1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 90 MIRBuilder.setChangeObserver(Observer); 91 } 92 93 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 94 GISelChangeObserver &Observer, 95 MachineIRBuilder &B) 96 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 97 MIRBuilder.setChangeObserver(Observer); 98 } 99 LegalizerHelper::LegalizeResult 100 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 101 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 102 103 MIRBuilder.setInstrAndDebugLoc(MI); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 108 : UnableToLegalize; 109 auto Step = LI.getAction(MI, MRI); 110 switch (Step.Action) { 111 case Legal: 112 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 113 return AlreadyLegal; 114 case Libcall: 115 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 116 return libcall(MI); 117 case NarrowScalar: 118 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 119 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 120 case WidenScalar: 121 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 122 return widenScalar(MI, Step.TypeIdx, Step.NewType); 123 case Bitcast: 124 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 125 return bitcast(MI, Step.TypeIdx, Step.NewType); 126 case Lower: 127 LLVM_DEBUG(dbgs() << ".. Lower\n"); 128 return lower(MI, Step.TypeIdx, Step.NewType); 129 case FewerElements: 130 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 131 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 132 case MoreElements: 133 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 134 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 135 case Custom: 136 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 137 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 138 : UnableToLegalize; 139 default: 140 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 141 return UnableToLegalize; 142 } 143 } 144 145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 146 SmallVectorImpl<Register> &VRegs) { 147 for (int i = 0; i < NumParts; ++i) 148 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 149 MIRBuilder.buildUnmerge(VRegs, Reg); 150 } 151 152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 153 LLT MainTy, LLT &LeftoverTy, 154 SmallVectorImpl<Register> &VRegs, 155 SmallVectorImpl<Register> &LeftoverRegs) { 156 assert(!LeftoverTy.isValid() && "this is an out argument"); 157 158 unsigned RegSize = RegTy.getSizeInBits(); 159 unsigned MainSize = MainTy.getSizeInBits(); 160 unsigned NumParts = RegSize / MainSize; 161 unsigned LeftoverSize = RegSize - NumParts * MainSize; 162 163 // Use an unmerge when possible. 164 if (LeftoverSize == 0) { 165 for (unsigned I = 0; I < NumParts; ++I) 166 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 167 MIRBuilder.buildUnmerge(VRegs, Reg); 168 return true; 169 } 170 171 if (MainTy.isVector()) { 172 unsigned EltSize = MainTy.getScalarSizeInBits(); 173 if (LeftoverSize % EltSize != 0) 174 return false; 175 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 176 } else { 177 LeftoverTy = LLT::scalar(LeftoverSize); 178 } 179 180 // For irregular sizes, extract the individual parts. 181 for (unsigned I = 0; I != NumParts; ++I) { 182 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 183 VRegs.push_back(NewReg); 184 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 185 } 186 187 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 188 Offset += LeftoverSize) { 189 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 190 LeftoverRegs.push_back(NewReg); 191 MIRBuilder.buildExtract(NewReg, Reg, Offset); 192 } 193 194 return true; 195 } 196 197 void LegalizerHelper::insertParts(Register DstReg, 198 LLT ResultTy, LLT PartTy, 199 ArrayRef<Register> PartRegs, 200 LLT LeftoverTy, 201 ArrayRef<Register> LeftoverRegs) { 202 if (!LeftoverTy.isValid()) { 203 assert(LeftoverRegs.empty()); 204 205 if (!ResultTy.isVector()) { 206 MIRBuilder.buildMerge(DstReg, PartRegs); 207 return; 208 } 209 210 if (PartTy.isVector()) 211 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 212 else 213 MIRBuilder.buildBuildVector(DstReg, PartRegs); 214 return; 215 } 216 217 unsigned PartSize = PartTy.getSizeInBits(); 218 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 219 220 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 221 MIRBuilder.buildUndef(CurResultReg); 222 223 unsigned Offset = 0; 224 for (Register PartReg : PartRegs) { 225 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 226 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 227 CurResultReg = NewResultReg; 228 Offset += PartSize; 229 } 230 231 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 232 // Use the original output register for the final insert to avoid a copy. 233 Register NewResultReg = (I + 1 == E) ? 234 DstReg : MRI.createGenericVirtualRegister(ResultTy); 235 236 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 237 CurResultReg = NewResultReg; 238 Offset += LeftoverPartSize; 239 } 240 } 241 242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 244 const MachineInstr &MI) { 245 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 246 247 const int NumResults = MI.getNumOperands() - 1; 248 Regs.resize(NumResults); 249 for (int I = 0; I != NumResults; ++I) 250 Regs[I] = MI.getOperand(I).getReg(); 251 } 252 253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 254 LLT NarrowTy, Register SrcReg) { 255 LLT SrcTy = MRI.getType(SrcReg); 256 257 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 268 return GCDTy; 269 } 270 271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 272 SmallVectorImpl<Register> &VRegs, 273 unsigned PadStrategy) { 274 LLT LCMTy = getLCMType(DstTy, NarrowTy); 275 276 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 277 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 278 int NumOrigSrc = VRegs.size(); 279 280 Register PadReg; 281 282 // Get a value we can use to pad the source value if the sources won't evenly 283 // cover the result type. 284 if (NumOrigSrc < NumParts * NumSubParts) { 285 if (PadStrategy == TargetOpcode::G_ZEXT) 286 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 287 else if (PadStrategy == TargetOpcode::G_ANYEXT) 288 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 289 else { 290 assert(PadStrategy == TargetOpcode::G_SEXT); 291 292 // Shift the sign bit of the low register through the high register. 293 auto ShiftAmt = 294 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 295 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 296 } 297 } 298 299 // Registers for the final merge to be produced. 300 SmallVector<Register, 4> Remerge(NumParts); 301 302 // Registers needed for intermediate merges, which will be merged into a 303 // source for Remerge. 304 SmallVector<Register, 4> SubMerge(NumSubParts); 305 306 // Once we've fully read off the end of the original source bits, we can reuse 307 // the same high bits for remaining padding elements. 308 Register AllPadReg; 309 310 // Build merges to the LCM type to cover the original result type. 311 for (int I = 0; I != NumParts; ++I) { 312 bool AllMergePartsArePadding = true; 313 314 // Build the requested merges to the requested type. 315 for (int J = 0; J != NumSubParts; ++J) { 316 int Idx = I * NumSubParts + J; 317 if (Idx >= NumOrigSrc) { 318 SubMerge[J] = PadReg; 319 continue; 320 } 321 322 SubMerge[J] = VRegs[Idx]; 323 324 // There are meaningful bits here we can't reuse later. 325 AllMergePartsArePadding = false; 326 } 327 328 // If we've filled up a complete piece with padding bits, we can directly 329 // emit the natural sized constant if applicable, rather than a merge of 330 // smaller constants. 331 if (AllMergePartsArePadding && !AllPadReg) { 332 if (PadStrategy == TargetOpcode::G_ANYEXT) 333 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 334 else if (PadStrategy == TargetOpcode::G_ZEXT) 335 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 336 337 // If this is a sign extension, we can't materialize a trivial constant 338 // with the right type and have to produce a merge. 339 } 340 341 if (AllPadReg) { 342 // Avoid creating additional instructions if we're just adding additional 343 // copies of padding bits. 344 Remerge[I] = AllPadReg; 345 continue; 346 } 347 348 if (NumSubParts == 1) 349 Remerge[I] = SubMerge[0]; 350 else 351 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 352 353 // In the sign extend padding case, re-use the first all-signbit merge. 354 if (AllMergePartsArePadding && !AllPadReg) 355 AllPadReg = Remerge[I]; 356 } 357 358 VRegs = std::move(Remerge); 359 return LCMTy; 360 } 361 362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 363 ArrayRef<Register> RemergeRegs) { 364 LLT DstTy = MRI.getType(DstReg); 365 366 // Create the merge to the widened source, and extract the relevant bits into 367 // the result. 368 369 if (DstTy == LCMTy) { 370 MIRBuilder.buildMerge(DstReg, RemergeRegs); 371 return; 372 } 373 374 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 375 if (DstTy.isScalar() && LCMTy.isScalar()) { 376 MIRBuilder.buildTrunc(DstReg, Remerge); 377 return; 378 } 379 380 if (LCMTy.isVector()) { 381 MIRBuilder.buildExtract(DstReg, Remerge, 0); 382 return; 383 } 384 385 llvm_unreachable("unhandled case"); 386 } 387 388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 389 #define RTLIBCASE(LibcallPrefix) \ 390 do { \ 391 switch (Size) { \ 392 case 32: \ 393 return RTLIB::LibcallPrefix##32; \ 394 case 64: \ 395 return RTLIB::LibcallPrefix##64; \ 396 case 128: \ 397 return RTLIB::LibcallPrefix##128; \ 398 default: \ 399 llvm_unreachable("unexpected size"); \ 400 } \ 401 } while (0) 402 403 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 404 405 switch (Opcode) { 406 case TargetOpcode::G_SDIV: 407 RTLIBCASE(SDIV_I); 408 case TargetOpcode::G_UDIV: 409 RTLIBCASE(UDIV_I); 410 case TargetOpcode::G_SREM: 411 RTLIBCASE(SREM_I); 412 case TargetOpcode::G_UREM: 413 RTLIBCASE(UREM_I); 414 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 415 RTLIBCASE(CTLZ_I); 416 case TargetOpcode::G_FADD: 417 RTLIBCASE(ADD_F); 418 case TargetOpcode::G_FSUB: 419 RTLIBCASE(SUB_F); 420 case TargetOpcode::G_FMUL: 421 RTLIBCASE(MUL_F); 422 case TargetOpcode::G_FDIV: 423 RTLIBCASE(DIV_F); 424 case TargetOpcode::G_FEXP: 425 RTLIBCASE(EXP_F); 426 case TargetOpcode::G_FEXP2: 427 RTLIBCASE(EXP2_F); 428 case TargetOpcode::G_FREM: 429 RTLIBCASE(REM_F); 430 case TargetOpcode::G_FPOW: 431 RTLIBCASE(POW_F); 432 case TargetOpcode::G_FMA: 433 RTLIBCASE(FMA_F); 434 case TargetOpcode::G_FSIN: 435 RTLIBCASE(SIN_F); 436 case TargetOpcode::G_FCOS: 437 RTLIBCASE(COS_F); 438 case TargetOpcode::G_FLOG10: 439 RTLIBCASE(LOG10_F); 440 case TargetOpcode::G_FLOG: 441 RTLIBCASE(LOG_F); 442 case TargetOpcode::G_FLOG2: 443 RTLIBCASE(LOG2_F); 444 case TargetOpcode::G_FCEIL: 445 RTLIBCASE(CEIL_F); 446 case TargetOpcode::G_FFLOOR: 447 RTLIBCASE(FLOOR_F); 448 case TargetOpcode::G_FMINNUM: 449 RTLIBCASE(FMIN_F); 450 case TargetOpcode::G_FMAXNUM: 451 RTLIBCASE(FMAX_F); 452 case TargetOpcode::G_FSQRT: 453 RTLIBCASE(SQRT_F); 454 case TargetOpcode::G_FRINT: 455 RTLIBCASE(RINT_F); 456 case TargetOpcode::G_FNEARBYINT: 457 RTLIBCASE(NEARBYINT_F); 458 } 459 llvm_unreachable("Unknown libcall function"); 460 } 461 462 /// True if an instruction is in tail position in its caller. Intended for 463 /// legalizing libcalls as tail calls when possible. 464 static bool isLibCallInTailPosition(MachineInstr &MI) { 465 MachineBasicBlock &MBB = *MI.getParent(); 466 const Function &F = MBB.getParent()->getFunction(); 467 468 // Conservatively require the attributes of the call to match those of 469 // the return. Ignore NoAlias and NonNull because they don't affect the 470 // call sequence. 471 AttributeList CallerAttrs = F.getAttributes(); 472 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 473 .removeAttribute(Attribute::NoAlias) 474 .removeAttribute(Attribute::NonNull) 475 .hasAttributes()) 476 return false; 477 478 // It's not safe to eliminate the sign / zero extension of the return value. 479 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 480 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 481 return false; 482 483 // Only tail call if the following instruction is a standard return. 484 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 485 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 486 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 487 return false; 488 489 return true; 490 } 491 492 LegalizerHelper::LegalizeResult 493 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 494 const CallLowering::ArgInfo &Result, 495 ArrayRef<CallLowering::ArgInfo> Args, 496 const CallingConv::ID CC) { 497 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 498 499 CallLowering::CallLoweringInfo Info; 500 Info.CallConv = CC; 501 Info.Callee = MachineOperand::CreateES(Name); 502 Info.OrigRet = Result; 503 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 504 if (!CLI.lowerCall(MIRBuilder, Info)) 505 return LegalizerHelper::UnableToLegalize; 506 507 return LegalizerHelper::Legalized; 508 } 509 510 LegalizerHelper::LegalizeResult 511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 512 const CallLowering::ArgInfo &Result, 513 ArrayRef<CallLowering::ArgInfo> Args) { 514 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 515 const char *Name = TLI.getLibcallName(Libcall); 516 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 517 return createLibcall(MIRBuilder, Name, Result, Args, CC); 518 } 519 520 // Useful for libcalls where all operands have the same type. 521 static LegalizerHelper::LegalizeResult 522 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 523 Type *OpType) { 524 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 525 526 SmallVector<CallLowering::ArgInfo, 3> Args; 527 for (unsigned i = 1; i < MI.getNumOperands(); i++) 528 Args.push_back({MI.getOperand(i).getReg(), OpType}); 529 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 530 Args); 531 } 532 533 LegalizerHelper::LegalizeResult 534 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 535 MachineInstr &MI) { 536 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 537 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 538 539 SmallVector<CallLowering::ArgInfo, 3> Args; 540 // Add all the args, except for the last which is an imm denoting 'tail'. 541 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 542 Register Reg = MI.getOperand(i).getReg(); 543 544 // Need derive an IR type for call lowering. 545 LLT OpLLT = MRI.getType(Reg); 546 Type *OpTy = nullptr; 547 if (OpLLT.isPointer()) 548 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 549 else 550 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 551 Args.push_back({Reg, OpTy}); 552 } 553 554 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 555 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 556 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 557 RTLIB::Libcall RTLibcall; 558 switch (ID) { 559 case Intrinsic::memcpy: 560 RTLibcall = RTLIB::MEMCPY; 561 break; 562 case Intrinsic::memset: 563 RTLibcall = RTLIB::MEMSET; 564 break; 565 case Intrinsic::memmove: 566 RTLibcall = RTLIB::MEMMOVE; 567 break; 568 default: 569 return LegalizerHelper::UnableToLegalize; 570 } 571 const char *Name = TLI.getLibcallName(RTLibcall); 572 573 MIRBuilder.setInstrAndDebugLoc(MI); 574 575 CallLowering::CallLoweringInfo Info; 576 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 577 Info.Callee = MachineOperand::CreateES(Name); 578 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 579 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 580 isLibCallInTailPosition(MI); 581 582 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 583 if (!CLI.lowerCall(MIRBuilder, Info)) 584 return LegalizerHelper::UnableToLegalize; 585 586 if (Info.LoweredTailCall) { 587 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 588 // We must have a return following the call (or debug insts) to get past 589 // isLibCallInTailPosition. 590 do { 591 MachineInstr *Next = MI.getNextNode(); 592 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 593 "Expected instr following MI to be return or debug inst?"); 594 // We lowered a tail call, so the call is now the return from the block. 595 // Delete the old return. 596 Next->eraseFromParent(); 597 } while (MI.getNextNode()); 598 } 599 600 return LegalizerHelper::Legalized; 601 } 602 603 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 604 Type *FromType) { 605 auto ToMVT = MVT::getVT(ToType); 606 auto FromMVT = MVT::getVT(FromType); 607 608 switch (Opcode) { 609 case TargetOpcode::G_FPEXT: 610 return RTLIB::getFPEXT(FromMVT, ToMVT); 611 case TargetOpcode::G_FPTRUNC: 612 return RTLIB::getFPROUND(FromMVT, ToMVT); 613 case TargetOpcode::G_FPTOSI: 614 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 615 case TargetOpcode::G_FPTOUI: 616 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 617 case TargetOpcode::G_SITOFP: 618 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 619 case TargetOpcode::G_UITOFP: 620 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 621 } 622 llvm_unreachable("Unsupported libcall function"); 623 } 624 625 static LegalizerHelper::LegalizeResult 626 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 627 Type *FromType) { 628 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 629 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 630 {{MI.getOperand(1).getReg(), FromType}}); 631 } 632 633 LegalizerHelper::LegalizeResult 634 LegalizerHelper::libcall(MachineInstr &MI) { 635 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 636 unsigned Size = LLTy.getSizeInBits(); 637 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 638 639 switch (MI.getOpcode()) { 640 default: 641 return UnableToLegalize; 642 case TargetOpcode::G_SDIV: 643 case TargetOpcode::G_UDIV: 644 case TargetOpcode::G_SREM: 645 case TargetOpcode::G_UREM: 646 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 647 Type *HLTy = IntegerType::get(Ctx, Size); 648 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 649 if (Status != Legalized) 650 return Status; 651 break; 652 } 653 case TargetOpcode::G_FADD: 654 case TargetOpcode::G_FSUB: 655 case TargetOpcode::G_FMUL: 656 case TargetOpcode::G_FDIV: 657 case TargetOpcode::G_FMA: 658 case TargetOpcode::G_FPOW: 659 case TargetOpcode::G_FREM: 660 case TargetOpcode::G_FCOS: 661 case TargetOpcode::G_FSIN: 662 case TargetOpcode::G_FLOG10: 663 case TargetOpcode::G_FLOG: 664 case TargetOpcode::G_FLOG2: 665 case TargetOpcode::G_FEXP: 666 case TargetOpcode::G_FEXP2: 667 case TargetOpcode::G_FCEIL: 668 case TargetOpcode::G_FFLOOR: 669 case TargetOpcode::G_FMINNUM: 670 case TargetOpcode::G_FMAXNUM: 671 case TargetOpcode::G_FSQRT: 672 case TargetOpcode::G_FRINT: 673 case TargetOpcode::G_FNEARBYINT: { 674 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 675 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 676 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 677 return UnableToLegalize; 678 } 679 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 680 if (Status != Legalized) 681 return Status; 682 break; 683 } 684 case TargetOpcode::G_FPEXT: 685 case TargetOpcode::G_FPTRUNC: { 686 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 687 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 688 if (!FromTy || !ToTy) 689 return UnableToLegalize; 690 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 691 if (Status != Legalized) 692 return Status; 693 break; 694 } 695 case TargetOpcode::G_FPTOSI: 696 case TargetOpcode::G_FPTOUI: { 697 // FIXME: Support other types 698 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 699 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 700 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 701 return UnableToLegalize; 702 LegalizeResult Status = conversionLibcall( 703 MI, MIRBuilder, 704 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 705 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 706 if (Status != Legalized) 707 return Status; 708 break; 709 } 710 case TargetOpcode::G_SITOFP: 711 case TargetOpcode::G_UITOFP: { 712 // FIXME: Support other types 713 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 714 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 715 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 716 return UnableToLegalize; 717 LegalizeResult Status = conversionLibcall( 718 MI, MIRBuilder, 719 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 720 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 721 if (Status != Legalized) 722 return Status; 723 break; 724 } 725 } 726 727 MI.eraseFromParent(); 728 return Legalized; 729 } 730 731 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 732 unsigned TypeIdx, 733 LLT NarrowTy) { 734 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 735 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 736 737 switch (MI.getOpcode()) { 738 default: 739 return UnableToLegalize; 740 case TargetOpcode::G_IMPLICIT_DEF: { 741 Register DstReg = MI.getOperand(0).getReg(); 742 LLT DstTy = MRI.getType(DstReg); 743 744 // If SizeOp0 is not an exact multiple of NarrowSize, emit 745 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 746 // FIXME: Although this would also be legal for the general case, it causes 747 // a lot of regressions in the emitted code (superfluous COPYs, artifact 748 // combines not being hit). This seems to be a problem related to the 749 // artifact combiner. 750 if (SizeOp0 % NarrowSize != 0) { 751 LLT ImplicitTy = NarrowTy; 752 if (DstTy.isVector()) 753 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 754 755 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 756 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 757 758 MI.eraseFromParent(); 759 return Legalized; 760 } 761 762 int NumParts = SizeOp0 / NarrowSize; 763 764 SmallVector<Register, 2> DstRegs; 765 for (int i = 0; i < NumParts; ++i) 766 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 767 768 if (DstTy.isVector()) 769 MIRBuilder.buildBuildVector(DstReg, DstRegs); 770 else 771 MIRBuilder.buildMerge(DstReg, DstRegs); 772 MI.eraseFromParent(); 773 return Legalized; 774 } 775 case TargetOpcode::G_CONSTANT: { 776 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 777 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 778 unsigned TotalSize = Ty.getSizeInBits(); 779 unsigned NarrowSize = NarrowTy.getSizeInBits(); 780 int NumParts = TotalSize / NarrowSize; 781 782 SmallVector<Register, 4> PartRegs; 783 for (int I = 0; I != NumParts; ++I) { 784 unsigned Offset = I * NarrowSize; 785 auto K = MIRBuilder.buildConstant(NarrowTy, 786 Val.lshr(Offset).trunc(NarrowSize)); 787 PartRegs.push_back(K.getReg(0)); 788 } 789 790 LLT LeftoverTy; 791 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 792 SmallVector<Register, 1> LeftoverRegs; 793 if (LeftoverBits != 0) { 794 LeftoverTy = LLT::scalar(LeftoverBits); 795 auto K = MIRBuilder.buildConstant( 796 LeftoverTy, 797 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 798 LeftoverRegs.push_back(K.getReg(0)); 799 } 800 801 insertParts(MI.getOperand(0).getReg(), 802 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 803 804 MI.eraseFromParent(); 805 return Legalized; 806 } 807 case TargetOpcode::G_SEXT: 808 case TargetOpcode::G_ZEXT: 809 case TargetOpcode::G_ANYEXT: 810 return narrowScalarExt(MI, TypeIdx, NarrowTy); 811 case TargetOpcode::G_TRUNC: { 812 if (TypeIdx != 1) 813 return UnableToLegalize; 814 815 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 816 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 817 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 818 return UnableToLegalize; 819 } 820 821 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 822 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 823 MI.eraseFromParent(); 824 return Legalized; 825 } 826 827 case TargetOpcode::G_FREEZE: 828 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 829 830 case TargetOpcode::G_ADD: { 831 // FIXME: add support for when SizeOp0 isn't an exact multiple of 832 // NarrowSize. 833 if (SizeOp0 % NarrowSize != 0) 834 return UnableToLegalize; 835 // Expand in terms of carry-setting/consuming G_ADDE instructions. 836 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 837 838 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 839 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 840 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 841 842 Register CarryIn; 843 for (int i = 0; i < NumParts; ++i) { 844 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 845 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 846 847 if (i == 0) 848 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 849 else { 850 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 851 Src2Regs[i], CarryIn); 852 } 853 854 DstRegs.push_back(DstReg); 855 CarryIn = CarryOut; 856 } 857 Register DstReg = MI.getOperand(0).getReg(); 858 if(MRI.getType(DstReg).isVector()) 859 MIRBuilder.buildBuildVector(DstReg, DstRegs); 860 else 861 MIRBuilder.buildMerge(DstReg, DstRegs); 862 MI.eraseFromParent(); 863 return Legalized; 864 } 865 case TargetOpcode::G_SUB: { 866 // FIXME: add support for when SizeOp0 isn't an exact multiple of 867 // NarrowSize. 868 if (SizeOp0 % NarrowSize != 0) 869 return UnableToLegalize; 870 871 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 872 873 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 874 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 875 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 876 877 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 878 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 879 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 880 {Src1Regs[0], Src2Regs[0]}); 881 DstRegs.push_back(DstReg); 882 Register BorrowIn = BorrowOut; 883 for (int i = 1; i < NumParts; ++i) { 884 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 885 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 886 887 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 888 {Src1Regs[i], Src2Regs[i], BorrowIn}); 889 890 DstRegs.push_back(DstReg); 891 BorrowIn = BorrowOut; 892 } 893 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 894 MI.eraseFromParent(); 895 return Legalized; 896 } 897 case TargetOpcode::G_MUL: 898 case TargetOpcode::G_UMULH: 899 return narrowScalarMul(MI, NarrowTy); 900 case TargetOpcode::G_EXTRACT: 901 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 902 case TargetOpcode::G_INSERT: 903 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 904 case TargetOpcode::G_LOAD: { 905 const auto &MMO = **MI.memoperands_begin(); 906 Register DstReg = MI.getOperand(0).getReg(); 907 LLT DstTy = MRI.getType(DstReg); 908 if (DstTy.isVector()) 909 return UnableToLegalize; 910 911 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 912 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 913 auto &MMO = **MI.memoperands_begin(); 914 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 915 MIRBuilder.buildAnyExt(DstReg, TmpReg); 916 MI.eraseFromParent(); 917 return Legalized; 918 } 919 920 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 921 } 922 case TargetOpcode::G_ZEXTLOAD: 923 case TargetOpcode::G_SEXTLOAD: { 924 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 925 Register DstReg = MI.getOperand(0).getReg(); 926 Register PtrReg = MI.getOperand(1).getReg(); 927 928 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 929 auto &MMO = **MI.memoperands_begin(); 930 if (MMO.getSizeInBits() == NarrowSize) { 931 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 932 } else { 933 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 934 } 935 936 if (ZExt) 937 MIRBuilder.buildZExt(DstReg, TmpReg); 938 else 939 MIRBuilder.buildSExt(DstReg, TmpReg); 940 941 MI.eraseFromParent(); 942 return Legalized; 943 } 944 case TargetOpcode::G_STORE: { 945 const auto &MMO = **MI.memoperands_begin(); 946 947 Register SrcReg = MI.getOperand(0).getReg(); 948 LLT SrcTy = MRI.getType(SrcReg); 949 if (SrcTy.isVector()) 950 return UnableToLegalize; 951 952 int NumParts = SizeOp0 / NarrowSize; 953 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 954 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 955 if (SrcTy.isVector() && LeftoverBits != 0) 956 return UnableToLegalize; 957 958 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 959 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 960 auto &MMO = **MI.memoperands_begin(); 961 MIRBuilder.buildTrunc(TmpReg, SrcReg); 962 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 963 MI.eraseFromParent(); 964 return Legalized; 965 } 966 967 return reduceLoadStoreWidth(MI, 0, NarrowTy); 968 } 969 case TargetOpcode::G_SELECT: 970 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 971 case TargetOpcode::G_AND: 972 case TargetOpcode::G_OR: 973 case TargetOpcode::G_XOR: { 974 // Legalize bitwise operation: 975 // A = BinOp<Ty> B, C 976 // into: 977 // B1, ..., BN = G_UNMERGE_VALUES B 978 // C1, ..., CN = G_UNMERGE_VALUES C 979 // A1 = BinOp<Ty/N> B1, C2 980 // ... 981 // AN = BinOp<Ty/N> BN, CN 982 // A = G_MERGE_VALUES A1, ..., AN 983 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 984 } 985 case TargetOpcode::G_SHL: 986 case TargetOpcode::G_LSHR: 987 case TargetOpcode::G_ASHR: 988 return narrowScalarShift(MI, TypeIdx, NarrowTy); 989 case TargetOpcode::G_CTLZ: 990 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 991 case TargetOpcode::G_CTTZ: 992 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 993 case TargetOpcode::G_CTPOP: 994 if (TypeIdx == 1) 995 switch (MI.getOpcode()) { 996 case TargetOpcode::G_CTLZ: 997 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 998 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 999 case TargetOpcode::G_CTTZ: 1000 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1001 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 1002 case TargetOpcode::G_CTPOP: 1003 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 1004 default: 1005 return UnableToLegalize; 1006 } 1007 1008 Observer.changingInstr(MI); 1009 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1010 Observer.changedInstr(MI); 1011 return Legalized; 1012 case TargetOpcode::G_INTTOPTR: 1013 if (TypeIdx != 1) 1014 return UnableToLegalize; 1015 1016 Observer.changingInstr(MI); 1017 narrowScalarSrc(MI, NarrowTy, 1); 1018 Observer.changedInstr(MI); 1019 return Legalized; 1020 case TargetOpcode::G_PTRTOINT: 1021 if (TypeIdx != 0) 1022 return UnableToLegalize; 1023 1024 Observer.changingInstr(MI); 1025 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1026 Observer.changedInstr(MI); 1027 return Legalized; 1028 case TargetOpcode::G_PHI: { 1029 unsigned NumParts = SizeOp0 / NarrowSize; 1030 SmallVector<Register, 2> DstRegs(NumParts); 1031 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1032 Observer.changingInstr(MI); 1033 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1034 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1035 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1036 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1037 SrcRegs[i / 2]); 1038 } 1039 MachineBasicBlock &MBB = *MI.getParent(); 1040 MIRBuilder.setInsertPt(MBB, MI); 1041 for (unsigned i = 0; i < NumParts; ++i) { 1042 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1043 MachineInstrBuilder MIB = 1044 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1045 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1046 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1047 } 1048 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1049 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1050 Observer.changedInstr(MI); 1051 MI.eraseFromParent(); 1052 return Legalized; 1053 } 1054 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1055 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1056 if (TypeIdx != 2) 1057 return UnableToLegalize; 1058 1059 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1060 Observer.changingInstr(MI); 1061 narrowScalarSrc(MI, NarrowTy, OpIdx); 1062 Observer.changedInstr(MI); 1063 return Legalized; 1064 } 1065 case TargetOpcode::G_ICMP: { 1066 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1067 if (NarrowSize * 2 != SrcSize) 1068 return UnableToLegalize; 1069 1070 Observer.changingInstr(MI); 1071 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1072 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1073 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1074 1075 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1076 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1077 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1078 1079 CmpInst::Predicate Pred = 1080 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1081 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1082 1083 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1084 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1085 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1086 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1087 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1088 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1089 } else { 1090 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1091 MachineInstrBuilder CmpHEQ = 1092 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1093 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1094 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1095 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1096 } 1097 Observer.changedInstr(MI); 1098 MI.eraseFromParent(); 1099 return Legalized; 1100 } 1101 case TargetOpcode::G_SEXT_INREG: { 1102 if (TypeIdx != 0) 1103 return UnableToLegalize; 1104 1105 int64_t SizeInBits = MI.getOperand(2).getImm(); 1106 1107 // So long as the new type has more bits than the bits we're extending we 1108 // don't need to break it apart. 1109 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1110 Observer.changingInstr(MI); 1111 // We don't lose any non-extension bits by truncating the src and 1112 // sign-extending the dst. 1113 MachineOperand &MO1 = MI.getOperand(1); 1114 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1115 MO1.setReg(TruncMIB.getReg(0)); 1116 1117 MachineOperand &MO2 = MI.getOperand(0); 1118 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1119 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1120 MIRBuilder.buildSExt(MO2, DstExt); 1121 MO2.setReg(DstExt); 1122 Observer.changedInstr(MI); 1123 return Legalized; 1124 } 1125 1126 // Break it apart. Components below the extension point are unmodified. The 1127 // component containing the extension point becomes a narrower SEXT_INREG. 1128 // Components above it are ashr'd from the component containing the 1129 // extension point. 1130 if (SizeOp0 % NarrowSize != 0) 1131 return UnableToLegalize; 1132 int NumParts = SizeOp0 / NarrowSize; 1133 1134 // List the registers where the destination will be scattered. 1135 SmallVector<Register, 2> DstRegs; 1136 // List the registers where the source will be split. 1137 SmallVector<Register, 2> SrcRegs; 1138 1139 // Create all the temporary registers. 1140 for (int i = 0; i < NumParts; ++i) { 1141 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1142 1143 SrcRegs.push_back(SrcReg); 1144 } 1145 1146 // Explode the big arguments into smaller chunks. 1147 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1148 1149 Register AshrCstReg = 1150 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1151 .getReg(0); 1152 Register FullExtensionReg = 0; 1153 Register PartialExtensionReg = 0; 1154 1155 // Do the operation on each small part. 1156 for (int i = 0; i < NumParts; ++i) { 1157 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1158 DstRegs.push_back(SrcRegs[i]); 1159 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1160 assert(PartialExtensionReg && 1161 "Expected to visit partial extension before full"); 1162 if (FullExtensionReg) { 1163 DstRegs.push_back(FullExtensionReg); 1164 continue; 1165 } 1166 DstRegs.push_back( 1167 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1168 .getReg(0)); 1169 FullExtensionReg = DstRegs.back(); 1170 } else { 1171 DstRegs.push_back( 1172 MIRBuilder 1173 .buildInstr( 1174 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1175 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1176 .getReg(0)); 1177 PartialExtensionReg = DstRegs.back(); 1178 } 1179 } 1180 1181 // Gather the destination registers into the final destination. 1182 Register DstReg = MI.getOperand(0).getReg(); 1183 MIRBuilder.buildMerge(DstReg, DstRegs); 1184 MI.eraseFromParent(); 1185 return Legalized; 1186 } 1187 case TargetOpcode::G_BSWAP: 1188 case TargetOpcode::G_BITREVERSE: { 1189 if (SizeOp0 % NarrowSize != 0) 1190 return UnableToLegalize; 1191 1192 Observer.changingInstr(MI); 1193 SmallVector<Register, 2> SrcRegs, DstRegs; 1194 unsigned NumParts = SizeOp0 / NarrowSize; 1195 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1196 1197 for (unsigned i = 0; i < NumParts; ++i) { 1198 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1199 {SrcRegs[NumParts - 1 - i]}); 1200 DstRegs.push_back(DstPart.getReg(0)); 1201 } 1202 1203 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1204 1205 Observer.changedInstr(MI); 1206 MI.eraseFromParent(); 1207 return Legalized; 1208 } 1209 case TargetOpcode::G_PTRMASK: { 1210 if (TypeIdx != 1) 1211 return UnableToLegalize; 1212 Observer.changingInstr(MI); 1213 narrowScalarSrc(MI, NarrowTy, 2); 1214 Observer.changedInstr(MI); 1215 return Legalized; 1216 } 1217 } 1218 } 1219 1220 Register LegalizerHelper::coerceToScalar(Register Val) { 1221 LLT Ty = MRI.getType(Val); 1222 if (Ty.isScalar()) 1223 return Val; 1224 1225 const DataLayout &DL = MIRBuilder.getDataLayout(); 1226 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1227 if (Ty.isPointer()) { 1228 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1229 return Register(); 1230 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1231 } 1232 1233 Register NewVal = Val; 1234 1235 assert(Ty.isVector()); 1236 LLT EltTy = Ty.getElementType(); 1237 if (EltTy.isPointer()) 1238 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1239 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1240 } 1241 1242 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1243 unsigned OpIdx, unsigned ExtOpcode) { 1244 MachineOperand &MO = MI.getOperand(OpIdx); 1245 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1246 MO.setReg(ExtB.getReg(0)); 1247 } 1248 1249 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1250 unsigned OpIdx) { 1251 MachineOperand &MO = MI.getOperand(OpIdx); 1252 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1253 MO.setReg(ExtB.getReg(0)); 1254 } 1255 1256 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1257 unsigned OpIdx, unsigned TruncOpcode) { 1258 MachineOperand &MO = MI.getOperand(OpIdx); 1259 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1260 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1261 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1262 MO.setReg(DstExt); 1263 } 1264 1265 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1266 unsigned OpIdx, unsigned ExtOpcode) { 1267 MachineOperand &MO = MI.getOperand(OpIdx); 1268 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1269 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1270 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1271 MO.setReg(DstTrunc); 1272 } 1273 1274 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1275 unsigned OpIdx) { 1276 MachineOperand &MO = MI.getOperand(OpIdx); 1277 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1278 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1279 MIRBuilder.buildExtract(MO, DstExt, 0); 1280 MO.setReg(DstExt); 1281 } 1282 1283 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1284 unsigned OpIdx) { 1285 MachineOperand &MO = MI.getOperand(OpIdx); 1286 1287 LLT OldTy = MRI.getType(MO.getReg()); 1288 unsigned OldElts = OldTy.getNumElements(); 1289 unsigned NewElts = MoreTy.getNumElements(); 1290 1291 unsigned NumParts = NewElts / OldElts; 1292 1293 // Use concat_vectors if the result is a multiple of the number of elements. 1294 if (NumParts * OldElts == NewElts) { 1295 SmallVector<Register, 8> Parts; 1296 Parts.push_back(MO.getReg()); 1297 1298 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1299 for (unsigned I = 1; I != NumParts; ++I) 1300 Parts.push_back(ImpDef); 1301 1302 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1303 MO.setReg(Concat.getReg(0)); 1304 return; 1305 } 1306 1307 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1308 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1309 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1310 MO.setReg(MoreReg); 1311 } 1312 1313 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1314 MachineOperand &Op = MI.getOperand(OpIdx); 1315 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1316 } 1317 1318 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1319 MachineOperand &MO = MI.getOperand(OpIdx); 1320 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1321 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1322 MIRBuilder.buildBitcast(MO, CastDst); 1323 MO.setReg(CastDst); 1324 } 1325 1326 LegalizerHelper::LegalizeResult 1327 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1328 LLT WideTy) { 1329 if (TypeIdx != 1) 1330 return UnableToLegalize; 1331 1332 Register DstReg = MI.getOperand(0).getReg(); 1333 LLT DstTy = MRI.getType(DstReg); 1334 if (DstTy.isVector()) 1335 return UnableToLegalize; 1336 1337 Register Src1 = MI.getOperand(1).getReg(); 1338 LLT SrcTy = MRI.getType(Src1); 1339 const int DstSize = DstTy.getSizeInBits(); 1340 const int SrcSize = SrcTy.getSizeInBits(); 1341 const int WideSize = WideTy.getSizeInBits(); 1342 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1343 1344 unsigned NumOps = MI.getNumOperands(); 1345 unsigned NumSrc = MI.getNumOperands() - 1; 1346 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1347 1348 if (WideSize >= DstSize) { 1349 // Directly pack the bits in the target type. 1350 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1351 1352 for (unsigned I = 2; I != NumOps; ++I) { 1353 const unsigned Offset = (I - 1) * PartSize; 1354 1355 Register SrcReg = MI.getOperand(I).getReg(); 1356 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1357 1358 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1359 1360 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1361 MRI.createGenericVirtualRegister(WideTy); 1362 1363 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1364 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1365 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1366 ResultReg = NextResult; 1367 } 1368 1369 if (WideSize > DstSize) 1370 MIRBuilder.buildTrunc(DstReg, ResultReg); 1371 else if (DstTy.isPointer()) 1372 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1373 1374 MI.eraseFromParent(); 1375 return Legalized; 1376 } 1377 1378 // Unmerge the original values to the GCD type, and recombine to the next 1379 // multiple greater than the original type. 1380 // 1381 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1382 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1383 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1384 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1385 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1386 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1387 // %12:_(s12) = G_MERGE_VALUES %10, %11 1388 // 1389 // Padding with undef if necessary: 1390 // 1391 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1392 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1393 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1394 // %7:_(s2) = G_IMPLICIT_DEF 1395 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1396 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1397 // %10:_(s12) = G_MERGE_VALUES %8, %9 1398 1399 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1400 LLT GCDTy = LLT::scalar(GCD); 1401 1402 SmallVector<Register, 8> Parts; 1403 SmallVector<Register, 8> NewMergeRegs; 1404 SmallVector<Register, 8> Unmerges; 1405 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1406 1407 // Decompose the original operands if they don't evenly divide. 1408 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1409 Register SrcReg = MI.getOperand(I).getReg(); 1410 if (GCD == SrcSize) { 1411 Unmerges.push_back(SrcReg); 1412 } else { 1413 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1414 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1415 Unmerges.push_back(Unmerge.getReg(J)); 1416 } 1417 } 1418 1419 // Pad with undef to the next size that is a multiple of the requested size. 1420 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1421 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1422 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1423 Unmerges.push_back(UndefReg); 1424 } 1425 1426 const int PartsPerGCD = WideSize / GCD; 1427 1428 // Build merges of each piece. 1429 ArrayRef<Register> Slicer(Unmerges); 1430 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1431 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1432 NewMergeRegs.push_back(Merge.getReg(0)); 1433 } 1434 1435 // A truncate may be necessary if the requested type doesn't evenly divide the 1436 // original result type. 1437 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1438 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1439 } else { 1440 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1441 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1442 } 1443 1444 MI.eraseFromParent(); 1445 return Legalized; 1446 } 1447 1448 LegalizerHelper::LegalizeResult 1449 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1450 LLT WideTy) { 1451 if (TypeIdx != 0) 1452 return UnableToLegalize; 1453 1454 int NumDst = MI.getNumOperands() - 1; 1455 Register SrcReg = MI.getOperand(NumDst).getReg(); 1456 LLT SrcTy = MRI.getType(SrcReg); 1457 if (SrcTy.isVector()) 1458 return UnableToLegalize; 1459 1460 Register Dst0Reg = MI.getOperand(0).getReg(); 1461 LLT DstTy = MRI.getType(Dst0Reg); 1462 if (!DstTy.isScalar()) 1463 return UnableToLegalize; 1464 1465 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1466 if (SrcTy.isPointer()) { 1467 const DataLayout &DL = MIRBuilder.getDataLayout(); 1468 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1469 LLVM_DEBUG( 1470 dbgs() << "Not casting non-integral address space integer\n"); 1471 return UnableToLegalize; 1472 } 1473 1474 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1475 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1476 } 1477 1478 // Widen SrcTy to WideTy. This does not affect the result, but since the 1479 // user requested this size, it is probably better handled than SrcTy and 1480 // should reduce the total number of legalization artifacts 1481 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1482 SrcTy = WideTy; 1483 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1484 } 1485 1486 // Theres no unmerge type to target. Directly extract the bits from the 1487 // source type 1488 unsigned DstSize = DstTy.getSizeInBits(); 1489 1490 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1491 for (int I = 1; I != NumDst; ++I) { 1492 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1493 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1494 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1495 } 1496 1497 MI.eraseFromParent(); 1498 return Legalized; 1499 } 1500 1501 // Extend the source to a wider type. 1502 LLT LCMTy = getLCMType(SrcTy, WideTy); 1503 1504 Register WideSrc = SrcReg; 1505 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1506 // TODO: If this is an integral address space, cast to integer and anyext. 1507 if (SrcTy.isPointer()) { 1508 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1509 return UnableToLegalize; 1510 } 1511 1512 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1513 } 1514 1515 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1516 1517 // Create a sequence of unmerges to the original results. since we may have 1518 // widened the source, we will need to pad the results with dead defs to cover 1519 // the source register. 1520 // e.g. widen s16 to s32: 1521 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1522 // 1523 // => 1524 // %4:_(s64) = G_ANYEXT %0:_(s48) 1525 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1526 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1527 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1528 1529 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1530 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1531 1532 for (int I = 0; I != NumUnmerge; ++I) { 1533 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1534 1535 for (int J = 0; J != PartsPerUnmerge; ++J) { 1536 int Idx = I * PartsPerUnmerge + J; 1537 if (Idx < NumDst) 1538 MIB.addDef(MI.getOperand(Idx).getReg()); 1539 else { 1540 // Create dead def for excess components. 1541 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1542 } 1543 } 1544 1545 MIB.addUse(Unmerge.getReg(I)); 1546 } 1547 1548 MI.eraseFromParent(); 1549 return Legalized; 1550 } 1551 1552 LegalizerHelper::LegalizeResult 1553 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1554 LLT WideTy) { 1555 Register DstReg = MI.getOperand(0).getReg(); 1556 Register SrcReg = MI.getOperand(1).getReg(); 1557 LLT SrcTy = MRI.getType(SrcReg); 1558 1559 LLT DstTy = MRI.getType(DstReg); 1560 unsigned Offset = MI.getOperand(2).getImm(); 1561 1562 if (TypeIdx == 0) { 1563 if (SrcTy.isVector() || DstTy.isVector()) 1564 return UnableToLegalize; 1565 1566 SrcOp Src(SrcReg); 1567 if (SrcTy.isPointer()) { 1568 // Extracts from pointers can be handled only if they are really just 1569 // simple integers. 1570 const DataLayout &DL = MIRBuilder.getDataLayout(); 1571 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1572 return UnableToLegalize; 1573 1574 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1575 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1576 SrcTy = SrcAsIntTy; 1577 } 1578 1579 if (DstTy.isPointer()) 1580 return UnableToLegalize; 1581 1582 if (Offset == 0) { 1583 // Avoid a shift in the degenerate case. 1584 MIRBuilder.buildTrunc(DstReg, 1585 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1586 MI.eraseFromParent(); 1587 return Legalized; 1588 } 1589 1590 // Do a shift in the source type. 1591 LLT ShiftTy = SrcTy; 1592 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1593 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1594 ShiftTy = WideTy; 1595 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1596 return UnableToLegalize; 1597 1598 auto LShr = MIRBuilder.buildLShr( 1599 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1600 MIRBuilder.buildTrunc(DstReg, LShr); 1601 MI.eraseFromParent(); 1602 return Legalized; 1603 } 1604 1605 if (SrcTy.isScalar()) { 1606 Observer.changingInstr(MI); 1607 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1608 Observer.changedInstr(MI); 1609 return Legalized; 1610 } 1611 1612 if (!SrcTy.isVector()) 1613 return UnableToLegalize; 1614 1615 if (DstTy != SrcTy.getElementType()) 1616 return UnableToLegalize; 1617 1618 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1619 return UnableToLegalize; 1620 1621 Observer.changingInstr(MI); 1622 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1623 1624 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1625 Offset); 1626 widenScalarDst(MI, WideTy.getScalarType(), 0); 1627 Observer.changedInstr(MI); 1628 return Legalized; 1629 } 1630 1631 LegalizerHelper::LegalizeResult 1632 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1633 LLT WideTy) { 1634 if (TypeIdx != 0) 1635 return UnableToLegalize; 1636 Observer.changingInstr(MI); 1637 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1638 widenScalarDst(MI, WideTy); 1639 Observer.changedInstr(MI); 1640 return Legalized; 1641 } 1642 1643 LegalizerHelper::LegalizeResult 1644 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1645 switch (MI.getOpcode()) { 1646 default: 1647 return UnableToLegalize; 1648 case TargetOpcode::G_EXTRACT: 1649 return widenScalarExtract(MI, TypeIdx, WideTy); 1650 case TargetOpcode::G_INSERT: 1651 return widenScalarInsert(MI, TypeIdx, WideTy); 1652 case TargetOpcode::G_MERGE_VALUES: 1653 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1654 case TargetOpcode::G_UNMERGE_VALUES: 1655 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1656 case TargetOpcode::G_UADDO: 1657 case TargetOpcode::G_USUBO: { 1658 if (TypeIdx == 1) 1659 return UnableToLegalize; // TODO 1660 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1661 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1662 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1663 ? TargetOpcode::G_ADD 1664 : TargetOpcode::G_SUB; 1665 // Do the arithmetic in the larger type. 1666 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1667 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1668 APInt Mask = 1669 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1670 auto AndOp = MIRBuilder.buildAnd( 1671 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1672 // There is no overflow if the AndOp is the same as NewOp. 1673 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1674 // Now trunc the NewOp to the original result. 1675 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1676 MI.eraseFromParent(); 1677 return Legalized; 1678 } 1679 case TargetOpcode::G_CTTZ: 1680 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1681 case TargetOpcode::G_CTLZ: 1682 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1683 case TargetOpcode::G_CTPOP: { 1684 if (TypeIdx == 0) { 1685 Observer.changingInstr(MI); 1686 widenScalarDst(MI, WideTy, 0); 1687 Observer.changedInstr(MI); 1688 return Legalized; 1689 } 1690 1691 Register SrcReg = MI.getOperand(1).getReg(); 1692 1693 // First ZEXT the input. 1694 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1695 LLT CurTy = MRI.getType(SrcReg); 1696 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1697 // The count is the same in the larger type except if the original 1698 // value was zero. This can be handled by setting the bit just off 1699 // the top of the original type. 1700 auto TopBit = 1701 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1702 MIBSrc = MIRBuilder.buildOr( 1703 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1704 } 1705 1706 // Perform the operation at the larger size. 1707 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1708 // This is already the correct result for CTPOP and CTTZs 1709 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1710 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1711 // The correct result is NewOp - (Difference in widety and current ty). 1712 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1713 MIBNewOp = MIRBuilder.buildSub( 1714 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1715 } 1716 1717 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1718 MI.eraseFromParent(); 1719 return Legalized; 1720 } 1721 case TargetOpcode::G_BSWAP: { 1722 Observer.changingInstr(MI); 1723 Register DstReg = MI.getOperand(0).getReg(); 1724 1725 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1726 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1727 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1728 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1729 1730 MI.getOperand(0).setReg(DstExt); 1731 1732 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1733 1734 LLT Ty = MRI.getType(DstReg); 1735 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1736 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1737 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1738 1739 MIRBuilder.buildTrunc(DstReg, ShrReg); 1740 Observer.changedInstr(MI); 1741 return Legalized; 1742 } 1743 case TargetOpcode::G_BITREVERSE: { 1744 Observer.changingInstr(MI); 1745 1746 Register DstReg = MI.getOperand(0).getReg(); 1747 LLT Ty = MRI.getType(DstReg); 1748 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1749 1750 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1751 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1752 MI.getOperand(0).setReg(DstExt); 1753 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1754 1755 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1756 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1757 MIRBuilder.buildTrunc(DstReg, Shift); 1758 Observer.changedInstr(MI); 1759 return Legalized; 1760 } 1761 case TargetOpcode::G_FREEZE: 1762 Observer.changingInstr(MI); 1763 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1764 widenScalarDst(MI, WideTy); 1765 Observer.changedInstr(MI); 1766 return Legalized; 1767 1768 case TargetOpcode::G_ADD: 1769 case TargetOpcode::G_AND: 1770 case TargetOpcode::G_MUL: 1771 case TargetOpcode::G_OR: 1772 case TargetOpcode::G_XOR: 1773 case TargetOpcode::G_SUB: 1774 // Perform operation at larger width (any extension is fines here, high bits 1775 // don't affect the result) and then truncate the result back to the 1776 // original type. 1777 Observer.changingInstr(MI); 1778 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1779 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1780 widenScalarDst(MI, WideTy); 1781 Observer.changedInstr(MI); 1782 return Legalized; 1783 1784 case TargetOpcode::G_SHL: 1785 Observer.changingInstr(MI); 1786 1787 if (TypeIdx == 0) { 1788 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1789 widenScalarDst(MI, WideTy); 1790 } else { 1791 assert(TypeIdx == 1); 1792 // The "number of bits to shift" operand must preserve its value as an 1793 // unsigned integer: 1794 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1795 } 1796 1797 Observer.changedInstr(MI); 1798 return Legalized; 1799 1800 case TargetOpcode::G_SDIV: 1801 case TargetOpcode::G_SREM: 1802 case TargetOpcode::G_SMIN: 1803 case TargetOpcode::G_SMAX: 1804 Observer.changingInstr(MI); 1805 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1806 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1807 widenScalarDst(MI, WideTy); 1808 Observer.changedInstr(MI); 1809 return Legalized; 1810 1811 case TargetOpcode::G_ASHR: 1812 case TargetOpcode::G_LSHR: 1813 Observer.changingInstr(MI); 1814 1815 if (TypeIdx == 0) { 1816 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1817 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1818 1819 widenScalarSrc(MI, WideTy, 1, CvtOp); 1820 widenScalarDst(MI, WideTy); 1821 } else { 1822 assert(TypeIdx == 1); 1823 // The "number of bits to shift" operand must preserve its value as an 1824 // unsigned integer: 1825 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1826 } 1827 1828 Observer.changedInstr(MI); 1829 return Legalized; 1830 case TargetOpcode::G_UDIV: 1831 case TargetOpcode::G_UREM: 1832 case TargetOpcode::G_UMIN: 1833 case TargetOpcode::G_UMAX: 1834 Observer.changingInstr(MI); 1835 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1836 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1837 widenScalarDst(MI, WideTy); 1838 Observer.changedInstr(MI); 1839 return Legalized; 1840 1841 case TargetOpcode::G_SELECT: 1842 Observer.changingInstr(MI); 1843 if (TypeIdx == 0) { 1844 // Perform operation at larger width (any extension is fine here, high 1845 // bits don't affect the result) and then truncate the result back to the 1846 // original type. 1847 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1848 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1849 widenScalarDst(MI, WideTy); 1850 } else { 1851 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1852 // Explicit extension is required here since high bits affect the result. 1853 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1854 } 1855 Observer.changedInstr(MI); 1856 return Legalized; 1857 1858 case TargetOpcode::G_FPTOSI: 1859 case TargetOpcode::G_FPTOUI: 1860 Observer.changingInstr(MI); 1861 1862 if (TypeIdx == 0) 1863 widenScalarDst(MI, WideTy); 1864 else 1865 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1866 1867 Observer.changedInstr(MI); 1868 return Legalized; 1869 case TargetOpcode::G_SITOFP: 1870 if (TypeIdx != 1) 1871 return UnableToLegalize; 1872 Observer.changingInstr(MI); 1873 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1874 Observer.changedInstr(MI); 1875 return Legalized; 1876 1877 case TargetOpcode::G_UITOFP: 1878 if (TypeIdx != 1) 1879 return UnableToLegalize; 1880 Observer.changingInstr(MI); 1881 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1882 Observer.changedInstr(MI); 1883 return Legalized; 1884 1885 case TargetOpcode::G_LOAD: 1886 case TargetOpcode::G_SEXTLOAD: 1887 case TargetOpcode::G_ZEXTLOAD: 1888 Observer.changingInstr(MI); 1889 widenScalarDst(MI, WideTy); 1890 Observer.changedInstr(MI); 1891 return Legalized; 1892 1893 case TargetOpcode::G_STORE: { 1894 if (TypeIdx != 0) 1895 return UnableToLegalize; 1896 1897 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1898 if (!isPowerOf2_32(Ty.getSizeInBits())) 1899 return UnableToLegalize; 1900 1901 Observer.changingInstr(MI); 1902 1903 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1904 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1905 widenScalarSrc(MI, WideTy, 0, ExtType); 1906 1907 Observer.changedInstr(MI); 1908 return Legalized; 1909 } 1910 case TargetOpcode::G_CONSTANT: { 1911 MachineOperand &SrcMO = MI.getOperand(1); 1912 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1913 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1914 MRI.getType(MI.getOperand(0).getReg())); 1915 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1916 ExtOpc == TargetOpcode::G_ANYEXT) && 1917 "Illegal Extend"); 1918 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1919 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1920 ? SrcVal.sext(WideTy.getSizeInBits()) 1921 : SrcVal.zext(WideTy.getSizeInBits()); 1922 Observer.changingInstr(MI); 1923 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1924 1925 widenScalarDst(MI, WideTy); 1926 Observer.changedInstr(MI); 1927 return Legalized; 1928 } 1929 case TargetOpcode::G_FCONSTANT: { 1930 MachineOperand &SrcMO = MI.getOperand(1); 1931 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1932 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1933 bool LosesInfo; 1934 switch (WideTy.getSizeInBits()) { 1935 case 32: 1936 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1937 &LosesInfo); 1938 break; 1939 case 64: 1940 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1941 &LosesInfo); 1942 break; 1943 default: 1944 return UnableToLegalize; 1945 } 1946 1947 assert(!LosesInfo && "extend should always be lossless"); 1948 1949 Observer.changingInstr(MI); 1950 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1951 1952 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1953 Observer.changedInstr(MI); 1954 return Legalized; 1955 } 1956 case TargetOpcode::G_IMPLICIT_DEF: { 1957 Observer.changingInstr(MI); 1958 widenScalarDst(MI, WideTy); 1959 Observer.changedInstr(MI); 1960 return Legalized; 1961 } 1962 case TargetOpcode::G_BRCOND: 1963 Observer.changingInstr(MI); 1964 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1965 Observer.changedInstr(MI); 1966 return Legalized; 1967 1968 case TargetOpcode::G_FCMP: 1969 Observer.changingInstr(MI); 1970 if (TypeIdx == 0) 1971 widenScalarDst(MI, WideTy); 1972 else { 1973 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1974 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1975 } 1976 Observer.changedInstr(MI); 1977 return Legalized; 1978 1979 case TargetOpcode::G_ICMP: 1980 Observer.changingInstr(MI); 1981 if (TypeIdx == 0) 1982 widenScalarDst(MI, WideTy); 1983 else { 1984 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1985 MI.getOperand(1).getPredicate())) 1986 ? TargetOpcode::G_SEXT 1987 : TargetOpcode::G_ZEXT; 1988 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1989 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1990 } 1991 Observer.changedInstr(MI); 1992 return Legalized; 1993 1994 case TargetOpcode::G_PTR_ADD: 1995 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1996 Observer.changingInstr(MI); 1997 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1998 Observer.changedInstr(MI); 1999 return Legalized; 2000 2001 case TargetOpcode::G_PHI: { 2002 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2003 2004 Observer.changingInstr(MI); 2005 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2006 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2007 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2008 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2009 } 2010 2011 MachineBasicBlock &MBB = *MI.getParent(); 2012 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2013 widenScalarDst(MI, WideTy); 2014 Observer.changedInstr(MI); 2015 return Legalized; 2016 } 2017 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2018 if (TypeIdx == 0) { 2019 Register VecReg = MI.getOperand(1).getReg(); 2020 LLT VecTy = MRI.getType(VecReg); 2021 Observer.changingInstr(MI); 2022 2023 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2024 WideTy.getSizeInBits()), 2025 1, TargetOpcode::G_SEXT); 2026 2027 widenScalarDst(MI, WideTy, 0); 2028 Observer.changedInstr(MI); 2029 return Legalized; 2030 } 2031 2032 if (TypeIdx != 2) 2033 return UnableToLegalize; 2034 Observer.changingInstr(MI); 2035 // TODO: Probably should be zext 2036 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2037 Observer.changedInstr(MI); 2038 return Legalized; 2039 } 2040 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2041 if (TypeIdx == 1) { 2042 Observer.changingInstr(MI); 2043 2044 Register VecReg = MI.getOperand(1).getReg(); 2045 LLT VecTy = MRI.getType(VecReg); 2046 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2047 2048 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2049 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2050 widenScalarDst(MI, WideVecTy, 0); 2051 Observer.changedInstr(MI); 2052 return Legalized; 2053 } 2054 2055 if (TypeIdx == 2) { 2056 Observer.changingInstr(MI); 2057 // TODO: Probably should be zext 2058 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2059 Observer.changedInstr(MI); 2060 } 2061 2062 return Legalized; 2063 } 2064 case TargetOpcode::G_FADD: 2065 case TargetOpcode::G_FMUL: 2066 case TargetOpcode::G_FSUB: 2067 case TargetOpcode::G_FMA: 2068 case TargetOpcode::G_FMAD: 2069 case TargetOpcode::G_FNEG: 2070 case TargetOpcode::G_FABS: 2071 case TargetOpcode::G_FCANONICALIZE: 2072 case TargetOpcode::G_FMINNUM: 2073 case TargetOpcode::G_FMAXNUM: 2074 case TargetOpcode::G_FMINNUM_IEEE: 2075 case TargetOpcode::G_FMAXNUM_IEEE: 2076 case TargetOpcode::G_FMINIMUM: 2077 case TargetOpcode::G_FMAXIMUM: 2078 case TargetOpcode::G_FDIV: 2079 case TargetOpcode::G_FREM: 2080 case TargetOpcode::G_FCEIL: 2081 case TargetOpcode::G_FFLOOR: 2082 case TargetOpcode::G_FCOS: 2083 case TargetOpcode::G_FSIN: 2084 case TargetOpcode::G_FLOG10: 2085 case TargetOpcode::G_FLOG: 2086 case TargetOpcode::G_FLOG2: 2087 case TargetOpcode::G_FRINT: 2088 case TargetOpcode::G_FNEARBYINT: 2089 case TargetOpcode::G_FSQRT: 2090 case TargetOpcode::G_FEXP: 2091 case TargetOpcode::G_FEXP2: 2092 case TargetOpcode::G_FPOW: 2093 case TargetOpcode::G_INTRINSIC_TRUNC: 2094 case TargetOpcode::G_INTRINSIC_ROUND: 2095 assert(TypeIdx == 0); 2096 Observer.changingInstr(MI); 2097 2098 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2099 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2100 2101 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2102 Observer.changedInstr(MI); 2103 return Legalized; 2104 case TargetOpcode::G_INTTOPTR: 2105 if (TypeIdx != 1) 2106 return UnableToLegalize; 2107 2108 Observer.changingInstr(MI); 2109 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2110 Observer.changedInstr(MI); 2111 return Legalized; 2112 case TargetOpcode::G_PTRTOINT: 2113 if (TypeIdx != 0) 2114 return UnableToLegalize; 2115 2116 Observer.changingInstr(MI); 2117 widenScalarDst(MI, WideTy, 0); 2118 Observer.changedInstr(MI); 2119 return Legalized; 2120 case TargetOpcode::G_BUILD_VECTOR: { 2121 Observer.changingInstr(MI); 2122 2123 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2124 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2125 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2126 2127 // Avoid changing the result vector type if the source element type was 2128 // requested. 2129 if (TypeIdx == 1) { 2130 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2131 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2132 } else { 2133 widenScalarDst(MI, WideTy, 0); 2134 } 2135 2136 Observer.changedInstr(MI); 2137 return Legalized; 2138 } 2139 case TargetOpcode::G_SEXT_INREG: 2140 if (TypeIdx != 0) 2141 return UnableToLegalize; 2142 2143 Observer.changingInstr(MI); 2144 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2145 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2146 Observer.changedInstr(MI); 2147 return Legalized; 2148 case TargetOpcode::G_PTRMASK: { 2149 if (TypeIdx != 1) 2150 return UnableToLegalize; 2151 Observer.changingInstr(MI); 2152 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2153 Observer.changedInstr(MI); 2154 return Legalized; 2155 } 2156 } 2157 } 2158 2159 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2160 MachineIRBuilder &B, Register Src, LLT Ty) { 2161 auto Unmerge = B.buildUnmerge(Ty, Src); 2162 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2163 Pieces.push_back(Unmerge.getReg(I)); 2164 } 2165 2166 LegalizerHelper::LegalizeResult 2167 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2168 Register Dst = MI.getOperand(0).getReg(); 2169 Register Src = MI.getOperand(1).getReg(); 2170 LLT DstTy = MRI.getType(Dst); 2171 LLT SrcTy = MRI.getType(Src); 2172 2173 if (SrcTy.isVector() && !DstTy.isVector()) { 2174 SmallVector<Register, 8> SrcRegs; 2175 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2176 MIRBuilder.buildMerge(Dst, SrcRegs); 2177 MI.eraseFromParent(); 2178 return Legalized; 2179 } 2180 2181 if (DstTy.isVector() && !SrcTy.isVector()) { 2182 SmallVector<Register, 8> SrcRegs; 2183 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2184 MIRBuilder.buildMerge(Dst, SrcRegs); 2185 MI.eraseFromParent(); 2186 return Legalized; 2187 } 2188 2189 return UnableToLegalize; 2190 } 2191 2192 LegalizerHelper::LegalizeResult 2193 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2194 switch (MI.getOpcode()) { 2195 case TargetOpcode::G_LOAD: { 2196 if (TypeIdx != 0) 2197 return UnableToLegalize; 2198 2199 Observer.changingInstr(MI); 2200 bitcastDst(MI, CastTy, 0); 2201 Observer.changedInstr(MI); 2202 return Legalized; 2203 } 2204 case TargetOpcode::G_STORE: { 2205 if (TypeIdx != 0) 2206 return UnableToLegalize; 2207 2208 Observer.changingInstr(MI); 2209 bitcastSrc(MI, CastTy, 0); 2210 Observer.changedInstr(MI); 2211 return Legalized; 2212 } 2213 case TargetOpcode::G_SELECT: { 2214 if (TypeIdx != 0) 2215 return UnableToLegalize; 2216 2217 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2218 LLVM_DEBUG( 2219 dbgs() << "bitcast action not implemented for vector select\n"); 2220 return UnableToLegalize; 2221 } 2222 2223 Observer.changingInstr(MI); 2224 bitcastSrc(MI, CastTy, 2); 2225 bitcastSrc(MI, CastTy, 3); 2226 bitcastDst(MI, CastTy, 0); 2227 Observer.changedInstr(MI); 2228 return Legalized; 2229 } 2230 case TargetOpcode::G_AND: 2231 case TargetOpcode::G_OR: 2232 case TargetOpcode::G_XOR: { 2233 Observer.changingInstr(MI); 2234 bitcastSrc(MI, CastTy, 1); 2235 bitcastSrc(MI, CastTy, 2); 2236 bitcastDst(MI, CastTy, 0); 2237 Observer.changedInstr(MI); 2238 return Legalized; 2239 } 2240 default: 2241 return UnableToLegalize; 2242 } 2243 } 2244 2245 LegalizerHelper::LegalizeResult 2246 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2247 using namespace TargetOpcode; 2248 2249 switch(MI.getOpcode()) { 2250 default: 2251 return UnableToLegalize; 2252 case TargetOpcode::G_BITCAST: 2253 return lowerBitcast(MI); 2254 case TargetOpcode::G_SREM: 2255 case TargetOpcode::G_UREM: { 2256 auto Quot = 2257 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2258 {MI.getOperand(1), MI.getOperand(2)}); 2259 2260 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2261 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2262 MI.eraseFromParent(); 2263 return Legalized; 2264 } 2265 case TargetOpcode::G_SADDO: 2266 case TargetOpcode::G_SSUBO: 2267 return lowerSADDO_SSUBO(MI); 2268 case TargetOpcode::G_SMULO: 2269 case TargetOpcode::G_UMULO: { 2270 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2271 // result. 2272 Register Res = MI.getOperand(0).getReg(); 2273 Register Overflow = MI.getOperand(1).getReg(); 2274 Register LHS = MI.getOperand(2).getReg(); 2275 Register RHS = MI.getOperand(3).getReg(); 2276 2277 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2278 ? TargetOpcode::G_SMULH 2279 : TargetOpcode::G_UMULH; 2280 2281 Observer.changingInstr(MI); 2282 const auto &TII = MIRBuilder.getTII(); 2283 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2284 MI.RemoveOperand(1); 2285 Observer.changedInstr(MI); 2286 2287 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2288 2289 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2290 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2291 2292 // For *signed* multiply, overflow is detected by checking: 2293 // (hi != (lo >> bitwidth-1)) 2294 if (Opcode == TargetOpcode::G_SMULH) { 2295 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2296 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2297 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2298 } else { 2299 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2300 } 2301 return Legalized; 2302 } 2303 case TargetOpcode::G_FNEG: { 2304 // TODO: Handle vector types once we are able to 2305 // represent them. 2306 if (Ty.isVector()) 2307 return UnableToLegalize; 2308 Register Res = MI.getOperand(0).getReg(); 2309 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2310 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2311 if (!ZeroTy) 2312 return UnableToLegalize; 2313 ConstantFP &ZeroForNegation = 2314 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2315 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2316 Register SubByReg = MI.getOperand(1).getReg(); 2317 Register ZeroReg = Zero.getReg(0); 2318 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2319 MI.eraseFromParent(); 2320 return Legalized; 2321 } 2322 case TargetOpcode::G_FSUB: { 2323 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2324 // First, check if G_FNEG is marked as Lower. If so, we may 2325 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2326 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2327 return UnableToLegalize; 2328 Register Res = MI.getOperand(0).getReg(); 2329 Register LHS = MI.getOperand(1).getReg(); 2330 Register RHS = MI.getOperand(2).getReg(); 2331 Register Neg = MRI.createGenericVirtualRegister(Ty); 2332 MIRBuilder.buildFNeg(Neg, RHS); 2333 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2334 MI.eraseFromParent(); 2335 return Legalized; 2336 } 2337 case TargetOpcode::G_FMAD: 2338 return lowerFMad(MI); 2339 case TargetOpcode::G_FFLOOR: 2340 return lowerFFloor(MI); 2341 case TargetOpcode::G_INTRINSIC_ROUND: 2342 return lowerIntrinsicRound(MI); 2343 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2344 Register OldValRes = MI.getOperand(0).getReg(); 2345 Register SuccessRes = MI.getOperand(1).getReg(); 2346 Register Addr = MI.getOperand(2).getReg(); 2347 Register CmpVal = MI.getOperand(3).getReg(); 2348 Register NewVal = MI.getOperand(4).getReg(); 2349 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2350 **MI.memoperands_begin()); 2351 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2352 MI.eraseFromParent(); 2353 return Legalized; 2354 } 2355 case TargetOpcode::G_LOAD: 2356 case TargetOpcode::G_SEXTLOAD: 2357 case TargetOpcode::G_ZEXTLOAD: { 2358 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2359 Register DstReg = MI.getOperand(0).getReg(); 2360 Register PtrReg = MI.getOperand(1).getReg(); 2361 LLT DstTy = MRI.getType(DstReg); 2362 auto &MMO = **MI.memoperands_begin(); 2363 2364 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2365 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2366 // This load needs splitting into power of 2 sized loads. 2367 if (DstTy.isVector()) 2368 return UnableToLegalize; 2369 if (isPowerOf2_32(DstTy.getSizeInBits())) 2370 return UnableToLegalize; // Don't know what we're being asked to do. 2371 2372 // Our strategy here is to generate anyextending loads for the smaller 2373 // types up to next power-2 result type, and then combine the two larger 2374 // result values together, before truncating back down to the non-pow-2 2375 // type. 2376 // E.g. v1 = i24 load => 2377 // v2 = i32 zextload (2 byte) 2378 // v3 = i32 load (1 byte) 2379 // v4 = i32 shl v3, 16 2380 // v5 = i32 or v4, v2 2381 // v1 = i24 trunc v5 2382 // By doing this we generate the correct truncate which should get 2383 // combined away as an artifact with a matching extend. 2384 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2385 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2386 2387 MachineFunction &MF = MIRBuilder.getMF(); 2388 MachineMemOperand *LargeMMO = 2389 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2390 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2391 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2392 2393 LLT PtrTy = MRI.getType(PtrReg); 2394 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2395 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2396 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2397 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2398 auto LargeLoad = MIRBuilder.buildLoadInstr( 2399 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2400 2401 auto OffsetCst = MIRBuilder.buildConstant( 2402 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2403 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2404 auto SmallPtr = 2405 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2406 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2407 *SmallMMO); 2408 2409 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2410 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2411 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2412 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2413 MI.eraseFromParent(); 2414 return Legalized; 2415 } 2416 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2417 MI.eraseFromParent(); 2418 return Legalized; 2419 } 2420 2421 if (DstTy.isScalar()) { 2422 Register TmpReg = 2423 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2424 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2425 switch (MI.getOpcode()) { 2426 default: 2427 llvm_unreachable("Unexpected opcode"); 2428 case TargetOpcode::G_LOAD: 2429 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2430 break; 2431 case TargetOpcode::G_SEXTLOAD: 2432 MIRBuilder.buildSExt(DstReg, TmpReg); 2433 break; 2434 case TargetOpcode::G_ZEXTLOAD: 2435 MIRBuilder.buildZExt(DstReg, TmpReg); 2436 break; 2437 } 2438 MI.eraseFromParent(); 2439 return Legalized; 2440 } 2441 2442 return UnableToLegalize; 2443 } 2444 case TargetOpcode::G_STORE: { 2445 // Lower a non-power of 2 store into multiple pow-2 stores. 2446 // E.g. split an i24 store into an i16 store + i8 store. 2447 // We do this by first extending the stored value to the next largest power 2448 // of 2 type, and then using truncating stores to store the components. 2449 // By doing this, likewise with G_LOAD, generate an extend that can be 2450 // artifact-combined away instead of leaving behind extracts. 2451 Register SrcReg = MI.getOperand(0).getReg(); 2452 Register PtrReg = MI.getOperand(1).getReg(); 2453 LLT SrcTy = MRI.getType(SrcReg); 2454 MachineMemOperand &MMO = **MI.memoperands_begin(); 2455 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2456 return UnableToLegalize; 2457 if (SrcTy.isVector()) 2458 return UnableToLegalize; 2459 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2460 return UnableToLegalize; // Don't know what we're being asked to do. 2461 2462 // Extend to the next pow-2. 2463 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2464 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2465 2466 // Obtain the smaller value by shifting away the larger value. 2467 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2468 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2469 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2470 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2471 2472 // Generate the PtrAdd and truncating stores. 2473 LLT PtrTy = MRI.getType(PtrReg); 2474 auto OffsetCst = MIRBuilder.buildConstant( 2475 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2476 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2477 auto SmallPtr = 2478 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2479 2480 MachineFunction &MF = MIRBuilder.getMF(); 2481 MachineMemOperand *LargeMMO = 2482 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2483 MachineMemOperand *SmallMMO = 2484 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2485 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2486 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2487 MI.eraseFromParent(); 2488 return Legalized; 2489 } 2490 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2491 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2492 case TargetOpcode::G_CTLZ: 2493 case TargetOpcode::G_CTTZ: 2494 case TargetOpcode::G_CTPOP: 2495 return lowerBitCount(MI, TypeIdx, Ty); 2496 case G_UADDO: { 2497 Register Res = MI.getOperand(0).getReg(); 2498 Register CarryOut = MI.getOperand(1).getReg(); 2499 Register LHS = MI.getOperand(2).getReg(); 2500 Register RHS = MI.getOperand(3).getReg(); 2501 2502 MIRBuilder.buildAdd(Res, LHS, RHS); 2503 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2504 2505 MI.eraseFromParent(); 2506 return Legalized; 2507 } 2508 case G_UADDE: { 2509 Register Res = MI.getOperand(0).getReg(); 2510 Register CarryOut = MI.getOperand(1).getReg(); 2511 Register LHS = MI.getOperand(2).getReg(); 2512 Register RHS = MI.getOperand(3).getReg(); 2513 Register CarryIn = MI.getOperand(4).getReg(); 2514 LLT Ty = MRI.getType(Res); 2515 2516 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2517 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2518 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2519 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2520 2521 MI.eraseFromParent(); 2522 return Legalized; 2523 } 2524 case G_USUBO: { 2525 Register Res = MI.getOperand(0).getReg(); 2526 Register BorrowOut = MI.getOperand(1).getReg(); 2527 Register LHS = MI.getOperand(2).getReg(); 2528 Register RHS = MI.getOperand(3).getReg(); 2529 2530 MIRBuilder.buildSub(Res, LHS, RHS); 2531 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2532 2533 MI.eraseFromParent(); 2534 return Legalized; 2535 } 2536 case G_USUBE: { 2537 Register Res = MI.getOperand(0).getReg(); 2538 Register BorrowOut = MI.getOperand(1).getReg(); 2539 Register LHS = MI.getOperand(2).getReg(); 2540 Register RHS = MI.getOperand(3).getReg(); 2541 Register BorrowIn = MI.getOperand(4).getReg(); 2542 const LLT CondTy = MRI.getType(BorrowOut); 2543 const LLT Ty = MRI.getType(Res); 2544 2545 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2546 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2547 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2548 2549 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2550 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2551 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2552 2553 MI.eraseFromParent(); 2554 return Legalized; 2555 } 2556 case G_UITOFP: 2557 return lowerUITOFP(MI, TypeIdx, Ty); 2558 case G_SITOFP: 2559 return lowerSITOFP(MI, TypeIdx, Ty); 2560 case G_FPTOUI: 2561 return lowerFPTOUI(MI, TypeIdx, Ty); 2562 case G_FPTOSI: 2563 return lowerFPTOSI(MI); 2564 case G_FPTRUNC: 2565 return lowerFPTRUNC(MI, TypeIdx, Ty); 2566 case G_SMIN: 2567 case G_SMAX: 2568 case G_UMIN: 2569 case G_UMAX: 2570 return lowerMinMax(MI, TypeIdx, Ty); 2571 case G_FCOPYSIGN: 2572 return lowerFCopySign(MI, TypeIdx, Ty); 2573 case G_FMINNUM: 2574 case G_FMAXNUM: 2575 return lowerFMinNumMaxNum(MI); 2576 case G_MERGE_VALUES: 2577 return lowerMergeValues(MI); 2578 case G_UNMERGE_VALUES: 2579 return lowerUnmergeValues(MI); 2580 case TargetOpcode::G_SEXT_INREG: { 2581 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2582 int64_t SizeInBits = MI.getOperand(2).getImm(); 2583 2584 Register DstReg = MI.getOperand(0).getReg(); 2585 Register SrcReg = MI.getOperand(1).getReg(); 2586 LLT DstTy = MRI.getType(DstReg); 2587 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2588 2589 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2590 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2591 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2592 MI.eraseFromParent(); 2593 return Legalized; 2594 } 2595 case G_SHUFFLE_VECTOR: 2596 return lowerShuffleVector(MI); 2597 case G_DYN_STACKALLOC: 2598 return lowerDynStackAlloc(MI); 2599 case G_EXTRACT: 2600 return lowerExtract(MI); 2601 case G_INSERT: 2602 return lowerInsert(MI); 2603 case G_BSWAP: 2604 return lowerBswap(MI); 2605 case G_BITREVERSE: 2606 return lowerBitreverse(MI); 2607 case G_READ_REGISTER: 2608 case G_WRITE_REGISTER: 2609 return lowerReadWriteRegister(MI); 2610 } 2611 } 2612 2613 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2614 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2615 SmallVector<Register, 2> DstRegs; 2616 2617 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2618 Register DstReg = MI.getOperand(0).getReg(); 2619 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2620 int NumParts = Size / NarrowSize; 2621 // FIXME: Don't know how to handle the situation where the small vectors 2622 // aren't all the same size yet. 2623 if (Size % NarrowSize != 0) 2624 return UnableToLegalize; 2625 2626 for (int i = 0; i < NumParts; ++i) { 2627 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2628 MIRBuilder.buildUndef(TmpReg); 2629 DstRegs.push_back(TmpReg); 2630 } 2631 2632 if (NarrowTy.isVector()) 2633 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2634 else 2635 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2636 2637 MI.eraseFromParent(); 2638 return Legalized; 2639 } 2640 2641 // Handle splitting vector operations which need to have the same number of 2642 // elements in each type index, but each type index may have a different element 2643 // type. 2644 // 2645 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2646 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2647 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2648 // 2649 // Also handles some irregular breakdown cases, e.g. 2650 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2651 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2652 // s64 = G_SHL s64, s32 2653 LegalizerHelper::LegalizeResult 2654 LegalizerHelper::fewerElementsVectorMultiEltType( 2655 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2656 if (TypeIdx != 0) 2657 return UnableToLegalize; 2658 2659 const LLT NarrowTy0 = NarrowTyArg; 2660 const unsigned NewNumElts = 2661 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2662 2663 const Register DstReg = MI.getOperand(0).getReg(); 2664 LLT DstTy = MRI.getType(DstReg); 2665 LLT LeftoverTy0; 2666 2667 // All of the operands need to have the same number of elements, so if we can 2668 // determine a type breakdown for the result type, we can for all of the 2669 // source types. 2670 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2671 if (NumParts < 0) 2672 return UnableToLegalize; 2673 2674 SmallVector<MachineInstrBuilder, 4> NewInsts; 2675 2676 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2677 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2678 2679 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2680 LLT LeftoverTy; 2681 Register SrcReg = MI.getOperand(I).getReg(); 2682 LLT SrcTyI = MRI.getType(SrcReg); 2683 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2684 LLT LeftoverTyI; 2685 2686 // Split this operand into the requested typed registers, and any leftover 2687 // required to reproduce the original type. 2688 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2689 LeftoverRegs)) 2690 return UnableToLegalize; 2691 2692 if (I == 1) { 2693 // For the first operand, create an instruction for each part and setup 2694 // the result. 2695 for (Register PartReg : PartRegs) { 2696 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2697 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2698 .addDef(PartDstReg) 2699 .addUse(PartReg)); 2700 DstRegs.push_back(PartDstReg); 2701 } 2702 2703 for (Register LeftoverReg : LeftoverRegs) { 2704 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2705 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2706 .addDef(PartDstReg) 2707 .addUse(LeftoverReg)); 2708 LeftoverDstRegs.push_back(PartDstReg); 2709 } 2710 } else { 2711 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2712 2713 // Add the newly created operand splits to the existing instructions. The 2714 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2715 // pieces. 2716 unsigned InstCount = 0; 2717 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2718 NewInsts[InstCount++].addUse(PartRegs[J]); 2719 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2720 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2721 } 2722 2723 PartRegs.clear(); 2724 LeftoverRegs.clear(); 2725 } 2726 2727 // Insert the newly built operations and rebuild the result register. 2728 for (auto &MIB : NewInsts) 2729 MIRBuilder.insertInstr(MIB); 2730 2731 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2732 2733 MI.eraseFromParent(); 2734 return Legalized; 2735 } 2736 2737 LegalizerHelper::LegalizeResult 2738 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2739 LLT NarrowTy) { 2740 if (TypeIdx != 0) 2741 return UnableToLegalize; 2742 2743 Register DstReg = MI.getOperand(0).getReg(); 2744 Register SrcReg = MI.getOperand(1).getReg(); 2745 LLT DstTy = MRI.getType(DstReg); 2746 LLT SrcTy = MRI.getType(SrcReg); 2747 2748 LLT NarrowTy0 = NarrowTy; 2749 LLT NarrowTy1; 2750 unsigned NumParts; 2751 2752 if (NarrowTy.isVector()) { 2753 // Uneven breakdown not handled. 2754 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2755 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2756 return UnableToLegalize; 2757 2758 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2759 } else { 2760 NumParts = DstTy.getNumElements(); 2761 NarrowTy1 = SrcTy.getElementType(); 2762 } 2763 2764 SmallVector<Register, 4> SrcRegs, DstRegs; 2765 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2766 2767 for (unsigned I = 0; I < NumParts; ++I) { 2768 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2769 MachineInstr *NewInst = 2770 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2771 2772 NewInst->setFlags(MI.getFlags()); 2773 DstRegs.push_back(DstReg); 2774 } 2775 2776 if (NarrowTy.isVector()) 2777 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2778 else 2779 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2780 2781 MI.eraseFromParent(); 2782 return Legalized; 2783 } 2784 2785 LegalizerHelper::LegalizeResult 2786 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2787 LLT NarrowTy) { 2788 Register DstReg = MI.getOperand(0).getReg(); 2789 Register Src0Reg = MI.getOperand(2).getReg(); 2790 LLT DstTy = MRI.getType(DstReg); 2791 LLT SrcTy = MRI.getType(Src0Reg); 2792 2793 unsigned NumParts; 2794 LLT NarrowTy0, NarrowTy1; 2795 2796 if (TypeIdx == 0) { 2797 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2798 unsigned OldElts = DstTy.getNumElements(); 2799 2800 NarrowTy0 = NarrowTy; 2801 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2802 NarrowTy1 = NarrowTy.isVector() ? 2803 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2804 SrcTy.getElementType(); 2805 2806 } else { 2807 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2808 unsigned OldElts = SrcTy.getNumElements(); 2809 2810 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2811 NarrowTy.getNumElements(); 2812 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2813 DstTy.getScalarSizeInBits()); 2814 NarrowTy1 = NarrowTy; 2815 } 2816 2817 // FIXME: Don't know how to handle the situation where the small vectors 2818 // aren't all the same size yet. 2819 if (NarrowTy1.isVector() && 2820 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2821 return UnableToLegalize; 2822 2823 CmpInst::Predicate Pred 2824 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2825 2826 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2827 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2828 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2829 2830 for (unsigned I = 0; I < NumParts; ++I) { 2831 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2832 DstRegs.push_back(DstReg); 2833 2834 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2835 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2836 else { 2837 MachineInstr *NewCmp 2838 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2839 NewCmp->setFlags(MI.getFlags()); 2840 } 2841 } 2842 2843 if (NarrowTy1.isVector()) 2844 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2845 else 2846 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2847 2848 MI.eraseFromParent(); 2849 return Legalized; 2850 } 2851 2852 LegalizerHelper::LegalizeResult 2853 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2854 LLT NarrowTy) { 2855 Register DstReg = MI.getOperand(0).getReg(); 2856 Register CondReg = MI.getOperand(1).getReg(); 2857 2858 unsigned NumParts = 0; 2859 LLT NarrowTy0, NarrowTy1; 2860 2861 LLT DstTy = MRI.getType(DstReg); 2862 LLT CondTy = MRI.getType(CondReg); 2863 unsigned Size = DstTy.getSizeInBits(); 2864 2865 assert(TypeIdx == 0 || CondTy.isVector()); 2866 2867 if (TypeIdx == 0) { 2868 NarrowTy0 = NarrowTy; 2869 NarrowTy1 = CondTy; 2870 2871 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2872 // FIXME: Don't know how to handle the situation where the small vectors 2873 // aren't all the same size yet. 2874 if (Size % NarrowSize != 0) 2875 return UnableToLegalize; 2876 2877 NumParts = Size / NarrowSize; 2878 2879 // Need to break down the condition type 2880 if (CondTy.isVector()) { 2881 if (CondTy.getNumElements() == NumParts) 2882 NarrowTy1 = CondTy.getElementType(); 2883 else 2884 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2885 CondTy.getScalarSizeInBits()); 2886 } 2887 } else { 2888 NumParts = CondTy.getNumElements(); 2889 if (NarrowTy.isVector()) { 2890 // TODO: Handle uneven breakdown. 2891 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2892 return UnableToLegalize; 2893 2894 return UnableToLegalize; 2895 } else { 2896 NarrowTy0 = DstTy.getElementType(); 2897 NarrowTy1 = NarrowTy; 2898 } 2899 } 2900 2901 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2902 if (CondTy.isVector()) 2903 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2904 2905 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2906 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2907 2908 for (unsigned i = 0; i < NumParts; ++i) { 2909 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2910 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2911 Src1Regs[i], Src2Regs[i]); 2912 DstRegs.push_back(DstReg); 2913 } 2914 2915 if (NarrowTy0.isVector()) 2916 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2917 else 2918 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2919 2920 MI.eraseFromParent(); 2921 return Legalized; 2922 } 2923 2924 LegalizerHelper::LegalizeResult 2925 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2926 LLT NarrowTy) { 2927 const Register DstReg = MI.getOperand(0).getReg(); 2928 LLT PhiTy = MRI.getType(DstReg); 2929 LLT LeftoverTy; 2930 2931 // All of the operands need to have the same number of elements, so if we can 2932 // determine a type breakdown for the result type, we can for all of the 2933 // source types. 2934 int NumParts, NumLeftover; 2935 std::tie(NumParts, NumLeftover) 2936 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2937 if (NumParts < 0) 2938 return UnableToLegalize; 2939 2940 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2941 SmallVector<MachineInstrBuilder, 4> NewInsts; 2942 2943 const int TotalNumParts = NumParts + NumLeftover; 2944 2945 // Insert the new phis in the result block first. 2946 for (int I = 0; I != TotalNumParts; ++I) { 2947 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2948 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2949 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2950 .addDef(PartDstReg)); 2951 if (I < NumParts) 2952 DstRegs.push_back(PartDstReg); 2953 else 2954 LeftoverDstRegs.push_back(PartDstReg); 2955 } 2956 2957 MachineBasicBlock *MBB = MI.getParent(); 2958 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2959 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2960 2961 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2962 2963 // Insert code to extract the incoming values in each predecessor block. 2964 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2965 PartRegs.clear(); 2966 LeftoverRegs.clear(); 2967 2968 Register SrcReg = MI.getOperand(I).getReg(); 2969 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2970 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2971 2972 LLT Unused; 2973 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2974 LeftoverRegs)) 2975 return UnableToLegalize; 2976 2977 // Add the newly created operand splits to the existing instructions. The 2978 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2979 // pieces. 2980 for (int J = 0; J != TotalNumParts; ++J) { 2981 MachineInstrBuilder MIB = NewInsts[J]; 2982 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2983 MIB.addMBB(&OpMBB); 2984 } 2985 } 2986 2987 MI.eraseFromParent(); 2988 return Legalized; 2989 } 2990 2991 LegalizerHelper::LegalizeResult 2992 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 2993 unsigned TypeIdx, 2994 LLT NarrowTy) { 2995 if (TypeIdx != 1) 2996 return UnableToLegalize; 2997 2998 const int NumDst = MI.getNumOperands() - 1; 2999 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3000 LLT SrcTy = MRI.getType(SrcReg); 3001 3002 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3003 3004 // TODO: Create sequence of extracts. 3005 if (DstTy == NarrowTy) 3006 return UnableToLegalize; 3007 3008 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3009 if (DstTy == GCDTy) { 3010 // This would just be a copy of the same unmerge. 3011 // TODO: Create extracts, pad with undef and create intermediate merges. 3012 return UnableToLegalize; 3013 } 3014 3015 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3016 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3017 const int PartsPerUnmerge = NumDst / NumUnmerge; 3018 3019 for (int I = 0; I != NumUnmerge; ++I) { 3020 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3021 3022 for (int J = 0; J != PartsPerUnmerge; ++J) 3023 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3024 MIB.addUse(Unmerge.getReg(I)); 3025 } 3026 3027 MI.eraseFromParent(); 3028 return Legalized; 3029 } 3030 3031 LegalizerHelper::LegalizeResult 3032 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 3033 unsigned TypeIdx, 3034 LLT NarrowTy) { 3035 assert(TypeIdx == 0 && "not a vector type index"); 3036 Register DstReg = MI.getOperand(0).getReg(); 3037 LLT DstTy = MRI.getType(DstReg); 3038 LLT SrcTy = DstTy.getElementType(); 3039 3040 int DstNumElts = DstTy.getNumElements(); 3041 int NarrowNumElts = NarrowTy.getNumElements(); 3042 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 3043 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 3044 3045 SmallVector<Register, 8> ConcatOps; 3046 SmallVector<Register, 8> SubBuildVector; 3047 3048 Register UndefReg; 3049 if (WidenedDstTy != DstTy) 3050 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 3051 3052 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 3053 // necessary. 3054 // 3055 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3056 // -> <2 x s16> 3057 // 3058 // %4:_(s16) = G_IMPLICIT_DEF 3059 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3060 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3061 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 3062 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 3063 for (int I = 0; I != NumConcat; ++I) { 3064 for (int J = 0; J != NarrowNumElts; ++J) { 3065 int SrcIdx = NarrowNumElts * I + J; 3066 3067 if (SrcIdx < DstNumElts) { 3068 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 3069 SubBuildVector.push_back(SrcReg); 3070 } else 3071 SubBuildVector.push_back(UndefReg); 3072 } 3073 3074 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3075 ConcatOps.push_back(BuildVec.getReg(0)); 3076 SubBuildVector.clear(); 3077 } 3078 3079 if (DstTy == WidenedDstTy) 3080 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3081 else { 3082 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3083 MIRBuilder.buildExtract(DstReg, Concat, 0); 3084 } 3085 3086 MI.eraseFromParent(); 3087 return Legalized; 3088 } 3089 3090 LegalizerHelper::LegalizeResult 3091 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3092 LLT NarrowTy) { 3093 // FIXME: Don't know how to handle secondary types yet. 3094 if (TypeIdx != 0) 3095 return UnableToLegalize; 3096 3097 MachineMemOperand *MMO = *MI.memoperands_begin(); 3098 3099 // This implementation doesn't work for atomics. Give up instead of doing 3100 // something invalid. 3101 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3102 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3103 return UnableToLegalize; 3104 3105 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3106 Register ValReg = MI.getOperand(0).getReg(); 3107 Register AddrReg = MI.getOperand(1).getReg(); 3108 LLT ValTy = MRI.getType(ValReg); 3109 3110 // FIXME: Do we need a distinct NarrowMemory legalize action? 3111 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3112 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3113 return UnableToLegalize; 3114 } 3115 3116 int NumParts = -1; 3117 int NumLeftover = -1; 3118 LLT LeftoverTy; 3119 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3120 if (IsLoad) { 3121 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3122 } else { 3123 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3124 NarrowLeftoverRegs)) { 3125 NumParts = NarrowRegs.size(); 3126 NumLeftover = NarrowLeftoverRegs.size(); 3127 } 3128 } 3129 3130 if (NumParts == -1) 3131 return UnableToLegalize; 3132 3133 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3134 3135 unsigned TotalSize = ValTy.getSizeInBits(); 3136 3137 // Split the load/store into PartTy sized pieces starting at Offset. If this 3138 // is a load, return the new registers in ValRegs. For a store, each elements 3139 // of ValRegs should be PartTy. Returns the next offset that needs to be 3140 // handled. 3141 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3142 unsigned Offset) -> unsigned { 3143 MachineFunction &MF = MIRBuilder.getMF(); 3144 unsigned PartSize = PartTy.getSizeInBits(); 3145 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3146 Offset += PartSize, ++Idx) { 3147 unsigned ByteSize = PartSize / 8; 3148 unsigned ByteOffset = Offset / 8; 3149 Register NewAddrReg; 3150 3151 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3152 3153 MachineMemOperand *NewMMO = 3154 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3155 3156 if (IsLoad) { 3157 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3158 ValRegs.push_back(Dst); 3159 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3160 } else { 3161 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3162 } 3163 } 3164 3165 return Offset; 3166 }; 3167 3168 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3169 3170 // Handle the rest of the register if this isn't an even type breakdown. 3171 if (LeftoverTy.isValid()) 3172 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3173 3174 if (IsLoad) { 3175 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3176 LeftoverTy, NarrowLeftoverRegs); 3177 } 3178 3179 MI.eraseFromParent(); 3180 return Legalized; 3181 } 3182 3183 LegalizerHelper::LegalizeResult 3184 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3185 LLT NarrowTy) { 3186 assert(TypeIdx == 0 && "only one type index expected"); 3187 3188 const unsigned Opc = MI.getOpcode(); 3189 const int NumOps = MI.getNumOperands() - 1; 3190 const Register DstReg = MI.getOperand(0).getReg(); 3191 const unsigned Flags = MI.getFlags(); 3192 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3193 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3194 3195 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3196 3197 // First of all check whether we are narrowing (changing the element type) 3198 // or reducing the vector elements 3199 const LLT DstTy = MRI.getType(DstReg); 3200 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3201 3202 SmallVector<Register, 8> ExtractedRegs[3]; 3203 SmallVector<Register, 8> Parts; 3204 3205 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3206 3207 // Break down all the sources into NarrowTy pieces we can operate on. This may 3208 // involve creating merges to a wider type, padded with undef. 3209 for (int I = 0; I != NumOps; ++I) { 3210 Register SrcReg = MI.getOperand(I + 1).getReg(); 3211 LLT SrcTy = MRI.getType(SrcReg); 3212 3213 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3214 // For fewerElements, this is a smaller vector with the same element type. 3215 LLT OpNarrowTy; 3216 if (IsNarrow) { 3217 OpNarrowTy = NarrowScalarTy; 3218 3219 // In case of narrowing, we need to cast vectors to scalars for this to 3220 // work properly 3221 // FIXME: Can we do without the bitcast here if we're narrowing? 3222 if (SrcTy.isVector()) { 3223 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3224 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3225 } 3226 } else { 3227 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3228 } 3229 3230 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3231 3232 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3233 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3234 TargetOpcode::G_ANYEXT); 3235 } 3236 3237 SmallVector<Register, 8> ResultRegs; 3238 3239 // Input operands for each sub-instruction. 3240 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3241 3242 int NumParts = ExtractedRegs[0].size(); 3243 const unsigned DstSize = DstTy.getSizeInBits(); 3244 const LLT DstScalarTy = LLT::scalar(DstSize); 3245 3246 // Narrowing needs to use scalar types 3247 LLT DstLCMTy, NarrowDstTy; 3248 if (IsNarrow) { 3249 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3250 NarrowDstTy = NarrowScalarTy; 3251 } else { 3252 DstLCMTy = getLCMType(DstTy, NarrowTy); 3253 NarrowDstTy = NarrowTy; 3254 } 3255 3256 // We widened the source registers to satisfy merge/unmerge size 3257 // constraints. We'll have some extra fully undef parts. 3258 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3259 3260 for (int I = 0; I != NumRealParts; ++I) { 3261 // Emit this instruction on each of the split pieces. 3262 for (int J = 0; J != NumOps; ++J) 3263 InputRegs[J] = ExtractedRegs[J][I]; 3264 3265 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3266 ResultRegs.push_back(Inst.getReg(0)); 3267 } 3268 3269 // Fill out the widened result with undef instead of creating instructions 3270 // with undef inputs. 3271 int NumUndefParts = NumParts - NumRealParts; 3272 if (NumUndefParts != 0) 3273 ResultRegs.append(NumUndefParts, 3274 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3275 3276 // Extract the possibly padded result. Use a scratch register if we need to do 3277 // a final bitcast, otherwise use the original result register. 3278 Register MergeDstReg; 3279 if (IsNarrow && DstTy.isVector()) 3280 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3281 else 3282 MergeDstReg = DstReg; 3283 3284 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3285 3286 // Recast to vector if we narrowed a vector 3287 if (IsNarrow && DstTy.isVector()) 3288 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3289 3290 MI.eraseFromParent(); 3291 return Legalized; 3292 } 3293 3294 LegalizerHelper::LegalizeResult 3295 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3296 LLT NarrowTy) { 3297 Register DstReg = MI.getOperand(0).getReg(); 3298 Register SrcReg = MI.getOperand(1).getReg(); 3299 int64_t Imm = MI.getOperand(2).getImm(); 3300 3301 LLT DstTy = MRI.getType(DstReg); 3302 3303 SmallVector<Register, 8> Parts; 3304 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3305 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3306 3307 for (Register &R : Parts) 3308 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3309 3310 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3311 3312 MI.eraseFromParent(); 3313 return Legalized; 3314 } 3315 3316 LegalizerHelper::LegalizeResult 3317 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3318 LLT NarrowTy) { 3319 using namespace TargetOpcode; 3320 3321 switch (MI.getOpcode()) { 3322 case G_IMPLICIT_DEF: 3323 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3324 case G_TRUNC: 3325 case G_AND: 3326 case G_OR: 3327 case G_XOR: 3328 case G_ADD: 3329 case G_SUB: 3330 case G_MUL: 3331 case G_SMULH: 3332 case G_UMULH: 3333 case G_FADD: 3334 case G_FMUL: 3335 case G_FSUB: 3336 case G_FNEG: 3337 case G_FABS: 3338 case G_FCANONICALIZE: 3339 case G_FDIV: 3340 case G_FREM: 3341 case G_FMA: 3342 case G_FMAD: 3343 case G_FPOW: 3344 case G_FEXP: 3345 case G_FEXP2: 3346 case G_FLOG: 3347 case G_FLOG2: 3348 case G_FLOG10: 3349 case G_FNEARBYINT: 3350 case G_FCEIL: 3351 case G_FFLOOR: 3352 case G_FRINT: 3353 case G_INTRINSIC_ROUND: 3354 case G_INTRINSIC_TRUNC: 3355 case G_FCOS: 3356 case G_FSIN: 3357 case G_FSQRT: 3358 case G_BSWAP: 3359 case G_BITREVERSE: 3360 case G_SDIV: 3361 case G_UDIV: 3362 case G_SREM: 3363 case G_UREM: 3364 case G_SMIN: 3365 case G_SMAX: 3366 case G_UMIN: 3367 case G_UMAX: 3368 case G_FMINNUM: 3369 case G_FMAXNUM: 3370 case G_FMINNUM_IEEE: 3371 case G_FMAXNUM_IEEE: 3372 case G_FMINIMUM: 3373 case G_FMAXIMUM: 3374 case G_FSHL: 3375 case G_FSHR: 3376 case G_FREEZE: 3377 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 3378 case G_SHL: 3379 case G_LSHR: 3380 case G_ASHR: 3381 case G_CTLZ: 3382 case G_CTLZ_ZERO_UNDEF: 3383 case G_CTTZ: 3384 case G_CTTZ_ZERO_UNDEF: 3385 case G_CTPOP: 3386 case G_FCOPYSIGN: 3387 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3388 case G_ZEXT: 3389 case G_SEXT: 3390 case G_ANYEXT: 3391 case G_FPEXT: 3392 case G_FPTRUNC: 3393 case G_SITOFP: 3394 case G_UITOFP: 3395 case G_FPTOSI: 3396 case G_FPTOUI: 3397 case G_INTTOPTR: 3398 case G_PTRTOINT: 3399 case G_ADDRSPACE_CAST: 3400 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3401 case G_ICMP: 3402 case G_FCMP: 3403 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3404 case G_SELECT: 3405 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3406 case G_PHI: 3407 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3408 case G_UNMERGE_VALUES: 3409 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3410 case G_BUILD_VECTOR: 3411 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3412 case G_LOAD: 3413 case G_STORE: 3414 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3415 case G_SEXT_INREG: 3416 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3417 default: 3418 return UnableToLegalize; 3419 } 3420 } 3421 3422 LegalizerHelper::LegalizeResult 3423 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3424 const LLT HalfTy, const LLT AmtTy) { 3425 3426 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3427 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3428 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3429 3430 if (Amt.isNullValue()) { 3431 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3432 MI.eraseFromParent(); 3433 return Legalized; 3434 } 3435 3436 LLT NVT = HalfTy; 3437 unsigned NVTBits = HalfTy.getSizeInBits(); 3438 unsigned VTBits = 2 * NVTBits; 3439 3440 SrcOp Lo(Register(0)), Hi(Register(0)); 3441 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3442 if (Amt.ugt(VTBits)) { 3443 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3444 } else if (Amt.ugt(NVTBits)) { 3445 Lo = MIRBuilder.buildConstant(NVT, 0); 3446 Hi = MIRBuilder.buildShl(NVT, InL, 3447 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3448 } else if (Amt == NVTBits) { 3449 Lo = MIRBuilder.buildConstant(NVT, 0); 3450 Hi = InL; 3451 } else { 3452 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3453 auto OrLHS = 3454 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3455 auto OrRHS = MIRBuilder.buildLShr( 3456 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3457 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3458 } 3459 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3460 if (Amt.ugt(VTBits)) { 3461 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3462 } else if (Amt.ugt(NVTBits)) { 3463 Lo = MIRBuilder.buildLShr(NVT, InH, 3464 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3465 Hi = MIRBuilder.buildConstant(NVT, 0); 3466 } else if (Amt == NVTBits) { 3467 Lo = InH; 3468 Hi = MIRBuilder.buildConstant(NVT, 0); 3469 } else { 3470 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3471 3472 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3473 auto OrRHS = MIRBuilder.buildShl( 3474 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3475 3476 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3477 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3478 } 3479 } else { 3480 if (Amt.ugt(VTBits)) { 3481 Hi = Lo = MIRBuilder.buildAShr( 3482 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3483 } else if (Amt.ugt(NVTBits)) { 3484 Lo = MIRBuilder.buildAShr(NVT, InH, 3485 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3486 Hi = MIRBuilder.buildAShr(NVT, InH, 3487 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3488 } else if (Amt == NVTBits) { 3489 Lo = InH; 3490 Hi = MIRBuilder.buildAShr(NVT, InH, 3491 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3492 } else { 3493 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3494 3495 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3496 auto OrRHS = MIRBuilder.buildShl( 3497 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3498 3499 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3500 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3501 } 3502 } 3503 3504 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3505 MI.eraseFromParent(); 3506 3507 return Legalized; 3508 } 3509 3510 // TODO: Optimize if constant shift amount. 3511 LegalizerHelper::LegalizeResult 3512 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3513 LLT RequestedTy) { 3514 if (TypeIdx == 1) { 3515 Observer.changingInstr(MI); 3516 narrowScalarSrc(MI, RequestedTy, 2); 3517 Observer.changedInstr(MI); 3518 return Legalized; 3519 } 3520 3521 Register DstReg = MI.getOperand(0).getReg(); 3522 LLT DstTy = MRI.getType(DstReg); 3523 if (DstTy.isVector()) 3524 return UnableToLegalize; 3525 3526 Register Amt = MI.getOperand(2).getReg(); 3527 LLT ShiftAmtTy = MRI.getType(Amt); 3528 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3529 if (DstEltSize % 2 != 0) 3530 return UnableToLegalize; 3531 3532 // Ignore the input type. We can only go to exactly half the size of the 3533 // input. If that isn't small enough, the resulting pieces will be further 3534 // legalized. 3535 const unsigned NewBitSize = DstEltSize / 2; 3536 const LLT HalfTy = LLT::scalar(NewBitSize); 3537 const LLT CondTy = LLT::scalar(1); 3538 3539 if (const MachineInstr *KShiftAmt = 3540 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3541 return narrowScalarShiftByConstant( 3542 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3543 } 3544 3545 // TODO: Expand with known bits. 3546 3547 // Handle the fully general expansion by an unknown amount. 3548 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3549 3550 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3551 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3552 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3553 3554 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3555 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3556 3557 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3558 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3559 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3560 3561 Register ResultRegs[2]; 3562 switch (MI.getOpcode()) { 3563 case TargetOpcode::G_SHL: { 3564 // Short: ShAmt < NewBitSize 3565 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3566 3567 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3568 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3569 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3570 3571 // Long: ShAmt >= NewBitSize 3572 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3573 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3574 3575 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3576 auto Hi = MIRBuilder.buildSelect( 3577 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3578 3579 ResultRegs[0] = Lo.getReg(0); 3580 ResultRegs[1] = Hi.getReg(0); 3581 break; 3582 } 3583 case TargetOpcode::G_LSHR: 3584 case TargetOpcode::G_ASHR: { 3585 // Short: ShAmt < NewBitSize 3586 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3587 3588 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3589 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3590 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3591 3592 // Long: ShAmt >= NewBitSize 3593 MachineInstrBuilder HiL; 3594 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3595 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3596 } else { 3597 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3598 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3599 } 3600 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3601 {InH, AmtExcess}); // Lo from Hi part. 3602 3603 auto Lo = MIRBuilder.buildSelect( 3604 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3605 3606 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3607 3608 ResultRegs[0] = Lo.getReg(0); 3609 ResultRegs[1] = Hi.getReg(0); 3610 break; 3611 } 3612 default: 3613 llvm_unreachable("not a shift"); 3614 } 3615 3616 MIRBuilder.buildMerge(DstReg, ResultRegs); 3617 MI.eraseFromParent(); 3618 return Legalized; 3619 } 3620 3621 LegalizerHelper::LegalizeResult 3622 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3623 LLT MoreTy) { 3624 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3625 3626 Observer.changingInstr(MI); 3627 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3628 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3629 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3630 moreElementsVectorSrc(MI, MoreTy, I); 3631 } 3632 3633 MachineBasicBlock &MBB = *MI.getParent(); 3634 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3635 moreElementsVectorDst(MI, MoreTy, 0); 3636 Observer.changedInstr(MI); 3637 return Legalized; 3638 } 3639 3640 LegalizerHelper::LegalizeResult 3641 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3642 LLT MoreTy) { 3643 unsigned Opc = MI.getOpcode(); 3644 switch (Opc) { 3645 case TargetOpcode::G_IMPLICIT_DEF: 3646 case TargetOpcode::G_LOAD: { 3647 if (TypeIdx != 0) 3648 return UnableToLegalize; 3649 Observer.changingInstr(MI); 3650 moreElementsVectorDst(MI, MoreTy, 0); 3651 Observer.changedInstr(MI); 3652 return Legalized; 3653 } 3654 case TargetOpcode::G_STORE: 3655 if (TypeIdx != 0) 3656 return UnableToLegalize; 3657 Observer.changingInstr(MI); 3658 moreElementsVectorSrc(MI, MoreTy, 0); 3659 Observer.changedInstr(MI); 3660 return Legalized; 3661 case TargetOpcode::G_AND: 3662 case TargetOpcode::G_OR: 3663 case TargetOpcode::G_XOR: 3664 case TargetOpcode::G_SMIN: 3665 case TargetOpcode::G_SMAX: 3666 case TargetOpcode::G_UMIN: 3667 case TargetOpcode::G_UMAX: 3668 case TargetOpcode::G_FMINNUM: 3669 case TargetOpcode::G_FMAXNUM: 3670 case TargetOpcode::G_FMINNUM_IEEE: 3671 case TargetOpcode::G_FMAXNUM_IEEE: 3672 case TargetOpcode::G_FMINIMUM: 3673 case TargetOpcode::G_FMAXIMUM: { 3674 Observer.changingInstr(MI); 3675 moreElementsVectorSrc(MI, MoreTy, 1); 3676 moreElementsVectorSrc(MI, MoreTy, 2); 3677 moreElementsVectorDst(MI, MoreTy, 0); 3678 Observer.changedInstr(MI); 3679 return Legalized; 3680 } 3681 case TargetOpcode::G_EXTRACT: 3682 if (TypeIdx != 1) 3683 return UnableToLegalize; 3684 Observer.changingInstr(MI); 3685 moreElementsVectorSrc(MI, MoreTy, 1); 3686 Observer.changedInstr(MI); 3687 return Legalized; 3688 case TargetOpcode::G_INSERT: 3689 case TargetOpcode::G_FREEZE: 3690 if (TypeIdx != 0) 3691 return UnableToLegalize; 3692 Observer.changingInstr(MI); 3693 moreElementsVectorSrc(MI, MoreTy, 1); 3694 moreElementsVectorDst(MI, MoreTy, 0); 3695 Observer.changedInstr(MI); 3696 return Legalized; 3697 case TargetOpcode::G_SELECT: 3698 if (TypeIdx != 0) 3699 return UnableToLegalize; 3700 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3701 return UnableToLegalize; 3702 3703 Observer.changingInstr(MI); 3704 moreElementsVectorSrc(MI, MoreTy, 2); 3705 moreElementsVectorSrc(MI, MoreTy, 3); 3706 moreElementsVectorDst(MI, MoreTy, 0); 3707 Observer.changedInstr(MI); 3708 return Legalized; 3709 case TargetOpcode::G_UNMERGE_VALUES: { 3710 if (TypeIdx != 1) 3711 return UnableToLegalize; 3712 3713 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3714 int NumDst = MI.getNumOperands() - 1; 3715 moreElementsVectorSrc(MI, MoreTy, NumDst); 3716 3717 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3718 for (int I = 0; I != NumDst; ++I) 3719 MIB.addDef(MI.getOperand(I).getReg()); 3720 3721 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3722 for (int I = NumDst; I != NewNumDst; ++I) 3723 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3724 3725 MIB.addUse(MI.getOperand(NumDst).getReg()); 3726 MI.eraseFromParent(); 3727 return Legalized; 3728 } 3729 case TargetOpcode::G_PHI: 3730 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3731 default: 3732 return UnableToLegalize; 3733 } 3734 } 3735 3736 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3737 ArrayRef<Register> Src1Regs, 3738 ArrayRef<Register> Src2Regs, 3739 LLT NarrowTy) { 3740 MachineIRBuilder &B = MIRBuilder; 3741 unsigned SrcParts = Src1Regs.size(); 3742 unsigned DstParts = DstRegs.size(); 3743 3744 unsigned DstIdx = 0; // Low bits of the result. 3745 Register FactorSum = 3746 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3747 DstRegs[DstIdx] = FactorSum; 3748 3749 unsigned CarrySumPrevDstIdx; 3750 SmallVector<Register, 4> Factors; 3751 3752 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3753 // Collect low parts of muls for DstIdx. 3754 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3755 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3756 MachineInstrBuilder Mul = 3757 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3758 Factors.push_back(Mul.getReg(0)); 3759 } 3760 // Collect high parts of muls from previous DstIdx. 3761 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3762 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3763 MachineInstrBuilder Umulh = 3764 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3765 Factors.push_back(Umulh.getReg(0)); 3766 } 3767 // Add CarrySum from additions calculated for previous DstIdx. 3768 if (DstIdx != 1) { 3769 Factors.push_back(CarrySumPrevDstIdx); 3770 } 3771 3772 Register CarrySum; 3773 // Add all factors and accumulate all carries into CarrySum. 3774 if (DstIdx != DstParts - 1) { 3775 MachineInstrBuilder Uaddo = 3776 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3777 FactorSum = Uaddo.getReg(0); 3778 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3779 for (unsigned i = 2; i < Factors.size(); ++i) { 3780 MachineInstrBuilder Uaddo = 3781 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3782 FactorSum = Uaddo.getReg(0); 3783 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3784 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3785 } 3786 } else { 3787 // Since value for the next index is not calculated, neither is CarrySum. 3788 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3789 for (unsigned i = 2; i < Factors.size(); ++i) 3790 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3791 } 3792 3793 CarrySumPrevDstIdx = CarrySum; 3794 DstRegs[DstIdx] = FactorSum; 3795 Factors.clear(); 3796 } 3797 } 3798 3799 LegalizerHelper::LegalizeResult 3800 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3801 Register DstReg = MI.getOperand(0).getReg(); 3802 Register Src1 = MI.getOperand(1).getReg(); 3803 Register Src2 = MI.getOperand(2).getReg(); 3804 3805 LLT Ty = MRI.getType(DstReg); 3806 if (Ty.isVector()) 3807 return UnableToLegalize; 3808 3809 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3810 unsigned DstSize = Ty.getSizeInBits(); 3811 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3812 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3813 return UnableToLegalize; 3814 3815 unsigned NumDstParts = DstSize / NarrowSize; 3816 unsigned NumSrcParts = SrcSize / NarrowSize; 3817 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3818 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3819 3820 SmallVector<Register, 2> Src1Parts, Src2Parts; 3821 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3822 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3823 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3824 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3825 3826 // Take only high half of registers if this is high mul. 3827 ArrayRef<Register> DstRegs( 3828 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3829 MIRBuilder.buildMerge(DstReg, DstRegs); 3830 MI.eraseFromParent(); 3831 return Legalized; 3832 } 3833 3834 LegalizerHelper::LegalizeResult 3835 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3836 LLT NarrowTy) { 3837 if (TypeIdx != 1) 3838 return UnableToLegalize; 3839 3840 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3841 3842 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3843 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3844 // NarrowSize. 3845 if (SizeOp1 % NarrowSize != 0) 3846 return UnableToLegalize; 3847 int NumParts = SizeOp1 / NarrowSize; 3848 3849 SmallVector<Register, 2> SrcRegs, DstRegs; 3850 SmallVector<uint64_t, 2> Indexes; 3851 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3852 3853 Register OpReg = MI.getOperand(0).getReg(); 3854 uint64_t OpStart = MI.getOperand(2).getImm(); 3855 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3856 for (int i = 0; i < NumParts; ++i) { 3857 unsigned SrcStart = i * NarrowSize; 3858 3859 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3860 // No part of the extract uses this subregister, ignore it. 3861 continue; 3862 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3863 // The entire subregister is extracted, forward the value. 3864 DstRegs.push_back(SrcRegs[i]); 3865 continue; 3866 } 3867 3868 // OpSegStart is where this destination segment would start in OpReg if it 3869 // extended infinitely in both directions. 3870 int64_t ExtractOffset; 3871 uint64_t SegSize; 3872 if (OpStart < SrcStart) { 3873 ExtractOffset = 0; 3874 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3875 } else { 3876 ExtractOffset = OpStart - SrcStart; 3877 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3878 } 3879 3880 Register SegReg = SrcRegs[i]; 3881 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3882 // A genuine extract is needed. 3883 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3884 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3885 } 3886 3887 DstRegs.push_back(SegReg); 3888 } 3889 3890 Register DstReg = MI.getOperand(0).getReg(); 3891 if (MRI.getType(DstReg).isVector()) 3892 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3893 else if (DstRegs.size() > 1) 3894 MIRBuilder.buildMerge(DstReg, DstRegs); 3895 else 3896 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 3897 MI.eraseFromParent(); 3898 return Legalized; 3899 } 3900 3901 LegalizerHelper::LegalizeResult 3902 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3903 LLT NarrowTy) { 3904 // FIXME: Don't know how to handle secondary types yet. 3905 if (TypeIdx != 0) 3906 return UnableToLegalize; 3907 3908 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3909 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3910 3911 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3912 // NarrowSize. 3913 if (SizeOp0 % NarrowSize != 0) 3914 return UnableToLegalize; 3915 3916 int NumParts = SizeOp0 / NarrowSize; 3917 3918 SmallVector<Register, 2> SrcRegs, DstRegs; 3919 SmallVector<uint64_t, 2> Indexes; 3920 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3921 3922 Register OpReg = MI.getOperand(2).getReg(); 3923 uint64_t OpStart = MI.getOperand(3).getImm(); 3924 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3925 for (int i = 0; i < NumParts; ++i) { 3926 unsigned DstStart = i * NarrowSize; 3927 3928 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3929 // No part of the insert affects this subregister, forward the original. 3930 DstRegs.push_back(SrcRegs[i]); 3931 continue; 3932 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3933 // The entire subregister is defined by this insert, forward the new 3934 // value. 3935 DstRegs.push_back(OpReg); 3936 continue; 3937 } 3938 3939 // OpSegStart is where this destination segment would start in OpReg if it 3940 // extended infinitely in both directions. 3941 int64_t ExtractOffset, InsertOffset; 3942 uint64_t SegSize; 3943 if (OpStart < DstStart) { 3944 InsertOffset = 0; 3945 ExtractOffset = DstStart - OpStart; 3946 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3947 } else { 3948 InsertOffset = OpStart - DstStart; 3949 ExtractOffset = 0; 3950 SegSize = 3951 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3952 } 3953 3954 Register SegReg = OpReg; 3955 if (ExtractOffset != 0 || SegSize != OpSize) { 3956 // A genuine extract is needed. 3957 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3958 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3959 } 3960 3961 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3962 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3963 DstRegs.push_back(DstReg); 3964 } 3965 3966 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3967 Register DstReg = MI.getOperand(0).getReg(); 3968 if(MRI.getType(DstReg).isVector()) 3969 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3970 else 3971 MIRBuilder.buildMerge(DstReg, DstRegs); 3972 MI.eraseFromParent(); 3973 return Legalized; 3974 } 3975 3976 LegalizerHelper::LegalizeResult 3977 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3978 LLT NarrowTy) { 3979 Register DstReg = MI.getOperand(0).getReg(); 3980 LLT DstTy = MRI.getType(DstReg); 3981 3982 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3983 3984 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3985 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3986 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3987 LLT LeftoverTy; 3988 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3989 Src0Regs, Src0LeftoverRegs)) 3990 return UnableToLegalize; 3991 3992 LLT Unused; 3993 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3994 Src1Regs, Src1LeftoverRegs)) 3995 llvm_unreachable("inconsistent extractParts result"); 3996 3997 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3998 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3999 {Src0Regs[I], Src1Regs[I]}); 4000 DstRegs.push_back(Inst.getReg(0)); 4001 } 4002 4003 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4004 auto Inst = MIRBuilder.buildInstr( 4005 MI.getOpcode(), 4006 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4007 DstLeftoverRegs.push_back(Inst.getReg(0)); 4008 } 4009 4010 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4011 LeftoverTy, DstLeftoverRegs); 4012 4013 MI.eraseFromParent(); 4014 return Legalized; 4015 } 4016 4017 LegalizerHelper::LegalizeResult 4018 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4019 LLT NarrowTy) { 4020 if (TypeIdx != 0) 4021 return UnableToLegalize; 4022 4023 Register DstReg = MI.getOperand(0).getReg(); 4024 Register SrcReg = MI.getOperand(1).getReg(); 4025 4026 LLT DstTy = MRI.getType(DstReg); 4027 if (DstTy.isVector()) 4028 return UnableToLegalize; 4029 4030 SmallVector<Register, 8> Parts; 4031 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4032 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4033 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4034 4035 MI.eraseFromParent(); 4036 return Legalized; 4037 } 4038 4039 LegalizerHelper::LegalizeResult 4040 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4041 LLT NarrowTy) { 4042 if (TypeIdx != 0) 4043 return UnableToLegalize; 4044 4045 Register CondReg = MI.getOperand(1).getReg(); 4046 LLT CondTy = MRI.getType(CondReg); 4047 if (CondTy.isVector()) // TODO: Handle vselect 4048 return UnableToLegalize; 4049 4050 Register DstReg = MI.getOperand(0).getReg(); 4051 LLT DstTy = MRI.getType(DstReg); 4052 4053 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4054 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4055 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4056 LLT LeftoverTy; 4057 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4058 Src1Regs, Src1LeftoverRegs)) 4059 return UnableToLegalize; 4060 4061 LLT Unused; 4062 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4063 Src2Regs, Src2LeftoverRegs)) 4064 llvm_unreachable("inconsistent extractParts result"); 4065 4066 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4067 auto Select = MIRBuilder.buildSelect(NarrowTy, 4068 CondReg, Src1Regs[I], Src2Regs[I]); 4069 DstRegs.push_back(Select.getReg(0)); 4070 } 4071 4072 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4073 auto Select = MIRBuilder.buildSelect( 4074 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4075 DstLeftoverRegs.push_back(Select.getReg(0)); 4076 } 4077 4078 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4079 LeftoverTy, DstLeftoverRegs); 4080 4081 MI.eraseFromParent(); 4082 return Legalized; 4083 } 4084 4085 LegalizerHelper::LegalizeResult 4086 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4087 LLT NarrowTy) { 4088 if (TypeIdx != 1) 4089 return UnableToLegalize; 4090 4091 Register DstReg = MI.getOperand(0).getReg(); 4092 Register SrcReg = MI.getOperand(1).getReg(); 4093 LLT DstTy = MRI.getType(DstReg); 4094 LLT SrcTy = MRI.getType(SrcReg); 4095 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4096 4097 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4098 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4099 4100 MachineIRBuilder &B = MIRBuilder; 4101 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4102 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4103 auto C_0 = B.buildConstant(NarrowTy, 0); 4104 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4105 UnmergeSrc.getReg(1), C_0); 4106 auto LoCTLZ = IsUndef ? 4107 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4108 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4109 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4110 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4111 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4112 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4113 4114 MI.eraseFromParent(); 4115 return Legalized; 4116 } 4117 4118 return UnableToLegalize; 4119 } 4120 4121 LegalizerHelper::LegalizeResult 4122 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4123 LLT NarrowTy) { 4124 if (TypeIdx != 1) 4125 return UnableToLegalize; 4126 4127 Register DstReg = MI.getOperand(0).getReg(); 4128 Register SrcReg = MI.getOperand(1).getReg(); 4129 LLT DstTy = MRI.getType(DstReg); 4130 LLT SrcTy = MRI.getType(SrcReg); 4131 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4132 4133 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4134 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4135 4136 MachineIRBuilder &B = MIRBuilder; 4137 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4138 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4139 auto C_0 = B.buildConstant(NarrowTy, 0); 4140 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4141 UnmergeSrc.getReg(0), C_0); 4142 auto HiCTTZ = IsUndef ? 4143 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4144 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4145 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4146 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4147 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4148 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4149 4150 MI.eraseFromParent(); 4151 return Legalized; 4152 } 4153 4154 return UnableToLegalize; 4155 } 4156 4157 LegalizerHelper::LegalizeResult 4158 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4159 LLT NarrowTy) { 4160 if (TypeIdx != 1) 4161 return UnableToLegalize; 4162 4163 Register DstReg = MI.getOperand(0).getReg(); 4164 LLT DstTy = MRI.getType(DstReg); 4165 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4166 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4167 4168 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4169 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4170 4171 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4172 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4173 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4174 4175 MI.eraseFromParent(); 4176 return Legalized; 4177 } 4178 4179 return UnableToLegalize; 4180 } 4181 4182 LegalizerHelper::LegalizeResult 4183 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4184 unsigned Opc = MI.getOpcode(); 4185 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4186 auto isSupported = [this](const LegalityQuery &Q) { 4187 auto QAction = LI.getAction(Q).Action; 4188 return QAction == Legal || QAction == Libcall || QAction == Custom; 4189 }; 4190 switch (Opc) { 4191 default: 4192 return UnableToLegalize; 4193 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4194 // This trivially expands to CTLZ. 4195 Observer.changingInstr(MI); 4196 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4197 Observer.changedInstr(MI); 4198 return Legalized; 4199 } 4200 case TargetOpcode::G_CTLZ: { 4201 Register DstReg = MI.getOperand(0).getReg(); 4202 Register SrcReg = MI.getOperand(1).getReg(); 4203 LLT DstTy = MRI.getType(DstReg); 4204 LLT SrcTy = MRI.getType(SrcReg); 4205 unsigned Len = SrcTy.getSizeInBits(); 4206 4207 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4208 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4209 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4210 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4211 auto ICmp = MIRBuilder.buildICmp( 4212 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4213 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4214 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4215 MI.eraseFromParent(); 4216 return Legalized; 4217 } 4218 // for now, we do this: 4219 // NewLen = NextPowerOf2(Len); 4220 // x = x | (x >> 1); 4221 // x = x | (x >> 2); 4222 // ... 4223 // x = x | (x >>16); 4224 // x = x | (x >>32); // for 64-bit input 4225 // Upto NewLen/2 4226 // return Len - popcount(x); 4227 // 4228 // Ref: "Hacker's Delight" by Henry Warren 4229 Register Op = SrcReg; 4230 unsigned NewLen = PowerOf2Ceil(Len); 4231 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4232 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4233 auto MIBOp = MIRBuilder.buildOr( 4234 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4235 Op = MIBOp.getReg(0); 4236 } 4237 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4238 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4239 MIBPop); 4240 MI.eraseFromParent(); 4241 return Legalized; 4242 } 4243 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4244 // This trivially expands to CTTZ. 4245 Observer.changingInstr(MI); 4246 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4247 Observer.changedInstr(MI); 4248 return Legalized; 4249 } 4250 case TargetOpcode::G_CTTZ: { 4251 Register DstReg = MI.getOperand(0).getReg(); 4252 Register SrcReg = MI.getOperand(1).getReg(); 4253 LLT DstTy = MRI.getType(DstReg); 4254 LLT SrcTy = MRI.getType(SrcReg); 4255 4256 unsigned Len = SrcTy.getSizeInBits(); 4257 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4258 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4259 // zero. 4260 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4261 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4262 auto ICmp = MIRBuilder.buildICmp( 4263 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4264 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4265 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4266 MI.eraseFromParent(); 4267 return Legalized; 4268 } 4269 // for now, we use: { return popcount(~x & (x - 1)); } 4270 // unless the target has ctlz but not ctpop, in which case we use: 4271 // { return 32 - nlz(~x & (x-1)); } 4272 // Ref: "Hacker's Delight" by Henry Warren 4273 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4274 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4275 auto MIBTmp = MIRBuilder.buildAnd( 4276 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4277 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4278 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4279 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4280 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4281 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4282 MI.eraseFromParent(); 4283 return Legalized; 4284 } 4285 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4286 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4287 return Legalized; 4288 } 4289 case TargetOpcode::G_CTPOP: { 4290 unsigned Size = Ty.getSizeInBits(); 4291 MachineIRBuilder &B = MIRBuilder; 4292 4293 // Count set bits in blocks of 2 bits. Default approach would be 4294 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4295 // We use following formula instead: 4296 // B2Count = val - { (val >> 1) & 0x55555555 } 4297 // since it gives same result in blocks of 2 with one instruction less. 4298 auto C_1 = B.buildConstant(Ty, 1); 4299 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4300 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4301 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4302 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4303 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4304 4305 // In order to get count in blocks of 4 add values from adjacent block of 2. 4306 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4307 auto C_2 = B.buildConstant(Ty, 2); 4308 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4309 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4310 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4311 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4312 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4313 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4314 4315 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4316 // addition since count value sits in range {0,...,8} and 4 bits are enough 4317 // to hold such binary values. After addition high 4 bits still hold count 4318 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4319 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4320 auto C_4 = B.buildConstant(Ty, 4); 4321 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4322 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4323 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4324 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4325 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4326 4327 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4328 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4329 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4330 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4331 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4332 4333 // Shift count result from 8 high bits to low bits. 4334 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4335 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4336 4337 MI.eraseFromParent(); 4338 return Legalized; 4339 } 4340 } 4341 } 4342 4343 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4344 // representation. 4345 LegalizerHelper::LegalizeResult 4346 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4347 Register Dst = MI.getOperand(0).getReg(); 4348 Register Src = MI.getOperand(1).getReg(); 4349 const LLT S64 = LLT::scalar(64); 4350 const LLT S32 = LLT::scalar(32); 4351 const LLT S1 = LLT::scalar(1); 4352 4353 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4354 4355 // unsigned cul2f(ulong u) { 4356 // uint lz = clz(u); 4357 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4358 // u = (u << lz) & 0x7fffffffffffffffUL; 4359 // ulong t = u & 0xffffffffffUL; 4360 // uint v = (e << 23) | (uint)(u >> 40); 4361 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4362 // return as_float(v + r); 4363 // } 4364 4365 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4366 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4367 4368 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4369 4370 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4371 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4372 4373 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4374 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4375 4376 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4377 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4378 4379 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4380 4381 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4382 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4383 4384 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4385 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4386 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4387 4388 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4389 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4390 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4391 auto One = MIRBuilder.buildConstant(S32, 1); 4392 4393 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4394 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4395 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4396 MIRBuilder.buildAdd(Dst, V, R); 4397 4398 MI.eraseFromParent(); 4399 return Legalized; 4400 } 4401 4402 LegalizerHelper::LegalizeResult 4403 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4404 Register Dst = MI.getOperand(0).getReg(); 4405 Register Src = MI.getOperand(1).getReg(); 4406 LLT DstTy = MRI.getType(Dst); 4407 LLT SrcTy = MRI.getType(Src); 4408 4409 if (SrcTy == LLT::scalar(1)) { 4410 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4411 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4412 MIRBuilder.buildSelect(Dst, Src, True, False); 4413 MI.eraseFromParent(); 4414 return Legalized; 4415 } 4416 4417 if (SrcTy != LLT::scalar(64)) 4418 return UnableToLegalize; 4419 4420 if (DstTy == LLT::scalar(32)) { 4421 // TODO: SelectionDAG has several alternative expansions to port which may 4422 // be more reasonble depending on the available instructions. If a target 4423 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4424 // intermediate type, this is probably worse. 4425 return lowerU64ToF32BitOps(MI); 4426 } 4427 4428 return UnableToLegalize; 4429 } 4430 4431 LegalizerHelper::LegalizeResult 4432 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4433 Register Dst = MI.getOperand(0).getReg(); 4434 Register Src = MI.getOperand(1).getReg(); 4435 LLT DstTy = MRI.getType(Dst); 4436 LLT SrcTy = MRI.getType(Src); 4437 4438 const LLT S64 = LLT::scalar(64); 4439 const LLT S32 = LLT::scalar(32); 4440 const LLT S1 = LLT::scalar(1); 4441 4442 if (SrcTy == S1) { 4443 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4444 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4445 MIRBuilder.buildSelect(Dst, Src, True, False); 4446 MI.eraseFromParent(); 4447 return Legalized; 4448 } 4449 4450 if (SrcTy != S64) 4451 return UnableToLegalize; 4452 4453 if (DstTy == S32) { 4454 // signed cl2f(long l) { 4455 // long s = l >> 63; 4456 // float r = cul2f((l + s) ^ s); 4457 // return s ? -r : r; 4458 // } 4459 Register L = Src; 4460 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4461 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4462 4463 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4464 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4465 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4466 4467 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4468 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4469 MIRBuilder.buildConstant(S64, 0)); 4470 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4471 MI.eraseFromParent(); 4472 return Legalized; 4473 } 4474 4475 return UnableToLegalize; 4476 } 4477 4478 LegalizerHelper::LegalizeResult 4479 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4480 Register Dst = MI.getOperand(0).getReg(); 4481 Register Src = MI.getOperand(1).getReg(); 4482 LLT DstTy = MRI.getType(Dst); 4483 LLT SrcTy = MRI.getType(Src); 4484 const LLT S64 = LLT::scalar(64); 4485 const LLT S32 = LLT::scalar(32); 4486 4487 if (SrcTy != S64 && SrcTy != S32) 4488 return UnableToLegalize; 4489 if (DstTy != S32 && DstTy != S64) 4490 return UnableToLegalize; 4491 4492 // FPTOSI gives same result as FPTOUI for positive signed integers. 4493 // FPTOUI needs to deal with fp values that convert to unsigned integers 4494 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4495 4496 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4497 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4498 : APFloat::IEEEdouble(), 4499 APInt::getNullValue(SrcTy.getSizeInBits())); 4500 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4501 4502 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4503 4504 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4505 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4506 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4507 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4508 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4509 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4510 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4511 4512 const LLT S1 = LLT::scalar(1); 4513 4514 MachineInstrBuilder FCMP = 4515 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4516 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4517 4518 MI.eraseFromParent(); 4519 return Legalized; 4520 } 4521 4522 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4523 Register Dst = MI.getOperand(0).getReg(); 4524 Register Src = MI.getOperand(1).getReg(); 4525 LLT DstTy = MRI.getType(Dst); 4526 LLT SrcTy = MRI.getType(Src); 4527 const LLT S64 = LLT::scalar(64); 4528 const LLT S32 = LLT::scalar(32); 4529 4530 // FIXME: Only f32 to i64 conversions are supported. 4531 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4532 return UnableToLegalize; 4533 4534 // Expand f32 -> i64 conversion 4535 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4536 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4537 4538 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4539 4540 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4541 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4542 4543 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4544 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4545 4546 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4547 APInt::getSignMask(SrcEltBits)); 4548 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4549 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4550 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4551 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4552 4553 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4554 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4555 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4556 4557 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4558 R = MIRBuilder.buildZExt(DstTy, R); 4559 4560 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4561 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4562 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4563 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4564 4565 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4566 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4567 4568 const LLT S1 = LLT::scalar(1); 4569 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4570 S1, Exponent, ExponentLoBit); 4571 4572 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4573 4574 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4575 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4576 4577 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4578 4579 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4580 S1, Exponent, ZeroSrcTy); 4581 4582 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4583 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4584 4585 MI.eraseFromParent(); 4586 return Legalized; 4587 } 4588 4589 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4590 LegalizerHelper::LegalizeResult 4591 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4592 Register Dst = MI.getOperand(0).getReg(); 4593 Register Src = MI.getOperand(1).getReg(); 4594 4595 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4596 return UnableToLegalize; 4597 4598 const unsigned ExpMask = 0x7ff; 4599 const unsigned ExpBiasf64 = 1023; 4600 const unsigned ExpBiasf16 = 15; 4601 const LLT S32 = LLT::scalar(32); 4602 const LLT S1 = LLT::scalar(1); 4603 4604 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4605 Register U = Unmerge.getReg(0); 4606 Register UH = Unmerge.getReg(1); 4607 4608 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4609 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4610 4611 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4612 // add the f16 bias (15) to get the biased exponent for the f16 format. 4613 E = MIRBuilder.buildAdd( 4614 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4615 4616 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4617 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4618 4619 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4620 MIRBuilder.buildConstant(S32, 0x1ff)); 4621 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4622 4623 auto Zero = MIRBuilder.buildConstant(S32, 0); 4624 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4625 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4626 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4627 4628 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4629 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4630 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4631 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4632 4633 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4634 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4635 4636 // N = M | (E << 12); 4637 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4638 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4639 4640 // B = clamp(1-E, 0, 13); 4641 auto One = MIRBuilder.buildConstant(S32, 1); 4642 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4643 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4644 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4645 4646 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4647 MIRBuilder.buildConstant(S32, 0x1000)); 4648 4649 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4650 auto D0 = MIRBuilder.buildShl(S32, D, B); 4651 4652 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4653 D0, SigSetHigh); 4654 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4655 D = MIRBuilder.buildOr(S32, D, D1); 4656 4657 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4658 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4659 4660 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4661 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4662 4663 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4664 MIRBuilder.buildConstant(S32, 3)); 4665 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4666 4667 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4668 MIRBuilder.buildConstant(S32, 5)); 4669 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4670 4671 V1 = MIRBuilder.buildOr(S32, V0, V1); 4672 V = MIRBuilder.buildAdd(S32, V, V1); 4673 4674 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4675 E, MIRBuilder.buildConstant(S32, 30)); 4676 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4677 MIRBuilder.buildConstant(S32, 0x7c00), V); 4678 4679 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4680 E, MIRBuilder.buildConstant(S32, 1039)); 4681 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4682 4683 // Extract the sign bit. 4684 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4685 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4686 4687 // Insert the sign bit 4688 V = MIRBuilder.buildOr(S32, Sign, V); 4689 4690 MIRBuilder.buildTrunc(Dst, V); 4691 MI.eraseFromParent(); 4692 return Legalized; 4693 } 4694 4695 LegalizerHelper::LegalizeResult 4696 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4697 Register Dst = MI.getOperand(0).getReg(); 4698 Register Src = MI.getOperand(1).getReg(); 4699 4700 LLT DstTy = MRI.getType(Dst); 4701 LLT SrcTy = MRI.getType(Src); 4702 const LLT S64 = LLT::scalar(64); 4703 const LLT S16 = LLT::scalar(16); 4704 4705 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4706 return lowerFPTRUNC_F64_TO_F16(MI); 4707 4708 return UnableToLegalize; 4709 } 4710 4711 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4712 switch (Opc) { 4713 case TargetOpcode::G_SMIN: 4714 return CmpInst::ICMP_SLT; 4715 case TargetOpcode::G_SMAX: 4716 return CmpInst::ICMP_SGT; 4717 case TargetOpcode::G_UMIN: 4718 return CmpInst::ICMP_ULT; 4719 case TargetOpcode::G_UMAX: 4720 return CmpInst::ICMP_UGT; 4721 default: 4722 llvm_unreachable("not in integer min/max"); 4723 } 4724 } 4725 4726 LegalizerHelper::LegalizeResult 4727 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4728 Register Dst = MI.getOperand(0).getReg(); 4729 Register Src0 = MI.getOperand(1).getReg(); 4730 Register Src1 = MI.getOperand(2).getReg(); 4731 4732 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4733 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4734 4735 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4736 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4737 4738 MI.eraseFromParent(); 4739 return Legalized; 4740 } 4741 4742 LegalizerHelper::LegalizeResult 4743 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4744 Register Dst = MI.getOperand(0).getReg(); 4745 Register Src0 = MI.getOperand(1).getReg(); 4746 Register Src1 = MI.getOperand(2).getReg(); 4747 4748 const LLT Src0Ty = MRI.getType(Src0); 4749 const LLT Src1Ty = MRI.getType(Src1); 4750 4751 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4752 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4753 4754 auto SignBitMask = MIRBuilder.buildConstant( 4755 Src0Ty, APInt::getSignMask(Src0Size)); 4756 4757 auto NotSignBitMask = MIRBuilder.buildConstant( 4758 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4759 4760 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4761 MachineInstr *Or; 4762 4763 if (Src0Ty == Src1Ty) { 4764 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask); 4765 Or = MIRBuilder.buildOr(Dst, And0, And1); 4766 } else if (Src0Size > Src1Size) { 4767 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4768 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4769 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4770 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4771 Or = MIRBuilder.buildOr(Dst, And0, And1); 4772 } else { 4773 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4774 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4775 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4776 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4777 Or = MIRBuilder.buildOr(Dst, And0, And1); 4778 } 4779 4780 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4781 // constants are a nan and -0.0, but the final result should preserve 4782 // everything. 4783 if (unsigned Flags = MI.getFlags()) 4784 Or->setFlags(Flags); 4785 4786 MI.eraseFromParent(); 4787 return Legalized; 4788 } 4789 4790 LegalizerHelper::LegalizeResult 4791 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4792 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4793 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4794 4795 Register Dst = MI.getOperand(0).getReg(); 4796 Register Src0 = MI.getOperand(1).getReg(); 4797 Register Src1 = MI.getOperand(2).getReg(); 4798 LLT Ty = MRI.getType(Dst); 4799 4800 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4801 // Insert canonicalizes if it's possible we need to quiet to get correct 4802 // sNaN behavior. 4803 4804 // Note this must be done here, and not as an optimization combine in the 4805 // absence of a dedicate quiet-snan instruction as we're using an 4806 // omni-purpose G_FCANONICALIZE. 4807 if (!isKnownNeverSNaN(Src0, MRI)) 4808 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4809 4810 if (!isKnownNeverSNaN(Src1, MRI)) 4811 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4812 } 4813 4814 // If there are no nans, it's safe to simply replace this with the non-IEEE 4815 // version. 4816 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4817 MI.eraseFromParent(); 4818 return Legalized; 4819 } 4820 4821 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4822 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4823 Register DstReg = MI.getOperand(0).getReg(); 4824 LLT Ty = MRI.getType(DstReg); 4825 unsigned Flags = MI.getFlags(); 4826 4827 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4828 Flags); 4829 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4830 MI.eraseFromParent(); 4831 return Legalized; 4832 } 4833 4834 LegalizerHelper::LegalizeResult 4835 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4836 Register DstReg = MI.getOperand(0).getReg(); 4837 Register X = MI.getOperand(1).getReg(); 4838 const unsigned Flags = MI.getFlags(); 4839 const LLT Ty = MRI.getType(DstReg); 4840 const LLT CondTy = Ty.changeElementSize(1); 4841 4842 // round(x) => 4843 // t = trunc(x); 4844 // d = fabs(x - t); 4845 // o = copysign(1.0f, x); 4846 // return t + (d >= 0.5 ? o : 0.0); 4847 4848 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 4849 4850 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 4851 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 4852 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4853 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 4854 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 4855 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 4856 4857 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 4858 Flags); 4859 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 4860 4861 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 4862 4863 MI.eraseFromParent(); 4864 return Legalized; 4865 } 4866 4867 LegalizerHelper::LegalizeResult 4868 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 4869 Register DstReg = MI.getOperand(0).getReg(); 4870 Register SrcReg = MI.getOperand(1).getReg(); 4871 unsigned Flags = MI.getFlags(); 4872 LLT Ty = MRI.getType(DstReg); 4873 const LLT CondTy = Ty.changeElementSize(1); 4874 4875 // result = trunc(src); 4876 // if (src < 0.0 && src != result) 4877 // result += -1.0. 4878 4879 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4880 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4881 4882 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4883 SrcReg, Zero, Flags); 4884 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4885 SrcReg, Trunc, Flags); 4886 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4887 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4888 4889 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 4890 MI.eraseFromParent(); 4891 return Legalized; 4892 } 4893 4894 LegalizerHelper::LegalizeResult 4895 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 4896 const unsigned NumOps = MI.getNumOperands(); 4897 Register DstReg = MI.getOperand(0).getReg(); 4898 Register Src0Reg = MI.getOperand(1).getReg(); 4899 LLT DstTy = MRI.getType(DstReg); 4900 LLT SrcTy = MRI.getType(Src0Reg); 4901 unsigned PartSize = SrcTy.getSizeInBits(); 4902 4903 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 4904 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 4905 4906 for (unsigned I = 2; I != NumOps; ++I) { 4907 const unsigned Offset = (I - 1) * PartSize; 4908 4909 Register SrcReg = MI.getOperand(I).getReg(); 4910 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 4911 4912 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 4913 MRI.createGenericVirtualRegister(WideTy); 4914 4915 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 4916 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 4917 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 4918 ResultReg = NextResult; 4919 } 4920 4921 if (DstTy.isPointer()) { 4922 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 4923 DstTy.getAddressSpace())) { 4924 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 4925 return UnableToLegalize; 4926 } 4927 4928 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 4929 } 4930 4931 MI.eraseFromParent(); 4932 return Legalized; 4933 } 4934 4935 LegalizerHelper::LegalizeResult 4936 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4937 const unsigned NumDst = MI.getNumOperands() - 1; 4938 Register SrcReg = MI.getOperand(NumDst).getReg(); 4939 Register Dst0Reg = MI.getOperand(0).getReg(); 4940 LLT DstTy = MRI.getType(Dst0Reg); 4941 if (DstTy.isPointer()) 4942 return UnableToLegalize; // TODO 4943 4944 SrcReg = coerceToScalar(SrcReg); 4945 if (!SrcReg) 4946 return UnableToLegalize; 4947 4948 // Expand scalarizing unmerge as bitcast to integer and shift. 4949 LLT IntTy = MRI.getType(SrcReg); 4950 4951 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 4952 4953 const unsigned DstSize = DstTy.getSizeInBits(); 4954 unsigned Offset = DstSize; 4955 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4956 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4957 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 4958 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4959 } 4960 4961 MI.eraseFromParent(); 4962 return Legalized; 4963 } 4964 4965 LegalizerHelper::LegalizeResult 4966 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4967 Register DstReg = MI.getOperand(0).getReg(); 4968 Register Src0Reg = MI.getOperand(1).getReg(); 4969 Register Src1Reg = MI.getOperand(2).getReg(); 4970 LLT Src0Ty = MRI.getType(Src0Reg); 4971 LLT DstTy = MRI.getType(DstReg); 4972 LLT IdxTy = LLT::scalar(32); 4973 4974 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4975 4976 if (DstTy.isScalar()) { 4977 if (Src0Ty.isVector()) 4978 return UnableToLegalize; 4979 4980 // This is just a SELECT. 4981 assert(Mask.size() == 1 && "Expected a single mask element"); 4982 Register Val; 4983 if (Mask[0] < 0 || Mask[0] > 1) 4984 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4985 else 4986 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4987 MIRBuilder.buildCopy(DstReg, Val); 4988 MI.eraseFromParent(); 4989 return Legalized; 4990 } 4991 4992 Register Undef; 4993 SmallVector<Register, 32> BuildVec; 4994 LLT EltTy = DstTy.getElementType(); 4995 4996 for (int Idx : Mask) { 4997 if (Idx < 0) { 4998 if (!Undef.isValid()) 4999 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5000 BuildVec.push_back(Undef); 5001 continue; 5002 } 5003 5004 if (Src0Ty.isScalar()) { 5005 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5006 } else { 5007 int NumElts = Src0Ty.getNumElements(); 5008 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5009 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5010 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5011 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5012 BuildVec.push_back(Extract.getReg(0)); 5013 } 5014 } 5015 5016 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5017 MI.eraseFromParent(); 5018 return Legalized; 5019 } 5020 5021 LegalizerHelper::LegalizeResult 5022 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5023 const auto &MF = *MI.getMF(); 5024 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5025 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5026 return UnableToLegalize; 5027 5028 Register Dst = MI.getOperand(0).getReg(); 5029 Register AllocSize = MI.getOperand(1).getReg(); 5030 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5031 5032 LLT PtrTy = MRI.getType(Dst); 5033 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5034 5035 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 5036 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5037 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5038 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5039 5040 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5041 // have to generate an extra instruction to negate the alloc and then use 5042 // G_PTR_ADD to add the negative offset. 5043 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5044 if (Alignment > Align(1)) { 5045 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5046 AlignMask.negate(); 5047 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5048 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5049 } 5050 5051 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5052 MIRBuilder.buildCopy(SPReg, SPTmp); 5053 MIRBuilder.buildCopy(Dst, SPTmp); 5054 5055 MI.eraseFromParent(); 5056 return Legalized; 5057 } 5058 5059 LegalizerHelper::LegalizeResult 5060 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5061 Register Dst = MI.getOperand(0).getReg(); 5062 Register Src = MI.getOperand(1).getReg(); 5063 unsigned Offset = MI.getOperand(2).getImm(); 5064 5065 LLT DstTy = MRI.getType(Dst); 5066 LLT SrcTy = MRI.getType(Src); 5067 5068 if (DstTy.isScalar() && 5069 (SrcTy.isScalar() || 5070 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5071 LLT SrcIntTy = SrcTy; 5072 if (!SrcTy.isScalar()) { 5073 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5074 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5075 } 5076 5077 if (Offset == 0) 5078 MIRBuilder.buildTrunc(Dst, Src); 5079 else { 5080 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5081 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5082 MIRBuilder.buildTrunc(Dst, Shr); 5083 } 5084 5085 MI.eraseFromParent(); 5086 return Legalized; 5087 } 5088 5089 return UnableToLegalize; 5090 } 5091 5092 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5093 Register Dst = MI.getOperand(0).getReg(); 5094 Register Src = MI.getOperand(1).getReg(); 5095 Register InsertSrc = MI.getOperand(2).getReg(); 5096 uint64_t Offset = MI.getOperand(3).getImm(); 5097 5098 LLT DstTy = MRI.getType(Src); 5099 LLT InsertTy = MRI.getType(InsertSrc); 5100 5101 if (InsertTy.isVector() || 5102 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5103 return UnableToLegalize; 5104 5105 const DataLayout &DL = MIRBuilder.getDataLayout(); 5106 if ((DstTy.isPointer() && 5107 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5108 (InsertTy.isPointer() && 5109 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5110 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5111 return UnableToLegalize; 5112 } 5113 5114 LLT IntDstTy = DstTy; 5115 5116 if (!DstTy.isScalar()) { 5117 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5118 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5119 } 5120 5121 if (!InsertTy.isScalar()) { 5122 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5123 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5124 } 5125 5126 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5127 if (Offset != 0) { 5128 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5129 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5130 } 5131 5132 APInt MaskVal = APInt::getBitsSetWithWrap( 5133 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5134 5135 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5136 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5137 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5138 5139 MIRBuilder.buildCast(Dst, Or); 5140 MI.eraseFromParent(); 5141 return Legalized; 5142 } 5143 5144 LegalizerHelper::LegalizeResult 5145 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5146 Register Dst0 = MI.getOperand(0).getReg(); 5147 Register Dst1 = MI.getOperand(1).getReg(); 5148 Register LHS = MI.getOperand(2).getReg(); 5149 Register RHS = MI.getOperand(3).getReg(); 5150 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5151 5152 LLT Ty = MRI.getType(Dst0); 5153 LLT BoolTy = MRI.getType(Dst1); 5154 5155 if (IsAdd) 5156 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5157 else 5158 MIRBuilder.buildSub(Dst0, LHS, RHS); 5159 5160 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5161 5162 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5163 5164 // For an addition, the result should be less than one of the operands (LHS) 5165 // if and only if the other operand (RHS) is negative, otherwise there will 5166 // be overflow. 5167 // For a subtraction, the result should be less than one of the operands 5168 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5169 // otherwise there will be overflow. 5170 auto ResultLowerThanLHS = 5171 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5172 auto ConditionRHS = MIRBuilder.buildICmp( 5173 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5174 5175 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5176 MI.eraseFromParent(); 5177 return Legalized; 5178 } 5179 5180 LegalizerHelper::LegalizeResult 5181 LegalizerHelper::lowerBswap(MachineInstr &MI) { 5182 Register Dst = MI.getOperand(0).getReg(); 5183 Register Src = MI.getOperand(1).getReg(); 5184 const LLT Ty = MRI.getType(Src); 5185 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 5186 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 5187 5188 // Swap most and least significant byte, set remaining bytes in Res to zero. 5189 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 5190 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 5191 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5192 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 5193 5194 // Set i-th high/low byte in Res to i-th low/high byte from Src. 5195 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 5196 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 5197 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 5198 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 5199 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 5200 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 5201 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 5202 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 5203 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 5204 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 5205 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 5206 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 5207 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 5208 } 5209 Res.getInstr()->getOperand(0).setReg(Dst); 5210 5211 MI.eraseFromParent(); 5212 return Legalized; 5213 } 5214 5215 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 5216 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 5217 MachineInstrBuilder Src, APInt Mask) { 5218 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 5219 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 5220 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 5221 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 5222 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 5223 return B.buildOr(Dst, LHS, RHS); 5224 } 5225 5226 LegalizerHelper::LegalizeResult 5227 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 5228 Register Dst = MI.getOperand(0).getReg(); 5229 Register Src = MI.getOperand(1).getReg(); 5230 const LLT Ty = MRI.getType(Src); 5231 unsigned Size = Ty.getSizeInBits(); 5232 5233 MachineInstrBuilder BSWAP = 5234 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 5235 5236 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 5237 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 5238 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 5239 MachineInstrBuilder Swap4 = 5240 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 5241 5242 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 5243 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 5244 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 5245 MachineInstrBuilder Swap2 = 5246 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 5247 5248 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 5249 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 5250 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 5251 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 5252 5253 MI.eraseFromParent(); 5254 return Legalized; 5255 } 5256 5257 LegalizerHelper::LegalizeResult 5258 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 5259 MachineFunction &MF = MIRBuilder.getMF(); 5260 const TargetSubtargetInfo &STI = MF.getSubtarget(); 5261 const TargetLowering *TLI = STI.getTargetLowering(); 5262 5263 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 5264 int NameOpIdx = IsRead ? 1 : 0; 5265 int ValRegIndex = IsRead ? 0 : 1; 5266 5267 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 5268 const LLT Ty = MRI.getType(ValReg); 5269 const MDString *RegStr = cast<MDString>( 5270 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 5271 5272 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5273 if (!PhysReg.isValid()) 5274 return UnableToLegalize; 5275 5276 if (IsRead) 5277 MIRBuilder.buildCopy(ValReg, PhysReg); 5278 else 5279 MIRBuilder.buildCopy(PhysReg, ValReg); 5280 5281 MI.eraseFromParent(); 5282 return Legalized; 5283 } 5284