1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
67 
68   if (!Ty.isScalar())
69     return nullptr;
70 
71   switch (Ty.getSizeInBits()) {
72   case 16:
73     return Type::getHalfTy(Ctx);
74   case 32:
75     return Type::getFloatTy(Ctx);
76   case 64:
77     return Type::getDoubleTy(Ctx);
78   case 128:
79     return Type::getFP128Ty(Ctx);
80   default:
81     return nullptr;
82   }
83 }
84 
85 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
86                                  GISelChangeObserver &Observer,
87                                  MachineIRBuilder &Builder)
88     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
89       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
90   MIRBuilder.setChangeObserver(Observer);
91 }
92 
93 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
94                                  GISelChangeObserver &Observer,
95                                  MachineIRBuilder &B)
96     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
97   MIRBuilder.setChangeObserver(Observer);
98 }
99 LegalizerHelper::LegalizeResult
100 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
101   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
102 
103   MIRBuilder.setInstrAndDebugLoc(MI);
104 
105   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
106       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
107     return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized
108                                                           : UnableToLegalize;
109   auto Step = LI.getAction(MI, MRI);
110   switch (Step.Action) {
111   case Legal:
112     LLVM_DEBUG(dbgs() << ".. Already legal\n");
113     return AlreadyLegal;
114   case Libcall:
115     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
116     return libcall(MI);
117   case NarrowScalar:
118     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
119     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
120   case WidenScalar:
121     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
122     return widenScalar(MI, Step.TypeIdx, Step.NewType);
123   case Bitcast:
124     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
125     return bitcast(MI, Step.TypeIdx, Step.NewType);
126   case Lower:
127     LLVM_DEBUG(dbgs() << ".. Lower\n");
128     return lower(MI, Step.TypeIdx, Step.NewType);
129   case FewerElements:
130     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
131     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
132   case MoreElements:
133     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
134     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case Custom:
136     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
137     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
138                                                             : UnableToLegalize;
139   default:
140     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
141     return UnableToLegalize;
142   }
143 }
144 
145 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
146                                    SmallVectorImpl<Register> &VRegs) {
147   for (int i = 0; i < NumParts; ++i)
148     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
149   MIRBuilder.buildUnmerge(VRegs, Reg);
150 }
151 
152 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
153                                    LLT MainTy, LLT &LeftoverTy,
154                                    SmallVectorImpl<Register> &VRegs,
155                                    SmallVectorImpl<Register> &LeftoverRegs) {
156   assert(!LeftoverTy.isValid() && "this is an out argument");
157 
158   unsigned RegSize = RegTy.getSizeInBits();
159   unsigned MainSize = MainTy.getSizeInBits();
160   unsigned NumParts = RegSize / MainSize;
161   unsigned LeftoverSize = RegSize - NumParts * MainSize;
162 
163   // Use an unmerge when possible.
164   if (LeftoverSize == 0) {
165     for (unsigned I = 0; I < NumParts; ++I)
166       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
167     MIRBuilder.buildUnmerge(VRegs, Reg);
168     return true;
169   }
170 
171   if (MainTy.isVector()) {
172     unsigned EltSize = MainTy.getScalarSizeInBits();
173     if (LeftoverSize % EltSize != 0)
174       return false;
175     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
176   } else {
177     LeftoverTy = LLT::scalar(LeftoverSize);
178   }
179 
180   // For irregular sizes, extract the individual parts.
181   for (unsigned I = 0; I != NumParts; ++I) {
182     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
183     VRegs.push_back(NewReg);
184     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
185   }
186 
187   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
188        Offset += LeftoverSize) {
189     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
190     LeftoverRegs.push_back(NewReg);
191     MIRBuilder.buildExtract(NewReg, Reg, Offset);
192   }
193 
194   return true;
195 }
196 
197 void LegalizerHelper::insertParts(Register DstReg,
198                                   LLT ResultTy, LLT PartTy,
199                                   ArrayRef<Register> PartRegs,
200                                   LLT LeftoverTy,
201                                   ArrayRef<Register> LeftoverRegs) {
202   if (!LeftoverTy.isValid()) {
203     assert(LeftoverRegs.empty());
204 
205     if (!ResultTy.isVector()) {
206       MIRBuilder.buildMerge(DstReg, PartRegs);
207       return;
208     }
209 
210     if (PartTy.isVector())
211       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
212     else
213       MIRBuilder.buildBuildVector(DstReg, PartRegs);
214     return;
215   }
216 
217   unsigned PartSize = PartTy.getSizeInBits();
218   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
219 
220   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
221   MIRBuilder.buildUndef(CurResultReg);
222 
223   unsigned Offset = 0;
224   for (Register PartReg : PartRegs) {
225     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
226     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
227     CurResultReg = NewResultReg;
228     Offset += PartSize;
229   }
230 
231   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
232     // Use the original output register for the final insert to avoid a copy.
233     Register NewResultReg = (I + 1 == E) ?
234       DstReg : MRI.createGenericVirtualRegister(ResultTy);
235 
236     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
237     CurResultReg = NewResultReg;
238     Offset += LeftoverPartSize;
239   }
240 }
241 
242 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
243 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
244                               const MachineInstr &MI) {
245   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
246 
247   const int NumResults = MI.getNumOperands() - 1;
248   Regs.resize(NumResults);
249   for (int I = 0; I != NumResults; ++I)
250     Regs[I] = MI.getOperand(I).getReg();
251 }
252 
253 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
254                                     LLT NarrowTy, Register SrcReg) {
255   LLT SrcTy = MRI.getType(SrcReg);
256 
257   LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy));
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 
268   return GCDTy;
269 }
270 
271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
272                                          SmallVectorImpl<Register> &VRegs,
273                                          unsigned PadStrategy) {
274   LLT LCMTy = getLCMType(DstTy, NarrowTy);
275 
276   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
277   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
278   int NumOrigSrc = VRegs.size();
279 
280   Register PadReg;
281 
282   // Get a value we can use to pad the source value if the sources won't evenly
283   // cover the result type.
284   if (NumOrigSrc < NumParts * NumSubParts) {
285     if (PadStrategy == TargetOpcode::G_ZEXT)
286       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
287     else if (PadStrategy == TargetOpcode::G_ANYEXT)
288       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
289     else {
290       assert(PadStrategy == TargetOpcode::G_SEXT);
291 
292       // Shift the sign bit of the low register through the high register.
293       auto ShiftAmt =
294         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
295       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
296     }
297   }
298 
299   // Registers for the final merge to be produced.
300   SmallVector<Register, 4> Remerge(NumParts);
301 
302   // Registers needed for intermediate merges, which will be merged into a
303   // source for Remerge.
304   SmallVector<Register, 4> SubMerge(NumSubParts);
305 
306   // Once we've fully read off the end of the original source bits, we can reuse
307   // the same high bits for remaining padding elements.
308   Register AllPadReg;
309 
310   // Build merges to the LCM type to cover the original result type.
311   for (int I = 0; I != NumParts; ++I) {
312     bool AllMergePartsArePadding = true;
313 
314     // Build the requested merges to the requested type.
315     for (int J = 0; J != NumSubParts; ++J) {
316       int Idx = I * NumSubParts + J;
317       if (Idx >= NumOrigSrc) {
318         SubMerge[J] = PadReg;
319         continue;
320       }
321 
322       SubMerge[J] = VRegs[Idx];
323 
324       // There are meaningful bits here we can't reuse later.
325       AllMergePartsArePadding = false;
326     }
327 
328     // If we've filled up a complete piece with padding bits, we can directly
329     // emit the natural sized constant if applicable, rather than a merge of
330     // smaller constants.
331     if (AllMergePartsArePadding && !AllPadReg) {
332       if (PadStrategy == TargetOpcode::G_ANYEXT)
333         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
334       else if (PadStrategy == TargetOpcode::G_ZEXT)
335         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
336 
337       // If this is a sign extension, we can't materialize a trivial constant
338       // with the right type and have to produce a merge.
339     }
340 
341     if (AllPadReg) {
342       // Avoid creating additional instructions if we're just adding additional
343       // copies of padding bits.
344       Remerge[I] = AllPadReg;
345       continue;
346     }
347 
348     if (NumSubParts == 1)
349       Remerge[I] = SubMerge[0];
350     else
351       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
352 
353     // In the sign extend padding case, re-use the first all-signbit merge.
354     if (AllMergePartsArePadding && !AllPadReg)
355       AllPadReg = Remerge[I];
356   }
357 
358   VRegs = std::move(Remerge);
359   return LCMTy;
360 }
361 
362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
363                                                ArrayRef<Register> RemergeRegs) {
364   LLT DstTy = MRI.getType(DstReg);
365 
366   // Create the merge to the widened source, and extract the relevant bits into
367   // the result.
368 
369   if (DstTy == LCMTy) {
370     MIRBuilder.buildMerge(DstReg, RemergeRegs);
371     return;
372   }
373 
374   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
375   if (DstTy.isScalar() && LCMTy.isScalar()) {
376     MIRBuilder.buildTrunc(DstReg, Remerge);
377     return;
378   }
379 
380   if (LCMTy.isVector()) {
381     MIRBuilder.buildExtract(DstReg, Remerge, 0);
382     return;
383   }
384 
385   llvm_unreachable("unhandled case");
386 }
387 
388 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
389 #define RTLIBCASE(LibcallPrefix)                                               \
390   do {                                                                         \
391     switch (Size) {                                                            \
392     case 32:                                                                   \
393       return RTLIB::LibcallPrefix##32;                                         \
394     case 64:                                                                   \
395       return RTLIB::LibcallPrefix##64;                                         \
396     case 128:                                                                  \
397       return RTLIB::LibcallPrefix##128;                                        \
398     default:                                                                   \
399       llvm_unreachable("unexpected size");                                     \
400     }                                                                          \
401   } while (0)
402 
403   assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
404 
405   switch (Opcode) {
406   case TargetOpcode::G_SDIV:
407     RTLIBCASE(SDIV_I);
408   case TargetOpcode::G_UDIV:
409     RTLIBCASE(UDIV_I);
410   case TargetOpcode::G_SREM:
411     RTLIBCASE(SREM_I);
412   case TargetOpcode::G_UREM:
413     RTLIBCASE(UREM_I);
414   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
415     RTLIBCASE(CTLZ_I);
416   case TargetOpcode::G_FADD:
417     RTLIBCASE(ADD_F);
418   case TargetOpcode::G_FSUB:
419     RTLIBCASE(SUB_F);
420   case TargetOpcode::G_FMUL:
421     RTLIBCASE(MUL_F);
422   case TargetOpcode::G_FDIV:
423     RTLIBCASE(DIV_F);
424   case TargetOpcode::G_FEXP:
425     RTLIBCASE(EXP_F);
426   case TargetOpcode::G_FEXP2:
427     RTLIBCASE(EXP2_F);
428   case TargetOpcode::G_FREM:
429     RTLIBCASE(REM_F);
430   case TargetOpcode::G_FPOW:
431     RTLIBCASE(POW_F);
432   case TargetOpcode::G_FMA:
433     RTLIBCASE(FMA_F);
434   case TargetOpcode::G_FSIN:
435     RTLIBCASE(SIN_F);
436   case TargetOpcode::G_FCOS:
437     RTLIBCASE(COS_F);
438   case TargetOpcode::G_FLOG10:
439     RTLIBCASE(LOG10_F);
440   case TargetOpcode::G_FLOG:
441     RTLIBCASE(LOG_F);
442   case TargetOpcode::G_FLOG2:
443     RTLIBCASE(LOG2_F);
444   case TargetOpcode::G_FCEIL:
445     RTLIBCASE(CEIL_F);
446   case TargetOpcode::G_FFLOOR:
447     RTLIBCASE(FLOOR_F);
448   case TargetOpcode::G_FMINNUM:
449     RTLIBCASE(FMIN_F);
450   case TargetOpcode::G_FMAXNUM:
451     RTLIBCASE(FMAX_F);
452   case TargetOpcode::G_FSQRT:
453     RTLIBCASE(SQRT_F);
454   case TargetOpcode::G_FRINT:
455     RTLIBCASE(RINT_F);
456   case TargetOpcode::G_FNEARBYINT:
457     RTLIBCASE(NEARBYINT_F);
458   }
459   llvm_unreachable("Unknown libcall function");
460 }
461 
462 /// True if an instruction is in tail position in its caller. Intended for
463 /// legalizing libcalls as tail calls when possible.
464 static bool isLibCallInTailPosition(MachineInstr &MI) {
465   MachineBasicBlock &MBB = *MI.getParent();
466   const Function &F = MBB.getParent()->getFunction();
467 
468   // Conservatively require the attributes of the call to match those of
469   // the return. Ignore NoAlias and NonNull because they don't affect the
470   // call sequence.
471   AttributeList CallerAttrs = F.getAttributes();
472   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
473           .removeAttribute(Attribute::NoAlias)
474           .removeAttribute(Attribute::NonNull)
475           .hasAttributes())
476     return false;
477 
478   // It's not safe to eliminate the sign / zero extension of the return value.
479   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
480       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
481     return false;
482 
483   // Only tail call if the following instruction is a standard return.
484   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
485   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
486   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
487     return false;
488 
489   return true;
490 }
491 
492 LegalizerHelper::LegalizeResult
493 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
494                     const CallLowering::ArgInfo &Result,
495                     ArrayRef<CallLowering::ArgInfo> Args,
496                     const CallingConv::ID CC) {
497   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
498 
499   CallLowering::CallLoweringInfo Info;
500   Info.CallConv = CC;
501   Info.Callee = MachineOperand::CreateES(Name);
502   Info.OrigRet = Result;
503   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
504   if (!CLI.lowerCall(MIRBuilder, Info))
505     return LegalizerHelper::UnableToLegalize;
506 
507   return LegalizerHelper::Legalized;
508 }
509 
510 LegalizerHelper::LegalizeResult
511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
512                     const CallLowering::ArgInfo &Result,
513                     ArrayRef<CallLowering::ArgInfo> Args) {
514   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
515   const char *Name = TLI.getLibcallName(Libcall);
516   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
517   return createLibcall(MIRBuilder, Name, Result, Args, CC);
518 }
519 
520 // Useful for libcalls where all operands have the same type.
521 static LegalizerHelper::LegalizeResult
522 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
523               Type *OpType) {
524   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
525 
526   SmallVector<CallLowering::ArgInfo, 3> Args;
527   for (unsigned i = 1; i < MI.getNumOperands(); i++)
528     Args.push_back({MI.getOperand(i).getReg(), OpType});
529   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
530                        Args);
531 }
532 
533 LegalizerHelper::LegalizeResult
534 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
535                        MachineInstr &MI) {
536   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
537   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
538 
539   SmallVector<CallLowering::ArgInfo, 3> Args;
540   // Add all the args, except for the last which is an imm denoting 'tail'.
541   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
542     Register Reg = MI.getOperand(i).getReg();
543 
544     // Need derive an IR type for call lowering.
545     LLT OpLLT = MRI.getType(Reg);
546     Type *OpTy = nullptr;
547     if (OpLLT.isPointer())
548       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
549     else
550       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
551     Args.push_back({Reg, OpTy});
552   }
553 
554   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
555   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
556   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
557   RTLIB::Libcall RTLibcall;
558   switch (ID) {
559   case Intrinsic::memcpy:
560     RTLibcall = RTLIB::MEMCPY;
561     break;
562   case Intrinsic::memset:
563     RTLibcall = RTLIB::MEMSET;
564     break;
565   case Intrinsic::memmove:
566     RTLibcall = RTLIB::MEMMOVE;
567     break;
568   default:
569     return LegalizerHelper::UnableToLegalize;
570   }
571   const char *Name = TLI.getLibcallName(RTLibcall);
572 
573   MIRBuilder.setInstrAndDebugLoc(MI);
574 
575   CallLowering::CallLoweringInfo Info;
576   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
577   Info.Callee = MachineOperand::CreateES(Name);
578   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
579   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
580                     isLibCallInTailPosition(MI);
581 
582   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
583   if (!CLI.lowerCall(MIRBuilder, Info))
584     return LegalizerHelper::UnableToLegalize;
585 
586   if (Info.LoweredTailCall) {
587     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
588     // We must have a return following the call (or debug insts) to get past
589     // isLibCallInTailPosition.
590     do {
591       MachineInstr *Next = MI.getNextNode();
592       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
593              "Expected instr following MI to be return or debug inst?");
594       // We lowered a tail call, so the call is now the return from the block.
595       // Delete the old return.
596       Next->eraseFromParent();
597     } while (MI.getNextNode());
598   }
599 
600   return LegalizerHelper::Legalized;
601 }
602 
603 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
604                                        Type *FromType) {
605   auto ToMVT = MVT::getVT(ToType);
606   auto FromMVT = MVT::getVT(FromType);
607 
608   switch (Opcode) {
609   case TargetOpcode::G_FPEXT:
610     return RTLIB::getFPEXT(FromMVT, ToMVT);
611   case TargetOpcode::G_FPTRUNC:
612     return RTLIB::getFPROUND(FromMVT, ToMVT);
613   case TargetOpcode::G_FPTOSI:
614     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
615   case TargetOpcode::G_FPTOUI:
616     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
617   case TargetOpcode::G_SITOFP:
618     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
619   case TargetOpcode::G_UITOFP:
620     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
621   }
622   llvm_unreachable("Unsupported libcall function");
623 }
624 
625 static LegalizerHelper::LegalizeResult
626 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
627                   Type *FromType) {
628   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
629   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
630                        {{MI.getOperand(1).getReg(), FromType}});
631 }
632 
633 LegalizerHelper::LegalizeResult
634 LegalizerHelper::libcall(MachineInstr &MI) {
635   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
636   unsigned Size = LLTy.getSizeInBits();
637   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
638 
639   switch (MI.getOpcode()) {
640   default:
641     return UnableToLegalize;
642   case TargetOpcode::G_SDIV:
643   case TargetOpcode::G_UDIV:
644   case TargetOpcode::G_SREM:
645   case TargetOpcode::G_UREM:
646   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
647     Type *HLTy = IntegerType::get(Ctx, Size);
648     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
649     if (Status != Legalized)
650       return Status;
651     break;
652   }
653   case TargetOpcode::G_FADD:
654   case TargetOpcode::G_FSUB:
655   case TargetOpcode::G_FMUL:
656   case TargetOpcode::G_FDIV:
657   case TargetOpcode::G_FMA:
658   case TargetOpcode::G_FPOW:
659   case TargetOpcode::G_FREM:
660   case TargetOpcode::G_FCOS:
661   case TargetOpcode::G_FSIN:
662   case TargetOpcode::G_FLOG10:
663   case TargetOpcode::G_FLOG:
664   case TargetOpcode::G_FLOG2:
665   case TargetOpcode::G_FEXP:
666   case TargetOpcode::G_FEXP2:
667   case TargetOpcode::G_FCEIL:
668   case TargetOpcode::G_FFLOOR:
669   case TargetOpcode::G_FMINNUM:
670   case TargetOpcode::G_FMAXNUM:
671   case TargetOpcode::G_FSQRT:
672   case TargetOpcode::G_FRINT:
673   case TargetOpcode::G_FNEARBYINT: {
674     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
675     if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) {
676       LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n");
677       return UnableToLegalize;
678     }
679     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
680     if (Status != Legalized)
681       return Status;
682     break;
683   }
684   case TargetOpcode::G_FPEXT:
685   case TargetOpcode::G_FPTRUNC: {
686     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
687     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
688     if (!FromTy || !ToTy)
689       return UnableToLegalize;
690     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
691     if (Status != Legalized)
692       return Status;
693     break;
694   }
695   case TargetOpcode::G_FPTOSI:
696   case TargetOpcode::G_FPTOUI: {
697     // FIXME: Support other types
698     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
699     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
700     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
701       return UnableToLegalize;
702     LegalizeResult Status = conversionLibcall(
703         MI, MIRBuilder,
704         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
705         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
706     if (Status != Legalized)
707       return Status;
708     break;
709   }
710   case TargetOpcode::G_SITOFP:
711   case TargetOpcode::G_UITOFP: {
712     // FIXME: Support other types
713     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
714     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
715     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
716       return UnableToLegalize;
717     LegalizeResult Status = conversionLibcall(
718         MI, MIRBuilder,
719         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
720         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
721     if (Status != Legalized)
722       return Status;
723     break;
724   }
725   }
726 
727   MI.eraseFromParent();
728   return Legalized;
729 }
730 
731 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
732                                                               unsigned TypeIdx,
733                                                               LLT NarrowTy) {
734   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
735   uint64_t NarrowSize = NarrowTy.getSizeInBits();
736 
737   switch (MI.getOpcode()) {
738   default:
739     return UnableToLegalize;
740   case TargetOpcode::G_IMPLICIT_DEF: {
741     Register DstReg = MI.getOperand(0).getReg();
742     LLT DstTy = MRI.getType(DstReg);
743 
744     // If SizeOp0 is not an exact multiple of NarrowSize, emit
745     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
746     // FIXME: Although this would also be legal for the general case, it causes
747     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
748     //  combines not being hit). This seems to be a problem related to the
749     //  artifact combiner.
750     if (SizeOp0 % NarrowSize != 0) {
751       LLT ImplicitTy = NarrowTy;
752       if (DstTy.isVector())
753         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
754 
755       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
756       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
757 
758       MI.eraseFromParent();
759       return Legalized;
760     }
761 
762     int NumParts = SizeOp0 / NarrowSize;
763 
764     SmallVector<Register, 2> DstRegs;
765     for (int i = 0; i < NumParts; ++i)
766       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
767 
768     if (DstTy.isVector())
769       MIRBuilder.buildBuildVector(DstReg, DstRegs);
770     else
771       MIRBuilder.buildMerge(DstReg, DstRegs);
772     MI.eraseFromParent();
773     return Legalized;
774   }
775   case TargetOpcode::G_CONSTANT: {
776     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
777     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
778     unsigned TotalSize = Ty.getSizeInBits();
779     unsigned NarrowSize = NarrowTy.getSizeInBits();
780     int NumParts = TotalSize / NarrowSize;
781 
782     SmallVector<Register, 4> PartRegs;
783     for (int I = 0; I != NumParts; ++I) {
784       unsigned Offset = I * NarrowSize;
785       auto K = MIRBuilder.buildConstant(NarrowTy,
786                                         Val.lshr(Offset).trunc(NarrowSize));
787       PartRegs.push_back(K.getReg(0));
788     }
789 
790     LLT LeftoverTy;
791     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
792     SmallVector<Register, 1> LeftoverRegs;
793     if (LeftoverBits != 0) {
794       LeftoverTy = LLT::scalar(LeftoverBits);
795       auto K = MIRBuilder.buildConstant(
796         LeftoverTy,
797         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
798       LeftoverRegs.push_back(K.getReg(0));
799     }
800 
801     insertParts(MI.getOperand(0).getReg(),
802                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
803 
804     MI.eraseFromParent();
805     return Legalized;
806   }
807   case TargetOpcode::G_SEXT:
808   case TargetOpcode::G_ZEXT:
809   case TargetOpcode::G_ANYEXT:
810     return narrowScalarExt(MI, TypeIdx, NarrowTy);
811   case TargetOpcode::G_TRUNC: {
812     if (TypeIdx != 1)
813       return UnableToLegalize;
814 
815     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
816     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
817       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
818       return UnableToLegalize;
819     }
820 
821     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
822     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
823     MI.eraseFromParent();
824     return Legalized;
825   }
826 
827   case TargetOpcode::G_FREEZE:
828     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
829 
830   case TargetOpcode::G_ADD: {
831     // FIXME: add support for when SizeOp0 isn't an exact multiple of
832     // NarrowSize.
833     if (SizeOp0 % NarrowSize != 0)
834       return UnableToLegalize;
835     // Expand in terms of carry-setting/consuming G_ADDE instructions.
836     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
837 
838     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
839     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
840     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
841 
842     Register CarryIn;
843     for (int i = 0; i < NumParts; ++i) {
844       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
845       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
846 
847       if (i == 0)
848         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
849       else {
850         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
851                               Src2Regs[i], CarryIn);
852       }
853 
854       DstRegs.push_back(DstReg);
855       CarryIn = CarryOut;
856     }
857     Register DstReg = MI.getOperand(0).getReg();
858     if(MRI.getType(DstReg).isVector())
859       MIRBuilder.buildBuildVector(DstReg, DstRegs);
860     else
861       MIRBuilder.buildMerge(DstReg, DstRegs);
862     MI.eraseFromParent();
863     return Legalized;
864   }
865   case TargetOpcode::G_SUB: {
866     // FIXME: add support for when SizeOp0 isn't an exact multiple of
867     // NarrowSize.
868     if (SizeOp0 % NarrowSize != 0)
869       return UnableToLegalize;
870 
871     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
872 
873     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
874     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
875     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
876 
877     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
878     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
879     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
880                           {Src1Regs[0], Src2Regs[0]});
881     DstRegs.push_back(DstReg);
882     Register BorrowIn = BorrowOut;
883     for (int i = 1; i < NumParts; ++i) {
884       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
885       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
886 
887       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
888                             {Src1Regs[i], Src2Regs[i], BorrowIn});
889 
890       DstRegs.push_back(DstReg);
891       BorrowIn = BorrowOut;
892     }
893     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
894     MI.eraseFromParent();
895     return Legalized;
896   }
897   case TargetOpcode::G_MUL:
898   case TargetOpcode::G_UMULH:
899     return narrowScalarMul(MI, NarrowTy);
900   case TargetOpcode::G_EXTRACT:
901     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
902   case TargetOpcode::G_INSERT:
903     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
904   case TargetOpcode::G_LOAD: {
905     const auto &MMO = **MI.memoperands_begin();
906     Register DstReg = MI.getOperand(0).getReg();
907     LLT DstTy = MRI.getType(DstReg);
908     if (DstTy.isVector())
909       return UnableToLegalize;
910 
911     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
912       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
913       auto &MMO = **MI.memoperands_begin();
914       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
915       MIRBuilder.buildAnyExt(DstReg, TmpReg);
916       MI.eraseFromParent();
917       return Legalized;
918     }
919 
920     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
921   }
922   case TargetOpcode::G_ZEXTLOAD:
923   case TargetOpcode::G_SEXTLOAD: {
924     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
925     Register DstReg = MI.getOperand(0).getReg();
926     Register PtrReg = MI.getOperand(1).getReg();
927 
928     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
929     auto &MMO = **MI.memoperands_begin();
930     if (MMO.getSizeInBits() == NarrowSize) {
931       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
932     } else {
933       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
934     }
935 
936     if (ZExt)
937       MIRBuilder.buildZExt(DstReg, TmpReg);
938     else
939       MIRBuilder.buildSExt(DstReg, TmpReg);
940 
941     MI.eraseFromParent();
942     return Legalized;
943   }
944   case TargetOpcode::G_STORE: {
945     const auto &MMO = **MI.memoperands_begin();
946 
947     Register SrcReg = MI.getOperand(0).getReg();
948     LLT SrcTy = MRI.getType(SrcReg);
949     if (SrcTy.isVector())
950       return UnableToLegalize;
951 
952     int NumParts = SizeOp0 / NarrowSize;
953     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
954     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
955     if (SrcTy.isVector() && LeftoverBits != 0)
956       return UnableToLegalize;
957 
958     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
959       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
960       auto &MMO = **MI.memoperands_begin();
961       MIRBuilder.buildTrunc(TmpReg, SrcReg);
962       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
963       MI.eraseFromParent();
964       return Legalized;
965     }
966 
967     return reduceLoadStoreWidth(MI, 0, NarrowTy);
968   }
969   case TargetOpcode::G_SELECT:
970     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
971   case TargetOpcode::G_AND:
972   case TargetOpcode::G_OR:
973   case TargetOpcode::G_XOR: {
974     // Legalize bitwise operation:
975     // A = BinOp<Ty> B, C
976     // into:
977     // B1, ..., BN = G_UNMERGE_VALUES B
978     // C1, ..., CN = G_UNMERGE_VALUES C
979     // A1 = BinOp<Ty/N> B1, C2
980     // ...
981     // AN = BinOp<Ty/N> BN, CN
982     // A = G_MERGE_VALUES A1, ..., AN
983     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
984   }
985   case TargetOpcode::G_SHL:
986   case TargetOpcode::G_LSHR:
987   case TargetOpcode::G_ASHR:
988     return narrowScalarShift(MI, TypeIdx, NarrowTy);
989   case TargetOpcode::G_CTLZ:
990   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
991   case TargetOpcode::G_CTTZ:
992   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
993   case TargetOpcode::G_CTPOP:
994     if (TypeIdx == 1)
995       switch (MI.getOpcode()) {
996       case TargetOpcode::G_CTLZ:
997       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
998         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
999       case TargetOpcode::G_CTTZ:
1000       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1001         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1002       case TargetOpcode::G_CTPOP:
1003         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1004       default:
1005         return UnableToLegalize;
1006       }
1007 
1008     Observer.changingInstr(MI);
1009     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1010     Observer.changedInstr(MI);
1011     return Legalized;
1012   case TargetOpcode::G_INTTOPTR:
1013     if (TypeIdx != 1)
1014       return UnableToLegalize;
1015 
1016     Observer.changingInstr(MI);
1017     narrowScalarSrc(MI, NarrowTy, 1);
1018     Observer.changedInstr(MI);
1019     return Legalized;
1020   case TargetOpcode::G_PTRTOINT:
1021     if (TypeIdx != 0)
1022       return UnableToLegalize;
1023 
1024     Observer.changingInstr(MI);
1025     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1026     Observer.changedInstr(MI);
1027     return Legalized;
1028   case TargetOpcode::G_PHI: {
1029     unsigned NumParts = SizeOp0 / NarrowSize;
1030     SmallVector<Register, 2> DstRegs(NumParts);
1031     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1032     Observer.changingInstr(MI);
1033     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1034       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1035       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1036       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1037                    SrcRegs[i / 2]);
1038     }
1039     MachineBasicBlock &MBB = *MI.getParent();
1040     MIRBuilder.setInsertPt(MBB, MI);
1041     for (unsigned i = 0; i < NumParts; ++i) {
1042       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1043       MachineInstrBuilder MIB =
1044           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1045       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1046         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1047     }
1048     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1049     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1050     Observer.changedInstr(MI);
1051     MI.eraseFromParent();
1052     return Legalized;
1053   }
1054   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1055   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1056     if (TypeIdx != 2)
1057       return UnableToLegalize;
1058 
1059     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1060     Observer.changingInstr(MI);
1061     narrowScalarSrc(MI, NarrowTy, OpIdx);
1062     Observer.changedInstr(MI);
1063     return Legalized;
1064   }
1065   case TargetOpcode::G_ICMP: {
1066     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1067     if (NarrowSize * 2 != SrcSize)
1068       return UnableToLegalize;
1069 
1070     Observer.changingInstr(MI);
1071     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1072     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1073     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1074 
1075     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1076     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1077     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1078 
1079     CmpInst::Predicate Pred =
1080         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1081     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1082 
1083     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1084       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1085       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1086       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1087       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1088       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1089     } else {
1090       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1091       MachineInstrBuilder CmpHEQ =
1092           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1093       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1094           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1095       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1096     }
1097     Observer.changedInstr(MI);
1098     MI.eraseFromParent();
1099     return Legalized;
1100   }
1101   case TargetOpcode::G_SEXT_INREG: {
1102     if (TypeIdx != 0)
1103       return UnableToLegalize;
1104 
1105     int64_t SizeInBits = MI.getOperand(2).getImm();
1106 
1107     // So long as the new type has more bits than the bits we're extending we
1108     // don't need to break it apart.
1109     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1110       Observer.changingInstr(MI);
1111       // We don't lose any non-extension bits by truncating the src and
1112       // sign-extending the dst.
1113       MachineOperand &MO1 = MI.getOperand(1);
1114       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1115       MO1.setReg(TruncMIB.getReg(0));
1116 
1117       MachineOperand &MO2 = MI.getOperand(0);
1118       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1119       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1120       MIRBuilder.buildSExt(MO2, DstExt);
1121       MO2.setReg(DstExt);
1122       Observer.changedInstr(MI);
1123       return Legalized;
1124     }
1125 
1126     // Break it apart. Components below the extension point are unmodified. The
1127     // component containing the extension point becomes a narrower SEXT_INREG.
1128     // Components above it are ashr'd from the component containing the
1129     // extension point.
1130     if (SizeOp0 % NarrowSize != 0)
1131       return UnableToLegalize;
1132     int NumParts = SizeOp0 / NarrowSize;
1133 
1134     // List the registers where the destination will be scattered.
1135     SmallVector<Register, 2> DstRegs;
1136     // List the registers where the source will be split.
1137     SmallVector<Register, 2> SrcRegs;
1138 
1139     // Create all the temporary registers.
1140     for (int i = 0; i < NumParts; ++i) {
1141       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1142 
1143       SrcRegs.push_back(SrcReg);
1144     }
1145 
1146     // Explode the big arguments into smaller chunks.
1147     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1148 
1149     Register AshrCstReg =
1150         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1151             .getReg(0);
1152     Register FullExtensionReg = 0;
1153     Register PartialExtensionReg = 0;
1154 
1155     // Do the operation on each small part.
1156     for (int i = 0; i < NumParts; ++i) {
1157       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1158         DstRegs.push_back(SrcRegs[i]);
1159       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1160         assert(PartialExtensionReg &&
1161                "Expected to visit partial extension before full");
1162         if (FullExtensionReg) {
1163           DstRegs.push_back(FullExtensionReg);
1164           continue;
1165         }
1166         DstRegs.push_back(
1167             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1168                 .getReg(0));
1169         FullExtensionReg = DstRegs.back();
1170       } else {
1171         DstRegs.push_back(
1172             MIRBuilder
1173                 .buildInstr(
1174                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1175                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1176                 .getReg(0));
1177         PartialExtensionReg = DstRegs.back();
1178       }
1179     }
1180 
1181     // Gather the destination registers into the final destination.
1182     Register DstReg = MI.getOperand(0).getReg();
1183     MIRBuilder.buildMerge(DstReg, DstRegs);
1184     MI.eraseFromParent();
1185     return Legalized;
1186   }
1187   case TargetOpcode::G_BSWAP:
1188   case TargetOpcode::G_BITREVERSE: {
1189     if (SizeOp0 % NarrowSize != 0)
1190       return UnableToLegalize;
1191 
1192     Observer.changingInstr(MI);
1193     SmallVector<Register, 2> SrcRegs, DstRegs;
1194     unsigned NumParts = SizeOp0 / NarrowSize;
1195     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1196 
1197     for (unsigned i = 0; i < NumParts; ++i) {
1198       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1199                                            {SrcRegs[NumParts - 1 - i]});
1200       DstRegs.push_back(DstPart.getReg(0));
1201     }
1202 
1203     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1204 
1205     Observer.changedInstr(MI);
1206     MI.eraseFromParent();
1207     return Legalized;
1208   }
1209   case TargetOpcode::G_PTRMASK: {
1210     if (TypeIdx != 1)
1211       return UnableToLegalize;
1212     Observer.changingInstr(MI);
1213     narrowScalarSrc(MI, NarrowTy, 2);
1214     Observer.changedInstr(MI);
1215     return Legalized;
1216   }
1217   }
1218 }
1219 
1220 Register LegalizerHelper::coerceToScalar(Register Val) {
1221   LLT Ty = MRI.getType(Val);
1222   if (Ty.isScalar())
1223     return Val;
1224 
1225   const DataLayout &DL = MIRBuilder.getDataLayout();
1226   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1227   if (Ty.isPointer()) {
1228     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1229       return Register();
1230     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1231   }
1232 
1233   Register NewVal = Val;
1234 
1235   assert(Ty.isVector());
1236   LLT EltTy = Ty.getElementType();
1237   if (EltTy.isPointer())
1238     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1239   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1240 }
1241 
1242 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1243                                      unsigned OpIdx, unsigned ExtOpcode) {
1244   MachineOperand &MO = MI.getOperand(OpIdx);
1245   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1246   MO.setReg(ExtB.getReg(0));
1247 }
1248 
1249 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1250                                       unsigned OpIdx) {
1251   MachineOperand &MO = MI.getOperand(OpIdx);
1252   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1253   MO.setReg(ExtB.getReg(0));
1254 }
1255 
1256 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1257                                      unsigned OpIdx, unsigned TruncOpcode) {
1258   MachineOperand &MO = MI.getOperand(OpIdx);
1259   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1260   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1261   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1262   MO.setReg(DstExt);
1263 }
1264 
1265 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1266                                       unsigned OpIdx, unsigned ExtOpcode) {
1267   MachineOperand &MO = MI.getOperand(OpIdx);
1268   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1269   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1270   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1271   MO.setReg(DstTrunc);
1272 }
1273 
1274 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1275                                             unsigned OpIdx) {
1276   MachineOperand &MO = MI.getOperand(OpIdx);
1277   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1278   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1279   MIRBuilder.buildExtract(MO, DstExt, 0);
1280   MO.setReg(DstExt);
1281 }
1282 
1283 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1284                                             unsigned OpIdx) {
1285   MachineOperand &MO = MI.getOperand(OpIdx);
1286 
1287   LLT OldTy = MRI.getType(MO.getReg());
1288   unsigned OldElts = OldTy.getNumElements();
1289   unsigned NewElts = MoreTy.getNumElements();
1290 
1291   unsigned NumParts = NewElts / OldElts;
1292 
1293   // Use concat_vectors if the result is a multiple of the number of elements.
1294   if (NumParts * OldElts == NewElts) {
1295     SmallVector<Register, 8> Parts;
1296     Parts.push_back(MO.getReg());
1297 
1298     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1299     for (unsigned I = 1; I != NumParts; ++I)
1300       Parts.push_back(ImpDef);
1301 
1302     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1303     MO.setReg(Concat.getReg(0));
1304     return;
1305   }
1306 
1307   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1308   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1309   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1310   MO.setReg(MoreReg);
1311 }
1312 
1313 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1314   MachineOperand &Op = MI.getOperand(OpIdx);
1315   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1316 }
1317 
1318 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1319   MachineOperand &MO = MI.getOperand(OpIdx);
1320   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1321   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1322   MIRBuilder.buildBitcast(MO, CastDst);
1323   MO.setReg(CastDst);
1324 }
1325 
1326 LegalizerHelper::LegalizeResult
1327 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1328                                         LLT WideTy) {
1329   if (TypeIdx != 1)
1330     return UnableToLegalize;
1331 
1332   Register DstReg = MI.getOperand(0).getReg();
1333   LLT DstTy = MRI.getType(DstReg);
1334   if (DstTy.isVector())
1335     return UnableToLegalize;
1336 
1337   Register Src1 = MI.getOperand(1).getReg();
1338   LLT SrcTy = MRI.getType(Src1);
1339   const int DstSize = DstTy.getSizeInBits();
1340   const int SrcSize = SrcTy.getSizeInBits();
1341   const int WideSize = WideTy.getSizeInBits();
1342   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1343 
1344   unsigned NumOps = MI.getNumOperands();
1345   unsigned NumSrc = MI.getNumOperands() - 1;
1346   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1347 
1348   if (WideSize >= DstSize) {
1349     // Directly pack the bits in the target type.
1350     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1351 
1352     for (unsigned I = 2; I != NumOps; ++I) {
1353       const unsigned Offset = (I - 1) * PartSize;
1354 
1355       Register SrcReg = MI.getOperand(I).getReg();
1356       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1357 
1358       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1359 
1360       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1361         MRI.createGenericVirtualRegister(WideTy);
1362 
1363       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1364       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1365       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1366       ResultReg = NextResult;
1367     }
1368 
1369     if (WideSize > DstSize)
1370       MIRBuilder.buildTrunc(DstReg, ResultReg);
1371     else if (DstTy.isPointer())
1372       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1373 
1374     MI.eraseFromParent();
1375     return Legalized;
1376   }
1377 
1378   // Unmerge the original values to the GCD type, and recombine to the next
1379   // multiple greater than the original type.
1380   //
1381   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1382   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1383   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1384   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1385   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1386   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1387   // %12:_(s12) = G_MERGE_VALUES %10, %11
1388   //
1389   // Padding with undef if necessary:
1390   //
1391   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1392   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1393   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1394   // %7:_(s2) = G_IMPLICIT_DEF
1395   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1396   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1397   // %10:_(s12) = G_MERGE_VALUES %8, %9
1398 
1399   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1400   LLT GCDTy = LLT::scalar(GCD);
1401 
1402   SmallVector<Register, 8> Parts;
1403   SmallVector<Register, 8> NewMergeRegs;
1404   SmallVector<Register, 8> Unmerges;
1405   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1406 
1407   // Decompose the original operands if they don't evenly divide.
1408   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1409     Register SrcReg = MI.getOperand(I).getReg();
1410     if (GCD == SrcSize) {
1411       Unmerges.push_back(SrcReg);
1412     } else {
1413       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1414       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1415         Unmerges.push_back(Unmerge.getReg(J));
1416     }
1417   }
1418 
1419   // Pad with undef to the next size that is a multiple of the requested size.
1420   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1421     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1422     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1423       Unmerges.push_back(UndefReg);
1424   }
1425 
1426   const int PartsPerGCD = WideSize / GCD;
1427 
1428   // Build merges of each piece.
1429   ArrayRef<Register> Slicer(Unmerges);
1430   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1431     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1432     NewMergeRegs.push_back(Merge.getReg(0));
1433   }
1434 
1435   // A truncate may be necessary if the requested type doesn't evenly divide the
1436   // original result type.
1437   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1438     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1439   } else {
1440     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1441     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1442   }
1443 
1444   MI.eraseFromParent();
1445   return Legalized;
1446 }
1447 
1448 LegalizerHelper::LegalizeResult
1449 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1450                                           LLT WideTy) {
1451   if (TypeIdx != 0)
1452     return UnableToLegalize;
1453 
1454   int NumDst = MI.getNumOperands() - 1;
1455   Register SrcReg = MI.getOperand(NumDst).getReg();
1456   LLT SrcTy = MRI.getType(SrcReg);
1457   if (SrcTy.isVector())
1458     return UnableToLegalize;
1459 
1460   Register Dst0Reg = MI.getOperand(0).getReg();
1461   LLT DstTy = MRI.getType(Dst0Reg);
1462   if (!DstTy.isScalar())
1463     return UnableToLegalize;
1464 
1465   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1466     if (SrcTy.isPointer()) {
1467       const DataLayout &DL = MIRBuilder.getDataLayout();
1468       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1469         LLVM_DEBUG(
1470             dbgs() << "Not casting non-integral address space integer\n");
1471         return UnableToLegalize;
1472       }
1473 
1474       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1475       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1476     }
1477 
1478     // Widen SrcTy to WideTy. This does not affect the result, but since the
1479     // user requested this size, it is probably better handled than SrcTy and
1480     // should reduce the total number of legalization artifacts
1481     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1482       SrcTy = WideTy;
1483       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1484     }
1485 
1486     // Theres no unmerge type to target. Directly extract the bits from the
1487     // source type
1488     unsigned DstSize = DstTy.getSizeInBits();
1489 
1490     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1491     for (int I = 1; I != NumDst; ++I) {
1492       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1493       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1494       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1495     }
1496 
1497     MI.eraseFromParent();
1498     return Legalized;
1499   }
1500 
1501   // Extend the source to a wider type.
1502   LLT LCMTy = getLCMType(SrcTy, WideTy);
1503 
1504   Register WideSrc = SrcReg;
1505   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1506     // TODO: If this is an integral address space, cast to integer and anyext.
1507     if (SrcTy.isPointer()) {
1508       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1509       return UnableToLegalize;
1510     }
1511 
1512     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1513   }
1514 
1515   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1516 
1517   // Create a sequence of unmerges to the original results. since we may have
1518   // widened the source, we will need to pad the results with dead defs to cover
1519   // the source register.
1520   // e.g. widen s16 to s32:
1521   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1522   //
1523   // =>
1524   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1525   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1526   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1527   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1528 
1529   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1530   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1531 
1532   for (int I = 0; I != NumUnmerge; ++I) {
1533     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1534 
1535     for (int J = 0; J != PartsPerUnmerge; ++J) {
1536       int Idx = I * PartsPerUnmerge + J;
1537       if (Idx < NumDst)
1538         MIB.addDef(MI.getOperand(Idx).getReg());
1539       else {
1540         // Create dead def for excess components.
1541         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1542       }
1543     }
1544 
1545     MIB.addUse(Unmerge.getReg(I));
1546   }
1547 
1548   MI.eraseFromParent();
1549   return Legalized;
1550 }
1551 
1552 LegalizerHelper::LegalizeResult
1553 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1554                                     LLT WideTy) {
1555   Register DstReg = MI.getOperand(0).getReg();
1556   Register SrcReg = MI.getOperand(1).getReg();
1557   LLT SrcTy = MRI.getType(SrcReg);
1558 
1559   LLT DstTy = MRI.getType(DstReg);
1560   unsigned Offset = MI.getOperand(2).getImm();
1561 
1562   if (TypeIdx == 0) {
1563     if (SrcTy.isVector() || DstTy.isVector())
1564       return UnableToLegalize;
1565 
1566     SrcOp Src(SrcReg);
1567     if (SrcTy.isPointer()) {
1568       // Extracts from pointers can be handled only if they are really just
1569       // simple integers.
1570       const DataLayout &DL = MIRBuilder.getDataLayout();
1571       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1572         return UnableToLegalize;
1573 
1574       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1575       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1576       SrcTy = SrcAsIntTy;
1577     }
1578 
1579     if (DstTy.isPointer())
1580       return UnableToLegalize;
1581 
1582     if (Offset == 0) {
1583       // Avoid a shift in the degenerate case.
1584       MIRBuilder.buildTrunc(DstReg,
1585                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1586       MI.eraseFromParent();
1587       return Legalized;
1588     }
1589 
1590     // Do a shift in the source type.
1591     LLT ShiftTy = SrcTy;
1592     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1593       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1594       ShiftTy = WideTy;
1595     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1596       return UnableToLegalize;
1597 
1598     auto LShr = MIRBuilder.buildLShr(
1599       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1600     MIRBuilder.buildTrunc(DstReg, LShr);
1601     MI.eraseFromParent();
1602     return Legalized;
1603   }
1604 
1605   if (SrcTy.isScalar()) {
1606     Observer.changingInstr(MI);
1607     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1608     Observer.changedInstr(MI);
1609     return Legalized;
1610   }
1611 
1612   if (!SrcTy.isVector())
1613     return UnableToLegalize;
1614 
1615   if (DstTy != SrcTy.getElementType())
1616     return UnableToLegalize;
1617 
1618   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1619     return UnableToLegalize;
1620 
1621   Observer.changingInstr(MI);
1622   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1623 
1624   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1625                           Offset);
1626   widenScalarDst(MI, WideTy.getScalarType(), 0);
1627   Observer.changedInstr(MI);
1628   return Legalized;
1629 }
1630 
1631 LegalizerHelper::LegalizeResult
1632 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1633                                    LLT WideTy) {
1634   if (TypeIdx != 0)
1635     return UnableToLegalize;
1636   Observer.changingInstr(MI);
1637   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1638   widenScalarDst(MI, WideTy);
1639   Observer.changedInstr(MI);
1640   return Legalized;
1641 }
1642 
1643 LegalizerHelper::LegalizeResult
1644 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1645   switch (MI.getOpcode()) {
1646   default:
1647     return UnableToLegalize;
1648   case TargetOpcode::G_EXTRACT:
1649     return widenScalarExtract(MI, TypeIdx, WideTy);
1650   case TargetOpcode::G_INSERT:
1651     return widenScalarInsert(MI, TypeIdx, WideTy);
1652   case TargetOpcode::G_MERGE_VALUES:
1653     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1654   case TargetOpcode::G_UNMERGE_VALUES:
1655     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1656   case TargetOpcode::G_UADDO:
1657   case TargetOpcode::G_USUBO: {
1658     if (TypeIdx == 1)
1659       return UnableToLegalize; // TODO
1660     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1661     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1662     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1663                           ? TargetOpcode::G_ADD
1664                           : TargetOpcode::G_SUB;
1665     // Do the arithmetic in the larger type.
1666     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1667     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1668     APInt Mask =
1669         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1670     auto AndOp = MIRBuilder.buildAnd(
1671         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1672     // There is no overflow if the AndOp is the same as NewOp.
1673     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1674     // Now trunc the NewOp to the original result.
1675     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1676     MI.eraseFromParent();
1677     return Legalized;
1678   }
1679   case TargetOpcode::G_CTTZ:
1680   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1681   case TargetOpcode::G_CTLZ:
1682   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1683   case TargetOpcode::G_CTPOP: {
1684     if (TypeIdx == 0) {
1685       Observer.changingInstr(MI);
1686       widenScalarDst(MI, WideTy, 0);
1687       Observer.changedInstr(MI);
1688       return Legalized;
1689     }
1690 
1691     Register SrcReg = MI.getOperand(1).getReg();
1692 
1693     // First ZEXT the input.
1694     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1695     LLT CurTy = MRI.getType(SrcReg);
1696     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1697       // The count is the same in the larger type except if the original
1698       // value was zero.  This can be handled by setting the bit just off
1699       // the top of the original type.
1700       auto TopBit =
1701           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1702       MIBSrc = MIRBuilder.buildOr(
1703         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1704     }
1705 
1706     // Perform the operation at the larger size.
1707     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1708     // This is already the correct result for CTPOP and CTTZs
1709     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1710         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1711       // The correct result is NewOp - (Difference in widety and current ty).
1712       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1713       MIBNewOp = MIRBuilder.buildSub(
1714           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1715     }
1716 
1717     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1718     MI.eraseFromParent();
1719     return Legalized;
1720   }
1721   case TargetOpcode::G_BSWAP: {
1722     Observer.changingInstr(MI);
1723     Register DstReg = MI.getOperand(0).getReg();
1724 
1725     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1726     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1727     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1728     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1729 
1730     MI.getOperand(0).setReg(DstExt);
1731 
1732     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1733 
1734     LLT Ty = MRI.getType(DstReg);
1735     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1736     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1737     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1738 
1739     MIRBuilder.buildTrunc(DstReg, ShrReg);
1740     Observer.changedInstr(MI);
1741     return Legalized;
1742   }
1743   case TargetOpcode::G_BITREVERSE: {
1744     Observer.changingInstr(MI);
1745 
1746     Register DstReg = MI.getOperand(0).getReg();
1747     LLT Ty = MRI.getType(DstReg);
1748     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1749 
1750     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1751     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1752     MI.getOperand(0).setReg(DstExt);
1753     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1754 
1755     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1756     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1757     MIRBuilder.buildTrunc(DstReg, Shift);
1758     Observer.changedInstr(MI);
1759     return Legalized;
1760   }
1761   case TargetOpcode::G_FREEZE:
1762     Observer.changingInstr(MI);
1763     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1764     widenScalarDst(MI, WideTy);
1765     Observer.changedInstr(MI);
1766     return Legalized;
1767 
1768   case TargetOpcode::G_ADD:
1769   case TargetOpcode::G_AND:
1770   case TargetOpcode::G_MUL:
1771   case TargetOpcode::G_OR:
1772   case TargetOpcode::G_XOR:
1773   case TargetOpcode::G_SUB:
1774     // Perform operation at larger width (any extension is fines here, high bits
1775     // don't affect the result) and then truncate the result back to the
1776     // original type.
1777     Observer.changingInstr(MI);
1778     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1779     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1780     widenScalarDst(MI, WideTy);
1781     Observer.changedInstr(MI);
1782     return Legalized;
1783 
1784   case TargetOpcode::G_SHL:
1785     Observer.changingInstr(MI);
1786 
1787     if (TypeIdx == 0) {
1788       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1789       widenScalarDst(MI, WideTy);
1790     } else {
1791       assert(TypeIdx == 1);
1792       // The "number of bits to shift" operand must preserve its value as an
1793       // unsigned integer:
1794       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1795     }
1796 
1797     Observer.changedInstr(MI);
1798     return Legalized;
1799 
1800   case TargetOpcode::G_SDIV:
1801   case TargetOpcode::G_SREM:
1802   case TargetOpcode::G_SMIN:
1803   case TargetOpcode::G_SMAX:
1804     Observer.changingInstr(MI);
1805     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1806     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1807     widenScalarDst(MI, WideTy);
1808     Observer.changedInstr(MI);
1809     return Legalized;
1810 
1811   case TargetOpcode::G_ASHR:
1812   case TargetOpcode::G_LSHR:
1813     Observer.changingInstr(MI);
1814 
1815     if (TypeIdx == 0) {
1816       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1817         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1818 
1819       widenScalarSrc(MI, WideTy, 1, CvtOp);
1820       widenScalarDst(MI, WideTy);
1821     } else {
1822       assert(TypeIdx == 1);
1823       // The "number of bits to shift" operand must preserve its value as an
1824       // unsigned integer:
1825       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1826     }
1827 
1828     Observer.changedInstr(MI);
1829     return Legalized;
1830   case TargetOpcode::G_UDIV:
1831   case TargetOpcode::G_UREM:
1832   case TargetOpcode::G_UMIN:
1833   case TargetOpcode::G_UMAX:
1834     Observer.changingInstr(MI);
1835     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1836     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1837     widenScalarDst(MI, WideTy);
1838     Observer.changedInstr(MI);
1839     return Legalized;
1840 
1841   case TargetOpcode::G_SELECT:
1842     Observer.changingInstr(MI);
1843     if (TypeIdx == 0) {
1844       // Perform operation at larger width (any extension is fine here, high
1845       // bits don't affect the result) and then truncate the result back to the
1846       // original type.
1847       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1848       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1849       widenScalarDst(MI, WideTy);
1850     } else {
1851       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1852       // Explicit extension is required here since high bits affect the result.
1853       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1854     }
1855     Observer.changedInstr(MI);
1856     return Legalized;
1857 
1858   case TargetOpcode::G_FPTOSI:
1859   case TargetOpcode::G_FPTOUI:
1860     Observer.changingInstr(MI);
1861 
1862     if (TypeIdx == 0)
1863       widenScalarDst(MI, WideTy);
1864     else
1865       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1866 
1867     Observer.changedInstr(MI);
1868     return Legalized;
1869   case TargetOpcode::G_SITOFP:
1870     if (TypeIdx != 1)
1871       return UnableToLegalize;
1872     Observer.changingInstr(MI);
1873     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1874     Observer.changedInstr(MI);
1875     return Legalized;
1876 
1877   case TargetOpcode::G_UITOFP:
1878     if (TypeIdx != 1)
1879       return UnableToLegalize;
1880     Observer.changingInstr(MI);
1881     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1882     Observer.changedInstr(MI);
1883     return Legalized;
1884 
1885   case TargetOpcode::G_LOAD:
1886   case TargetOpcode::G_SEXTLOAD:
1887   case TargetOpcode::G_ZEXTLOAD:
1888     Observer.changingInstr(MI);
1889     widenScalarDst(MI, WideTy);
1890     Observer.changedInstr(MI);
1891     return Legalized;
1892 
1893   case TargetOpcode::G_STORE: {
1894     if (TypeIdx != 0)
1895       return UnableToLegalize;
1896 
1897     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1898     if (!isPowerOf2_32(Ty.getSizeInBits()))
1899       return UnableToLegalize;
1900 
1901     Observer.changingInstr(MI);
1902 
1903     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1904       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1905     widenScalarSrc(MI, WideTy, 0, ExtType);
1906 
1907     Observer.changedInstr(MI);
1908     return Legalized;
1909   }
1910   case TargetOpcode::G_CONSTANT: {
1911     MachineOperand &SrcMO = MI.getOperand(1);
1912     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1913     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1914         MRI.getType(MI.getOperand(0).getReg()));
1915     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1916             ExtOpc == TargetOpcode::G_ANYEXT) &&
1917            "Illegal Extend");
1918     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1919     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1920                            ? SrcVal.sext(WideTy.getSizeInBits())
1921                            : SrcVal.zext(WideTy.getSizeInBits());
1922     Observer.changingInstr(MI);
1923     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1924 
1925     widenScalarDst(MI, WideTy);
1926     Observer.changedInstr(MI);
1927     return Legalized;
1928   }
1929   case TargetOpcode::G_FCONSTANT: {
1930     MachineOperand &SrcMO = MI.getOperand(1);
1931     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1932     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1933     bool LosesInfo;
1934     switch (WideTy.getSizeInBits()) {
1935     case 32:
1936       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1937                   &LosesInfo);
1938       break;
1939     case 64:
1940       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1941                   &LosesInfo);
1942       break;
1943     default:
1944       return UnableToLegalize;
1945     }
1946 
1947     assert(!LosesInfo && "extend should always be lossless");
1948 
1949     Observer.changingInstr(MI);
1950     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1951 
1952     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1953     Observer.changedInstr(MI);
1954     return Legalized;
1955   }
1956   case TargetOpcode::G_IMPLICIT_DEF: {
1957     Observer.changingInstr(MI);
1958     widenScalarDst(MI, WideTy);
1959     Observer.changedInstr(MI);
1960     return Legalized;
1961   }
1962   case TargetOpcode::G_BRCOND:
1963     Observer.changingInstr(MI);
1964     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1965     Observer.changedInstr(MI);
1966     return Legalized;
1967 
1968   case TargetOpcode::G_FCMP:
1969     Observer.changingInstr(MI);
1970     if (TypeIdx == 0)
1971       widenScalarDst(MI, WideTy);
1972     else {
1973       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1974       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1975     }
1976     Observer.changedInstr(MI);
1977     return Legalized;
1978 
1979   case TargetOpcode::G_ICMP:
1980     Observer.changingInstr(MI);
1981     if (TypeIdx == 0)
1982       widenScalarDst(MI, WideTy);
1983     else {
1984       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1985                                MI.getOperand(1).getPredicate()))
1986                                ? TargetOpcode::G_SEXT
1987                                : TargetOpcode::G_ZEXT;
1988       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1989       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1990     }
1991     Observer.changedInstr(MI);
1992     return Legalized;
1993 
1994   case TargetOpcode::G_PTR_ADD:
1995     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
1996     Observer.changingInstr(MI);
1997     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1998     Observer.changedInstr(MI);
1999     return Legalized;
2000 
2001   case TargetOpcode::G_PHI: {
2002     assert(TypeIdx == 0 && "Expecting only Idx 0");
2003 
2004     Observer.changingInstr(MI);
2005     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2006       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2007       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2008       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2009     }
2010 
2011     MachineBasicBlock &MBB = *MI.getParent();
2012     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2013     widenScalarDst(MI, WideTy);
2014     Observer.changedInstr(MI);
2015     return Legalized;
2016   }
2017   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2018     if (TypeIdx == 0) {
2019       Register VecReg = MI.getOperand(1).getReg();
2020       LLT VecTy = MRI.getType(VecReg);
2021       Observer.changingInstr(MI);
2022 
2023       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2024                                      WideTy.getSizeInBits()),
2025                      1, TargetOpcode::G_SEXT);
2026 
2027       widenScalarDst(MI, WideTy, 0);
2028       Observer.changedInstr(MI);
2029       return Legalized;
2030     }
2031 
2032     if (TypeIdx != 2)
2033       return UnableToLegalize;
2034     Observer.changingInstr(MI);
2035     // TODO: Probably should be zext
2036     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2037     Observer.changedInstr(MI);
2038     return Legalized;
2039   }
2040   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2041     if (TypeIdx == 1) {
2042       Observer.changingInstr(MI);
2043 
2044       Register VecReg = MI.getOperand(1).getReg();
2045       LLT VecTy = MRI.getType(VecReg);
2046       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2047 
2048       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2049       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2050       widenScalarDst(MI, WideVecTy, 0);
2051       Observer.changedInstr(MI);
2052       return Legalized;
2053     }
2054 
2055     if (TypeIdx == 2) {
2056       Observer.changingInstr(MI);
2057       // TODO: Probably should be zext
2058       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2059       Observer.changedInstr(MI);
2060     }
2061 
2062     return Legalized;
2063   }
2064   case TargetOpcode::G_FADD:
2065   case TargetOpcode::G_FMUL:
2066   case TargetOpcode::G_FSUB:
2067   case TargetOpcode::G_FMA:
2068   case TargetOpcode::G_FMAD:
2069   case TargetOpcode::G_FNEG:
2070   case TargetOpcode::G_FABS:
2071   case TargetOpcode::G_FCANONICALIZE:
2072   case TargetOpcode::G_FMINNUM:
2073   case TargetOpcode::G_FMAXNUM:
2074   case TargetOpcode::G_FMINNUM_IEEE:
2075   case TargetOpcode::G_FMAXNUM_IEEE:
2076   case TargetOpcode::G_FMINIMUM:
2077   case TargetOpcode::G_FMAXIMUM:
2078   case TargetOpcode::G_FDIV:
2079   case TargetOpcode::G_FREM:
2080   case TargetOpcode::G_FCEIL:
2081   case TargetOpcode::G_FFLOOR:
2082   case TargetOpcode::G_FCOS:
2083   case TargetOpcode::G_FSIN:
2084   case TargetOpcode::G_FLOG10:
2085   case TargetOpcode::G_FLOG:
2086   case TargetOpcode::G_FLOG2:
2087   case TargetOpcode::G_FRINT:
2088   case TargetOpcode::G_FNEARBYINT:
2089   case TargetOpcode::G_FSQRT:
2090   case TargetOpcode::G_FEXP:
2091   case TargetOpcode::G_FEXP2:
2092   case TargetOpcode::G_FPOW:
2093   case TargetOpcode::G_INTRINSIC_TRUNC:
2094   case TargetOpcode::G_INTRINSIC_ROUND:
2095     assert(TypeIdx == 0);
2096     Observer.changingInstr(MI);
2097 
2098     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2099       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2100 
2101     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2102     Observer.changedInstr(MI);
2103     return Legalized;
2104   case TargetOpcode::G_INTTOPTR:
2105     if (TypeIdx != 1)
2106       return UnableToLegalize;
2107 
2108     Observer.changingInstr(MI);
2109     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2110     Observer.changedInstr(MI);
2111     return Legalized;
2112   case TargetOpcode::G_PTRTOINT:
2113     if (TypeIdx != 0)
2114       return UnableToLegalize;
2115 
2116     Observer.changingInstr(MI);
2117     widenScalarDst(MI, WideTy, 0);
2118     Observer.changedInstr(MI);
2119     return Legalized;
2120   case TargetOpcode::G_BUILD_VECTOR: {
2121     Observer.changingInstr(MI);
2122 
2123     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2124     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2125       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2126 
2127     // Avoid changing the result vector type if the source element type was
2128     // requested.
2129     if (TypeIdx == 1) {
2130       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2131       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2132     } else {
2133       widenScalarDst(MI, WideTy, 0);
2134     }
2135 
2136     Observer.changedInstr(MI);
2137     return Legalized;
2138   }
2139   case TargetOpcode::G_SEXT_INREG:
2140     if (TypeIdx != 0)
2141       return UnableToLegalize;
2142 
2143     Observer.changingInstr(MI);
2144     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2145     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2146     Observer.changedInstr(MI);
2147     return Legalized;
2148   case TargetOpcode::G_PTRMASK: {
2149     if (TypeIdx != 1)
2150       return UnableToLegalize;
2151     Observer.changingInstr(MI);
2152     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2153     Observer.changedInstr(MI);
2154     return Legalized;
2155   }
2156   }
2157 }
2158 
2159 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2160                              MachineIRBuilder &B, Register Src, LLT Ty) {
2161   auto Unmerge = B.buildUnmerge(Ty, Src);
2162   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2163     Pieces.push_back(Unmerge.getReg(I));
2164 }
2165 
2166 LegalizerHelper::LegalizeResult
2167 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2168   Register Dst = MI.getOperand(0).getReg();
2169   Register Src = MI.getOperand(1).getReg();
2170   LLT DstTy = MRI.getType(Dst);
2171   LLT SrcTy = MRI.getType(Src);
2172 
2173   if (SrcTy.isVector() && !DstTy.isVector()) {
2174     SmallVector<Register, 8> SrcRegs;
2175     getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType());
2176     MIRBuilder.buildMerge(Dst, SrcRegs);
2177     MI.eraseFromParent();
2178     return Legalized;
2179   }
2180 
2181   if (DstTy.isVector() && !SrcTy.isVector()) {
2182     SmallVector<Register, 8> SrcRegs;
2183     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2184     MIRBuilder.buildMerge(Dst, SrcRegs);
2185     MI.eraseFromParent();
2186     return Legalized;
2187   }
2188 
2189   return UnableToLegalize;
2190 }
2191 
2192 LegalizerHelper::LegalizeResult
2193 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2194   switch (MI.getOpcode()) {
2195   case TargetOpcode::G_LOAD: {
2196     if (TypeIdx != 0)
2197       return UnableToLegalize;
2198 
2199     Observer.changingInstr(MI);
2200     bitcastDst(MI, CastTy, 0);
2201     Observer.changedInstr(MI);
2202     return Legalized;
2203   }
2204   case TargetOpcode::G_STORE: {
2205     if (TypeIdx != 0)
2206       return UnableToLegalize;
2207 
2208     Observer.changingInstr(MI);
2209     bitcastSrc(MI, CastTy, 0);
2210     Observer.changedInstr(MI);
2211     return Legalized;
2212   }
2213   case TargetOpcode::G_SELECT: {
2214     if (TypeIdx != 0)
2215       return UnableToLegalize;
2216 
2217     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2218       LLVM_DEBUG(
2219           dbgs() << "bitcast action not implemented for vector select\n");
2220       return UnableToLegalize;
2221     }
2222 
2223     Observer.changingInstr(MI);
2224     bitcastSrc(MI, CastTy, 2);
2225     bitcastSrc(MI, CastTy, 3);
2226     bitcastDst(MI, CastTy, 0);
2227     Observer.changedInstr(MI);
2228     return Legalized;
2229   }
2230   case TargetOpcode::G_AND:
2231   case TargetOpcode::G_OR:
2232   case TargetOpcode::G_XOR: {
2233     Observer.changingInstr(MI);
2234     bitcastSrc(MI, CastTy, 1);
2235     bitcastSrc(MI, CastTy, 2);
2236     bitcastDst(MI, CastTy, 0);
2237     Observer.changedInstr(MI);
2238     return Legalized;
2239   }
2240   default:
2241     return UnableToLegalize;
2242   }
2243 }
2244 
2245 LegalizerHelper::LegalizeResult
2246 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2247   using namespace TargetOpcode;
2248 
2249   switch(MI.getOpcode()) {
2250   default:
2251     return UnableToLegalize;
2252   case TargetOpcode::G_BITCAST:
2253     return lowerBitcast(MI);
2254   case TargetOpcode::G_SREM:
2255   case TargetOpcode::G_UREM: {
2256     auto Quot =
2257         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2258                               {MI.getOperand(1), MI.getOperand(2)});
2259 
2260     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2261     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2262     MI.eraseFromParent();
2263     return Legalized;
2264   }
2265   case TargetOpcode::G_SADDO:
2266   case TargetOpcode::G_SSUBO:
2267     return lowerSADDO_SSUBO(MI);
2268   case TargetOpcode::G_SMULO:
2269   case TargetOpcode::G_UMULO: {
2270     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2271     // result.
2272     Register Res = MI.getOperand(0).getReg();
2273     Register Overflow = MI.getOperand(1).getReg();
2274     Register LHS = MI.getOperand(2).getReg();
2275     Register RHS = MI.getOperand(3).getReg();
2276 
2277     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2278                           ? TargetOpcode::G_SMULH
2279                           : TargetOpcode::G_UMULH;
2280 
2281     Observer.changingInstr(MI);
2282     const auto &TII = MIRBuilder.getTII();
2283     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2284     MI.RemoveOperand(1);
2285     Observer.changedInstr(MI);
2286 
2287     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2288 
2289     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2290     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2291 
2292     // For *signed* multiply, overflow is detected by checking:
2293     // (hi != (lo >> bitwidth-1))
2294     if (Opcode == TargetOpcode::G_SMULH) {
2295       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2296       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2297       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2298     } else {
2299       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2300     }
2301     return Legalized;
2302   }
2303   case TargetOpcode::G_FNEG: {
2304     // TODO: Handle vector types once we are able to
2305     // represent them.
2306     if (Ty.isVector())
2307       return UnableToLegalize;
2308     Register Res = MI.getOperand(0).getReg();
2309     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2310     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2311     if (!ZeroTy)
2312       return UnableToLegalize;
2313     ConstantFP &ZeroForNegation =
2314         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2315     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2316     Register SubByReg = MI.getOperand(1).getReg();
2317     Register ZeroReg = Zero.getReg(0);
2318     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2319     MI.eraseFromParent();
2320     return Legalized;
2321   }
2322   case TargetOpcode::G_FSUB: {
2323     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2324     // First, check if G_FNEG is marked as Lower. If so, we may
2325     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2326     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2327       return UnableToLegalize;
2328     Register Res = MI.getOperand(0).getReg();
2329     Register LHS = MI.getOperand(1).getReg();
2330     Register RHS = MI.getOperand(2).getReg();
2331     Register Neg = MRI.createGenericVirtualRegister(Ty);
2332     MIRBuilder.buildFNeg(Neg, RHS);
2333     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2334     MI.eraseFromParent();
2335     return Legalized;
2336   }
2337   case TargetOpcode::G_FMAD:
2338     return lowerFMad(MI);
2339   case TargetOpcode::G_FFLOOR:
2340     return lowerFFloor(MI);
2341   case TargetOpcode::G_INTRINSIC_ROUND:
2342     return lowerIntrinsicRound(MI);
2343   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2344     Register OldValRes = MI.getOperand(0).getReg();
2345     Register SuccessRes = MI.getOperand(1).getReg();
2346     Register Addr = MI.getOperand(2).getReg();
2347     Register CmpVal = MI.getOperand(3).getReg();
2348     Register NewVal = MI.getOperand(4).getReg();
2349     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2350                                   **MI.memoperands_begin());
2351     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2352     MI.eraseFromParent();
2353     return Legalized;
2354   }
2355   case TargetOpcode::G_LOAD:
2356   case TargetOpcode::G_SEXTLOAD:
2357   case TargetOpcode::G_ZEXTLOAD: {
2358     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2359     Register DstReg = MI.getOperand(0).getReg();
2360     Register PtrReg = MI.getOperand(1).getReg();
2361     LLT DstTy = MRI.getType(DstReg);
2362     auto &MMO = **MI.memoperands_begin();
2363 
2364     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2365       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2366         // This load needs splitting into power of 2 sized loads.
2367         if (DstTy.isVector())
2368           return UnableToLegalize;
2369         if (isPowerOf2_32(DstTy.getSizeInBits()))
2370           return UnableToLegalize; // Don't know what we're being asked to do.
2371 
2372         // Our strategy here is to generate anyextending loads for the smaller
2373         // types up to next power-2 result type, and then combine the two larger
2374         // result values together, before truncating back down to the non-pow-2
2375         // type.
2376         // E.g. v1 = i24 load =>
2377         // v2 = i32 zextload (2 byte)
2378         // v3 = i32 load (1 byte)
2379         // v4 = i32 shl v3, 16
2380         // v5 = i32 or v4, v2
2381         // v1 = i24 trunc v5
2382         // By doing this we generate the correct truncate which should get
2383         // combined away as an artifact with a matching extend.
2384         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2385         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2386 
2387         MachineFunction &MF = MIRBuilder.getMF();
2388         MachineMemOperand *LargeMMO =
2389             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2390         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2391             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2392 
2393         LLT PtrTy = MRI.getType(PtrReg);
2394         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2395         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2396         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2397         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2398         auto LargeLoad = MIRBuilder.buildLoadInstr(
2399             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2400 
2401         auto OffsetCst = MIRBuilder.buildConstant(
2402             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2403         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2404         auto SmallPtr =
2405             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2406         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2407                                               *SmallMMO);
2408 
2409         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2410         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2411         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2412         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2413         MI.eraseFromParent();
2414         return Legalized;
2415       }
2416       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2417       MI.eraseFromParent();
2418       return Legalized;
2419     }
2420 
2421     if (DstTy.isScalar()) {
2422       Register TmpReg =
2423           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2424       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2425       switch (MI.getOpcode()) {
2426       default:
2427         llvm_unreachable("Unexpected opcode");
2428       case TargetOpcode::G_LOAD:
2429         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2430         break;
2431       case TargetOpcode::G_SEXTLOAD:
2432         MIRBuilder.buildSExt(DstReg, TmpReg);
2433         break;
2434       case TargetOpcode::G_ZEXTLOAD:
2435         MIRBuilder.buildZExt(DstReg, TmpReg);
2436         break;
2437       }
2438       MI.eraseFromParent();
2439       return Legalized;
2440     }
2441 
2442     return UnableToLegalize;
2443   }
2444   case TargetOpcode::G_STORE: {
2445     // Lower a non-power of 2 store into multiple pow-2 stores.
2446     // E.g. split an i24 store into an i16 store + i8 store.
2447     // We do this by first extending the stored value to the next largest power
2448     // of 2 type, and then using truncating stores to store the components.
2449     // By doing this, likewise with G_LOAD, generate an extend that can be
2450     // artifact-combined away instead of leaving behind extracts.
2451     Register SrcReg = MI.getOperand(0).getReg();
2452     Register PtrReg = MI.getOperand(1).getReg();
2453     LLT SrcTy = MRI.getType(SrcReg);
2454     MachineMemOperand &MMO = **MI.memoperands_begin();
2455     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2456       return UnableToLegalize;
2457     if (SrcTy.isVector())
2458       return UnableToLegalize;
2459     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2460       return UnableToLegalize; // Don't know what we're being asked to do.
2461 
2462     // Extend to the next pow-2.
2463     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2464     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2465 
2466     // Obtain the smaller value by shifting away the larger value.
2467     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2468     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2469     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2470     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2471 
2472     // Generate the PtrAdd and truncating stores.
2473     LLT PtrTy = MRI.getType(PtrReg);
2474     auto OffsetCst = MIRBuilder.buildConstant(
2475             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2476     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2477     auto SmallPtr =
2478         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2479 
2480     MachineFunction &MF = MIRBuilder.getMF();
2481     MachineMemOperand *LargeMMO =
2482         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2483     MachineMemOperand *SmallMMO =
2484         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2485     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2486     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2487     MI.eraseFromParent();
2488     return Legalized;
2489   }
2490   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2491   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2492   case TargetOpcode::G_CTLZ:
2493   case TargetOpcode::G_CTTZ:
2494   case TargetOpcode::G_CTPOP:
2495     return lowerBitCount(MI, TypeIdx, Ty);
2496   case G_UADDO: {
2497     Register Res = MI.getOperand(0).getReg();
2498     Register CarryOut = MI.getOperand(1).getReg();
2499     Register LHS = MI.getOperand(2).getReg();
2500     Register RHS = MI.getOperand(3).getReg();
2501 
2502     MIRBuilder.buildAdd(Res, LHS, RHS);
2503     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2504 
2505     MI.eraseFromParent();
2506     return Legalized;
2507   }
2508   case G_UADDE: {
2509     Register Res = MI.getOperand(0).getReg();
2510     Register CarryOut = MI.getOperand(1).getReg();
2511     Register LHS = MI.getOperand(2).getReg();
2512     Register RHS = MI.getOperand(3).getReg();
2513     Register CarryIn = MI.getOperand(4).getReg();
2514     LLT Ty = MRI.getType(Res);
2515 
2516     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2517     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2518     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2519     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2520 
2521     MI.eraseFromParent();
2522     return Legalized;
2523   }
2524   case G_USUBO: {
2525     Register Res = MI.getOperand(0).getReg();
2526     Register BorrowOut = MI.getOperand(1).getReg();
2527     Register LHS = MI.getOperand(2).getReg();
2528     Register RHS = MI.getOperand(3).getReg();
2529 
2530     MIRBuilder.buildSub(Res, LHS, RHS);
2531     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2532 
2533     MI.eraseFromParent();
2534     return Legalized;
2535   }
2536   case G_USUBE: {
2537     Register Res = MI.getOperand(0).getReg();
2538     Register BorrowOut = MI.getOperand(1).getReg();
2539     Register LHS = MI.getOperand(2).getReg();
2540     Register RHS = MI.getOperand(3).getReg();
2541     Register BorrowIn = MI.getOperand(4).getReg();
2542     const LLT CondTy = MRI.getType(BorrowOut);
2543     const LLT Ty = MRI.getType(Res);
2544 
2545     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2546     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2547     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2548 
2549     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2550     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2551     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2552 
2553     MI.eraseFromParent();
2554     return Legalized;
2555   }
2556   case G_UITOFP:
2557     return lowerUITOFP(MI, TypeIdx, Ty);
2558   case G_SITOFP:
2559     return lowerSITOFP(MI, TypeIdx, Ty);
2560   case G_FPTOUI:
2561     return lowerFPTOUI(MI, TypeIdx, Ty);
2562   case G_FPTOSI:
2563     return lowerFPTOSI(MI);
2564   case G_FPTRUNC:
2565     return lowerFPTRUNC(MI, TypeIdx, Ty);
2566   case G_SMIN:
2567   case G_SMAX:
2568   case G_UMIN:
2569   case G_UMAX:
2570     return lowerMinMax(MI, TypeIdx, Ty);
2571   case G_FCOPYSIGN:
2572     return lowerFCopySign(MI, TypeIdx, Ty);
2573   case G_FMINNUM:
2574   case G_FMAXNUM:
2575     return lowerFMinNumMaxNum(MI);
2576   case G_MERGE_VALUES:
2577     return lowerMergeValues(MI);
2578   case G_UNMERGE_VALUES:
2579     return lowerUnmergeValues(MI);
2580   case TargetOpcode::G_SEXT_INREG: {
2581     assert(MI.getOperand(2).isImm() && "Expected immediate");
2582     int64_t SizeInBits = MI.getOperand(2).getImm();
2583 
2584     Register DstReg = MI.getOperand(0).getReg();
2585     Register SrcReg = MI.getOperand(1).getReg();
2586     LLT DstTy = MRI.getType(DstReg);
2587     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2588 
2589     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2590     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2591     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2592     MI.eraseFromParent();
2593     return Legalized;
2594   }
2595   case G_SHUFFLE_VECTOR:
2596     return lowerShuffleVector(MI);
2597   case G_DYN_STACKALLOC:
2598     return lowerDynStackAlloc(MI);
2599   case G_EXTRACT:
2600     return lowerExtract(MI);
2601   case G_INSERT:
2602     return lowerInsert(MI);
2603   case G_BSWAP:
2604     return lowerBswap(MI);
2605   case G_BITREVERSE:
2606     return lowerBitreverse(MI);
2607   case G_READ_REGISTER:
2608   case G_WRITE_REGISTER:
2609     return lowerReadWriteRegister(MI);
2610   }
2611 }
2612 
2613 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2614     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2615   SmallVector<Register, 2> DstRegs;
2616 
2617   unsigned NarrowSize = NarrowTy.getSizeInBits();
2618   Register DstReg = MI.getOperand(0).getReg();
2619   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2620   int NumParts = Size / NarrowSize;
2621   // FIXME: Don't know how to handle the situation where the small vectors
2622   // aren't all the same size yet.
2623   if (Size % NarrowSize != 0)
2624     return UnableToLegalize;
2625 
2626   for (int i = 0; i < NumParts; ++i) {
2627     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2628     MIRBuilder.buildUndef(TmpReg);
2629     DstRegs.push_back(TmpReg);
2630   }
2631 
2632   if (NarrowTy.isVector())
2633     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2634   else
2635     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2636 
2637   MI.eraseFromParent();
2638   return Legalized;
2639 }
2640 
2641 // Handle splitting vector operations which need to have the same number of
2642 // elements in each type index, but each type index may have a different element
2643 // type.
2644 //
2645 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2646 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2647 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2648 //
2649 // Also handles some irregular breakdown cases, e.g.
2650 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2651 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2652 //             s64 = G_SHL s64, s32
2653 LegalizerHelper::LegalizeResult
2654 LegalizerHelper::fewerElementsVectorMultiEltType(
2655   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2656   if (TypeIdx != 0)
2657     return UnableToLegalize;
2658 
2659   const LLT NarrowTy0 = NarrowTyArg;
2660   const unsigned NewNumElts =
2661       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2662 
2663   const Register DstReg = MI.getOperand(0).getReg();
2664   LLT DstTy = MRI.getType(DstReg);
2665   LLT LeftoverTy0;
2666 
2667   // All of the operands need to have the same number of elements, so if we can
2668   // determine a type breakdown for the result type, we can for all of the
2669   // source types.
2670   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2671   if (NumParts < 0)
2672     return UnableToLegalize;
2673 
2674   SmallVector<MachineInstrBuilder, 4> NewInsts;
2675 
2676   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2677   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2678 
2679   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2680     LLT LeftoverTy;
2681     Register SrcReg = MI.getOperand(I).getReg();
2682     LLT SrcTyI = MRI.getType(SrcReg);
2683     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2684     LLT LeftoverTyI;
2685 
2686     // Split this operand into the requested typed registers, and any leftover
2687     // required to reproduce the original type.
2688     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2689                       LeftoverRegs))
2690       return UnableToLegalize;
2691 
2692     if (I == 1) {
2693       // For the first operand, create an instruction for each part and setup
2694       // the result.
2695       for (Register PartReg : PartRegs) {
2696         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2697         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2698                                .addDef(PartDstReg)
2699                                .addUse(PartReg));
2700         DstRegs.push_back(PartDstReg);
2701       }
2702 
2703       for (Register LeftoverReg : LeftoverRegs) {
2704         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2705         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2706                                .addDef(PartDstReg)
2707                                .addUse(LeftoverReg));
2708         LeftoverDstRegs.push_back(PartDstReg);
2709       }
2710     } else {
2711       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2712 
2713       // Add the newly created operand splits to the existing instructions. The
2714       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2715       // pieces.
2716       unsigned InstCount = 0;
2717       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2718         NewInsts[InstCount++].addUse(PartRegs[J]);
2719       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2720         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2721     }
2722 
2723     PartRegs.clear();
2724     LeftoverRegs.clear();
2725   }
2726 
2727   // Insert the newly built operations and rebuild the result register.
2728   for (auto &MIB : NewInsts)
2729     MIRBuilder.insertInstr(MIB);
2730 
2731   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2732 
2733   MI.eraseFromParent();
2734   return Legalized;
2735 }
2736 
2737 LegalizerHelper::LegalizeResult
2738 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2739                                           LLT NarrowTy) {
2740   if (TypeIdx != 0)
2741     return UnableToLegalize;
2742 
2743   Register DstReg = MI.getOperand(0).getReg();
2744   Register SrcReg = MI.getOperand(1).getReg();
2745   LLT DstTy = MRI.getType(DstReg);
2746   LLT SrcTy = MRI.getType(SrcReg);
2747 
2748   LLT NarrowTy0 = NarrowTy;
2749   LLT NarrowTy1;
2750   unsigned NumParts;
2751 
2752   if (NarrowTy.isVector()) {
2753     // Uneven breakdown not handled.
2754     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2755     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2756       return UnableToLegalize;
2757 
2758     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2759   } else {
2760     NumParts = DstTy.getNumElements();
2761     NarrowTy1 = SrcTy.getElementType();
2762   }
2763 
2764   SmallVector<Register, 4> SrcRegs, DstRegs;
2765   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2766 
2767   for (unsigned I = 0; I < NumParts; ++I) {
2768     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2769     MachineInstr *NewInst =
2770         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2771 
2772     NewInst->setFlags(MI.getFlags());
2773     DstRegs.push_back(DstReg);
2774   }
2775 
2776   if (NarrowTy.isVector())
2777     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2778   else
2779     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2780 
2781   MI.eraseFromParent();
2782   return Legalized;
2783 }
2784 
2785 LegalizerHelper::LegalizeResult
2786 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2787                                         LLT NarrowTy) {
2788   Register DstReg = MI.getOperand(0).getReg();
2789   Register Src0Reg = MI.getOperand(2).getReg();
2790   LLT DstTy = MRI.getType(DstReg);
2791   LLT SrcTy = MRI.getType(Src0Reg);
2792 
2793   unsigned NumParts;
2794   LLT NarrowTy0, NarrowTy1;
2795 
2796   if (TypeIdx == 0) {
2797     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2798     unsigned OldElts = DstTy.getNumElements();
2799 
2800     NarrowTy0 = NarrowTy;
2801     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2802     NarrowTy1 = NarrowTy.isVector() ?
2803       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2804       SrcTy.getElementType();
2805 
2806   } else {
2807     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2808     unsigned OldElts = SrcTy.getNumElements();
2809 
2810     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2811       NarrowTy.getNumElements();
2812     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2813                             DstTy.getScalarSizeInBits());
2814     NarrowTy1 = NarrowTy;
2815   }
2816 
2817   // FIXME: Don't know how to handle the situation where the small vectors
2818   // aren't all the same size yet.
2819   if (NarrowTy1.isVector() &&
2820       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2821     return UnableToLegalize;
2822 
2823   CmpInst::Predicate Pred
2824     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2825 
2826   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2827   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2828   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2829 
2830   for (unsigned I = 0; I < NumParts; ++I) {
2831     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2832     DstRegs.push_back(DstReg);
2833 
2834     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2835       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2836     else {
2837       MachineInstr *NewCmp
2838         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2839       NewCmp->setFlags(MI.getFlags());
2840     }
2841   }
2842 
2843   if (NarrowTy1.isVector())
2844     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2845   else
2846     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2847 
2848   MI.eraseFromParent();
2849   return Legalized;
2850 }
2851 
2852 LegalizerHelper::LegalizeResult
2853 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2854                                            LLT NarrowTy) {
2855   Register DstReg = MI.getOperand(0).getReg();
2856   Register CondReg = MI.getOperand(1).getReg();
2857 
2858   unsigned NumParts = 0;
2859   LLT NarrowTy0, NarrowTy1;
2860 
2861   LLT DstTy = MRI.getType(DstReg);
2862   LLT CondTy = MRI.getType(CondReg);
2863   unsigned Size = DstTy.getSizeInBits();
2864 
2865   assert(TypeIdx == 0 || CondTy.isVector());
2866 
2867   if (TypeIdx == 0) {
2868     NarrowTy0 = NarrowTy;
2869     NarrowTy1 = CondTy;
2870 
2871     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2872     // FIXME: Don't know how to handle the situation where the small vectors
2873     // aren't all the same size yet.
2874     if (Size % NarrowSize != 0)
2875       return UnableToLegalize;
2876 
2877     NumParts = Size / NarrowSize;
2878 
2879     // Need to break down the condition type
2880     if (CondTy.isVector()) {
2881       if (CondTy.getNumElements() == NumParts)
2882         NarrowTy1 = CondTy.getElementType();
2883       else
2884         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2885                                 CondTy.getScalarSizeInBits());
2886     }
2887   } else {
2888     NumParts = CondTy.getNumElements();
2889     if (NarrowTy.isVector()) {
2890       // TODO: Handle uneven breakdown.
2891       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2892         return UnableToLegalize;
2893 
2894       return UnableToLegalize;
2895     } else {
2896       NarrowTy0 = DstTy.getElementType();
2897       NarrowTy1 = NarrowTy;
2898     }
2899   }
2900 
2901   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2902   if (CondTy.isVector())
2903     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2904 
2905   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2906   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2907 
2908   for (unsigned i = 0; i < NumParts; ++i) {
2909     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2910     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2911                            Src1Regs[i], Src2Regs[i]);
2912     DstRegs.push_back(DstReg);
2913   }
2914 
2915   if (NarrowTy0.isVector())
2916     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2917   else
2918     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2919 
2920   MI.eraseFromParent();
2921   return Legalized;
2922 }
2923 
2924 LegalizerHelper::LegalizeResult
2925 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2926                                         LLT NarrowTy) {
2927   const Register DstReg = MI.getOperand(0).getReg();
2928   LLT PhiTy = MRI.getType(DstReg);
2929   LLT LeftoverTy;
2930 
2931   // All of the operands need to have the same number of elements, so if we can
2932   // determine a type breakdown for the result type, we can for all of the
2933   // source types.
2934   int NumParts, NumLeftover;
2935   std::tie(NumParts, NumLeftover)
2936     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2937   if (NumParts < 0)
2938     return UnableToLegalize;
2939 
2940   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2941   SmallVector<MachineInstrBuilder, 4> NewInsts;
2942 
2943   const int TotalNumParts = NumParts + NumLeftover;
2944 
2945   // Insert the new phis in the result block first.
2946   for (int I = 0; I != TotalNumParts; ++I) {
2947     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2948     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2949     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2950                        .addDef(PartDstReg));
2951     if (I < NumParts)
2952       DstRegs.push_back(PartDstReg);
2953     else
2954       LeftoverDstRegs.push_back(PartDstReg);
2955   }
2956 
2957   MachineBasicBlock *MBB = MI.getParent();
2958   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2959   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2960 
2961   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2962 
2963   // Insert code to extract the incoming values in each predecessor block.
2964   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2965     PartRegs.clear();
2966     LeftoverRegs.clear();
2967 
2968     Register SrcReg = MI.getOperand(I).getReg();
2969     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2970     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2971 
2972     LLT Unused;
2973     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
2974                       LeftoverRegs))
2975       return UnableToLegalize;
2976 
2977     // Add the newly created operand splits to the existing instructions. The
2978     // odd-sized pieces are ordered after the requested NarrowTyArg sized
2979     // pieces.
2980     for (int J = 0; J != TotalNumParts; ++J) {
2981       MachineInstrBuilder MIB = NewInsts[J];
2982       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
2983       MIB.addMBB(&OpMBB);
2984     }
2985   }
2986 
2987   MI.eraseFromParent();
2988   return Legalized;
2989 }
2990 
2991 LegalizerHelper::LegalizeResult
2992 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
2993                                                   unsigned TypeIdx,
2994                                                   LLT NarrowTy) {
2995   if (TypeIdx != 1)
2996     return UnableToLegalize;
2997 
2998   const int NumDst = MI.getNumOperands() - 1;
2999   const Register SrcReg = MI.getOperand(NumDst).getReg();
3000   LLT SrcTy = MRI.getType(SrcReg);
3001 
3002   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3003 
3004   // TODO: Create sequence of extracts.
3005   if (DstTy == NarrowTy)
3006     return UnableToLegalize;
3007 
3008   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3009   if (DstTy == GCDTy) {
3010     // This would just be a copy of the same unmerge.
3011     // TODO: Create extracts, pad with undef and create intermediate merges.
3012     return UnableToLegalize;
3013   }
3014 
3015   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3016   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3017   const int PartsPerUnmerge = NumDst / NumUnmerge;
3018 
3019   for (int I = 0; I != NumUnmerge; ++I) {
3020     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3021 
3022     for (int J = 0; J != PartsPerUnmerge; ++J)
3023       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3024     MIB.addUse(Unmerge.getReg(I));
3025   }
3026 
3027   MI.eraseFromParent();
3028   return Legalized;
3029 }
3030 
3031 LegalizerHelper::LegalizeResult
3032 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3033                                                 unsigned TypeIdx,
3034                                                 LLT NarrowTy) {
3035   assert(TypeIdx == 0 && "not a vector type index");
3036   Register DstReg = MI.getOperand(0).getReg();
3037   LLT DstTy = MRI.getType(DstReg);
3038   LLT SrcTy = DstTy.getElementType();
3039 
3040   int DstNumElts = DstTy.getNumElements();
3041   int NarrowNumElts = NarrowTy.getNumElements();
3042   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3043   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3044 
3045   SmallVector<Register, 8> ConcatOps;
3046   SmallVector<Register, 8> SubBuildVector;
3047 
3048   Register UndefReg;
3049   if (WidenedDstTy != DstTy)
3050     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3051 
3052   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3053   // necessary.
3054   //
3055   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3056   //   -> <2 x s16>
3057   //
3058   // %4:_(s16) = G_IMPLICIT_DEF
3059   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3060   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3061   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3062   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3063   for (int I = 0; I != NumConcat; ++I) {
3064     for (int J = 0; J != NarrowNumElts; ++J) {
3065       int SrcIdx = NarrowNumElts * I + J;
3066 
3067       if (SrcIdx < DstNumElts) {
3068         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3069         SubBuildVector.push_back(SrcReg);
3070       } else
3071         SubBuildVector.push_back(UndefReg);
3072     }
3073 
3074     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3075     ConcatOps.push_back(BuildVec.getReg(0));
3076     SubBuildVector.clear();
3077   }
3078 
3079   if (DstTy == WidenedDstTy)
3080     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3081   else {
3082     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3083     MIRBuilder.buildExtract(DstReg, Concat, 0);
3084   }
3085 
3086   MI.eraseFromParent();
3087   return Legalized;
3088 }
3089 
3090 LegalizerHelper::LegalizeResult
3091 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3092                                       LLT NarrowTy) {
3093   // FIXME: Don't know how to handle secondary types yet.
3094   if (TypeIdx != 0)
3095     return UnableToLegalize;
3096 
3097   MachineMemOperand *MMO = *MI.memoperands_begin();
3098 
3099   // This implementation doesn't work for atomics. Give up instead of doing
3100   // something invalid.
3101   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3102       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3103     return UnableToLegalize;
3104 
3105   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3106   Register ValReg = MI.getOperand(0).getReg();
3107   Register AddrReg = MI.getOperand(1).getReg();
3108   LLT ValTy = MRI.getType(ValReg);
3109 
3110   // FIXME: Do we need a distinct NarrowMemory legalize action?
3111   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3112     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3113     return UnableToLegalize;
3114   }
3115 
3116   int NumParts = -1;
3117   int NumLeftover = -1;
3118   LLT LeftoverTy;
3119   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3120   if (IsLoad) {
3121     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3122   } else {
3123     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3124                      NarrowLeftoverRegs)) {
3125       NumParts = NarrowRegs.size();
3126       NumLeftover = NarrowLeftoverRegs.size();
3127     }
3128   }
3129 
3130   if (NumParts == -1)
3131     return UnableToLegalize;
3132 
3133   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3134 
3135   unsigned TotalSize = ValTy.getSizeInBits();
3136 
3137   // Split the load/store into PartTy sized pieces starting at Offset. If this
3138   // is a load, return the new registers in ValRegs. For a store, each elements
3139   // of ValRegs should be PartTy. Returns the next offset that needs to be
3140   // handled.
3141   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3142                              unsigned Offset) -> unsigned {
3143     MachineFunction &MF = MIRBuilder.getMF();
3144     unsigned PartSize = PartTy.getSizeInBits();
3145     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3146          Offset += PartSize, ++Idx) {
3147       unsigned ByteSize = PartSize / 8;
3148       unsigned ByteOffset = Offset / 8;
3149       Register NewAddrReg;
3150 
3151       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3152 
3153       MachineMemOperand *NewMMO =
3154         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3155 
3156       if (IsLoad) {
3157         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3158         ValRegs.push_back(Dst);
3159         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3160       } else {
3161         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3162       }
3163     }
3164 
3165     return Offset;
3166   };
3167 
3168   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3169 
3170   // Handle the rest of the register if this isn't an even type breakdown.
3171   if (LeftoverTy.isValid())
3172     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3173 
3174   if (IsLoad) {
3175     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3176                 LeftoverTy, NarrowLeftoverRegs);
3177   }
3178 
3179   MI.eraseFromParent();
3180   return Legalized;
3181 }
3182 
3183 LegalizerHelper::LegalizeResult
3184 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3185                                       LLT NarrowTy) {
3186   assert(TypeIdx == 0 && "only one type index expected");
3187 
3188   const unsigned Opc = MI.getOpcode();
3189   const int NumOps = MI.getNumOperands() - 1;
3190   const Register DstReg = MI.getOperand(0).getReg();
3191   const unsigned Flags = MI.getFlags();
3192   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3193   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3194 
3195   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3196 
3197   // First of all check whether we are narrowing (changing the element type)
3198   // or reducing the vector elements
3199   const LLT DstTy = MRI.getType(DstReg);
3200   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3201 
3202   SmallVector<Register, 8> ExtractedRegs[3];
3203   SmallVector<Register, 8> Parts;
3204 
3205   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3206 
3207   // Break down all the sources into NarrowTy pieces we can operate on. This may
3208   // involve creating merges to a wider type, padded with undef.
3209   for (int I = 0; I != NumOps; ++I) {
3210     Register SrcReg = MI.getOperand(I + 1).getReg();
3211     LLT SrcTy = MRI.getType(SrcReg);
3212 
3213     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3214     // For fewerElements, this is a smaller vector with the same element type.
3215     LLT OpNarrowTy;
3216     if (IsNarrow) {
3217       OpNarrowTy = NarrowScalarTy;
3218 
3219       // In case of narrowing, we need to cast vectors to scalars for this to
3220       // work properly
3221       // FIXME: Can we do without the bitcast here if we're narrowing?
3222       if (SrcTy.isVector()) {
3223         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3224         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3225       }
3226     } else {
3227       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3228     }
3229 
3230     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3231 
3232     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3233     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3234                         TargetOpcode::G_ANYEXT);
3235   }
3236 
3237   SmallVector<Register, 8> ResultRegs;
3238 
3239   // Input operands for each sub-instruction.
3240   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3241 
3242   int NumParts = ExtractedRegs[0].size();
3243   const unsigned DstSize = DstTy.getSizeInBits();
3244   const LLT DstScalarTy = LLT::scalar(DstSize);
3245 
3246   // Narrowing needs to use scalar types
3247   LLT DstLCMTy, NarrowDstTy;
3248   if (IsNarrow) {
3249     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3250     NarrowDstTy = NarrowScalarTy;
3251   } else {
3252     DstLCMTy = getLCMType(DstTy, NarrowTy);
3253     NarrowDstTy = NarrowTy;
3254   }
3255 
3256   // We widened the source registers to satisfy merge/unmerge size
3257   // constraints. We'll have some extra fully undef parts.
3258   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3259 
3260   for (int I = 0; I != NumRealParts; ++I) {
3261     // Emit this instruction on each of the split pieces.
3262     for (int J = 0; J != NumOps; ++J)
3263       InputRegs[J] = ExtractedRegs[J][I];
3264 
3265     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3266     ResultRegs.push_back(Inst.getReg(0));
3267   }
3268 
3269   // Fill out the widened result with undef instead of creating instructions
3270   // with undef inputs.
3271   int NumUndefParts = NumParts - NumRealParts;
3272   if (NumUndefParts != 0)
3273     ResultRegs.append(NumUndefParts,
3274                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3275 
3276   // Extract the possibly padded result. Use a scratch register if we need to do
3277   // a final bitcast, otherwise use the original result register.
3278   Register MergeDstReg;
3279   if (IsNarrow && DstTy.isVector())
3280     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3281   else
3282     MergeDstReg = DstReg;
3283 
3284   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3285 
3286   // Recast to vector if we narrowed a vector
3287   if (IsNarrow && DstTy.isVector())
3288     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3289 
3290   MI.eraseFromParent();
3291   return Legalized;
3292 }
3293 
3294 LegalizerHelper::LegalizeResult
3295 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3296                                               LLT NarrowTy) {
3297   Register DstReg = MI.getOperand(0).getReg();
3298   Register SrcReg = MI.getOperand(1).getReg();
3299   int64_t Imm = MI.getOperand(2).getImm();
3300 
3301   LLT DstTy = MRI.getType(DstReg);
3302 
3303   SmallVector<Register, 8> Parts;
3304   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3305   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3306 
3307   for (Register &R : Parts)
3308     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3309 
3310   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3311 
3312   MI.eraseFromParent();
3313   return Legalized;
3314 }
3315 
3316 LegalizerHelper::LegalizeResult
3317 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3318                                      LLT NarrowTy) {
3319   using namespace TargetOpcode;
3320 
3321   switch (MI.getOpcode()) {
3322   case G_IMPLICIT_DEF:
3323     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3324   case G_TRUNC:
3325   case G_AND:
3326   case G_OR:
3327   case G_XOR:
3328   case G_ADD:
3329   case G_SUB:
3330   case G_MUL:
3331   case G_SMULH:
3332   case G_UMULH:
3333   case G_FADD:
3334   case G_FMUL:
3335   case G_FSUB:
3336   case G_FNEG:
3337   case G_FABS:
3338   case G_FCANONICALIZE:
3339   case G_FDIV:
3340   case G_FREM:
3341   case G_FMA:
3342   case G_FMAD:
3343   case G_FPOW:
3344   case G_FEXP:
3345   case G_FEXP2:
3346   case G_FLOG:
3347   case G_FLOG2:
3348   case G_FLOG10:
3349   case G_FNEARBYINT:
3350   case G_FCEIL:
3351   case G_FFLOOR:
3352   case G_FRINT:
3353   case G_INTRINSIC_ROUND:
3354   case G_INTRINSIC_TRUNC:
3355   case G_FCOS:
3356   case G_FSIN:
3357   case G_FSQRT:
3358   case G_BSWAP:
3359   case G_BITREVERSE:
3360   case G_SDIV:
3361   case G_UDIV:
3362   case G_SREM:
3363   case G_UREM:
3364   case G_SMIN:
3365   case G_SMAX:
3366   case G_UMIN:
3367   case G_UMAX:
3368   case G_FMINNUM:
3369   case G_FMAXNUM:
3370   case G_FMINNUM_IEEE:
3371   case G_FMAXNUM_IEEE:
3372   case G_FMINIMUM:
3373   case G_FMAXIMUM:
3374   case G_FSHL:
3375   case G_FSHR:
3376   case G_FREEZE:
3377     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
3378   case G_SHL:
3379   case G_LSHR:
3380   case G_ASHR:
3381   case G_CTLZ:
3382   case G_CTLZ_ZERO_UNDEF:
3383   case G_CTTZ:
3384   case G_CTTZ_ZERO_UNDEF:
3385   case G_CTPOP:
3386   case G_FCOPYSIGN:
3387     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3388   case G_ZEXT:
3389   case G_SEXT:
3390   case G_ANYEXT:
3391   case G_FPEXT:
3392   case G_FPTRUNC:
3393   case G_SITOFP:
3394   case G_UITOFP:
3395   case G_FPTOSI:
3396   case G_FPTOUI:
3397   case G_INTTOPTR:
3398   case G_PTRTOINT:
3399   case G_ADDRSPACE_CAST:
3400     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3401   case G_ICMP:
3402   case G_FCMP:
3403     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3404   case G_SELECT:
3405     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3406   case G_PHI:
3407     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3408   case G_UNMERGE_VALUES:
3409     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3410   case G_BUILD_VECTOR:
3411     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3412   case G_LOAD:
3413   case G_STORE:
3414     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3415   case G_SEXT_INREG:
3416     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3417   default:
3418     return UnableToLegalize;
3419   }
3420 }
3421 
3422 LegalizerHelper::LegalizeResult
3423 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3424                                              const LLT HalfTy, const LLT AmtTy) {
3425 
3426   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3427   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3428   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3429 
3430   if (Amt.isNullValue()) {
3431     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3432     MI.eraseFromParent();
3433     return Legalized;
3434   }
3435 
3436   LLT NVT = HalfTy;
3437   unsigned NVTBits = HalfTy.getSizeInBits();
3438   unsigned VTBits = 2 * NVTBits;
3439 
3440   SrcOp Lo(Register(0)), Hi(Register(0));
3441   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3442     if (Amt.ugt(VTBits)) {
3443       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3444     } else if (Amt.ugt(NVTBits)) {
3445       Lo = MIRBuilder.buildConstant(NVT, 0);
3446       Hi = MIRBuilder.buildShl(NVT, InL,
3447                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3448     } else if (Amt == NVTBits) {
3449       Lo = MIRBuilder.buildConstant(NVT, 0);
3450       Hi = InL;
3451     } else {
3452       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3453       auto OrLHS =
3454           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3455       auto OrRHS = MIRBuilder.buildLShr(
3456           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3457       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3458     }
3459   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3460     if (Amt.ugt(VTBits)) {
3461       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3462     } else if (Amt.ugt(NVTBits)) {
3463       Lo = MIRBuilder.buildLShr(NVT, InH,
3464                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3465       Hi = MIRBuilder.buildConstant(NVT, 0);
3466     } else if (Amt == NVTBits) {
3467       Lo = InH;
3468       Hi = MIRBuilder.buildConstant(NVT, 0);
3469     } else {
3470       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3471 
3472       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3473       auto OrRHS = MIRBuilder.buildShl(
3474           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3475 
3476       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3477       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3478     }
3479   } else {
3480     if (Amt.ugt(VTBits)) {
3481       Hi = Lo = MIRBuilder.buildAShr(
3482           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3483     } else if (Amt.ugt(NVTBits)) {
3484       Lo = MIRBuilder.buildAShr(NVT, InH,
3485                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3486       Hi = MIRBuilder.buildAShr(NVT, InH,
3487                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3488     } else if (Amt == NVTBits) {
3489       Lo = InH;
3490       Hi = MIRBuilder.buildAShr(NVT, InH,
3491                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3492     } else {
3493       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3494 
3495       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3496       auto OrRHS = MIRBuilder.buildShl(
3497           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3498 
3499       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3500       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3501     }
3502   }
3503 
3504   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3505   MI.eraseFromParent();
3506 
3507   return Legalized;
3508 }
3509 
3510 // TODO: Optimize if constant shift amount.
3511 LegalizerHelper::LegalizeResult
3512 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3513                                    LLT RequestedTy) {
3514   if (TypeIdx == 1) {
3515     Observer.changingInstr(MI);
3516     narrowScalarSrc(MI, RequestedTy, 2);
3517     Observer.changedInstr(MI);
3518     return Legalized;
3519   }
3520 
3521   Register DstReg = MI.getOperand(0).getReg();
3522   LLT DstTy = MRI.getType(DstReg);
3523   if (DstTy.isVector())
3524     return UnableToLegalize;
3525 
3526   Register Amt = MI.getOperand(2).getReg();
3527   LLT ShiftAmtTy = MRI.getType(Amt);
3528   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3529   if (DstEltSize % 2 != 0)
3530     return UnableToLegalize;
3531 
3532   // Ignore the input type. We can only go to exactly half the size of the
3533   // input. If that isn't small enough, the resulting pieces will be further
3534   // legalized.
3535   const unsigned NewBitSize = DstEltSize / 2;
3536   const LLT HalfTy = LLT::scalar(NewBitSize);
3537   const LLT CondTy = LLT::scalar(1);
3538 
3539   if (const MachineInstr *KShiftAmt =
3540           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3541     return narrowScalarShiftByConstant(
3542         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3543   }
3544 
3545   // TODO: Expand with known bits.
3546 
3547   // Handle the fully general expansion by an unknown amount.
3548   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3549 
3550   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3551   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3552   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3553 
3554   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3555   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3556 
3557   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3558   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3559   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3560 
3561   Register ResultRegs[2];
3562   switch (MI.getOpcode()) {
3563   case TargetOpcode::G_SHL: {
3564     // Short: ShAmt < NewBitSize
3565     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3566 
3567     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3568     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3569     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3570 
3571     // Long: ShAmt >= NewBitSize
3572     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3573     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3574 
3575     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3576     auto Hi = MIRBuilder.buildSelect(
3577         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3578 
3579     ResultRegs[0] = Lo.getReg(0);
3580     ResultRegs[1] = Hi.getReg(0);
3581     break;
3582   }
3583   case TargetOpcode::G_LSHR:
3584   case TargetOpcode::G_ASHR: {
3585     // Short: ShAmt < NewBitSize
3586     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3587 
3588     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3589     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3590     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3591 
3592     // Long: ShAmt >= NewBitSize
3593     MachineInstrBuilder HiL;
3594     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3595       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3596     } else {
3597       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3598       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3599     }
3600     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3601                                      {InH, AmtExcess});     // Lo from Hi part.
3602 
3603     auto Lo = MIRBuilder.buildSelect(
3604         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3605 
3606     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3607 
3608     ResultRegs[0] = Lo.getReg(0);
3609     ResultRegs[1] = Hi.getReg(0);
3610     break;
3611   }
3612   default:
3613     llvm_unreachable("not a shift");
3614   }
3615 
3616   MIRBuilder.buildMerge(DstReg, ResultRegs);
3617   MI.eraseFromParent();
3618   return Legalized;
3619 }
3620 
3621 LegalizerHelper::LegalizeResult
3622 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3623                                        LLT MoreTy) {
3624   assert(TypeIdx == 0 && "Expecting only Idx 0");
3625 
3626   Observer.changingInstr(MI);
3627   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3628     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3629     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3630     moreElementsVectorSrc(MI, MoreTy, I);
3631   }
3632 
3633   MachineBasicBlock &MBB = *MI.getParent();
3634   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3635   moreElementsVectorDst(MI, MoreTy, 0);
3636   Observer.changedInstr(MI);
3637   return Legalized;
3638 }
3639 
3640 LegalizerHelper::LegalizeResult
3641 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3642                                     LLT MoreTy) {
3643   unsigned Opc = MI.getOpcode();
3644   switch (Opc) {
3645   case TargetOpcode::G_IMPLICIT_DEF:
3646   case TargetOpcode::G_LOAD: {
3647     if (TypeIdx != 0)
3648       return UnableToLegalize;
3649     Observer.changingInstr(MI);
3650     moreElementsVectorDst(MI, MoreTy, 0);
3651     Observer.changedInstr(MI);
3652     return Legalized;
3653   }
3654   case TargetOpcode::G_STORE:
3655     if (TypeIdx != 0)
3656       return UnableToLegalize;
3657     Observer.changingInstr(MI);
3658     moreElementsVectorSrc(MI, MoreTy, 0);
3659     Observer.changedInstr(MI);
3660     return Legalized;
3661   case TargetOpcode::G_AND:
3662   case TargetOpcode::G_OR:
3663   case TargetOpcode::G_XOR:
3664   case TargetOpcode::G_SMIN:
3665   case TargetOpcode::G_SMAX:
3666   case TargetOpcode::G_UMIN:
3667   case TargetOpcode::G_UMAX:
3668   case TargetOpcode::G_FMINNUM:
3669   case TargetOpcode::G_FMAXNUM:
3670   case TargetOpcode::G_FMINNUM_IEEE:
3671   case TargetOpcode::G_FMAXNUM_IEEE:
3672   case TargetOpcode::G_FMINIMUM:
3673   case TargetOpcode::G_FMAXIMUM: {
3674     Observer.changingInstr(MI);
3675     moreElementsVectorSrc(MI, MoreTy, 1);
3676     moreElementsVectorSrc(MI, MoreTy, 2);
3677     moreElementsVectorDst(MI, MoreTy, 0);
3678     Observer.changedInstr(MI);
3679     return Legalized;
3680   }
3681   case TargetOpcode::G_EXTRACT:
3682     if (TypeIdx != 1)
3683       return UnableToLegalize;
3684     Observer.changingInstr(MI);
3685     moreElementsVectorSrc(MI, MoreTy, 1);
3686     Observer.changedInstr(MI);
3687     return Legalized;
3688   case TargetOpcode::G_INSERT:
3689   case TargetOpcode::G_FREEZE:
3690     if (TypeIdx != 0)
3691       return UnableToLegalize;
3692     Observer.changingInstr(MI);
3693     moreElementsVectorSrc(MI, MoreTy, 1);
3694     moreElementsVectorDst(MI, MoreTy, 0);
3695     Observer.changedInstr(MI);
3696     return Legalized;
3697   case TargetOpcode::G_SELECT:
3698     if (TypeIdx != 0)
3699       return UnableToLegalize;
3700     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3701       return UnableToLegalize;
3702 
3703     Observer.changingInstr(MI);
3704     moreElementsVectorSrc(MI, MoreTy, 2);
3705     moreElementsVectorSrc(MI, MoreTy, 3);
3706     moreElementsVectorDst(MI, MoreTy, 0);
3707     Observer.changedInstr(MI);
3708     return Legalized;
3709   case TargetOpcode::G_UNMERGE_VALUES: {
3710     if (TypeIdx != 1)
3711       return UnableToLegalize;
3712 
3713     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3714     int NumDst = MI.getNumOperands() - 1;
3715     moreElementsVectorSrc(MI, MoreTy, NumDst);
3716 
3717     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3718     for (int I = 0; I != NumDst; ++I)
3719       MIB.addDef(MI.getOperand(I).getReg());
3720 
3721     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3722     for (int I = NumDst; I != NewNumDst; ++I)
3723       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3724 
3725     MIB.addUse(MI.getOperand(NumDst).getReg());
3726     MI.eraseFromParent();
3727     return Legalized;
3728   }
3729   case TargetOpcode::G_PHI:
3730     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3731   default:
3732     return UnableToLegalize;
3733   }
3734 }
3735 
3736 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3737                                         ArrayRef<Register> Src1Regs,
3738                                         ArrayRef<Register> Src2Regs,
3739                                         LLT NarrowTy) {
3740   MachineIRBuilder &B = MIRBuilder;
3741   unsigned SrcParts = Src1Regs.size();
3742   unsigned DstParts = DstRegs.size();
3743 
3744   unsigned DstIdx = 0; // Low bits of the result.
3745   Register FactorSum =
3746       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3747   DstRegs[DstIdx] = FactorSum;
3748 
3749   unsigned CarrySumPrevDstIdx;
3750   SmallVector<Register, 4> Factors;
3751 
3752   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3753     // Collect low parts of muls for DstIdx.
3754     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3755          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3756       MachineInstrBuilder Mul =
3757           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3758       Factors.push_back(Mul.getReg(0));
3759     }
3760     // Collect high parts of muls from previous DstIdx.
3761     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3762          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3763       MachineInstrBuilder Umulh =
3764           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3765       Factors.push_back(Umulh.getReg(0));
3766     }
3767     // Add CarrySum from additions calculated for previous DstIdx.
3768     if (DstIdx != 1) {
3769       Factors.push_back(CarrySumPrevDstIdx);
3770     }
3771 
3772     Register CarrySum;
3773     // Add all factors and accumulate all carries into CarrySum.
3774     if (DstIdx != DstParts - 1) {
3775       MachineInstrBuilder Uaddo =
3776           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3777       FactorSum = Uaddo.getReg(0);
3778       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3779       for (unsigned i = 2; i < Factors.size(); ++i) {
3780         MachineInstrBuilder Uaddo =
3781             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3782         FactorSum = Uaddo.getReg(0);
3783         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3784         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3785       }
3786     } else {
3787       // Since value for the next index is not calculated, neither is CarrySum.
3788       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3789       for (unsigned i = 2; i < Factors.size(); ++i)
3790         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3791     }
3792 
3793     CarrySumPrevDstIdx = CarrySum;
3794     DstRegs[DstIdx] = FactorSum;
3795     Factors.clear();
3796   }
3797 }
3798 
3799 LegalizerHelper::LegalizeResult
3800 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3801   Register DstReg = MI.getOperand(0).getReg();
3802   Register Src1 = MI.getOperand(1).getReg();
3803   Register Src2 = MI.getOperand(2).getReg();
3804 
3805   LLT Ty = MRI.getType(DstReg);
3806   if (Ty.isVector())
3807     return UnableToLegalize;
3808 
3809   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3810   unsigned DstSize = Ty.getSizeInBits();
3811   unsigned NarrowSize = NarrowTy.getSizeInBits();
3812   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3813     return UnableToLegalize;
3814 
3815   unsigned NumDstParts = DstSize / NarrowSize;
3816   unsigned NumSrcParts = SrcSize / NarrowSize;
3817   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3818   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3819 
3820   SmallVector<Register, 2> Src1Parts, Src2Parts;
3821   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
3822   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3823   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3824   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3825 
3826   // Take only high half of registers if this is high mul.
3827   ArrayRef<Register> DstRegs(
3828       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3829   MIRBuilder.buildMerge(DstReg, DstRegs);
3830   MI.eraseFromParent();
3831   return Legalized;
3832 }
3833 
3834 LegalizerHelper::LegalizeResult
3835 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3836                                      LLT NarrowTy) {
3837   if (TypeIdx != 1)
3838     return UnableToLegalize;
3839 
3840   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3841 
3842   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3843   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3844   // NarrowSize.
3845   if (SizeOp1 % NarrowSize != 0)
3846     return UnableToLegalize;
3847   int NumParts = SizeOp1 / NarrowSize;
3848 
3849   SmallVector<Register, 2> SrcRegs, DstRegs;
3850   SmallVector<uint64_t, 2> Indexes;
3851   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3852 
3853   Register OpReg = MI.getOperand(0).getReg();
3854   uint64_t OpStart = MI.getOperand(2).getImm();
3855   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3856   for (int i = 0; i < NumParts; ++i) {
3857     unsigned SrcStart = i * NarrowSize;
3858 
3859     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3860       // No part of the extract uses this subregister, ignore it.
3861       continue;
3862     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3863       // The entire subregister is extracted, forward the value.
3864       DstRegs.push_back(SrcRegs[i]);
3865       continue;
3866     }
3867 
3868     // OpSegStart is where this destination segment would start in OpReg if it
3869     // extended infinitely in both directions.
3870     int64_t ExtractOffset;
3871     uint64_t SegSize;
3872     if (OpStart < SrcStart) {
3873       ExtractOffset = 0;
3874       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3875     } else {
3876       ExtractOffset = OpStart - SrcStart;
3877       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3878     }
3879 
3880     Register SegReg = SrcRegs[i];
3881     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3882       // A genuine extract is needed.
3883       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3884       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3885     }
3886 
3887     DstRegs.push_back(SegReg);
3888   }
3889 
3890   Register DstReg = MI.getOperand(0).getReg();
3891   if (MRI.getType(DstReg).isVector())
3892     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3893   else if (DstRegs.size() > 1)
3894     MIRBuilder.buildMerge(DstReg, DstRegs);
3895   else
3896     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
3897   MI.eraseFromParent();
3898   return Legalized;
3899 }
3900 
3901 LegalizerHelper::LegalizeResult
3902 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3903                                     LLT NarrowTy) {
3904   // FIXME: Don't know how to handle secondary types yet.
3905   if (TypeIdx != 0)
3906     return UnableToLegalize;
3907 
3908   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3909   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3910 
3911   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3912   // NarrowSize.
3913   if (SizeOp0 % NarrowSize != 0)
3914     return UnableToLegalize;
3915 
3916   int NumParts = SizeOp0 / NarrowSize;
3917 
3918   SmallVector<Register, 2> SrcRegs, DstRegs;
3919   SmallVector<uint64_t, 2> Indexes;
3920   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3921 
3922   Register OpReg = MI.getOperand(2).getReg();
3923   uint64_t OpStart = MI.getOperand(3).getImm();
3924   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3925   for (int i = 0; i < NumParts; ++i) {
3926     unsigned DstStart = i * NarrowSize;
3927 
3928     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3929       // No part of the insert affects this subregister, forward the original.
3930       DstRegs.push_back(SrcRegs[i]);
3931       continue;
3932     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3933       // The entire subregister is defined by this insert, forward the new
3934       // value.
3935       DstRegs.push_back(OpReg);
3936       continue;
3937     }
3938 
3939     // OpSegStart is where this destination segment would start in OpReg if it
3940     // extended infinitely in both directions.
3941     int64_t ExtractOffset, InsertOffset;
3942     uint64_t SegSize;
3943     if (OpStart < DstStart) {
3944       InsertOffset = 0;
3945       ExtractOffset = DstStart - OpStart;
3946       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3947     } else {
3948       InsertOffset = OpStart - DstStart;
3949       ExtractOffset = 0;
3950       SegSize =
3951         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3952     }
3953 
3954     Register SegReg = OpReg;
3955     if (ExtractOffset != 0 || SegSize != OpSize) {
3956       // A genuine extract is needed.
3957       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3958       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3959     }
3960 
3961     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3962     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3963     DstRegs.push_back(DstReg);
3964   }
3965 
3966   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3967   Register DstReg = MI.getOperand(0).getReg();
3968   if(MRI.getType(DstReg).isVector())
3969     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3970   else
3971     MIRBuilder.buildMerge(DstReg, DstRegs);
3972   MI.eraseFromParent();
3973   return Legalized;
3974 }
3975 
3976 LegalizerHelper::LegalizeResult
3977 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3978                                    LLT NarrowTy) {
3979   Register DstReg = MI.getOperand(0).getReg();
3980   LLT DstTy = MRI.getType(DstReg);
3981 
3982   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3983 
3984   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3985   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3986   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3987   LLT LeftoverTy;
3988   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
3989                     Src0Regs, Src0LeftoverRegs))
3990     return UnableToLegalize;
3991 
3992   LLT Unused;
3993   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
3994                     Src1Regs, Src1LeftoverRegs))
3995     llvm_unreachable("inconsistent extractParts result");
3996 
3997   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3998     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
3999                                         {Src0Regs[I], Src1Regs[I]});
4000     DstRegs.push_back(Inst.getReg(0));
4001   }
4002 
4003   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4004     auto Inst = MIRBuilder.buildInstr(
4005       MI.getOpcode(),
4006       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4007     DstLeftoverRegs.push_back(Inst.getReg(0));
4008   }
4009 
4010   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4011               LeftoverTy, DstLeftoverRegs);
4012 
4013   MI.eraseFromParent();
4014   return Legalized;
4015 }
4016 
4017 LegalizerHelper::LegalizeResult
4018 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4019                                  LLT NarrowTy) {
4020   if (TypeIdx != 0)
4021     return UnableToLegalize;
4022 
4023   Register DstReg = MI.getOperand(0).getReg();
4024   Register SrcReg = MI.getOperand(1).getReg();
4025 
4026   LLT DstTy = MRI.getType(DstReg);
4027   if (DstTy.isVector())
4028     return UnableToLegalize;
4029 
4030   SmallVector<Register, 8> Parts;
4031   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4032   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4033   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4034 
4035   MI.eraseFromParent();
4036   return Legalized;
4037 }
4038 
4039 LegalizerHelper::LegalizeResult
4040 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4041                                     LLT NarrowTy) {
4042   if (TypeIdx != 0)
4043     return UnableToLegalize;
4044 
4045   Register CondReg = MI.getOperand(1).getReg();
4046   LLT CondTy = MRI.getType(CondReg);
4047   if (CondTy.isVector()) // TODO: Handle vselect
4048     return UnableToLegalize;
4049 
4050   Register DstReg = MI.getOperand(0).getReg();
4051   LLT DstTy = MRI.getType(DstReg);
4052 
4053   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4054   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4055   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4056   LLT LeftoverTy;
4057   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4058                     Src1Regs, Src1LeftoverRegs))
4059     return UnableToLegalize;
4060 
4061   LLT Unused;
4062   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4063                     Src2Regs, Src2LeftoverRegs))
4064     llvm_unreachable("inconsistent extractParts result");
4065 
4066   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4067     auto Select = MIRBuilder.buildSelect(NarrowTy,
4068                                          CondReg, Src1Regs[I], Src2Regs[I]);
4069     DstRegs.push_back(Select.getReg(0));
4070   }
4071 
4072   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4073     auto Select = MIRBuilder.buildSelect(
4074       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4075     DstLeftoverRegs.push_back(Select.getReg(0));
4076   }
4077 
4078   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4079               LeftoverTy, DstLeftoverRegs);
4080 
4081   MI.eraseFromParent();
4082   return Legalized;
4083 }
4084 
4085 LegalizerHelper::LegalizeResult
4086 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4087                                   LLT NarrowTy) {
4088   if (TypeIdx != 1)
4089     return UnableToLegalize;
4090 
4091   Register DstReg = MI.getOperand(0).getReg();
4092   Register SrcReg = MI.getOperand(1).getReg();
4093   LLT DstTy = MRI.getType(DstReg);
4094   LLT SrcTy = MRI.getType(SrcReg);
4095   unsigned NarrowSize = NarrowTy.getSizeInBits();
4096 
4097   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4098     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4099 
4100     MachineIRBuilder &B = MIRBuilder;
4101     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4102     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4103     auto C_0 = B.buildConstant(NarrowTy, 0);
4104     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4105                                 UnmergeSrc.getReg(1), C_0);
4106     auto LoCTLZ = IsUndef ?
4107       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4108       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4109     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4110     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4111     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4112     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4113 
4114     MI.eraseFromParent();
4115     return Legalized;
4116   }
4117 
4118   return UnableToLegalize;
4119 }
4120 
4121 LegalizerHelper::LegalizeResult
4122 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4123                                   LLT NarrowTy) {
4124   if (TypeIdx != 1)
4125     return UnableToLegalize;
4126 
4127   Register DstReg = MI.getOperand(0).getReg();
4128   Register SrcReg = MI.getOperand(1).getReg();
4129   LLT DstTy = MRI.getType(DstReg);
4130   LLT SrcTy = MRI.getType(SrcReg);
4131   unsigned NarrowSize = NarrowTy.getSizeInBits();
4132 
4133   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4134     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4135 
4136     MachineIRBuilder &B = MIRBuilder;
4137     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4138     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4139     auto C_0 = B.buildConstant(NarrowTy, 0);
4140     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4141                                 UnmergeSrc.getReg(0), C_0);
4142     auto HiCTTZ = IsUndef ?
4143       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4144       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4145     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4146     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4147     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4148     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4149 
4150     MI.eraseFromParent();
4151     return Legalized;
4152   }
4153 
4154   return UnableToLegalize;
4155 }
4156 
4157 LegalizerHelper::LegalizeResult
4158 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4159                                    LLT NarrowTy) {
4160   if (TypeIdx != 1)
4161     return UnableToLegalize;
4162 
4163   Register DstReg = MI.getOperand(0).getReg();
4164   LLT DstTy = MRI.getType(DstReg);
4165   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4166   unsigned NarrowSize = NarrowTy.getSizeInBits();
4167 
4168   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4169     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4170 
4171     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4172     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4173     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4174 
4175     MI.eraseFromParent();
4176     return Legalized;
4177   }
4178 
4179   return UnableToLegalize;
4180 }
4181 
4182 LegalizerHelper::LegalizeResult
4183 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4184   unsigned Opc = MI.getOpcode();
4185   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
4186   auto isSupported = [this](const LegalityQuery &Q) {
4187     auto QAction = LI.getAction(Q).Action;
4188     return QAction == Legal || QAction == Libcall || QAction == Custom;
4189   };
4190   switch (Opc) {
4191   default:
4192     return UnableToLegalize;
4193   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4194     // This trivially expands to CTLZ.
4195     Observer.changingInstr(MI);
4196     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4197     Observer.changedInstr(MI);
4198     return Legalized;
4199   }
4200   case TargetOpcode::G_CTLZ: {
4201     Register DstReg = MI.getOperand(0).getReg();
4202     Register SrcReg = MI.getOperand(1).getReg();
4203     LLT DstTy = MRI.getType(DstReg);
4204     LLT SrcTy = MRI.getType(SrcReg);
4205     unsigned Len = SrcTy.getSizeInBits();
4206 
4207     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4208       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4209       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4210       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4211       auto ICmp = MIRBuilder.buildICmp(
4212           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4213       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4214       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4215       MI.eraseFromParent();
4216       return Legalized;
4217     }
4218     // for now, we do this:
4219     // NewLen = NextPowerOf2(Len);
4220     // x = x | (x >> 1);
4221     // x = x | (x >> 2);
4222     // ...
4223     // x = x | (x >>16);
4224     // x = x | (x >>32); // for 64-bit input
4225     // Upto NewLen/2
4226     // return Len - popcount(x);
4227     //
4228     // Ref: "Hacker's Delight" by Henry Warren
4229     Register Op = SrcReg;
4230     unsigned NewLen = PowerOf2Ceil(Len);
4231     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4232       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4233       auto MIBOp = MIRBuilder.buildOr(
4234           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4235       Op = MIBOp.getReg(0);
4236     }
4237     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4238     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4239                         MIBPop);
4240     MI.eraseFromParent();
4241     return Legalized;
4242   }
4243   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4244     // This trivially expands to CTTZ.
4245     Observer.changingInstr(MI);
4246     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4247     Observer.changedInstr(MI);
4248     return Legalized;
4249   }
4250   case TargetOpcode::G_CTTZ: {
4251     Register DstReg = MI.getOperand(0).getReg();
4252     Register SrcReg = MI.getOperand(1).getReg();
4253     LLT DstTy = MRI.getType(DstReg);
4254     LLT SrcTy = MRI.getType(SrcReg);
4255 
4256     unsigned Len = SrcTy.getSizeInBits();
4257     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4258       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4259       // zero.
4260       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4261       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4262       auto ICmp = MIRBuilder.buildICmp(
4263           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4264       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4265       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4266       MI.eraseFromParent();
4267       return Legalized;
4268     }
4269     // for now, we use: { return popcount(~x & (x - 1)); }
4270     // unless the target has ctlz but not ctpop, in which case we use:
4271     // { return 32 - nlz(~x & (x-1)); }
4272     // Ref: "Hacker's Delight" by Henry Warren
4273     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4274     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4275     auto MIBTmp = MIRBuilder.buildAnd(
4276         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4277     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4278         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4279       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4280       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4281                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4282       MI.eraseFromParent();
4283       return Legalized;
4284     }
4285     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4286     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4287     return Legalized;
4288   }
4289   case TargetOpcode::G_CTPOP: {
4290     unsigned Size = Ty.getSizeInBits();
4291     MachineIRBuilder &B = MIRBuilder;
4292 
4293     // Count set bits in blocks of 2 bits. Default approach would be
4294     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4295     // We use following formula instead:
4296     // B2Count = val - { (val >> 1) & 0x55555555 }
4297     // since it gives same result in blocks of 2 with one instruction less.
4298     auto C_1 = B.buildConstant(Ty, 1);
4299     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4300     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4301     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4302     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4303     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4304 
4305     // In order to get count in blocks of 4 add values from adjacent block of 2.
4306     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4307     auto C_2 = B.buildConstant(Ty, 2);
4308     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4309     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4310     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4311     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4312     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4313     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4314 
4315     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4316     // addition since count value sits in range {0,...,8} and 4 bits are enough
4317     // to hold such binary values. After addition high 4 bits still hold count
4318     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4319     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4320     auto C_4 = B.buildConstant(Ty, 4);
4321     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4322     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4323     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4324     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4325     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4326 
4327     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4328     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4329     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4330     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4331     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4332 
4333     // Shift count result from 8 high bits to low bits.
4334     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4335     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4336 
4337     MI.eraseFromParent();
4338     return Legalized;
4339   }
4340   }
4341 }
4342 
4343 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4344 // representation.
4345 LegalizerHelper::LegalizeResult
4346 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4347   Register Dst = MI.getOperand(0).getReg();
4348   Register Src = MI.getOperand(1).getReg();
4349   const LLT S64 = LLT::scalar(64);
4350   const LLT S32 = LLT::scalar(32);
4351   const LLT S1 = LLT::scalar(1);
4352 
4353   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4354 
4355   // unsigned cul2f(ulong u) {
4356   //   uint lz = clz(u);
4357   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4358   //   u = (u << lz) & 0x7fffffffffffffffUL;
4359   //   ulong t = u & 0xffffffffffUL;
4360   //   uint v = (e << 23) | (uint)(u >> 40);
4361   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4362   //   return as_float(v + r);
4363   // }
4364 
4365   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4366   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4367 
4368   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4369 
4370   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4371   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4372 
4373   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4374   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4375 
4376   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4377   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4378 
4379   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4380 
4381   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4382   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4383 
4384   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4385   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4386   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4387 
4388   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4389   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4390   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4391   auto One = MIRBuilder.buildConstant(S32, 1);
4392 
4393   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4394   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4395   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4396   MIRBuilder.buildAdd(Dst, V, R);
4397 
4398   MI.eraseFromParent();
4399   return Legalized;
4400 }
4401 
4402 LegalizerHelper::LegalizeResult
4403 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4404   Register Dst = MI.getOperand(0).getReg();
4405   Register Src = MI.getOperand(1).getReg();
4406   LLT DstTy = MRI.getType(Dst);
4407   LLT SrcTy = MRI.getType(Src);
4408 
4409   if (SrcTy == LLT::scalar(1)) {
4410     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4411     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4412     MIRBuilder.buildSelect(Dst, Src, True, False);
4413     MI.eraseFromParent();
4414     return Legalized;
4415   }
4416 
4417   if (SrcTy != LLT::scalar(64))
4418     return UnableToLegalize;
4419 
4420   if (DstTy == LLT::scalar(32)) {
4421     // TODO: SelectionDAG has several alternative expansions to port which may
4422     // be more reasonble depending on the available instructions. If a target
4423     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4424     // intermediate type, this is probably worse.
4425     return lowerU64ToF32BitOps(MI);
4426   }
4427 
4428   return UnableToLegalize;
4429 }
4430 
4431 LegalizerHelper::LegalizeResult
4432 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4433   Register Dst = MI.getOperand(0).getReg();
4434   Register Src = MI.getOperand(1).getReg();
4435   LLT DstTy = MRI.getType(Dst);
4436   LLT SrcTy = MRI.getType(Src);
4437 
4438   const LLT S64 = LLT::scalar(64);
4439   const LLT S32 = LLT::scalar(32);
4440   const LLT S1 = LLT::scalar(1);
4441 
4442   if (SrcTy == S1) {
4443     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4444     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4445     MIRBuilder.buildSelect(Dst, Src, True, False);
4446     MI.eraseFromParent();
4447     return Legalized;
4448   }
4449 
4450   if (SrcTy != S64)
4451     return UnableToLegalize;
4452 
4453   if (DstTy == S32) {
4454     // signed cl2f(long l) {
4455     //   long s = l >> 63;
4456     //   float r = cul2f((l + s) ^ s);
4457     //   return s ? -r : r;
4458     // }
4459     Register L = Src;
4460     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4461     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4462 
4463     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4464     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4465     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4466 
4467     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4468     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4469                                             MIRBuilder.buildConstant(S64, 0));
4470     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4471     MI.eraseFromParent();
4472     return Legalized;
4473   }
4474 
4475   return UnableToLegalize;
4476 }
4477 
4478 LegalizerHelper::LegalizeResult
4479 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4480   Register Dst = MI.getOperand(0).getReg();
4481   Register Src = MI.getOperand(1).getReg();
4482   LLT DstTy = MRI.getType(Dst);
4483   LLT SrcTy = MRI.getType(Src);
4484   const LLT S64 = LLT::scalar(64);
4485   const LLT S32 = LLT::scalar(32);
4486 
4487   if (SrcTy != S64 && SrcTy != S32)
4488     return UnableToLegalize;
4489   if (DstTy != S32 && DstTy != S64)
4490     return UnableToLegalize;
4491 
4492   // FPTOSI gives same result as FPTOUI for positive signed integers.
4493   // FPTOUI needs to deal with fp values that convert to unsigned integers
4494   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4495 
4496   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4497   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4498                                                 : APFloat::IEEEdouble(),
4499                     APInt::getNullValue(SrcTy.getSizeInBits()));
4500   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4501 
4502   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4503 
4504   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4505   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4506   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4507   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4508   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4509   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4510   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4511 
4512   const LLT S1 = LLT::scalar(1);
4513 
4514   MachineInstrBuilder FCMP =
4515       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4516   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4517 
4518   MI.eraseFromParent();
4519   return Legalized;
4520 }
4521 
4522 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4523   Register Dst = MI.getOperand(0).getReg();
4524   Register Src = MI.getOperand(1).getReg();
4525   LLT DstTy = MRI.getType(Dst);
4526   LLT SrcTy = MRI.getType(Src);
4527   const LLT S64 = LLT::scalar(64);
4528   const LLT S32 = LLT::scalar(32);
4529 
4530   // FIXME: Only f32 to i64 conversions are supported.
4531   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4532     return UnableToLegalize;
4533 
4534   // Expand f32 -> i64 conversion
4535   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4536   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4537 
4538   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4539 
4540   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4541   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4542 
4543   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4544   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4545 
4546   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4547                                            APInt::getSignMask(SrcEltBits));
4548   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4549   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4550   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4551   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4552 
4553   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4554   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4555   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4556 
4557   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4558   R = MIRBuilder.buildZExt(DstTy, R);
4559 
4560   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4561   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4562   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4563   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4564 
4565   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4566   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4567 
4568   const LLT S1 = LLT::scalar(1);
4569   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4570                                     S1, Exponent, ExponentLoBit);
4571 
4572   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4573 
4574   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4575   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4576 
4577   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4578 
4579   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4580                                           S1, Exponent, ZeroSrcTy);
4581 
4582   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4583   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4584 
4585   MI.eraseFromParent();
4586   return Legalized;
4587 }
4588 
4589 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4590 LegalizerHelper::LegalizeResult
4591 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4592   Register Dst = MI.getOperand(0).getReg();
4593   Register Src = MI.getOperand(1).getReg();
4594 
4595   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4596     return UnableToLegalize;
4597 
4598   const unsigned ExpMask = 0x7ff;
4599   const unsigned ExpBiasf64 = 1023;
4600   const unsigned ExpBiasf16 = 15;
4601   const LLT S32 = LLT::scalar(32);
4602   const LLT S1 = LLT::scalar(1);
4603 
4604   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4605   Register U = Unmerge.getReg(0);
4606   Register UH = Unmerge.getReg(1);
4607 
4608   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4609   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4610 
4611   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4612   // add the f16 bias (15) to get the biased exponent for the f16 format.
4613   E = MIRBuilder.buildAdd(
4614     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4615 
4616   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4617   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
4618 
4619   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
4620                                        MIRBuilder.buildConstant(S32, 0x1ff));
4621   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
4622 
4623   auto Zero = MIRBuilder.buildConstant(S32, 0);
4624   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
4625   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
4626   M = MIRBuilder.buildOr(S32, M, Lo40Set);
4627 
4628   // (M != 0 ? 0x0200 : 0) | 0x7c00;
4629   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
4630   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
4631   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
4632 
4633   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
4634   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
4635 
4636   // N = M | (E << 12);
4637   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
4638   auto N = MIRBuilder.buildOr(S32, M, EShl12);
4639 
4640   // B = clamp(1-E, 0, 13);
4641   auto One = MIRBuilder.buildConstant(S32, 1);
4642   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
4643   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
4644   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
4645 
4646   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
4647                                        MIRBuilder.buildConstant(S32, 0x1000));
4648 
4649   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
4650   auto D0 = MIRBuilder.buildShl(S32, D, B);
4651 
4652   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
4653                                              D0, SigSetHigh);
4654   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
4655   D = MIRBuilder.buildOr(S32, D, D1);
4656 
4657   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
4658   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
4659 
4660   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
4661   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
4662 
4663   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
4664                                        MIRBuilder.buildConstant(S32, 3));
4665   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
4666 
4667   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
4668                                        MIRBuilder.buildConstant(S32, 5));
4669   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
4670 
4671   V1 = MIRBuilder.buildOr(S32, V0, V1);
4672   V = MIRBuilder.buildAdd(S32, V, V1);
4673 
4674   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
4675                                        E, MIRBuilder.buildConstant(S32, 30));
4676   V = MIRBuilder.buildSelect(S32, CmpEGt30,
4677                              MIRBuilder.buildConstant(S32, 0x7c00), V);
4678 
4679   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
4680                                          E, MIRBuilder.buildConstant(S32, 1039));
4681   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
4682 
4683   // Extract the sign bit.
4684   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
4685   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
4686 
4687   // Insert the sign bit
4688   V = MIRBuilder.buildOr(S32, Sign, V);
4689 
4690   MIRBuilder.buildTrunc(Dst, V);
4691   MI.eraseFromParent();
4692   return Legalized;
4693 }
4694 
4695 LegalizerHelper::LegalizeResult
4696 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4697   Register Dst = MI.getOperand(0).getReg();
4698   Register Src = MI.getOperand(1).getReg();
4699 
4700   LLT DstTy = MRI.getType(Dst);
4701   LLT SrcTy = MRI.getType(Src);
4702   const LLT S64 = LLT::scalar(64);
4703   const LLT S16 = LLT::scalar(16);
4704 
4705   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
4706     return lowerFPTRUNC_F64_TO_F16(MI);
4707 
4708   return UnableToLegalize;
4709 }
4710 
4711 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4712   switch (Opc) {
4713   case TargetOpcode::G_SMIN:
4714     return CmpInst::ICMP_SLT;
4715   case TargetOpcode::G_SMAX:
4716     return CmpInst::ICMP_SGT;
4717   case TargetOpcode::G_UMIN:
4718     return CmpInst::ICMP_ULT;
4719   case TargetOpcode::G_UMAX:
4720     return CmpInst::ICMP_UGT;
4721   default:
4722     llvm_unreachable("not in integer min/max");
4723   }
4724 }
4725 
4726 LegalizerHelper::LegalizeResult
4727 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4728   Register Dst = MI.getOperand(0).getReg();
4729   Register Src0 = MI.getOperand(1).getReg();
4730   Register Src1 = MI.getOperand(2).getReg();
4731 
4732   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4733   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4734 
4735   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4736   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4737 
4738   MI.eraseFromParent();
4739   return Legalized;
4740 }
4741 
4742 LegalizerHelper::LegalizeResult
4743 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4744   Register Dst = MI.getOperand(0).getReg();
4745   Register Src0 = MI.getOperand(1).getReg();
4746   Register Src1 = MI.getOperand(2).getReg();
4747 
4748   const LLT Src0Ty = MRI.getType(Src0);
4749   const LLT Src1Ty = MRI.getType(Src1);
4750 
4751   const int Src0Size = Src0Ty.getScalarSizeInBits();
4752   const int Src1Size = Src1Ty.getScalarSizeInBits();
4753 
4754   auto SignBitMask = MIRBuilder.buildConstant(
4755     Src0Ty, APInt::getSignMask(Src0Size));
4756 
4757   auto NotSignBitMask = MIRBuilder.buildConstant(
4758     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4759 
4760   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4761   MachineInstr *Or;
4762 
4763   if (Src0Ty == Src1Ty) {
4764     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
4765     Or = MIRBuilder.buildOr(Dst, And0, And1);
4766   } else if (Src0Size > Src1Size) {
4767     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4768     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4769     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4770     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4771     Or = MIRBuilder.buildOr(Dst, And0, And1);
4772   } else {
4773     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4774     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4775     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4776     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4777     Or = MIRBuilder.buildOr(Dst, And0, And1);
4778   }
4779 
4780   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4781   // constants are a nan and -0.0, but the final result should preserve
4782   // everything.
4783   if (unsigned Flags = MI.getFlags())
4784     Or->setFlags(Flags);
4785 
4786   MI.eraseFromParent();
4787   return Legalized;
4788 }
4789 
4790 LegalizerHelper::LegalizeResult
4791 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4792   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4793     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4794 
4795   Register Dst = MI.getOperand(0).getReg();
4796   Register Src0 = MI.getOperand(1).getReg();
4797   Register Src1 = MI.getOperand(2).getReg();
4798   LLT Ty = MRI.getType(Dst);
4799 
4800   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4801     // Insert canonicalizes if it's possible we need to quiet to get correct
4802     // sNaN behavior.
4803 
4804     // Note this must be done here, and not as an optimization combine in the
4805     // absence of a dedicate quiet-snan instruction as we're using an
4806     // omni-purpose G_FCANONICALIZE.
4807     if (!isKnownNeverSNaN(Src0, MRI))
4808       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4809 
4810     if (!isKnownNeverSNaN(Src1, MRI))
4811       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4812   }
4813 
4814   // If there are no nans, it's safe to simply replace this with the non-IEEE
4815   // version.
4816   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4817   MI.eraseFromParent();
4818   return Legalized;
4819 }
4820 
4821 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4822   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4823   Register DstReg = MI.getOperand(0).getReg();
4824   LLT Ty = MRI.getType(DstReg);
4825   unsigned Flags = MI.getFlags();
4826 
4827   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4828                                   Flags);
4829   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4830   MI.eraseFromParent();
4831   return Legalized;
4832 }
4833 
4834 LegalizerHelper::LegalizeResult
4835 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4836   Register DstReg = MI.getOperand(0).getReg();
4837   Register X = MI.getOperand(1).getReg();
4838   const unsigned Flags = MI.getFlags();
4839   const LLT Ty = MRI.getType(DstReg);
4840   const LLT CondTy = Ty.changeElementSize(1);
4841 
4842   // round(x) =>
4843   //  t = trunc(x);
4844   //  d = fabs(x - t);
4845   //  o = copysign(1.0f, x);
4846   //  return t + (d >= 0.5 ? o : 0.0);
4847 
4848   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
4849 
4850   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
4851   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
4852   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4853   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
4854   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
4855   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
4856 
4857   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
4858                                   Flags);
4859   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
4860 
4861   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
4862 
4863   MI.eraseFromParent();
4864   return Legalized;
4865 }
4866 
4867 LegalizerHelper::LegalizeResult
4868 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
4869   Register DstReg = MI.getOperand(0).getReg();
4870   Register SrcReg = MI.getOperand(1).getReg();
4871   unsigned Flags = MI.getFlags();
4872   LLT Ty = MRI.getType(DstReg);
4873   const LLT CondTy = Ty.changeElementSize(1);
4874 
4875   // result = trunc(src);
4876   // if (src < 0.0 && src != result)
4877   //   result += -1.0.
4878 
4879   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4880   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4881 
4882   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4883                                   SrcReg, Zero, Flags);
4884   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4885                                       SrcReg, Trunc, Flags);
4886   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
4887   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
4888 
4889   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
4890   MI.eraseFromParent();
4891   return Legalized;
4892 }
4893 
4894 LegalizerHelper::LegalizeResult
4895 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
4896   const unsigned NumOps = MI.getNumOperands();
4897   Register DstReg = MI.getOperand(0).getReg();
4898   Register Src0Reg = MI.getOperand(1).getReg();
4899   LLT DstTy = MRI.getType(DstReg);
4900   LLT SrcTy = MRI.getType(Src0Reg);
4901   unsigned PartSize = SrcTy.getSizeInBits();
4902 
4903   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
4904   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
4905 
4906   for (unsigned I = 2; I != NumOps; ++I) {
4907     const unsigned Offset = (I - 1) * PartSize;
4908 
4909     Register SrcReg = MI.getOperand(I).getReg();
4910     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
4911 
4912     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
4913       MRI.createGenericVirtualRegister(WideTy);
4914 
4915     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
4916     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
4917     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
4918     ResultReg = NextResult;
4919   }
4920 
4921   if (DstTy.isPointer()) {
4922     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
4923           DstTy.getAddressSpace())) {
4924       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
4925       return UnableToLegalize;
4926     }
4927 
4928     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
4929   }
4930 
4931   MI.eraseFromParent();
4932   return Legalized;
4933 }
4934 
4935 LegalizerHelper::LegalizeResult
4936 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
4937   const unsigned NumDst = MI.getNumOperands() - 1;
4938   Register SrcReg = MI.getOperand(NumDst).getReg();
4939   Register Dst0Reg = MI.getOperand(0).getReg();
4940   LLT DstTy = MRI.getType(Dst0Reg);
4941   if (DstTy.isPointer())
4942     return UnableToLegalize; // TODO
4943 
4944   SrcReg = coerceToScalar(SrcReg);
4945   if (!SrcReg)
4946     return UnableToLegalize;
4947 
4948   // Expand scalarizing unmerge as bitcast to integer and shift.
4949   LLT IntTy = MRI.getType(SrcReg);
4950 
4951   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
4952 
4953   const unsigned DstSize = DstTy.getSizeInBits();
4954   unsigned Offset = DstSize;
4955   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
4956     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
4957     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
4958     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
4959   }
4960 
4961   MI.eraseFromParent();
4962   return Legalized;
4963 }
4964 
4965 LegalizerHelper::LegalizeResult
4966 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
4967   Register DstReg = MI.getOperand(0).getReg();
4968   Register Src0Reg = MI.getOperand(1).getReg();
4969   Register Src1Reg = MI.getOperand(2).getReg();
4970   LLT Src0Ty = MRI.getType(Src0Reg);
4971   LLT DstTy = MRI.getType(DstReg);
4972   LLT IdxTy = LLT::scalar(32);
4973 
4974   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4975 
4976   if (DstTy.isScalar()) {
4977     if (Src0Ty.isVector())
4978       return UnableToLegalize;
4979 
4980     // This is just a SELECT.
4981     assert(Mask.size() == 1 && "Expected a single mask element");
4982     Register Val;
4983     if (Mask[0] < 0 || Mask[0] > 1)
4984       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
4985     else
4986       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
4987     MIRBuilder.buildCopy(DstReg, Val);
4988     MI.eraseFromParent();
4989     return Legalized;
4990   }
4991 
4992   Register Undef;
4993   SmallVector<Register, 32> BuildVec;
4994   LLT EltTy = DstTy.getElementType();
4995 
4996   for (int Idx : Mask) {
4997     if (Idx < 0) {
4998       if (!Undef.isValid())
4999         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5000       BuildVec.push_back(Undef);
5001       continue;
5002     }
5003 
5004     if (Src0Ty.isScalar()) {
5005       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5006     } else {
5007       int NumElts = Src0Ty.getNumElements();
5008       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5009       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5010       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5011       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5012       BuildVec.push_back(Extract.getReg(0));
5013     }
5014   }
5015 
5016   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5017   MI.eraseFromParent();
5018   return Legalized;
5019 }
5020 
5021 LegalizerHelper::LegalizeResult
5022 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5023   const auto &MF = *MI.getMF();
5024   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5025   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5026     return UnableToLegalize;
5027 
5028   Register Dst = MI.getOperand(0).getReg();
5029   Register AllocSize = MI.getOperand(1).getReg();
5030   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5031 
5032   LLT PtrTy = MRI.getType(Dst);
5033   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5034 
5035   const auto &TLI = *MF.getSubtarget().getTargetLowering();
5036   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5037   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5038   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5039 
5040   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5041   // have to generate an extra instruction to negate the alloc and then use
5042   // G_PTR_ADD to add the negative offset.
5043   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5044   if (Alignment > Align(1)) {
5045     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5046     AlignMask.negate();
5047     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5048     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5049   }
5050 
5051   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5052   MIRBuilder.buildCopy(SPReg, SPTmp);
5053   MIRBuilder.buildCopy(Dst, SPTmp);
5054 
5055   MI.eraseFromParent();
5056   return Legalized;
5057 }
5058 
5059 LegalizerHelper::LegalizeResult
5060 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5061   Register Dst = MI.getOperand(0).getReg();
5062   Register Src = MI.getOperand(1).getReg();
5063   unsigned Offset = MI.getOperand(2).getImm();
5064 
5065   LLT DstTy = MRI.getType(Dst);
5066   LLT SrcTy = MRI.getType(Src);
5067 
5068   if (DstTy.isScalar() &&
5069       (SrcTy.isScalar() ||
5070        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5071     LLT SrcIntTy = SrcTy;
5072     if (!SrcTy.isScalar()) {
5073       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5074       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5075     }
5076 
5077     if (Offset == 0)
5078       MIRBuilder.buildTrunc(Dst, Src);
5079     else {
5080       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5081       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5082       MIRBuilder.buildTrunc(Dst, Shr);
5083     }
5084 
5085     MI.eraseFromParent();
5086     return Legalized;
5087   }
5088 
5089   return UnableToLegalize;
5090 }
5091 
5092 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5093   Register Dst = MI.getOperand(0).getReg();
5094   Register Src = MI.getOperand(1).getReg();
5095   Register InsertSrc = MI.getOperand(2).getReg();
5096   uint64_t Offset = MI.getOperand(3).getImm();
5097 
5098   LLT DstTy = MRI.getType(Src);
5099   LLT InsertTy = MRI.getType(InsertSrc);
5100 
5101   if (InsertTy.isVector() ||
5102       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5103     return UnableToLegalize;
5104 
5105   const DataLayout &DL = MIRBuilder.getDataLayout();
5106   if ((DstTy.isPointer() &&
5107        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5108       (InsertTy.isPointer() &&
5109        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5110     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5111     return UnableToLegalize;
5112   }
5113 
5114   LLT IntDstTy = DstTy;
5115 
5116   if (!DstTy.isScalar()) {
5117     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5118     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5119   }
5120 
5121   if (!InsertTy.isScalar()) {
5122     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5123     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5124   }
5125 
5126   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5127   if (Offset != 0) {
5128     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5129     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5130   }
5131 
5132   APInt MaskVal = APInt::getBitsSetWithWrap(
5133       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5134 
5135   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5136   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5137   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5138 
5139   MIRBuilder.buildCast(Dst, Or);
5140   MI.eraseFromParent();
5141   return Legalized;
5142 }
5143 
5144 LegalizerHelper::LegalizeResult
5145 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5146   Register Dst0 = MI.getOperand(0).getReg();
5147   Register Dst1 = MI.getOperand(1).getReg();
5148   Register LHS = MI.getOperand(2).getReg();
5149   Register RHS = MI.getOperand(3).getReg();
5150   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5151 
5152   LLT Ty = MRI.getType(Dst0);
5153   LLT BoolTy = MRI.getType(Dst1);
5154 
5155   if (IsAdd)
5156     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5157   else
5158     MIRBuilder.buildSub(Dst0, LHS, RHS);
5159 
5160   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5161 
5162   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5163 
5164   // For an addition, the result should be less than one of the operands (LHS)
5165   // if and only if the other operand (RHS) is negative, otherwise there will
5166   // be overflow.
5167   // For a subtraction, the result should be less than one of the operands
5168   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5169   // otherwise there will be overflow.
5170   auto ResultLowerThanLHS =
5171       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5172   auto ConditionRHS = MIRBuilder.buildICmp(
5173       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5174 
5175   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5176   MI.eraseFromParent();
5177   return Legalized;
5178 }
5179 
5180 LegalizerHelper::LegalizeResult
5181 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5182   Register Dst = MI.getOperand(0).getReg();
5183   Register Src = MI.getOperand(1).getReg();
5184   const LLT Ty = MRI.getType(Src);
5185   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5186   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5187 
5188   // Swap most and least significant byte, set remaining bytes in Res to zero.
5189   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5190   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5191   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5192   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5193 
5194   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5195   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5196     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5197     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5198     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5199     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5200     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5201     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5202     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5203     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5204     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5205     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5206     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5207     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5208   }
5209   Res.getInstr()->getOperand(0).setReg(Dst);
5210 
5211   MI.eraseFromParent();
5212   return Legalized;
5213 }
5214 
5215 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5216 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5217                                  MachineInstrBuilder Src, APInt Mask) {
5218   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5219   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5220   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5221   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5222   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5223   return B.buildOr(Dst, LHS, RHS);
5224 }
5225 
5226 LegalizerHelper::LegalizeResult
5227 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5228   Register Dst = MI.getOperand(0).getReg();
5229   Register Src = MI.getOperand(1).getReg();
5230   const LLT Ty = MRI.getType(Src);
5231   unsigned Size = Ty.getSizeInBits();
5232 
5233   MachineInstrBuilder BSWAP =
5234       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5235 
5236   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5237   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5238   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5239   MachineInstrBuilder Swap4 =
5240       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5241 
5242   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5243   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5244   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5245   MachineInstrBuilder Swap2 =
5246       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5247 
5248   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5249   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5250   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5251   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5252 
5253   MI.eraseFromParent();
5254   return Legalized;
5255 }
5256 
5257 LegalizerHelper::LegalizeResult
5258 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5259   MachineFunction &MF = MIRBuilder.getMF();
5260   const TargetSubtargetInfo &STI = MF.getSubtarget();
5261   const TargetLowering *TLI = STI.getTargetLowering();
5262 
5263   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5264   int NameOpIdx = IsRead ? 1 : 0;
5265   int ValRegIndex = IsRead ? 0 : 1;
5266 
5267   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5268   const LLT Ty = MRI.getType(ValReg);
5269   const MDString *RegStr = cast<MDString>(
5270     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5271 
5272   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5273   if (!PhysReg.isValid())
5274     return UnableToLegalize;
5275 
5276   if (IsRead)
5277     MIRBuilder.buildCopy(ValReg, PhysReg);
5278   else
5279     MIRBuilder.buildCopy(PhysReg, ValReg);
5280 
5281   MI.eraseFromParent();
5282   return Legalized;
5283 }
5284