operation: 958 // A = BinOp<Ty> B, C 959 // into: 960 // B1, ..., BN = G_UNMERGE_VALUES B 961 // C1, ..., CN = G_UNMERGE_VALUES C 962 // A1 = BinOp<Ty/N> B1, C2 963 // ... 964 // AN = BinOp<Ty/N> BN, CN 965 // A = G_MERGE_VALUES A1, ..., AN 966 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 967 } 968 case TargetOpcode::G_SHL: 969 case TargetOpcode::G_LSHR: 970 case TargetOpcode::G_ASHR: 971 return narrowScalarShift(MI, TypeIdx, NarrowTy); 972 case TargetOpcode::G_CTLZ: 973 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 974 case TargetOpcode::G_CTTZ: 975 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 976 case TargetOpcode::G_CTPOP: 977 if (TypeIdx == 1) 978 switch (MI.getOpcode()) { 979 case TargetOpcode::G_CTLZ: 980 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 981 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 982 case TargetOpcode::G_CTTZ: 983 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 984 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 985 case TargetOpcode::G_CTPOP: 986 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 987 default: 988 return UnableToLegalize; 989 } 990 991 Observer.changingInstr(MI); 992 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 993 Observer.changedInstr(MI); 994 return Legalized; 995 case TargetOpcode::G_INTTOPTR: 996 if (TypeIdx != 1) 997 return UnableToLegalize; 998 999 Observer.changingInstr(MI); 1000 narrowScalarSrc(MI, NarrowTy, 1); 1001 Observer.changedInstr(MI); 1002 return Legalized; 1003 case TargetOpcode::G_PTRTOINT: 1004 if (TypeIdx != 0) 1005 return UnableToLegalize; 1006 1007 Observer.changingInstr(MI); 1008 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1009 Observer.changedInstr(MI); 1010 return Legalized; 1011 case TargetOpcode::G_PHI: { 1012 unsigned NumParts = SizeOp0 / NarrowSize; 1013 SmallVector<Register, 2> DstRegs(NumParts); 1014 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1015 Observer.changingInstr(MI); 1016 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1017 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1018 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1019 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1020 SrcRegs[i / 2]); 1021 } 1022 MachineBasicBlock &MBB = *MI.getParent(); 1023 MIRBuilder.setInsertPt(MBB, MI); 1024 for (unsigned i = 0; i < NumParts; ++i) { 1025 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1026 MachineInstrBuilder MIB = 1027 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1028 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1029 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1030 } 1031 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1032 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1033 Observer.changedInstr(MI); 1034 MI.eraseFromParent(); 1035 return Legalized; 1036 } 1037 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1038 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1039 if (TypeIdx != 2) 1040 return UnableToLegalize; 1041 1042 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1043 Observer.changingInstr(MI); 1044 narrowScalarSrc(MI, NarrowTy, OpIdx); 1045 Observer.changedInstr(MI); 1046 return Legalized; 1047 } 1048 case TargetOpcode::G_ICMP: { 1049 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1050 if (NarrowSize * 2 != SrcSize) 1051 return UnableToLegalize; 1052 1053 Observer.changingInstr(MI); 1054 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1055 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1056 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1057 1058 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1059 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1060 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1061 1062 CmpInst::Predicate Pred = 1063 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1064 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1065 1066 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1067 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1068 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1069 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1070 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1071 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1072 } else { 1073 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1074 MachineInstrBuilder CmpHEQ = 1075 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1076 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1077 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1078 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1079 } 1080 Observer.changedInstr(MI); 1081 MI.eraseFromParent(); 1082 return Legalized; 1083 } 1084 case TargetOpcode::G_SEXT_INREG: { 1085 if (TypeIdx != 0) 1086 return UnableToLegalize; 1087 1088 int64_t SizeInBits = MI.getOperand(2).getImm(); 1089 1090 // So long as the new type has more bits than the bits we're extending we 1091 // don't need to break it apart. 1092 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1093 Observer.changingInstr(MI); 1094 // We don't lose any non-extension bits by truncating the src and 1095 // sign-extending the dst. 1096 MachineOperand &MO1 = MI.getOperand(1); 1097 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1098 MO1.setReg(TruncMIB.getReg(0)); 1099 1100 MachineOperand &MO2 = MI.getOperand(0); 1101 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1102 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1103 MIRBuilder.buildSExt(MO2, DstExt); 1104 MO2.setReg(DstExt); 1105 Observer.changedInstr(MI); 1106 return Legalized; 1107 } 1108 1109 // Break it apart. Components below the extension point are unmodified. The 1110 // component containing the extension point becomes a narrower SEXT_INREG. 1111 // Components above it are ashr'd from the component containing the 1112 // extension point. 1113 if (SizeOp0 % NarrowSize != 0) 1114 return UnableToLegalize; 1115 int NumParts = SizeOp0 / NarrowSize; 1116 1117 // List the registers where the destination will be scattered. 1118 SmallVector<Register, 2> DstRegs; 1119 // List the registers where the source will be split. 1120 SmallVector<Register, 2> SrcRegs; 1121 1122 // Create all the temporary registers. 1123 for (int i = 0; i < NumParts; ++i) { 1124 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1125 1126 SrcRegs.push_back(SrcReg); 1127 } 1128 1129 // Explode the big arguments into smaller chunks. 1130 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1131 1132 Register AshrCstReg = 1133 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1134 .getReg(0); 1135 Register FullExtensionReg = 0; 1136 Register PartialExtensionReg = 0; 1137 1138 // Do the operation on each small part. 1139 for (int i = 0; i < NumParts; ++i) { 1140 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1141 DstRegs.push_back(SrcRegs[i]); 1142 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1143 assert(PartialExtensionReg && 1144 "Expected to visit partial extension before full"); 1145 if (FullExtensionReg) { 1146 DstRegs.push_back(FullExtensionReg); 1147 continue; 1148 } 1149 DstRegs.push_back( 1150 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1151 .getReg(0)); 1152 FullExtensionReg = DstRegs.back(); 1153 } else { 1154 DstRegs.push_back( 1155 MIRBuilder 1156 .buildInstr( 1157 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1158 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1159 .getReg(0)); 1160 PartialExtensionReg = DstRegs.back(); 1161 } 1162 } 1163 1164 // Gather the destination registers into the final destination. 1165 Register DstReg = MI.getOperand(0).getReg(); 1166 MIRBuilder.buildMerge(DstReg, DstRegs); 1167 MI.eraseFromParent(); 1168 return Legalized; 1169 } 1170 case TargetOpcode::G_BSWAP: 1171 case TargetOpcode::G_BITREVERSE: { 1172 if (SizeOp0 % NarrowSize != 0) 1173 return UnableToLegalize; 1174 1175 Observer.changingInstr(MI); 1176 SmallVector<Register, 2> SrcRegs, DstRegs; 1177 unsigned NumParts = SizeOp0 / NarrowSize; 1178 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1179 1180 for (unsigned i = 0; i < NumParts; ++i) { 1181 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1182 {SrcRegs[NumParts - 1 - i]}); 1183 DstRegs.push_back(DstPart.getReg(0)); 1184 } 1185 1186 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1187 1188 Observer.changedInstr(MI); 1189 MI.eraseFromParent(); 1190 return Legalized; 1191 } 1192 } 1193 } 1194 1195 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1196 unsigned OpIdx, unsigned ExtOpcode) { 1197 MachineOperand &MO = MI.getOperand(OpIdx); 1198 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1199 MO.setReg(ExtB.getReg(0)); 1200 } 1201 1202 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1203 unsigned OpIdx) { 1204 MachineOperand &MO = MI.getOperand(OpIdx); 1205 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1206 MO.setReg(ExtB.getReg(0)); 1207 } 1208 1209 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1210 unsigned OpIdx, unsigned TruncOpcode) { 1211 MachineOperand &MO = MI.getOperand(OpIdx); 1212 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1213 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1214 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1215 MO.setReg(DstExt); 1216 } 1217 1218 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1219 unsigned OpIdx, unsigned ExtOpcode) { 1220 MachineOperand &MO = MI.getOperand(OpIdx); 1221 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1222 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1223 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1224 MO.setReg(DstTrunc); 1225 } 1226 1227 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1228 unsigned OpIdx) { 1229 MachineOperand &MO = MI.getOperand(OpIdx); 1230 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1231 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1232 MIRBuilder.buildExtract(MO, DstExt, 0); 1233 MO.setReg(DstExt); 1234 } 1235 1236 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1237 unsigned OpIdx) { 1238 MachineOperand &MO = MI.getOperand(OpIdx); 1239 1240 LLT OldTy = MRI.getType(MO.getReg()); 1241 unsigned OldElts = OldTy.getNumElements(); 1242 unsigned NewElts = MoreTy.getNumElements(); 1243 1244 unsigned NumParts = NewElts / OldElts; 1245 1246 // Use concat_vectors if the result is a multiple of the number of elements. 1247 if (NumParts * OldElts == NewElts) { 1248 SmallVector<Register, 8> Parts; 1249 Parts.push_back(MO.getReg()); 1250 1251 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1252 for (unsigned I = 1; I != NumParts; ++I) 1253 Parts.push_back(ImpDef); 1254 1255 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1256 MO.setReg(Concat.getReg(0)); 1257 return; 1258 } 1259 1260 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1261 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1262 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1263 MO.setReg(MoreReg); 1264 } 1265 1266 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1267 MachineOperand &Op = MI.getOperand(OpIdx); 1268 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1269 } 1270 1271 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1272 MachineOperand &MO = MI.getOperand(OpIdx); 1273 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1274 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1275 MIRBuilder.buildBitcast(MO, CastDst); 1276 MO.setReg(CastDst); 1277 } 1278 1279 LegalizerHelper::LegalizeResult 1280 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1281 LLT WideTy) { 1282 if (TypeIdx != 1) 1283 return UnableToLegalize; 1284 1285 Register DstReg = MI.getOperand(0).getReg(); 1286 LLT DstTy = MRI.getType(DstReg); 1287 if (DstTy.isVector()) 1288 return UnableToLegalize; 1289 1290 Register Src1 = MI.getOperand(1).getReg(); 1291 LLT SrcTy = MRI.getType(Src1); 1292 const int DstSize = DstTy.getSizeInBits(); 1293 const int SrcSize = SrcTy.getSizeInBits(); 1294 const int WideSize = WideTy.getSizeInBits(); 1295 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1296 1297 unsigned NumOps = MI.getNumOperands(); 1298 unsigned NumSrc = MI.getNumOperands() - 1; 1299 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1300 1301 if (WideSize >= DstSize) { 1302 // Directly pack the bits in the target type. 1303 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1304 1305 for (unsigned I = 2; I != NumOps; ++I) { 1306 const unsigned Offset = (I - 1) * PartSize; 1307 1308 Register SrcReg = MI.getOperand(I).getReg(); 1309 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1310 1311 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1312 1313 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1314 MRI.createGenericVirtualRegister(WideTy); 1315 1316 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1317 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1318 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1319 ResultReg = NextResult; 1320 } 1321 1322 if (WideSize > DstSize) 1323 MIRBuilder.buildTrunc(DstReg, ResultReg); 1324 else if (DstTy.isPointer()) 1325 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1326 1327 MI.eraseFromParent(); 1328 return Legalized; 1329 } 1330 1331 // Unmerge the original values to the GCD type, and recombine to the next 1332 // multiple greater than the original type. 1333 // 1334 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1335 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1336 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1337 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1338 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1339 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1340 // %12:_(s12) = G_MERGE_VALUES %10, %11 1341 // 1342 // Padding with undef if necessary: 1343 // 1344 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1345 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1346 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1347 // %7:_(s2) = G_IMPLICIT_DEF 1348 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1349 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1350 // %10:_(s12) = G_MERGE_VALUES %8, %9 1351 1352 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1353 LLT GCDTy = LLT::scalar(GCD); 1354 1355 SmallVector<Register, 8> Parts; 1356 SmallVector<Register, 8> NewMergeRegs; 1357 SmallVector<Register, 8> Unmerges; 1358 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1359 1360 // Decompose the original operands if they don't evenly divide. 1361 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1362 Register SrcReg = MI.getOperand(I).getReg(); 1363 if (GCD == SrcSize) { 1364 Unmerges.push_back(SrcReg); 1365 } else { 1366 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1367 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1368 Unmerges.push_back(Unmerge.getReg(J)); 1369 } 1370 } 1371 1372 // Pad with undef to the next size that is a multiple of the requested size. 1373 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1374 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1375 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1376 Unmerges.push_back(UndefReg); 1377 } 1378 1379 const int PartsPerGCD = WideSize / GCD; 1380 1381 // Build merges of each piece. 1382 ArrayRef<Register> Slicer(Unmerges); 1383 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1384 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1385 NewMergeRegs.push_back(Merge.getReg(0)); 1386 } 1387 1388 // A truncate may be necessary if the requested type doesn't evenly divide the 1389 // original result type. 1390 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1391 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1392 } else { 1393 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1394 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1395 } 1396 1397 MI.eraseFromParent(); 1398 return Legalized; 1399 } 1400 1401 LegalizerHelper::LegalizeResult 1402 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1403 LLT WideTy) { 1404 if (TypeIdx != 0) 1405 return UnableToLegalize; 1406 1407 int NumDst = MI.getNumOperands() - 1; 1408 Register SrcReg = MI.getOperand(NumDst).getReg(); 1409 LLT SrcTy = MRI.getType(SrcReg); 1410 if (SrcTy.isVector()) 1411 return UnableToLegalize; 1412 1413 Register Dst0Reg = MI.getOperand(0).getReg(); 1414 LLT DstTy = MRI.getType(Dst0Reg); 1415 if (!DstTy.isScalar()) 1416 return UnableToLegalize; 1417 1418 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1419 if (SrcTy.isPointer()) { 1420 const DataLayout &DL = MIRBuilder.getDataLayout(); 1421 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1422 LLVM_DEBUG( 1423 dbgs() << "Not casting non-integral address space integer\n"); 1424 return UnableToLegalize; 1425 } 1426 1427 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1428 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1429 } 1430 1431 // Widen SrcTy to WideTy. This does not affect the result, but since the 1432 // user requested this size, it is probably better handled than SrcTy and 1433 // should reduce the total number of legalization artifacts 1434 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1435 SrcTy = WideTy; 1436 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1437 } 1438 1439 // Theres no unmerge type to target. Directly extract the bits from the 1440 // source type 1441 unsigned DstSize = DstTy.getSizeInBits(); 1442 1443 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1444 for (int I = 1; I != NumDst; ++I) { 1445 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1446 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1447 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1448 } 1449 1450 MI.eraseFromParent(); 1451 return Legalized; 1452 } 1453 1454 // Extend the source to a wider type. 1455 LLT LCMTy = getLCMType(SrcTy, WideTy); 1456 1457 Register WideSrc = SrcReg; 1458 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1459 // TODO: If this is an integral address space, cast to integer and anyext. 1460 if (SrcTy.isPointer()) { 1461 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1462 return UnableToLegalize; 1463 } 1464 1465 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1466 } 1467 1468 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1469 1470 // Create a sequence of unmerges to the original results. since we may have 1471 // widened the source, we will need to pad the results with dead defs to cover 1472 // the source register. 1473 // e.g. widen s16 to s32: 1474 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1475 // 1476 // => 1477 // %4:_(s64) = G_ANYEXT %0:_(s48) 1478 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1479 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1480 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1481 1482 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1483 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1484 1485 for (int I = 0; I != NumUnmerge; ++I) { 1486 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1487 1488 for (int J = 0; J != PartsPerUnmerge; ++J) { 1489 int Idx = I * PartsPerUnmerge + J; 1490 if (Idx < NumDst) 1491 MIB.addDef(MI.getOperand(Idx).getReg()); 1492 else { 1493 // Create dead def for excess components. 1494 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1495 } 1496 } 1497 1498 MIB.addUse(Unmerge.getReg(I)); 1499 } 1500 1501 MI.eraseFromParent(); 1502 return Legalized; 1503 } 1504 1505 LegalizerHelper::LegalizeResult 1506 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1507 LLT WideTy) { 1508 Register DstReg = MI.getOperand(0).getReg(); 1509 Register SrcReg = MI.getOperand(1).getReg(); 1510 LLT SrcTy = MRI.getType(SrcReg); 1511 1512 LLT DstTy = MRI.getType(DstReg); 1513 unsigned Offset = MI.getOperand(2).getImm(); 1514 1515 if (TypeIdx == 0) { 1516 if (SrcTy.isVector() || DstTy.isVector()) 1517 return UnableToLegalize; 1518 1519 SrcOp Src(SrcReg); 1520 if (SrcTy.isPointer()) { 1521 // Extracts from pointers can be handled only if they are really just 1522 // simple integers. 1523 const DataLayout &DL = MIRBuilder.getDataLayout(); 1524 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1525 return UnableToLegalize; 1526 1527 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1528 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1529 SrcTy = SrcAsIntTy; 1530 } 1531 1532 if (DstTy.isPointer()) 1533 return UnableToLegalize; 1534 1535 if (Offset == 0) { 1536 // Avoid a shift in the degenerate case. 1537 MIRBuilder.buildTrunc(DstReg, 1538 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1539 MI.eraseFromParent(); 1540 return Legalized; 1541 } 1542 1543 // Do a shift in the source type. 1544 LLT ShiftTy = SrcTy; 1545 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1546 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1547 ShiftTy = WideTy; 1548 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1549 return UnableToLegalize; 1550 1551 auto LShr = MIRBuilder.buildLShr( 1552 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1553 MIRBuilder.buildTrunc(DstReg, LShr); 1554 MI.eraseFromParent(); 1555 return Legalized; 1556 } 1557 1558 if (SrcTy.isScalar()) { 1559 Observer.changingInstr(MI); 1560 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1561 Observer.changedInstr(MI); 1562 return Legalized; 1563 } 1564 1565 if (!SrcTy.isVector()) 1566 return UnableToLegalize; 1567 1568 if (DstTy != SrcTy.getElementType()) 1569 return UnableToLegalize; 1570 1571 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1572 return UnableToLegalize; 1573 1574 Observer.changingInstr(MI); 1575 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1576 1577 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1578 Offset); 1579 widenScalarDst(MI, WideTy.getScalarType(), 0); 1580 Observer.changedInstr(MI); 1581 return Legalized; 1582 } 1583 1584 LegalizerHelper::LegalizeResult 1585 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1586 LLT WideTy) { 1587 if (TypeIdx != 0) 1588 return UnableToLegalize; 1589 Observer.changingInstr(MI); 1590 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1591 widenScalarDst(MI, WideTy); 1592 Observer.changedInstr(MI); 1593 return Legalized; 1594 } 1595 1596 LegalizerHelper::LegalizeResult 1597 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1598 MIRBuilder.setInstr(MI); 1599 1600 switch (MI.getOpcode()) { 1601 default: 1602 return UnableToLegalize; 1603 case TargetOpcode::G_EXTRACT: 1604 return widenScalarExtract(MI, TypeIdx, WideTy); 1605 case TargetOpcode::G_INSERT: 1606 return widenScalarInsert(MI, TypeIdx, WideTy); 1607 case TargetOpcode::G_MERGE_VALUES: 1608 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1609 case TargetOpcode::G_UNMERGE_VALUES: 1610 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1611 case TargetOpcode::G_UADDO: 1612 case TargetOpcode::G_USUBO: { 1613 if (TypeIdx == 1) 1614 return UnableToLegalize; // TODO 1615 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1616 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1617 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1618 ? TargetOpcode::G_ADD 1619 : TargetOpcode::G_SUB; 1620 // Do the arithmetic in the larger type. 1621 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1622 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1623 APInt Mask = 1624 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1625 auto AndOp = MIRBuilder.buildAnd( 1626 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1627 // There is no overflow if the AndOp is the same as NewOp. 1628 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1629 // Now trunc the NewOp to the original result. 1630 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1631 MI.eraseFromParent(); 1632 return Legalized; 1633 } 1634 case TargetOpcode::G_CTTZ: 1635 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1636 case TargetOpcode::G_CTLZ: 1637 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1638 case TargetOpcode::G_CTPOP: { 1639 if (TypeIdx == 0) { 1640 Observer.changingInstr(MI); 1641 widenScalarDst(MI, WideTy, 0); 1642 Observer.changedInstr(MI); 1643 return Legalized; 1644 } 1645 1646 Register SrcReg = MI.getOperand(1).getReg(); 1647 1648 // First ZEXT the input. 1649 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1650 LLT CurTy = MRI.getType(SrcReg); 1651 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1652 // The count is the same in the larger type except if the original 1653 // value was zero. This can be handled by setting the bit just off 1654 // the top of the original type. 1655 auto TopBit = 1656 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1657 MIBSrc = MIRBuilder.buildOr( 1658 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1659 } 1660 1661 // Perform the operation at the larger size. 1662 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1663 // This is already the correct result for CTPOP and CTTZs 1664 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1665 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1666 // The correct result is NewOp - (Difference in widety and current ty). 1667 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1668 MIBNewOp = MIRBuilder.buildSub( 1669 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1670 } 1671 1672 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1673 MI.eraseFromParent(); 1674 return Legalized; 1675 } 1676 case TargetOpcode::G_BSWAP: { 1677 Observer.changingInstr(MI); 1678 Register DstReg = MI.getOperand(0).getReg(); 1679 1680 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1681 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1682 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1683 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1684 1685 MI.getOperand(0).setReg(DstExt); 1686 1687 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1688 1689 LLT Ty = MRI.getType(DstReg); 1690 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1691 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1692 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1693 1694 MIRBuilder.buildTrunc(DstReg, ShrReg); 1695 Observer.changedInstr(MI); 1696 return Legalized; 1697 } 1698 case TargetOpcode::G_BITREVERSE: { 1699 Observer.changingInstr(MI); 1700 1701 Register DstReg = MI.getOperand(0).getReg(); 1702 LLT Ty = MRI.getType(DstReg); 1703 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1704 1705 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1706 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1707 MI.getOperand(0).setReg(DstExt); 1708 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1709 1710 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1711 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1712 MIRBuilder.buildTrunc(DstReg, Shift); 1713 Observer.changedInstr(MI); 1714 return Legalized; 1715 } 1716 case TargetOpcode::G_ADD: 1717 case TargetOpcode::G_AND: 1718 case TargetOpcode::G_MUL: 1719 case TargetOpcode::G_OR: 1720 case TargetOpcode::G_XOR: 1721 case TargetOpcode::G_SUB: 1722 // Perform operation at larger width (any extension is fines here, high bits 1723 // don't affect the result) and then truncate the result back to the 1724 // original type. 1725 Observer.changingInstr(MI); 1726 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1727 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1728 widenScalarDst(MI, WideTy); 1729 Observer.changedInstr(MI); 1730 return Legalized; 1731 1732 case TargetOpcode::G_SHL: 1733 Observer.changingInstr(MI); 1734 1735 if (TypeIdx == 0) { 1736 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1737 widenScalarDst(MI, WideTy); 1738 } else { 1739 assert(TypeIdx == 1); 1740 // The "number of bits to shift" operand must preserve its value as an 1741 // unsigned integer: 1742 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1743 } 1744 1745 Observer.changedInstr(MI); 1746 return Legalized; 1747 1748 case TargetOpcode::G_SDIV: 1749 case TargetOpcode::G_SREM: 1750 case TargetOpcode::G_SMIN: 1751 case TargetOpcode::G_SMAX: 1752 Observer.changingInstr(MI); 1753 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1754 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1755 widenScalarDst(MI, WideTy); 1756 Observer.changedInstr(MI); 1757 return Legalized; 1758 1759 case TargetOpcode::G_ASHR: 1760 case TargetOpcode::G_LSHR: 1761 Observer.changingInstr(MI); 1762 1763 if (TypeIdx == 0) { 1764 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1765 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1766 1767 widenScalarSrc(MI, WideTy, 1, CvtOp); 1768 widenScalarDst(MI, WideTy); 1769 } else { 1770 assert(TypeIdx == 1); 1771 // The "number of bits to shift" operand must preserve its value as an 1772 // unsigned integer: 1773 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1774 } 1775 1776 Observer.changedInstr(MI); 1777 return Legalized; 1778 case TargetOpcode::G_UDIV: 1779 case TargetOpcode::G_UREM: 1780 case TargetOpcode::G_UMIN: 1781 case TargetOpcode::G_UMAX: 1782 Observer.changingInstr(MI); 1783 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1784 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1785 widenScalarDst(MI, WideTy); 1786 Observer.changedInstr(MI); 1787 return Legalized; 1788 1789 case TargetOpcode::G_SELECT: 1790 Observer.changingInstr(MI); 1791 if (TypeIdx == 0) { 1792 // Perform operation at larger width (any extension is fine here, high 1793 // bits don't affect the result) and then truncate the result back to the 1794 // original type. 1795 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1796 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1797 widenScalarDst(MI, WideTy); 1798 } else { 1799 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1800 // Explicit extension is required here since high bits affect the result. 1801 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1802 } 1803 Observer.changedInstr(MI); 1804 return Legalized; 1805 1806 case TargetOpcode::G_FPTOSI: 1807 case TargetOpcode::G_FPTOUI: 1808 Observer.changingInstr(MI); 1809 1810 if (TypeIdx == 0) 1811 widenScalarDst(MI, WideTy); 1812 else 1813 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1814 1815 Observer.changedInstr(MI); 1816 return Legalized; 1817 case TargetOpcode::G_SITOFP: 1818 if (TypeIdx != 1) 1819 return UnableToLegalize; 1820 Observer.changingInstr(MI); 1821 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1822 Observer.changedInstr(MI); 1823 return Legalized; 1824 1825 case TargetOpcode::G_UITOFP: 1826 if (TypeIdx != 1) 1827 return UnableToLegalize; 1828 Observer.changingInstr(MI); 1829 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1830 Observer.changedInstr(MI); 1831 return Legalized; 1832 1833 case TargetOpcode::G_LOAD: 1834 case TargetOpcode::G_SEXTLOAD: 1835 case TargetOpcode::G_ZEXTLOAD: 1836 Observer.changingInstr(MI); 1837 widenScalarDst(MI, WideTy); 1838 Observer.changedInstr(MI); 1839 return Legalized; 1840 1841 case TargetOpcode::G_STORE: { 1842 if (TypeIdx != 0) 1843 return UnableToLegalize; 1844 1845 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1846 if (!isPowerOf2_32(Ty.getSizeInBits())) 1847 return UnableToLegalize; 1848 1849 Observer.changingInstr(MI); 1850 1851 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1852 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1853 widenScalarSrc(MI, WideTy, 0, ExtType); 1854 1855 Observer.changedInstr(MI); 1856 return Legalized; 1857 } 1858 case TargetOpcode::G_CONSTANT: { 1859 MachineOperand &SrcMO = MI.getOperand(1); 1860 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1861 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1862 MRI.getType(MI.getOperand(0).getReg())); 1863 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1864 ExtOpc == TargetOpcode::G_ANYEXT) && 1865 "Illegal Extend"); 1866 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1867 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1868 ? SrcVal.sext(WideTy.getSizeInBits()) 1869 : SrcVal.zext(WideTy.getSizeInBits()); 1870 Observer.changingInstr(MI); 1871 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1872 1873 widenScalarDst(MI, WideTy); 1874 Observer.changedInstr(MI); 1875 return Legalized; 1876 } 1877 case TargetOpcode::G_FCONSTANT: { 1878 MachineOperand &SrcMO = MI.getOperand(1); 1879 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1880 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1881 bool LosesInfo; 1882 switch (WideTy.getSizeInBits()) { 1883 case 32: 1884 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1885 &LosesInfo); 1886 break; 1887 case 64: 1888 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1889 &LosesInfo); 1890 break; 1891 default: 1892 return UnableToLegalize; 1893 } 1894 1895 assert(!LosesInfo && "extend should always be lossless"); 1896 1897 Observer.changingInstr(MI); 1898 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1899 1900 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1901 Observer.changedInstr(MI); 1902 return Legalized; 1903 } 1904 case TargetOpcode::G_IMPLICIT_DEF: { 1905 Observer.changingInstr(MI); 1906 widenScalarDst(MI, WideTy); 1907 Observer.changedInstr(MI); 1908 return Legalized; 1909 } 1910 case TargetOpcode::G_BRCOND: 1911 Observer.changingInstr(MI); 1912 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1913 Observer.changedInstr(MI); 1914 return Legalized; 1915 1916 case TargetOpcode::G_FCMP: 1917 Observer.changingInstr(MI); 1918 if (TypeIdx == 0) 1919 widenScalarDst(MI, WideTy); 1920 else { 1921 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1922 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1923 } 1924 Observer.changedInstr(MI); 1925 return Legalized; 1926 1927 case TargetOpcode::G_ICMP: 1928 Observer.changingInstr(MI); 1929 if (TypeIdx == 0) 1930 widenScalarDst(MI, WideTy); 1931 else { 1932 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1933 MI.getOperand(1).getPredicate())) 1934 ? TargetOpcode::G_SEXT 1935 : TargetOpcode::G_ZEXT; 1936 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1937 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1938 } 1939 Observer.changedInstr(MI); 1940 return Legalized; 1941 1942 case TargetOpcode::G_PTR_ADD: 1943 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1944 Observer.changingInstr(MI); 1945 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1946 Observer.changedInstr(MI); 1947 return Legalized; 1948 1949 case TargetOpcode::G_PHI: { 1950 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1951 1952 Observer.changingInstr(MI); 1953 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1954 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1955 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1956 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1957 } 1958 1959 MachineBasicBlock &MBB = *MI.getParent(); 1960 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1961 widenScalarDst(MI, WideTy); 1962 Observer.changedInstr(MI); 1963 return Legalized; 1964 } 1965 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1966 if (TypeIdx == 0) { 1967 Register VecReg = MI.getOperand(1).getReg(); 1968 LLT VecTy = MRI.getType(VecReg); 1969 Observer.changingInstr(MI); 1970 1971 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1972 WideTy.getSizeInBits()), 1973 1, TargetOpcode::G_SEXT); 1974 1975 widenScalarDst(MI, WideTy, 0); 1976 Observer.changedInstr(MI); 1977 return Legalized; 1978 } 1979 1980 if (TypeIdx != 2) 1981 return UnableToLegalize; 1982 Observer.changingInstr(MI); 1983 // TODO: Probably should be zext 1984 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1985 Observer.changedInstr(MI); 1986 return Legalized; 1987 } 1988 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1989 if (TypeIdx == 1) { 1990 Observer.changingInstr(MI); 1991 1992 Register VecReg = MI.getOperand(1).getReg(); 1993 LLT VecTy = MRI.getType(VecReg); 1994 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 1995 1996 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 1997 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1998 widenScalarDst(MI, WideVecTy, 0); 1999 Observer.changedInstr(MI); 2000 return Legalized; 2001 } 2002 2003 if (TypeIdx == 2) { 2004 Observer.changingInstr(MI); 2005 // TODO: Probably should be zext 2006 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2007 Observer.changedInstr(MI); 2008 } 2009 2010 return Legalized; 2011 } 2012 case TargetOpcode::G_FADD: 2013 case TargetOpcode::G_FMUL: 2014 case TargetOpcode::G_FSUB: 2015 case TargetOpcode::G_FMA: 2016 case TargetOpcode::G_FMAD: 2017 case TargetOpcode::G_FNEG: 2018 case TargetOpcode::G_FABS: 2019 case TargetOpcode::G_FCANONICALIZE: 2020 case TargetOpcode::G_FMINNUM: 2021 case TargetOpcode::G_FMAXNUM: 2022 case TargetOpcode::G_FMINNUM_IEEE: 2023 case TargetOpcode::G_FMAXNUM_IEEE: 2024 case TargetOpcode::G_FMINIMUM: 2025 case TargetOpcode::G_FMAXIMUM: 2026 case TargetOpcode::G_FDIV: 2027 case TargetOpcode::G_FREM: 2028 case TargetOpcode::G_FCEIL: 2029 case TargetOpcode::G_FFLOOR: 2030 case TargetOpcode::G_FCOS: 2031 case TargetOpcode::G_FSIN: 2032 case TargetOpcode::G_FLOG10: 2033 case TargetOpcode::G_FLOG: 2034 case TargetOpcode::G_FLOG2: 2035 case TargetOpcode::G_FRINT: 2036 case TargetOpcode::G_FNEARBYINT: 2037 case TargetOpcode::G_FSQRT: 2038 case TargetOpcode::G_FEXP: 2039 case TargetOpcode::G_FEXP2: 2040 case TargetOpcode::G_FPOW: 2041 case TargetOpcode::G_INTRINSIC_TRUNC: 2042 case TargetOpcode::G_INTRINSIC_ROUND: 2043 assert(TypeIdx == 0); 2044 Observer.changingInstr(MI); 2045 2046 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2047 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2048 2049 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2050 Observer.changedInstr(MI); 2051 return Legalized; 2052 case TargetOpcode::G_INTTOPTR: 2053 if (TypeIdx != 1) 2054 return UnableToLegalize; 2055 2056 Observer.changingInstr(MI); 2057 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2058 Observer.changedInstr(MI); 2059 return Legalized; 2060 case TargetOpcode::G_PTRTOINT: 2061 if (TypeIdx != 0) 2062 return UnableToLegalize; 2063 2064 Observer.changingInstr(MI); 2065 widenScalarDst(MI, WideTy, 0); 2066 Observer.changedInstr(MI); 2067 return Legalized; 2068 case TargetOpcode::G_BUILD_VECTOR: { 2069 Observer.changingInstr(MI); 2070 2071 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2072 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2073 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2074 2075 // Avoid changing the result vector type if the source element type was 2076 // requested. 2077 if (TypeIdx == 1) { 2078 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2079 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2080 } else { 2081 widenScalarDst(MI, WideTy, 0); 2082 } 2083 2084 Observer.changedInstr(MI); 2085 return Legalized; 2086 } 2087 case TargetOpcode::G_SEXT_INREG: 2088 if (TypeIdx != 0) 2089 return UnableToLegalize; 2090 2091 Observer.changingInstr(MI); 2092 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2093 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2094 Observer.changedInstr(MI); 2095 return Legalized; 2096 } 2097 } 2098 2099 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2100 MachineIRBuilder &B, Register Src, LLT Ty) { 2101 auto Unmerge = B.buildUnmerge(Ty, Src); 2102 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2103 Pieces.push_back(Unmerge.getReg(I)); 2104 } 2105 2106 LegalizerHelper::LegalizeResult 2107 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2108 Register Dst = MI.getOperand(0).getReg(); 2109 Register Src = MI.getOperand(1).getReg(); 2110 LLT DstTy = MRI.getType(Dst); 2111 LLT SrcTy = MRI.getType(Src); 2112 2113 if (SrcTy.isVector() && !DstTy.isVector()) { 2114 SmallVector<Register, 8> SrcRegs; 2115 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2116 MIRBuilder.buildMerge(Dst, SrcRegs); 2117 MI.eraseFromParent(); 2118 return Legalized; 2119 } 2120 2121 if (DstTy.isVector() && !SrcTy.isVector()) { 2122 SmallVector<Register, 8> SrcRegs; 2123 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2124 MIRBuilder.buildMerge(Dst, SrcRegs); 2125 MI.eraseFromParent(); 2126 return Legalized; 2127 } 2128 2129 return UnableToLegalize; 2130 } 2131 2132 LegalizerHelper::LegalizeResult 2133 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2134 MIRBuilder.setInstr(MI); 2135 2136 switch (MI.getOpcode()) { 2137 case TargetOpcode::G_LOAD: { 2138 if (TypeIdx != 0) 2139 return UnableToLegalize; 2140 2141 Observer.changingInstr(MI); 2142 bitcastDst(MI, CastTy, 0); 2143 Observer.changedInstr(MI); 2144 return Legalized; 2145 } 2146 case TargetOpcode::G_STORE: { 2147 if (TypeIdx != 0) 2148 return UnableToLegalize; 2149 2150 Observer.changingInstr(MI); 2151 bitcastSrc(MI, CastTy, 0); 2152 Observer.changedInstr(MI); 2153 return Legalized; 2154 } 2155 case TargetOpcode::G_SELECT: { 2156 if (TypeIdx != 0) 2157 return UnableToLegalize; 2158 2159 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2160 LLVM_DEBUG( 2161 dbgs() << "bitcast action not implemented for vector select\n"); 2162 return UnableToLegalize; 2163 } 2164 2165 Observer.changingInstr(MI); 2166 bitcastSrc(MI, CastTy, 2); 2167 bitcastSrc(MI, CastTy, 3); 2168 bitcastDst(MI, CastTy, 0); 2169 Observer.changedInstr(MI); 2170 return Legalized; 2171 } 2172 case TargetOpcode::G_AND: 2173 case TargetOpcode::G_OR: 2174 case TargetOpcode::G_XOR: { 2175 Observer.changingInstr(MI); 2176 bitcastSrc(MI, CastTy, 1); 2177 bitcastSrc(MI, CastTy, 2); 2178 bitcastDst(MI, CastTy, 0); 2179 Observer.changedInstr(MI); 2180 return Legalized; 2181 } 2182 default: 2183 return UnableToLegalize; 2184 } 2185 } 2186 2187 LegalizerHelper::LegalizeResult 2188 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2189 using namespace TargetOpcode; 2190 MIRBuilder.setInstr(MI); 2191 2192 switch(MI.getOpcode()) { 2193 default: 2194 return UnableToLegalize; 2195 case TargetOpcode::G_BITCAST: 2196 return lowerBitcast(MI); 2197 case TargetOpcode::G_SREM: 2198 case TargetOpcode::G_UREM: { 2199 auto Quot = 2200 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2201 {MI.getOperand(1), MI.getOperand(2)}); 2202 2203 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2204 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2205 MI.eraseFromParent(); 2206 return Legalized; 2207 } 2208 case TargetOpcode::G_SADDO: 2209 case TargetOpcode::G_SSUBO: 2210 return lowerSADDO_SSUBO(MI); 2211 case TargetOpcode::G_SMULO: 2212 case TargetOpcode::G_UMULO: { 2213 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2214 // result. 2215 Register Res = MI.getOperand(0).getReg(); 2216 Register Overflow = MI.getOperand(1).getReg(); 2217 Register LHS = MI.getOperand(2).getReg(); 2218 Register RHS = MI.getOperand(3).getReg(); 2219 2220 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2221 ? TargetOpcode::G_SMULH 2222 : TargetOpcode::G_UMULH; 2223 2224 Observer.changingInstr(MI); 2225 const auto &TII = MIRBuilder.getTII(); 2226 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2227 MI.RemoveOperand(1); 2228 Observer.changedInstr(MI); 2229 2230 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2231 2232 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2233 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2234 2235 // For *signed* multiply, overflow is detected by checking: 2236 // (hi != (lo >> bitwidth-1)) 2237 if (Opcode == TargetOpcode::G_SMULH) { 2238 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2239 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2240 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2241 } else { 2242 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2243 } 2244 return Legalized; 2245 } 2246 case TargetOpcode::G_FNEG: { 2247 // TODO: Handle vector types once we are able to 2248 // represent them. 2249 if (Ty.isVector()) 2250 return UnableToLegalize; 2251 Register Res = MI.getOperand(0).getReg(); 2252 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2253 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2254 if (!ZeroTy) 2255 return UnableToLegalize; 2256 ConstantFP &ZeroForNegation = 2257 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2258 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2259 Register SubByReg = MI.getOperand(1).getReg(); 2260 Register ZeroReg = Zero.getReg(0); 2261 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2262 MI.eraseFromParent(); 2263 return Legalized; 2264 } 2265 case TargetOpcode::G_FSUB: { 2266 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2267 // First, check if G_FNEG is marked as Lower. If so, we may 2268 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2269 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2270 return UnableToLegalize; 2271 Register Res = MI.getOperand(0).getReg(); 2272 Register LHS = MI.getOperand(1).getReg(); 2273 Register RHS = MI.getOperand(2).getReg(); 2274 Register Neg = MRI.createGenericVirtualRegister(Ty); 2275 MIRBuilder.buildFNeg(Neg, RHS); 2276 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2277 MI.eraseFromParent(); 2278 return Legalized; 2279 } 2280 case TargetOpcode::G_FMAD: 2281 return lowerFMad(MI); 2282 case TargetOpcode::G_FFLOOR: 2283 return lowerFFloor(MI); 2284 case TargetOpcode::G_INTRINSIC_ROUND: 2285 return lowerIntrinsicRound(MI); 2286 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2287 Register OldValRes = MI.getOperand(0).getReg(); 2288 Register SuccessRes = MI.getOperand(1).getReg(); 2289 Register Addr = MI.getOperand(2).getReg(); 2290 Register CmpVal = MI.getOperand(3).getReg(); 2291 Register NewVal = MI.getOperand(4).getReg(); 2292 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2293 **MI.memoperands_begin()); 2294 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2295 MI.eraseFromParent(); 2296 return Legalized; 2297 } 2298 case TargetOpcode::G_LOAD: 2299 case TargetOpcode::G_SEXTLOAD: 2300 case TargetOpcode::G_ZEXTLOAD: { 2301 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2302 Register DstReg = MI.getOperand(0).getReg(); 2303 Register PtrReg = MI.getOperand(1).getReg(); 2304 LLT DstTy = MRI.getType(DstReg); 2305 auto &MMO = **MI.memoperands_begin(); 2306 2307 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2308 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2309 // This load needs splitting into power of 2 sized loads. 2310 if (DstTy.isVector()) 2311 return UnableToLegalize; 2312 if (isPowerOf2_32(DstTy.getSizeInBits())) 2313 return UnableToLegalize; // Don't know what we're being asked to do. 2314 2315 // Our strategy here is to generate anyextending loads for the smaller 2316 // types up to next power-2 result type, and then combine the two larger 2317 // result values together, before truncating back down to the non-pow-2 2318 // type. 2319 // E.g. v1 = i24 load => 2320 // v2 = i32 zextload (2 byte) 2321 // v3 = i32 load (1 byte) 2322 // v4 = i32 shl v3, 16 2323 // v5 = i32 or v4, v2 2324 // v1 = i24 trunc v5 2325 // By doing this we generate the correct truncate which should get 2326 // combined away as an artifact with a matching extend. 2327 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2328 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2329 2330 MachineFunction &MF = MIRBuilder.getMF(); 2331 MachineMemOperand *LargeMMO = 2332 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2333 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2334 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2335 2336 LLT PtrTy = MRI.getType(PtrReg); 2337 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2338 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2339 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2340 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2341 auto LargeLoad = MIRBuilder.buildLoadInstr( 2342 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2343 2344 auto OffsetCst = MIRBuilder.buildConstant( 2345 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2346 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2347 auto SmallPtr = 2348 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2349 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2350 *SmallMMO); 2351 2352 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2353 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2354 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2355 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2356 MI.eraseFromParent(); 2357 return Legalized; 2358 } 2359 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2360 MI.eraseFromParent(); 2361 return Legalized; 2362 } 2363 2364 if (DstTy.isScalar()) { 2365 Register TmpReg = 2366 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2367 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2368 switch (MI.getOpcode()) { 2369 default: 2370 llvm_unreachable("Unexpected opcode"); 2371 case TargetOpcode::G_LOAD: 2372 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2373 break; 2374 case TargetOpcode::G_SEXTLOAD: 2375 MIRBuilder.buildSExt(DstReg, TmpReg); 2376 break; 2377 case TargetOpcode::G_ZEXTLOAD: 2378 MIRBuilder.buildZExt(DstReg, TmpReg); 2379 break; 2380 } 2381 MI.eraseFromParent(); 2382 return Legalized; 2383 } 2384 2385 return UnableToLegalize; 2386 } 2387 case TargetOpcode::G_STORE: { 2388 // Lower a non-power of 2 store into multiple pow-2 stores. 2389 // E.g. split an i24 store into an i16 store + i8 store. 2390 // We do this by first extending the stored value to the next largest power 2391 // of 2 type, and then using truncating stores to store the components. 2392 // By doing this, likewise with G_LOAD, generate an extend that can be 2393 // artifact-combined away instead of leaving behind extracts. 2394 Register SrcReg = MI.getOperand(0).getReg(); 2395 Register PtrReg = MI.getOperand(1).getReg(); 2396 LLT SrcTy = MRI.getType(SrcReg); 2397 MachineMemOperand &MMO = **MI.memoperands_begin(); 2398 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2399 return UnableToLegalize; 2400 if (SrcTy.isVector()) 2401 return UnableToLegalize; 2402 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2403 return UnableToLegalize; // Don't know what we're being asked to do. 2404 2405 // Extend to the next pow-2. 2406 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2407 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2408 2409 // Obtain the smaller value by shifting away the larger value. 2410 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2411 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2412 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2413 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2414 2415 // Generate the PtrAdd and truncating stores. 2416 LLT PtrTy = MRI.getType(PtrReg); 2417 auto OffsetCst = MIRBuilder.buildConstant( 2418 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2419 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2420 auto SmallPtr = 2421 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2422 2423 MachineFunction &MF = MIRBuilder.getMF(); 2424 MachineMemOperand *LargeMMO = 2425 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2426 MachineMemOperand *SmallMMO = 2427 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2428 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2429 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2430 MI.eraseFromParent(); 2431 return Legalized; 2432 } 2433 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2434 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2435 case TargetOpcode::G_CTLZ: 2436 case TargetOpcode::G_CTTZ: 2437 case TargetOpcode::G_CTPOP: 2438 return lowerBitCount(MI, TypeIdx, Ty); 2439 case G_UADDO: { 2440 Register Res = MI.getOperand(0).getReg(); 2441 Register CarryOut = MI.getOperand(1).getReg(); 2442 Register LHS = MI.getOperand(2).getReg(); 2443 Register RHS = MI.getOperand(3).getReg(); 2444 2445 MIRBuilder.buildAdd(Res, LHS, RHS); 2446 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2447 2448 MI.eraseFromParent(); 2449 return Legalized; 2450 } 2451 case G_UADDE: { 2452 Register Res = MI.getOperand(0).getReg(); 2453 Register CarryOut = MI.getOperand(1).getReg(); 2454 Register LHS = MI.getOperand(2).getReg(); 2455 Register RHS = MI.getOperand(3).getReg(); 2456 Register CarryIn = MI.getOperand(4).getReg(); 2457 LLT Ty = MRI.getType(Res); 2458 2459 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2460 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2461 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2462 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2463 2464 MI.eraseFromParent(); 2465 return Legalized; 2466 } 2467 case G_USUBO: { 2468 Register Res = MI.getOperand(0).getReg(); 2469 Register BorrowOut = MI.getOperand(1).getReg(); 2470 Register LHS = MI.getOperand(2).getReg(); 2471 Register RHS = MI.getOperand(3).getReg(); 2472 2473 MIRBuilder.buildSub(Res, LHS, RHS); 2474 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2475 2476 MI.eraseFromParent(); 2477 return Legalized; 2478 } 2479 case G_USUBE: { 2480 Register Res = MI.getOperand(0).getReg(); 2481 Register BorrowOut = MI.getOperand(1).getReg(); 2482 Register LHS = MI.getOperand(2).getReg(); 2483 Register RHS = MI.getOperand(3).getReg(); 2484 Register BorrowIn = MI.getOperand(4).getReg(); 2485 const LLT CondTy = MRI.getType(BorrowOut); 2486 const LLT Ty = MRI.getType(Res); 2487 2488 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2489 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2490 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2491 2492 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2493 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2494 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2495 2496 MI.eraseFromParent(); 2497 return Legalized; 2498 } 2499 case G_UITOFP: 2500 return lowerUITOFP(MI, TypeIdx, Ty); 2501 case G_SITOFP: 2502 return lowerSITOFP(MI, TypeIdx, Ty); 2503 case G_FPTOUI: 2504 return lowerFPTOUI(MI, TypeIdx, Ty); 2505 case G_FPTOSI: 2506 return lowerFPTOSI(MI); 2507 case G_FPTRUNC: 2508 return lowerFPTRUNC(MI, TypeIdx, Ty); 2509 case G_SMIN: 2510 case G_SMAX: 2511 case G_UMIN: 2512 case G_UMAX: 2513 return lowerMinMax(MI, TypeIdx, Ty); 2514 case G_FCOPYSIGN: 2515 return lowerFCopySign(MI, TypeIdx, Ty); 2516 case G_FMINNUM: 2517 case G_FMAXNUM: 2518 return lowerFMinNumMaxNum(MI); 2519 case G_UNMERGE_VALUES: 2520 return lowerUnmergeValues(MI); 2521 case TargetOpcode::G_SEXT_INREG: { 2522 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2523 int64_t SizeInBits = MI.getOperand(2).getImm(); 2524 2525 Register DstReg = MI.getOperand(0).getReg(); 2526 Register SrcReg = MI.getOperand(1).getReg(); 2527 LLT DstTy = MRI.getType(DstReg); 2528 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2529 2530 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2531 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2532 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2533 MI.eraseFromParent(); 2534 return Legalized; 2535 } 2536 case G_SHUFFLE_VECTOR: 2537 return lowerShuffleVector(MI); 2538 case G_DYN_STACKALLOC: 2539 return lowerDynStackAlloc(MI); 2540 case G_EXTRACT: 2541 return lowerExtract(MI); 2542 case G_INSERT: 2543 return lowerInsert(MI); 2544 case G_BSWAP: 2545 return lowerBswap(MI); 2546 case G_BITREVERSE: 2547 return lowerBitreverse(MI); 2548 case G_READ_REGISTER: 2549 case G_WRITE_REGISTER: 2550 return lowerReadWriteRegister(MI); 2551 } 2552 } 2553 2554 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2555 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2556 SmallVector<Register, 2> DstRegs; 2557 2558 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2559 Register DstReg = MI.getOperand(0).getReg(); 2560 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2561 int NumParts = Size / NarrowSize; 2562 // FIXME: Don't know how to handle the situation where the small vectors 2563 // aren't all the same size yet. 2564 if (Size % NarrowSize != 0) 2565 return UnableToLegalize; 2566 2567 for (int i = 0; i < NumParts; ++i) { 2568 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2569 MIRBuilder.buildUndef(TmpReg); 2570 DstRegs.push_back(TmpReg); 2571 } 2572 2573 if (NarrowTy.isVector()) 2574 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2575 else 2576 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2577 2578 MI.eraseFromParent(); 2579 return Legalized; 2580 } 2581 2582 // Handles operands with different types, but all must have the same number of 2583 // elements. There will be multiple type indexes. NarrowTy is expected to have 2584 // the result element type. 2585 LegalizerHelper::LegalizeResult 2586 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2587 LLT NarrowTy) { 2588 assert(TypeIdx == 0 && "only one type index expected"); 2589 2590 const unsigned Opc = MI.getOpcode(); 2591 const int NumOps = MI.getNumOperands() - 1; 2592 const Register DstReg = MI.getOperand(0).getReg(); 2593 const unsigned Flags = MI.getFlags(); 2594 2595 assert(NumOps <= 3 && "expected instrution with 1 result and 1-3 sources"); 2596 2597 SmallVector<Register, 8> ExtractedRegs[3]; 2598 SmallVector<Register, 8> Parts; 2599 2600 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2601 2602 // Break down all the sources into NarrowTy pieces we can operate on. This may 2603 // involve creating merges to a wider type, padded with undef. 2604 for (int I = 0; I != NumOps; ++I) { 2605 Register SrcReg = MI.getOperand(I + 1).getReg(); 2606 LLT SrcTy = MRI.getType(SrcReg); 2607 2608 // Each operand may have its own type, but only the number of elements 2609 // matters. 2610 LLT OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 2611 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 2612 2613 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 2614 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, 2615 ExtractedRegs[I], TargetOpcode::G_ANYEXT); 2616 } 2617 2618 SmallVector<Register, 8> ResultRegs; 2619 2620 // Input operands for each sub-instruction. 2621 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 2622 2623 int NumParts = ExtractedRegs[0].size(); 2624 const LLT DstTy = MRI.getType(DstReg); 2625 const unsigned DstSize = DstTy.getSizeInBits(); 2626 LLT DstLCMTy = getLCMType(DstTy, NarrowTy); 2627 2628 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2629 2630 // We widened the source registers to satisfy merge/unmerge size 2631 // constraints. We'll have some extra fully undef parts. 2632 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 2633 2634 for (int I = 0; I != NumRealParts; ++I) { 2635 // Emit this instruction on each of the split pieces. 2636 for (int J = 0; J != NumOps; ++J) 2637 InputRegs[J] = ExtractedRegs[J][I]; 2638 2639 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowTy}, InputRegs, Flags); 2640 ResultRegs.push_back(Inst.getReg(0)); 2641 } 2642 2643 // Fill out the widened result with undef instead of creating instructions 2644 // with undef inputs. 2645 int NumUndefParts = NumParts - NumRealParts; 2646 if (NumUndefParts != 0) 2647 ResultRegs.append(NumUndefParts, MIRBuilder.buildUndef(NarrowTy).getReg(0)); 2648 2649 // Extract the possibly padded result to the original result register. 2650 buildWidenedRemergeToDst(DstReg, DstLCMTy, ResultRegs); 2651 2652 MI.eraseFromParent(); 2653 return Legalized; 2654 } 2655 2656 // Handle splitting vector operations which need to have the same number of 2657 // elements in each type index, but each type index may have a different element 2658 // type. 2659 // 2660 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2661 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2662 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2663 // 2664 // Also handles some irregular breakdown cases, e.g. 2665 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2666 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2667 // s64 = G_SHL s64, s32 2668 LegalizerHelper::LegalizeResult 2669 LegalizerHelper::fewerElementsVectorMultiEltType( 2670 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2671 if (TypeIdx != 0) 2672 return UnableToLegalize; 2673 2674 const LLT NarrowTy0 = NarrowTyArg; 2675 const unsigned NewNumElts = 2676 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2677 2678 const Register DstReg = MI.getOperand(0).getReg(); 2679 LLT DstTy = MRI.getType(DstReg); 2680 LLT LeftoverTy0; 2681 2682 // All of the operands need to have the same number of elements, so if we can 2683 // determine a type breakdown for the result type, we can for all of the 2684 // source types. 2685 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2686 if (NumParts < 0) 2687 return UnableToLegalize; 2688 2689 SmallVector<MachineInstrBuilder, 4> NewInsts; 2690 2691 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2692 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2693 2694 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2695 LLT LeftoverTy; 2696 Register SrcReg = MI.getOperand(I).getReg(); 2697 LLT SrcTyI = MRI.getType(SrcReg); 2698 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2699 LLT LeftoverTyI; 2700 2701 // Split this operand into the requested typed registers, and any leftover 2702 // required to reproduce the original type. 2703 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2704 LeftoverRegs)) 2705 return UnableToLegalize; 2706 2707 if (I == 1) { 2708 // For the first operand, create an instruction for each part and setup 2709 // the result. 2710 for (Register PartReg : PartRegs) { 2711 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2712 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2713 .addDef(PartDstReg) 2714 .addUse(PartReg)); 2715 DstRegs.push_back(PartDstReg); 2716 } 2717 2718 for (Register LeftoverReg : LeftoverRegs) { 2719 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2720 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2721 .addDef(PartDstReg) 2722 .addUse(LeftoverReg)); 2723 LeftoverDstRegs.push_back(PartDstReg); 2724 } 2725 } else { 2726 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2727 2728 // Add the newly created operand splits to the existing instructions. The 2729 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2730 // pieces. 2731 unsigned InstCount = 0; 2732 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2733 NewInsts[InstCount++].addUse(PartRegs[J]); 2734 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2735 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2736 } 2737 2738 PartRegs.clear(); 2739 LeftoverRegs.clear(); 2740 } 2741 2742 // Insert the newly built operations and rebuild the result register. 2743 for (auto &MIB : NewInsts) 2744 MIRBuilder.insertInstr(MIB); 2745 2746 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2747 2748 MI.eraseFromParent(); 2749 return Legalized; 2750 } 2751 2752 LegalizerHelper::LegalizeResult 2753 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2754 LLT NarrowTy) { 2755 if (TypeIdx != 0) 2756 return UnableToLegalize; 2757 2758 Register DstReg = MI.getOperand(0).getReg(); 2759 Register SrcReg = MI.getOperand(1).getReg(); 2760 LLT DstTy = MRI.getType(DstReg); 2761 LLT SrcTy = MRI.getType(SrcReg); 2762 2763 LLT NarrowTy0 = NarrowTy; 2764 LLT NarrowTy1; 2765 unsigned NumParts; 2766 2767 if (NarrowTy.isVector()) { 2768 // Uneven breakdown not handled. 2769 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2770 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2771 return UnableToLegalize; 2772 2773 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2774 } else { 2775 NumParts = DstTy.getNumElements(); 2776 NarrowTy1 = SrcTy.getElementType(); 2777 } 2778 2779 SmallVector<Register, 4> SrcRegs, DstRegs; 2780 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2781 2782 for (unsigned I = 0; I < NumParts; ++I) { 2783 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2784 MachineInstr *NewInst = 2785 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2786 2787 NewInst->setFlags(MI.getFlags()); 2788 DstRegs.push_back(DstReg); 2789 } 2790 2791 if (NarrowTy.isVector()) 2792 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2793 else 2794 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2795 2796 MI.eraseFromParent(); 2797 return Legalized; 2798 } 2799 2800 LegalizerHelper::LegalizeResult 2801 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2802 LLT NarrowTy) { 2803 Register DstReg = MI.getOperand(0).getReg(); 2804 Register Src0Reg = MI.getOperand(2).getReg(); 2805 LLT DstTy = MRI.getType(DstReg); 2806 LLT SrcTy = MRI.getType(Src0Reg); 2807 2808 unsigned NumParts; 2809 LLT NarrowTy0, NarrowTy1; 2810 2811 if (TypeIdx == 0) { 2812 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2813 unsigned OldElts = DstTy.getNumElements(); 2814 2815 NarrowTy0 = NarrowTy; 2816 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2817 NarrowTy1 = NarrowTy.isVector() ? 2818 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2819 SrcTy.getElementType(); 2820 2821 } else { 2822 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2823 unsigned OldElts = SrcTy.getNumElements(); 2824 2825 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2826 NarrowTy.getNumElements(); 2827 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2828 DstTy.getScalarSizeInBits()); 2829 NarrowTy1 = NarrowTy; 2830 } 2831 2832 // FIXME: Don't know how to handle the situation where the small vectors 2833 // aren't all the same size yet. 2834 if (NarrowTy1.isVector() && 2835 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2836 return UnableToLegalize; 2837 2838 CmpInst::Predicate Pred 2839 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2840 2841 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2842 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2843 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2844 2845 for (unsigned I = 0; I < NumParts; ++I) { 2846 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2847 DstRegs.push_back(DstReg); 2848 2849 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2850 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2851 else { 2852 MachineInstr *NewCmp 2853 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2854 NewCmp->setFlags(MI.getFlags()); 2855 } 2856 } 2857 2858 if (NarrowTy1.isVector()) 2859 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2860 else 2861 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2862 2863 MI.eraseFromParent(); 2864 return Legalized; 2865 } 2866 2867 LegalizerHelper::LegalizeResult 2868 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2869 LLT NarrowTy) { 2870 Register DstReg = MI.getOperand(0).getReg(); 2871 Register CondReg = MI.getOperand(1).getReg(); 2872 2873 unsigned NumParts = 0; 2874 LLT NarrowTy0, NarrowTy1; 2875 2876 LLT DstTy = MRI.getType(DstReg); 2877 LLT CondTy = MRI.getType(CondReg); 2878 unsigned Size = DstTy.getSizeInBits(); 2879 2880 assert(TypeIdx == 0 || CondTy.isVector()); 2881 2882 if (TypeIdx == 0) { 2883 NarrowTy0 = NarrowTy; 2884 NarrowTy1 = CondTy; 2885 2886 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2887 // FIXME: Don't know how to handle the situation where the small vectors 2888 // aren't all the same size yet. 2889 if (Size % NarrowSize != 0) 2890 return UnableToLegalize; 2891 2892 NumParts = Size / NarrowSize; 2893 2894 // Need to break down the condition type 2895 if (CondTy.isVector()) { 2896 if (CondTy.getNumElements() == NumParts) 2897 NarrowTy1 = CondTy.getElementType(); 2898 else 2899 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2900 CondTy.getScalarSizeInBits()); 2901 } 2902 } else { 2903 NumParts = CondTy.getNumElements(); 2904 if (NarrowTy.isVector()) { 2905 // TODO: Handle uneven breakdown. 2906 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2907 return UnableToLegalize; 2908 2909 return UnableToLegalize; 2910 } else { 2911 NarrowTy0 = DstTy.getElementType(); 2912 NarrowTy1 = NarrowTy; 2913 } 2914 } 2915 2916 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2917 if (CondTy.isVector()) 2918 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2919 2920 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2921 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2922 2923 for (unsigned i = 0; i < NumParts; ++i) { 2924 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2925 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2926 Src1Regs[i], Src2Regs[i]); 2927 DstRegs.push_back(DstReg); 2928 } 2929 2930 if (NarrowTy0.isVector()) 2931 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2932 else 2933 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2934 2935 MI.eraseFromParent(); 2936 return Legalized; 2937 } 2938 2939 LegalizerHelper::LegalizeResult 2940 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2941 LLT NarrowTy) { 2942 const Register DstReg = MI.getOperand(0).getReg(); 2943 LLT PhiTy = MRI.getType(DstReg); 2944 LLT LeftoverTy; 2945 2946 // All of the operands need to have the same number of elements, so if we can 2947 // determine a type breakdown for the result type, we can for all of the 2948 // source types. 2949 int NumParts, NumLeftover; 2950 std::tie(NumParts, NumLeftover) 2951 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2952 if (NumParts < 0) 2953 return UnableToLegalize; 2954 2955 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2956 SmallVector<MachineInstrBuilder, 4> NewInsts; 2957 2958 const int TotalNumParts = NumParts + NumLeftover; 2959 2960 // Insert the new phis in the result block first. 2961 for (int I = 0; I != TotalNumParts; ++I) { 2962 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2963 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2964 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2965 .addDef(PartDstReg)); 2966 if (I < NumParts) 2967 DstRegs.push_back(PartDstReg); 2968 else 2969 LeftoverDstRegs.push_back(PartDstReg); 2970 } 2971 2972 MachineBasicBlock *MBB = MI.getParent(); 2973 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2974 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2975 2976 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2977 2978 // Insert code to extract the incoming values in each predecessor block. 2979 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2980 PartRegs.clear(); 2981 LeftoverRegs.clear(); 2982 2983 Register SrcReg = MI.getOperand(I).getReg(); 2984 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2985 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2986 2987 LLT Unused; 2988 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2989 LeftoverRegs)) 2990 return UnableToLegalize; 2991 2992 // Add the newly created operand splits to the existing instructions. The 2993 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2994 // pieces. 2995 for (int J = 0; J != TotalNumParts; ++J) { 2996 MachineInstrBuilder MIB = NewInsts[J]; 2997 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2998 MIB.addMBB(&OpMBB); 2999 } 3000 } 3001 3002 MI.eraseFromParent(); 3003 return Legalized; 3004 } 3005 3006 LegalizerHelper::LegalizeResult 3007 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3008 unsigned TypeIdx, 3009 LLT NarrowTy) { 3010 if (TypeIdx != 1) 3011 return UnableToLegalize; 3012 3013 const int NumDst = MI.getNumOperands() - 1; 3014 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3015 LLT SrcTy = MRI.getType(SrcReg); 3016 3017 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3018 3019 // TODO: Create sequence of extracts. 3020 if (DstTy == NarrowTy) 3021 return UnableToLegalize; 3022 3023 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3024 if (DstTy == GCDTy) { 3025 // This would just be a copy of the same unmerge. 3026 // TODO: Create extracts, pad with undef and create intermediate merges. 3027 return UnableToLegalize; 3028 } 3029 3030 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3031 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3032 const int PartsPerUnmerge = NumDst / NumUnmerge; 3033 3034 for (int I = 0; I != NumUnmerge; ++I) { 3035 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3036 3037 for (int J = 0; J != PartsPerUnmerge; ++J) 3038 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3039 MIB.addUse(Unmerge.getReg(I)); 3040 } 3041 3042 MI.eraseFromParent(); 3043 return Legalized; 3044 } 3045 3046 LegalizerHelper::LegalizeResult 3047 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3048 unsigned TypeIdx, 3049 LLT NarrowTy) { 3050 assert(TypeIdx == 0 && "not a vector type index"); 3051 Register DstReg = MI.getOperand(0).getReg(); 3052 LLT DstTy = MRI.getType(DstReg); 3053 LLT SrcTy = DstTy.getElementType(); 3054 3055 int DstNumElts = DstTy.getNumElements(); 3056 int NarrowNumElts = NarrowTy.getNumElements(); 3057 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3058 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3059 3060 SmallVector<Register, 8> ConcatOps; 3061 SmallVector<Register, 8> SubBuildVector; 3062 3063 Register UndefReg; 3064 if (WidenedDstTy != DstTy) 3065 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3066 3067 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3068 // necessary. 3069 // 3070 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3071 // -> <2 x s16> 3072 // 3073 // %4:_(s16) = G_IMPLICIT_DEF 3074 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3075 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3076 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3077 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3078 for (int I = 0; I != NumConcat; ++I) { 3079 for (int J = 0; J != NarrowNumElts; ++J) { 3080 int SrcIdx = NarrowNumElts * I + J; 3081 3082 if (SrcIdx < DstNumElts) { 3083 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3084 SubBuildVector.push_back(SrcReg); 3085 } else 3086 SubBuildVector.push_back(UndefReg); 3087 } 3088 3089 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3090 ConcatOps.push_back(BuildVec.getReg(0)); 3091 SubBuildVector.clear(); 3092 } 3093 3094 if (DstTy == WidenedDstTy) 3095 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3096 else { 3097 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3098 MIRBuilder.buildExtract(DstReg, Concat, 0); 3099 } 3100 3101 MI.eraseFromParent(); 3102 return Legalized; 3103 } 3104 3105 LegalizerHelper::LegalizeResult 3106 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3107 LLT NarrowTy) { 3108 // FIXME: Don't know how to handle secondary types yet. 3109 if (TypeIdx != 0) 3110 return UnableToLegalize; 3111 3112 MachineMemOperand *MMO = *MI.memoperands_begin(); 3113 3114 // This implementation doesn't work for atomics. Give up instead of doing 3115 // something invalid. 3116 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3117 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3118 return UnableToLegalize; 3119 3120 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3121 Register ValReg = MI.getOperand(0).getReg(); 3122 Register AddrReg = MI.getOperand(1).getReg(); 3123 LLT ValTy = MRI.getType(ValReg); 3124 3125 // FIXME: Do we need a distinct NarrowMemory legalize action? 3126 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3127 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3128 return UnableToLegalize; 3129 } 3130 3131 int NumParts = -1; 3132 int NumLeftover = -1; 3133 LLT LeftoverTy; 3134 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3135 if (IsLoad) { 3136 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3137 } else { 3138 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3139 NarrowLeftoverRegs)) { 3140 NumParts = NarrowRegs.size(); 3141 NumLeftover = NarrowLeftoverRegs.size(); 3142 } 3143 } 3144 3145 if (NumParts == -1) 3146 return UnableToLegalize; 3147 3148 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3149 3150 unsigned TotalSize = ValTy.getSizeInBits(); 3151 3152 // Split the load/store into PartTy sized pieces starting at Offset. If this 3153 // is a load, return the new registers in ValRegs. For a store, each elements 3154 // of ValRegs should be PartTy. Returns the next offset that needs to be 3155 // handled. 3156 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3157 unsigned Offset) -> unsigned { 3158 MachineFunction &MF = MIRBuilder.getMF(); 3159 unsigned PartSize = PartTy.getSizeInBits(); 3160 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3161 Offset += PartSize, ++Idx) { 3162 unsigned ByteSize = PartSize / 8; 3163 unsigned ByteOffset = Offset / 8; 3164 Register NewAddrReg; 3165 3166 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3167 3168 MachineMemOperand *NewMMO = 3169 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3170 3171 if (IsLoad) { 3172 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3173 ValRegs.push_back(Dst); 3174 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3175 } else { 3176 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3177 } 3178 } 3179 3180 return Offset; 3181 }; 3182 3183 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3184 3185 // Handle the rest of the register if this isn't an even type breakdown. 3186 if (LeftoverTy.isValid()) 3187 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3188 3189 if (IsLoad) { 3190 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3191 LeftoverTy, NarrowLeftoverRegs); 3192 } 3193 3194 MI.eraseFromParent(); 3195 return Legalized; 3196 } 3197 3198 LegalizerHelper::LegalizeResult 3199 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3200 LLT NarrowTy) { 3201 Register DstReg = MI.getOperand(0).getReg(); 3202 Register SrcReg = MI.getOperand(1).getReg(); 3203 int64_t Imm = MI.getOperand(2).getImm(); 3204 3205 LLT DstTy = MRI.getType(DstReg); 3206 3207 SmallVector<Register, 8> Parts; 3208 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3209 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3210 3211 for (Register &R : Parts) 3212 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3213 3214 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3215 3216 MI.eraseFromParent(); 3217 return Legalized; 3218 } 3219 3220 LegalizerHelper::LegalizeResult 3221 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3222 LLT NarrowTy) { 3223 using namespace TargetOpcode; 3224 3225 MIRBuilder.setInstr(MI); 3226 switch (MI.getOpcode()) { 3227 case G_IMPLICIT_DEF: 3228 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3229 case G_TRUNC: 3230 case G_AND: 3231 case G_OR: 3232 case G_XOR: 3233 case G_ADD: 3234 case G_SUB: 3235 case G_MUL: 3236 case G_SMULH: 3237 case G_UMULH: 3238 case G_FADD: 3239 case G_FMUL: 3240 case G_FSUB: 3241 case G_FNEG: 3242 case G_FABS: 3243 case G_FCANONICALIZE: 3244 case G_FDIV: 3245 case G_FREM: 3246 case G_FMA: 3247 case G_FMAD: 3248 case G_FPOW: 3249 case G_FEXP: 3250 case G_FEXP2: 3251 case G_FLOG: 3252 case G_FLOG2: 3253 case G_FLOG10: 3254 case G_FNEARBYINT: 3255 case G_FCEIL: 3256 case G_FFLOOR: 3257 case G_FRINT: 3258 case G_INTRINSIC_ROUND: 3259 case G_INTRINSIC_TRUNC: 3260 case G_FCOS: 3261 case G_FSIN: 3262 case G_FSQRT: 3263 case G_BSWAP: 3264 case G_BITREVERSE: 3265 case G_SDIV: 3266 case G_UDIV: 3267 case G_SREM: 3268 case G_UREM: 3269 case G_SMIN: 3270 case G_SMAX: 3271 case G_UMIN: 3272 case G_UMAX: 3273 case G_FMINNUM: 3274 case G_FMAXNUM: 3275 case G_FMINNUM_IEEE: 3276 case G_FMAXNUM_IEEE: 3277 case G_FMINIMUM: 3278 case G_FMAXIMUM: 3279 case G_FSHL: 3280 case G_FSHR: 3281 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3282 case G_SHL: 3283 case G_LSHR: 3284 case G_ASHR: 3285 case G_CTLZ: 3286 case G_CTLZ_ZERO_UNDEF: 3287 case G_CTTZ: 3288 case G_CTTZ_ZERO_UNDEF: 3289 case G_CTPOP: 3290 case G_FCOPYSIGN: 3291 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3292 case G_ZEXT: 3293 case G_SEXT: 3294 case G_ANYEXT: 3295 case G_FPEXT: 3296 case G_FPTRUNC: 3297 case G_SITOFP: 3298 case G_UITOFP: 3299 case G_FPTOSI: 3300 case G_FPTOUI: 3301 case G_INTTOPTR: 3302 case G_PTRTOINT: 3303 case G_ADDRSPACE_CAST: 3304 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3305 case G_ICMP: 3306 case G_FCMP: 3307 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3308 case G_SELECT: 3309 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3310 case G_PHI: 3311 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3312 case G_UNMERGE_VALUES: 3313 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3314 case G_BUILD_VECTOR: 3315 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3316 case G_LOAD: 3317 case G_STORE: 3318 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3319 case G_SEXT_INREG: 3320 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3321 default: 3322 return UnableToLegalize; 3323 } 3324 } 3325 3326 LegalizerHelper::LegalizeResult 3327 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3328 const LLT HalfTy, const LLT AmtTy) { 3329 3330 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3331 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3332 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3333 3334 if (Amt.isNullValue()) { 3335 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3336 MI.eraseFromParent(); 3337 return Legalized; 3338 } 3339 3340 LLT NVT = HalfTy; 3341 unsigned NVTBits = HalfTy.getSizeInBits(); 3342 unsigned VTBits = 2 * NVTBits; 3343 3344 SrcOp Lo(Register(0)), Hi(Register(0)); 3345 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3346 if (Amt.ugt(VTBits)) { 3347 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3348 } else if (Amt.ugt(NVTBits)) { 3349 Lo = MIRBuilder.buildConstant(NVT, 0); 3350 Hi = MIRBuilder.buildShl(NVT, InL, 3351 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3352 } else if (Amt == NVTBits) { 3353 Lo = MIRBuilder.buildConstant(NVT, 0); 3354 Hi = InL; 3355 } else { 3356 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3357 auto OrLHS = 3358 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3359 auto OrRHS = MIRBuilder.buildLShr( 3360 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3361 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3362 } 3363 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3364 if (Amt.ugt(VTBits)) { 3365 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3366 } else if (Amt.ugt(NVTBits)) { 3367 Lo = MIRBuilder.buildLShr(NVT, InH, 3368 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3369 Hi = MIRBuilder.buildConstant(NVT, 0); 3370 } else if (Amt == NVTBits) { 3371 Lo = InH; 3372 Hi = MIRBuilder.buildConstant(NVT, 0); 3373 } else { 3374 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3375 3376 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3377 auto OrRHS = MIRBuilder.buildShl( 3378 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3379 3380 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3381 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3382 } 3383 } else { 3384 if (Amt.ugt(VTBits)) { 3385 Hi = Lo = MIRBuilder.buildAShr( 3386 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3387 } else if (Amt.ugt(NVTBits)) { 3388 Lo = MIRBuilder.buildAShr(NVT, InH, 3389 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3390 Hi = MIRBuilder.buildAShr(NVT, InH, 3391 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3392 } else if (Amt == NVTBits) { 3393 Lo = InH; 3394 Hi = MIRBuilder.buildAShr(NVT, InH, 3395 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3396 } else { 3397 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3398 3399 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3400 auto OrRHS = MIRBuilder.buildShl( 3401 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3402 3403 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3404 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3405 } 3406 } 3407 3408 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3409 MI.eraseFromParent(); 3410 3411 return Legalized; 3412 } 3413 3414 // TODO: Optimize if constant shift amount. 3415 LegalizerHelper::LegalizeResult 3416 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3417 LLT RequestedTy) { 3418 if (TypeIdx == 1) { 3419 Observer.changingInstr(MI); 3420 narrowScalarSrc(MI, RequestedTy, 2); 3421 Observer.changedInstr(MI); 3422 return Legalized; 3423 } 3424 3425 Register DstReg = MI.getOperand(0).getReg(); 3426 LLT DstTy = MRI.getType(DstReg); 3427 if (DstTy.isVector()) 3428 return UnableToLegalize; 3429 3430 Register Amt = MI.getOperand(2).getReg(); 3431 LLT ShiftAmtTy = MRI.getType(Amt); 3432 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3433 if (DstEltSize % 2 != 0) 3434 return UnableToLegalize; 3435 3436 // Ignore the input type. We can only go to exactly half the size of the 3437 // input. If that isn't small enough, the resulting pieces will be further 3438 // legalized. 3439 const unsigned NewBitSize = DstEltSize / 2; 3440 const LLT HalfTy = LLT::scalar(NewBitSize); 3441 const LLT CondTy = LLT::scalar(1); 3442 3443 if (const MachineInstr *KShiftAmt = 3444 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3445 return narrowScalarShiftByConstant( 3446 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3447 } 3448 3449 // TODO: Expand with known bits. 3450 3451 // Handle the fully general expansion by an unknown amount. 3452 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3453 3454 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3455 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3456 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3457 3458 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3459 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3460 3461 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3462 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3463 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3464 3465 Register ResultRegs[2]; 3466 switch (MI.getOpcode()) { 3467 case TargetOpcode::G_SHL: { 3468 // Short: ShAmt < NewBitSize 3469 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3470 3471 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3472 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3473 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3474 3475 // Long: ShAmt >= NewBitSize 3476 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3477 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3478 3479 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3480 auto Hi = MIRBuilder.buildSelect( 3481 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3482 3483 ResultRegs[0] = Lo.getReg(0); 3484 ResultRegs[1] = Hi.getReg(0); 3485 break; 3486 } 3487 case TargetOpcode::G_LSHR: 3488 case TargetOpcode::G_ASHR: { 3489 // Short: ShAmt < NewBitSize 3490 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3491 3492 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3493 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3494 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3495 3496 // Long: ShAmt >= NewBitSize 3497 MachineInstrBuilder HiL; 3498 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3499 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3500 } else { 3501 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3502 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3503 } 3504 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3505 {InH, AmtExcess}); // Lo from Hi part. 3506 3507 auto Lo = MIRBuilder.buildSelect( 3508 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3509 3510 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3511 3512 ResultRegs[0] = Lo.getReg(0); 3513 ResultRegs[1] = Hi.getReg(0); 3514 break; 3515 } 3516 default: 3517 llvm_unreachable("not a shift"); 3518 } 3519 3520 MIRBuilder.buildMerge(DstReg, ResultRegs); 3521 MI.eraseFromParent(); 3522 return Legalized; 3523 } 3524 3525 LegalizerHelper::LegalizeResult 3526 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3527 LLT MoreTy) { 3528 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3529 3530 Observer.changingInstr(MI); 3531 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3532 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3533 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3534 moreElementsVectorSrc(MI, MoreTy, I); 3535 } 3536 3537 MachineBasicBlock &MBB = *MI.getParent(); 3538 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3539 moreElementsVectorDst(MI, MoreTy, 0); 3540 Observer.changedInstr(MI); 3541 return Legalized; 3542 } 3543 3544 LegalizerHelper::LegalizeResult 3545 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3546 LLT MoreTy) { 3547 MIRBuilder.setInstr(MI); 3548 unsigned Opc = MI.getOpcode(); 3549 switch (Opc) { 3550 case TargetOpcode::G_IMPLICIT_DEF: 3551 case TargetOpcode::G_LOAD: { 3552 if (TypeIdx != 0) 3553 return UnableToLegalize; 3554 Observer.changingInstr(MI); 3555 moreElementsVectorDst(MI, MoreTy, 0); 3556 Observer.changedInstr(MI); 3557 return Legalized; 3558 } 3559 case TargetOpcode::G_STORE: 3560 if (TypeIdx != 0) 3561 return UnableToLegalize; 3562 Observer.changingInstr(MI); 3563 moreElementsVectorSrc(MI, MoreTy, 0); 3564 Observer.changedInstr(MI); 3565 return Legalized; 3566 case TargetOpcode::G_AND: 3567 case TargetOpcode::G_OR: 3568 case TargetOpcode::G_XOR: 3569 case TargetOpcode::G_SMIN: 3570 case TargetOpcode::G_SMAX: 3571 case TargetOpcode::G_UMIN: 3572 case TargetOpcode::G_UMAX: 3573 case TargetOpcode::G_FMINNUM: 3574 case TargetOpcode::G_FMAXNUM: 3575 case TargetOpcode::G_FMINNUM_IEEE: 3576 case TargetOpcode::G_FMAXNUM_IEEE: 3577 case TargetOpcode::G_FMINIMUM: 3578 case TargetOpcode::G_FMAXIMUM: { 3579 Observer.changingInstr(MI); 3580 moreElementsVectorSrc(MI, MoreTy, 1); 3581 moreElementsVectorSrc(MI, MoreTy, 2); 3582 moreElementsVectorDst(MI, MoreTy, 0); 3583 Observer.changedInstr(MI); 3584 return Legalized; 3585 } 3586 case TargetOpcode::G_EXTRACT: 3587 if (TypeIdx != 1) 3588 return UnableToLegalize; 3589 Observer.changingInstr(MI); 3590 moreElementsVectorSrc(MI, MoreTy, 1); 3591 Observer.changedInstr(MI); 3592 return Legalized; 3593 case TargetOpcode::G_INSERT: 3594 if (TypeIdx != 0) 3595 return UnableToLegalize; 3596 Observer.changingInstr(MI); 3597 moreElementsVectorSrc(MI, MoreTy, 1); 3598 moreElementsVectorDst(MI, MoreTy, 0); 3599 Observer.changedInstr(MI); 3600 return Legalized; 3601 case TargetOpcode::G_SELECT: 3602 if (TypeIdx != 0) 3603 return UnableToLegalize; 3604 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3605 return UnableToLegalize; 3606 3607 Observer.changingInstr(MI); 3608 moreElementsVectorSrc(MI, MoreTy, 2); 3609 moreElementsVectorSrc(MI, MoreTy, 3); 3610 moreElementsVectorDst(MI, MoreTy, 0); 3611 Observer.changedInstr(MI); 3612 return Legalized; 3613 case TargetOpcode::G_UNMERGE_VALUES: { 3614 if (TypeIdx != 1) 3615 return UnableToLegalize; 3616 3617 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3618 int NumDst = MI.getNumOperands() - 1; 3619 moreElementsVectorSrc(MI, MoreTy, NumDst); 3620 3621 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3622 for (int I = 0; I != NumDst; ++I) 3623 MIB.addDef(MI.getOperand(I).getReg()); 3624 3625 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3626 for (int I = NumDst; I != NewNumDst; ++I) 3627 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3628 3629 MIB.addUse(MI.getOperand(NumDst).getReg()); 3630 MI.eraseFromParent(); 3631 return Legalized; 3632 } 3633 case TargetOpcode::G_PHI: 3634 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3635 default: 3636 return UnableToLegalize; 3637 } 3638 } 3639 3640 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3641 ArrayRef<Register> Src1Regs, 3642 ArrayRef<Register> Src2Regs, 3643 LLT NarrowTy) { 3644 MachineIRBuilder &B = MIRBuilder; 3645 unsigned SrcParts = Src1Regs.size(); 3646 unsigned DstParts = DstRegs.size(); 3647 3648 unsigned DstIdx = 0; // Low bits of the result. 3649 Register FactorSum = 3650 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3651 DstRegs[DstIdx] = FactorSum; 3652 3653 unsigned CarrySumPrevDstIdx; 3654 SmallVector<Register, 4> Factors; 3655 3656 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3657 // Collect low parts of muls for DstIdx. 3658 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3659 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3660 MachineInstrBuilder Mul = 3661 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3662 Factors.push_back(Mul.getReg(0)); 3663 } 3664 // Collect high parts of muls from previous DstIdx. 3665 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3666 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3667 MachineInstrBuilder Umulh = 3668 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3669 Factors.push_back(Umulh.getReg(0)); 3670 } 3671 // Add CarrySum from additions calculated for previous DstIdx. 3672 if (DstIdx != 1) { 3673 Factors.push_back(CarrySumPrevDstIdx); 3674 } 3675 3676 Register CarrySum; 3677 // Add all factors and accumulate all carries into CarrySum. 3678 if (DstIdx != DstParts - 1) { 3679 MachineInstrBuilder Uaddo = 3680 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3681 FactorSum = Uaddo.getReg(0); 3682 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3683 for (unsigned i = 2; i < Factors.size(); ++i) { 3684 MachineInstrBuilder Uaddo = 3685 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3686 FactorSum = Uaddo.getReg(0); 3687 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3688 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3689 } 3690 } else { 3691 // Since value for the next index is not calculated, neither is CarrySum. 3692 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3693 for (unsigned i = 2; i < Factors.size(); ++i) 3694 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3695 } 3696 3697 CarrySumPrevDstIdx = CarrySum; 3698 DstRegs[DstIdx] = FactorSum; 3699 Factors.clear(); 3700 } 3701 } 3702 3703 LegalizerHelper::LegalizeResult 3704 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3705 Register DstReg = MI.getOperand(0).getReg(); 3706 Register Src1 = MI.getOperand(1).getReg(); 3707 Register Src2 = MI.getOperand(2).getReg(); 3708 3709 LLT Ty = MRI.getType(DstReg); 3710 if (Ty.isVector()) 3711 return UnableToLegalize; 3712 3713 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3714 unsigned DstSize = Ty.getSizeInBits(); 3715 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3716 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3717 return UnableToLegalize; 3718 3719 unsigned NumDstParts = DstSize / NarrowSize; 3720 unsigned NumSrcParts = SrcSize / NarrowSize; 3721 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3722 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3723 3724 SmallVector<Register, 2> Src1Parts, Src2Parts; 3725 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3726 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3727 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3728 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3729 3730 // Take only high half of registers if this is high mul. 3731 ArrayRef<Register> DstRegs( 3732 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3733 MIRBuilder.buildMerge(DstReg, DstRegs); 3734 MI.eraseFromParent(); 3735 return Legalized; 3736 } 3737 3738 LegalizerHelper::LegalizeResult 3739 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3740 LLT NarrowTy) { 3741 if (TypeIdx != 1) 3742 return UnableToLegalize; 3743 3744 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3745 3746 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3747 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3748 // NarrowSize. 3749 if (SizeOp1 % NarrowSize != 0) 3750 return UnableToLegalize; 3751 int NumParts = SizeOp1 / NarrowSize; 3752 3753 SmallVector<Register, 2> SrcRegs, DstRegs; 3754 SmallVector<uint64_t, 2> Indexes; 3755 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3756 3757 Register OpReg = MI.getOperand(0).getReg(); 3758 uint64_t OpStart = MI.getOperand(2).getImm(); 3759 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3760 for (int i = 0; i < NumParts; ++i) { 3761 unsigned SrcStart = i * NarrowSize; 3762 3763 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3764 // No part of the extract uses this subregister, ignore it. 3765 continue; 3766 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3767 // The entire subregister is extracted, forward the value. 3768 DstRegs.push_back(SrcRegs[i]); 3769 continue; 3770 } 3771 3772 // OpSegStart is where this destination segment would start in OpReg if it 3773 // extended infinitely in both directions. 3774 int64_t ExtractOffset; 3775 uint64_t SegSize; 3776 if (OpStart < SrcStart) { 3777 ExtractOffset = 0; 3778 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3779 } else { 3780 ExtractOffset = OpStart - SrcStart; 3781 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3782 } 3783 3784 Register SegReg = SrcRegs[i]; 3785 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3786 // A genuine extract is needed. 3787 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3788 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3789 } 3790 3791 DstRegs.push_back(SegReg); 3792 } 3793 3794 Register DstReg = MI.getOperand(0).getReg(); 3795 if (MRI.getType(DstReg).isVector()) 3796 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3797 else if (DstRegs.size() > 1) 3798 MIRBuilder.buildMerge(DstReg, DstRegs); 3799 else 3800 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 3801 MI.eraseFromParent(); 3802 return Legalized; 3803 } 3804 3805 LegalizerHelper::LegalizeResult 3806 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3807 LLT NarrowTy) { 3808 // FIXME: Don't know how to handle secondary types yet. 3809 if (TypeIdx != 0) 3810 return UnableToLegalize; 3811 3812 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3813 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3814 3815 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3816 // NarrowSize. 3817 if (SizeOp0 % NarrowSize != 0) 3818 return UnableToLegalize; 3819 3820 int NumParts = SizeOp0 / NarrowSize; 3821 3822 SmallVector<Register, 2> SrcRegs, DstRegs; 3823 SmallVector<uint64_t, 2> Indexes; 3824 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3825 3826 Register OpReg = MI.getOperand(2).getReg(); 3827 uint64_t OpStart = MI.getOperand(3).getImm(); 3828 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3829 for (int i = 0; i < NumParts; ++i) { 3830 unsigned DstStart = i * NarrowSize; 3831 3832 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3833 // No part of the insert affects this subregister, forward the original. 3834 DstRegs.push_back(SrcRegs[i]); 3835 continue; 3836 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3837 // The entire subregister is defined by this insert, forward the new 3838 // value. 3839 DstRegs.push_back(OpReg); 3840 continue; 3841 } 3842 3843 // OpSegStart is where this destination segment would start in OpReg if it 3844 // extended infinitely in both directions. 3845 int64_t ExtractOffset, InsertOffset; 3846 uint64_t SegSize; 3847 if (OpStart < DstStart) { 3848 InsertOffset = 0; 3849 ExtractOffset = DstStart - OpStart; 3850 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3851 } else { 3852 InsertOffset = OpStart - DstStart; 3853 ExtractOffset = 0; 3854 SegSize = 3855 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3856 } 3857 3858 Register SegReg = OpReg; 3859 if (ExtractOffset != 0 || SegSize != OpSize) { 3860 // A genuine extract is needed. 3861 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3862 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3863 } 3864 3865 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3866 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3867 DstRegs.push_back(DstReg); 3868 } 3869 3870 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3871 Register DstReg = MI.getOperand(0).getReg(); 3872 if(MRI.getType(DstReg).isVector()) 3873 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3874 else 3875 MIRBuilder.buildMerge(DstReg, DstRegs); 3876 MI.eraseFromParent(); 3877 return Legalized; 3878 } 3879 3880 LegalizerHelper::LegalizeResult 3881 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3882 LLT NarrowTy) { 3883 Register DstReg = MI.getOperand(0).getReg(); 3884 LLT DstTy = MRI.getType(DstReg); 3885 3886 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3887 3888 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3889 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3890 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3891 LLT LeftoverTy; 3892 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3893 Src0Regs, Src0LeftoverRegs)) 3894 return UnableToLegalize; 3895 3896 LLT Unused; 3897 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3898 Src1Regs, Src1LeftoverRegs)) 3899 llvm_unreachable("inconsistent extractParts result"); 3900 3901 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3902 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3903 {Src0Regs[I], Src1Regs[I]}); 3904 DstRegs.push_back(Inst.getReg(0)); 3905 } 3906 3907 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3908 auto Inst = MIRBuilder.buildInstr( 3909 MI.getOpcode(), 3910 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3911 DstLeftoverRegs.push_back(Inst.getReg(0)); 3912 } 3913 3914 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3915 LeftoverTy, DstLeftoverRegs); 3916 3917 MI.eraseFromParent(); 3918 return Legalized; 3919 } 3920 3921 LegalizerHelper::LegalizeResult 3922 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 3923 LLT NarrowTy) { 3924 if (TypeIdx != 0) 3925 return UnableToLegalize; 3926 3927 Register DstReg = MI.getOperand(0).getReg(); 3928 Register SrcReg = MI.getOperand(1).getReg(); 3929 3930 LLT DstTy = MRI.getType(DstReg); 3931 if (DstTy.isVector()) 3932 return UnableToLegalize; 3933 3934 SmallVector<Register, 8> Parts; 3935 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3936 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 3937 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3938 3939 MI.eraseFromParent(); 3940 return Legalized; 3941 } 3942 3943 LegalizerHelper::LegalizeResult 3944 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3945 LLT NarrowTy) { 3946 if (TypeIdx != 0) 3947 return UnableToLegalize; 3948 3949 Register CondReg = MI.getOperand(1).getReg(); 3950 LLT CondTy = MRI.getType(CondReg); 3951 if (CondTy.isVector()) // TODO: Handle vselect 3952 return UnableToLegalize; 3953 3954 Register DstReg = MI.getOperand(0).getReg(); 3955 LLT DstTy = MRI.getType(DstReg); 3956 3957 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3958 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3959 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3960 LLT LeftoverTy; 3961 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3962 Src1Regs, Src1LeftoverRegs)) 3963 return UnableToLegalize; 3964 3965 LLT Unused; 3966 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3967 Src2Regs, Src2LeftoverRegs)) 3968 llvm_unreachable("inconsistent extractParts result"); 3969 3970 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3971 auto Select = MIRBuilder.buildSelect(NarrowTy, 3972 CondReg, Src1Regs[I], Src2Regs[I]); 3973 DstRegs.push_back(Select.getReg(0)); 3974 } 3975 3976 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3977 auto Select = MIRBuilder.buildSelect( 3978 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3979 DstLeftoverRegs.push_back(Select.getReg(0)); 3980 } 3981 3982 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3983 LeftoverTy, DstLeftoverRegs); 3984 3985 MI.eraseFromParent(); 3986 return Legalized; 3987 } 3988 3989 LegalizerHelper::LegalizeResult 3990 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 3991 LLT NarrowTy) { 3992 if (TypeIdx != 1) 3993 return UnableToLegalize; 3994 3995 Register DstReg = MI.getOperand(0).getReg(); 3996 Register SrcReg = MI.getOperand(1).getReg(); 3997 LLT DstTy = MRI.getType(DstReg); 3998 LLT SrcTy = MRI.getType(SrcReg); 3999 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4000 4001 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4002 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4003 4004 MachineIRBuilder &B = MIRBuilder; 4005 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4006 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4007 auto C_0 = B.buildConstant(NarrowTy, 0); 4008 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4009 UnmergeSrc.getReg(1), C_0); 4010 auto LoCTLZ = IsUndef ? 4011 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4012 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4013 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4014 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4015 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4016 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4017 4018 MI.eraseFromParent(); 4019 return Legalized; 4020 } 4021 4022 return UnableToLegalize; 4023 } 4024 4025 LegalizerHelper::LegalizeResult 4026 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4027 LLT NarrowTy) { 4028 if (TypeIdx != 1) 4029 return UnableToLegalize; 4030 4031 Register DstReg = MI.getOperand(0).getReg(); 4032 Register SrcReg = MI.getOperand(1).getReg(); 4033 LLT DstTy = MRI.getType(DstReg); 4034 LLT SrcTy = MRI.getType(SrcReg); 4035 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4036 4037 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4038 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4039 4040 MachineIRBuilder &B = MIRBuilder; 4041 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4042 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4043 auto C_0 = B.buildConstant(NarrowTy, 0); 4044 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4045 UnmergeSrc.getReg(0), C_0); 4046 auto HiCTTZ = IsUndef ? 4047 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4048 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4049 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4050 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4051 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4052 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4053 4054 MI.eraseFromParent(); 4055 return Legalized; 4056 } 4057 4058 return UnableToLegalize; 4059 } 4060 4061 LegalizerHelper::LegalizeResult 4062 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4063 LLT NarrowTy) { 4064 if (TypeIdx != 1) 4065 return UnableToLegalize; 4066 4067 Register DstReg = MI.getOperand(0).getReg(); 4068 LLT DstTy = MRI.getType(DstReg); 4069 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4070 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4071 4072 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4073 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4074 4075 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4076 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4077 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4078 4079 MI.eraseFromParent(); 4080 return Legalized; 4081 } 4082 4083 return UnableToLegalize; 4084 } 4085 4086 LegalizerHelper::LegalizeResult 4087 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4088 unsigned Opc = MI.getOpcode(); 4089 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4090 auto isSupported = [this](const LegalityQuery &Q) { 4091 auto QAction = LI.getAction(Q).Action; 4092 return QAction == Legal || QAction == Libcall || QAction == Custom; 4093 }; 4094 switch (Opc) { 4095 default: 4096 return UnableToLegalize; 4097 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4098 // This trivially expands to CTLZ. 4099 Observer.changingInstr(MI); 4100 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4101 Observer.changedInstr(MI); 4102 return Legalized; 4103 } 4104 case TargetOpcode::G_CTLZ: { 4105 Register DstReg = MI.getOperand(0).getReg(); 4106 Register SrcReg = MI.getOperand(1).getReg(); 4107 LLT DstTy = MRI.getType(DstReg); 4108 LLT SrcTy = MRI.getType(SrcReg); 4109 unsigned Len = SrcTy.getSizeInBits(); 4110 4111 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4112 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4113 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4114 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4115 auto ICmp = MIRBuilder.buildICmp( 4116 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4117 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4118 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4119 MI.eraseFromParent(); 4120 return Legalized; 4121 } 4122 // for now, we do this: 4123 // NewLen = NextPowerOf2(Len); 4124 // x = x | (x >> 1); 4125 // x = x | (x >> 2); 4126 // ... 4127 // x = x | (x >>16); 4128 // x = x | (x >>32); // for 64-bit input 4129 // Upto NewLen/2 4130 // return Len - popcount(x); 4131 // 4132 // Ref: "Hacker's Delight" by Henry Warren 4133 Register Op = SrcReg; 4134 unsigned NewLen = PowerOf2Ceil(Len); 4135 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4136 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4137 auto MIBOp = MIRBuilder.buildOr( 4138 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4139 Op = MIBOp.getReg(0); 4140 } 4141 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4142 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4143 MIBPop); 4144 MI.eraseFromParent(); 4145 return Legalized; 4146 } 4147 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4148 // This trivially expands to CTTZ. 4149 Observer.changingInstr(MI); 4150 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4151 Observer.changedInstr(MI); 4152 return Legalized; 4153 } 4154 case TargetOpcode::G_CTTZ: { 4155 Register DstReg = MI.getOperand(0).getReg(); 4156 Register SrcReg = MI.getOperand(1).getReg(); 4157 LLT DstTy = MRI.getType(DstReg); 4158 LLT SrcTy = MRI.getType(SrcReg); 4159 4160 unsigned Len = SrcTy.getSizeInBits(); 4161 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4162 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4163 // zero. 4164 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4165 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4166 auto ICmp = MIRBuilder.buildICmp( 4167 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4168 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4169 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4170 MI.eraseFromParent(); 4171 return Legalized; 4172 } 4173 // for now, we use: { return popcount(~x & (x - 1)); } 4174 // unless the target has ctlz but not ctpop, in which case we use: 4175 // { return 32 - nlz(~x & (x-1)); } 4176 // Ref: "Hacker's Delight" by Henry Warren 4177 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4178 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4179 auto MIBTmp = MIRBuilder.buildAnd( 4180 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4181 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4182 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4183 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4184 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4185 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4186 MI.eraseFromParent(); 4187 return Legalized; 4188 } 4189 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4190 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4191 return Legalized; 4192 } 4193 case TargetOpcode::G_CTPOP: { 4194 unsigned Size = Ty.getSizeInBits(); 4195 MachineIRBuilder &B = MIRBuilder; 4196 4197 // Count set bits in blocks of 2 bits. Default approach would be 4198 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4199 // We use following formula instead: 4200 // B2Count = val - { (val >> 1) & 0x55555555 } 4201 // since it gives same result in blocks of 2 with one instruction less. 4202 auto C_1 = B.buildConstant(Ty, 1); 4203 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4204 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4205 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4206 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4207 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4208 4209 // In order to get count in blocks of 4 add values from adjacent block of 2. 4210 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4211 auto C_2 = B.buildConstant(Ty, 2); 4212 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4213 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4214 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4215 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4216 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4217 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4218 4219 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4220 // addition since count value sits in range {0,...,8} and 4 bits are enough 4221 // to hold such binary values. After addition high 4 bits still hold count 4222 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4223 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4224 auto C_4 = B.buildConstant(Ty, 4); 4225 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4226 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4227 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4228 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4229 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4230 4231 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4232 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4233 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4234 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4235 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4236 4237 // Shift count result from 8 high bits to low bits. 4238 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4239 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4240 4241 MI.eraseFromParent(); 4242 return Legalized; 4243 } 4244 } 4245 } 4246 4247 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4248 // representation. 4249 LegalizerHelper::LegalizeResult 4250 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4251 Register Dst = MI.getOperand(0).getReg(); 4252 Register Src = MI.getOperand(1).getReg(); 4253 const LLT S64 = LLT::scalar(64); 4254 const LLT S32 = LLT::scalar(32); 4255 const LLT S1 = LLT::scalar(1); 4256 4257 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4258 4259 // unsigned cul2f(ulong u) { 4260 // uint lz = clz(u); 4261 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4262 // u = (u << lz) & 0x7fffffffffffffffUL; 4263 // ulong t = u & 0xffffffffffUL; 4264 // uint v = (e << 23) | (uint)(u >> 40); 4265 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4266 // return as_float(v + r); 4267 // } 4268 4269 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4270 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4271 4272 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4273 4274 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4275 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4276 4277 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4278 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4279 4280 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4281 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4282 4283 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4284 4285 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4286 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4287 4288 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4289 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4290 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4291 4292 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4293 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4294 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4295 auto One = MIRBuilder.buildConstant(S32, 1); 4296 4297 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4298 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4299 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4300 MIRBuilder.buildAdd(Dst, V, R); 4301 4302 return Legalized; 4303 } 4304 4305 LegalizerHelper::LegalizeResult 4306 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4307 Register Dst = MI.getOperand(0).getReg(); 4308 Register Src = MI.getOperand(1).getReg(); 4309 LLT DstTy = MRI.getType(Dst); 4310 LLT SrcTy = MRI.getType(Src); 4311 4312 if (SrcTy == LLT::scalar(1)) { 4313 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4314 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4315 MIRBuilder.buildSelect(Dst, Src, True, False); 4316 MI.eraseFromParent(); 4317 return Legalized; 4318 } 4319 4320 if (SrcTy != LLT::scalar(64)) 4321 return UnableToLegalize; 4322 4323 if (DstTy == LLT::scalar(32)) { 4324 // TODO: SelectionDAG has several alternative expansions to port which may 4325 // be more reasonble depending on the available instructions. If a target 4326 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4327 // intermediate type, this is probably worse. 4328 return lowerU64ToF32BitOps(MI); 4329 } 4330 4331 return UnableToLegalize; 4332 } 4333 4334 LegalizerHelper::LegalizeResult 4335 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4336 Register Dst = MI.getOperand(0).getReg(); 4337 Register Src = MI.getOperand(1).getReg(); 4338 LLT DstTy = MRI.getType(Dst); 4339 LLT SrcTy = MRI.getType(Src); 4340 4341 const LLT S64 = LLT::scalar(64); 4342 const LLT S32 = LLT::scalar(32); 4343 const LLT S1 = LLT::scalar(1); 4344 4345 if (SrcTy == S1) { 4346 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4347 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4348 MIRBuilder.buildSelect(Dst, Src, True, False); 4349 MI.eraseFromParent(); 4350 return Legalized; 4351 } 4352 4353 if (SrcTy != S64) 4354 return UnableToLegalize; 4355 4356 if (DstTy == S32) { 4357 // signed cl2f(long l) { 4358 // long s = l >> 63; 4359 // float r = cul2f((l + s) ^ s); 4360 // return s ? -r : r; 4361 // } 4362 Register L = Src; 4363 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4364 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4365 4366 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4367 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4368 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4369 4370 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4371 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4372 MIRBuilder.buildConstant(S64, 0)); 4373 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4374 return Legalized; 4375 } 4376 4377 return UnableToLegalize; 4378 } 4379 4380 LegalizerHelper::LegalizeResult 4381 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4382 Register Dst = MI.getOperand(0).getReg(); 4383 Register Src = MI.getOperand(1).getReg(); 4384 LLT DstTy = MRI.getType(Dst); 4385 LLT SrcTy = MRI.getType(Src); 4386 const LLT S64 = LLT::scalar(64); 4387 const LLT S32 = LLT::scalar(32); 4388 4389 if (SrcTy != S64 && SrcTy != S32) 4390 return UnableToLegalize; 4391 if (DstTy != S32 && DstTy != S64) 4392 return UnableToLegalize; 4393 4394 // FPTOSI gives same result as FPTOUI for positive signed integers. 4395 // FPTOUI needs to deal with fp values that convert to unsigned integers 4396 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4397 4398 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4399 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4400 : APFloat::IEEEdouble(), 4401 APInt::getNullValue(SrcTy.getSizeInBits())); 4402 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4403 4404 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4405 4406 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4407 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4408 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4409 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4410 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4411 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4412 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4413 4414 const LLT S1 = LLT::scalar(1); 4415 4416 MachineInstrBuilder FCMP = 4417 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4418 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4419 4420 MI.eraseFromParent(); 4421 return Legalized; 4422 } 4423 4424 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4425 Register Dst = MI.getOperand(0).getReg(); 4426 Register Src = MI.getOperand(1).getReg(); 4427 LLT DstTy = MRI.getType(Dst); 4428 LLT SrcTy = MRI.getType(Src); 4429 const LLT S64 = LLT::scalar(64); 4430 const LLT S32 = LLT::scalar(32); 4431 4432 // FIXME: Only f32 to i64 conversions are supported. 4433 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4434 return UnableToLegalize; 4435 4436 // Expand f32 -> i64 conversion 4437 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4438 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4439 4440 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4441 4442 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4443 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4444 4445 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4446 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4447 4448 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4449 APInt::getSignMask(SrcEltBits)); 4450 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4451 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4452 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4453 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4454 4455 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4456 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4457 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4458 4459 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4460 R = MIRBuilder.buildZExt(DstTy, R); 4461 4462 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4463 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4464 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4465 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4466 4467 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4468 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4469 4470 const LLT S1 = LLT::scalar(1); 4471 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4472 S1, Exponent, ExponentLoBit); 4473 4474 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4475 4476 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4477 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4478 4479 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4480 4481 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4482 S1, Exponent, ZeroSrcTy); 4483 4484 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4485 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4486 4487 MI.eraseFromParent(); 4488 return Legalized; 4489 } 4490 4491 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4492 LegalizerHelper::LegalizeResult 4493 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4494 Register Dst = MI.getOperand(0).getReg(); 4495 Register Src = MI.getOperand(1).getReg(); 4496 4497 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4498 return UnableToLegalize; 4499 4500 const unsigned ExpMask = 0x7ff; 4501 const unsigned ExpBiasf64 = 1023; 4502 const unsigned ExpBiasf16 = 15; 4503 const LLT S32 = LLT::scalar(32); 4504 const LLT S1 = LLT::scalar(1); 4505 4506 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4507 Register U = Unmerge.getReg(0); 4508 Register UH = Unmerge.getReg(1); 4509 4510 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4511 4512 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4513 // add the f16 bias (15) to get the biased exponent for the f16 format. 4514 E = MIRBuilder.buildAdd( 4515 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4516 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4517 4518 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4519 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4520 4521 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4522 MIRBuilder.buildConstant(S32, 0x1ff)); 4523 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4524 4525 auto Zero = MIRBuilder.buildConstant(S32, 0); 4526 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4527 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4528 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4529 4530 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4531 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4532 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4533 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4534 4535 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4536 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4537 4538 // N = M | (E << 12); 4539 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4540 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4541 4542 // B = clamp(1-E, 0, 13); 4543 auto One = MIRBuilder.buildConstant(S32, 1); 4544 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4545 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4546 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4547 4548 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4549 MIRBuilder.buildConstant(S32, 0x1000)); 4550 4551 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4552 auto D0 = MIRBuilder.buildShl(S32, D, B); 4553 4554 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4555 D0, SigSetHigh); 4556 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4557 D = MIRBuilder.buildOr(S32, D, D1); 4558 4559 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4560 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4561 4562 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4563 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4564 4565 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4566 MIRBuilder.buildConstant(S32, 3)); 4567 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4568 4569 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4570 MIRBuilder.buildConstant(S32, 5)); 4571 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4572 4573 V1 = MIRBuilder.buildOr(S32, V0, V1); 4574 V = MIRBuilder.buildAdd(S32, V, V1); 4575 4576 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4577 E, MIRBuilder.buildConstant(S32, 30)); 4578 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4579 MIRBuilder.buildConstant(S32, 0x7c00), V); 4580 4581 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4582 E, MIRBuilder.buildConstant(S32, 1039)); 4583 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4584 4585 // Extract the sign bit. 4586 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4587 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4588 4589 // Insert the sign bit 4590 V = MIRBuilder.buildOr(S32, Sign, V); 4591 4592 MIRBuilder.buildTrunc(Dst, V); 4593 MI.eraseFromParent(); 4594 return Legalized; 4595 } 4596 4597 LegalizerHelper::LegalizeResult 4598 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4599 Register Dst = MI.getOperand(0).getReg(); 4600 Register Src = MI.getOperand(1).getReg(); 4601 4602 LLT DstTy = MRI.getType(Dst); 4603 LLT SrcTy = MRI.getType(Src); 4604 const LLT S64 = LLT::scalar(64); 4605 const LLT S16 = LLT::scalar(16); 4606 4607 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4608 return lowerFPTRUNC_F64_TO_F16(MI); 4609 4610 return UnableToLegalize; 4611 } 4612 4613 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4614 switch (Opc) { 4615 case TargetOpcode::G_SMIN: 4616 return CmpInst::ICMP_SLT; 4617 case TargetOpcode::G_SMAX: 4618 return CmpInst::ICMP_SGT; 4619 case TargetOpcode::G_UMIN: 4620 return CmpInst::ICMP_ULT; 4621 case TargetOpcode::G_UMAX: 4622 return CmpInst::ICMP_UGT; 4623 default: 4624 llvm_unreachable("not in integer min/max"); 4625 } 4626 } 4627 4628 LegalizerHelper::LegalizeResult 4629 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4630 Register Dst = MI.getOperand(0).getReg(); 4631 Register Src0 = MI.getOperand(1).getReg(); 4632 Register Src1 = MI.getOperand(2).getReg(); 4633 4634 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4635 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4636 4637 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4638 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4639 4640 MI.eraseFromParent(); 4641 return Legalized; 4642 } 4643 4644 LegalizerHelper::LegalizeResult 4645 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4646 Register Dst = MI.getOperand(0).getReg(); 4647 Register Src0 = MI.getOperand(1).getReg(); 4648 Register Src1 = MI.getOperand(2).getReg(); 4649 4650 const LLT Src0Ty = MRI.getType(Src0); 4651 const LLT Src1Ty = MRI.getType(Src1); 4652 4653 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4654 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4655 4656 auto SignBitMask = MIRBuilder.buildConstant( 4657 Src0Ty, APInt::getSignMask(Src0Size)); 4658 4659 auto NotSignBitMask = MIRBuilder.buildConstant( 4660 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4661 4662 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4663 MachineInstr *Or; 4664 4665 if (Src0Ty == Src1Ty) { 4666 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 4667 Or = MIRBuilder.buildOr(Dst, And0, And1); 4668 } else if (Src0Size > Src1Size) { 4669 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4670 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4671 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4672 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4673 Or = MIRBuilder.buildOr(Dst, And0, And1); 4674 } else { 4675 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4676 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4677 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4678 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4679 Or = MIRBuilder.buildOr(Dst, And0, And1); 4680 } 4681 4682 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4683 // constants are a nan and -0.0, but the final result should preserve 4684 // everything. 4685 if (unsigned Flags = MI.getFlags()) 4686 Or->setFlags(Flags); 4687 4688 MI.eraseFromParent(); 4689 return Legalized; 4690 } 4691 4692 LegalizerHelper::LegalizeResult 4693 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4694 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4695 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4696 4697 Register Dst = MI.getOperand(0).getReg(); 4698 Register Src0 = MI.getOperand(1).getReg(); 4699 Register Src1 = MI.getOperand(2).getReg(); 4700 LLT Ty = MRI.getType(Dst); 4701 4702 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4703 // Insert canonicalizes if it's possible we need to quiet to get correct 4704 // sNaN behavior. 4705 4706 // Note this must be done here, and not as an optimization combine in the 4707 // absence of a dedicate quiet-snan instruction as we're using an 4708 // omni-purpose G_FCANONICALIZE. 4709 if (!isKnownNeverSNaN(Src0, MRI)) 4710 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4711 4712 if (!isKnownNeverSNaN(Src1, MRI)) 4713 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4714 } 4715 4716 // If there are no nans, it's safe to simply replace this with the non-IEEE 4717 // version. 4718 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4719 MI.eraseFromParent(); 4720 return Legalized; 4721 } 4722 4723 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4724 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4725 Register DstReg = MI.getOperand(0).getReg(); 4726 LLT Ty = MRI.getType(DstReg); 4727 unsigned Flags = MI.getFlags(); 4728 4729 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4730 Flags); 4731 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4732 MI.eraseFromParent(); 4733 return Legalized; 4734 } 4735 4736 LegalizerHelper::LegalizeResult 4737 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4738 Register DstReg = MI.getOperand(0).getReg(); 4739 Register X = MI.getOperand(1).getReg(); 4740 const unsigned Flags = MI.getFlags(); 4741 const LLT Ty = MRI.getType(DstReg); 4742 const LLT CondTy = Ty.changeElementSize(1); 4743 4744 // round(x) => 4745 // t = trunc(x); 4746 // d = fabs(x - t); 4747 // o = copysign(1.0f, x); 4748 // return t + (d >= 0.5 ? o : 0.0); 4749 4750 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 4751 4752 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 4753 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 4754 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4755 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 4756 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 4757 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 4758 4759 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 4760 Flags); 4761 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 4762 4763 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 4764 4765 MI.eraseFromParent(); 4766 return Legalized; 4767 } 4768 4769 LegalizerHelper::LegalizeResult 4770 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 4771 Register DstReg = MI.getOperand(0).getReg(); 4772 Register SrcReg = MI.getOperand(1).getReg(); 4773 unsigned Flags = MI.getFlags(); 4774 LLT Ty = MRI.getType(DstReg); 4775 const LLT CondTy = Ty.changeElementSize(1); 4776 4777 // result = trunc(src); 4778 // if (src < 0.0 && src != result) 4779 // result += -1.0. 4780 4781 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4782 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4783 4784 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4785 SrcReg, Zero, Flags); 4786 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4787 SrcReg, Trunc, Flags); 4788 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4789 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4790 4791 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 4792 MI.eraseFromParent(); 4793 return Legalized; 4794 } 4795 4796 LegalizerHelper::LegalizeResult 4797 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4798 const unsigned NumDst = MI.getNumOperands() - 1; 4799 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4800 LLT SrcTy = MRI.getType(SrcReg); 4801 4802 Register Dst0Reg = MI.getOperand(0).getReg(); 4803 LLT DstTy = MRI.getType(Dst0Reg); 4804 4805 4806 // Expand scalarizing unmerge as bitcast to integer and shift. 4807 if (!DstTy.isVector() && SrcTy.isVector() && 4808 SrcTy.getElementType() == DstTy) { 4809 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4810 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4811 4812 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4813 4814 const unsigned DstSize = DstTy.getSizeInBits(); 4815 unsigned Offset = DstSize; 4816 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4817 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4818 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4819 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4820 } 4821 4822 MI.eraseFromParent(); 4823 return Legalized; 4824 } 4825 4826 return UnableToLegalize; 4827 } 4828 4829 LegalizerHelper::LegalizeResult 4830 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4831 Register DstReg = MI.getOperand(0).getReg(); 4832 Register Src0Reg = MI.getOperand(1).getReg(); 4833 Register Src1Reg = MI.getOperand(2).getReg(); 4834 LLT Src0Ty = MRI.getType(Src0Reg); 4835 LLT DstTy = MRI.getType(DstReg); 4836 LLT IdxTy = LLT::scalar(32); 4837 4838 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4839 4840 if (DstTy.isScalar()) { 4841 if (Src0Ty.isVector()) 4842 return UnableToLegalize; 4843 4844 // This is just a SELECT. 4845 assert(Mask.size() == 1 && "Expected a single mask element"); 4846 Register Val; 4847 if (Mask[0] < 0 || Mask[0] > 1) 4848 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4849 else 4850 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4851 MIRBuilder.buildCopy(DstReg, Val); 4852 MI.eraseFromParent(); 4853 return Legalized; 4854 } 4855 4856 Register Undef; 4857 SmallVector<Register, 32> BuildVec; 4858 LLT EltTy = DstTy.getElementType(); 4859 4860 for (int Idx : Mask) { 4861 if (Idx < 0) { 4862 if (!Undef.isValid()) 4863 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4864 BuildVec.push_back(Undef); 4865 continue; 4866 } 4867 4868 if (Src0Ty.isScalar()) { 4869 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4870 } else { 4871 int NumElts = Src0Ty.getNumElements(); 4872 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4873 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4874 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4875 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4876 BuildVec.push_back(Extract.getReg(0)); 4877 } 4878 } 4879 4880 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4881 MI.eraseFromParent(); 4882 return Legalized; 4883 } 4884 4885 LegalizerHelper::LegalizeResult 4886 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4887 Register Dst = MI.getOperand(0).getReg(); 4888 Register AllocSize = MI.getOperand(1).getReg(); 4889 unsigned Align = MI.getOperand(2).getImm(); 4890 4891 const auto &MF = *MI.getMF(); 4892 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4893 4894 LLT PtrTy = MRI.getType(Dst); 4895 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4896 4897 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4898 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4899 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4900 4901 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4902 // have to generate an extra instruction to negate the alloc and then use 4903 // G_PTR_ADD to add the negative offset. 4904 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4905 if (Align) { 4906 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4907 AlignMask.negate(); 4908 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4909 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4910 } 4911 4912 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4913 MIRBuilder.buildCopy(SPReg, SPTmp); 4914 MIRBuilder.buildCopy(Dst, SPTmp); 4915 4916 MI.eraseFromParent(); 4917 return Legalized; 4918 } 4919 4920 LegalizerHelper::LegalizeResult 4921 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4922 Register Dst = MI.getOperand(0).getReg(); 4923 Register Src = MI.getOperand(1).getReg(); 4924 unsigned Offset = MI.getOperand(2).getImm(); 4925 4926 LLT DstTy = MRI.getType(Dst); 4927 LLT SrcTy = MRI.getType(Src); 4928 4929 if (DstTy.isScalar() && 4930 (SrcTy.isScalar() || 4931 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4932 LLT SrcIntTy = SrcTy; 4933 if (!SrcTy.isScalar()) { 4934 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4935 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4936 } 4937 4938 if (Offset == 0) 4939 MIRBuilder.buildTrunc(Dst, Src); 4940 else { 4941 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4942 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4943 MIRBuilder.buildTrunc(Dst, Shr); 4944 } 4945 4946 MI.eraseFromParent(); 4947 return Legalized; 4948 } 4949 4950 return UnableToLegalize; 4951 } 4952 4953 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4954 Register Dst = MI.getOperand(0).getReg(); 4955 Register Src = MI.getOperand(1).getReg(); 4956 Register InsertSrc = MI.getOperand(2).getReg(); 4957 uint64_t Offset = MI.getOperand(3).getImm(); 4958 4959 LLT DstTy = MRI.getType(Src); 4960 LLT InsertTy = MRI.getType(InsertSrc); 4961 4962 if (InsertTy.isVector() || 4963 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 4964 return UnableToLegalize; 4965 4966 const DataLayout &DL = MIRBuilder.getDataLayout(); 4967 if ((DstTy.isPointer() && 4968 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 4969 (InsertTy.isPointer() && 4970 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 4971 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 4972 return UnableToLegalize; 4973 } 4974 4975 LLT IntDstTy = DstTy; 4976 4977 if (!DstTy.isScalar()) { 4978 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4979 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 4980 } 4981 4982 if (!InsertTy.isScalar()) { 4983 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 4984 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 4985 } 4986 4987 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 4988 if (Offset != 0) { 4989 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 4990 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 4991 } 4992 4993 APInt MaskVal = APInt::getBitsSetWithWrap( 4994 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 4995 4996 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 4997 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 4998 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 4999 5000 MIRBuilder.buildCast(Dst, Or); 5001 MI.eraseFromParent(); 5002 return Legalized; 5003 } 5004 5005 LegalizerHelper::LegalizeResult 5006 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5007 Register Dst0 = MI.getOperand(0).getReg(); 5008 Register Dst1 = MI.getOperand(1).getReg(); 5009 Register LHS = MI.getOperand(2).getReg(); 5010 Register RHS = MI.getOperand(3).getReg(); 5011 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5012 5013 LLT Ty = MRI.getType(Dst0); 5014 LLT BoolTy = MRI.getType(Dst1); 5015 5016 if (IsAdd) 5017 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5018 else 5019 MIRBuilder.buildSub(Dst0, LHS, RHS); 5020 5021 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5022 5023 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5024 5025 // For an addition, the result should be less than one of the operands (LHS) 5026 // if and only if the other operand (RHS) is negative, otherwise there will 5027 // be overflow. 5028 // For a subtraction, the result should be less than one of the operands 5029 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5030 // otherwise there will be overflow. 5031 auto ResultLowerThanLHS = 5032 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5033 auto ConditionRHS = MIRBuilder.buildICmp( 5034 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5035 5036 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5037 MI.eraseFromParent(); 5038 return Legalized; 5039 } 5040 5041 LegalizerHelper::LegalizeResult 5042 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5043 Register Dst = MI.getOperand(0).getReg(); 5044 Register Src = MI.getOperand(1).getReg(); 5045 const LLT Ty = MRI.getType(Src); 5046 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5047 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5048 5049 // Swap most and least significant byte, set remaining bytes in Res to zero. 5050 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5051 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5052 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5053 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5054 5055 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5056 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5057 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5058 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5059 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5060 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5061 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5062 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5063 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5064 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5065 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5066 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5067 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5068 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5069 } 5070 Res.getInstr()->getOperand(0).setReg(Dst); 5071 5072 MI.eraseFromParent(); 5073 return Legalized; 5074 } 5075 5076 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5077 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5078 MachineInstrBuilder Src, APInt Mask) { 5079 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5080 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5081 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5082 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5083 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5084 return B.buildOr(Dst, LHS, RHS); 5085 } 5086 5087 LegalizerHelper::LegalizeResult 5088 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5089 Register Dst = MI.getOperand(0).getReg(); 5090 Register Src = MI.getOperand(1).getReg(); 5091 const LLT Ty = MRI.getType(Src); 5092 unsigned Size = Ty.getSizeInBits(); 5093 5094 MachineInstrBuilder BSWAP = 5095 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5096 5097 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5098 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5099 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5100 MachineInstrBuilder Swap4 = 5101 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5102 5103 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5104 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5105 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5106 MachineInstrBuilder Swap2 = 5107 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5108 5109 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5110 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5111 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5112 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5113 5114 MI.eraseFromParent(); 5115 return Legalized; 5116 } 5117 5118 LegalizerHelper::LegalizeResult 5119 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5120 MachineFunction &MF = MIRBuilder.getMF(); 5121 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5122 const TargetLowering *TLI = STI.getTargetLowering(); 5123 5124 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5125 int NameOpIdx = IsRead ? 1 : 0; 5126 int ValRegIndex = IsRead ? 0 : 1; 5127 5128 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5129 const LLT Ty = MRI.getType(ValReg); 5130 const MDString *RegStr = cast<MDString>( 5131 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5132 5133 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5134 if (!PhysReg.isValid()) 5135 return UnableToLegalize; 5136 5137 if (IsRead) 5138 MIRBuilder.buildCopy(ValReg, PhysReg); 5139 else 5140 MIRBuilder.buildCopy(PhysReg, ValReg); 5141 5142 MI.eraseFromParent(); 5143 return Legalized; 5144 } 5145