1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
67 
68   if (!Ty.isScalar())
69     return nullptr;
70 
71   switch (Ty.getSizeInBits()) {
72   case 16:
73     return Type::getHalfTy(Ctx);
74   case 32:
75     return Type::getFloatTy(Ctx);
76   case 64:
77     return Type::getDoubleTy(Ctx);
78   case 128:
79     return Type::getFP128Ty(Ctx);
80   default:
81     return nullptr;
82   }
83 }
84 
85 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
86                                  GISelChangeObserver &Observer,
87                                  MachineIRBuilder &Builder)
88     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
89       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
90   MIRBuilder.setMF(MF);
91   MIRBuilder.setChangeObserver(Observer);
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &B)
97     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
98   MIRBuilder.setMF(MF);
99   MIRBuilder.setChangeObserver(Observer);
100 }
101 LegalizerHelper::LegalizeResult
102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
103   LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
104 
105   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
106       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
107     return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized
108                                                           : UnableToLegalize;
109   auto Step = LI.getAction(MI, MRI);
110   switch (Step.Action) {
111   case Legal:
112     LLVM_DEBUG(dbgs() << ".. Already legal\n");
113     return AlreadyLegal;
114   case Libcall:
115     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
116     return libcall(MI);
117   case NarrowScalar:
118     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
119     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
120   case WidenScalar:
121     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
122     return widenScalar(MI, Step.TypeIdx, Step.NewType);
123   case Bitcast:
124     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
125     return bitcast(MI, Step.TypeIdx, Step.NewType);
126   case Lower:
127     LLVM_DEBUG(dbgs() << ".. Lower\n");
128     return lower(MI, Step.TypeIdx, Step.NewType);
129   case FewerElements:
130     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
131     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
132   case MoreElements:
133     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
134     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case Custom:
136     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
137     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
138                                                             : UnableToLegalize;
139   default:
140     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
141     return UnableToLegalize;
142   }
143 }
144 
145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
146                                    SmallVectorImpl<Register> &VRegs) {
147   for (int i = 0; i < NumParts; ++i)
148     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
149   MIRBuilder.buildUnmerge(VRegs, Reg);
150 }
151 
152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
153                                    LLT MainTy, LLT &LeftoverTy,
154                                    SmallVectorImpl<Register> &VRegs,
155                                    SmallVectorImpl<Register> &LeftoverRegs) {
156   assert(!LeftoverTy.isValid() && "this is an out argument");
157 
158   unsigned RegSize = RegTy.getSizeInBits();
159   unsigned MainSize = MainTy.getSizeInBits();
160   unsigned NumParts = RegSize / MainSize;
161   unsigned LeftoverSize = RegSize - NumParts * MainSize;
162 
163   // Use an unmerge when possible.
164   if (LeftoverSize == 0) {
165     for (unsigned I = 0; I < NumParts; ++I)
166       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
167     MIRBuilder.buildUnmerge(VRegs, Reg);
168     return true;
169   }
170 
171   if (MainTy.isVector()) {
172     unsigned EltSize = MainTy.getScalarSizeInBits();
173     if (LeftoverSize % EltSize != 0)
174       return false;
175     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
176   } else {
177     LeftoverTy = LLT::scalar(LeftoverSize);
178   }
179 
180   // For irregular sizes, extract the individual parts.
181   for (unsigned I = 0; I != NumParts; ++I) {
182     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
183     VRegs.push_back(NewReg);
184     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
185   }
186 
187   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
188        Offset += LeftoverSize) {
189     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
190     LeftoverRegs.push_back(NewReg);
191     MIRBuilder.buildExtract(NewReg, Reg, Offset);
192   }
193 
194   return true;
195 }
196 
197 void LegalizerHelper::insertParts(Register DstReg,
198                                   LLT ResultTy, LLT PartTy,
199                                   ArrayRef<Register> PartRegs,
200                                   LLT LeftoverTy,
201                                   ArrayRef<Register> LeftoverRegs) {
202   if (!LeftoverTy.isValid()) {
203     assert(LeftoverRegs.empty());
204 
205     if (!ResultTy.isVector()) {
206       MIRBuilder.buildMerge(DstReg, PartRegs);
207       return;
208     }
209 
210     if (PartTy.isVector())
211       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
212     else
213       MIRBuilder.buildBuildVector(DstReg, PartRegs);
214     return;
215   }
216 
217   unsigned PartSize = PartTy.getSizeInBits();
218   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
219 
220   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
221   MIRBuilder.buildUndef(CurResultReg);
222 
223   unsigned Offset = 0;
224   for (Register PartReg : PartRegs) {
225     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
226     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
227     CurResultReg = NewResultReg;
228     Offset += PartSize;
229   }
230 
231   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
232     // Use the original output register for the final insert to avoid a copy.
233     Register NewResultReg = (I + 1 == E) ?
234       DstReg : MRI.createGenericVirtualRegister(ResultTy);
235 
236     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
237     CurResultReg = NewResultReg;
238     Offset += LeftoverPartSize;
239   }
240 }
241 
242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
244                               const MachineInstr &MI) {
245   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
246 
247   const int NumResults = MI.getNumOperands() - 1;
248   Regs.resize(NumResults);
249   for (int I = 0; I != NumResults; ++I)
250     Regs[I] = MI.getOperand(I).getReg();
251 }
252 
253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
254                                     LLT NarrowTy, Register SrcReg) {
255   LLT SrcTy = MRI.getType(SrcReg);
256 
257   LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy));
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 
268   return GCDTy;
269 }
270 
271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
272                                          SmallVectorImpl<Register> &VRegs,
273                                          unsigned PadStrategy) {
274   LLT LCMTy = getLCMType(DstTy, NarrowTy);
275 
276   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
277   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
278   int NumOrigSrc = VRegs.size();
279 
280   Register PadReg;
281 
282   // Get a value we can use to pad the source value if the sources won't evenly
283   // cover the result type.
284   if (NumOrigSrc < NumParts * NumSubParts) {
285     if (PadStrategy == TargetOpcode::G_ZEXT)
286       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
287     else if (PadStrategy == TargetOpcode::G_ANYEXT)
288       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
289     else {
290       assert(PadStrategy == TargetOpcode::G_SEXT);
291 
292       // Shift the sign bit of the low register through the high register.
293       auto ShiftAmt =
294         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
295       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
296     }
297   }
298 
299   // Registers for the final merge to be produced.
300   SmallVector<Register, 4> Remerge(NumParts);
301 
302   // Registers needed for intermediate merges, which will be merged into a
303   // source for Remerge.
304   SmallVector<Register, 4> SubMerge(NumSubParts);
305 
306   // Once we've fully read off the end of the original source bits, we can reuse
307   // the same high bits for remaining padding elements.
308   Register AllPadReg;
309 
310   // Build merges to the LCM type to cover the original result type.
311   for (int I = 0; I != NumParts; ++I) {
312     bool AllMergePartsArePadding = true;
313 
314     // Build the requested merges to the requested type.
315     for (int J = 0; J != NumSubParts; ++J) {
316       int Idx = I * NumSubParts + J;
317       if (Idx >= NumOrigSrc) {
318         SubMerge[J] = PadReg;
319         continue;
320       }
321 
322       SubMerge[J] = VRegs[Idx];
323 
324       // There are meaningful bits here we can't reuse later.
325       AllMergePartsArePadding = false;
326     }
327 
328     // If we've filled up a complete piece with padding bits, we can directly
329     // emit the natural sized constant if applicable, rather than a merge of
330     // smaller constants.
331     if (AllMergePartsArePadding && !AllPadReg) {
332       if (PadStrategy == TargetOpcode::G_ANYEXT)
333         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
334       else if (PadStrategy == TargetOpcode::G_ZEXT)
335         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
336 
337       // If this is a sign extension, we can't materialize a trivial constant
338       // with the right type and have to produce a merge.
339     }
340 
341     if (AllPadReg) {
342       // Avoid creating additional instructions if we're just adding additional
343       // copies of padding bits.
344       Remerge[I] = AllPadReg;
345       continue;
346     }
347 
348     if (NumSubParts == 1)
349       Remerge[I] = SubMerge[0];
350     else
351       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
352 
353     // In the sign extend padding case, re-use the first all-signbit merge.
354     if (AllMergePartsArePadding && !AllPadReg)
355       AllPadReg = Remerge[I];
356   }
357 
358   VRegs = std::move(Remerge);
359   return LCMTy;
360 }
361 
362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
363                                                ArrayRef<Register> RemergeRegs) {
364   LLT DstTy = MRI.getType(DstReg);
365 
366   // Create the merge to the widened source, and extract the relevant bits into
367   // the result.
368 
369   if (DstTy == LCMTy) {
370     MIRBuilder.buildMerge(DstReg, RemergeRegs);
371     return;
372   }
373 
374   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
375   if (DstTy.isScalar() && LCMTy.isScalar()) {
376     MIRBuilder.buildTrunc(DstReg, Remerge);
377     return;
378   }
379 
380   if (LCMTy.isVector()) {
381     MIRBuilder.buildExtract(DstReg, Remerge, 0);
382     return;
383   }
384 
385   llvm_unreachable("unhandled case");
386 }
387 
388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
389 #define RTLIBCASE(LibcallPrefix)                                               \
390   do {                                                                         \
391     switch (Size) {                                                            \
392     case 32:                                                                   \
393       return RTLIB::LibcallPrefix##32;                                         \
394     case 64:                                                                   \
395       return RTLIB::LibcallPrefix##64;                                         \
396     case 128:                                                                  \
397       return RTLIB::LibcallPrefix##128;                                        \
398     default:                                                                   \
399       llvm_unreachable("unexpected size");                                     \
400     }                                                                          \
401   } while (0)
402 
403   assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
404 
405   switch (Opcode) {
406   case TargetOpcode::G_SDIV:
407     RTLIBCASE(SDIV_I);
408   case TargetOpcode::G_UDIV:
409     RTLIBCASE(UDIV_I);
410   case TargetOpcode::G_SREM:
411     RTLIBCASE(SREM_I);
412   case TargetOpcode::G_UREM:
413     RTLIBCASE(UREM_I);
414   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
415     RTLIBCASE(CTLZ_I);
416   case TargetOpcode::G_FADD:
417     RTLIBCASE(ADD_F);
418   case TargetOpcode::G_FSUB:
419     RTLIBCASE(SUB_F);
420   case TargetOpcode::G_FMUL:
421     RTLIBCASE(MUL_F);
422   case TargetOpcode::G_FDIV:
423     RTLIBCASE(DIV_F);
424   case TargetOpcode::G_FEXP:
425     RTLIBCASE(EXP_F);
426   case TargetOpcode::G_FEXP2:
427     RTLIBCASE(EXP2_F);
428   case TargetOpcode::G_FREM:
429     RTLIBCASE(REM_F);
430   case TargetOpcode::G_FPOW:
431     RTLIBCASE(POW_F);
432   case TargetOpcode::G_FMA:
433     RTLIBCASE(FMA_F);
434   case TargetOpcode::G_FSIN:
435     RTLIBCASE(SIN_F);
436   case TargetOpcode::G_FCOS:
437     RTLIBCASE(COS_F);
438   case TargetOpcode::G_FLOG10:
439     RTLIBCASE(LOG10_F);
440   case TargetOpcode::G_FLOG:
441     RTLIBCASE(LOG_F);
442   case TargetOpcode::G_FLOG2:
443     RTLIBCASE(LOG2_F);
444   case TargetOpcode::G_FCEIL:
445     RTLIBCASE(CEIL_F);
446   case TargetOpcode::G_FFLOOR:
447     RTLIBCASE(FLOOR_F);
448   case TargetOpcode::G_FMINNUM:
449     RTLIBCASE(FMIN_F);
450   case TargetOpcode::G_FMAXNUM:
451     RTLIBCASE(FMAX_F);
452   case TargetOpcode::G_FSQRT:
453     RTLIBCASE(SQRT_F);
454   case TargetOpcode::G_FRINT:
455     RTLIBCASE(RINT_F);
456   case TargetOpcode::G_FNEARBYINT:
457     RTLIBCASE(NEARBYINT_F);
458   }
459   llvm_unreachable("Unknown libcall function");
460 }
461 
462 /// True if an instruction is in tail position in its caller. Intended for
463 /// legalizing libcalls as tail calls when possible.
464 static bool isLibCallInTailPosition(MachineInstr &MI) {
465   const Function &F = MI.getParent()->getParent()->getFunction();
466 
467   // Conservatively require the attributes of the call to match those of
468   // the return. Ignore NoAlias and NonNull because they don't affect the
469   // call sequence.
470   AttributeList CallerAttrs = F.getAttributes();
471   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
472           .removeAttribute(Attribute::NoAlias)
473           .removeAttribute(Attribute::NonNull)
474           .hasAttributes())
475     return false;
476 
477   // It's not safe to eliminate the sign / zero extension of the return value.
478   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
479       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
480     return false;
481 
482   // Only tail call if the following instruction is a standard return.
483   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
484   MachineInstr *Next = MI.getNextNode();
485   if (!Next || TII.isTailCall(*Next) || !Next->isReturn())
486     return false;
487 
488   return true;
489 }
490 
491 LegalizerHelper::LegalizeResult
492 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
493                     const CallLowering::ArgInfo &Result,
494                     ArrayRef<CallLowering::ArgInfo> Args,
495                     const CallingConv::ID CC) {
496   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
497 
498   CallLowering::CallLoweringInfo Info;
499   Info.CallConv = CC;
500   Info.Callee = MachineOperand::CreateES(Name);
501   Info.OrigRet = Result;
502   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
503   if (!CLI.lowerCall(MIRBuilder, Info))
504     return LegalizerHelper::UnableToLegalize;
505 
506   return LegalizerHelper::Legalized;
507 }
508 
509 LegalizerHelper::LegalizeResult
510 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
511                     const CallLowering::ArgInfo &Result,
512                     ArrayRef<CallLowering::ArgInfo> Args) {
513   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
514   const char *Name = TLI.getLibcallName(Libcall);
515   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
516   return createLibcall(MIRBuilder, Name, Result, Args, CC);
517 }
518 
519 // Useful for libcalls where all operands have the same type.
520 static LegalizerHelper::LegalizeResult
521 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
522               Type *OpType) {
523   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
524 
525   SmallVector<CallLowering::ArgInfo, 3> Args;
526   for (unsigned i = 1; i < MI.getNumOperands(); i++)
527     Args.push_back({MI.getOperand(i).getReg(), OpType});
528   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
529                        Args);
530 }
531 
532 LegalizerHelper::LegalizeResult
533 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
534                        MachineInstr &MI) {
535   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
536   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
537 
538   SmallVector<CallLowering::ArgInfo, 3> Args;
539   // Add all the args, except for the last which is an imm denoting 'tail'.
540   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
541     Register Reg = MI.getOperand(i).getReg();
542 
543     // Need derive an IR type for call lowering.
544     LLT OpLLT = MRI.getType(Reg);
545     Type *OpTy = nullptr;
546     if (OpLLT.isPointer())
547       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
548     else
549       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
550     Args.push_back({Reg, OpTy});
551   }
552 
553   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
554   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
555   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
556   RTLIB::Libcall RTLibcall;
557   switch (ID) {
558   case Intrinsic::memcpy:
559     RTLibcall = RTLIB::MEMCPY;
560     break;
561   case Intrinsic::memset:
562     RTLibcall = RTLIB::MEMSET;
563     break;
564   case Intrinsic::memmove:
565     RTLibcall = RTLIB::MEMMOVE;
566     break;
567   default:
568     return LegalizerHelper::UnableToLegalize;
569   }
570   const char *Name = TLI.getLibcallName(RTLibcall);
571 
572   MIRBuilder.setInstr(MI);
573 
574   CallLowering::CallLoweringInfo Info;
575   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
576   Info.Callee = MachineOperand::CreateES(Name);
577   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
578   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
579                     isLibCallInTailPosition(MI);
580 
581   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
582   if (!CLI.lowerCall(MIRBuilder, Info))
583     return LegalizerHelper::UnableToLegalize;
584 
585   if (Info.LoweredTailCall) {
586     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
587     // We must have a return following the call to get past
588     // isLibCallInTailPosition.
589     assert(MI.getNextNode() && MI.getNextNode()->isReturn() &&
590            "Expected instr following MI to be a return?");
591 
592     // We lowered a tail call, so the call is now the return from the block.
593     // Delete the old return.
594     MI.getNextNode()->eraseFromParent();
595   }
596 
597   return LegalizerHelper::Legalized;
598 }
599 
600 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
601                                        Type *FromType) {
602   auto ToMVT = MVT::getVT(ToType);
603   auto FromMVT = MVT::getVT(FromType);
604 
605   switch (Opcode) {
606   case TargetOpcode::G_FPEXT:
607     return RTLIB::getFPEXT(FromMVT, ToMVT);
608   case TargetOpcode::G_FPTRUNC:
609     return RTLIB::getFPROUND(FromMVT, ToMVT);
610   case TargetOpcode::G_FPTOSI:
611     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
612   case TargetOpcode::G_FPTOUI:
613     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
614   case TargetOpcode::G_SITOFP:
615     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
616   case TargetOpcode::G_UITOFP:
617     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
618   }
619   llvm_unreachable("Unsupported libcall function");
620 }
621 
622 static LegalizerHelper::LegalizeResult
623 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
624                   Type *FromType) {
625   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
626   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
627                        {{MI.getOperand(1).getReg(), FromType}});
628 }
629 
630 LegalizerHelper::LegalizeResult
631 LegalizerHelper::libcall(MachineInstr &MI) {
632   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
633   unsigned Size = LLTy.getSizeInBits();
634   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
635 
636   MIRBuilder.setInstr(MI);
637 
638   switch (MI.getOpcode()) {
639   default:
640     return UnableToLegalize;
641   case TargetOpcode::G_SDIV:
642   case TargetOpcode::G_UDIV:
643   case TargetOpcode::G_SREM:
644   case TargetOpcode::G_UREM:
645   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
646     Type *HLTy = IntegerType::get(Ctx, Size);
647     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
648     if (Status != Legalized)
649       return Status;
650     break;
651   }
652   case TargetOpcode::G_FADD:
653   case TargetOpcode::G_FSUB:
654   case TargetOpcode::G_FMUL:
655   case TargetOpcode::G_FDIV:
656   case TargetOpcode::G_FMA:
657   case TargetOpcode::G_FPOW:
658   case TargetOpcode::G_FREM:
659   case TargetOpcode::G_FCOS:
660   case TargetOpcode::G_FSIN:
661   case TargetOpcode::G_FLOG10:
662   case TargetOpcode::G_FLOG:
663   case TargetOpcode::G_FLOG2:
664   case TargetOpcode::G_FEXP:
665   case TargetOpcode::G_FEXP2:
666   case TargetOpcode::G_FCEIL:
667   case TargetOpcode::G_FFLOOR:
668   case TargetOpcode::G_FMINNUM:
669   case TargetOpcode::G_FMAXNUM:
670   case TargetOpcode::G_FSQRT:
671   case TargetOpcode::G_FRINT:
672   case TargetOpcode::G_FNEARBYINT: {
673     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
674     if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) {
675       LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n");
676       return UnableToLegalize;
677     }
678     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
679     if (Status != Legalized)
680       return Status;
681     break;
682   }
683   case TargetOpcode::G_FPEXT:
684   case TargetOpcode::G_FPTRUNC: {
685     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
686     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
687     if (!FromTy || !ToTy)
688       return UnableToLegalize;
689     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
690     if (Status != Legalized)
691       return Status;
692     break;
693   }
694   case TargetOpcode::G_FPTOSI:
695   case TargetOpcode::G_FPTOUI: {
696     // FIXME: Support other types
697     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
698     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
699     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
700       return UnableToLegalize;
701     LegalizeResult Status = conversionLibcall(
702         MI, MIRBuilder,
703         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
704         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
705     if (Status != Legalized)
706       return Status;
707     break;
708   }
709   case TargetOpcode::G_SITOFP:
710   case TargetOpcode::G_UITOFP: {
711     // FIXME: Support other types
712     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
713     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
714     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
715       return UnableToLegalize;
716     LegalizeResult Status = conversionLibcall(
717         MI, MIRBuilder,
718         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
719         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
720     if (Status != Legalized)
721       return Status;
722     break;
723   }
724   }
725 
726   MI.eraseFromParent();
727   return Legalized;
728 }
729 
730 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
731                                                               unsigned TypeIdx,
732                                                               LLT NarrowTy) {
733   MIRBuilder.setInstr(MI);
734 
735   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
736   uint64_t NarrowSize = NarrowTy.getSizeInBits();
737 
738   switch (MI.getOpcode()) {
739   default:
740     return UnableToLegalize;
741   case TargetOpcode::G_IMPLICIT_DEF: {
742     // FIXME: add support for when SizeOp0 isn't an exact multiple of
743     // NarrowSize.
744     if (SizeOp0 % NarrowSize != 0)
745       return UnableToLegalize;
746     int NumParts = SizeOp0 / NarrowSize;
747 
748     SmallVector<Register, 2> DstRegs;
749     for (int i = 0; i < NumParts; ++i)
750       DstRegs.push_back(
751           MIRBuilder.buildUndef(NarrowTy).getReg(0));
752 
753     Register DstReg = MI.getOperand(0).getReg();
754     if(MRI.getType(DstReg).isVector())
755       MIRBuilder.buildBuildVector(DstReg, DstRegs);
756     else
757       MIRBuilder.buildMerge(DstReg, DstRegs);
758     MI.eraseFromParent();
759     return Legalized;
760   }
761   case TargetOpcode::G_CONSTANT: {
762     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
763     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
764     unsigned TotalSize = Ty.getSizeInBits();
765     unsigned NarrowSize = NarrowTy.getSizeInBits();
766     int NumParts = TotalSize / NarrowSize;
767 
768     SmallVector<Register, 4> PartRegs;
769     for (int I = 0; I != NumParts; ++I) {
770       unsigned Offset = I * NarrowSize;
771       auto K = MIRBuilder.buildConstant(NarrowTy,
772                                         Val.lshr(Offset).trunc(NarrowSize));
773       PartRegs.push_back(K.getReg(0));
774     }
775 
776     LLT LeftoverTy;
777     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
778     SmallVector<Register, 1> LeftoverRegs;
779     if (LeftoverBits != 0) {
780       LeftoverTy = LLT::scalar(LeftoverBits);
781       auto K = MIRBuilder.buildConstant(
782         LeftoverTy,
783         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
784       LeftoverRegs.push_back(K.getReg(0));
785     }
786 
787     insertParts(MI.getOperand(0).getReg(),
788                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
789 
790     MI.eraseFromParent();
791     return Legalized;
792   }
793   case TargetOpcode::G_SEXT:
794   case TargetOpcode::G_ZEXT:
795   case TargetOpcode::G_ANYEXT:
796     return narrowScalarExt(MI, TypeIdx, NarrowTy);
797   case TargetOpcode::G_TRUNC: {
798     if (TypeIdx != 1)
799       return UnableToLegalize;
800 
801     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
802     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
803       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
804       return UnableToLegalize;
805     }
806 
807     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
808     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
809     MI.eraseFromParent();
810     return Legalized;
811   }
812 
813   case TargetOpcode::G_ADD: {
814     // FIXME: add support for when SizeOp0 isn't an exact multiple of
815     // NarrowSize.
816     if (SizeOp0 % NarrowSize != 0)
817       return UnableToLegalize;
818     // Expand in terms of carry-setting/consuming G_ADDE instructions.
819     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
820 
821     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
822     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
823     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
824 
825     Register CarryIn;
826     for (int i = 0; i < NumParts; ++i) {
827       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
828       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
829 
830       if (i == 0)
831         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
832       else {
833         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
834                               Src2Regs[i], CarryIn);
835       }
836 
837       DstRegs.push_back(DstReg);
838       CarryIn = CarryOut;
839     }
840     Register DstReg = MI.getOperand(0).getReg();
841     if(MRI.getType(DstReg).isVector())
842       MIRBuilder.buildBuildVector(DstReg, DstRegs);
843     else
844       MIRBuilder.buildMerge(DstReg, DstRegs);
845     MI.eraseFromParent();
846     return Legalized;
847   }
848   case TargetOpcode::G_SUB: {
849     // FIXME: add support for when SizeOp0 isn't an exact multiple of
850     // NarrowSize.
851     if (SizeOp0 % NarrowSize != 0)
852       return UnableToLegalize;
853 
854     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
855 
856     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
857     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
858     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
859 
860     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
861     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
862     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
863                           {Src1Regs[0], Src2Regs[0]});
864     DstRegs.push_back(DstReg);
865     Register BorrowIn = BorrowOut;
866     for (int i = 1; i < NumParts; ++i) {
867       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
868       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
869 
870       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
871                             {Src1Regs[i], Src2Regs[i], BorrowIn});
872 
873       DstRegs.push_back(DstReg);
874       BorrowIn = BorrowOut;
875     }
876     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
877     MI.eraseFromParent();
878     return Legalized;
879   }
880   case TargetOpcode::G_MUL:
881   case TargetOpcode::G_UMULH:
882     return narrowScalarMul(MI, NarrowTy);
883   case TargetOpcode::G_EXTRACT:
884     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
885   case TargetOpcode::G_INSERT:
886     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
887   case TargetOpcode::G_LOAD: {
888     const auto &MMO = **MI.memoperands_begin();
889     Register DstReg = MI.getOperand(0).getReg();
890     LLT DstTy = MRI.getType(DstReg);
891     if (DstTy.isVector())
892       return UnableToLegalize;
893 
894     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
895       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
896       auto &MMO = **MI.memoperands_begin();
897       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
898       MIRBuilder.buildAnyExt(DstReg, TmpReg);
899       MI.eraseFromParent();
900       return Legalized;
901     }
902 
903     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
904   }
905   case TargetOpcode::G_ZEXTLOAD:
906   case TargetOpcode::G_SEXTLOAD: {
907     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
908     Register DstReg = MI.getOperand(0).getReg();
909     Register PtrReg = MI.getOperand(1).getReg();
910 
911     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
912     auto &MMO = **MI.memoperands_begin();
913     if (MMO.getSizeInBits() == NarrowSize) {
914       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
915     } else {
916       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
917     }
918 
919     if (ZExt)
920       MIRBuilder.buildZExt(DstReg, TmpReg);
921     else
922       MIRBuilder.buildSExt(DstReg, TmpReg);
923 
924     MI.eraseFromParent();
925     return Legalized;
926   }
927   case TargetOpcode::G_STORE: {
928     const auto &MMO = **MI.memoperands_begin();
929 
930     Register SrcReg = MI.getOperand(0).getReg();
931     LLT SrcTy = MRI.getType(SrcReg);
932     if (SrcTy.isVector())
933       return UnableToLegalize;
934 
935     int NumParts = SizeOp0 / NarrowSize;
936     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
937     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
938     if (SrcTy.isVector() && LeftoverBits != 0)
939       return UnableToLegalize;
940 
941     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
942       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
943       auto &MMO = **MI.memoperands_begin();
944       MIRBuilder.buildTrunc(TmpReg, SrcReg);
945       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
946       MI.eraseFromParent();
947       return Legalized;
948     }
949 
950     return reduceLoadStoreWidth(MI, 0, NarrowTy);
951   }
952   case TargetOpcode::G_SELECT:
953     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
954   case TargetOpcode::G_AND:
955   case TargetOpcode::G_OR:
956   case TargetOpcode::G_XOR: {
957     // Legalize bitwise operation:
958     // A = BinOp<Ty> B, C
959     // into:
960     // B1, ..., BN = G_UNMERGE_VALUES B
961     // C1, ..., CN = G_UNMERGE_VALUES C
962     // A1 = BinOp<Ty/N> B1, C2
963     // ...
964     // AN = BinOp<Ty/N> BN, CN
965     // A = G_MERGE_VALUES A1, ..., AN
966     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
967   }
968   case TargetOpcode::G_SHL:
969   case TargetOpcode::G_LSHR:
970   case TargetOpcode::G_ASHR:
971     return narrowScalarShift(MI, TypeIdx, NarrowTy);
972   case TargetOpcode::G_CTLZ:
973   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
974   case TargetOpcode::G_CTTZ:
975   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
976   case TargetOpcode::G_CTPOP:
977     if (TypeIdx == 1)
978       switch (MI.getOpcode()) {
979       case TargetOpcode::G_CTLZ:
980       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
981         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
982       case TargetOpcode::G_CTTZ:
983       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
984         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
985       case TargetOpcode::G_CTPOP:
986         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
987       default:
988         return UnableToLegalize;
989       }
990 
991     Observer.changingInstr(MI);
992     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
993     Observer.changedInstr(MI);
994     return Legalized;
995   case TargetOpcode::G_INTTOPTR:
996     if (TypeIdx != 1)
997       return UnableToLegalize;
998 
999     Observer.changingInstr(MI);
1000     narrowScalarSrc(MI, NarrowTy, 1);
1001     Observer.changedInstr(MI);
1002     return Legalized;
1003   case TargetOpcode::G_PTRTOINT:
1004     if (TypeIdx != 0)
1005       return UnableToLegalize;
1006 
1007     Observer.changingInstr(MI);
1008     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1009     Observer.changedInstr(MI);
1010     return Legalized;
1011   case TargetOpcode::G_PHI: {
1012     unsigned NumParts = SizeOp0 / NarrowSize;
1013     SmallVector<Register, 2> DstRegs(NumParts);
1014     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1015     Observer.changingInstr(MI);
1016     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1017       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1018       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1019       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1020                    SrcRegs[i / 2]);
1021     }
1022     MachineBasicBlock &MBB = *MI.getParent();
1023     MIRBuilder.setInsertPt(MBB, MI);
1024     for (unsigned i = 0; i < NumParts; ++i) {
1025       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1026       MachineInstrBuilder MIB =
1027           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1028       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1029         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1030     }
1031     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1032     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1033     Observer.changedInstr(MI);
1034     MI.eraseFromParent();
1035     return Legalized;
1036   }
1037   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1038   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1039     if (TypeIdx != 2)
1040       return UnableToLegalize;
1041 
1042     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1043     Observer.changingInstr(MI);
1044     narrowScalarSrc(MI, NarrowTy, OpIdx);
1045     Observer.changedInstr(MI);
1046     return Legalized;
1047   }
1048   case TargetOpcode::G_ICMP: {
1049     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1050     if (NarrowSize * 2 != SrcSize)
1051       return UnableToLegalize;
1052 
1053     Observer.changingInstr(MI);
1054     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1055     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1056     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1057 
1058     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1059     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1060     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1061 
1062     CmpInst::Predicate Pred =
1063         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1064     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1065 
1066     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1067       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1068       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1069       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1070       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1071       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1072     } else {
1073       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1074       MachineInstrBuilder CmpHEQ =
1075           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1076       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1077           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1078       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1079     }
1080     Observer.changedInstr(MI);
1081     MI.eraseFromParent();
1082     return Legalized;
1083   }
1084   case TargetOpcode::G_SEXT_INREG: {
1085     if (TypeIdx != 0)
1086       return UnableToLegalize;
1087 
1088     int64_t SizeInBits = MI.getOperand(2).getImm();
1089 
1090     // So long as the new type has more bits than the bits we're extending we
1091     // don't need to break it apart.
1092     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1093       Observer.changingInstr(MI);
1094       // We don't lose any non-extension bits by truncating the src and
1095       // sign-extending the dst.
1096       MachineOperand &MO1 = MI.getOperand(1);
1097       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1098       MO1.setReg(TruncMIB.getReg(0));
1099 
1100       MachineOperand &MO2 = MI.getOperand(0);
1101       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1102       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1103       MIRBuilder.buildSExt(MO2, DstExt);
1104       MO2.setReg(DstExt);
1105       Observer.changedInstr(MI);
1106       return Legalized;
1107     }
1108 
1109     // Break it apart. Components below the extension point are unmodified. The
1110     // component containing the extension point becomes a narrower SEXT_INREG.
1111     // Components above it are ashr'd from the component containing the
1112     // extension point.
1113     if (SizeOp0 % NarrowSize != 0)
1114       return UnableToLegalize;
1115     int NumParts = SizeOp0 / NarrowSize;
1116 
1117     // List the registers where the destination will be scattered.
1118     SmallVector<Register, 2> DstRegs;
1119     // List the registers where the source will be split.
1120     SmallVector<Register, 2> SrcRegs;
1121 
1122     // Create all the temporary registers.
1123     for (int i = 0; i < NumParts; ++i) {
1124       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1125 
1126       SrcRegs.push_back(SrcReg);
1127     }
1128 
1129     // Explode the big arguments into smaller chunks.
1130     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1131 
1132     Register AshrCstReg =
1133         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1134             .getReg(0);
1135     Register FullExtensionReg = 0;
1136     Register PartialExtensionReg = 0;
1137 
1138     // Do the operation on each small part.
1139     for (int i = 0; i < NumParts; ++i) {
1140       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1141         DstRegs.push_back(SrcRegs[i]);
1142       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1143         assert(PartialExtensionReg &&
1144                "Expected to visit partial extension before full");
1145         if (FullExtensionReg) {
1146           DstRegs.push_back(FullExtensionReg);
1147           continue;
1148         }
1149         DstRegs.push_back(
1150             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1151                 .getReg(0));
1152         FullExtensionReg = DstRegs.back();
1153       } else {
1154         DstRegs.push_back(
1155             MIRBuilder
1156                 .buildInstr(
1157                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1158                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1159                 .getReg(0));
1160         PartialExtensionReg = DstRegs.back();
1161       }
1162     }
1163 
1164     // Gather the destination registers into the final destination.
1165     Register DstReg = MI.getOperand(0).getReg();
1166     MIRBuilder.buildMerge(DstReg, DstRegs);
1167     MI.eraseFromParent();
1168     return Legalized;
1169   }
1170   case TargetOpcode::G_BSWAP:
1171   case TargetOpcode::G_BITREVERSE: {
1172     if (SizeOp0 % NarrowSize != 0)
1173       return UnableToLegalize;
1174 
1175     Observer.changingInstr(MI);
1176     SmallVector<Register, 2> SrcRegs, DstRegs;
1177     unsigned NumParts = SizeOp0 / NarrowSize;
1178     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1179 
1180     for (unsigned i = 0; i < NumParts; ++i) {
1181       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1182                                            {SrcRegs[NumParts - 1 - i]});
1183       DstRegs.push_back(DstPart.getReg(0));
1184     }
1185 
1186     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1187 
1188     Observer.changedInstr(MI);
1189     MI.eraseFromParent();
1190     return Legalized;
1191   }
1192   }
1193 }
1194 
1195 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1196                                      unsigned OpIdx, unsigned ExtOpcode) {
1197   MachineOperand &MO = MI.getOperand(OpIdx);
1198   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1199   MO.setReg(ExtB.getReg(0));
1200 }
1201 
1202 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1203                                       unsigned OpIdx) {
1204   MachineOperand &MO = MI.getOperand(OpIdx);
1205   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1206   MO.setReg(ExtB.getReg(0));
1207 }
1208 
1209 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1210                                      unsigned OpIdx, unsigned TruncOpcode) {
1211   MachineOperand &MO = MI.getOperand(OpIdx);
1212   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1213   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1214   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1215   MO.setReg(DstExt);
1216 }
1217 
1218 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1219                                       unsigned OpIdx, unsigned ExtOpcode) {
1220   MachineOperand &MO = MI.getOperand(OpIdx);
1221   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1222   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1223   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1224   MO.setReg(DstTrunc);
1225 }
1226 
1227 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1228                                             unsigned OpIdx) {
1229   MachineOperand &MO = MI.getOperand(OpIdx);
1230   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1231   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1232   MIRBuilder.buildExtract(MO, DstExt, 0);
1233   MO.setReg(DstExt);
1234 }
1235 
1236 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1237                                             unsigned OpIdx) {
1238   MachineOperand &MO = MI.getOperand(OpIdx);
1239 
1240   LLT OldTy = MRI.getType(MO.getReg());
1241   unsigned OldElts = OldTy.getNumElements();
1242   unsigned NewElts = MoreTy.getNumElements();
1243 
1244   unsigned NumParts = NewElts / OldElts;
1245 
1246   // Use concat_vectors if the result is a multiple of the number of elements.
1247   if (NumParts * OldElts == NewElts) {
1248     SmallVector<Register, 8> Parts;
1249     Parts.push_back(MO.getReg());
1250 
1251     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1252     for (unsigned I = 1; I != NumParts; ++I)
1253       Parts.push_back(ImpDef);
1254 
1255     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1256     MO.setReg(Concat.getReg(0));
1257     return;
1258   }
1259 
1260   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1261   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1262   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1263   MO.setReg(MoreReg);
1264 }
1265 
1266 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1267   MachineOperand &Op = MI.getOperand(OpIdx);
1268   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1269 }
1270 
1271 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1272   MachineOperand &MO = MI.getOperand(OpIdx);
1273   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1274   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1275   MIRBuilder.buildBitcast(MO, CastDst);
1276   MO.setReg(CastDst);
1277 }
1278 
1279 LegalizerHelper::LegalizeResult
1280 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1281                                         LLT WideTy) {
1282   if (TypeIdx != 1)
1283     return UnableToLegalize;
1284 
1285   Register DstReg = MI.getOperand(0).getReg();
1286   LLT DstTy = MRI.getType(DstReg);
1287   if (DstTy.isVector())
1288     return UnableToLegalize;
1289 
1290   Register Src1 = MI.getOperand(1).getReg();
1291   LLT SrcTy = MRI.getType(Src1);
1292   const int DstSize = DstTy.getSizeInBits();
1293   const int SrcSize = SrcTy.getSizeInBits();
1294   const int WideSize = WideTy.getSizeInBits();
1295   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1296 
1297   unsigned NumOps = MI.getNumOperands();
1298   unsigned NumSrc = MI.getNumOperands() - 1;
1299   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1300 
1301   if (WideSize >= DstSize) {
1302     // Directly pack the bits in the target type.
1303     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1304 
1305     for (unsigned I = 2; I != NumOps; ++I) {
1306       const unsigned Offset = (I - 1) * PartSize;
1307 
1308       Register SrcReg = MI.getOperand(I).getReg();
1309       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1310 
1311       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1312 
1313       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1314         MRI.createGenericVirtualRegister(WideTy);
1315 
1316       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1317       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1318       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1319       ResultReg = NextResult;
1320     }
1321 
1322     if (WideSize > DstSize)
1323       MIRBuilder.buildTrunc(DstReg, ResultReg);
1324     else if (DstTy.isPointer())
1325       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1326 
1327     MI.eraseFromParent();
1328     return Legalized;
1329   }
1330 
1331   // Unmerge the original values to the GCD type, and recombine to the next
1332   // multiple greater than the original type.
1333   //
1334   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1335   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1336   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1337   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1338   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1339   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1340   // %12:_(s12) = G_MERGE_VALUES %10, %11
1341   //
1342   // Padding with undef if necessary:
1343   //
1344   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1345   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1346   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1347   // %7:_(s2) = G_IMPLICIT_DEF
1348   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1349   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1350   // %10:_(s12) = G_MERGE_VALUES %8, %9
1351 
1352   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1353   LLT GCDTy = LLT::scalar(GCD);
1354 
1355   SmallVector<Register, 8> Parts;
1356   SmallVector<Register, 8> NewMergeRegs;
1357   SmallVector<Register, 8> Unmerges;
1358   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1359 
1360   // Decompose the original operands if they don't evenly divide.
1361   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1362     Register SrcReg = MI.getOperand(I).getReg();
1363     if (GCD == SrcSize) {
1364       Unmerges.push_back(SrcReg);
1365     } else {
1366       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1367       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1368         Unmerges.push_back(Unmerge.getReg(J));
1369     }
1370   }
1371 
1372   // Pad with undef to the next size that is a multiple of the requested size.
1373   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1374     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1375     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1376       Unmerges.push_back(UndefReg);
1377   }
1378 
1379   const int PartsPerGCD = WideSize / GCD;
1380 
1381   // Build merges of each piece.
1382   ArrayRef<Register> Slicer(Unmerges);
1383   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1384     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1385     NewMergeRegs.push_back(Merge.getReg(0));
1386   }
1387 
1388   // A truncate may be necessary if the requested type doesn't evenly divide the
1389   // original result type.
1390   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1391     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1392   } else {
1393     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1394     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1395   }
1396 
1397   MI.eraseFromParent();
1398   return Legalized;
1399 }
1400 
1401 LegalizerHelper::LegalizeResult
1402 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1403                                           LLT WideTy) {
1404   if (TypeIdx != 0)
1405     return UnableToLegalize;
1406 
1407   int NumDst = MI.getNumOperands() - 1;
1408   Register SrcReg = MI.getOperand(NumDst).getReg();
1409   LLT SrcTy = MRI.getType(SrcReg);
1410   if (SrcTy.isVector())
1411     return UnableToLegalize;
1412 
1413   Register Dst0Reg = MI.getOperand(0).getReg();
1414   LLT DstTy = MRI.getType(Dst0Reg);
1415   if (!DstTy.isScalar())
1416     return UnableToLegalize;
1417 
1418   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1419     if (SrcTy.isPointer()) {
1420       const DataLayout &DL = MIRBuilder.getDataLayout();
1421       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1422         LLVM_DEBUG(
1423             dbgs() << "Not casting non-integral address space integer\n");
1424         return UnableToLegalize;
1425       }
1426 
1427       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1428       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1429     }
1430 
1431     // Widen SrcTy to WideTy. This does not affect the result, but since the
1432     // user requested this size, it is probably better handled than SrcTy and
1433     // should reduce the total number of legalization artifacts
1434     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1435       SrcTy = WideTy;
1436       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1437     }
1438 
1439     // Theres no unmerge type to target. Directly extract the bits from the
1440     // source type
1441     unsigned DstSize = DstTy.getSizeInBits();
1442 
1443     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1444     for (int I = 1; I != NumDst; ++I) {
1445       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1446       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1447       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1448     }
1449 
1450     MI.eraseFromParent();
1451     return Legalized;
1452   }
1453 
1454   // Extend the source to a wider type.
1455   LLT LCMTy = getLCMType(SrcTy, WideTy);
1456 
1457   Register WideSrc = SrcReg;
1458   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1459     // TODO: If this is an integral address space, cast to integer and anyext.
1460     if (SrcTy.isPointer()) {
1461       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1462       return UnableToLegalize;
1463     }
1464 
1465     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1466   }
1467 
1468   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1469 
1470   // Create a sequence of unmerges to the original results. since we may have
1471   // widened the source, we will need to pad the results with dead defs to cover
1472   // the source register.
1473   // e.g. widen s16 to s32:
1474   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1475   //
1476   // =>
1477   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1478   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1479   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1480   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1481 
1482   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1483   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1484 
1485   for (int I = 0; I != NumUnmerge; ++I) {
1486     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1487 
1488     for (int J = 0; J != PartsPerUnmerge; ++J) {
1489       int Idx = I * PartsPerUnmerge + J;
1490       if (Idx < NumDst)
1491         MIB.addDef(MI.getOperand(Idx).getReg());
1492       else {
1493         // Create dead def for excess components.
1494         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1495       }
1496     }
1497 
1498     MIB.addUse(Unmerge.getReg(I));
1499   }
1500 
1501   MI.eraseFromParent();
1502   return Legalized;
1503 }
1504 
1505 LegalizerHelper::LegalizeResult
1506 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1507                                     LLT WideTy) {
1508   Register DstReg = MI.getOperand(0).getReg();
1509   Register SrcReg = MI.getOperand(1).getReg();
1510   LLT SrcTy = MRI.getType(SrcReg);
1511 
1512   LLT DstTy = MRI.getType(DstReg);
1513   unsigned Offset = MI.getOperand(2).getImm();
1514 
1515   if (TypeIdx == 0) {
1516     if (SrcTy.isVector() || DstTy.isVector())
1517       return UnableToLegalize;
1518 
1519     SrcOp Src(SrcReg);
1520     if (SrcTy.isPointer()) {
1521       // Extracts from pointers can be handled only if they are really just
1522       // simple integers.
1523       const DataLayout &DL = MIRBuilder.getDataLayout();
1524       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1525         return UnableToLegalize;
1526 
1527       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1528       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1529       SrcTy = SrcAsIntTy;
1530     }
1531 
1532     if (DstTy.isPointer())
1533       return UnableToLegalize;
1534 
1535     if (Offset == 0) {
1536       // Avoid a shift in the degenerate case.
1537       MIRBuilder.buildTrunc(DstReg,
1538                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1539       MI.eraseFromParent();
1540       return Legalized;
1541     }
1542 
1543     // Do a shift in the source type.
1544     LLT ShiftTy = SrcTy;
1545     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1546       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1547       ShiftTy = WideTy;
1548     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1549       return UnableToLegalize;
1550 
1551     auto LShr = MIRBuilder.buildLShr(
1552       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1553     MIRBuilder.buildTrunc(DstReg, LShr);
1554     MI.eraseFromParent();
1555     return Legalized;
1556   }
1557 
1558   if (SrcTy.isScalar()) {
1559     Observer.changingInstr(MI);
1560     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1561     Observer.changedInstr(MI);
1562     return Legalized;
1563   }
1564 
1565   if (!SrcTy.isVector())
1566     return UnableToLegalize;
1567 
1568   if (DstTy != SrcTy.getElementType())
1569     return UnableToLegalize;
1570 
1571   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1572     return UnableToLegalize;
1573 
1574   Observer.changingInstr(MI);
1575   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1576 
1577   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1578                           Offset);
1579   widenScalarDst(MI, WideTy.getScalarType(), 0);
1580   Observer.changedInstr(MI);
1581   return Legalized;
1582 }
1583 
1584 LegalizerHelper::LegalizeResult
1585 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1586                                    LLT WideTy) {
1587   if (TypeIdx != 0)
1588     return UnableToLegalize;
1589   Observer.changingInstr(MI);
1590   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1591   widenScalarDst(MI, WideTy);
1592   Observer.changedInstr(MI);
1593   return Legalized;
1594 }
1595 
1596 LegalizerHelper::LegalizeResult
1597 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1598   MIRBuilder.setInstr(MI);
1599 
1600   switch (MI.getOpcode()) {
1601   default:
1602     return UnableToLegalize;
1603   case TargetOpcode::G_EXTRACT:
1604     return widenScalarExtract(MI, TypeIdx, WideTy);
1605   case TargetOpcode::G_INSERT:
1606     return widenScalarInsert(MI, TypeIdx, WideTy);
1607   case TargetOpcode::G_MERGE_VALUES:
1608     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1609   case TargetOpcode::G_UNMERGE_VALUES:
1610     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1611   case TargetOpcode::G_UADDO:
1612   case TargetOpcode::G_USUBO: {
1613     if (TypeIdx == 1)
1614       return UnableToLegalize; // TODO
1615     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1616     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1617     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1618                           ? TargetOpcode::G_ADD
1619                           : TargetOpcode::G_SUB;
1620     // Do the arithmetic in the larger type.
1621     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1622     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1623     APInt Mask =
1624         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1625     auto AndOp = MIRBuilder.buildAnd(
1626         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1627     // There is no overflow if the AndOp is the same as NewOp.
1628     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1629     // Now trunc the NewOp to the original result.
1630     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1631     MI.eraseFromParent();
1632     return Legalized;
1633   }
1634   case TargetOpcode::G_CTTZ:
1635   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1636   case TargetOpcode::G_CTLZ:
1637   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1638   case TargetOpcode::G_CTPOP: {
1639     if (TypeIdx == 0) {
1640       Observer.changingInstr(MI);
1641       widenScalarDst(MI, WideTy, 0);
1642       Observer.changedInstr(MI);
1643       return Legalized;
1644     }
1645 
1646     Register SrcReg = MI.getOperand(1).getReg();
1647 
1648     // First ZEXT the input.
1649     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1650     LLT CurTy = MRI.getType(SrcReg);
1651     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1652       // The count is the same in the larger type except if the original
1653       // value was zero.  This can be handled by setting the bit just off
1654       // the top of the original type.
1655       auto TopBit =
1656           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1657       MIBSrc = MIRBuilder.buildOr(
1658         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1659     }
1660 
1661     // Perform the operation at the larger size.
1662     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1663     // This is already the correct result for CTPOP and CTTZs
1664     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1665         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1666       // The correct result is NewOp - (Difference in widety and current ty).
1667       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1668       MIBNewOp = MIRBuilder.buildSub(
1669           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1670     }
1671 
1672     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1673     MI.eraseFromParent();
1674     return Legalized;
1675   }
1676   case TargetOpcode::G_BSWAP: {
1677     Observer.changingInstr(MI);
1678     Register DstReg = MI.getOperand(0).getReg();
1679 
1680     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1681     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1682     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1683     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1684 
1685     MI.getOperand(0).setReg(DstExt);
1686 
1687     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1688 
1689     LLT Ty = MRI.getType(DstReg);
1690     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1691     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1692     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1693 
1694     MIRBuilder.buildTrunc(DstReg, ShrReg);
1695     Observer.changedInstr(MI);
1696     return Legalized;
1697   }
1698   case TargetOpcode::G_BITREVERSE: {
1699     Observer.changingInstr(MI);
1700 
1701     Register DstReg = MI.getOperand(0).getReg();
1702     LLT Ty = MRI.getType(DstReg);
1703     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1704 
1705     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1706     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1707     MI.getOperand(0).setReg(DstExt);
1708     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1709 
1710     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1711     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1712     MIRBuilder.buildTrunc(DstReg, Shift);
1713     Observer.changedInstr(MI);
1714     return Legalized;
1715   }
1716   case TargetOpcode::G_ADD:
1717   case TargetOpcode::G_AND:
1718   case TargetOpcode::G_MUL:
1719   case TargetOpcode::G_OR:
1720   case TargetOpcode::G_XOR:
1721   case TargetOpcode::G_SUB:
1722     // Perform operation at larger width (any extension is fines here, high bits
1723     // don't affect the result) and then truncate the result back to the
1724     // original type.
1725     Observer.changingInstr(MI);
1726     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1727     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1728     widenScalarDst(MI, WideTy);
1729     Observer.changedInstr(MI);
1730     return Legalized;
1731 
1732   case TargetOpcode::G_SHL:
1733     Observer.changingInstr(MI);
1734 
1735     if (TypeIdx == 0) {
1736       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1737       widenScalarDst(MI, WideTy);
1738     } else {
1739       assert(TypeIdx == 1);
1740       // The "number of bits to shift" operand must preserve its value as an
1741       // unsigned integer:
1742       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1743     }
1744 
1745     Observer.changedInstr(MI);
1746     return Legalized;
1747 
1748   case TargetOpcode::G_SDIV:
1749   case TargetOpcode::G_SREM:
1750   case TargetOpcode::G_SMIN:
1751   case TargetOpcode::G_SMAX:
1752     Observer.changingInstr(MI);
1753     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1754     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1755     widenScalarDst(MI, WideTy);
1756     Observer.changedInstr(MI);
1757     return Legalized;
1758 
1759   case TargetOpcode::G_ASHR:
1760   case TargetOpcode::G_LSHR:
1761     Observer.changingInstr(MI);
1762 
1763     if (TypeIdx == 0) {
1764       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1765         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1766 
1767       widenScalarSrc(MI, WideTy, 1, CvtOp);
1768       widenScalarDst(MI, WideTy);
1769     } else {
1770       assert(TypeIdx == 1);
1771       // The "number of bits to shift" operand must preserve its value as an
1772       // unsigned integer:
1773       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1774     }
1775 
1776     Observer.changedInstr(MI);
1777     return Legalized;
1778   case TargetOpcode::G_UDIV:
1779   case TargetOpcode::G_UREM:
1780   case TargetOpcode::G_UMIN:
1781   case TargetOpcode::G_UMAX:
1782     Observer.changingInstr(MI);
1783     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1784     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1785     widenScalarDst(MI, WideTy);
1786     Observer.changedInstr(MI);
1787     return Legalized;
1788 
1789   case TargetOpcode::G_SELECT:
1790     Observer.changingInstr(MI);
1791     if (TypeIdx == 0) {
1792       // Perform operation at larger width (any extension is fine here, high
1793       // bits don't affect the result) and then truncate the result back to the
1794       // original type.
1795       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1796       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1797       widenScalarDst(MI, WideTy);
1798     } else {
1799       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1800       // Explicit extension is required here since high bits affect the result.
1801       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1802     }
1803     Observer.changedInstr(MI);
1804     return Legalized;
1805 
1806   case TargetOpcode::G_FPTOSI:
1807   case TargetOpcode::G_FPTOUI:
1808     Observer.changingInstr(MI);
1809 
1810     if (TypeIdx == 0)
1811       widenScalarDst(MI, WideTy);
1812     else
1813       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1814 
1815     Observer.changedInstr(MI);
1816     return Legalized;
1817   case TargetOpcode::G_SITOFP:
1818     if (TypeIdx != 1)
1819       return UnableToLegalize;
1820     Observer.changingInstr(MI);
1821     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1822     Observer.changedInstr(MI);
1823     return Legalized;
1824 
1825   case TargetOpcode::G_UITOFP:
1826     if (TypeIdx != 1)
1827       return UnableToLegalize;
1828     Observer.changingInstr(MI);
1829     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1830     Observer.changedInstr(MI);
1831     return Legalized;
1832 
1833   case TargetOpcode::G_LOAD:
1834   case TargetOpcode::G_SEXTLOAD:
1835   case TargetOpcode::G_ZEXTLOAD:
1836     Observer.changingInstr(MI);
1837     widenScalarDst(MI, WideTy);
1838     Observer.changedInstr(MI);
1839     return Legalized;
1840 
1841   case TargetOpcode::G_STORE: {
1842     if (TypeIdx != 0)
1843       return UnableToLegalize;
1844 
1845     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1846     if (!isPowerOf2_32(Ty.getSizeInBits()))
1847       return UnableToLegalize;
1848 
1849     Observer.changingInstr(MI);
1850 
1851     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1852       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1853     widenScalarSrc(MI, WideTy, 0, ExtType);
1854 
1855     Observer.changedInstr(MI);
1856     return Legalized;
1857   }
1858   case TargetOpcode::G_CONSTANT: {
1859     MachineOperand &SrcMO = MI.getOperand(1);
1860     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1861     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1862         MRI.getType(MI.getOperand(0).getReg()));
1863     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1864             ExtOpc == TargetOpcode::G_ANYEXT) &&
1865            "Illegal Extend");
1866     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1867     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1868                            ? SrcVal.sext(WideTy.getSizeInBits())
1869                            : SrcVal.zext(WideTy.getSizeInBits());
1870     Observer.changingInstr(MI);
1871     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1872 
1873     widenScalarDst(MI, WideTy);
1874     Observer.changedInstr(MI);
1875     return Legalized;
1876   }
1877   case TargetOpcode::G_FCONSTANT: {
1878     MachineOperand &SrcMO = MI.getOperand(1);
1879     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1880     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1881     bool LosesInfo;
1882     switch (WideTy.getSizeInBits()) {
1883     case 32:
1884       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1885                   &LosesInfo);
1886       break;
1887     case 64:
1888       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1889                   &LosesInfo);
1890       break;
1891     default:
1892       return UnableToLegalize;
1893     }
1894 
1895     assert(!LosesInfo && "extend should always be lossless");
1896 
1897     Observer.changingInstr(MI);
1898     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1899 
1900     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1901     Observer.changedInstr(MI);
1902     return Legalized;
1903   }
1904   case TargetOpcode::G_IMPLICIT_DEF: {
1905     Observer.changingInstr(MI);
1906     widenScalarDst(MI, WideTy);
1907     Observer.changedInstr(MI);
1908     return Legalized;
1909   }
1910   case TargetOpcode::G_BRCOND:
1911     Observer.changingInstr(MI);
1912     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1913     Observer.changedInstr(MI);
1914     return Legalized;
1915 
1916   case TargetOpcode::G_FCMP:
1917     Observer.changingInstr(MI);
1918     if (TypeIdx == 0)
1919       widenScalarDst(MI, WideTy);
1920     else {
1921       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1922       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1923     }
1924     Observer.changedInstr(MI);
1925     return Legalized;
1926 
1927   case TargetOpcode::G_ICMP:
1928     Observer.changingInstr(MI);
1929     if (TypeIdx == 0)
1930       widenScalarDst(MI, WideTy);
1931     else {
1932       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1933                                MI.getOperand(1).getPredicate()))
1934                                ? TargetOpcode::G_SEXT
1935                                : TargetOpcode::G_ZEXT;
1936       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1937       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1938     }
1939     Observer.changedInstr(MI);
1940     return Legalized;
1941 
1942   case TargetOpcode::G_PTR_ADD:
1943     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
1944     Observer.changingInstr(MI);
1945     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1946     Observer.changedInstr(MI);
1947     return Legalized;
1948 
1949   case TargetOpcode::G_PHI: {
1950     assert(TypeIdx == 0 && "Expecting only Idx 0");
1951 
1952     Observer.changingInstr(MI);
1953     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1954       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1955       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1956       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1957     }
1958 
1959     MachineBasicBlock &MBB = *MI.getParent();
1960     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1961     widenScalarDst(MI, WideTy);
1962     Observer.changedInstr(MI);
1963     return Legalized;
1964   }
1965   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1966     if (TypeIdx == 0) {
1967       Register VecReg = MI.getOperand(1).getReg();
1968       LLT VecTy = MRI.getType(VecReg);
1969       Observer.changingInstr(MI);
1970 
1971       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
1972                                      WideTy.getSizeInBits()),
1973                      1, TargetOpcode::G_SEXT);
1974 
1975       widenScalarDst(MI, WideTy, 0);
1976       Observer.changedInstr(MI);
1977       return Legalized;
1978     }
1979 
1980     if (TypeIdx != 2)
1981       return UnableToLegalize;
1982     Observer.changingInstr(MI);
1983     // TODO: Probably should be zext
1984     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1985     Observer.changedInstr(MI);
1986     return Legalized;
1987   }
1988   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1989     if (TypeIdx == 1) {
1990       Observer.changingInstr(MI);
1991 
1992       Register VecReg = MI.getOperand(1).getReg();
1993       LLT VecTy = MRI.getType(VecReg);
1994       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
1995 
1996       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
1997       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1998       widenScalarDst(MI, WideVecTy, 0);
1999       Observer.changedInstr(MI);
2000       return Legalized;
2001     }
2002 
2003     if (TypeIdx == 2) {
2004       Observer.changingInstr(MI);
2005       // TODO: Probably should be zext
2006       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2007       Observer.changedInstr(MI);
2008     }
2009 
2010     return Legalized;
2011   }
2012   case TargetOpcode::G_FADD:
2013   case TargetOpcode::G_FMUL:
2014   case TargetOpcode::G_FSUB:
2015   case TargetOpcode::G_FMA:
2016   case TargetOpcode::G_FMAD:
2017   case TargetOpcode::G_FNEG:
2018   case TargetOpcode::G_FABS:
2019   case TargetOpcode::G_FCANONICALIZE:
2020   case TargetOpcode::G_FMINNUM:
2021   case TargetOpcode::G_FMAXNUM:
2022   case TargetOpcode::G_FMINNUM_IEEE:
2023   case TargetOpcode::G_FMAXNUM_IEEE:
2024   case TargetOpcode::G_FMINIMUM:
2025   case TargetOpcode::G_FMAXIMUM:
2026   case TargetOpcode::G_FDIV:
2027   case TargetOpcode::G_FREM:
2028   case TargetOpcode::G_FCEIL:
2029   case TargetOpcode::G_FFLOOR:
2030   case TargetOpcode::G_FCOS:
2031   case TargetOpcode::G_FSIN:
2032   case TargetOpcode::G_FLOG10:
2033   case TargetOpcode::G_FLOG:
2034   case TargetOpcode::G_FLOG2:
2035   case TargetOpcode::G_FRINT:
2036   case TargetOpcode::G_FNEARBYINT:
2037   case TargetOpcode::G_FSQRT:
2038   case TargetOpcode::G_FEXP:
2039   case TargetOpcode::G_FEXP2:
2040   case TargetOpcode::G_FPOW:
2041   case TargetOpcode::G_INTRINSIC_TRUNC:
2042   case TargetOpcode::G_INTRINSIC_ROUND:
2043     assert(TypeIdx == 0);
2044     Observer.changingInstr(MI);
2045 
2046     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2047       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2048 
2049     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2050     Observer.changedInstr(MI);
2051     return Legalized;
2052   case TargetOpcode::G_INTTOPTR:
2053     if (TypeIdx != 1)
2054       return UnableToLegalize;
2055 
2056     Observer.changingInstr(MI);
2057     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2058     Observer.changedInstr(MI);
2059     return Legalized;
2060   case TargetOpcode::G_PTRTOINT:
2061     if (TypeIdx != 0)
2062       return UnableToLegalize;
2063 
2064     Observer.changingInstr(MI);
2065     widenScalarDst(MI, WideTy, 0);
2066     Observer.changedInstr(MI);
2067     return Legalized;
2068   case TargetOpcode::G_BUILD_VECTOR: {
2069     Observer.changingInstr(MI);
2070 
2071     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2072     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2073       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2074 
2075     // Avoid changing the result vector type if the source element type was
2076     // requested.
2077     if (TypeIdx == 1) {
2078       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2079       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2080     } else {
2081       widenScalarDst(MI, WideTy, 0);
2082     }
2083 
2084     Observer.changedInstr(MI);
2085     return Legalized;
2086   }
2087   case TargetOpcode::G_SEXT_INREG:
2088     if (TypeIdx != 0)
2089       return UnableToLegalize;
2090 
2091     Observer.changingInstr(MI);
2092     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2093     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2094     Observer.changedInstr(MI);
2095     return Legalized;
2096   }
2097 }
2098 
2099 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2100                              MachineIRBuilder &B, Register Src, LLT Ty) {
2101   auto Unmerge = B.buildUnmerge(Ty, Src);
2102   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2103     Pieces.push_back(Unmerge.getReg(I));
2104 }
2105 
2106 LegalizerHelper::LegalizeResult
2107 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2108   Register Dst = MI.getOperand(0).getReg();
2109   Register Src = MI.getOperand(1).getReg();
2110   LLT DstTy = MRI.getType(Dst);
2111   LLT SrcTy = MRI.getType(Src);
2112 
2113   if (SrcTy.isVector() && !DstTy.isVector()) {
2114     SmallVector<Register, 8> SrcRegs;
2115     getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType());
2116     MIRBuilder.buildMerge(Dst, SrcRegs);
2117     MI.eraseFromParent();
2118     return Legalized;
2119   }
2120 
2121   if (DstTy.isVector() && !SrcTy.isVector()) {
2122     SmallVector<Register, 8> SrcRegs;
2123     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2124     MIRBuilder.buildMerge(Dst, SrcRegs);
2125     MI.eraseFromParent();
2126     return Legalized;
2127   }
2128 
2129   return UnableToLegalize;
2130 }
2131 
2132 LegalizerHelper::LegalizeResult
2133 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2134   MIRBuilder.setInstr(MI);
2135 
2136   switch (MI.getOpcode()) {
2137   case TargetOpcode::G_LOAD: {
2138     if (TypeIdx != 0)
2139       return UnableToLegalize;
2140 
2141     Observer.changingInstr(MI);
2142     bitcastDst(MI, CastTy, 0);
2143     Observer.changedInstr(MI);
2144     return Legalized;
2145   }
2146   case TargetOpcode::G_STORE: {
2147     if (TypeIdx != 0)
2148       return UnableToLegalize;
2149 
2150     Observer.changingInstr(MI);
2151     bitcastSrc(MI, CastTy, 0);
2152     Observer.changedInstr(MI);
2153     return Legalized;
2154   }
2155   case TargetOpcode::G_SELECT: {
2156     if (TypeIdx != 0)
2157       return UnableToLegalize;
2158 
2159     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2160       LLVM_DEBUG(
2161           dbgs() << "bitcast action not implemented for vector select\n");
2162       return UnableToLegalize;
2163     }
2164 
2165     Observer.changingInstr(MI);
2166     bitcastSrc(MI, CastTy, 2);
2167     bitcastSrc(MI, CastTy, 3);
2168     bitcastDst(MI, CastTy, 0);
2169     Observer.changedInstr(MI);
2170     return Legalized;
2171   }
2172   case TargetOpcode::G_AND:
2173   case TargetOpcode::G_OR:
2174   case TargetOpcode::G_XOR: {
2175     Observer.changingInstr(MI);
2176     bitcastSrc(MI, CastTy, 1);
2177     bitcastSrc(MI, CastTy, 2);
2178     bitcastDst(MI, CastTy, 0);
2179     Observer.changedInstr(MI);
2180     return Legalized;
2181   }
2182   default:
2183     return UnableToLegalize;
2184   }
2185 }
2186 
2187 LegalizerHelper::LegalizeResult
2188 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2189   using namespace TargetOpcode;
2190   MIRBuilder.setInstr(MI);
2191 
2192   switch(MI.getOpcode()) {
2193   default:
2194     return UnableToLegalize;
2195   case TargetOpcode::G_BITCAST:
2196     return lowerBitcast(MI);
2197   case TargetOpcode::G_SREM:
2198   case TargetOpcode::G_UREM: {
2199     auto Quot =
2200         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2201                               {MI.getOperand(1), MI.getOperand(2)});
2202 
2203     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2204     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2205     MI.eraseFromParent();
2206     return Legalized;
2207   }
2208   case TargetOpcode::G_SADDO:
2209   case TargetOpcode::G_SSUBO:
2210     return lowerSADDO_SSUBO(MI);
2211   case TargetOpcode::G_SMULO:
2212   case TargetOpcode::G_UMULO: {
2213     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2214     // result.
2215     Register Res = MI.getOperand(0).getReg();
2216     Register Overflow = MI.getOperand(1).getReg();
2217     Register LHS = MI.getOperand(2).getReg();
2218     Register RHS = MI.getOperand(3).getReg();
2219 
2220     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2221                           ? TargetOpcode::G_SMULH
2222                           : TargetOpcode::G_UMULH;
2223 
2224     Observer.changingInstr(MI);
2225     const auto &TII = MIRBuilder.getTII();
2226     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2227     MI.RemoveOperand(1);
2228     Observer.changedInstr(MI);
2229 
2230     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2231 
2232     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2233     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2234 
2235     // For *signed* multiply, overflow is detected by checking:
2236     // (hi != (lo >> bitwidth-1))
2237     if (Opcode == TargetOpcode::G_SMULH) {
2238       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2239       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2240       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2241     } else {
2242       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2243     }
2244     return Legalized;
2245   }
2246   case TargetOpcode::G_FNEG: {
2247     // TODO: Handle vector types once we are able to
2248     // represent them.
2249     if (Ty.isVector())
2250       return UnableToLegalize;
2251     Register Res = MI.getOperand(0).getReg();
2252     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2253     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2254     if (!ZeroTy)
2255       return UnableToLegalize;
2256     ConstantFP &ZeroForNegation =
2257         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2258     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2259     Register SubByReg = MI.getOperand(1).getReg();
2260     Register ZeroReg = Zero.getReg(0);
2261     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2262     MI.eraseFromParent();
2263     return Legalized;
2264   }
2265   case TargetOpcode::G_FSUB: {
2266     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2267     // First, check if G_FNEG is marked as Lower. If so, we may
2268     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2269     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2270       return UnableToLegalize;
2271     Register Res = MI.getOperand(0).getReg();
2272     Register LHS = MI.getOperand(1).getReg();
2273     Register RHS = MI.getOperand(2).getReg();
2274     Register Neg = MRI.createGenericVirtualRegister(Ty);
2275     MIRBuilder.buildFNeg(Neg, RHS);
2276     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2277     MI.eraseFromParent();
2278     return Legalized;
2279   }
2280   case TargetOpcode::G_FMAD:
2281     return lowerFMad(MI);
2282   case TargetOpcode::G_FFLOOR:
2283     return lowerFFloor(MI);
2284   case TargetOpcode::G_INTRINSIC_ROUND:
2285     return lowerIntrinsicRound(MI);
2286   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2287     Register OldValRes = MI.getOperand(0).getReg();
2288     Register SuccessRes = MI.getOperand(1).getReg();
2289     Register Addr = MI.getOperand(2).getReg();
2290     Register CmpVal = MI.getOperand(3).getReg();
2291     Register NewVal = MI.getOperand(4).getReg();
2292     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2293                                   **MI.memoperands_begin());
2294     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2295     MI.eraseFromParent();
2296     return Legalized;
2297   }
2298   case TargetOpcode::G_LOAD:
2299   case TargetOpcode::G_SEXTLOAD:
2300   case TargetOpcode::G_ZEXTLOAD: {
2301     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2302     Register DstReg = MI.getOperand(0).getReg();
2303     Register PtrReg = MI.getOperand(1).getReg();
2304     LLT DstTy = MRI.getType(DstReg);
2305     auto &MMO = **MI.memoperands_begin();
2306 
2307     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2308       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2309         // This load needs splitting into power of 2 sized loads.
2310         if (DstTy.isVector())
2311           return UnableToLegalize;
2312         if (isPowerOf2_32(DstTy.getSizeInBits()))
2313           return UnableToLegalize; // Don't know what we're being asked to do.
2314 
2315         // Our strategy here is to generate anyextending loads for the smaller
2316         // types up to next power-2 result type, and then combine the two larger
2317         // result values together, before truncating back down to the non-pow-2
2318         // type.
2319         // E.g. v1 = i24 load =>
2320         // v2 = i32 zextload (2 byte)
2321         // v3 = i32 load (1 byte)
2322         // v4 = i32 shl v3, 16
2323         // v5 = i32 or v4, v2
2324         // v1 = i24 trunc v5
2325         // By doing this we generate the correct truncate which should get
2326         // combined away as an artifact with a matching extend.
2327         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2328         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2329 
2330         MachineFunction &MF = MIRBuilder.getMF();
2331         MachineMemOperand *LargeMMO =
2332             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2333         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2334             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2335 
2336         LLT PtrTy = MRI.getType(PtrReg);
2337         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2338         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2339         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2340         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2341         auto LargeLoad = MIRBuilder.buildLoadInstr(
2342             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2343 
2344         auto OffsetCst = MIRBuilder.buildConstant(
2345             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2346         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2347         auto SmallPtr =
2348             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2349         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2350                                               *SmallMMO);
2351 
2352         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2353         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2354         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2355         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2356         MI.eraseFromParent();
2357         return Legalized;
2358       }
2359       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2360       MI.eraseFromParent();
2361       return Legalized;
2362     }
2363 
2364     if (DstTy.isScalar()) {
2365       Register TmpReg =
2366           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2367       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2368       switch (MI.getOpcode()) {
2369       default:
2370         llvm_unreachable("Unexpected opcode");
2371       case TargetOpcode::G_LOAD:
2372         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2373         break;
2374       case TargetOpcode::G_SEXTLOAD:
2375         MIRBuilder.buildSExt(DstReg, TmpReg);
2376         break;
2377       case TargetOpcode::G_ZEXTLOAD:
2378         MIRBuilder.buildZExt(DstReg, TmpReg);
2379         break;
2380       }
2381       MI.eraseFromParent();
2382       return Legalized;
2383     }
2384 
2385     return UnableToLegalize;
2386   }
2387   case TargetOpcode::G_STORE: {
2388     // Lower a non-power of 2 store into multiple pow-2 stores.
2389     // E.g. split an i24 store into an i16 store + i8 store.
2390     // We do this by first extending the stored value to the next largest power
2391     // of 2 type, and then using truncating stores to store the components.
2392     // By doing this, likewise with G_LOAD, generate an extend that can be
2393     // artifact-combined away instead of leaving behind extracts.
2394     Register SrcReg = MI.getOperand(0).getReg();
2395     Register PtrReg = MI.getOperand(1).getReg();
2396     LLT SrcTy = MRI.getType(SrcReg);
2397     MachineMemOperand &MMO = **MI.memoperands_begin();
2398     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2399       return UnableToLegalize;
2400     if (SrcTy.isVector())
2401       return UnableToLegalize;
2402     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2403       return UnableToLegalize; // Don't know what we're being asked to do.
2404 
2405     // Extend to the next pow-2.
2406     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2407     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2408 
2409     // Obtain the smaller value by shifting away the larger value.
2410     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2411     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2412     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2413     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2414 
2415     // Generate the PtrAdd and truncating stores.
2416     LLT PtrTy = MRI.getType(PtrReg);
2417     auto OffsetCst = MIRBuilder.buildConstant(
2418             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2419     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2420     auto SmallPtr =
2421         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2422 
2423     MachineFunction &MF = MIRBuilder.getMF();
2424     MachineMemOperand *LargeMMO =
2425         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2426     MachineMemOperand *SmallMMO =
2427         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2428     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2429     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2430     MI.eraseFromParent();
2431     return Legalized;
2432   }
2433   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2434   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2435   case TargetOpcode::G_CTLZ:
2436   case TargetOpcode::G_CTTZ:
2437   case TargetOpcode::G_CTPOP:
2438     return lowerBitCount(MI, TypeIdx, Ty);
2439   case G_UADDO: {
2440     Register Res = MI.getOperand(0).getReg();
2441     Register CarryOut = MI.getOperand(1).getReg();
2442     Register LHS = MI.getOperand(2).getReg();
2443     Register RHS = MI.getOperand(3).getReg();
2444 
2445     MIRBuilder.buildAdd(Res, LHS, RHS);
2446     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2447 
2448     MI.eraseFromParent();
2449     return Legalized;
2450   }
2451   case G_UADDE: {
2452     Register Res = MI.getOperand(0).getReg();
2453     Register CarryOut = MI.getOperand(1).getReg();
2454     Register LHS = MI.getOperand(2).getReg();
2455     Register RHS = MI.getOperand(3).getReg();
2456     Register CarryIn = MI.getOperand(4).getReg();
2457     LLT Ty = MRI.getType(Res);
2458 
2459     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2460     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2461     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2462     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2463 
2464     MI.eraseFromParent();
2465     return Legalized;
2466   }
2467   case G_USUBO: {
2468     Register Res = MI.getOperand(0).getReg();
2469     Register BorrowOut = MI.getOperand(1).getReg();
2470     Register LHS = MI.getOperand(2).getReg();
2471     Register RHS = MI.getOperand(3).getReg();
2472 
2473     MIRBuilder.buildSub(Res, LHS, RHS);
2474     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2475 
2476     MI.eraseFromParent();
2477     return Legalized;
2478   }
2479   case G_USUBE: {
2480     Register Res = MI.getOperand(0).getReg();
2481     Register BorrowOut = MI.getOperand(1).getReg();
2482     Register LHS = MI.getOperand(2).getReg();
2483     Register RHS = MI.getOperand(3).getReg();
2484     Register BorrowIn = MI.getOperand(4).getReg();
2485     const LLT CondTy = MRI.getType(BorrowOut);
2486     const LLT Ty = MRI.getType(Res);
2487 
2488     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2489     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2490     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2491 
2492     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2493     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2494     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2495 
2496     MI.eraseFromParent();
2497     return Legalized;
2498   }
2499   case G_UITOFP:
2500     return lowerUITOFP(MI, TypeIdx, Ty);
2501   case G_SITOFP:
2502     return lowerSITOFP(MI, TypeIdx, Ty);
2503   case G_FPTOUI:
2504     return lowerFPTOUI(MI, TypeIdx, Ty);
2505   case G_FPTOSI:
2506     return lowerFPTOSI(MI);
2507   case G_FPTRUNC:
2508     return lowerFPTRUNC(MI, TypeIdx, Ty);
2509   case G_SMIN:
2510   case G_SMAX:
2511   case G_UMIN:
2512   case G_UMAX:
2513     return lowerMinMax(MI, TypeIdx, Ty);
2514   case G_FCOPYSIGN:
2515     return lowerFCopySign(MI, TypeIdx, Ty);
2516   case G_FMINNUM:
2517   case G_FMAXNUM:
2518     return lowerFMinNumMaxNum(MI);
2519   case G_UNMERGE_VALUES:
2520     return lowerUnmergeValues(MI);
2521   case TargetOpcode::G_SEXT_INREG: {
2522     assert(MI.getOperand(2).isImm() && "Expected immediate");
2523     int64_t SizeInBits = MI.getOperand(2).getImm();
2524 
2525     Register DstReg = MI.getOperand(0).getReg();
2526     Register SrcReg = MI.getOperand(1).getReg();
2527     LLT DstTy = MRI.getType(DstReg);
2528     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2529 
2530     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2531     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2532     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2533     MI.eraseFromParent();
2534     return Legalized;
2535   }
2536   case G_SHUFFLE_VECTOR:
2537     return lowerShuffleVector(MI);
2538   case G_DYN_STACKALLOC:
2539     return lowerDynStackAlloc(MI);
2540   case G_EXTRACT:
2541     return lowerExtract(MI);
2542   case G_INSERT:
2543     return lowerInsert(MI);
2544   case G_BSWAP:
2545     return lowerBswap(MI);
2546   case G_BITREVERSE:
2547     return lowerBitreverse(MI);
2548   case G_READ_REGISTER:
2549   case G_WRITE_REGISTER:
2550     return lowerReadWriteRegister(MI);
2551   }
2552 }
2553 
2554 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2555     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2556   SmallVector<Register, 2> DstRegs;
2557 
2558   unsigned NarrowSize = NarrowTy.getSizeInBits();
2559   Register DstReg = MI.getOperand(0).getReg();
2560   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2561   int NumParts = Size / NarrowSize;
2562   // FIXME: Don't know how to handle the situation where the small vectors
2563   // aren't all the same size yet.
2564   if (Size % NarrowSize != 0)
2565     return UnableToLegalize;
2566 
2567   for (int i = 0; i < NumParts; ++i) {
2568     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2569     MIRBuilder.buildUndef(TmpReg);
2570     DstRegs.push_back(TmpReg);
2571   }
2572 
2573   if (NarrowTy.isVector())
2574     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2575   else
2576     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2577 
2578   MI.eraseFromParent();
2579   return Legalized;
2580 }
2581 
2582 // Handles operands with different types, but all must have the same number of
2583 // elements. There will be multiple type indexes. NarrowTy is expected to have
2584 // the result element type.
2585 LegalizerHelper::LegalizeResult
2586 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx,
2587                                           LLT NarrowTy) {
2588   assert(TypeIdx == 0 && "only one type index expected");
2589 
2590   const unsigned Opc = MI.getOpcode();
2591   const int NumOps = MI.getNumOperands() - 1;
2592   const Register DstReg = MI.getOperand(0).getReg();
2593   const unsigned Flags = MI.getFlags();
2594 
2595   assert(NumOps <= 3 && "expected instrution with 1 result and 1-3 sources");
2596 
2597   SmallVector<Register, 8> ExtractedRegs[3];
2598   SmallVector<Register, 8> Parts;
2599 
2600   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2601 
2602   // Break down all the sources into NarrowTy pieces we can operate on. This may
2603   // involve creating merges to a wider type, padded with undef.
2604   for (int I = 0; I != NumOps; ++I) {
2605     Register SrcReg =  MI.getOperand(I + 1).getReg();
2606     LLT SrcTy = MRI.getType(SrcReg);
2607 
2608     // Each operand may have its own type, but only the number of elements
2609     // matters.
2610     LLT OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
2611     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
2612 
2613     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
2614     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy,
2615                         ExtractedRegs[I], TargetOpcode::G_ANYEXT);
2616   }
2617 
2618   SmallVector<Register, 8> ResultRegs;
2619 
2620   // Input operands for each sub-instruction.
2621   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
2622 
2623   int NumParts = ExtractedRegs[0].size();
2624   const LLT DstTy = MRI.getType(DstReg);
2625   const unsigned DstSize = DstTy.getSizeInBits();
2626   LLT DstLCMTy = getLCMType(DstTy, NarrowTy);
2627 
2628   const unsigned NarrowSize = NarrowTy.getSizeInBits();
2629 
2630   // We widened the source registers to satisfy merge/unmerge size
2631   // constraints. We'll have some extra fully undef parts.
2632   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
2633 
2634   for (int I = 0; I != NumRealParts; ++I) {
2635     // Emit this instruction on each of the split pieces.
2636     for (int J = 0; J != NumOps; ++J)
2637       InputRegs[J] = ExtractedRegs[J][I];
2638 
2639     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowTy}, InputRegs, Flags);
2640     ResultRegs.push_back(Inst.getReg(0));
2641   }
2642 
2643   // Fill out the widened result with undef instead of creating instructions
2644   // with undef inputs.
2645   int NumUndefParts = NumParts - NumRealParts;
2646   if (NumUndefParts != 0)
2647     ResultRegs.append(NumUndefParts, MIRBuilder.buildUndef(NarrowTy).getReg(0));
2648 
2649   // Extract the possibly padded result to the original result register.
2650   buildWidenedRemergeToDst(DstReg, DstLCMTy, ResultRegs);
2651 
2652   MI.eraseFromParent();
2653   return Legalized;
2654 }
2655 
2656 // Handle splitting vector operations which need to have the same number of
2657 // elements in each type index, but each type index may have a different element
2658 // type.
2659 //
2660 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2661 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2662 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2663 //
2664 // Also handles some irregular breakdown cases, e.g.
2665 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2666 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2667 //             s64 = G_SHL s64, s32
2668 LegalizerHelper::LegalizeResult
2669 LegalizerHelper::fewerElementsVectorMultiEltType(
2670   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2671   if (TypeIdx != 0)
2672     return UnableToLegalize;
2673 
2674   const LLT NarrowTy0 = NarrowTyArg;
2675   const unsigned NewNumElts =
2676       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2677 
2678   const Register DstReg = MI.getOperand(0).getReg();
2679   LLT DstTy = MRI.getType(DstReg);
2680   LLT LeftoverTy0;
2681 
2682   // All of the operands need to have the same number of elements, so if we can
2683   // determine a type breakdown for the result type, we can for all of the
2684   // source types.
2685   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2686   if (NumParts < 0)
2687     return UnableToLegalize;
2688 
2689   SmallVector<MachineInstrBuilder, 4> NewInsts;
2690 
2691   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2692   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2693 
2694   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2695     LLT LeftoverTy;
2696     Register SrcReg = MI.getOperand(I).getReg();
2697     LLT SrcTyI = MRI.getType(SrcReg);
2698     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2699     LLT LeftoverTyI;
2700 
2701     // Split this operand into the requested typed registers, and any leftover
2702     // required to reproduce the original type.
2703     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2704                       LeftoverRegs))
2705       return UnableToLegalize;
2706 
2707     if (I == 1) {
2708       // For the first operand, create an instruction for each part and setup
2709       // the result.
2710       for (Register PartReg : PartRegs) {
2711         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2712         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2713                                .addDef(PartDstReg)
2714                                .addUse(PartReg));
2715         DstRegs.push_back(PartDstReg);
2716       }
2717 
2718       for (Register LeftoverReg : LeftoverRegs) {
2719         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2720         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2721                                .addDef(PartDstReg)
2722                                .addUse(LeftoverReg));
2723         LeftoverDstRegs.push_back(PartDstReg);
2724       }
2725     } else {
2726       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2727 
2728       // Add the newly created operand splits to the existing instructions. The
2729       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2730       // pieces.
2731       unsigned InstCount = 0;
2732       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2733         NewInsts[InstCount++].addUse(PartRegs[J]);
2734       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2735         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2736     }
2737 
2738     PartRegs.clear();
2739     LeftoverRegs.clear();
2740   }
2741 
2742   // Insert the newly built operations and rebuild the result register.
2743   for (auto &MIB : NewInsts)
2744     MIRBuilder.insertInstr(MIB);
2745 
2746   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2747 
2748   MI.eraseFromParent();
2749   return Legalized;
2750 }
2751 
2752 LegalizerHelper::LegalizeResult
2753 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2754                                           LLT NarrowTy) {
2755   if (TypeIdx != 0)
2756     return UnableToLegalize;
2757 
2758   Register DstReg = MI.getOperand(0).getReg();
2759   Register SrcReg = MI.getOperand(1).getReg();
2760   LLT DstTy = MRI.getType(DstReg);
2761   LLT SrcTy = MRI.getType(SrcReg);
2762 
2763   LLT NarrowTy0 = NarrowTy;
2764   LLT NarrowTy1;
2765   unsigned NumParts;
2766 
2767   if (NarrowTy.isVector()) {
2768     // Uneven breakdown not handled.
2769     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2770     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2771       return UnableToLegalize;
2772 
2773     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2774   } else {
2775     NumParts = DstTy.getNumElements();
2776     NarrowTy1 = SrcTy.getElementType();
2777   }
2778 
2779   SmallVector<Register, 4> SrcRegs, DstRegs;
2780   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2781 
2782   for (unsigned I = 0; I < NumParts; ++I) {
2783     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2784     MachineInstr *NewInst =
2785         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2786 
2787     NewInst->setFlags(MI.getFlags());
2788     DstRegs.push_back(DstReg);
2789   }
2790 
2791   if (NarrowTy.isVector())
2792     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2793   else
2794     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2795 
2796   MI.eraseFromParent();
2797   return Legalized;
2798 }
2799 
2800 LegalizerHelper::LegalizeResult
2801 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2802                                         LLT NarrowTy) {
2803   Register DstReg = MI.getOperand(0).getReg();
2804   Register Src0Reg = MI.getOperand(2).getReg();
2805   LLT DstTy = MRI.getType(DstReg);
2806   LLT SrcTy = MRI.getType(Src0Reg);
2807 
2808   unsigned NumParts;
2809   LLT NarrowTy0, NarrowTy1;
2810 
2811   if (TypeIdx == 0) {
2812     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2813     unsigned OldElts = DstTy.getNumElements();
2814 
2815     NarrowTy0 = NarrowTy;
2816     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2817     NarrowTy1 = NarrowTy.isVector() ?
2818       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2819       SrcTy.getElementType();
2820 
2821   } else {
2822     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2823     unsigned OldElts = SrcTy.getNumElements();
2824 
2825     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2826       NarrowTy.getNumElements();
2827     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2828                             DstTy.getScalarSizeInBits());
2829     NarrowTy1 = NarrowTy;
2830   }
2831 
2832   // FIXME: Don't know how to handle the situation where the small vectors
2833   // aren't all the same size yet.
2834   if (NarrowTy1.isVector() &&
2835       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2836     return UnableToLegalize;
2837 
2838   CmpInst::Predicate Pred
2839     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2840 
2841   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2842   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2843   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2844 
2845   for (unsigned I = 0; I < NumParts; ++I) {
2846     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2847     DstRegs.push_back(DstReg);
2848 
2849     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2850       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2851     else {
2852       MachineInstr *NewCmp
2853         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2854       NewCmp->setFlags(MI.getFlags());
2855     }
2856   }
2857 
2858   if (NarrowTy1.isVector())
2859     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2860   else
2861     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2862 
2863   MI.eraseFromParent();
2864   return Legalized;
2865 }
2866 
2867 LegalizerHelper::LegalizeResult
2868 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2869                                            LLT NarrowTy) {
2870   Register DstReg = MI.getOperand(0).getReg();
2871   Register CondReg = MI.getOperand(1).getReg();
2872 
2873   unsigned NumParts = 0;
2874   LLT NarrowTy0, NarrowTy1;
2875 
2876   LLT DstTy = MRI.getType(DstReg);
2877   LLT CondTy = MRI.getType(CondReg);
2878   unsigned Size = DstTy.getSizeInBits();
2879 
2880   assert(TypeIdx == 0 || CondTy.isVector());
2881 
2882   if (TypeIdx == 0) {
2883     NarrowTy0 = NarrowTy;
2884     NarrowTy1 = CondTy;
2885 
2886     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2887     // FIXME: Don't know how to handle the situation where the small vectors
2888     // aren't all the same size yet.
2889     if (Size % NarrowSize != 0)
2890       return UnableToLegalize;
2891 
2892     NumParts = Size / NarrowSize;
2893 
2894     // Need to break down the condition type
2895     if (CondTy.isVector()) {
2896       if (CondTy.getNumElements() == NumParts)
2897         NarrowTy1 = CondTy.getElementType();
2898       else
2899         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2900                                 CondTy.getScalarSizeInBits());
2901     }
2902   } else {
2903     NumParts = CondTy.getNumElements();
2904     if (NarrowTy.isVector()) {
2905       // TODO: Handle uneven breakdown.
2906       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2907         return UnableToLegalize;
2908 
2909       return UnableToLegalize;
2910     } else {
2911       NarrowTy0 = DstTy.getElementType();
2912       NarrowTy1 = NarrowTy;
2913     }
2914   }
2915 
2916   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2917   if (CondTy.isVector())
2918     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2919 
2920   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2921   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2922 
2923   for (unsigned i = 0; i < NumParts; ++i) {
2924     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2925     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2926                            Src1Regs[i], Src2Regs[i]);
2927     DstRegs.push_back(DstReg);
2928   }
2929 
2930   if (NarrowTy0.isVector())
2931     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2932   else
2933     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2934 
2935   MI.eraseFromParent();
2936   return Legalized;
2937 }
2938 
2939 LegalizerHelper::LegalizeResult
2940 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2941                                         LLT NarrowTy) {
2942   const Register DstReg = MI.getOperand(0).getReg();
2943   LLT PhiTy = MRI.getType(DstReg);
2944   LLT LeftoverTy;
2945 
2946   // All of the operands need to have the same number of elements, so if we can
2947   // determine a type breakdown for the result type, we can for all of the
2948   // source types.
2949   int NumParts, NumLeftover;
2950   std::tie(NumParts, NumLeftover)
2951     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2952   if (NumParts < 0)
2953     return UnableToLegalize;
2954 
2955   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2956   SmallVector<MachineInstrBuilder, 4> NewInsts;
2957 
2958   const int TotalNumParts = NumParts + NumLeftover;
2959 
2960   // Insert the new phis in the result block first.
2961   for (int I = 0; I != TotalNumParts; ++I) {
2962     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2963     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2964     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2965                        .addDef(PartDstReg));
2966     if (I < NumParts)
2967       DstRegs.push_back(PartDstReg);
2968     else
2969       LeftoverDstRegs.push_back(PartDstReg);
2970   }
2971 
2972   MachineBasicBlock *MBB = MI.getParent();
2973   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2974   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2975 
2976   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2977 
2978   // Insert code to extract the incoming values in each predecessor block.
2979   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2980     PartRegs.clear();
2981     LeftoverRegs.clear();
2982 
2983     Register SrcReg = MI.getOperand(I).getReg();
2984     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2985     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2986 
2987     LLT Unused;
2988     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
2989                       LeftoverRegs))
2990       return UnableToLegalize;
2991 
2992     // Add the newly created operand splits to the existing instructions. The
2993     // odd-sized pieces are ordered after the requested NarrowTyArg sized
2994     // pieces.
2995     for (int J = 0; J != TotalNumParts; ++J) {
2996       MachineInstrBuilder MIB = NewInsts[J];
2997       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
2998       MIB.addMBB(&OpMBB);
2999     }
3000   }
3001 
3002   MI.eraseFromParent();
3003   return Legalized;
3004 }
3005 
3006 LegalizerHelper::LegalizeResult
3007 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3008                                                   unsigned TypeIdx,
3009                                                   LLT NarrowTy) {
3010   if (TypeIdx != 1)
3011     return UnableToLegalize;
3012 
3013   const int NumDst = MI.getNumOperands() - 1;
3014   const Register SrcReg = MI.getOperand(NumDst).getReg();
3015   LLT SrcTy = MRI.getType(SrcReg);
3016 
3017   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3018 
3019   // TODO: Create sequence of extracts.
3020   if (DstTy == NarrowTy)
3021     return UnableToLegalize;
3022 
3023   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3024   if (DstTy == GCDTy) {
3025     // This would just be a copy of the same unmerge.
3026     // TODO: Create extracts, pad with undef and create intermediate merges.
3027     return UnableToLegalize;
3028   }
3029 
3030   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3031   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3032   const int PartsPerUnmerge = NumDst / NumUnmerge;
3033 
3034   for (int I = 0; I != NumUnmerge; ++I) {
3035     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3036 
3037     for (int J = 0; J != PartsPerUnmerge; ++J)
3038       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3039     MIB.addUse(Unmerge.getReg(I));
3040   }
3041 
3042   MI.eraseFromParent();
3043   return Legalized;
3044 }
3045 
3046 LegalizerHelper::LegalizeResult
3047 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3048                                                 unsigned TypeIdx,
3049                                                 LLT NarrowTy) {
3050   assert(TypeIdx == 0 && "not a vector type index");
3051   Register DstReg = MI.getOperand(0).getReg();
3052   LLT DstTy = MRI.getType(DstReg);
3053   LLT SrcTy = DstTy.getElementType();
3054 
3055   int DstNumElts = DstTy.getNumElements();
3056   int NarrowNumElts = NarrowTy.getNumElements();
3057   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3058   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3059 
3060   SmallVector<Register, 8> ConcatOps;
3061   SmallVector<Register, 8> SubBuildVector;
3062 
3063   Register UndefReg;
3064   if (WidenedDstTy != DstTy)
3065     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3066 
3067   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3068   // necessary.
3069   //
3070   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3071   //   -> <2 x s16>
3072   //
3073   // %4:_(s16) = G_IMPLICIT_DEF
3074   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3075   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3076   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3077   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3078   for (int I = 0; I != NumConcat; ++I) {
3079     for (int J = 0; J != NarrowNumElts; ++J) {
3080       int SrcIdx = NarrowNumElts * I + J;
3081 
3082       if (SrcIdx < DstNumElts) {
3083         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3084         SubBuildVector.push_back(SrcReg);
3085       } else
3086         SubBuildVector.push_back(UndefReg);
3087     }
3088 
3089     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3090     ConcatOps.push_back(BuildVec.getReg(0));
3091     SubBuildVector.clear();
3092   }
3093 
3094   if (DstTy == WidenedDstTy)
3095     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3096   else {
3097     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3098     MIRBuilder.buildExtract(DstReg, Concat, 0);
3099   }
3100 
3101   MI.eraseFromParent();
3102   return Legalized;
3103 }
3104 
3105 LegalizerHelper::LegalizeResult
3106 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3107                                       LLT NarrowTy) {
3108   // FIXME: Don't know how to handle secondary types yet.
3109   if (TypeIdx != 0)
3110     return UnableToLegalize;
3111 
3112   MachineMemOperand *MMO = *MI.memoperands_begin();
3113 
3114   // This implementation doesn't work for atomics. Give up instead of doing
3115   // something invalid.
3116   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3117       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3118     return UnableToLegalize;
3119 
3120   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3121   Register ValReg = MI.getOperand(0).getReg();
3122   Register AddrReg = MI.getOperand(1).getReg();
3123   LLT ValTy = MRI.getType(ValReg);
3124 
3125   // FIXME: Do we need a distinct NarrowMemory legalize action?
3126   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3127     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3128     return UnableToLegalize;
3129   }
3130 
3131   int NumParts = -1;
3132   int NumLeftover = -1;
3133   LLT LeftoverTy;
3134   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3135   if (IsLoad) {
3136     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3137   } else {
3138     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3139                      NarrowLeftoverRegs)) {
3140       NumParts = NarrowRegs.size();
3141       NumLeftover = NarrowLeftoverRegs.size();
3142     }
3143   }
3144 
3145   if (NumParts == -1)
3146     return UnableToLegalize;
3147 
3148   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3149 
3150   unsigned TotalSize = ValTy.getSizeInBits();
3151 
3152   // Split the load/store into PartTy sized pieces starting at Offset. If this
3153   // is a load, return the new registers in ValRegs. For a store, each elements
3154   // of ValRegs should be PartTy. Returns the next offset that needs to be
3155   // handled.
3156   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3157                              unsigned Offset) -> unsigned {
3158     MachineFunction &MF = MIRBuilder.getMF();
3159     unsigned PartSize = PartTy.getSizeInBits();
3160     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3161          Offset += PartSize, ++Idx) {
3162       unsigned ByteSize = PartSize / 8;
3163       unsigned ByteOffset = Offset / 8;
3164       Register NewAddrReg;
3165 
3166       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3167 
3168       MachineMemOperand *NewMMO =
3169         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3170 
3171       if (IsLoad) {
3172         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3173         ValRegs.push_back(Dst);
3174         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3175       } else {
3176         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3177       }
3178     }
3179 
3180     return Offset;
3181   };
3182 
3183   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3184 
3185   // Handle the rest of the register if this isn't an even type breakdown.
3186   if (LeftoverTy.isValid())
3187     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3188 
3189   if (IsLoad) {
3190     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3191                 LeftoverTy, NarrowLeftoverRegs);
3192   }
3193 
3194   MI.eraseFromParent();
3195   return Legalized;
3196 }
3197 
3198 LegalizerHelper::LegalizeResult
3199 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3200                                               LLT NarrowTy) {
3201   Register DstReg = MI.getOperand(0).getReg();
3202   Register SrcReg = MI.getOperand(1).getReg();
3203   int64_t Imm = MI.getOperand(2).getImm();
3204 
3205   LLT DstTy = MRI.getType(DstReg);
3206 
3207   SmallVector<Register, 8> Parts;
3208   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3209   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3210 
3211   for (Register &R : Parts)
3212     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3213 
3214   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3215 
3216   MI.eraseFromParent();
3217   return Legalized;
3218 }
3219 
3220 LegalizerHelper::LegalizeResult
3221 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3222                                      LLT NarrowTy) {
3223   using namespace TargetOpcode;
3224 
3225   MIRBuilder.setInstr(MI);
3226   switch (MI.getOpcode()) {
3227   case G_IMPLICIT_DEF:
3228     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3229   case G_TRUNC:
3230   case G_AND:
3231   case G_OR:
3232   case G_XOR:
3233   case G_ADD:
3234   case G_SUB:
3235   case G_MUL:
3236   case G_SMULH:
3237   case G_UMULH:
3238   case G_FADD:
3239   case G_FMUL:
3240   case G_FSUB:
3241   case G_FNEG:
3242   case G_FABS:
3243   case G_FCANONICALIZE:
3244   case G_FDIV:
3245   case G_FREM:
3246   case G_FMA:
3247   case G_FMAD:
3248   case G_FPOW:
3249   case G_FEXP:
3250   case G_FEXP2:
3251   case G_FLOG:
3252   case G_FLOG2:
3253   case G_FLOG10:
3254   case G_FNEARBYINT:
3255   case G_FCEIL:
3256   case G_FFLOOR:
3257   case G_FRINT:
3258   case G_INTRINSIC_ROUND:
3259   case G_INTRINSIC_TRUNC:
3260   case G_FCOS:
3261   case G_FSIN:
3262   case G_FSQRT:
3263   case G_BSWAP:
3264   case G_BITREVERSE:
3265   case G_SDIV:
3266   case G_UDIV:
3267   case G_SREM:
3268   case G_UREM:
3269   case G_SMIN:
3270   case G_SMAX:
3271   case G_UMIN:
3272   case G_UMAX:
3273   case G_FMINNUM:
3274   case G_FMAXNUM:
3275   case G_FMINNUM_IEEE:
3276   case G_FMAXNUM_IEEE:
3277   case G_FMINIMUM:
3278   case G_FMAXIMUM:
3279   case G_FSHL:
3280   case G_FSHR:
3281     return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy);
3282   case G_SHL:
3283   case G_LSHR:
3284   case G_ASHR:
3285   case G_CTLZ:
3286   case G_CTLZ_ZERO_UNDEF:
3287   case G_CTTZ:
3288   case G_CTTZ_ZERO_UNDEF:
3289   case G_CTPOP:
3290   case G_FCOPYSIGN:
3291     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3292   case G_ZEXT:
3293   case G_SEXT:
3294   case G_ANYEXT:
3295   case G_FPEXT:
3296   case G_FPTRUNC:
3297   case G_SITOFP:
3298   case G_UITOFP:
3299   case G_FPTOSI:
3300   case G_FPTOUI:
3301   case G_INTTOPTR:
3302   case G_PTRTOINT:
3303   case G_ADDRSPACE_CAST:
3304     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3305   case G_ICMP:
3306   case G_FCMP:
3307     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3308   case G_SELECT:
3309     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3310   case G_PHI:
3311     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3312   case G_UNMERGE_VALUES:
3313     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3314   case G_BUILD_VECTOR:
3315     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3316   case G_LOAD:
3317   case G_STORE:
3318     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3319   case G_SEXT_INREG:
3320     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3321   default:
3322     return UnableToLegalize;
3323   }
3324 }
3325 
3326 LegalizerHelper::LegalizeResult
3327 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3328                                              const LLT HalfTy, const LLT AmtTy) {
3329 
3330   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3331   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3332   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3333 
3334   if (Amt.isNullValue()) {
3335     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3336     MI.eraseFromParent();
3337     return Legalized;
3338   }
3339 
3340   LLT NVT = HalfTy;
3341   unsigned NVTBits = HalfTy.getSizeInBits();
3342   unsigned VTBits = 2 * NVTBits;
3343 
3344   SrcOp Lo(Register(0)), Hi(Register(0));
3345   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3346     if (Amt.ugt(VTBits)) {
3347       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3348     } else if (Amt.ugt(NVTBits)) {
3349       Lo = MIRBuilder.buildConstant(NVT, 0);
3350       Hi = MIRBuilder.buildShl(NVT, InL,
3351                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3352     } else if (Amt == NVTBits) {
3353       Lo = MIRBuilder.buildConstant(NVT, 0);
3354       Hi = InL;
3355     } else {
3356       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3357       auto OrLHS =
3358           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3359       auto OrRHS = MIRBuilder.buildLShr(
3360           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3361       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3362     }
3363   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3364     if (Amt.ugt(VTBits)) {
3365       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3366     } else if (Amt.ugt(NVTBits)) {
3367       Lo = MIRBuilder.buildLShr(NVT, InH,
3368                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3369       Hi = MIRBuilder.buildConstant(NVT, 0);
3370     } else if (Amt == NVTBits) {
3371       Lo = InH;
3372       Hi = MIRBuilder.buildConstant(NVT, 0);
3373     } else {
3374       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3375 
3376       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3377       auto OrRHS = MIRBuilder.buildShl(
3378           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3379 
3380       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3381       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3382     }
3383   } else {
3384     if (Amt.ugt(VTBits)) {
3385       Hi = Lo = MIRBuilder.buildAShr(
3386           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3387     } else if (Amt.ugt(NVTBits)) {
3388       Lo = MIRBuilder.buildAShr(NVT, InH,
3389                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3390       Hi = MIRBuilder.buildAShr(NVT, InH,
3391                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3392     } else if (Amt == NVTBits) {
3393       Lo = InH;
3394       Hi = MIRBuilder.buildAShr(NVT, InH,
3395                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3396     } else {
3397       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3398 
3399       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3400       auto OrRHS = MIRBuilder.buildShl(
3401           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3402 
3403       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3404       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3405     }
3406   }
3407 
3408   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3409   MI.eraseFromParent();
3410 
3411   return Legalized;
3412 }
3413 
3414 // TODO: Optimize if constant shift amount.
3415 LegalizerHelper::LegalizeResult
3416 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3417                                    LLT RequestedTy) {
3418   if (TypeIdx == 1) {
3419     Observer.changingInstr(MI);
3420     narrowScalarSrc(MI, RequestedTy, 2);
3421     Observer.changedInstr(MI);
3422     return Legalized;
3423   }
3424 
3425   Register DstReg = MI.getOperand(0).getReg();
3426   LLT DstTy = MRI.getType(DstReg);
3427   if (DstTy.isVector())
3428     return UnableToLegalize;
3429 
3430   Register Amt = MI.getOperand(2).getReg();
3431   LLT ShiftAmtTy = MRI.getType(Amt);
3432   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3433   if (DstEltSize % 2 != 0)
3434     return UnableToLegalize;
3435 
3436   // Ignore the input type. We can only go to exactly half the size of the
3437   // input. If that isn't small enough, the resulting pieces will be further
3438   // legalized.
3439   const unsigned NewBitSize = DstEltSize / 2;
3440   const LLT HalfTy = LLT::scalar(NewBitSize);
3441   const LLT CondTy = LLT::scalar(1);
3442 
3443   if (const MachineInstr *KShiftAmt =
3444           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3445     return narrowScalarShiftByConstant(
3446         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3447   }
3448 
3449   // TODO: Expand with known bits.
3450 
3451   // Handle the fully general expansion by an unknown amount.
3452   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3453 
3454   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3455   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3456   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3457 
3458   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3459   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3460 
3461   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3462   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3463   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3464 
3465   Register ResultRegs[2];
3466   switch (MI.getOpcode()) {
3467   case TargetOpcode::G_SHL: {
3468     // Short: ShAmt < NewBitSize
3469     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3470 
3471     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3472     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3473     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3474 
3475     // Long: ShAmt >= NewBitSize
3476     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3477     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3478 
3479     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3480     auto Hi = MIRBuilder.buildSelect(
3481         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3482 
3483     ResultRegs[0] = Lo.getReg(0);
3484     ResultRegs[1] = Hi.getReg(0);
3485     break;
3486   }
3487   case TargetOpcode::G_LSHR:
3488   case TargetOpcode::G_ASHR: {
3489     // Short: ShAmt < NewBitSize
3490     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3491 
3492     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3493     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3494     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3495 
3496     // Long: ShAmt >= NewBitSize
3497     MachineInstrBuilder HiL;
3498     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3499       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3500     } else {
3501       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3502       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3503     }
3504     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3505                                      {InH, AmtExcess});     // Lo from Hi part.
3506 
3507     auto Lo = MIRBuilder.buildSelect(
3508         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3509 
3510     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3511 
3512     ResultRegs[0] = Lo.getReg(0);
3513     ResultRegs[1] = Hi.getReg(0);
3514     break;
3515   }
3516   default:
3517     llvm_unreachable("not a shift");
3518   }
3519 
3520   MIRBuilder.buildMerge(DstReg, ResultRegs);
3521   MI.eraseFromParent();
3522   return Legalized;
3523 }
3524 
3525 LegalizerHelper::LegalizeResult
3526 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3527                                        LLT MoreTy) {
3528   assert(TypeIdx == 0 && "Expecting only Idx 0");
3529 
3530   Observer.changingInstr(MI);
3531   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3532     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3533     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3534     moreElementsVectorSrc(MI, MoreTy, I);
3535   }
3536 
3537   MachineBasicBlock &MBB = *MI.getParent();
3538   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3539   moreElementsVectorDst(MI, MoreTy, 0);
3540   Observer.changedInstr(MI);
3541   return Legalized;
3542 }
3543 
3544 LegalizerHelper::LegalizeResult
3545 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3546                                     LLT MoreTy) {
3547   MIRBuilder.setInstr(MI);
3548   unsigned Opc = MI.getOpcode();
3549   switch (Opc) {
3550   case TargetOpcode::G_IMPLICIT_DEF:
3551   case TargetOpcode::G_LOAD: {
3552     if (TypeIdx != 0)
3553       return UnableToLegalize;
3554     Observer.changingInstr(MI);
3555     moreElementsVectorDst(MI, MoreTy, 0);
3556     Observer.changedInstr(MI);
3557     return Legalized;
3558   }
3559   case TargetOpcode::G_STORE:
3560     if (TypeIdx != 0)
3561       return UnableToLegalize;
3562     Observer.changingInstr(MI);
3563     moreElementsVectorSrc(MI, MoreTy, 0);
3564     Observer.changedInstr(MI);
3565     return Legalized;
3566   case TargetOpcode::G_AND:
3567   case TargetOpcode::G_OR:
3568   case TargetOpcode::G_XOR:
3569   case TargetOpcode::G_SMIN:
3570   case TargetOpcode::G_SMAX:
3571   case TargetOpcode::G_UMIN:
3572   case TargetOpcode::G_UMAX:
3573   case TargetOpcode::G_FMINNUM:
3574   case TargetOpcode::G_FMAXNUM:
3575   case TargetOpcode::G_FMINNUM_IEEE:
3576   case TargetOpcode::G_FMAXNUM_IEEE:
3577   case TargetOpcode::G_FMINIMUM:
3578   case TargetOpcode::G_FMAXIMUM: {
3579     Observer.changingInstr(MI);
3580     moreElementsVectorSrc(MI, MoreTy, 1);
3581     moreElementsVectorSrc(MI, MoreTy, 2);
3582     moreElementsVectorDst(MI, MoreTy, 0);
3583     Observer.changedInstr(MI);
3584     return Legalized;
3585   }
3586   case TargetOpcode::G_EXTRACT:
3587     if (TypeIdx != 1)
3588       return UnableToLegalize;
3589     Observer.changingInstr(MI);
3590     moreElementsVectorSrc(MI, MoreTy, 1);
3591     Observer.changedInstr(MI);
3592     return Legalized;
3593   case TargetOpcode::G_INSERT:
3594     if (TypeIdx != 0)
3595       return UnableToLegalize;
3596     Observer.changingInstr(MI);
3597     moreElementsVectorSrc(MI, MoreTy, 1);
3598     moreElementsVectorDst(MI, MoreTy, 0);
3599     Observer.changedInstr(MI);
3600     return Legalized;
3601   case TargetOpcode::G_SELECT:
3602     if (TypeIdx != 0)
3603       return UnableToLegalize;
3604     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3605       return UnableToLegalize;
3606 
3607     Observer.changingInstr(MI);
3608     moreElementsVectorSrc(MI, MoreTy, 2);
3609     moreElementsVectorSrc(MI, MoreTy, 3);
3610     moreElementsVectorDst(MI, MoreTy, 0);
3611     Observer.changedInstr(MI);
3612     return Legalized;
3613   case TargetOpcode::G_UNMERGE_VALUES: {
3614     if (TypeIdx != 1)
3615       return UnableToLegalize;
3616 
3617     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3618     int NumDst = MI.getNumOperands() - 1;
3619     moreElementsVectorSrc(MI, MoreTy, NumDst);
3620 
3621     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3622     for (int I = 0; I != NumDst; ++I)
3623       MIB.addDef(MI.getOperand(I).getReg());
3624 
3625     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3626     for (int I = NumDst; I != NewNumDst; ++I)
3627       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3628 
3629     MIB.addUse(MI.getOperand(NumDst).getReg());
3630     MI.eraseFromParent();
3631     return Legalized;
3632   }
3633   case TargetOpcode::G_PHI:
3634     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3635   default:
3636     return UnableToLegalize;
3637   }
3638 }
3639 
3640 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3641                                         ArrayRef<Register> Src1Regs,
3642                                         ArrayRef<Register> Src2Regs,
3643                                         LLT NarrowTy) {
3644   MachineIRBuilder &B = MIRBuilder;
3645   unsigned SrcParts = Src1Regs.size();
3646   unsigned DstParts = DstRegs.size();
3647 
3648   unsigned DstIdx = 0; // Low bits of the result.
3649   Register FactorSum =
3650       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3651   DstRegs[DstIdx] = FactorSum;
3652 
3653   unsigned CarrySumPrevDstIdx;
3654   SmallVector<Register, 4> Factors;
3655 
3656   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3657     // Collect low parts of muls for DstIdx.
3658     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3659          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3660       MachineInstrBuilder Mul =
3661           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3662       Factors.push_back(Mul.getReg(0));
3663     }
3664     // Collect high parts of muls from previous DstIdx.
3665     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3666          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3667       MachineInstrBuilder Umulh =
3668           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3669       Factors.push_back(Umulh.getReg(0));
3670     }
3671     // Add CarrySum from additions calculated for previous DstIdx.
3672     if (DstIdx != 1) {
3673       Factors.push_back(CarrySumPrevDstIdx);
3674     }
3675 
3676     Register CarrySum;
3677     // Add all factors and accumulate all carries into CarrySum.
3678     if (DstIdx != DstParts - 1) {
3679       MachineInstrBuilder Uaddo =
3680           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3681       FactorSum = Uaddo.getReg(0);
3682       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3683       for (unsigned i = 2; i < Factors.size(); ++i) {
3684         MachineInstrBuilder Uaddo =
3685             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3686         FactorSum = Uaddo.getReg(0);
3687         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3688         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3689       }
3690     } else {
3691       // Since value for the next index is not calculated, neither is CarrySum.
3692       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3693       for (unsigned i = 2; i < Factors.size(); ++i)
3694         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3695     }
3696 
3697     CarrySumPrevDstIdx = CarrySum;
3698     DstRegs[DstIdx] = FactorSum;
3699     Factors.clear();
3700   }
3701 }
3702 
3703 LegalizerHelper::LegalizeResult
3704 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3705   Register DstReg = MI.getOperand(0).getReg();
3706   Register Src1 = MI.getOperand(1).getReg();
3707   Register Src2 = MI.getOperand(2).getReg();
3708 
3709   LLT Ty = MRI.getType(DstReg);
3710   if (Ty.isVector())
3711     return UnableToLegalize;
3712 
3713   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3714   unsigned DstSize = Ty.getSizeInBits();
3715   unsigned NarrowSize = NarrowTy.getSizeInBits();
3716   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3717     return UnableToLegalize;
3718 
3719   unsigned NumDstParts = DstSize / NarrowSize;
3720   unsigned NumSrcParts = SrcSize / NarrowSize;
3721   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3722   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3723 
3724   SmallVector<Register, 2> Src1Parts, Src2Parts;
3725   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
3726   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3727   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3728   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3729 
3730   // Take only high half of registers if this is high mul.
3731   ArrayRef<Register> DstRegs(
3732       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3733   MIRBuilder.buildMerge(DstReg, DstRegs);
3734   MI.eraseFromParent();
3735   return Legalized;
3736 }
3737 
3738 LegalizerHelper::LegalizeResult
3739 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3740                                      LLT NarrowTy) {
3741   if (TypeIdx != 1)
3742     return UnableToLegalize;
3743 
3744   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3745 
3746   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3747   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3748   // NarrowSize.
3749   if (SizeOp1 % NarrowSize != 0)
3750     return UnableToLegalize;
3751   int NumParts = SizeOp1 / NarrowSize;
3752 
3753   SmallVector<Register, 2> SrcRegs, DstRegs;
3754   SmallVector<uint64_t, 2> Indexes;
3755   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3756 
3757   Register OpReg = MI.getOperand(0).getReg();
3758   uint64_t OpStart = MI.getOperand(2).getImm();
3759   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3760   for (int i = 0; i < NumParts; ++i) {
3761     unsigned SrcStart = i * NarrowSize;
3762 
3763     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3764       // No part of the extract uses this subregister, ignore it.
3765       continue;
3766     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3767       // The entire subregister is extracted, forward the value.
3768       DstRegs.push_back(SrcRegs[i]);
3769       continue;
3770     }
3771 
3772     // OpSegStart is where this destination segment would start in OpReg if it
3773     // extended infinitely in both directions.
3774     int64_t ExtractOffset;
3775     uint64_t SegSize;
3776     if (OpStart < SrcStart) {
3777       ExtractOffset = 0;
3778       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3779     } else {
3780       ExtractOffset = OpStart - SrcStart;
3781       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3782     }
3783 
3784     Register SegReg = SrcRegs[i];
3785     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3786       // A genuine extract is needed.
3787       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3788       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3789     }
3790 
3791     DstRegs.push_back(SegReg);
3792   }
3793 
3794   Register DstReg = MI.getOperand(0).getReg();
3795   if (MRI.getType(DstReg).isVector())
3796     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3797   else if (DstRegs.size() > 1)
3798     MIRBuilder.buildMerge(DstReg, DstRegs);
3799   else
3800     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
3801   MI.eraseFromParent();
3802   return Legalized;
3803 }
3804 
3805 LegalizerHelper::LegalizeResult
3806 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3807                                     LLT NarrowTy) {
3808   // FIXME: Don't know how to handle secondary types yet.
3809   if (TypeIdx != 0)
3810     return UnableToLegalize;
3811 
3812   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3813   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3814 
3815   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3816   // NarrowSize.
3817   if (SizeOp0 % NarrowSize != 0)
3818     return UnableToLegalize;
3819 
3820   int NumParts = SizeOp0 / NarrowSize;
3821 
3822   SmallVector<Register, 2> SrcRegs, DstRegs;
3823   SmallVector<uint64_t, 2> Indexes;
3824   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3825 
3826   Register OpReg = MI.getOperand(2).getReg();
3827   uint64_t OpStart = MI.getOperand(3).getImm();
3828   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3829   for (int i = 0; i < NumParts; ++i) {
3830     unsigned DstStart = i * NarrowSize;
3831 
3832     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3833       // No part of the insert affects this subregister, forward the original.
3834       DstRegs.push_back(SrcRegs[i]);
3835       continue;
3836     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3837       // The entire subregister is defined by this insert, forward the new
3838       // value.
3839       DstRegs.push_back(OpReg);
3840       continue;
3841     }
3842 
3843     // OpSegStart is where this destination segment would start in OpReg if it
3844     // extended infinitely in both directions.
3845     int64_t ExtractOffset, InsertOffset;
3846     uint64_t SegSize;
3847     if (OpStart < DstStart) {
3848       InsertOffset = 0;
3849       ExtractOffset = DstStart - OpStart;
3850       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3851     } else {
3852       InsertOffset = OpStart - DstStart;
3853       ExtractOffset = 0;
3854       SegSize =
3855         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3856     }
3857 
3858     Register SegReg = OpReg;
3859     if (ExtractOffset != 0 || SegSize != OpSize) {
3860       // A genuine extract is needed.
3861       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3862       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3863     }
3864 
3865     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3866     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3867     DstRegs.push_back(DstReg);
3868   }
3869 
3870   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3871   Register DstReg = MI.getOperand(0).getReg();
3872   if(MRI.getType(DstReg).isVector())
3873     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3874   else
3875     MIRBuilder.buildMerge(DstReg, DstRegs);
3876   MI.eraseFromParent();
3877   return Legalized;
3878 }
3879 
3880 LegalizerHelper::LegalizeResult
3881 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3882                                    LLT NarrowTy) {
3883   Register DstReg = MI.getOperand(0).getReg();
3884   LLT DstTy = MRI.getType(DstReg);
3885 
3886   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3887 
3888   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3889   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3890   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3891   LLT LeftoverTy;
3892   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
3893                     Src0Regs, Src0LeftoverRegs))
3894     return UnableToLegalize;
3895 
3896   LLT Unused;
3897   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
3898                     Src1Regs, Src1LeftoverRegs))
3899     llvm_unreachable("inconsistent extractParts result");
3900 
3901   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3902     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
3903                                         {Src0Regs[I], Src1Regs[I]});
3904     DstRegs.push_back(Inst.getReg(0));
3905   }
3906 
3907   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3908     auto Inst = MIRBuilder.buildInstr(
3909       MI.getOpcode(),
3910       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
3911     DstLeftoverRegs.push_back(Inst.getReg(0));
3912   }
3913 
3914   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3915               LeftoverTy, DstLeftoverRegs);
3916 
3917   MI.eraseFromParent();
3918   return Legalized;
3919 }
3920 
3921 LegalizerHelper::LegalizeResult
3922 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
3923                                  LLT NarrowTy) {
3924   if (TypeIdx != 0)
3925     return UnableToLegalize;
3926 
3927   Register DstReg = MI.getOperand(0).getReg();
3928   Register SrcReg = MI.getOperand(1).getReg();
3929 
3930   LLT DstTy = MRI.getType(DstReg);
3931   if (DstTy.isVector())
3932     return UnableToLegalize;
3933 
3934   SmallVector<Register, 8> Parts;
3935   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3936   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
3937   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3938 
3939   MI.eraseFromParent();
3940   return Legalized;
3941 }
3942 
3943 LegalizerHelper::LegalizeResult
3944 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
3945                                     LLT NarrowTy) {
3946   if (TypeIdx != 0)
3947     return UnableToLegalize;
3948 
3949   Register CondReg = MI.getOperand(1).getReg();
3950   LLT CondTy = MRI.getType(CondReg);
3951   if (CondTy.isVector()) // TODO: Handle vselect
3952     return UnableToLegalize;
3953 
3954   Register DstReg = MI.getOperand(0).getReg();
3955   LLT DstTy = MRI.getType(DstReg);
3956 
3957   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3958   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3959   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
3960   LLT LeftoverTy;
3961   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
3962                     Src1Regs, Src1LeftoverRegs))
3963     return UnableToLegalize;
3964 
3965   LLT Unused;
3966   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
3967                     Src2Regs, Src2LeftoverRegs))
3968     llvm_unreachable("inconsistent extractParts result");
3969 
3970   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3971     auto Select = MIRBuilder.buildSelect(NarrowTy,
3972                                          CondReg, Src1Regs[I], Src2Regs[I]);
3973     DstRegs.push_back(Select.getReg(0));
3974   }
3975 
3976   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3977     auto Select = MIRBuilder.buildSelect(
3978       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
3979     DstLeftoverRegs.push_back(Select.getReg(0));
3980   }
3981 
3982   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3983               LeftoverTy, DstLeftoverRegs);
3984 
3985   MI.eraseFromParent();
3986   return Legalized;
3987 }
3988 
3989 LegalizerHelper::LegalizeResult
3990 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
3991                                   LLT NarrowTy) {
3992   if (TypeIdx != 1)
3993     return UnableToLegalize;
3994 
3995   Register DstReg = MI.getOperand(0).getReg();
3996   Register SrcReg = MI.getOperand(1).getReg();
3997   LLT DstTy = MRI.getType(DstReg);
3998   LLT SrcTy = MRI.getType(SrcReg);
3999   unsigned NarrowSize = NarrowTy.getSizeInBits();
4000 
4001   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4002     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4003 
4004     MachineIRBuilder &B = MIRBuilder;
4005     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4006     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4007     auto C_0 = B.buildConstant(NarrowTy, 0);
4008     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4009                                 UnmergeSrc.getReg(1), C_0);
4010     auto LoCTLZ = IsUndef ?
4011       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4012       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4013     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4014     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4015     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4016     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4017 
4018     MI.eraseFromParent();
4019     return Legalized;
4020   }
4021 
4022   return UnableToLegalize;
4023 }
4024 
4025 LegalizerHelper::LegalizeResult
4026 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4027                                   LLT NarrowTy) {
4028   if (TypeIdx != 1)
4029     return UnableToLegalize;
4030 
4031   Register DstReg = MI.getOperand(0).getReg();
4032   Register SrcReg = MI.getOperand(1).getReg();
4033   LLT DstTy = MRI.getType(DstReg);
4034   LLT SrcTy = MRI.getType(SrcReg);
4035   unsigned NarrowSize = NarrowTy.getSizeInBits();
4036 
4037   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4038     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4039 
4040     MachineIRBuilder &B = MIRBuilder;
4041     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4042     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4043     auto C_0 = B.buildConstant(NarrowTy, 0);
4044     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4045                                 UnmergeSrc.getReg(0), C_0);
4046     auto HiCTTZ = IsUndef ?
4047       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4048       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4049     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4050     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4051     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4052     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4053 
4054     MI.eraseFromParent();
4055     return Legalized;
4056   }
4057 
4058   return UnableToLegalize;
4059 }
4060 
4061 LegalizerHelper::LegalizeResult
4062 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4063                                    LLT NarrowTy) {
4064   if (TypeIdx != 1)
4065     return UnableToLegalize;
4066 
4067   Register DstReg = MI.getOperand(0).getReg();
4068   LLT DstTy = MRI.getType(DstReg);
4069   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4070   unsigned NarrowSize = NarrowTy.getSizeInBits();
4071 
4072   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4073     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4074 
4075     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4076     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4077     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4078 
4079     MI.eraseFromParent();
4080     return Legalized;
4081   }
4082 
4083   return UnableToLegalize;
4084 }
4085 
4086 LegalizerHelper::LegalizeResult
4087 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4088   unsigned Opc = MI.getOpcode();
4089   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
4090   auto isSupported = [this](const LegalityQuery &Q) {
4091     auto QAction = LI.getAction(Q).Action;
4092     return QAction == Legal || QAction == Libcall || QAction == Custom;
4093   };
4094   switch (Opc) {
4095   default:
4096     return UnableToLegalize;
4097   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4098     // This trivially expands to CTLZ.
4099     Observer.changingInstr(MI);
4100     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4101     Observer.changedInstr(MI);
4102     return Legalized;
4103   }
4104   case TargetOpcode::G_CTLZ: {
4105     Register DstReg = MI.getOperand(0).getReg();
4106     Register SrcReg = MI.getOperand(1).getReg();
4107     LLT DstTy = MRI.getType(DstReg);
4108     LLT SrcTy = MRI.getType(SrcReg);
4109     unsigned Len = SrcTy.getSizeInBits();
4110 
4111     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4112       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4113       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4114       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4115       auto ICmp = MIRBuilder.buildICmp(
4116           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4117       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4118       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4119       MI.eraseFromParent();
4120       return Legalized;
4121     }
4122     // for now, we do this:
4123     // NewLen = NextPowerOf2(Len);
4124     // x = x | (x >> 1);
4125     // x = x | (x >> 2);
4126     // ...
4127     // x = x | (x >>16);
4128     // x = x | (x >>32); // for 64-bit input
4129     // Upto NewLen/2
4130     // return Len - popcount(x);
4131     //
4132     // Ref: "Hacker's Delight" by Henry Warren
4133     Register Op = SrcReg;
4134     unsigned NewLen = PowerOf2Ceil(Len);
4135     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4136       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4137       auto MIBOp = MIRBuilder.buildOr(
4138           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4139       Op = MIBOp.getReg(0);
4140     }
4141     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4142     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4143                         MIBPop);
4144     MI.eraseFromParent();
4145     return Legalized;
4146   }
4147   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4148     // This trivially expands to CTTZ.
4149     Observer.changingInstr(MI);
4150     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4151     Observer.changedInstr(MI);
4152     return Legalized;
4153   }
4154   case TargetOpcode::G_CTTZ: {
4155     Register DstReg = MI.getOperand(0).getReg();
4156     Register SrcReg = MI.getOperand(1).getReg();
4157     LLT DstTy = MRI.getType(DstReg);
4158     LLT SrcTy = MRI.getType(SrcReg);
4159 
4160     unsigned Len = SrcTy.getSizeInBits();
4161     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4162       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4163       // zero.
4164       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4165       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4166       auto ICmp = MIRBuilder.buildICmp(
4167           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4168       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4169       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4170       MI.eraseFromParent();
4171       return Legalized;
4172     }
4173     // for now, we use: { return popcount(~x & (x - 1)); }
4174     // unless the target has ctlz but not ctpop, in which case we use:
4175     // { return 32 - nlz(~x & (x-1)); }
4176     // Ref: "Hacker's Delight" by Henry Warren
4177     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4178     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4179     auto MIBTmp = MIRBuilder.buildAnd(
4180         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4181     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4182         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4183       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4184       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4185                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4186       MI.eraseFromParent();
4187       return Legalized;
4188     }
4189     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4190     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4191     return Legalized;
4192   }
4193   case TargetOpcode::G_CTPOP: {
4194     unsigned Size = Ty.getSizeInBits();
4195     MachineIRBuilder &B = MIRBuilder;
4196 
4197     // Count set bits in blocks of 2 bits. Default approach would be
4198     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4199     // We use following formula instead:
4200     // B2Count = val - { (val >> 1) & 0x55555555 }
4201     // since it gives same result in blocks of 2 with one instruction less.
4202     auto C_1 = B.buildConstant(Ty, 1);
4203     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4204     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4205     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4206     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4207     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4208 
4209     // In order to get count in blocks of 4 add values from adjacent block of 2.
4210     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4211     auto C_2 = B.buildConstant(Ty, 2);
4212     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4213     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4214     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4215     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4216     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4217     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4218 
4219     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4220     // addition since count value sits in range {0,...,8} and 4 bits are enough
4221     // to hold such binary values. After addition high 4 bits still hold count
4222     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4223     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4224     auto C_4 = B.buildConstant(Ty, 4);
4225     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4226     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4227     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4228     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4229     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4230 
4231     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4232     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4233     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4234     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4235     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4236 
4237     // Shift count result from 8 high bits to low bits.
4238     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4239     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4240 
4241     MI.eraseFromParent();
4242     return Legalized;
4243   }
4244   }
4245 }
4246 
4247 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4248 // representation.
4249 LegalizerHelper::LegalizeResult
4250 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4251   Register Dst = MI.getOperand(0).getReg();
4252   Register Src = MI.getOperand(1).getReg();
4253   const LLT S64 = LLT::scalar(64);
4254   const LLT S32 = LLT::scalar(32);
4255   const LLT S1 = LLT::scalar(1);
4256 
4257   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4258 
4259   // unsigned cul2f(ulong u) {
4260   //   uint lz = clz(u);
4261   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4262   //   u = (u << lz) & 0x7fffffffffffffffUL;
4263   //   ulong t = u & 0xffffffffffUL;
4264   //   uint v = (e << 23) | (uint)(u >> 40);
4265   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4266   //   return as_float(v + r);
4267   // }
4268 
4269   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4270   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4271 
4272   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4273 
4274   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4275   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4276 
4277   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4278   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4279 
4280   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4281   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4282 
4283   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4284 
4285   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4286   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4287 
4288   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4289   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4290   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4291 
4292   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4293   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4294   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4295   auto One = MIRBuilder.buildConstant(S32, 1);
4296 
4297   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4298   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4299   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4300   MIRBuilder.buildAdd(Dst, V, R);
4301 
4302   return Legalized;
4303 }
4304 
4305 LegalizerHelper::LegalizeResult
4306 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4307   Register Dst = MI.getOperand(0).getReg();
4308   Register Src = MI.getOperand(1).getReg();
4309   LLT DstTy = MRI.getType(Dst);
4310   LLT SrcTy = MRI.getType(Src);
4311 
4312   if (SrcTy == LLT::scalar(1)) {
4313     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4314     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4315     MIRBuilder.buildSelect(Dst, Src, True, False);
4316     MI.eraseFromParent();
4317     return Legalized;
4318   }
4319 
4320   if (SrcTy != LLT::scalar(64))
4321     return UnableToLegalize;
4322 
4323   if (DstTy == LLT::scalar(32)) {
4324     // TODO: SelectionDAG has several alternative expansions to port which may
4325     // be more reasonble depending on the available instructions. If a target
4326     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4327     // intermediate type, this is probably worse.
4328     return lowerU64ToF32BitOps(MI);
4329   }
4330 
4331   return UnableToLegalize;
4332 }
4333 
4334 LegalizerHelper::LegalizeResult
4335 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4336   Register Dst = MI.getOperand(0).getReg();
4337   Register Src = MI.getOperand(1).getReg();
4338   LLT DstTy = MRI.getType(Dst);
4339   LLT SrcTy = MRI.getType(Src);
4340 
4341   const LLT S64 = LLT::scalar(64);
4342   const LLT S32 = LLT::scalar(32);
4343   const LLT S1 = LLT::scalar(1);
4344 
4345   if (SrcTy == S1) {
4346     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4347     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4348     MIRBuilder.buildSelect(Dst, Src, True, False);
4349     MI.eraseFromParent();
4350     return Legalized;
4351   }
4352 
4353   if (SrcTy != S64)
4354     return UnableToLegalize;
4355 
4356   if (DstTy == S32) {
4357     // signed cl2f(long l) {
4358     //   long s = l >> 63;
4359     //   float r = cul2f((l + s) ^ s);
4360     //   return s ? -r : r;
4361     // }
4362     Register L = Src;
4363     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4364     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4365 
4366     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4367     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4368     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4369 
4370     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4371     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4372                                             MIRBuilder.buildConstant(S64, 0));
4373     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4374     return Legalized;
4375   }
4376 
4377   return UnableToLegalize;
4378 }
4379 
4380 LegalizerHelper::LegalizeResult
4381 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4382   Register Dst = MI.getOperand(0).getReg();
4383   Register Src = MI.getOperand(1).getReg();
4384   LLT DstTy = MRI.getType(Dst);
4385   LLT SrcTy = MRI.getType(Src);
4386   const LLT S64 = LLT::scalar(64);
4387   const LLT S32 = LLT::scalar(32);
4388 
4389   if (SrcTy != S64 && SrcTy != S32)
4390     return UnableToLegalize;
4391   if (DstTy != S32 && DstTy != S64)
4392     return UnableToLegalize;
4393 
4394   // FPTOSI gives same result as FPTOUI for positive signed integers.
4395   // FPTOUI needs to deal with fp values that convert to unsigned integers
4396   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4397 
4398   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4399   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4400                                                 : APFloat::IEEEdouble(),
4401                     APInt::getNullValue(SrcTy.getSizeInBits()));
4402   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4403 
4404   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4405 
4406   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4407   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4408   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4409   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4410   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4411   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4412   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4413 
4414   const LLT S1 = LLT::scalar(1);
4415 
4416   MachineInstrBuilder FCMP =
4417       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4418   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4419 
4420   MI.eraseFromParent();
4421   return Legalized;
4422 }
4423 
4424 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4425   Register Dst = MI.getOperand(0).getReg();
4426   Register Src = MI.getOperand(1).getReg();
4427   LLT DstTy = MRI.getType(Dst);
4428   LLT SrcTy = MRI.getType(Src);
4429   const LLT S64 = LLT::scalar(64);
4430   const LLT S32 = LLT::scalar(32);
4431 
4432   // FIXME: Only f32 to i64 conversions are supported.
4433   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4434     return UnableToLegalize;
4435 
4436   // Expand f32 -> i64 conversion
4437   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4438   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4439 
4440   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4441 
4442   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4443   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4444 
4445   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4446   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4447 
4448   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4449                                            APInt::getSignMask(SrcEltBits));
4450   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4451   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4452   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4453   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4454 
4455   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4456   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4457   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4458 
4459   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4460   R = MIRBuilder.buildZExt(DstTy, R);
4461 
4462   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4463   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4464   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4465   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4466 
4467   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4468   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4469 
4470   const LLT S1 = LLT::scalar(1);
4471   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4472                                     S1, Exponent, ExponentLoBit);
4473 
4474   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4475 
4476   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4477   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4478 
4479   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4480 
4481   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4482                                           S1, Exponent, ZeroSrcTy);
4483 
4484   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4485   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4486 
4487   MI.eraseFromParent();
4488   return Legalized;
4489 }
4490 
4491 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4492 LegalizerHelper::LegalizeResult
4493 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4494   Register Dst = MI.getOperand(0).getReg();
4495   Register Src = MI.getOperand(1).getReg();
4496 
4497   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4498     return UnableToLegalize;
4499 
4500   const unsigned ExpMask = 0x7ff;
4501   const unsigned ExpBiasf64 = 1023;
4502   const unsigned ExpBiasf16 = 15;
4503   const LLT S32 = LLT::scalar(32);
4504   const LLT S1 = LLT::scalar(1);
4505 
4506   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4507   Register U = Unmerge.getReg(0);
4508   Register UH = Unmerge.getReg(1);
4509 
4510   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4511 
4512   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4513   // add the f16 bias (15) to get the biased exponent for the f16 format.
4514   E = MIRBuilder.buildAdd(
4515     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4516   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4517 
4518   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4519   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
4520 
4521   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
4522                                        MIRBuilder.buildConstant(S32, 0x1ff));
4523   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
4524 
4525   auto Zero = MIRBuilder.buildConstant(S32, 0);
4526   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
4527   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
4528   M = MIRBuilder.buildOr(S32, M, Lo40Set);
4529 
4530   // (M != 0 ? 0x0200 : 0) | 0x7c00;
4531   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
4532   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
4533   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
4534 
4535   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
4536   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
4537 
4538   // N = M | (E << 12);
4539   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
4540   auto N = MIRBuilder.buildOr(S32, M, EShl12);
4541 
4542   // B = clamp(1-E, 0, 13);
4543   auto One = MIRBuilder.buildConstant(S32, 1);
4544   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
4545   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
4546   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
4547 
4548   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
4549                                        MIRBuilder.buildConstant(S32, 0x1000));
4550 
4551   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
4552   auto D0 = MIRBuilder.buildShl(S32, D, B);
4553 
4554   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
4555                                              D0, SigSetHigh);
4556   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
4557   D = MIRBuilder.buildOr(S32, D, D1);
4558 
4559   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
4560   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
4561 
4562   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
4563   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
4564 
4565   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
4566                                        MIRBuilder.buildConstant(S32, 3));
4567   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
4568 
4569   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
4570                                        MIRBuilder.buildConstant(S32, 5));
4571   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
4572 
4573   V1 = MIRBuilder.buildOr(S32, V0, V1);
4574   V = MIRBuilder.buildAdd(S32, V, V1);
4575 
4576   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
4577                                        E, MIRBuilder.buildConstant(S32, 30));
4578   V = MIRBuilder.buildSelect(S32, CmpEGt30,
4579                              MIRBuilder.buildConstant(S32, 0x7c00), V);
4580 
4581   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
4582                                          E, MIRBuilder.buildConstant(S32, 1039));
4583   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
4584 
4585   // Extract the sign bit.
4586   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
4587   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
4588 
4589   // Insert the sign bit
4590   V = MIRBuilder.buildOr(S32, Sign, V);
4591 
4592   MIRBuilder.buildTrunc(Dst, V);
4593   MI.eraseFromParent();
4594   return Legalized;
4595 }
4596 
4597 LegalizerHelper::LegalizeResult
4598 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4599   Register Dst = MI.getOperand(0).getReg();
4600   Register Src = MI.getOperand(1).getReg();
4601 
4602   LLT DstTy = MRI.getType(Dst);
4603   LLT SrcTy = MRI.getType(Src);
4604   const LLT S64 = LLT::scalar(64);
4605   const LLT S16 = LLT::scalar(16);
4606 
4607   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
4608     return lowerFPTRUNC_F64_TO_F16(MI);
4609 
4610   return UnableToLegalize;
4611 }
4612 
4613 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4614   switch (Opc) {
4615   case TargetOpcode::G_SMIN:
4616     return CmpInst::ICMP_SLT;
4617   case TargetOpcode::G_SMAX:
4618     return CmpInst::ICMP_SGT;
4619   case TargetOpcode::G_UMIN:
4620     return CmpInst::ICMP_ULT;
4621   case TargetOpcode::G_UMAX:
4622     return CmpInst::ICMP_UGT;
4623   default:
4624     llvm_unreachable("not in integer min/max");
4625   }
4626 }
4627 
4628 LegalizerHelper::LegalizeResult
4629 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4630   Register Dst = MI.getOperand(0).getReg();
4631   Register Src0 = MI.getOperand(1).getReg();
4632   Register Src1 = MI.getOperand(2).getReg();
4633 
4634   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4635   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4636 
4637   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4638   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4639 
4640   MI.eraseFromParent();
4641   return Legalized;
4642 }
4643 
4644 LegalizerHelper::LegalizeResult
4645 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4646   Register Dst = MI.getOperand(0).getReg();
4647   Register Src0 = MI.getOperand(1).getReg();
4648   Register Src1 = MI.getOperand(2).getReg();
4649 
4650   const LLT Src0Ty = MRI.getType(Src0);
4651   const LLT Src1Ty = MRI.getType(Src1);
4652 
4653   const int Src0Size = Src0Ty.getScalarSizeInBits();
4654   const int Src1Size = Src1Ty.getScalarSizeInBits();
4655 
4656   auto SignBitMask = MIRBuilder.buildConstant(
4657     Src0Ty, APInt::getSignMask(Src0Size));
4658 
4659   auto NotSignBitMask = MIRBuilder.buildConstant(
4660     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4661 
4662   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4663   MachineInstr *Or;
4664 
4665   if (Src0Ty == Src1Ty) {
4666     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask);
4667     Or = MIRBuilder.buildOr(Dst, And0, And1);
4668   } else if (Src0Size > Src1Size) {
4669     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4670     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4671     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4672     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4673     Or = MIRBuilder.buildOr(Dst, And0, And1);
4674   } else {
4675     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4676     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4677     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4678     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4679     Or = MIRBuilder.buildOr(Dst, And0, And1);
4680   }
4681 
4682   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4683   // constants are a nan and -0.0, but the final result should preserve
4684   // everything.
4685   if (unsigned Flags = MI.getFlags())
4686     Or->setFlags(Flags);
4687 
4688   MI.eraseFromParent();
4689   return Legalized;
4690 }
4691 
4692 LegalizerHelper::LegalizeResult
4693 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4694   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4695     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4696 
4697   Register Dst = MI.getOperand(0).getReg();
4698   Register Src0 = MI.getOperand(1).getReg();
4699   Register Src1 = MI.getOperand(2).getReg();
4700   LLT Ty = MRI.getType(Dst);
4701 
4702   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4703     // Insert canonicalizes if it's possible we need to quiet to get correct
4704     // sNaN behavior.
4705 
4706     // Note this must be done here, and not as an optimization combine in the
4707     // absence of a dedicate quiet-snan instruction as we're using an
4708     // omni-purpose G_FCANONICALIZE.
4709     if (!isKnownNeverSNaN(Src0, MRI))
4710       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4711 
4712     if (!isKnownNeverSNaN(Src1, MRI))
4713       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4714   }
4715 
4716   // If there are no nans, it's safe to simply replace this with the non-IEEE
4717   // version.
4718   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4719   MI.eraseFromParent();
4720   return Legalized;
4721 }
4722 
4723 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4724   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4725   Register DstReg = MI.getOperand(0).getReg();
4726   LLT Ty = MRI.getType(DstReg);
4727   unsigned Flags = MI.getFlags();
4728 
4729   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4730                                   Flags);
4731   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4732   MI.eraseFromParent();
4733   return Legalized;
4734 }
4735 
4736 LegalizerHelper::LegalizeResult
4737 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4738   Register DstReg = MI.getOperand(0).getReg();
4739   Register X = MI.getOperand(1).getReg();
4740   const unsigned Flags = MI.getFlags();
4741   const LLT Ty = MRI.getType(DstReg);
4742   const LLT CondTy = Ty.changeElementSize(1);
4743 
4744   // round(x) =>
4745   //  t = trunc(x);
4746   //  d = fabs(x - t);
4747   //  o = copysign(1.0f, x);
4748   //  return t + (d >= 0.5 ? o : 0.0);
4749 
4750   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
4751 
4752   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
4753   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
4754   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4755   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
4756   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
4757   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
4758 
4759   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
4760                                   Flags);
4761   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
4762 
4763   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
4764 
4765   MI.eraseFromParent();
4766   return Legalized;
4767 }
4768 
4769 LegalizerHelper::LegalizeResult
4770 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
4771   Register DstReg = MI.getOperand(0).getReg();
4772   Register SrcReg = MI.getOperand(1).getReg();
4773   unsigned Flags = MI.getFlags();
4774   LLT Ty = MRI.getType(DstReg);
4775   const LLT CondTy = Ty.changeElementSize(1);
4776 
4777   // result = trunc(src);
4778   // if (src < 0.0 && src != result)
4779   //   result += -1.0.
4780 
4781   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4782   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4783 
4784   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4785                                   SrcReg, Zero, Flags);
4786   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4787                                       SrcReg, Trunc, Flags);
4788   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
4789   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
4790 
4791   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
4792   MI.eraseFromParent();
4793   return Legalized;
4794 }
4795 
4796 LegalizerHelper::LegalizeResult
4797 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
4798   const unsigned NumDst = MI.getNumOperands() - 1;
4799   const Register SrcReg = MI.getOperand(NumDst).getReg();
4800   LLT SrcTy = MRI.getType(SrcReg);
4801 
4802   Register Dst0Reg = MI.getOperand(0).getReg();
4803   LLT DstTy = MRI.getType(Dst0Reg);
4804 
4805 
4806   // Expand scalarizing unmerge as bitcast to integer and shift.
4807   if (!DstTy.isVector() && SrcTy.isVector() &&
4808       SrcTy.getElementType() == DstTy) {
4809     LLT IntTy = LLT::scalar(SrcTy.getSizeInBits());
4810     Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0);
4811 
4812     MIRBuilder.buildTrunc(Dst0Reg, Cast);
4813 
4814     const unsigned DstSize = DstTy.getSizeInBits();
4815     unsigned Offset = DstSize;
4816     for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
4817       auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
4818       auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt);
4819       MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
4820     }
4821 
4822     MI.eraseFromParent();
4823     return Legalized;
4824   }
4825 
4826   return UnableToLegalize;
4827 }
4828 
4829 LegalizerHelper::LegalizeResult
4830 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
4831   Register DstReg = MI.getOperand(0).getReg();
4832   Register Src0Reg = MI.getOperand(1).getReg();
4833   Register Src1Reg = MI.getOperand(2).getReg();
4834   LLT Src0Ty = MRI.getType(Src0Reg);
4835   LLT DstTy = MRI.getType(DstReg);
4836   LLT IdxTy = LLT::scalar(32);
4837 
4838   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4839 
4840   if (DstTy.isScalar()) {
4841     if (Src0Ty.isVector())
4842       return UnableToLegalize;
4843 
4844     // This is just a SELECT.
4845     assert(Mask.size() == 1 && "Expected a single mask element");
4846     Register Val;
4847     if (Mask[0] < 0 || Mask[0] > 1)
4848       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
4849     else
4850       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
4851     MIRBuilder.buildCopy(DstReg, Val);
4852     MI.eraseFromParent();
4853     return Legalized;
4854   }
4855 
4856   Register Undef;
4857   SmallVector<Register, 32> BuildVec;
4858   LLT EltTy = DstTy.getElementType();
4859 
4860   for (int Idx : Mask) {
4861     if (Idx < 0) {
4862       if (!Undef.isValid())
4863         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
4864       BuildVec.push_back(Undef);
4865       continue;
4866     }
4867 
4868     if (Src0Ty.isScalar()) {
4869       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
4870     } else {
4871       int NumElts = Src0Ty.getNumElements();
4872       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
4873       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
4874       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
4875       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
4876       BuildVec.push_back(Extract.getReg(0));
4877     }
4878   }
4879 
4880   MIRBuilder.buildBuildVector(DstReg, BuildVec);
4881   MI.eraseFromParent();
4882   return Legalized;
4883 }
4884 
4885 LegalizerHelper::LegalizeResult
4886 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
4887   Register Dst = MI.getOperand(0).getReg();
4888   Register AllocSize = MI.getOperand(1).getReg();
4889   unsigned Align = MI.getOperand(2).getImm();
4890 
4891   const auto &MF = *MI.getMF();
4892   const auto &TLI = *MF.getSubtarget().getTargetLowering();
4893 
4894   LLT PtrTy = MRI.getType(Dst);
4895   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
4896 
4897   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
4898   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
4899   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
4900 
4901   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
4902   // have to generate an extra instruction to negate the alloc and then use
4903   // G_PTR_ADD to add the negative offset.
4904   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
4905   if (Align) {
4906     APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true);
4907     AlignMask.negate();
4908     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
4909     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
4910   }
4911 
4912   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
4913   MIRBuilder.buildCopy(SPReg, SPTmp);
4914   MIRBuilder.buildCopy(Dst, SPTmp);
4915 
4916   MI.eraseFromParent();
4917   return Legalized;
4918 }
4919 
4920 LegalizerHelper::LegalizeResult
4921 LegalizerHelper::lowerExtract(MachineInstr &MI) {
4922   Register Dst = MI.getOperand(0).getReg();
4923   Register Src = MI.getOperand(1).getReg();
4924   unsigned Offset = MI.getOperand(2).getImm();
4925 
4926   LLT DstTy = MRI.getType(Dst);
4927   LLT SrcTy = MRI.getType(Src);
4928 
4929   if (DstTy.isScalar() &&
4930       (SrcTy.isScalar() ||
4931        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
4932     LLT SrcIntTy = SrcTy;
4933     if (!SrcTy.isScalar()) {
4934       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
4935       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
4936     }
4937 
4938     if (Offset == 0)
4939       MIRBuilder.buildTrunc(Dst, Src);
4940     else {
4941       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
4942       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
4943       MIRBuilder.buildTrunc(Dst, Shr);
4944     }
4945 
4946     MI.eraseFromParent();
4947     return Legalized;
4948   }
4949 
4950   return UnableToLegalize;
4951 }
4952 
4953 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
4954   Register Dst = MI.getOperand(0).getReg();
4955   Register Src = MI.getOperand(1).getReg();
4956   Register InsertSrc = MI.getOperand(2).getReg();
4957   uint64_t Offset = MI.getOperand(3).getImm();
4958 
4959   LLT DstTy = MRI.getType(Src);
4960   LLT InsertTy = MRI.getType(InsertSrc);
4961 
4962   if (InsertTy.isVector() ||
4963       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
4964     return UnableToLegalize;
4965 
4966   const DataLayout &DL = MIRBuilder.getDataLayout();
4967   if ((DstTy.isPointer() &&
4968        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
4969       (InsertTy.isPointer() &&
4970        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
4971     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
4972     return UnableToLegalize;
4973   }
4974 
4975   LLT IntDstTy = DstTy;
4976 
4977   if (!DstTy.isScalar()) {
4978     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
4979     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
4980   }
4981 
4982   if (!InsertTy.isScalar()) {
4983     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
4984     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
4985   }
4986 
4987   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
4988   if (Offset != 0) {
4989     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
4990     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
4991   }
4992 
4993   APInt MaskVal = APInt::getBitsSetWithWrap(
4994       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
4995 
4996   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
4997   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
4998   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
4999 
5000   MIRBuilder.buildCast(Dst, Or);
5001   MI.eraseFromParent();
5002   return Legalized;
5003 }
5004 
5005 LegalizerHelper::LegalizeResult
5006 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5007   Register Dst0 = MI.getOperand(0).getReg();
5008   Register Dst1 = MI.getOperand(1).getReg();
5009   Register LHS = MI.getOperand(2).getReg();
5010   Register RHS = MI.getOperand(3).getReg();
5011   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5012 
5013   LLT Ty = MRI.getType(Dst0);
5014   LLT BoolTy = MRI.getType(Dst1);
5015 
5016   if (IsAdd)
5017     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5018   else
5019     MIRBuilder.buildSub(Dst0, LHS, RHS);
5020 
5021   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5022 
5023   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5024 
5025   // For an addition, the result should be less than one of the operands (LHS)
5026   // if and only if the other operand (RHS) is negative, otherwise there will
5027   // be overflow.
5028   // For a subtraction, the result should be less than one of the operands
5029   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5030   // otherwise there will be overflow.
5031   auto ResultLowerThanLHS =
5032       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5033   auto ConditionRHS = MIRBuilder.buildICmp(
5034       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5035 
5036   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5037   MI.eraseFromParent();
5038   return Legalized;
5039 }
5040 
5041 LegalizerHelper::LegalizeResult
5042 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5043   Register Dst = MI.getOperand(0).getReg();
5044   Register Src = MI.getOperand(1).getReg();
5045   const LLT Ty = MRI.getType(Src);
5046   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5047   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5048 
5049   // Swap most and least significant byte, set remaining bytes in Res to zero.
5050   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5051   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5052   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5053   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5054 
5055   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5056   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5057     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5058     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5059     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5060     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5061     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5062     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5063     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5064     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5065     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5066     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5067     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5068     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5069   }
5070   Res.getInstr()->getOperand(0).setReg(Dst);
5071 
5072   MI.eraseFromParent();
5073   return Legalized;
5074 }
5075 
5076 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5077 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5078                                  MachineInstrBuilder Src, APInt Mask) {
5079   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5080   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5081   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5082   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5083   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5084   return B.buildOr(Dst, LHS, RHS);
5085 }
5086 
5087 LegalizerHelper::LegalizeResult
5088 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5089   Register Dst = MI.getOperand(0).getReg();
5090   Register Src = MI.getOperand(1).getReg();
5091   const LLT Ty = MRI.getType(Src);
5092   unsigned Size = Ty.getSizeInBits();
5093 
5094   MachineInstrBuilder BSWAP =
5095       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5096 
5097   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5098   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5099   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5100   MachineInstrBuilder Swap4 =
5101       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5102 
5103   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5104   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5105   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5106   MachineInstrBuilder Swap2 =
5107       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5108 
5109   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5110   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5111   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5112   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5113 
5114   MI.eraseFromParent();
5115   return Legalized;
5116 }
5117 
5118 LegalizerHelper::LegalizeResult
5119 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5120   MachineFunction &MF = MIRBuilder.getMF();
5121   const TargetSubtargetInfo &STI = MF.getSubtarget();
5122   const TargetLowering *TLI = STI.getTargetLowering();
5123 
5124   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5125   int NameOpIdx = IsRead ? 1 : 0;
5126   int ValRegIndex = IsRead ? 0 : 1;
5127 
5128   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5129   const LLT Ty = MRI.getType(ValReg);
5130   const MDString *RegStr = cast<MDString>(
5131     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5132 
5133   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5134   if (!PhysReg.isValid())
5135     return UnableToLegalize;
5136 
5137   if (IsRead)
5138     MIRBuilder.buildCopy(ValReg, PhysReg);
5139   else
5140     MIRBuilder.buildCopy(PhysReg, ValReg);
5141 
5142   MI.eraseFromParent();
5143   return Legalized;
5144 }
5145