1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
67 
68   if (!Ty.isScalar())
69     return nullptr;
70 
71   switch (Ty.getSizeInBits()) {
72   case 16:
73     return Type::getHalfTy(Ctx);
74   case 32:
75     return Type::getFloatTy(Ctx);
76   case 64:
77     return Type::getDoubleTy(Ctx);
78   case 128:
79     return Type::getFP128Ty(Ctx);
80   default:
81     return nullptr;
82   }
83 }
84 
85 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
86                                  GISelChangeObserver &Observer,
87                                  MachineIRBuilder &Builder)
88     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
89       LI(*MF.getSubtarget().getLegalizerInfo()) {
90   MIRBuilder.setChangeObserver(Observer);
91 }
92 
93 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
94                                  GISelChangeObserver &Observer,
95                                  MachineIRBuilder &B)
96     : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) {
97   MIRBuilder.setChangeObserver(Observer);
98 }
99 LegalizerHelper::LegalizeResult
100 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
101   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
102 
103   MIRBuilder.setInstrAndDebugLoc(MI);
104 
105   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
106       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
107     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
108   auto Step = LI.getAction(MI, MRI);
109   switch (Step.Action) {
110   case Legal:
111     LLVM_DEBUG(dbgs() << ".. Already legal\n");
112     return AlreadyLegal;
113   case Libcall:
114     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
115     return libcall(MI);
116   case NarrowScalar:
117     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
118     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
119   case WidenScalar:
120     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
121     return widenScalar(MI, Step.TypeIdx, Step.NewType);
122   case Bitcast:
123     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
124     return bitcast(MI, Step.TypeIdx, Step.NewType);
125   case Lower:
126     LLVM_DEBUG(dbgs() << ".. Lower\n");
127     return lower(MI, Step.TypeIdx, Step.NewType);
128   case FewerElements:
129     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
130     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
131   case MoreElements:
132     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
133     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
134   case Custom:
135     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
136     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
137   default:
138     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
139     return UnableToLegalize;
140   }
141 }
142 
143 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
144                                    SmallVectorImpl<Register> &VRegs) {
145   for (int i = 0; i < NumParts; ++i)
146     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
147   MIRBuilder.buildUnmerge(VRegs, Reg);
148 }
149 
150 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
151                                    LLT MainTy, LLT &LeftoverTy,
152                                    SmallVectorImpl<Register> &VRegs,
153                                    SmallVectorImpl<Register> &LeftoverRegs) {
154   assert(!LeftoverTy.isValid() && "this is an out argument");
155 
156   unsigned RegSize = RegTy.getSizeInBits();
157   unsigned MainSize = MainTy.getSizeInBits();
158   unsigned NumParts = RegSize / MainSize;
159   unsigned LeftoverSize = RegSize - NumParts * MainSize;
160 
161   // Use an unmerge when possible.
162   if (LeftoverSize == 0) {
163     for (unsigned I = 0; I < NumParts; ++I)
164       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
165     MIRBuilder.buildUnmerge(VRegs, Reg);
166     return true;
167   }
168 
169   if (MainTy.isVector()) {
170     unsigned EltSize = MainTy.getScalarSizeInBits();
171     if (LeftoverSize % EltSize != 0)
172       return false;
173     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
174   } else {
175     LeftoverTy = LLT::scalar(LeftoverSize);
176   }
177 
178   // For irregular sizes, extract the individual parts.
179   for (unsigned I = 0; I != NumParts; ++I) {
180     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
181     VRegs.push_back(NewReg);
182     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
183   }
184 
185   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
186        Offset += LeftoverSize) {
187     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
188     LeftoverRegs.push_back(NewReg);
189     MIRBuilder.buildExtract(NewReg, Reg, Offset);
190   }
191 
192   return true;
193 }
194 
195 void LegalizerHelper::insertParts(Register DstReg,
196                                   LLT ResultTy, LLT PartTy,
197                                   ArrayRef<Register> PartRegs,
198                                   LLT LeftoverTy,
199                                   ArrayRef<Register> LeftoverRegs) {
200   if (!LeftoverTy.isValid()) {
201     assert(LeftoverRegs.empty());
202 
203     if (!ResultTy.isVector()) {
204       MIRBuilder.buildMerge(DstReg, PartRegs);
205       return;
206     }
207 
208     if (PartTy.isVector())
209       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
210     else
211       MIRBuilder.buildBuildVector(DstReg, PartRegs);
212     return;
213   }
214 
215   unsigned PartSize = PartTy.getSizeInBits();
216   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
217 
218   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
219   MIRBuilder.buildUndef(CurResultReg);
220 
221   unsigned Offset = 0;
222   for (Register PartReg : PartRegs) {
223     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
224     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
225     CurResultReg = NewResultReg;
226     Offset += PartSize;
227   }
228 
229   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
230     // Use the original output register for the final insert to avoid a copy.
231     Register NewResultReg = (I + 1 == E) ?
232       DstReg : MRI.createGenericVirtualRegister(ResultTy);
233 
234     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
235     CurResultReg = NewResultReg;
236     Offset += LeftoverPartSize;
237   }
238 }
239 
240 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
241 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
242                               const MachineInstr &MI) {
243   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
244 
245   const int NumResults = MI.getNumOperands() - 1;
246   Regs.resize(NumResults);
247   for (int I = 0; I != NumResults; ++I)
248     Regs[I] = MI.getOperand(I).getReg();
249 }
250 
251 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
252                                     LLT NarrowTy, Register SrcReg) {
253   LLT SrcTy = MRI.getType(SrcReg);
254 
255   LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy));
256   if (SrcTy == GCDTy) {
257     // If the source already evenly divides the result type, we don't need to do
258     // anything.
259     Parts.push_back(SrcReg);
260   } else {
261     // Need to split into common type sized pieces.
262     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
263     getUnmergeResults(Parts, *Unmerge);
264   }
265 
266   return GCDTy;
267 }
268 
269 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
270                                          SmallVectorImpl<Register> &VRegs,
271                                          unsigned PadStrategy) {
272   LLT LCMTy = getLCMType(DstTy, NarrowTy);
273 
274   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
275   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
276   int NumOrigSrc = VRegs.size();
277 
278   Register PadReg;
279 
280   // Get a value we can use to pad the source value if the sources won't evenly
281   // cover the result type.
282   if (NumOrigSrc < NumParts * NumSubParts) {
283     if (PadStrategy == TargetOpcode::G_ZEXT)
284       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
285     else if (PadStrategy == TargetOpcode::G_ANYEXT)
286       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
287     else {
288       assert(PadStrategy == TargetOpcode::G_SEXT);
289 
290       // Shift the sign bit of the low register through the high register.
291       auto ShiftAmt =
292         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
293       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
294     }
295   }
296 
297   // Registers for the final merge to be produced.
298   SmallVector<Register, 4> Remerge(NumParts);
299 
300   // Registers needed for intermediate merges, which will be merged into a
301   // source for Remerge.
302   SmallVector<Register, 4> SubMerge(NumSubParts);
303 
304   // Once we've fully read off the end of the original source bits, we can reuse
305   // the same high bits for remaining padding elements.
306   Register AllPadReg;
307 
308   // Build merges to the LCM type to cover the original result type.
309   for (int I = 0; I != NumParts; ++I) {
310     bool AllMergePartsArePadding = true;
311 
312     // Build the requested merges to the requested type.
313     for (int J = 0; J != NumSubParts; ++J) {
314       int Idx = I * NumSubParts + J;
315       if (Idx >= NumOrigSrc) {
316         SubMerge[J] = PadReg;
317         continue;
318       }
319 
320       SubMerge[J] = VRegs[Idx];
321 
322       // There are meaningful bits here we can't reuse later.
323       AllMergePartsArePadding = false;
324     }
325 
326     // If we've filled up a complete piece with padding bits, we can directly
327     // emit the natural sized constant if applicable, rather than a merge of
328     // smaller constants.
329     if (AllMergePartsArePadding && !AllPadReg) {
330       if (PadStrategy == TargetOpcode::G_ANYEXT)
331         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
332       else if (PadStrategy == TargetOpcode::G_ZEXT)
333         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
334 
335       // If this is a sign extension, we can't materialize a trivial constant
336       // with the right type and have to produce a merge.
337     }
338 
339     if (AllPadReg) {
340       // Avoid creating additional instructions if we're just adding additional
341       // copies of padding bits.
342       Remerge[I] = AllPadReg;
343       continue;
344     }
345 
346     if (NumSubParts == 1)
347       Remerge[I] = SubMerge[0];
348     else
349       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
350 
351     // In the sign extend padding case, re-use the first all-signbit merge.
352     if (AllMergePartsArePadding && !AllPadReg)
353       AllPadReg = Remerge[I];
354   }
355 
356   VRegs = std::move(Remerge);
357   return LCMTy;
358 }
359 
360 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
361                                                ArrayRef<Register> RemergeRegs) {
362   LLT DstTy = MRI.getType(DstReg);
363 
364   // Create the merge to the widened source, and extract the relevant bits into
365   // the result.
366 
367   if (DstTy == LCMTy) {
368     MIRBuilder.buildMerge(DstReg, RemergeRegs);
369     return;
370   }
371 
372   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
373   if (DstTy.isScalar() && LCMTy.isScalar()) {
374     MIRBuilder.buildTrunc(DstReg, Remerge);
375     return;
376   }
377 
378   if (LCMTy.isVector()) {
379     MIRBuilder.buildExtract(DstReg, Remerge, 0);
380     return;
381   }
382 
383   llvm_unreachable("unhandled case");
384 }
385 
386 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
387 #define RTLIBCASE(LibcallPrefix)                                               \
388   do {                                                                         \
389     switch (Size) {                                                            \
390     case 32:                                                                   \
391       return RTLIB::LibcallPrefix##32;                                         \
392     case 64:                                                                   \
393       return RTLIB::LibcallPrefix##64;                                         \
394     case 128:                                                                  \
395       return RTLIB::LibcallPrefix##128;                                        \
396     default:                                                                   \
397       llvm_unreachable("unexpected size");                                     \
398     }                                                                          \
399   } while (0)
400 
401   assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
402 
403   switch (Opcode) {
404   case TargetOpcode::G_SDIV:
405     RTLIBCASE(SDIV_I);
406   case TargetOpcode::G_UDIV:
407     RTLIBCASE(UDIV_I);
408   case TargetOpcode::G_SREM:
409     RTLIBCASE(SREM_I);
410   case TargetOpcode::G_UREM:
411     RTLIBCASE(UREM_I);
412   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
413     RTLIBCASE(CTLZ_I);
414   case TargetOpcode::G_FADD:
415     RTLIBCASE(ADD_F);
416   case TargetOpcode::G_FSUB:
417     RTLIBCASE(SUB_F);
418   case TargetOpcode::G_FMUL:
419     RTLIBCASE(MUL_F);
420   case TargetOpcode::G_FDIV:
421     RTLIBCASE(DIV_F);
422   case TargetOpcode::G_FEXP:
423     RTLIBCASE(EXP_F);
424   case TargetOpcode::G_FEXP2:
425     RTLIBCASE(EXP2_F);
426   case TargetOpcode::G_FREM:
427     RTLIBCASE(REM_F);
428   case TargetOpcode::G_FPOW:
429     RTLIBCASE(POW_F);
430   case TargetOpcode::G_FMA:
431     RTLIBCASE(FMA_F);
432   case TargetOpcode::G_FSIN:
433     RTLIBCASE(SIN_F);
434   case TargetOpcode::G_FCOS:
435     RTLIBCASE(COS_F);
436   case TargetOpcode::G_FLOG10:
437     RTLIBCASE(LOG10_F);
438   case TargetOpcode::G_FLOG:
439     RTLIBCASE(LOG_F);
440   case TargetOpcode::G_FLOG2:
441     RTLIBCASE(LOG2_F);
442   case TargetOpcode::G_FCEIL:
443     RTLIBCASE(CEIL_F);
444   case TargetOpcode::G_FFLOOR:
445     RTLIBCASE(FLOOR_F);
446   case TargetOpcode::G_FMINNUM:
447     RTLIBCASE(FMIN_F);
448   case TargetOpcode::G_FMAXNUM:
449     RTLIBCASE(FMAX_F);
450   case TargetOpcode::G_FSQRT:
451     RTLIBCASE(SQRT_F);
452   case TargetOpcode::G_FRINT:
453     RTLIBCASE(RINT_F);
454   case TargetOpcode::G_FNEARBYINT:
455     RTLIBCASE(NEARBYINT_F);
456   }
457   llvm_unreachable("Unknown libcall function");
458 }
459 
460 /// True if an instruction is in tail position in its caller. Intended for
461 /// legalizing libcalls as tail calls when possible.
462 static bool isLibCallInTailPosition(MachineInstr &MI) {
463   MachineBasicBlock &MBB = *MI.getParent();
464   const Function &F = MBB.getParent()->getFunction();
465 
466   // Conservatively require the attributes of the call to match those of
467   // the return. Ignore NoAlias and NonNull because they don't affect the
468   // call sequence.
469   AttributeList CallerAttrs = F.getAttributes();
470   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
471           .removeAttribute(Attribute::NoAlias)
472           .removeAttribute(Attribute::NonNull)
473           .hasAttributes())
474     return false;
475 
476   // It's not safe to eliminate the sign / zero extension of the return value.
477   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
478       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
479     return false;
480 
481   // Only tail call if the following instruction is a standard return.
482   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
483   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
484   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
485     return false;
486 
487   return true;
488 }
489 
490 LegalizerHelper::LegalizeResult
491 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
492                     const CallLowering::ArgInfo &Result,
493                     ArrayRef<CallLowering::ArgInfo> Args,
494                     const CallingConv::ID CC) {
495   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
496 
497   CallLowering::CallLoweringInfo Info;
498   Info.CallConv = CC;
499   Info.Callee = MachineOperand::CreateES(Name);
500   Info.OrigRet = Result;
501   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
502   if (!CLI.lowerCall(MIRBuilder, Info))
503     return LegalizerHelper::UnableToLegalize;
504 
505   return LegalizerHelper::Legalized;
506 }
507 
508 LegalizerHelper::LegalizeResult
509 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
510                     const CallLowering::ArgInfo &Result,
511                     ArrayRef<CallLowering::ArgInfo> Args) {
512   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
513   const char *Name = TLI.getLibcallName(Libcall);
514   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
515   return createLibcall(MIRBuilder, Name, Result, Args, CC);
516 }
517 
518 // Useful for libcalls where all operands have the same type.
519 static LegalizerHelper::LegalizeResult
520 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
521               Type *OpType) {
522   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
523 
524   SmallVector<CallLowering::ArgInfo, 3> Args;
525   for (unsigned i = 1; i < MI.getNumOperands(); i++)
526     Args.push_back({MI.getOperand(i).getReg(), OpType});
527   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
528                        Args);
529 }
530 
531 LegalizerHelper::LegalizeResult
532 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
533                        MachineInstr &MI) {
534   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
535   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
536 
537   SmallVector<CallLowering::ArgInfo, 3> Args;
538   // Add all the args, except for the last which is an imm denoting 'tail'.
539   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
540     Register Reg = MI.getOperand(i).getReg();
541 
542     // Need derive an IR type for call lowering.
543     LLT OpLLT = MRI.getType(Reg);
544     Type *OpTy = nullptr;
545     if (OpLLT.isPointer())
546       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
547     else
548       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
549     Args.push_back({Reg, OpTy});
550   }
551 
552   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
553   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
554   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
555   RTLIB::Libcall RTLibcall;
556   switch (ID) {
557   case Intrinsic::memcpy:
558     RTLibcall = RTLIB::MEMCPY;
559     break;
560   case Intrinsic::memset:
561     RTLibcall = RTLIB::MEMSET;
562     break;
563   case Intrinsic::memmove:
564     RTLibcall = RTLIB::MEMMOVE;
565     break;
566   default:
567     return LegalizerHelper::UnableToLegalize;
568   }
569   const char *Name = TLI.getLibcallName(RTLibcall);
570 
571   MIRBuilder.setInstrAndDebugLoc(MI);
572 
573   CallLowering::CallLoweringInfo Info;
574   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
575   Info.Callee = MachineOperand::CreateES(Name);
576   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
577   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
578                     isLibCallInTailPosition(MI);
579 
580   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
581   if (!CLI.lowerCall(MIRBuilder, Info))
582     return LegalizerHelper::UnableToLegalize;
583 
584   if (Info.LoweredTailCall) {
585     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
586     // We must have a return following the call (or debug insts) to get past
587     // isLibCallInTailPosition.
588     do {
589       MachineInstr *Next = MI.getNextNode();
590       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
591              "Expected instr following MI to be return or debug inst?");
592       // We lowered a tail call, so the call is now the return from the block.
593       // Delete the old return.
594       Next->eraseFromParent();
595     } while (MI.getNextNode());
596   }
597 
598   return LegalizerHelper::Legalized;
599 }
600 
601 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
602                                        Type *FromType) {
603   auto ToMVT = MVT::getVT(ToType);
604   auto FromMVT = MVT::getVT(FromType);
605 
606   switch (Opcode) {
607   case TargetOpcode::G_FPEXT:
608     return RTLIB::getFPEXT(FromMVT, ToMVT);
609   case TargetOpcode::G_FPTRUNC:
610     return RTLIB::getFPROUND(FromMVT, ToMVT);
611   case TargetOpcode::G_FPTOSI:
612     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
613   case TargetOpcode::G_FPTOUI:
614     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
615   case TargetOpcode::G_SITOFP:
616     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
617   case TargetOpcode::G_UITOFP:
618     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
619   }
620   llvm_unreachable("Unsupported libcall function");
621 }
622 
623 static LegalizerHelper::LegalizeResult
624 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
625                   Type *FromType) {
626   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
627   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
628                        {{MI.getOperand(1).getReg(), FromType}});
629 }
630 
631 LegalizerHelper::LegalizeResult
632 LegalizerHelper::libcall(MachineInstr &MI) {
633   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
634   unsigned Size = LLTy.getSizeInBits();
635   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
636 
637   switch (MI.getOpcode()) {
638   default:
639     return UnableToLegalize;
640   case TargetOpcode::G_SDIV:
641   case TargetOpcode::G_UDIV:
642   case TargetOpcode::G_SREM:
643   case TargetOpcode::G_UREM:
644   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
645     Type *HLTy = IntegerType::get(Ctx, Size);
646     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
647     if (Status != Legalized)
648       return Status;
649     break;
650   }
651   case TargetOpcode::G_FADD:
652   case TargetOpcode::G_FSUB:
653   case TargetOpcode::G_FMUL:
654   case TargetOpcode::G_FDIV:
655   case TargetOpcode::G_FMA:
656   case TargetOpcode::G_FPOW:
657   case TargetOpcode::G_FREM:
658   case TargetOpcode::G_FCOS:
659   case TargetOpcode::G_FSIN:
660   case TargetOpcode::G_FLOG10:
661   case TargetOpcode::G_FLOG:
662   case TargetOpcode::G_FLOG2:
663   case TargetOpcode::G_FEXP:
664   case TargetOpcode::G_FEXP2:
665   case TargetOpcode::G_FCEIL:
666   case TargetOpcode::G_FFLOOR:
667   case TargetOpcode::G_FMINNUM:
668   case TargetOpcode::G_FMAXNUM:
669   case TargetOpcode::G_FSQRT:
670   case TargetOpcode::G_FRINT:
671   case TargetOpcode::G_FNEARBYINT: {
672     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
673     if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) {
674       LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n");
675       return UnableToLegalize;
676     }
677     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
678     if (Status != Legalized)
679       return Status;
680     break;
681   }
682   case TargetOpcode::G_FPEXT:
683   case TargetOpcode::G_FPTRUNC: {
684     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
685     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
686     if (!FromTy || !ToTy)
687       return UnableToLegalize;
688     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
689     if (Status != Legalized)
690       return Status;
691     break;
692   }
693   case TargetOpcode::G_FPTOSI:
694   case TargetOpcode::G_FPTOUI: {
695     // FIXME: Support other types
696     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
697     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
698     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
699       return UnableToLegalize;
700     LegalizeResult Status = conversionLibcall(
701         MI, MIRBuilder,
702         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
703         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
704     if (Status != Legalized)
705       return Status;
706     break;
707   }
708   case TargetOpcode::G_SITOFP:
709   case TargetOpcode::G_UITOFP: {
710     // FIXME: Support other types
711     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
712     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
713     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
714       return UnableToLegalize;
715     LegalizeResult Status = conversionLibcall(
716         MI, MIRBuilder,
717         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
718         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
719     if (Status != Legalized)
720       return Status;
721     break;
722   }
723   }
724 
725   MI.eraseFromParent();
726   return Legalized;
727 }
728 
729 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
730                                                               unsigned TypeIdx,
731                                                               LLT NarrowTy) {
732   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
733   uint64_t NarrowSize = NarrowTy.getSizeInBits();
734 
735   switch (MI.getOpcode()) {
736   default:
737     return UnableToLegalize;
738   case TargetOpcode::G_IMPLICIT_DEF: {
739     Register DstReg = MI.getOperand(0).getReg();
740     LLT DstTy = MRI.getType(DstReg);
741 
742     // If SizeOp0 is not an exact multiple of NarrowSize, emit
743     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
744     // FIXME: Although this would also be legal for the general case, it causes
745     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
746     //  combines not being hit). This seems to be a problem related to the
747     //  artifact combiner.
748     if (SizeOp0 % NarrowSize != 0) {
749       LLT ImplicitTy = NarrowTy;
750       if (DstTy.isVector())
751         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
752 
753       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
754       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
755 
756       MI.eraseFromParent();
757       return Legalized;
758     }
759 
760     int NumParts = SizeOp0 / NarrowSize;
761 
762     SmallVector<Register, 2> DstRegs;
763     for (int i = 0; i < NumParts; ++i)
764       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
765 
766     if (DstTy.isVector())
767       MIRBuilder.buildBuildVector(DstReg, DstRegs);
768     else
769       MIRBuilder.buildMerge(DstReg, DstRegs);
770     MI.eraseFromParent();
771     return Legalized;
772   }
773   case TargetOpcode::G_CONSTANT: {
774     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
775     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
776     unsigned TotalSize = Ty.getSizeInBits();
777     unsigned NarrowSize = NarrowTy.getSizeInBits();
778     int NumParts = TotalSize / NarrowSize;
779 
780     SmallVector<Register, 4> PartRegs;
781     for (int I = 0; I != NumParts; ++I) {
782       unsigned Offset = I * NarrowSize;
783       auto K = MIRBuilder.buildConstant(NarrowTy,
784                                         Val.lshr(Offset).trunc(NarrowSize));
785       PartRegs.push_back(K.getReg(0));
786     }
787 
788     LLT LeftoverTy;
789     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
790     SmallVector<Register, 1> LeftoverRegs;
791     if (LeftoverBits != 0) {
792       LeftoverTy = LLT::scalar(LeftoverBits);
793       auto K = MIRBuilder.buildConstant(
794         LeftoverTy,
795         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
796       LeftoverRegs.push_back(K.getReg(0));
797     }
798 
799     insertParts(MI.getOperand(0).getReg(),
800                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
801 
802     MI.eraseFromParent();
803     return Legalized;
804   }
805   case TargetOpcode::G_SEXT:
806   case TargetOpcode::G_ZEXT:
807   case TargetOpcode::G_ANYEXT:
808     return narrowScalarExt(MI, TypeIdx, NarrowTy);
809   case TargetOpcode::G_TRUNC: {
810     if (TypeIdx != 1)
811       return UnableToLegalize;
812 
813     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
814     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
815       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
816       return UnableToLegalize;
817     }
818 
819     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
820     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
821     MI.eraseFromParent();
822     return Legalized;
823   }
824 
825   case TargetOpcode::G_FREEZE:
826     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
827 
828   case TargetOpcode::G_ADD: {
829     // FIXME: add support for when SizeOp0 isn't an exact multiple of
830     // NarrowSize.
831     if (SizeOp0 % NarrowSize != 0)
832       return UnableToLegalize;
833     // Expand in terms of carry-setting/consuming G_ADDE instructions.
834     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
835 
836     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
837     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
838     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
839 
840     Register CarryIn;
841     for (int i = 0; i < NumParts; ++i) {
842       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
843       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
844 
845       if (i == 0)
846         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
847       else {
848         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
849                               Src2Regs[i], CarryIn);
850       }
851 
852       DstRegs.push_back(DstReg);
853       CarryIn = CarryOut;
854     }
855     Register DstReg = MI.getOperand(0).getReg();
856     if(MRI.getType(DstReg).isVector())
857       MIRBuilder.buildBuildVector(DstReg, DstRegs);
858     else
859       MIRBuilder.buildMerge(DstReg, DstRegs);
860     MI.eraseFromParent();
861     return Legalized;
862   }
863   case TargetOpcode::G_SUB: {
864     // FIXME: add support for when SizeOp0 isn't an exact multiple of
865     // NarrowSize.
866     if (SizeOp0 % NarrowSize != 0)
867       return UnableToLegalize;
868 
869     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
870 
871     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
872     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
873     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
874 
875     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
876     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
877     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
878                           {Src1Regs[0], Src2Regs[0]});
879     DstRegs.push_back(DstReg);
880     Register BorrowIn = BorrowOut;
881     for (int i = 1; i < NumParts; ++i) {
882       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
883       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
884 
885       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
886                             {Src1Regs[i], Src2Regs[i], BorrowIn});
887 
888       DstRegs.push_back(DstReg);
889       BorrowIn = BorrowOut;
890     }
891     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
892     MI.eraseFromParent();
893     return Legalized;
894   }
895   case TargetOpcode::G_MUL:
896   case TargetOpcode::G_UMULH:
897     return narrowScalarMul(MI, NarrowTy);
898   case TargetOpcode::G_EXTRACT:
899     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
900   case TargetOpcode::G_INSERT:
901     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
902   case TargetOpcode::G_LOAD: {
903     const auto &MMO = **MI.memoperands_begin();
904     Register DstReg = MI.getOperand(0).getReg();
905     LLT DstTy = MRI.getType(DstReg);
906     if (DstTy.isVector())
907       return UnableToLegalize;
908 
909     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
910       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
911       auto &MMO = **MI.memoperands_begin();
912       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
913       MIRBuilder.buildAnyExt(DstReg, TmpReg);
914       MI.eraseFromParent();
915       return Legalized;
916     }
917 
918     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
919   }
920   case TargetOpcode::G_ZEXTLOAD:
921   case TargetOpcode::G_SEXTLOAD: {
922     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
923     Register DstReg = MI.getOperand(0).getReg();
924     Register PtrReg = MI.getOperand(1).getReg();
925 
926     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
927     auto &MMO = **MI.memoperands_begin();
928     if (MMO.getSizeInBits() == NarrowSize) {
929       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
930     } else {
931       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
932     }
933 
934     if (ZExt)
935       MIRBuilder.buildZExt(DstReg, TmpReg);
936     else
937       MIRBuilder.buildSExt(DstReg, TmpReg);
938 
939     MI.eraseFromParent();
940     return Legalized;
941   }
942   case TargetOpcode::G_STORE: {
943     const auto &MMO = **MI.memoperands_begin();
944 
945     Register SrcReg = MI.getOperand(0).getReg();
946     LLT SrcTy = MRI.getType(SrcReg);
947     if (SrcTy.isVector())
948       return UnableToLegalize;
949 
950     int NumParts = SizeOp0 / NarrowSize;
951     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
952     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
953     if (SrcTy.isVector() && LeftoverBits != 0)
954       return UnableToLegalize;
955 
956     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
957       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
958       auto &MMO = **MI.memoperands_begin();
959       MIRBuilder.buildTrunc(TmpReg, SrcReg);
960       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
961       MI.eraseFromParent();
962       return Legalized;
963     }
964 
965     return reduceLoadStoreWidth(MI, 0, NarrowTy);
966   }
967   case TargetOpcode::G_SELECT:
968     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
969   case TargetOpcode::G_AND:
970   case TargetOpcode::G_OR:
971   case TargetOpcode::G_XOR: {
972     // Legalize bitwise operation:
973     // A = BinOp<Ty> B, C
974     // into:
975     // B1, ..., BN = G_UNMERGE_VALUES B
976     // C1, ..., CN = G_UNMERGE_VALUES C
977     // A1 = BinOp<Ty/N> B1, C2
978     // ...
979     // AN = BinOp<Ty/N> BN, CN
980     // A = G_MERGE_VALUES A1, ..., AN
981     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
982   }
983   case TargetOpcode::G_SHL:
984   case TargetOpcode::G_LSHR:
985   case TargetOpcode::G_ASHR:
986     return narrowScalarShift(MI, TypeIdx, NarrowTy);
987   case TargetOpcode::G_CTLZ:
988   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
989   case TargetOpcode::G_CTTZ:
990   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
991   case TargetOpcode::G_CTPOP:
992     if (TypeIdx == 1)
993       switch (MI.getOpcode()) {
994       case TargetOpcode::G_CTLZ:
995       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
996         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
997       case TargetOpcode::G_CTTZ:
998       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
999         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1000       case TargetOpcode::G_CTPOP:
1001         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1002       default:
1003         return UnableToLegalize;
1004       }
1005 
1006     Observer.changingInstr(MI);
1007     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1008     Observer.changedInstr(MI);
1009     return Legalized;
1010   case TargetOpcode::G_INTTOPTR:
1011     if (TypeIdx != 1)
1012       return UnableToLegalize;
1013 
1014     Observer.changingInstr(MI);
1015     narrowScalarSrc(MI, NarrowTy, 1);
1016     Observer.changedInstr(MI);
1017     return Legalized;
1018   case TargetOpcode::G_PTRTOINT:
1019     if (TypeIdx != 0)
1020       return UnableToLegalize;
1021 
1022     Observer.changingInstr(MI);
1023     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1024     Observer.changedInstr(MI);
1025     return Legalized;
1026   case TargetOpcode::G_PHI: {
1027     unsigned NumParts = SizeOp0 / NarrowSize;
1028     SmallVector<Register, 2> DstRegs(NumParts);
1029     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1030     Observer.changingInstr(MI);
1031     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1032       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1033       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1034       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1035                    SrcRegs[i / 2]);
1036     }
1037     MachineBasicBlock &MBB = *MI.getParent();
1038     MIRBuilder.setInsertPt(MBB, MI);
1039     for (unsigned i = 0; i < NumParts; ++i) {
1040       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1041       MachineInstrBuilder MIB =
1042           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1043       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1044         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1045     }
1046     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1047     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1048     Observer.changedInstr(MI);
1049     MI.eraseFromParent();
1050     return Legalized;
1051   }
1052   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1053   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1054     if (TypeIdx != 2)
1055       return UnableToLegalize;
1056 
1057     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1058     Observer.changingInstr(MI);
1059     narrowScalarSrc(MI, NarrowTy, OpIdx);
1060     Observer.changedInstr(MI);
1061     return Legalized;
1062   }
1063   case TargetOpcode::G_ICMP: {
1064     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1065     if (NarrowSize * 2 != SrcSize)
1066       return UnableToLegalize;
1067 
1068     Observer.changingInstr(MI);
1069     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1070     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1071     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1072 
1073     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1074     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1075     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1076 
1077     CmpInst::Predicate Pred =
1078         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1079     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1080 
1081     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1082       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1083       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1084       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1085       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1086       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1087     } else {
1088       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1089       MachineInstrBuilder CmpHEQ =
1090           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1091       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1092           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1093       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1094     }
1095     Observer.changedInstr(MI);
1096     MI.eraseFromParent();
1097     return Legalized;
1098   }
1099   case TargetOpcode::G_SEXT_INREG: {
1100     if (TypeIdx != 0)
1101       return UnableToLegalize;
1102 
1103     int64_t SizeInBits = MI.getOperand(2).getImm();
1104 
1105     // So long as the new type has more bits than the bits we're extending we
1106     // don't need to break it apart.
1107     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1108       Observer.changingInstr(MI);
1109       // We don't lose any non-extension bits by truncating the src and
1110       // sign-extending the dst.
1111       MachineOperand &MO1 = MI.getOperand(1);
1112       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1113       MO1.setReg(TruncMIB.getReg(0));
1114 
1115       MachineOperand &MO2 = MI.getOperand(0);
1116       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1117       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1118       MIRBuilder.buildSExt(MO2, DstExt);
1119       MO2.setReg(DstExt);
1120       Observer.changedInstr(MI);
1121       return Legalized;
1122     }
1123 
1124     // Break it apart. Components below the extension point are unmodified. The
1125     // component containing the extension point becomes a narrower SEXT_INREG.
1126     // Components above it are ashr'd from the component containing the
1127     // extension point.
1128     if (SizeOp0 % NarrowSize != 0)
1129       return UnableToLegalize;
1130     int NumParts = SizeOp0 / NarrowSize;
1131 
1132     // List the registers where the destination will be scattered.
1133     SmallVector<Register, 2> DstRegs;
1134     // List the registers where the source will be split.
1135     SmallVector<Register, 2> SrcRegs;
1136 
1137     // Create all the temporary registers.
1138     for (int i = 0; i < NumParts; ++i) {
1139       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1140 
1141       SrcRegs.push_back(SrcReg);
1142     }
1143 
1144     // Explode the big arguments into smaller chunks.
1145     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1146 
1147     Register AshrCstReg =
1148         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1149             .getReg(0);
1150     Register FullExtensionReg = 0;
1151     Register PartialExtensionReg = 0;
1152 
1153     // Do the operation on each small part.
1154     for (int i = 0; i < NumParts; ++i) {
1155       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1156         DstRegs.push_back(SrcRegs[i]);
1157       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1158         assert(PartialExtensionReg &&
1159                "Expected to visit partial extension before full");
1160         if (FullExtensionReg) {
1161           DstRegs.push_back(FullExtensionReg);
1162           continue;
1163         }
1164         DstRegs.push_back(
1165             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1166                 .getReg(0));
1167         FullExtensionReg = DstRegs.back();
1168       } else {
1169         DstRegs.push_back(
1170             MIRBuilder
1171                 .buildInstr(
1172                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1173                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1174                 .getReg(0));
1175         PartialExtensionReg = DstRegs.back();
1176       }
1177     }
1178 
1179     // Gather the destination registers into the final destination.
1180     Register DstReg = MI.getOperand(0).getReg();
1181     MIRBuilder.buildMerge(DstReg, DstRegs);
1182     MI.eraseFromParent();
1183     return Legalized;
1184   }
1185   case TargetOpcode::G_BSWAP:
1186   case TargetOpcode::G_BITREVERSE: {
1187     if (SizeOp0 % NarrowSize != 0)
1188       return UnableToLegalize;
1189 
1190     Observer.changingInstr(MI);
1191     SmallVector<Register, 2> SrcRegs, DstRegs;
1192     unsigned NumParts = SizeOp0 / NarrowSize;
1193     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1194 
1195     for (unsigned i = 0; i < NumParts; ++i) {
1196       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1197                                            {SrcRegs[NumParts - 1 - i]});
1198       DstRegs.push_back(DstPart.getReg(0));
1199     }
1200 
1201     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1202 
1203     Observer.changedInstr(MI);
1204     MI.eraseFromParent();
1205     return Legalized;
1206   }
1207   case TargetOpcode::G_PTRMASK: {
1208     if (TypeIdx != 1)
1209       return UnableToLegalize;
1210     Observer.changingInstr(MI);
1211     narrowScalarSrc(MI, NarrowTy, 2);
1212     Observer.changedInstr(MI);
1213     return Legalized;
1214   }
1215   }
1216 }
1217 
1218 Register LegalizerHelper::coerceToScalar(Register Val) {
1219   LLT Ty = MRI.getType(Val);
1220   if (Ty.isScalar())
1221     return Val;
1222 
1223   const DataLayout &DL = MIRBuilder.getDataLayout();
1224   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1225   if (Ty.isPointer()) {
1226     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1227       return Register();
1228     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1229   }
1230 
1231   Register NewVal = Val;
1232 
1233   assert(Ty.isVector());
1234   LLT EltTy = Ty.getElementType();
1235   if (EltTy.isPointer())
1236     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1237   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1238 }
1239 
1240 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1241                                      unsigned OpIdx, unsigned ExtOpcode) {
1242   MachineOperand &MO = MI.getOperand(OpIdx);
1243   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1244   MO.setReg(ExtB.getReg(0));
1245 }
1246 
1247 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1248                                       unsigned OpIdx) {
1249   MachineOperand &MO = MI.getOperand(OpIdx);
1250   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1251   MO.setReg(ExtB.getReg(0));
1252 }
1253 
1254 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1255                                      unsigned OpIdx, unsigned TruncOpcode) {
1256   MachineOperand &MO = MI.getOperand(OpIdx);
1257   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1258   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1259   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1260   MO.setReg(DstExt);
1261 }
1262 
1263 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1264                                       unsigned OpIdx, unsigned ExtOpcode) {
1265   MachineOperand &MO = MI.getOperand(OpIdx);
1266   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1267   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1268   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1269   MO.setReg(DstTrunc);
1270 }
1271 
1272 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1273                                             unsigned OpIdx) {
1274   MachineOperand &MO = MI.getOperand(OpIdx);
1275   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1276   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1277   MIRBuilder.buildExtract(MO, DstExt, 0);
1278   MO.setReg(DstExt);
1279 }
1280 
1281 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1282                                             unsigned OpIdx) {
1283   MachineOperand &MO = MI.getOperand(OpIdx);
1284 
1285   LLT OldTy = MRI.getType(MO.getReg());
1286   unsigned OldElts = OldTy.getNumElements();
1287   unsigned NewElts = MoreTy.getNumElements();
1288 
1289   unsigned NumParts = NewElts / OldElts;
1290 
1291   // Use concat_vectors if the result is a multiple of the number of elements.
1292   if (NumParts * OldElts == NewElts) {
1293     SmallVector<Register, 8> Parts;
1294     Parts.push_back(MO.getReg());
1295 
1296     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1297     for (unsigned I = 1; I != NumParts; ++I)
1298       Parts.push_back(ImpDef);
1299 
1300     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1301     MO.setReg(Concat.getReg(0));
1302     return;
1303   }
1304 
1305   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1306   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1307   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1308   MO.setReg(MoreReg);
1309 }
1310 
1311 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1312   MachineOperand &Op = MI.getOperand(OpIdx);
1313   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1314 }
1315 
1316 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1317   MachineOperand &MO = MI.getOperand(OpIdx);
1318   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1319   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1320   MIRBuilder.buildBitcast(MO, CastDst);
1321   MO.setReg(CastDst);
1322 }
1323 
1324 LegalizerHelper::LegalizeResult
1325 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1326                                         LLT WideTy) {
1327   if (TypeIdx != 1)
1328     return UnableToLegalize;
1329 
1330   Register DstReg = MI.getOperand(0).getReg();
1331   LLT DstTy = MRI.getType(DstReg);
1332   if (DstTy.isVector())
1333     return UnableToLegalize;
1334 
1335   Register Src1 = MI.getOperand(1).getReg();
1336   LLT SrcTy = MRI.getType(Src1);
1337   const int DstSize = DstTy.getSizeInBits();
1338   const int SrcSize = SrcTy.getSizeInBits();
1339   const int WideSize = WideTy.getSizeInBits();
1340   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1341 
1342   unsigned NumOps = MI.getNumOperands();
1343   unsigned NumSrc = MI.getNumOperands() - 1;
1344   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1345 
1346   if (WideSize >= DstSize) {
1347     // Directly pack the bits in the target type.
1348     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1349 
1350     for (unsigned I = 2; I != NumOps; ++I) {
1351       const unsigned Offset = (I - 1) * PartSize;
1352 
1353       Register SrcReg = MI.getOperand(I).getReg();
1354       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1355 
1356       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1357 
1358       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1359         MRI.createGenericVirtualRegister(WideTy);
1360 
1361       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1362       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1363       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1364       ResultReg = NextResult;
1365     }
1366 
1367     if (WideSize > DstSize)
1368       MIRBuilder.buildTrunc(DstReg, ResultReg);
1369     else if (DstTy.isPointer())
1370       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1371 
1372     MI.eraseFromParent();
1373     return Legalized;
1374   }
1375 
1376   // Unmerge the original values to the GCD type, and recombine to the next
1377   // multiple greater than the original type.
1378   //
1379   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1380   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1381   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1382   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1383   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1384   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1385   // %12:_(s12) = G_MERGE_VALUES %10, %11
1386   //
1387   // Padding with undef if necessary:
1388   //
1389   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1390   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1391   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1392   // %7:_(s2) = G_IMPLICIT_DEF
1393   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1394   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1395   // %10:_(s12) = G_MERGE_VALUES %8, %9
1396 
1397   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1398   LLT GCDTy = LLT::scalar(GCD);
1399 
1400   SmallVector<Register, 8> Parts;
1401   SmallVector<Register, 8> NewMergeRegs;
1402   SmallVector<Register, 8> Unmerges;
1403   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1404 
1405   // Decompose the original operands if they don't evenly divide.
1406   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1407     Register SrcReg = MI.getOperand(I).getReg();
1408     if (GCD == SrcSize) {
1409       Unmerges.push_back(SrcReg);
1410     } else {
1411       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1412       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1413         Unmerges.push_back(Unmerge.getReg(J));
1414     }
1415   }
1416 
1417   // Pad with undef to the next size that is a multiple of the requested size.
1418   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1419     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1420     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1421       Unmerges.push_back(UndefReg);
1422   }
1423 
1424   const int PartsPerGCD = WideSize / GCD;
1425 
1426   // Build merges of each piece.
1427   ArrayRef<Register> Slicer(Unmerges);
1428   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1429     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1430     NewMergeRegs.push_back(Merge.getReg(0));
1431   }
1432 
1433   // A truncate may be necessary if the requested type doesn't evenly divide the
1434   // original result type.
1435   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1436     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1437   } else {
1438     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1439     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1440   }
1441 
1442   MI.eraseFromParent();
1443   return Legalized;
1444 }
1445 
1446 LegalizerHelper::LegalizeResult
1447 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1448                                           LLT WideTy) {
1449   if (TypeIdx != 0)
1450     return UnableToLegalize;
1451 
1452   int NumDst = MI.getNumOperands() - 1;
1453   Register SrcReg = MI.getOperand(NumDst).getReg();
1454   LLT SrcTy = MRI.getType(SrcReg);
1455   if (SrcTy.isVector())
1456     return UnableToLegalize;
1457 
1458   Register Dst0Reg = MI.getOperand(0).getReg();
1459   LLT DstTy = MRI.getType(Dst0Reg);
1460   if (!DstTy.isScalar())
1461     return UnableToLegalize;
1462 
1463   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1464     if (SrcTy.isPointer()) {
1465       const DataLayout &DL = MIRBuilder.getDataLayout();
1466       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1467         LLVM_DEBUG(
1468             dbgs() << "Not casting non-integral address space integer\n");
1469         return UnableToLegalize;
1470       }
1471 
1472       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1473       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1474     }
1475 
1476     // Widen SrcTy to WideTy. This does not affect the result, but since the
1477     // user requested this size, it is probably better handled than SrcTy and
1478     // should reduce the total number of legalization artifacts
1479     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1480       SrcTy = WideTy;
1481       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1482     }
1483 
1484     // Theres no unmerge type to target. Directly extract the bits from the
1485     // source type
1486     unsigned DstSize = DstTy.getSizeInBits();
1487 
1488     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1489     for (int I = 1; I != NumDst; ++I) {
1490       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1491       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1492       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1493     }
1494 
1495     MI.eraseFromParent();
1496     return Legalized;
1497   }
1498 
1499   // Extend the source to a wider type.
1500   LLT LCMTy = getLCMType(SrcTy, WideTy);
1501 
1502   Register WideSrc = SrcReg;
1503   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1504     // TODO: If this is an integral address space, cast to integer and anyext.
1505     if (SrcTy.isPointer()) {
1506       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1507       return UnableToLegalize;
1508     }
1509 
1510     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1511   }
1512 
1513   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1514 
1515   // Create a sequence of unmerges to the original results. since we may have
1516   // widened the source, we will need to pad the results with dead defs to cover
1517   // the source register.
1518   // e.g. widen s16 to s32:
1519   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1520   //
1521   // =>
1522   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1523   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1524   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1525   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1526 
1527   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1528   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1529 
1530   for (int I = 0; I != NumUnmerge; ++I) {
1531     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1532 
1533     for (int J = 0; J != PartsPerUnmerge; ++J) {
1534       int Idx = I * PartsPerUnmerge + J;
1535       if (Idx < NumDst)
1536         MIB.addDef(MI.getOperand(Idx).getReg());
1537       else {
1538         // Create dead def for excess components.
1539         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1540       }
1541     }
1542 
1543     MIB.addUse(Unmerge.getReg(I));
1544   }
1545 
1546   MI.eraseFromParent();
1547   return Legalized;
1548 }
1549 
1550 LegalizerHelper::LegalizeResult
1551 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1552                                     LLT WideTy) {
1553   Register DstReg = MI.getOperand(0).getReg();
1554   Register SrcReg = MI.getOperand(1).getReg();
1555   LLT SrcTy = MRI.getType(SrcReg);
1556 
1557   LLT DstTy = MRI.getType(DstReg);
1558   unsigned Offset = MI.getOperand(2).getImm();
1559 
1560   if (TypeIdx == 0) {
1561     if (SrcTy.isVector() || DstTy.isVector())
1562       return UnableToLegalize;
1563 
1564     SrcOp Src(SrcReg);
1565     if (SrcTy.isPointer()) {
1566       // Extracts from pointers can be handled only if they are really just
1567       // simple integers.
1568       const DataLayout &DL = MIRBuilder.getDataLayout();
1569       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1570         return UnableToLegalize;
1571 
1572       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1573       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1574       SrcTy = SrcAsIntTy;
1575     }
1576 
1577     if (DstTy.isPointer())
1578       return UnableToLegalize;
1579 
1580     if (Offset == 0) {
1581       // Avoid a shift in the degenerate case.
1582       MIRBuilder.buildTrunc(DstReg,
1583                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1584       MI.eraseFromParent();
1585       return Legalized;
1586     }
1587 
1588     // Do a shift in the source type.
1589     LLT ShiftTy = SrcTy;
1590     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1591       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1592       ShiftTy = WideTy;
1593     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1594       return UnableToLegalize;
1595 
1596     auto LShr = MIRBuilder.buildLShr(
1597       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1598     MIRBuilder.buildTrunc(DstReg, LShr);
1599     MI.eraseFromParent();
1600     return Legalized;
1601   }
1602 
1603   if (SrcTy.isScalar()) {
1604     Observer.changingInstr(MI);
1605     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1606     Observer.changedInstr(MI);
1607     return Legalized;
1608   }
1609 
1610   if (!SrcTy.isVector())
1611     return UnableToLegalize;
1612 
1613   if (DstTy != SrcTy.getElementType())
1614     return UnableToLegalize;
1615 
1616   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1617     return UnableToLegalize;
1618 
1619   Observer.changingInstr(MI);
1620   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1621 
1622   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1623                           Offset);
1624   widenScalarDst(MI, WideTy.getScalarType(), 0);
1625   Observer.changedInstr(MI);
1626   return Legalized;
1627 }
1628 
1629 LegalizerHelper::LegalizeResult
1630 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1631                                    LLT WideTy) {
1632   if (TypeIdx != 0)
1633     return UnableToLegalize;
1634   Observer.changingInstr(MI);
1635   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1636   widenScalarDst(MI, WideTy);
1637   Observer.changedInstr(MI);
1638   return Legalized;
1639 }
1640 
1641 LegalizerHelper::LegalizeResult
1642 LegalizerHelper::widenScalarAddSubSat(MachineInstr &MI, unsigned TypeIdx,
1643                                       LLT WideTy) {
1644   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1645                   MI.getOpcode() == TargetOpcode::G_SSUBSAT;
1646   // We can convert this to:
1647   //   1. Any extend iN to iM
1648   //   2. SHL by M-N
1649   //   3. [US][ADD|SUB]SAT
1650   //   4. L/ASHR by M-N
1651   //
1652   // It may be more efficient to lower this to a min and a max operation in
1653   // the higher precision arithmetic if the promoted operation isn't legal,
1654   // but this decision is up to the target's lowering request.
1655   Register DstReg = MI.getOperand(0).getReg();
1656 
1657   unsigned NewBits = WideTy.getScalarSizeInBits();
1658   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1659 
1660   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1661   auto RHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1662   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1663   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1664   auto ShiftR = MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1665 
1666   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1667                                         {ShiftL, ShiftR}, MI.getFlags());
1668 
1669   // Use a shift that will preserve the number of sign bits when the trunc is
1670   // folded away.
1671   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1672                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1673 
1674   MIRBuilder.buildTrunc(DstReg, Result);
1675   MI.eraseFromParent();
1676   return Legalized;
1677 }
1678 
1679 LegalizerHelper::LegalizeResult
1680 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1681   switch (MI.getOpcode()) {
1682   default:
1683     return UnableToLegalize;
1684   case TargetOpcode::G_EXTRACT:
1685     return widenScalarExtract(MI, TypeIdx, WideTy);
1686   case TargetOpcode::G_INSERT:
1687     return widenScalarInsert(MI, TypeIdx, WideTy);
1688   case TargetOpcode::G_MERGE_VALUES:
1689     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1690   case TargetOpcode::G_UNMERGE_VALUES:
1691     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1692   case TargetOpcode::G_UADDO:
1693   case TargetOpcode::G_USUBO: {
1694     if (TypeIdx == 1)
1695       return UnableToLegalize; // TODO
1696     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1697     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1698     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1699                           ? TargetOpcode::G_ADD
1700                           : TargetOpcode::G_SUB;
1701     // Do the arithmetic in the larger type.
1702     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1703     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1704     APInt Mask =
1705         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1706     auto AndOp = MIRBuilder.buildAnd(
1707         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1708     // There is no overflow if the AndOp is the same as NewOp.
1709     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1710     // Now trunc the NewOp to the original result.
1711     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1712     MI.eraseFromParent();
1713     return Legalized;
1714   }
1715   case TargetOpcode::G_SADDSAT:
1716   case TargetOpcode::G_SSUBSAT:
1717   case TargetOpcode::G_UADDSAT:
1718   case TargetOpcode::G_USUBSAT:
1719     return widenScalarAddSubSat(MI, TypeIdx, WideTy);
1720   case TargetOpcode::G_CTTZ:
1721   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1722   case TargetOpcode::G_CTLZ:
1723   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1724   case TargetOpcode::G_CTPOP: {
1725     if (TypeIdx == 0) {
1726       Observer.changingInstr(MI);
1727       widenScalarDst(MI, WideTy, 0);
1728       Observer.changedInstr(MI);
1729       return Legalized;
1730     }
1731 
1732     Register SrcReg = MI.getOperand(1).getReg();
1733 
1734     // First ZEXT the input.
1735     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1736     LLT CurTy = MRI.getType(SrcReg);
1737     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1738       // The count is the same in the larger type except if the original
1739       // value was zero.  This can be handled by setting the bit just off
1740       // the top of the original type.
1741       auto TopBit =
1742           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1743       MIBSrc = MIRBuilder.buildOr(
1744         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1745     }
1746 
1747     // Perform the operation at the larger size.
1748     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1749     // This is already the correct result for CTPOP and CTTZs
1750     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1751         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1752       // The correct result is NewOp - (Difference in widety and current ty).
1753       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1754       MIBNewOp = MIRBuilder.buildSub(
1755           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1756     }
1757 
1758     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1759     MI.eraseFromParent();
1760     return Legalized;
1761   }
1762   case TargetOpcode::G_BSWAP: {
1763     Observer.changingInstr(MI);
1764     Register DstReg = MI.getOperand(0).getReg();
1765 
1766     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1767     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1768     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1769     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1770 
1771     MI.getOperand(0).setReg(DstExt);
1772 
1773     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1774 
1775     LLT Ty = MRI.getType(DstReg);
1776     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1777     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1778     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1779 
1780     MIRBuilder.buildTrunc(DstReg, ShrReg);
1781     Observer.changedInstr(MI);
1782     return Legalized;
1783   }
1784   case TargetOpcode::G_BITREVERSE: {
1785     Observer.changingInstr(MI);
1786 
1787     Register DstReg = MI.getOperand(0).getReg();
1788     LLT Ty = MRI.getType(DstReg);
1789     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1790 
1791     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1792     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1793     MI.getOperand(0).setReg(DstExt);
1794     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1795 
1796     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1797     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1798     MIRBuilder.buildTrunc(DstReg, Shift);
1799     Observer.changedInstr(MI);
1800     return Legalized;
1801   }
1802   case TargetOpcode::G_FREEZE:
1803     Observer.changingInstr(MI);
1804     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1805     widenScalarDst(MI, WideTy);
1806     Observer.changedInstr(MI);
1807     return Legalized;
1808 
1809   case TargetOpcode::G_ADD:
1810   case TargetOpcode::G_AND:
1811   case TargetOpcode::G_MUL:
1812   case TargetOpcode::G_OR:
1813   case TargetOpcode::G_XOR:
1814   case TargetOpcode::G_SUB:
1815     // Perform operation at larger width (any extension is fines here, high bits
1816     // don't affect the result) and then truncate the result back to the
1817     // original type.
1818     Observer.changingInstr(MI);
1819     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1820     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1821     widenScalarDst(MI, WideTy);
1822     Observer.changedInstr(MI);
1823     return Legalized;
1824 
1825   case TargetOpcode::G_SHL:
1826     Observer.changingInstr(MI);
1827 
1828     if (TypeIdx == 0) {
1829       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1830       widenScalarDst(MI, WideTy);
1831     } else {
1832       assert(TypeIdx == 1);
1833       // The "number of bits to shift" operand must preserve its value as an
1834       // unsigned integer:
1835       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1836     }
1837 
1838     Observer.changedInstr(MI);
1839     return Legalized;
1840 
1841   case TargetOpcode::G_SDIV:
1842   case TargetOpcode::G_SREM:
1843   case TargetOpcode::G_SMIN:
1844   case TargetOpcode::G_SMAX:
1845     Observer.changingInstr(MI);
1846     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1847     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1848     widenScalarDst(MI, WideTy);
1849     Observer.changedInstr(MI);
1850     return Legalized;
1851 
1852   case TargetOpcode::G_ASHR:
1853   case TargetOpcode::G_LSHR:
1854     Observer.changingInstr(MI);
1855 
1856     if (TypeIdx == 0) {
1857       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1858         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1859 
1860       widenScalarSrc(MI, WideTy, 1, CvtOp);
1861       widenScalarDst(MI, WideTy);
1862     } else {
1863       assert(TypeIdx == 1);
1864       // The "number of bits to shift" operand must preserve its value as an
1865       // unsigned integer:
1866       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1867     }
1868 
1869     Observer.changedInstr(MI);
1870     return Legalized;
1871   case TargetOpcode::G_UDIV:
1872   case TargetOpcode::G_UREM:
1873   case TargetOpcode::G_UMIN:
1874   case TargetOpcode::G_UMAX:
1875     Observer.changingInstr(MI);
1876     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1877     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1878     widenScalarDst(MI, WideTy);
1879     Observer.changedInstr(MI);
1880     return Legalized;
1881 
1882   case TargetOpcode::G_SELECT:
1883     Observer.changingInstr(MI);
1884     if (TypeIdx == 0) {
1885       // Perform operation at larger width (any extension is fine here, high
1886       // bits don't affect the result) and then truncate the result back to the
1887       // original type.
1888       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1889       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1890       widenScalarDst(MI, WideTy);
1891     } else {
1892       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1893       // Explicit extension is required here since high bits affect the result.
1894       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1895     }
1896     Observer.changedInstr(MI);
1897     return Legalized;
1898 
1899   case TargetOpcode::G_FPTOSI:
1900   case TargetOpcode::G_FPTOUI:
1901     Observer.changingInstr(MI);
1902 
1903     if (TypeIdx == 0)
1904       widenScalarDst(MI, WideTy);
1905     else
1906       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1907 
1908     Observer.changedInstr(MI);
1909     return Legalized;
1910   case TargetOpcode::G_SITOFP:
1911     Observer.changingInstr(MI);
1912 
1913     if (TypeIdx == 0)
1914       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1915     else
1916       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1917 
1918     Observer.changedInstr(MI);
1919     return Legalized;
1920   case TargetOpcode::G_UITOFP:
1921     Observer.changingInstr(MI);
1922 
1923     if (TypeIdx == 0)
1924       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1925     else
1926       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1927 
1928     Observer.changedInstr(MI);
1929     return Legalized;
1930   case TargetOpcode::G_LOAD:
1931   case TargetOpcode::G_SEXTLOAD:
1932   case TargetOpcode::G_ZEXTLOAD:
1933     Observer.changingInstr(MI);
1934     widenScalarDst(MI, WideTy);
1935     Observer.changedInstr(MI);
1936     return Legalized;
1937 
1938   case TargetOpcode::G_STORE: {
1939     if (TypeIdx != 0)
1940       return UnableToLegalize;
1941 
1942     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1943     if (!isPowerOf2_32(Ty.getSizeInBits()))
1944       return UnableToLegalize;
1945 
1946     Observer.changingInstr(MI);
1947 
1948     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1949       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1950     widenScalarSrc(MI, WideTy, 0, ExtType);
1951 
1952     Observer.changedInstr(MI);
1953     return Legalized;
1954   }
1955   case TargetOpcode::G_CONSTANT: {
1956     MachineOperand &SrcMO = MI.getOperand(1);
1957     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1958     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1959         MRI.getType(MI.getOperand(0).getReg()));
1960     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1961             ExtOpc == TargetOpcode::G_ANYEXT) &&
1962            "Illegal Extend");
1963     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1964     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1965                            ? SrcVal.sext(WideTy.getSizeInBits())
1966                            : SrcVal.zext(WideTy.getSizeInBits());
1967     Observer.changingInstr(MI);
1968     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1969 
1970     widenScalarDst(MI, WideTy);
1971     Observer.changedInstr(MI);
1972     return Legalized;
1973   }
1974   case TargetOpcode::G_FCONSTANT: {
1975     MachineOperand &SrcMO = MI.getOperand(1);
1976     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1977     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1978     bool LosesInfo;
1979     switch (WideTy.getSizeInBits()) {
1980     case 32:
1981       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1982                   &LosesInfo);
1983       break;
1984     case 64:
1985       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1986                   &LosesInfo);
1987       break;
1988     default:
1989       return UnableToLegalize;
1990     }
1991 
1992     assert(!LosesInfo && "extend should always be lossless");
1993 
1994     Observer.changingInstr(MI);
1995     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1996 
1997     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1998     Observer.changedInstr(MI);
1999     return Legalized;
2000   }
2001   case TargetOpcode::G_IMPLICIT_DEF: {
2002     Observer.changingInstr(MI);
2003     widenScalarDst(MI, WideTy);
2004     Observer.changedInstr(MI);
2005     return Legalized;
2006   }
2007   case TargetOpcode::G_BRCOND:
2008     Observer.changingInstr(MI);
2009     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2010     Observer.changedInstr(MI);
2011     return Legalized;
2012 
2013   case TargetOpcode::G_FCMP:
2014     Observer.changingInstr(MI);
2015     if (TypeIdx == 0)
2016       widenScalarDst(MI, WideTy);
2017     else {
2018       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2019       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2020     }
2021     Observer.changedInstr(MI);
2022     return Legalized;
2023 
2024   case TargetOpcode::G_ICMP:
2025     Observer.changingInstr(MI);
2026     if (TypeIdx == 0)
2027       widenScalarDst(MI, WideTy);
2028     else {
2029       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2030                                MI.getOperand(1).getPredicate()))
2031                                ? TargetOpcode::G_SEXT
2032                                : TargetOpcode::G_ZEXT;
2033       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2034       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2035     }
2036     Observer.changedInstr(MI);
2037     return Legalized;
2038 
2039   case TargetOpcode::G_PTR_ADD:
2040     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2041     Observer.changingInstr(MI);
2042     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2043     Observer.changedInstr(MI);
2044     return Legalized;
2045 
2046   case TargetOpcode::G_PHI: {
2047     assert(TypeIdx == 0 && "Expecting only Idx 0");
2048 
2049     Observer.changingInstr(MI);
2050     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2051       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2052       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2053       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2054     }
2055 
2056     MachineBasicBlock &MBB = *MI.getParent();
2057     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2058     widenScalarDst(MI, WideTy);
2059     Observer.changedInstr(MI);
2060     return Legalized;
2061   }
2062   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2063     if (TypeIdx == 0) {
2064       Register VecReg = MI.getOperand(1).getReg();
2065       LLT VecTy = MRI.getType(VecReg);
2066       Observer.changingInstr(MI);
2067 
2068       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2069                                      WideTy.getSizeInBits()),
2070                      1, TargetOpcode::G_SEXT);
2071 
2072       widenScalarDst(MI, WideTy, 0);
2073       Observer.changedInstr(MI);
2074       return Legalized;
2075     }
2076 
2077     if (TypeIdx != 2)
2078       return UnableToLegalize;
2079     Observer.changingInstr(MI);
2080     // TODO: Probably should be zext
2081     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2082     Observer.changedInstr(MI);
2083     return Legalized;
2084   }
2085   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2086     if (TypeIdx == 1) {
2087       Observer.changingInstr(MI);
2088 
2089       Register VecReg = MI.getOperand(1).getReg();
2090       LLT VecTy = MRI.getType(VecReg);
2091       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2092 
2093       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2094       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2095       widenScalarDst(MI, WideVecTy, 0);
2096       Observer.changedInstr(MI);
2097       return Legalized;
2098     }
2099 
2100     if (TypeIdx == 2) {
2101       Observer.changingInstr(MI);
2102       // TODO: Probably should be zext
2103       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2104       Observer.changedInstr(MI);
2105       return Legalized;
2106     }
2107 
2108     return UnableToLegalize;
2109   }
2110   case TargetOpcode::G_FADD:
2111   case TargetOpcode::G_FMUL:
2112   case TargetOpcode::G_FSUB:
2113   case TargetOpcode::G_FMA:
2114   case TargetOpcode::G_FMAD:
2115   case TargetOpcode::G_FNEG:
2116   case TargetOpcode::G_FABS:
2117   case TargetOpcode::G_FCANONICALIZE:
2118   case TargetOpcode::G_FMINNUM:
2119   case TargetOpcode::G_FMAXNUM:
2120   case TargetOpcode::G_FMINNUM_IEEE:
2121   case TargetOpcode::G_FMAXNUM_IEEE:
2122   case TargetOpcode::G_FMINIMUM:
2123   case TargetOpcode::G_FMAXIMUM:
2124   case TargetOpcode::G_FDIV:
2125   case TargetOpcode::G_FREM:
2126   case TargetOpcode::G_FCEIL:
2127   case TargetOpcode::G_FFLOOR:
2128   case TargetOpcode::G_FCOS:
2129   case TargetOpcode::G_FSIN:
2130   case TargetOpcode::G_FLOG10:
2131   case TargetOpcode::G_FLOG:
2132   case TargetOpcode::G_FLOG2:
2133   case TargetOpcode::G_FRINT:
2134   case TargetOpcode::G_FNEARBYINT:
2135   case TargetOpcode::G_FSQRT:
2136   case TargetOpcode::G_FEXP:
2137   case TargetOpcode::G_FEXP2:
2138   case TargetOpcode::G_FPOW:
2139   case TargetOpcode::G_INTRINSIC_TRUNC:
2140   case TargetOpcode::G_INTRINSIC_ROUND:
2141     assert(TypeIdx == 0);
2142     Observer.changingInstr(MI);
2143 
2144     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2145       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2146 
2147     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2148     Observer.changedInstr(MI);
2149     return Legalized;
2150   case TargetOpcode::G_INTTOPTR:
2151     if (TypeIdx != 1)
2152       return UnableToLegalize;
2153 
2154     Observer.changingInstr(MI);
2155     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2156     Observer.changedInstr(MI);
2157     return Legalized;
2158   case TargetOpcode::G_PTRTOINT:
2159     if (TypeIdx != 0)
2160       return UnableToLegalize;
2161 
2162     Observer.changingInstr(MI);
2163     widenScalarDst(MI, WideTy, 0);
2164     Observer.changedInstr(MI);
2165     return Legalized;
2166   case TargetOpcode::G_BUILD_VECTOR: {
2167     Observer.changingInstr(MI);
2168 
2169     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2170     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2171       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2172 
2173     // Avoid changing the result vector type if the source element type was
2174     // requested.
2175     if (TypeIdx == 1) {
2176       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2177       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2178     } else {
2179       widenScalarDst(MI, WideTy, 0);
2180     }
2181 
2182     Observer.changedInstr(MI);
2183     return Legalized;
2184   }
2185   case TargetOpcode::G_SEXT_INREG:
2186     if (TypeIdx != 0)
2187       return UnableToLegalize;
2188 
2189     Observer.changingInstr(MI);
2190     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2191     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2192     Observer.changedInstr(MI);
2193     return Legalized;
2194   case TargetOpcode::G_PTRMASK: {
2195     if (TypeIdx != 1)
2196       return UnableToLegalize;
2197     Observer.changingInstr(MI);
2198     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2199     Observer.changedInstr(MI);
2200     return Legalized;
2201   }
2202   }
2203 }
2204 
2205 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2206                              MachineIRBuilder &B, Register Src, LLT Ty) {
2207   auto Unmerge = B.buildUnmerge(Ty, Src);
2208   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2209     Pieces.push_back(Unmerge.getReg(I));
2210 }
2211 
2212 LegalizerHelper::LegalizeResult
2213 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2214   Register Dst = MI.getOperand(0).getReg();
2215   Register Src = MI.getOperand(1).getReg();
2216   LLT DstTy = MRI.getType(Dst);
2217   LLT SrcTy = MRI.getType(Src);
2218 
2219   if (SrcTy.isVector()) {
2220     LLT SrcEltTy = SrcTy.getElementType();
2221     SmallVector<Register, 8> SrcRegs;
2222 
2223     if (DstTy.isVector()) {
2224       int NumDstElt = DstTy.getNumElements();
2225       int NumSrcElt = SrcTy.getNumElements();
2226 
2227       LLT DstEltTy = DstTy.getElementType();
2228       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2229       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2230 
2231       // If there's an element size mismatch, insert intermediate casts to match
2232       // the result element type.
2233       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2234         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2235         //
2236         // =>
2237         //
2238         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2239         // %3:_(<2 x s8>) = G_BITCAST %2
2240         // %4:_(<2 x s8>) = G_BITCAST %3
2241         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2242         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2243         SrcPartTy = SrcEltTy;
2244       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2245         //
2246         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2247         //
2248         // =>
2249         //
2250         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2251         // %3:_(s16) = G_BITCAST %2
2252         // %4:_(s16) = G_BITCAST %3
2253         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2254         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2255         DstCastTy = DstEltTy;
2256       }
2257 
2258       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2259       for (Register &SrcReg : SrcRegs)
2260         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2261     } else
2262       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2263 
2264     MIRBuilder.buildMerge(Dst, SrcRegs);
2265     MI.eraseFromParent();
2266     return Legalized;
2267   }
2268 
2269   if (DstTy.isVector()) {
2270     SmallVector<Register, 8> SrcRegs;
2271     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2272     MIRBuilder.buildMerge(Dst, SrcRegs);
2273     MI.eraseFromParent();
2274     return Legalized;
2275   }
2276 
2277   return UnableToLegalize;
2278 }
2279 
2280 LegalizerHelper::LegalizeResult
2281 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2282   switch (MI.getOpcode()) {
2283   case TargetOpcode::G_LOAD: {
2284     if (TypeIdx != 0)
2285       return UnableToLegalize;
2286 
2287     Observer.changingInstr(MI);
2288     bitcastDst(MI, CastTy, 0);
2289     Observer.changedInstr(MI);
2290     return Legalized;
2291   }
2292   case TargetOpcode::G_STORE: {
2293     if (TypeIdx != 0)
2294       return UnableToLegalize;
2295 
2296     Observer.changingInstr(MI);
2297     bitcastSrc(MI, CastTy, 0);
2298     Observer.changedInstr(MI);
2299     return Legalized;
2300   }
2301   case TargetOpcode::G_SELECT: {
2302     if (TypeIdx != 0)
2303       return UnableToLegalize;
2304 
2305     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2306       LLVM_DEBUG(
2307           dbgs() << "bitcast action not implemented for vector select\n");
2308       return UnableToLegalize;
2309     }
2310 
2311     Observer.changingInstr(MI);
2312     bitcastSrc(MI, CastTy, 2);
2313     bitcastSrc(MI, CastTy, 3);
2314     bitcastDst(MI, CastTy, 0);
2315     Observer.changedInstr(MI);
2316     return Legalized;
2317   }
2318   case TargetOpcode::G_AND:
2319   case TargetOpcode::G_OR:
2320   case TargetOpcode::G_XOR: {
2321     Observer.changingInstr(MI);
2322     bitcastSrc(MI, CastTy, 1);
2323     bitcastSrc(MI, CastTy, 2);
2324     bitcastDst(MI, CastTy, 0);
2325     Observer.changedInstr(MI);
2326     return Legalized;
2327   }
2328   default:
2329     return UnableToLegalize;
2330   }
2331 }
2332 
2333 LegalizerHelper::LegalizeResult
2334 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2335   using namespace TargetOpcode;
2336 
2337   switch(MI.getOpcode()) {
2338   default:
2339     return UnableToLegalize;
2340   case TargetOpcode::G_BITCAST:
2341     return lowerBitcast(MI);
2342   case TargetOpcode::G_SREM:
2343   case TargetOpcode::G_UREM: {
2344     auto Quot =
2345         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2346                               {MI.getOperand(1), MI.getOperand(2)});
2347 
2348     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2349     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2350     MI.eraseFromParent();
2351     return Legalized;
2352   }
2353   case TargetOpcode::G_SADDO:
2354   case TargetOpcode::G_SSUBO:
2355     return lowerSADDO_SSUBO(MI);
2356   case TargetOpcode::G_SMULO:
2357   case TargetOpcode::G_UMULO: {
2358     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2359     // result.
2360     Register Res = MI.getOperand(0).getReg();
2361     Register Overflow = MI.getOperand(1).getReg();
2362     Register LHS = MI.getOperand(2).getReg();
2363     Register RHS = MI.getOperand(3).getReg();
2364 
2365     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2366                           ? TargetOpcode::G_SMULH
2367                           : TargetOpcode::G_UMULH;
2368 
2369     Observer.changingInstr(MI);
2370     const auto &TII = MIRBuilder.getTII();
2371     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2372     MI.RemoveOperand(1);
2373     Observer.changedInstr(MI);
2374 
2375     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2376 
2377     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2378     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2379 
2380     // For *signed* multiply, overflow is detected by checking:
2381     // (hi != (lo >> bitwidth-1))
2382     if (Opcode == TargetOpcode::G_SMULH) {
2383       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2384       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2385       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2386     } else {
2387       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2388     }
2389     return Legalized;
2390   }
2391   case TargetOpcode::G_FNEG: {
2392     // TODO: Handle vector types once we are able to
2393     // represent them.
2394     if (Ty.isVector())
2395       return UnableToLegalize;
2396     Register Res = MI.getOperand(0).getReg();
2397     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2398     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2399     if (!ZeroTy)
2400       return UnableToLegalize;
2401     ConstantFP &ZeroForNegation =
2402         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2403     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2404     Register SubByReg = MI.getOperand(1).getReg();
2405     Register ZeroReg = Zero.getReg(0);
2406     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2407     MI.eraseFromParent();
2408     return Legalized;
2409   }
2410   case TargetOpcode::G_FSUB: {
2411     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2412     // First, check if G_FNEG is marked as Lower. If so, we may
2413     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2414     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2415       return UnableToLegalize;
2416     Register Res = MI.getOperand(0).getReg();
2417     Register LHS = MI.getOperand(1).getReg();
2418     Register RHS = MI.getOperand(2).getReg();
2419     Register Neg = MRI.createGenericVirtualRegister(Ty);
2420     MIRBuilder.buildFNeg(Neg, RHS);
2421     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2422     MI.eraseFromParent();
2423     return Legalized;
2424   }
2425   case TargetOpcode::G_FMAD:
2426     return lowerFMad(MI);
2427   case TargetOpcode::G_FFLOOR:
2428     return lowerFFloor(MI);
2429   case TargetOpcode::G_INTRINSIC_ROUND:
2430     return lowerIntrinsicRound(MI);
2431   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2432     Register OldValRes = MI.getOperand(0).getReg();
2433     Register SuccessRes = MI.getOperand(1).getReg();
2434     Register Addr = MI.getOperand(2).getReg();
2435     Register CmpVal = MI.getOperand(3).getReg();
2436     Register NewVal = MI.getOperand(4).getReg();
2437     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2438                                   **MI.memoperands_begin());
2439     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2440     MI.eraseFromParent();
2441     return Legalized;
2442   }
2443   case TargetOpcode::G_LOAD:
2444   case TargetOpcode::G_SEXTLOAD:
2445   case TargetOpcode::G_ZEXTLOAD: {
2446     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2447     Register DstReg = MI.getOperand(0).getReg();
2448     Register PtrReg = MI.getOperand(1).getReg();
2449     LLT DstTy = MRI.getType(DstReg);
2450     auto &MMO = **MI.memoperands_begin();
2451 
2452     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2453       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2454         // This load needs splitting into power of 2 sized loads.
2455         if (DstTy.isVector())
2456           return UnableToLegalize;
2457         if (isPowerOf2_32(DstTy.getSizeInBits()))
2458           return UnableToLegalize; // Don't know what we're being asked to do.
2459 
2460         // Our strategy here is to generate anyextending loads for the smaller
2461         // types up to next power-2 result type, and then combine the two larger
2462         // result values together, before truncating back down to the non-pow-2
2463         // type.
2464         // E.g. v1 = i24 load =>
2465         // v2 = i32 zextload (2 byte)
2466         // v3 = i32 load (1 byte)
2467         // v4 = i32 shl v3, 16
2468         // v5 = i32 or v4, v2
2469         // v1 = i24 trunc v5
2470         // By doing this we generate the correct truncate which should get
2471         // combined away as an artifact with a matching extend.
2472         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2473         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2474 
2475         MachineFunction &MF = MIRBuilder.getMF();
2476         MachineMemOperand *LargeMMO =
2477             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2478         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2479             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2480 
2481         LLT PtrTy = MRI.getType(PtrReg);
2482         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2483         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2484         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2485         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2486         auto LargeLoad = MIRBuilder.buildLoadInstr(
2487             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2488 
2489         auto OffsetCst = MIRBuilder.buildConstant(
2490             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2491         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2492         auto SmallPtr =
2493             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2494         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2495                                               *SmallMMO);
2496 
2497         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2498         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2499         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2500         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2501         MI.eraseFromParent();
2502         return Legalized;
2503       }
2504       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2505       MI.eraseFromParent();
2506       return Legalized;
2507     }
2508 
2509     if (DstTy.isScalar()) {
2510       Register TmpReg =
2511           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2512       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2513       switch (MI.getOpcode()) {
2514       default:
2515         llvm_unreachable("Unexpected opcode");
2516       case TargetOpcode::G_LOAD:
2517         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2518         break;
2519       case TargetOpcode::G_SEXTLOAD:
2520         MIRBuilder.buildSExt(DstReg, TmpReg);
2521         break;
2522       case TargetOpcode::G_ZEXTLOAD:
2523         MIRBuilder.buildZExt(DstReg, TmpReg);
2524         break;
2525       }
2526       MI.eraseFromParent();
2527       return Legalized;
2528     }
2529 
2530     return UnableToLegalize;
2531   }
2532   case TargetOpcode::G_STORE: {
2533     // Lower a non-power of 2 store into multiple pow-2 stores.
2534     // E.g. split an i24 store into an i16 store + i8 store.
2535     // We do this by first extending the stored value to the next largest power
2536     // of 2 type, and then using truncating stores to store the components.
2537     // By doing this, likewise with G_LOAD, generate an extend that can be
2538     // artifact-combined away instead of leaving behind extracts.
2539     Register SrcReg = MI.getOperand(0).getReg();
2540     Register PtrReg = MI.getOperand(1).getReg();
2541     LLT SrcTy = MRI.getType(SrcReg);
2542     MachineMemOperand &MMO = **MI.memoperands_begin();
2543     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2544       return UnableToLegalize;
2545     if (SrcTy.isVector())
2546       return UnableToLegalize;
2547     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2548       return UnableToLegalize; // Don't know what we're being asked to do.
2549 
2550     // Extend to the next pow-2.
2551     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2552     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2553 
2554     // Obtain the smaller value by shifting away the larger value.
2555     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2556     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2557     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2558     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2559 
2560     // Generate the PtrAdd and truncating stores.
2561     LLT PtrTy = MRI.getType(PtrReg);
2562     auto OffsetCst = MIRBuilder.buildConstant(
2563             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2564     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2565     auto SmallPtr =
2566         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2567 
2568     MachineFunction &MF = MIRBuilder.getMF();
2569     MachineMemOperand *LargeMMO =
2570         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2571     MachineMemOperand *SmallMMO =
2572         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2573     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2574     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2575     MI.eraseFromParent();
2576     return Legalized;
2577   }
2578   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2579   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2580   case TargetOpcode::G_CTLZ:
2581   case TargetOpcode::G_CTTZ:
2582   case TargetOpcode::G_CTPOP:
2583     return lowerBitCount(MI, TypeIdx, Ty);
2584   case G_UADDO: {
2585     Register Res = MI.getOperand(0).getReg();
2586     Register CarryOut = MI.getOperand(1).getReg();
2587     Register LHS = MI.getOperand(2).getReg();
2588     Register RHS = MI.getOperand(3).getReg();
2589 
2590     MIRBuilder.buildAdd(Res, LHS, RHS);
2591     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2592 
2593     MI.eraseFromParent();
2594     return Legalized;
2595   }
2596   case G_UADDE: {
2597     Register Res = MI.getOperand(0).getReg();
2598     Register CarryOut = MI.getOperand(1).getReg();
2599     Register LHS = MI.getOperand(2).getReg();
2600     Register RHS = MI.getOperand(3).getReg();
2601     Register CarryIn = MI.getOperand(4).getReg();
2602     LLT Ty = MRI.getType(Res);
2603 
2604     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2605     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2606     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2607     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2608 
2609     MI.eraseFromParent();
2610     return Legalized;
2611   }
2612   case G_USUBO: {
2613     Register Res = MI.getOperand(0).getReg();
2614     Register BorrowOut = MI.getOperand(1).getReg();
2615     Register LHS = MI.getOperand(2).getReg();
2616     Register RHS = MI.getOperand(3).getReg();
2617 
2618     MIRBuilder.buildSub(Res, LHS, RHS);
2619     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2620 
2621     MI.eraseFromParent();
2622     return Legalized;
2623   }
2624   case G_USUBE: {
2625     Register Res = MI.getOperand(0).getReg();
2626     Register BorrowOut = MI.getOperand(1).getReg();
2627     Register LHS = MI.getOperand(2).getReg();
2628     Register RHS = MI.getOperand(3).getReg();
2629     Register BorrowIn = MI.getOperand(4).getReg();
2630     const LLT CondTy = MRI.getType(BorrowOut);
2631     const LLT Ty = MRI.getType(Res);
2632 
2633     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2634     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2635     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2636 
2637     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2638     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2639     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2640 
2641     MI.eraseFromParent();
2642     return Legalized;
2643   }
2644   case G_UITOFP:
2645     return lowerUITOFP(MI, TypeIdx, Ty);
2646   case G_SITOFP:
2647     return lowerSITOFP(MI, TypeIdx, Ty);
2648   case G_FPTOUI:
2649     return lowerFPTOUI(MI, TypeIdx, Ty);
2650   case G_FPTOSI:
2651     return lowerFPTOSI(MI);
2652   case G_FPTRUNC:
2653     return lowerFPTRUNC(MI, TypeIdx, Ty);
2654   case G_SMIN:
2655   case G_SMAX:
2656   case G_UMIN:
2657   case G_UMAX:
2658     return lowerMinMax(MI, TypeIdx, Ty);
2659   case G_FCOPYSIGN:
2660     return lowerFCopySign(MI, TypeIdx, Ty);
2661   case G_FMINNUM:
2662   case G_FMAXNUM:
2663     return lowerFMinNumMaxNum(MI);
2664   case G_MERGE_VALUES:
2665     return lowerMergeValues(MI);
2666   case G_UNMERGE_VALUES:
2667     return lowerUnmergeValues(MI);
2668   case TargetOpcode::G_SEXT_INREG: {
2669     assert(MI.getOperand(2).isImm() && "Expected immediate");
2670     int64_t SizeInBits = MI.getOperand(2).getImm();
2671 
2672     Register DstReg = MI.getOperand(0).getReg();
2673     Register SrcReg = MI.getOperand(1).getReg();
2674     LLT DstTy = MRI.getType(DstReg);
2675     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2676 
2677     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2678     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2679     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2680     MI.eraseFromParent();
2681     return Legalized;
2682   }
2683   case G_SHUFFLE_VECTOR:
2684     return lowerShuffleVector(MI);
2685   case G_DYN_STACKALLOC:
2686     return lowerDynStackAlloc(MI);
2687   case G_EXTRACT:
2688     return lowerExtract(MI);
2689   case G_INSERT:
2690     return lowerInsert(MI);
2691   case G_BSWAP:
2692     return lowerBswap(MI);
2693   case G_BITREVERSE:
2694     return lowerBitreverse(MI);
2695   case G_READ_REGISTER:
2696   case G_WRITE_REGISTER:
2697     return lowerReadWriteRegister(MI);
2698   }
2699 }
2700 
2701 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2702     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2703   SmallVector<Register, 2> DstRegs;
2704 
2705   unsigned NarrowSize = NarrowTy.getSizeInBits();
2706   Register DstReg = MI.getOperand(0).getReg();
2707   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2708   int NumParts = Size / NarrowSize;
2709   // FIXME: Don't know how to handle the situation where the small vectors
2710   // aren't all the same size yet.
2711   if (Size % NarrowSize != 0)
2712     return UnableToLegalize;
2713 
2714   for (int i = 0; i < NumParts; ++i) {
2715     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2716     MIRBuilder.buildUndef(TmpReg);
2717     DstRegs.push_back(TmpReg);
2718   }
2719 
2720   if (NarrowTy.isVector())
2721     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2722   else
2723     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2724 
2725   MI.eraseFromParent();
2726   return Legalized;
2727 }
2728 
2729 // Handle splitting vector operations which need to have the same number of
2730 // elements in each type index, but each type index may have a different element
2731 // type.
2732 //
2733 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2734 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2735 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2736 //
2737 // Also handles some irregular breakdown cases, e.g.
2738 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2739 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2740 //             s64 = G_SHL s64, s32
2741 LegalizerHelper::LegalizeResult
2742 LegalizerHelper::fewerElementsVectorMultiEltType(
2743   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2744   if (TypeIdx != 0)
2745     return UnableToLegalize;
2746 
2747   const LLT NarrowTy0 = NarrowTyArg;
2748   const unsigned NewNumElts =
2749       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2750 
2751   const Register DstReg = MI.getOperand(0).getReg();
2752   LLT DstTy = MRI.getType(DstReg);
2753   LLT LeftoverTy0;
2754 
2755   // All of the operands need to have the same number of elements, so if we can
2756   // determine a type breakdown for the result type, we can for all of the
2757   // source types.
2758   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2759   if (NumParts < 0)
2760     return UnableToLegalize;
2761 
2762   SmallVector<MachineInstrBuilder, 4> NewInsts;
2763 
2764   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2765   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2766 
2767   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2768     Register SrcReg = MI.getOperand(I).getReg();
2769     LLT SrcTyI = MRI.getType(SrcReg);
2770     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2771     LLT LeftoverTyI;
2772 
2773     // Split this operand into the requested typed registers, and any leftover
2774     // required to reproduce the original type.
2775     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2776                       LeftoverRegs))
2777       return UnableToLegalize;
2778 
2779     if (I == 1) {
2780       // For the first operand, create an instruction for each part and setup
2781       // the result.
2782       for (Register PartReg : PartRegs) {
2783         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2784         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2785                                .addDef(PartDstReg)
2786                                .addUse(PartReg));
2787         DstRegs.push_back(PartDstReg);
2788       }
2789 
2790       for (Register LeftoverReg : LeftoverRegs) {
2791         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2792         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2793                                .addDef(PartDstReg)
2794                                .addUse(LeftoverReg));
2795         LeftoverDstRegs.push_back(PartDstReg);
2796       }
2797     } else {
2798       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2799 
2800       // Add the newly created operand splits to the existing instructions. The
2801       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2802       // pieces.
2803       unsigned InstCount = 0;
2804       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2805         NewInsts[InstCount++].addUse(PartRegs[J]);
2806       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2807         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2808     }
2809 
2810     PartRegs.clear();
2811     LeftoverRegs.clear();
2812   }
2813 
2814   // Insert the newly built operations and rebuild the result register.
2815   for (auto &MIB : NewInsts)
2816     MIRBuilder.insertInstr(MIB);
2817 
2818   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2819 
2820   MI.eraseFromParent();
2821   return Legalized;
2822 }
2823 
2824 LegalizerHelper::LegalizeResult
2825 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2826                                           LLT NarrowTy) {
2827   if (TypeIdx != 0)
2828     return UnableToLegalize;
2829 
2830   Register DstReg = MI.getOperand(0).getReg();
2831   Register SrcReg = MI.getOperand(1).getReg();
2832   LLT DstTy = MRI.getType(DstReg);
2833   LLT SrcTy = MRI.getType(SrcReg);
2834 
2835   LLT NarrowTy0 = NarrowTy;
2836   LLT NarrowTy1;
2837   unsigned NumParts;
2838 
2839   if (NarrowTy.isVector()) {
2840     // Uneven breakdown not handled.
2841     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2842     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2843       return UnableToLegalize;
2844 
2845     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2846   } else {
2847     NumParts = DstTy.getNumElements();
2848     NarrowTy1 = SrcTy.getElementType();
2849   }
2850 
2851   SmallVector<Register, 4> SrcRegs, DstRegs;
2852   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2853 
2854   for (unsigned I = 0; I < NumParts; ++I) {
2855     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2856     MachineInstr *NewInst =
2857         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2858 
2859     NewInst->setFlags(MI.getFlags());
2860     DstRegs.push_back(DstReg);
2861   }
2862 
2863   if (NarrowTy.isVector())
2864     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2865   else
2866     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2867 
2868   MI.eraseFromParent();
2869   return Legalized;
2870 }
2871 
2872 LegalizerHelper::LegalizeResult
2873 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2874                                         LLT NarrowTy) {
2875   Register DstReg = MI.getOperand(0).getReg();
2876   Register Src0Reg = MI.getOperand(2).getReg();
2877   LLT DstTy = MRI.getType(DstReg);
2878   LLT SrcTy = MRI.getType(Src0Reg);
2879 
2880   unsigned NumParts;
2881   LLT NarrowTy0, NarrowTy1;
2882 
2883   if (TypeIdx == 0) {
2884     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2885     unsigned OldElts = DstTy.getNumElements();
2886 
2887     NarrowTy0 = NarrowTy;
2888     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2889     NarrowTy1 = NarrowTy.isVector() ?
2890       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2891       SrcTy.getElementType();
2892 
2893   } else {
2894     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2895     unsigned OldElts = SrcTy.getNumElements();
2896 
2897     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2898       NarrowTy.getNumElements();
2899     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2900                             DstTy.getScalarSizeInBits());
2901     NarrowTy1 = NarrowTy;
2902   }
2903 
2904   // FIXME: Don't know how to handle the situation where the small vectors
2905   // aren't all the same size yet.
2906   if (NarrowTy1.isVector() &&
2907       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2908     return UnableToLegalize;
2909 
2910   CmpInst::Predicate Pred
2911     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2912 
2913   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2914   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2915   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2916 
2917   for (unsigned I = 0; I < NumParts; ++I) {
2918     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2919     DstRegs.push_back(DstReg);
2920 
2921     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2922       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2923     else {
2924       MachineInstr *NewCmp
2925         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2926       NewCmp->setFlags(MI.getFlags());
2927     }
2928   }
2929 
2930   if (NarrowTy1.isVector())
2931     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2932   else
2933     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2934 
2935   MI.eraseFromParent();
2936   return Legalized;
2937 }
2938 
2939 LegalizerHelper::LegalizeResult
2940 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2941                                            LLT NarrowTy) {
2942   Register DstReg = MI.getOperand(0).getReg();
2943   Register CondReg = MI.getOperand(1).getReg();
2944 
2945   unsigned NumParts = 0;
2946   LLT NarrowTy0, NarrowTy1;
2947 
2948   LLT DstTy = MRI.getType(DstReg);
2949   LLT CondTy = MRI.getType(CondReg);
2950   unsigned Size = DstTy.getSizeInBits();
2951 
2952   assert(TypeIdx == 0 || CondTy.isVector());
2953 
2954   if (TypeIdx == 0) {
2955     NarrowTy0 = NarrowTy;
2956     NarrowTy1 = CondTy;
2957 
2958     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2959     // FIXME: Don't know how to handle the situation where the small vectors
2960     // aren't all the same size yet.
2961     if (Size % NarrowSize != 0)
2962       return UnableToLegalize;
2963 
2964     NumParts = Size / NarrowSize;
2965 
2966     // Need to break down the condition type
2967     if (CondTy.isVector()) {
2968       if (CondTy.getNumElements() == NumParts)
2969         NarrowTy1 = CondTy.getElementType();
2970       else
2971         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2972                                 CondTy.getScalarSizeInBits());
2973     }
2974   } else {
2975     NumParts = CondTy.getNumElements();
2976     if (NarrowTy.isVector()) {
2977       // TODO: Handle uneven breakdown.
2978       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2979         return UnableToLegalize;
2980 
2981       return UnableToLegalize;
2982     } else {
2983       NarrowTy0 = DstTy.getElementType();
2984       NarrowTy1 = NarrowTy;
2985     }
2986   }
2987 
2988   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2989   if (CondTy.isVector())
2990     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2991 
2992   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2993   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2994 
2995   for (unsigned i = 0; i < NumParts; ++i) {
2996     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2997     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2998                            Src1Regs[i], Src2Regs[i]);
2999     DstRegs.push_back(DstReg);
3000   }
3001 
3002   if (NarrowTy0.isVector())
3003     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3004   else
3005     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3006 
3007   MI.eraseFromParent();
3008   return Legalized;
3009 }
3010 
3011 LegalizerHelper::LegalizeResult
3012 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3013                                         LLT NarrowTy) {
3014   const Register DstReg = MI.getOperand(0).getReg();
3015   LLT PhiTy = MRI.getType(DstReg);
3016   LLT LeftoverTy;
3017 
3018   // All of the operands need to have the same number of elements, so if we can
3019   // determine a type breakdown for the result type, we can for all of the
3020   // source types.
3021   int NumParts, NumLeftover;
3022   std::tie(NumParts, NumLeftover)
3023     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3024   if (NumParts < 0)
3025     return UnableToLegalize;
3026 
3027   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3028   SmallVector<MachineInstrBuilder, 4> NewInsts;
3029 
3030   const int TotalNumParts = NumParts + NumLeftover;
3031 
3032   // Insert the new phis in the result block first.
3033   for (int I = 0; I != TotalNumParts; ++I) {
3034     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3035     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3036     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3037                        .addDef(PartDstReg));
3038     if (I < NumParts)
3039       DstRegs.push_back(PartDstReg);
3040     else
3041       LeftoverDstRegs.push_back(PartDstReg);
3042   }
3043 
3044   MachineBasicBlock *MBB = MI.getParent();
3045   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3046   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3047 
3048   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3049 
3050   // Insert code to extract the incoming values in each predecessor block.
3051   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3052     PartRegs.clear();
3053     LeftoverRegs.clear();
3054 
3055     Register SrcReg = MI.getOperand(I).getReg();
3056     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3057     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3058 
3059     LLT Unused;
3060     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3061                       LeftoverRegs))
3062       return UnableToLegalize;
3063 
3064     // Add the newly created operand splits to the existing instructions. The
3065     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3066     // pieces.
3067     for (int J = 0; J != TotalNumParts; ++J) {
3068       MachineInstrBuilder MIB = NewInsts[J];
3069       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3070       MIB.addMBB(&OpMBB);
3071     }
3072   }
3073 
3074   MI.eraseFromParent();
3075   return Legalized;
3076 }
3077 
3078 LegalizerHelper::LegalizeResult
3079 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3080                                                   unsigned TypeIdx,
3081                                                   LLT NarrowTy) {
3082   if (TypeIdx != 1)
3083     return UnableToLegalize;
3084 
3085   const int NumDst = MI.getNumOperands() - 1;
3086   const Register SrcReg = MI.getOperand(NumDst).getReg();
3087   LLT SrcTy = MRI.getType(SrcReg);
3088 
3089   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3090 
3091   // TODO: Create sequence of extracts.
3092   if (DstTy == NarrowTy)
3093     return UnableToLegalize;
3094 
3095   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3096   if (DstTy == GCDTy) {
3097     // This would just be a copy of the same unmerge.
3098     // TODO: Create extracts, pad with undef and create intermediate merges.
3099     return UnableToLegalize;
3100   }
3101 
3102   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3103   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3104   const int PartsPerUnmerge = NumDst / NumUnmerge;
3105 
3106   for (int I = 0; I != NumUnmerge; ++I) {
3107     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3108 
3109     for (int J = 0; J != PartsPerUnmerge; ++J)
3110       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3111     MIB.addUse(Unmerge.getReg(I));
3112   }
3113 
3114   MI.eraseFromParent();
3115   return Legalized;
3116 }
3117 
3118 LegalizerHelper::LegalizeResult
3119 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3120                                                 unsigned TypeIdx,
3121                                                 LLT NarrowTy) {
3122   assert(TypeIdx == 0 && "not a vector type index");
3123   Register DstReg = MI.getOperand(0).getReg();
3124   LLT DstTy = MRI.getType(DstReg);
3125   LLT SrcTy = DstTy.getElementType();
3126 
3127   int DstNumElts = DstTy.getNumElements();
3128   int NarrowNumElts = NarrowTy.getNumElements();
3129   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3130   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3131 
3132   SmallVector<Register, 8> ConcatOps;
3133   SmallVector<Register, 8> SubBuildVector;
3134 
3135   Register UndefReg;
3136   if (WidenedDstTy != DstTy)
3137     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3138 
3139   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3140   // necessary.
3141   //
3142   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3143   //   -> <2 x s16>
3144   //
3145   // %4:_(s16) = G_IMPLICIT_DEF
3146   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3147   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3148   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3149   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3150   for (int I = 0; I != NumConcat; ++I) {
3151     for (int J = 0; J != NarrowNumElts; ++J) {
3152       int SrcIdx = NarrowNumElts * I + J;
3153 
3154       if (SrcIdx < DstNumElts) {
3155         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3156         SubBuildVector.push_back(SrcReg);
3157       } else
3158         SubBuildVector.push_back(UndefReg);
3159     }
3160 
3161     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3162     ConcatOps.push_back(BuildVec.getReg(0));
3163     SubBuildVector.clear();
3164   }
3165 
3166   if (DstTy == WidenedDstTy)
3167     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3168   else {
3169     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3170     MIRBuilder.buildExtract(DstReg, Concat, 0);
3171   }
3172 
3173   MI.eraseFromParent();
3174   return Legalized;
3175 }
3176 
3177 LegalizerHelper::LegalizeResult
3178 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3179                                       LLT NarrowTy) {
3180   // FIXME: Don't know how to handle secondary types yet.
3181   if (TypeIdx != 0)
3182     return UnableToLegalize;
3183 
3184   MachineMemOperand *MMO = *MI.memoperands_begin();
3185 
3186   // This implementation doesn't work for atomics. Give up instead of doing
3187   // something invalid.
3188   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3189       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3190     return UnableToLegalize;
3191 
3192   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3193   Register ValReg = MI.getOperand(0).getReg();
3194   Register AddrReg = MI.getOperand(1).getReg();
3195   LLT ValTy = MRI.getType(ValReg);
3196 
3197   // FIXME: Do we need a distinct NarrowMemory legalize action?
3198   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3199     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3200     return UnableToLegalize;
3201   }
3202 
3203   int NumParts = -1;
3204   int NumLeftover = -1;
3205   LLT LeftoverTy;
3206   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3207   if (IsLoad) {
3208     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3209   } else {
3210     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3211                      NarrowLeftoverRegs)) {
3212       NumParts = NarrowRegs.size();
3213       NumLeftover = NarrowLeftoverRegs.size();
3214     }
3215   }
3216 
3217   if (NumParts == -1)
3218     return UnableToLegalize;
3219 
3220   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3221 
3222   unsigned TotalSize = ValTy.getSizeInBits();
3223 
3224   // Split the load/store into PartTy sized pieces starting at Offset. If this
3225   // is a load, return the new registers in ValRegs. For a store, each elements
3226   // of ValRegs should be PartTy. Returns the next offset that needs to be
3227   // handled.
3228   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3229                              unsigned Offset) -> unsigned {
3230     MachineFunction &MF = MIRBuilder.getMF();
3231     unsigned PartSize = PartTy.getSizeInBits();
3232     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3233          Offset += PartSize, ++Idx) {
3234       unsigned ByteSize = PartSize / 8;
3235       unsigned ByteOffset = Offset / 8;
3236       Register NewAddrReg;
3237 
3238       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3239 
3240       MachineMemOperand *NewMMO =
3241         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3242 
3243       if (IsLoad) {
3244         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3245         ValRegs.push_back(Dst);
3246         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3247       } else {
3248         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3249       }
3250     }
3251 
3252     return Offset;
3253   };
3254 
3255   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3256 
3257   // Handle the rest of the register if this isn't an even type breakdown.
3258   if (LeftoverTy.isValid())
3259     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3260 
3261   if (IsLoad) {
3262     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3263                 LeftoverTy, NarrowLeftoverRegs);
3264   }
3265 
3266   MI.eraseFromParent();
3267   return Legalized;
3268 }
3269 
3270 LegalizerHelper::LegalizeResult
3271 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3272                                       LLT NarrowTy) {
3273   assert(TypeIdx == 0 && "only one type index expected");
3274 
3275   const unsigned Opc = MI.getOpcode();
3276   const int NumOps = MI.getNumOperands() - 1;
3277   const Register DstReg = MI.getOperand(0).getReg();
3278   const unsigned Flags = MI.getFlags();
3279   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3280   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3281 
3282   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3283 
3284   // First of all check whether we are narrowing (changing the element type)
3285   // or reducing the vector elements
3286   const LLT DstTy = MRI.getType(DstReg);
3287   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3288 
3289   SmallVector<Register, 8> ExtractedRegs[3];
3290   SmallVector<Register, 8> Parts;
3291 
3292   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3293 
3294   // Break down all the sources into NarrowTy pieces we can operate on. This may
3295   // involve creating merges to a wider type, padded with undef.
3296   for (int I = 0; I != NumOps; ++I) {
3297     Register SrcReg = MI.getOperand(I + 1).getReg();
3298     LLT SrcTy = MRI.getType(SrcReg);
3299 
3300     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3301     // For fewerElements, this is a smaller vector with the same element type.
3302     LLT OpNarrowTy;
3303     if (IsNarrow) {
3304       OpNarrowTy = NarrowScalarTy;
3305 
3306       // In case of narrowing, we need to cast vectors to scalars for this to
3307       // work properly
3308       // FIXME: Can we do without the bitcast here if we're narrowing?
3309       if (SrcTy.isVector()) {
3310         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3311         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3312       }
3313     } else {
3314       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3315     }
3316 
3317     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3318 
3319     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3320     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3321                         TargetOpcode::G_ANYEXT);
3322   }
3323 
3324   SmallVector<Register, 8> ResultRegs;
3325 
3326   // Input operands for each sub-instruction.
3327   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3328 
3329   int NumParts = ExtractedRegs[0].size();
3330   const unsigned DstSize = DstTy.getSizeInBits();
3331   const LLT DstScalarTy = LLT::scalar(DstSize);
3332 
3333   // Narrowing needs to use scalar types
3334   LLT DstLCMTy, NarrowDstTy;
3335   if (IsNarrow) {
3336     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3337     NarrowDstTy = NarrowScalarTy;
3338   } else {
3339     DstLCMTy = getLCMType(DstTy, NarrowTy);
3340     NarrowDstTy = NarrowTy;
3341   }
3342 
3343   // We widened the source registers to satisfy merge/unmerge size
3344   // constraints. We'll have some extra fully undef parts.
3345   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3346 
3347   for (int I = 0; I != NumRealParts; ++I) {
3348     // Emit this instruction on each of the split pieces.
3349     for (int J = 0; J != NumOps; ++J)
3350       InputRegs[J] = ExtractedRegs[J][I];
3351 
3352     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3353     ResultRegs.push_back(Inst.getReg(0));
3354   }
3355 
3356   // Fill out the widened result with undef instead of creating instructions
3357   // with undef inputs.
3358   int NumUndefParts = NumParts - NumRealParts;
3359   if (NumUndefParts != 0)
3360     ResultRegs.append(NumUndefParts,
3361                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3362 
3363   // Extract the possibly padded result. Use a scratch register if we need to do
3364   // a final bitcast, otherwise use the original result register.
3365   Register MergeDstReg;
3366   if (IsNarrow && DstTy.isVector())
3367     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3368   else
3369     MergeDstReg = DstReg;
3370 
3371   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3372 
3373   // Recast to vector if we narrowed a vector
3374   if (IsNarrow && DstTy.isVector())
3375     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3376 
3377   MI.eraseFromParent();
3378   return Legalized;
3379 }
3380 
3381 LegalizerHelper::LegalizeResult
3382 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3383                                               LLT NarrowTy) {
3384   Register DstReg = MI.getOperand(0).getReg();
3385   Register SrcReg = MI.getOperand(1).getReg();
3386   int64_t Imm = MI.getOperand(2).getImm();
3387 
3388   LLT DstTy = MRI.getType(DstReg);
3389 
3390   SmallVector<Register, 8> Parts;
3391   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3392   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3393 
3394   for (Register &R : Parts)
3395     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3396 
3397   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3398 
3399   MI.eraseFromParent();
3400   return Legalized;
3401 }
3402 
3403 LegalizerHelper::LegalizeResult
3404 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3405                                      LLT NarrowTy) {
3406   using namespace TargetOpcode;
3407 
3408   switch (MI.getOpcode()) {
3409   case G_IMPLICIT_DEF:
3410     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3411   case G_TRUNC:
3412   case G_AND:
3413   case G_OR:
3414   case G_XOR:
3415   case G_ADD:
3416   case G_SUB:
3417   case G_MUL:
3418   case G_SMULH:
3419   case G_UMULH:
3420   case G_FADD:
3421   case G_FMUL:
3422   case G_FSUB:
3423   case G_FNEG:
3424   case G_FABS:
3425   case G_FCANONICALIZE:
3426   case G_FDIV:
3427   case G_FREM:
3428   case G_FMA:
3429   case G_FMAD:
3430   case G_FPOW:
3431   case G_FEXP:
3432   case G_FEXP2:
3433   case G_FLOG:
3434   case G_FLOG2:
3435   case G_FLOG10:
3436   case G_FNEARBYINT:
3437   case G_FCEIL:
3438   case G_FFLOOR:
3439   case G_FRINT:
3440   case G_INTRINSIC_ROUND:
3441   case G_INTRINSIC_TRUNC:
3442   case G_FCOS:
3443   case G_FSIN:
3444   case G_FSQRT:
3445   case G_BSWAP:
3446   case G_BITREVERSE:
3447   case G_SDIV:
3448   case G_UDIV:
3449   case G_SREM:
3450   case G_UREM:
3451   case G_SMIN:
3452   case G_SMAX:
3453   case G_UMIN:
3454   case G_UMAX:
3455   case G_FMINNUM:
3456   case G_FMAXNUM:
3457   case G_FMINNUM_IEEE:
3458   case G_FMAXNUM_IEEE:
3459   case G_FMINIMUM:
3460   case G_FMAXIMUM:
3461   case G_FSHL:
3462   case G_FSHR:
3463   case G_FREEZE:
3464   case G_SADDSAT:
3465   case G_SSUBSAT:
3466   case G_UADDSAT:
3467   case G_USUBSAT:
3468     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
3469   case G_SHL:
3470   case G_LSHR:
3471   case G_ASHR:
3472   case G_CTLZ:
3473   case G_CTLZ_ZERO_UNDEF:
3474   case G_CTTZ:
3475   case G_CTTZ_ZERO_UNDEF:
3476   case G_CTPOP:
3477   case G_FCOPYSIGN:
3478     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3479   case G_ZEXT:
3480   case G_SEXT:
3481   case G_ANYEXT:
3482   case G_FPEXT:
3483   case G_FPTRUNC:
3484   case G_SITOFP:
3485   case G_UITOFP:
3486   case G_FPTOSI:
3487   case G_FPTOUI:
3488   case G_INTTOPTR:
3489   case G_PTRTOINT:
3490   case G_ADDRSPACE_CAST:
3491     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3492   case G_ICMP:
3493   case G_FCMP:
3494     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3495   case G_SELECT:
3496     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3497   case G_PHI:
3498     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3499   case G_UNMERGE_VALUES:
3500     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3501   case G_BUILD_VECTOR:
3502     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3503   case G_LOAD:
3504   case G_STORE:
3505     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3506   case G_SEXT_INREG:
3507     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3508   default:
3509     return UnableToLegalize;
3510   }
3511 }
3512 
3513 LegalizerHelper::LegalizeResult
3514 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3515                                              const LLT HalfTy, const LLT AmtTy) {
3516 
3517   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3518   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3519   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3520 
3521   if (Amt.isNullValue()) {
3522     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3523     MI.eraseFromParent();
3524     return Legalized;
3525   }
3526 
3527   LLT NVT = HalfTy;
3528   unsigned NVTBits = HalfTy.getSizeInBits();
3529   unsigned VTBits = 2 * NVTBits;
3530 
3531   SrcOp Lo(Register(0)), Hi(Register(0));
3532   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3533     if (Amt.ugt(VTBits)) {
3534       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3535     } else if (Amt.ugt(NVTBits)) {
3536       Lo = MIRBuilder.buildConstant(NVT, 0);
3537       Hi = MIRBuilder.buildShl(NVT, InL,
3538                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3539     } else if (Amt == NVTBits) {
3540       Lo = MIRBuilder.buildConstant(NVT, 0);
3541       Hi = InL;
3542     } else {
3543       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3544       auto OrLHS =
3545           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3546       auto OrRHS = MIRBuilder.buildLShr(
3547           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3548       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3549     }
3550   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3551     if (Amt.ugt(VTBits)) {
3552       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3553     } else if (Amt.ugt(NVTBits)) {
3554       Lo = MIRBuilder.buildLShr(NVT, InH,
3555                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3556       Hi = MIRBuilder.buildConstant(NVT, 0);
3557     } else if (Amt == NVTBits) {
3558       Lo = InH;
3559       Hi = MIRBuilder.buildConstant(NVT, 0);
3560     } else {
3561       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3562 
3563       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3564       auto OrRHS = MIRBuilder.buildShl(
3565           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3566 
3567       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3568       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3569     }
3570   } else {
3571     if (Amt.ugt(VTBits)) {
3572       Hi = Lo = MIRBuilder.buildAShr(
3573           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3574     } else if (Amt.ugt(NVTBits)) {
3575       Lo = MIRBuilder.buildAShr(NVT, InH,
3576                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3577       Hi = MIRBuilder.buildAShr(NVT, InH,
3578                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3579     } else if (Amt == NVTBits) {
3580       Lo = InH;
3581       Hi = MIRBuilder.buildAShr(NVT, InH,
3582                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3583     } else {
3584       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3585 
3586       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3587       auto OrRHS = MIRBuilder.buildShl(
3588           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3589 
3590       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3591       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3592     }
3593   }
3594 
3595   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3596   MI.eraseFromParent();
3597 
3598   return Legalized;
3599 }
3600 
3601 // TODO: Optimize if constant shift amount.
3602 LegalizerHelper::LegalizeResult
3603 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3604                                    LLT RequestedTy) {
3605   if (TypeIdx == 1) {
3606     Observer.changingInstr(MI);
3607     narrowScalarSrc(MI, RequestedTy, 2);
3608     Observer.changedInstr(MI);
3609     return Legalized;
3610   }
3611 
3612   Register DstReg = MI.getOperand(0).getReg();
3613   LLT DstTy = MRI.getType(DstReg);
3614   if (DstTy.isVector())
3615     return UnableToLegalize;
3616 
3617   Register Amt = MI.getOperand(2).getReg();
3618   LLT ShiftAmtTy = MRI.getType(Amt);
3619   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3620   if (DstEltSize % 2 != 0)
3621     return UnableToLegalize;
3622 
3623   // Ignore the input type. We can only go to exactly half the size of the
3624   // input. If that isn't small enough, the resulting pieces will be further
3625   // legalized.
3626   const unsigned NewBitSize = DstEltSize / 2;
3627   const LLT HalfTy = LLT::scalar(NewBitSize);
3628   const LLT CondTy = LLT::scalar(1);
3629 
3630   if (const MachineInstr *KShiftAmt =
3631           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3632     return narrowScalarShiftByConstant(
3633         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3634   }
3635 
3636   // TODO: Expand with known bits.
3637 
3638   // Handle the fully general expansion by an unknown amount.
3639   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3640 
3641   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3642   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3643   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3644 
3645   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3646   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3647 
3648   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3649   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3650   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3651 
3652   Register ResultRegs[2];
3653   switch (MI.getOpcode()) {
3654   case TargetOpcode::G_SHL: {
3655     // Short: ShAmt < NewBitSize
3656     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3657 
3658     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3659     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3660     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3661 
3662     // Long: ShAmt >= NewBitSize
3663     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3664     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3665 
3666     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3667     auto Hi = MIRBuilder.buildSelect(
3668         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3669 
3670     ResultRegs[0] = Lo.getReg(0);
3671     ResultRegs[1] = Hi.getReg(0);
3672     break;
3673   }
3674   case TargetOpcode::G_LSHR:
3675   case TargetOpcode::G_ASHR: {
3676     // Short: ShAmt < NewBitSize
3677     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3678 
3679     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3680     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3681     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3682 
3683     // Long: ShAmt >= NewBitSize
3684     MachineInstrBuilder HiL;
3685     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3686       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3687     } else {
3688       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3689       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3690     }
3691     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3692                                      {InH, AmtExcess});     // Lo from Hi part.
3693 
3694     auto Lo = MIRBuilder.buildSelect(
3695         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3696 
3697     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3698 
3699     ResultRegs[0] = Lo.getReg(0);
3700     ResultRegs[1] = Hi.getReg(0);
3701     break;
3702   }
3703   default:
3704     llvm_unreachable("not a shift");
3705   }
3706 
3707   MIRBuilder.buildMerge(DstReg, ResultRegs);
3708   MI.eraseFromParent();
3709   return Legalized;
3710 }
3711 
3712 LegalizerHelper::LegalizeResult
3713 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3714                                        LLT MoreTy) {
3715   assert(TypeIdx == 0 && "Expecting only Idx 0");
3716 
3717   Observer.changingInstr(MI);
3718   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3719     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3720     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3721     moreElementsVectorSrc(MI, MoreTy, I);
3722   }
3723 
3724   MachineBasicBlock &MBB = *MI.getParent();
3725   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3726   moreElementsVectorDst(MI, MoreTy, 0);
3727   Observer.changedInstr(MI);
3728   return Legalized;
3729 }
3730 
3731 LegalizerHelper::LegalizeResult
3732 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3733                                     LLT MoreTy) {
3734   unsigned Opc = MI.getOpcode();
3735   switch (Opc) {
3736   case TargetOpcode::G_IMPLICIT_DEF:
3737   case TargetOpcode::G_LOAD: {
3738     if (TypeIdx != 0)
3739       return UnableToLegalize;
3740     Observer.changingInstr(MI);
3741     moreElementsVectorDst(MI, MoreTy, 0);
3742     Observer.changedInstr(MI);
3743     return Legalized;
3744   }
3745   case TargetOpcode::G_STORE:
3746     if (TypeIdx != 0)
3747       return UnableToLegalize;
3748     Observer.changingInstr(MI);
3749     moreElementsVectorSrc(MI, MoreTy, 0);
3750     Observer.changedInstr(MI);
3751     return Legalized;
3752   case TargetOpcode::G_AND:
3753   case TargetOpcode::G_OR:
3754   case TargetOpcode::G_XOR:
3755   case TargetOpcode::G_SMIN:
3756   case TargetOpcode::G_SMAX:
3757   case TargetOpcode::G_UMIN:
3758   case TargetOpcode::G_UMAX:
3759   case TargetOpcode::G_FMINNUM:
3760   case TargetOpcode::G_FMAXNUM:
3761   case TargetOpcode::G_FMINNUM_IEEE:
3762   case TargetOpcode::G_FMAXNUM_IEEE:
3763   case TargetOpcode::G_FMINIMUM:
3764   case TargetOpcode::G_FMAXIMUM: {
3765     Observer.changingInstr(MI);
3766     moreElementsVectorSrc(MI, MoreTy, 1);
3767     moreElementsVectorSrc(MI, MoreTy, 2);
3768     moreElementsVectorDst(MI, MoreTy, 0);
3769     Observer.changedInstr(MI);
3770     return Legalized;
3771   }
3772   case TargetOpcode::G_EXTRACT:
3773     if (TypeIdx != 1)
3774       return UnableToLegalize;
3775     Observer.changingInstr(MI);
3776     moreElementsVectorSrc(MI, MoreTy, 1);
3777     Observer.changedInstr(MI);
3778     return Legalized;
3779   case TargetOpcode::G_INSERT:
3780   case TargetOpcode::G_FREEZE:
3781     if (TypeIdx != 0)
3782       return UnableToLegalize;
3783     Observer.changingInstr(MI);
3784     moreElementsVectorSrc(MI, MoreTy, 1);
3785     moreElementsVectorDst(MI, MoreTy, 0);
3786     Observer.changedInstr(MI);
3787     return Legalized;
3788   case TargetOpcode::G_SELECT:
3789     if (TypeIdx != 0)
3790       return UnableToLegalize;
3791     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3792       return UnableToLegalize;
3793 
3794     Observer.changingInstr(MI);
3795     moreElementsVectorSrc(MI, MoreTy, 2);
3796     moreElementsVectorSrc(MI, MoreTy, 3);
3797     moreElementsVectorDst(MI, MoreTy, 0);
3798     Observer.changedInstr(MI);
3799     return Legalized;
3800   case TargetOpcode::G_UNMERGE_VALUES: {
3801     if (TypeIdx != 1)
3802       return UnableToLegalize;
3803 
3804     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3805     int NumDst = MI.getNumOperands() - 1;
3806     moreElementsVectorSrc(MI, MoreTy, NumDst);
3807 
3808     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3809     for (int I = 0; I != NumDst; ++I)
3810       MIB.addDef(MI.getOperand(I).getReg());
3811 
3812     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3813     for (int I = NumDst; I != NewNumDst; ++I)
3814       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3815 
3816     MIB.addUse(MI.getOperand(NumDst).getReg());
3817     MI.eraseFromParent();
3818     return Legalized;
3819   }
3820   case TargetOpcode::G_PHI:
3821     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3822   default:
3823     return UnableToLegalize;
3824   }
3825 }
3826 
3827 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3828                                         ArrayRef<Register> Src1Regs,
3829                                         ArrayRef<Register> Src2Regs,
3830                                         LLT NarrowTy) {
3831   MachineIRBuilder &B = MIRBuilder;
3832   unsigned SrcParts = Src1Regs.size();
3833   unsigned DstParts = DstRegs.size();
3834 
3835   unsigned DstIdx = 0; // Low bits of the result.
3836   Register FactorSum =
3837       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3838   DstRegs[DstIdx] = FactorSum;
3839 
3840   unsigned CarrySumPrevDstIdx;
3841   SmallVector<Register, 4> Factors;
3842 
3843   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3844     // Collect low parts of muls for DstIdx.
3845     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3846          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3847       MachineInstrBuilder Mul =
3848           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3849       Factors.push_back(Mul.getReg(0));
3850     }
3851     // Collect high parts of muls from previous DstIdx.
3852     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3853          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3854       MachineInstrBuilder Umulh =
3855           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3856       Factors.push_back(Umulh.getReg(0));
3857     }
3858     // Add CarrySum from additions calculated for previous DstIdx.
3859     if (DstIdx != 1) {
3860       Factors.push_back(CarrySumPrevDstIdx);
3861     }
3862 
3863     Register CarrySum;
3864     // Add all factors and accumulate all carries into CarrySum.
3865     if (DstIdx != DstParts - 1) {
3866       MachineInstrBuilder Uaddo =
3867           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3868       FactorSum = Uaddo.getReg(0);
3869       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3870       for (unsigned i = 2; i < Factors.size(); ++i) {
3871         MachineInstrBuilder Uaddo =
3872             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3873         FactorSum = Uaddo.getReg(0);
3874         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3875         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3876       }
3877     } else {
3878       // Since value for the next index is not calculated, neither is CarrySum.
3879       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3880       for (unsigned i = 2; i < Factors.size(); ++i)
3881         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3882     }
3883 
3884     CarrySumPrevDstIdx = CarrySum;
3885     DstRegs[DstIdx] = FactorSum;
3886     Factors.clear();
3887   }
3888 }
3889 
3890 LegalizerHelper::LegalizeResult
3891 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3892   Register DstReg = MI.getOperand(0).getReg();
3893   Register Src1 = MI.getOperand(1).getReg();
3894   Register Src2 = MI.getOperand(2).getReg();
3895 
3896   LLT Ty = MRI.getType(DstReg);
3897   if (Ty.isVector())
3898     return UnableToLegalize;
3899 
3900   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3901   unsigned DstSize = Ty.getSizeInBits();
3902   unsigned NarrowSize = NarrowTy.getSizeInBits();
3903   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3904     return UnableToLegalize;
3905 
3906   unsigned NumDstParts = DstSize / NarrowSize;
3907   unsigned NumSrcParts = SrcSize / NarrowSize;
3908   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3909   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3910 
3911   SmallVector<Register, 2> Src1Parts, Src2Parts;
3912   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
3913   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3914   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3915   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3916 
3917   // Take only high half of registers if this is high mul.
3918   ArrayRef<Register> DstRegs(
3919       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3920   MIRBuilder.buildMerge(DstReg, DstRegs);
3921   MI.eraseFromParent();
3922   return Legalized;
3923 }
3924 
3925 LegalizerHelper::LegalizeResult
3926 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3927                                      LLT NarrowTy) {
3928   if (TypeIdx != 1)
3929     return UnableToLegalize;
3930 
3931   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3932 
3933   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3934   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3935   // NarrowSize.
3936   if (SizeOp1 % NarrowSize != 0)
3937     return UnableToLegalize;
3938   int NumParts = SizeOp1 / NarrowSize;
3939 
3940   SmallVector<Register, 2> SrcRegs, DstRegs;
3941   SmallVector<uint64_t, 2> Indexes;
3942   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3943 
3944   Register OpReg = MI.getOperand(0).getReg();
3945   uint64_t OpStart = MI.getOperand(2).getImm();
3946   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3947   for (int i = 0; i < NumParts; ++i) {
3948     unsigned SrcStart = i * NarrowSize;
3949 
3950     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3951       // No part of the extract uses this subregister, ignore it.
3952       continue;
3953     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3954       // The entire subregister is extracted, forward the value.
3955       DstRegs.push_back(SrcRegs[i]);
3956       continue;
3957     }
3958 
3959     // OpSegStart is where this destination segment would start in OpReg if it
3960     // extended infinitely in both directions.
3961     int64_t ExtractOffset;
3962     uint64_t SegSize;
3963     if (OpStart < SrcStart) {
3964       ExtractOffset = 0;
3965       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3966     } else {
3967       ExtractOffset = OpStart - SrcStart;
3968       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3969     }
3970 
3971     Register SegReg = SrcRegs[i];
3972     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3973       // A genuine extract is needed.
3974       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3975       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3976     }
3977 
3978     DstRegs.push_back(SegReg);
3979   }
3980 
3981   Register DstReg = MI.getOperand(0).getReg();
3982   if (MRI.getType(DstReg).isVector())
3983     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3984   else if (DstRegs.size() > 1)
3985     MIRBuilder.buildMerge(DstReg, DstRegs);
3986   else
3987     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
3988   MI.eraseFromParent();
3989   return Legalized;
3990 }
3991 
3992 LegalizerHelper::LegalizeResult
3993 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3994                                     LLT NarrowTy) {
3995   // FIXME: Don't know how to handle secondary types yet.
3996   if (TypeIdx != 0)
3997     return UnableToLegalize;
3998 
3999   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4000   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4001 
4002   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4003   // NarrowSize.
4004   if (SizeOp0 % NarrowSize != 0)
4005     return UnableToLegalize;
4006 
4007   int NumParts = SizeOp0 / NarrowSize;
4008 
4009   SmallVector<Register, 2> SrcRegs, DstRegs;
4010   SmallVector<uint64_t, 2> Indexes;
4011   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4012 
4013   Register OpReg = MI.getOperand(2).getReg();
4014   uint64_t OpStart = MI.getOperand(3).getImm();
4015   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4016   for (int i = 0; i < NumParts; ++i) {
4017     unsigned DstStart = i * NarrowSize;
4018 
4019     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4020       // No part of the insert affects this subregister, forward the original.
4021       DstRegs.push_back(SrcRegs[i]);
4022       continue;
4023     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4024       // The entire subregister is defined by this insert, forward the new
4025       // value.
4026       DstRegs.push_back(OpReg);
4027       continue;
4028     }
4029 
4030     // OpSegStart is where this destination segment would start in OpReg if it
4031     // extended infinitely in both directions.
4032     int64_t ExtractOffset, InsertOffset;
4033     uint64_t SegSize;
4034     if (OpStart < DstStart) {
4035       InsertOffset = 0;
4036       ExtractOffset = DstStart - OpStart;
4037       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4038     } else {
4039       InsertOffset = OpStart - DstStart;
4040       ExtractOffset = 0;
4041       SegSize =
4042         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4043     }
4044 
4045     Register SegReg = OpReg;
4046     if (ExtractOffset != 0 || SegSize != OpSize) {
4047       // A genuine extract is needed.
4048       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4049       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4050     }
4051 
4052     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4053     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4054     DstRegs.push_back(DstReg);
4055   }
4056 
4057   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4058   Register DstReg = MI.getOperand(0).getReg();
4059   if(MRI.getType(DstReg).isVector())
4060     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4061   else
4062     MIRBuilder.buildMerge(DstReg, DstRegs);
4063   MI.eraseFromParent();
4064   return Legalized;
4065 }
4066 
4067 LegalizerHelper::LegalizeResult
4068 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4069                                    LLT NarrowTy) {
4070   Register DstReg = MI.getOperand(0).getReg();
4071   LLT DstTy = MRI.getType(DstReg);
4072 
4073   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4074 
4075   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4076   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4077   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4078   LLT LeftoverTy;
4079   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4080                     Src0Regs, Src0LeftoverRegs))
4081     return UnableToLegalize;
4082 
4083   LLT Unused;
4084   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4085                     Src1Regs, Src1LeftoverRegs))
4086     llvm_unreachable("inconsistent extractParts result");
4087 
4088   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4089     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4090                                         {Src0Regs[I], Src1Regs[I]});
4091     DstRegs.push_back(Inst.getReg(0));
4092   }
4093 
4094   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4095     auto Inst = MIRBuilder.buildInstr(
4096       MI.getOpcode(),
4097       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4098     DstLeftoverRegs.push_back(Inst.getReg(0));
4099   }
4100 
4101   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4102               LeftoverTy, DstLeftoverRegs);
4103 
4104   MI.eraseFromParent();
4105   return Legalized;
4106 }
4107 
4108 LegalizerHelper::LegalizeResult
4109 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4110                                  LLT NarrowTy) {
4111   if (TypeIdx != 0)
4112     return UnableToLegalize;
4113 
4114   Register DstReg = MI.getOperand(0).getReg();
4115   Register SrcReg = MI.getOperand(1).getReg();
4116 
4117   LLT DstTy = MRI.getType(DstReg);
4118   if (DstTy.isVector())
4119     return UnableToLegalize;
4120 
4121   SmallVector<Register, 8> Parts;
4122   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4123   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4124   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4125 
4126   MI.eraseFromParent();
4127   return Legalized;
4128 }
4129 
4130 LegalizerHelper::LegalizeResult
4131 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4132                                     LLT NarrowTy) {
4133   if (TypeIdx != 0)
4134     return UnableToLegalize;
4135 
4136   Register CondReg = MI.getOperand(1).getReg();
4137   LLT CondTy = MRI.getType(CondReg);
4138   if (CondTy.isVector()) // TODO: Handle vselect
4139     return UnableToLegalize;
4140 
4141   Register DstReg = MI.getOperand(0).getReg();
4142   LLT DstTy = MRI.getType(DstReg);
4143 
4144   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4145   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4146   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4147   LLT LeftoverTy;
4148   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4149                     Src1Regs, Src1LeftoverRegs))
4150     return UnableToLegalize;
4151 
4152   LLT Unused;
4153   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4154                     Src2Regs, Src2LeftoverRegs))
4155     llvm_unreachable("inconsistent extractParts result");
4156 
4157   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4158     auto Select = MIRBuilder.buildSelect(NarrowTy,
4159                                          CondReg, Src1Regs[I], Src2Regs[I]);
4160     DstRegs.push_back(Select.getReg(0));
4161   }
4162 
4163   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4164     auto Select = MIRBuilder.buildSelect(
4165       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4166     DstLeftoverRegs.push_back(Select.getReg(0));
4167   }
4168 
4169   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4170               LeftoverTy, DstLeftoverRegs);
4171 
4172   MI.eraseFromParent();
4173   return Legalized;
4174 }
4175 
4176 LegalizerHelper::LegalizeResult
4177 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4178                                   LLT NarrowTy) {
4179   if (TypeIdx != 1)
4180     return UnableToLegalize;
4181 
4182   Register DstReg = MI.getOperand(0).getReg();
4183   Register SrcReg = MI.getOperand(1).getReg();
4184   LLT DstTy = MRI.getType(DstReg);
4185   LLT SrcTy = MRI.getType(SrcReg);
4186   unsigned NarrowSize = NarrowTy.getSizeInBits();
4187 
4188   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4189     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4190 
4191     MachineIRBuilder &B = MIRBuilder;
4192     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4193     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4194     auto C_0 = B.buildConstant(NarrowTy, 0);
4195     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4196                                 UnmergeSrc.getReg(1), C_0);
4197     auto LoCTLZ = IsUndef ?
4198       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4199       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4200     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4201     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4202     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4203     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4204 
4205     MI.eraseFromParent();
4206     return Legalized;
4207   }
4208 
4209   return UnableToLegalize;
4210 }
4211 
4212 LegalizerHelper::LegalizeResult
4213 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4214                                   LLT NarrowTy) {
4215   if (TypeIdx != 1)
4216     return UnableToLegalize;
4217 
4218   Register DstReg = MI.getOperand(0).getReg();
4219   Register SrcReg = MI.getOperand(1).getReg();
4220   LLT DstTy = MRI.getType(DstReg);
4221   LLT SrcTy = MRI.getType(SrcReg);
4222   unsigned NarrowSize = NarrowTy.getSizeInBits();
4223 
4224   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4225     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4226 
4227     MachineIRBuilder &B = MIRBuilder;
4228     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4229     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4230     auto C_0 = B.buildConstant(NarrowTy, 0);
4231     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4232                                 UnmergeSrc.getReg(0), C_0);
4233     auto HiCTTZ = IsUndef ?
4234       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4235       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4236     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4237     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4238     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4239     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4240 
4241     MI.eraseFromParent();
4242     return Legalized;
4243   }
4244 
4245   return UnableToLegalize;
4246 }
4247 
4248 LegalizerHelper::LegalizeResult
4249 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4250                                    LLT NarrowTy) {
4251   if (TypeIdx != 1)
4252     return UnableToLegalize;
4253 
4254   Register DstReg = MI.getOperand(0).getReg();
4255   LLT DstTy = MRI.getType(DstReg);
4256   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4257   unsigned NarrowSize = NarrowTy.getSizeInBits();
4258 
4259   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4260     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4261 
4262     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4263     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4264     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4265 
4266     MI.eraseFromParent();
4267     return Legalized;
4268   }
4269 
4270   return UnableToLegalize;
4271 }
4272 
4273 LegalizerHelper::LegalizeResult
4274 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4275   unsigned Opc = MI.getOpcode();
4276   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
4277   auto isSupported = [this](const LegalityQuery &Q) {
4278     auto QAction = LI.getAction(Q).Action;
4279     return QAction == Legal || QAction == Libcall || QAction == Custom;
4280   };
4281   switch (Opc) {
4282   default:
4283     return UnableToLegalize;
4284   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4285     // This trivially expands to CTLZ.
4286     Observer.changingInstr(MI);
4287     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4288     Observer.changedInstr(MI);
4289     return Legalized;
4290   }
4291   case TargetOpcode::G_CTLZ: {
4292     Register DstReg = MI.getOperand(0).getReg();
4293     Register SrcReg = MI.getOperand(1).getReg();
4294     LLT DstTy = MRI.getType(DstReg);
4295     LLT SrcTy = MRI.getType(SrcReg);
4296     unsigned Len = SrcTy.getSizeInBits();
4297 
4298     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4299       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4300       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4301       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4302       auto ICmp = MIRBuilder.buildICmp(
4303           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4304       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4305       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4306       MI.eraseFromParent();
4307       return Legalized;
4308     }
4309     // for now, we do this:
4310     // NewLen = NextPowerOf2(Len);
4311     // x = x | (x >> 1);
4312     // x = x | (x >> 2);
4313     // ...
4314     // x = x | (x >>16);
4315     // x = x | (x >>32); // for 64-bit input
4316     // Upto NewLen/2
4317     // return Len - popcount(x);
4318     //
4319     // Ref: "Hacker's Delight" by Henry Warren
4320     Register Op = SrcReg;
4321     unsigned NewLen = PowerOf2Ceil(Len);
4322     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4323       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4324       auto MIBOp = MIRBuilder.buildOr(
4325           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4326       Op = MIBOp.getReg(0);
4327     }
4328     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4329     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4330                         MIBPop);
4331     MI.eraseFromParent();
4332     return Legalized;
4333   }
4334   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4335     // This trivially expands to CTTZ.
4336     Observer.changingInstr(MI);
4337     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4338     Observer.changedInstr(MI);
4339     return Legalized;
4340   }
4341   case TargetOpcode::G_CTTZ: {
4342     Register DstReg = MI.getOperand(0).getReg();
4343     Register SrcReg = MI.getOperand(1).getReg();
4344     LLT DstTy = MRI.getType(DstReg);
4345     LLT SrcTy = MRI.getType(SrcReg);
4346 
4347     unsigned Len = SrcTy.getSizeInBits();
4348     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4349       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4350       // zero.
4351       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4352       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4353       auto ICmp = MIRBuilder.buildICmp(
4354           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4355       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4356       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4357       MI.eraseFromParent();
4358       return Legalized;
4359     }
4360     // for now, we use: { return popcount(~x & (x - 1)); }
4361     // unless the target has ctlz but not ctpop, in which case we use:
4362     // { return 32 - nlz(~x & (x-1)); }
4363     // Ref: "Hacker's Delight" by Henry Warren
4364     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4365     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4366     auto MIBTmp = MIRBuilder.buildAnd(
4367         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4368     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4369         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4370       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4371       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4372                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4373       MI.eraseFromParent();
4374       return Legalized;
4375     }
4376     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4377     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4378     return Legalized;
4379   }
4380   case TargetOpcode::G_CTPOP: {
4381     unsigned Size = Ty.getSizeInBits();
4382     MachineIRBuilder &B = MIRBuilder;
4383 
4384     // Count set bits in blocks of 2 bits. Default approach would be
4385     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4386     // We use following formula instead:
4387     // B2Count = val - { (val >> 1) & 0x55555555 }
4388     // since it gives same result in blocks of 2 with one instruction less.
4389     auto C_1 = B.buildConstant(Ty, 1);
4390     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4391     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4392     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4393     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4394     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4395 
4396     // In order to get count in blocks of 4 add values from adjacent block of 2.
4397     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4398     auto C_2 = B.buildConstant(Ty, 2);
4399     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4400     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4401     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4402     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4403     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4404     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4405 
4406     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4407     // addition since count value sits in range {0,...,8} and 4 bits are enough
4408     // to hold such binary values. After addition high 4 bits still hold count
4409     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4410     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4411     auto C_4 = B.buildConstant(Ty, 4);
4412     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4413     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4414     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4415     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4416     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4417 
4418     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4419     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4420     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4421     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4422     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4423 
4424     // Shift count result from 8 high bits to low bits.
4425     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4426     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4427 
4428     MI.eraseFromParent();
4429     return Legalized;
4430   }
4431   }
4432 }
4433 
4434 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4435 // representation.
4436 LegalizerHelper::LegalizeResult
4437 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4438   Register Dst = MI.getOperand(0).getReg();
4439   Register Src = MI.getOperand(1).getReg();
4440   const LLT S64 = LLT::scalar(64);
4441   const LLT S32 = LLT::scalar(32);
4442   const LLT S1 = LLT::scalar(1);
4443 
4444   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4445 
4446   // unsigned cul2f(ulong u) {
4447   //   uint lz = clz(u);
4448   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4449   //   u = (u << lz) & 0x7fffffffffffffffUL;
4450   //   ulong t = u & 0xffffffffffUL;
4451   //   uint v = (e << 23) | (uint)(u >> 40);
4452   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4453   //   return as_float(v + r);
4454   // }
4455 
4456   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4457   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4458 
4459   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4460 
4461   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4462   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4463 
4464   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4465   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4466 
4467   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4468   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4469 
4470   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4471 
4472   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4473   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4474 
4475   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4476   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4477   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4478 
4479   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4480   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4481   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4482   auto One = MIRBuilder.buildConstant(S32, 1);
4483 
4484   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4485   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4486   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4487   MIRBuilder.buildAdd(Dst, V, R);
4488 
4489   MI.eraseFromParent();
4490   return Legalized;
4491 }
4492 
4493 LegalizerHelper::LegalizeResult
4494 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4495   Register Dst = MI.getOperand(0).getReg();
4496   Register Src = MI.getOperand(1).getReg();
4497   LLT DstTy = MRI.getType(Dst);
4498   LLT SrcTy = MRI.getType(Src);
4499 
4500   if (SrcTy == LLT::scalar(1)) {
4501     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4502     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4503     MIRBuilder.buildSelect(Dst, Src, True, False);
4504     MI.eraseFromParent();
4505     return Legalized;
4506   }
4507 
4508   if (SrcTy != LLT::scalar(64))
4509     return UnableToLegalize;
4510 
4511   if (DstTy == LLT::scalar(32)) {
4512     // TODO: SelectionDAG has several alternative expansions to port which may
4513     // be more reasonble depending on the available instructions. If a target
4514     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4515     // intermediate type, this is probably worse.
4516     return lowerU64ToF32BitOps(MI);
4517   }
4518 
4519   return UnableToLegalize;
4520 }
4521 
4522 LegalizerHelper::LegalizeResult
4523 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4524   Register Dst = MI.getOperand(0).getReg();
4525   Register Src = MI.getOperand(1).getReg();
4526   LLT DstTy = MRI.getType(Dst);
4527   LLT SrcTy = MRI.getType(Src);
4528 
4529   const LLT S64 = LLT::scalar(64);
4530   const LLT S32 = LLT::scalar(32);
4531   const LLT S1 = LLT::scalar(1);
4532 
4533   if (SrcTy == S1) {
4534     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4535     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4536     MIRBuilder.buildSelect(Dst, Src, True, False);
4537     MI.eraseFromParent();
4538     return Legalized;
4539   }
4540 
4541   if (SrcTy != S64)
4542     return UnableToLegalize;
4543 
4544   if (DstTy == S32) {
4545     // signed cl2f(long l) {
4546     //   long s = l >> 63;
4547     //   float r = cul2f((l + s) ^ s);
4548     //   return s ? -r : r;
4549     // }
4550     Register L = Src;
4551     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4552     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4553 
4554     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4555     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4556     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4557 
4558     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4559     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4560                                             MIRBuilder.buildConstant(S64, 0));
4561     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4562     MI.eraseFromParent();
4563     return Legalized;
4564   }
4565 
4566   return UnableToLegalize;
4567 }
4568 
4569 LegalizerHelper::LegalizeResult
4570 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4571   Register Dst = MI.getOperand(0).getReg();
4572   Register Src = MI.getOperand(1).getReg();
4573   LLT DstTy = MRI.getType(Dst);
4574   LLT SrcTy = MRI.getType(Src);
4575   const LLT S64 = LLT::scalar(64);
4576   const LLT S32 = LLT::scalar(32);
4577 
4578   if (SrcTy != S64 && SrcTy != S32)
4579     return UnableToLegalize;
4580   if (DstTy != S32 && DstTy != S64)
4581     return UnableToLegalize;
4582 
4583   // FPTOSI gives same result as FPTOUI for positive signed integers.
4584   // FPTOUI needs to deal with fp values that convert to unsigned integers
4585   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4586 
4587   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4588   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4589                                                 : APFloat::IEEEdouble(),
4590                     APInt::getNullValue(SrcTy.getSizeInBits()));
4591   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4592 
4593   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4594 
4595   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4596   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4597   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4598   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4599   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4600   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4601   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4602 
4603   const LLT S1 = LLT::scalar(1);
4604 
4605   MachineInstrBuilder FCMP =
4606       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4607   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4608 
4609   MI.eraseFromParent();
4610   return Legalized;
4611 }
4612 
4613 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4614   Register Dst = MI.getOperand(0).getReg();
4615   Register Src = MI.getOperand(1).getReg();
4616   LLT DstTy = MRI.getType(Dst);
4617   LLT SrcTy = MRI.getType(Src);
4618   const LLT S64 = LLT::scalar(64);
4619   const LLT S32 = LLT::scalar(32);
4620 
4621   // FIXME: Only f32 to i64 conversions are supported.
4622   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4623     return UnableToLegalize;
4624 
4625   // Expand f32 -> i64 conversion
4626   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4627   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4628 
4629   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4630 
4631   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4632   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4633 
4634   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4635   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4636 
4637   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4638                                            APInt::getSignMask(SrcEltBits));
4639   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4640   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4641   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4642   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4643 
4644   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4645   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4646   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4647 
4648   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4649   R = MIRBuilder.buildZExt(DstTy, R);
4650 
4651   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4652   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4653   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4654   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4655 
4656   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4657   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4658 
4659   const LLT S1 = LLT::scalar(1);
4660   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4661                                     S1, Exponent, ExponentLoBit);
4662 
4663   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4664 
4665   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4666   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4667 
4668   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4669 
4670   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4671                                           S1, Exponent, ZeroSrcTy);
4672 
4673   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4674   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4675 
4676   MI.eraseFromParent();
4677   return Legalized;
4678 }
4679 
4680 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4681 LegalizerHelper::LegalizeResult
4682 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4683   Register Dst = MI.getOperand(0).getReg();
4684   Register Src = MI.getOperand(1).getReg();
4685 
4686   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4687     return UnableToLegalize;
4688 
4689   const unsigned ExpMask = 0x7ff;
4690   const unsigned ExpBiasf64 = 1023;
4691   const unsigned ExpBiasf16 = 15;
4692   const LLT S32 = LLT::scalar(32);
4693   const LLT S1 = LLT::scalar(1);
4694 
4695   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4696   Register U = Unmerge.getReg(0);
4697   Register UH = Unmerge.getReg(1);
4698 
4699   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4700   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4701 
4702   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4703   // add the f16 bias (15) to get the biased exponent for the f16 format.
4704   E = MIRBuilder.buildAdd(
4705     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4706 
4707   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4708   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
4709 
4710   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
4711                                        MIRBuilder.buildConstant(S32, 0x1ff));
4712   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
4713 
4714   auto Zero = MIRBuilder.buildConstant(S32, 0);
4715   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
4716   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
4717   M = MIRBuilder.buildOr(S32, M, Lo40Set);
4718 
4719   // (M != 0 ? 0x0200 : 0) | 0x7c00;
4720   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
4721   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
4722   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
4723 
4724   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
4725   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
4726 
4727   // N = M | (E << 12);
4728   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
4729   auto N = MIRBuilder.buildOr(S32, M, EShl12);
4730 
4731   // B = clamp(1-E, 0, 13);
4732   auto One = MIRBuilder.buildConstant(S32, 1);
4733   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
4734   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
4735   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
4736 
4737   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
4738                                        MIRBuilder.buildConstant(S32, 0x1000));
4739 
4740   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
4741   auto D0 = MIRBuilder.buildShl(S32, D, B);
4742 
4743   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
4744                                              D0, SigSetHigh);
4745   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
4746   D = MIRBuilder.buildOr(S32, D, D1);
4747 
4748   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
4749   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
4750 
4751   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
4752   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
4753 
4754   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
4755                                        MIRBuilder.buildConstant(S32, 3));
4756   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
4757 
4758   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
4759                                        MIRBuilder.buildConstant(S32, 5));
4760   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
4761 
4762   V1 = MIRBuilder.buildOr(S32, V0, V1);
4763   V = MIRBuilder.buildAdd(S32, V, V1);
4764 
4765   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
4766                                        E, MIRBuilder.buildConstant(S32, 30));
4767   V = MIRBuilder.buildSelect(S32, CmpEGt30,
4768                              MIRBuilder.buildConstant(S32, 0x7c00), V);
4769 
4770   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
4771                                          E, MIRBuilder.buildConstant(S32, 1039));
4772   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
4773 
4774   // Extract the sign bit.
4775   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
4776   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
4777 
4778   // Insert the sign bit
4779   V = MIRBuilder.buildOr(S32, Sign, V);
4780 
4781   MIRBuilder.buildTrunc(Dst, V);
4782   MI.eraseFromParent();
4783   return Legalized;
4784 }
4785 
4786 LegalizerHelper::LegalizeResult
4787 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4788   Register Dst = MI.getOperand(0).getReg();
4789   Register Src = MI.getOperand(1).getReg();
4790 
4791   LLT DstTy = MRI.getType(Dst);
4792   LLT SrcTy = MRI.getType(Src);
4793   const LLT S64 = LLT::scalar(64);
4794   const LLT S16 = LLT::scalar(16);
4795 
4796   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
4797     return lowerFPTRUNC_F64_TO_F16(MI);
4798 
4799   return UnableToLegalize;
4800 }
4801 
4802 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4803   switch (Opc) {
4804   case TargetOpcode::G_SMIN:
4805     return CmpInst::ICMP_SLT;
4806   case TargetOpcode::G_SMAX:
4807     return CmpInst::ICMP_SGT;
4808   case TargetOpcode::G_UMIN:
4809     return CmpInst::ICMP_ULT;
4810   case TargetOpcode::G_UMAX:
4811     return CmpInst::ICMP_UGT;
4812   default:
4813     llvm_unreachable("not in integer min/max");
4814   }
4815 }
4816 
4817 LegalizerHelper::LegalizeResult
4818 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4819   Register Dst = MI.getOperand(0).getReg();
4820   Register Src0 = MI.getOperand(1).getReg();
4821   Register Src1 = MI.getOperand(2).getReg();
4822 
4823   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4824   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4825 
4826   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4827   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4828 
4829   MI.eraseFromParent();
4830   return Legalized;
4831 }
4832 
4833 LegalizerHelper::LegalizeResult
4834 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4835   Register Dst = MI.getOperand(0).getReg();
4836   Register Src0 = MI.getOperand(1).getReg();
4837   Register Src1 = MI.getOperand(2).getReg();
4838 
4839   const LLT Src0Ty = MRI.getType(Src0);
4840   const LLT Src1Ty = MRI.getType(Src1);
4841 
4842   const int Src0Size = Src0Ty.getScalarSizeInBits();
4843   const int Src1Size = Src1Ty.getScalarSizeInBits();
4844 
4845   auto SignBitMask = MIRBuilder.buildConstant(
4846     Src0Ty, APInt::getSignMask(Src0Size));
4847 
4848   auto NotSignBitMask = MIRBuilder.buildConstant(
4849     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4850 
4851   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4852   MachineInstr *Or;
4853 
4854   if (Src0Ty == Src1Ty) {
4855     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
4856     Or = MIRBuilder.buildOr(Dst, And0, And1);
4857   } else if (Src0Size > Src1Size) {
4858     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4859     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4860     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4861     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4862     Or = MIRBuilder.buildOr(Dst, And0, And1);
4863   } else {
4864     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4865     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4866     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4867     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4868     Or = MIRBuilder.buildOr(Dst, And0, And1);
4869   }
4870 
4871   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4872   // constants are a nan and -0.0, but the final result should preserve
4873   // everything.
4874   if (unsigned Flags = MI.getFlags())
4875     Or->setFlags(Flags);
4876 
4877   MI.eraseFromParent();
4878   return Legalized;
4879 }
4880 
4881 LegalizerHelper::LegalizeResult
4882 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4883   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4884     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4885 
4886   Register Dst = MI.getOperand(0).getReg();
4887   Register Src0 = MI.getOperand(1).getReg();
4888   Register Src1 = MI.getOperand(2).getReg();
4889   LLT Ty = MRI.getType(Dst);
4890 
4891   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4892     // Insert canonicalizes if it's possible we need to quiet to get correct
4893     // sNaN behavior.
4894 
4895     // Note this must be done here, and not as an optimization combine in the
4896     // absence of a dedicate quiet-snan instruction as we're using an
4897     // omni-purpose G_FCANONICALIZE.
4898     if (!isKnownNeverSNaN(Src0, MRI))
4899       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4900 
4901     if (!isKnownNeverSNaN(Src1, MRI))
4902       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4903   }
4904 
4905   // If there are no nans, it's safe to simply replace this with the non-IEEE
4906   // version.
4907   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4908   MI.eraseFromParent();
4909   return Legalized;
4910 }
4911 
4912 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4913   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4914   Register DstReg = MI.getOperand(0).getReg();
4915   LLT Ty = MRI.getType(DstReg);
4916   unsigned Flags = MI.getFlags();
4917 
4918   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4919                                   Flags);
4920   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4921   MI.eraseFromParent();
4922   return Legalized;
4923 }
4924 
4925 LegalizerHelper::LegalizeResult
4926 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4927   Register DstReg = MI.getOperand(0).getReg();
4928   Register X = MI.getOperand(1).getReg();
4929   const unsigned Flags = MI.getFlags();
4930   const LLT Ty = MRI.getType(DstReg);
4931   const LLT CondTy = Ty.changeElementSize(1);
4932 
4933   // round(x) =>
4934   //  t = trunc(x);
4935   //  d = fabs(x - t);
4936   //  o = copysign(1.0f, x);
4937   //  return t + (d >= 0.5 ? o : 0.0);
4938 
4939   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
4940 
4941   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
4942   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
4943   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4944   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
4945   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
4946   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
4947 
4948   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
4949                                   Flags);
4950   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
4951 
4952   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
4953 
4954   MI.eraseFromParent();
4955   return Legalized;
4956 }
4957 
4958 LegalizerHelper::LegalizeResult
4959 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
4960   Register DstReg = MI.getOperand(0).getReg();
4961   Register SrcReg = MI.getOperand(1).getReg();
4962   unsigned Flags = MI.getFlags();
4963   LLT Ty = MRI.getType(DstReg);
4964   const LLT CondTy = Ty.changeElementSize(1);
4965 
4966   // result = trunc(src);
4967   // if (src < 0.0 && src != result)
4968   //   result += -1.0.
4969 
4970   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4971   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4972 
4973   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4974                                   SrcReg, Zero, Flags);
4975   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4976                                       SrcReg, Trunc, Flags);
4977   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
4978   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
4979 
4980   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
4981   MI.eraseFromParent();
4982   return Legalized;
4983 }
4984 
4985 LegalizerHelper::LegalizeResult
4986 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
4987   const unsigned NumOps = MI.getNumOperands();
4988   Register DstReg = MI.getOperand(0).getReg();
4989   Register Src0Reg = MI.getOperand(1).getReg();
4990   LLT DstTy = MRI.getType(DstReg);
4991   LLT SrcTy = MRI.getType(Src0Reg);
4992   unsigned PartSize = SrcTy.getSizeInBits();
4993 
4994   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
4995   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
4996 
4997   for (unsigned I = 2; I != NumOps; ++I) {
4998     const unsigned Offset = (I - 1) * PartSize;
4999 
5000     Register SrcReg = MI.getOperand(I).getReg();
5001     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5002 
5003     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5004       MRI.createGenericVirtualRegister(WideTy);
5005 
5006     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5007     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5008     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5009     ResultReg = NextResult;
5010   }
5011 
5012   if (DstTy.isPointer()) {
5013     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5014           DstTy.getAddressSpace())) {
5015       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5016       return UnableToLegalize;
5017     }
5018 
5019     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5020   }
5021 
5022   MI.eraseFromParent();
5023   return Legalized;
5024 }
5025 
5026 LegalizerHelper::LegalizeResult
5027 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5028   const unsigned NumDst = MI.getNumOperands() - 1;
5029   Register SrcReg = MI.getOperand(NumDst).getReg();
5030   Register Dst0Reg = MI.getOperand(0).getReg();
5031   LLT DstTy = MRI.getType(Dst0Reg);
5032   if (DstTy.isPointer())
5033     return UnableToLegalize; // TODO
5034 
5035   SrcReg = coerceToScalar(SrcReg);
5036   if (!SrcReg)
5037     return UnableToLegalize;
5038 
5039   // Expand scalarizing unmerge as bitcast to integer and shift.
5040   LLT IntTy = MRI.getType(SrcReg);
5041 
5042   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5043 
5044   const unsigned DstSize = DstTy.getSizeInBits();
5045   unsigned Offset = DstSize;
5046   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5047     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5048     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5049     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5050   }
5051 
5052   MI.eraseFromParent();
5053   return Legalized;
5054 }
5055 
5056 LegalizerHelper::LegalizeResult
5057 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5058   Register DstReg = MI.getOperand(0).getReg();
5059   Register Src0Reg = MI.getOperand(1).getReg();
5060   Register Src1Reg = MI.getOperand(2).getReg();
5061   LLT Src0Ty = MRI.getType(Src0Reg);
5062   LLT DstTy = MRI.getType(DstReg);
5063   LLT IdxTy = LLT::scalar(32);
5064 
5065   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5066 
5067   if (DstTy.isScalar()) {
5068     if (Src0Ty.isVector())
5069       return UnableToLegalize;
5070 
5071     // This is just a SELECT.
5072     assert(Mask.size() == 1 && "Expected a single mask element");
5073     Register Val;
5074     if (Mask[0] < 0 || Mask[0] > 1)
5075       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5076     else
5077       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5078     MIRBuilder.buildCopy(DstReg, Val);
5079     MI.eraseFromParent();
5080     return Legalized;
5081   }
5082 
5083   Register Undef;
5084   SmallVector<Register, 32> BuildVec;
5085   LLT EltTy = DstTy.getElementType();
5086 
5087   for (int Idx : Mask) {
5088     if (Idx < 0) {
5089       if (!Undef.isValid())
5090         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5091       BuildVec.push_back(Undef);
5092       continue;
5093     }
5094 
5095     if (Src0Ty.isScalar()) {
5096       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5097     } else {
5098       int NumElts = Src0Ty.getNumElements();
5099       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5100       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5101       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5102       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5103       BuildVec.push_back(Extract.getReg(0));
5104     }
5105   }
5106 
5107   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5108   MI.eraseFromParent();
5109   return Legalized;
5110 }
5111 
5112 LegalizerHelper::LegalizeResult
5113 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5114   const auto &MF = *MI.getMF();
5115   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5116   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5117     return UnableToLegalize;
5118 
5119   Register Dst = MI.getOperand(0).getReg();
5120   Register AllocSize = MI.getOperand(1).getReg();
5121   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5122 
5123   LLT PtrTy = MRI.getType(Dst);
5124   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5125 
5126   const auto &TLI = *MF.getSubtarget().getTargetLowering();
5127   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5128   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5129   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5130 
5131   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5132   // have to generate an extra instruction to negate the alloc and then use
5133   // G_PTR_ADD to add the negative offset.
5134   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5135   if (Alignment > Align(1)) {
5136     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5137     AlignMask.negate();
5138     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5139     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5140   }
5141 
5142   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5143   MIRBuilder.buildCopy(SPReg, SPTmp);
5144   MIRBuilder.buildCopy(Dst, SPTmp);
5145 
5146   MI.eraseFromParent();
5147   return Legalized;
5148 }
5149 
5150 LegalizerHelper::LegalizeResult
5151 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5152   Register Dst = MI.getOperand(0).getReg();
5153   Register Src = MI.getOperand(1).getReg();
5154   unsigned Offset = MI.getOperand(2).getImm();
5155 
5156   LLT DstTy = MRI.getType(Dst);
5157   LLT SrcTy = MRI.getType(Src);
5158 
5159   if (DstTy.isScalar() &&
5160       (SrcTy.isScalar() ||
5161        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5162     LLT SrcIntTy = SrcTy;
5163     if (!SrcTy.isScalar()) {
5164       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5165       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5166     }
5167 
5168     if (Offset == 0)
5169       MIRBuilder.buildTrunc(Dst, Src);
5170     else {
5171       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5172       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5173       MIRBuilder.buildTrunc(Dst, Shr);
5174     }
5175 
5176     MI.eraseFromParent();
5177     return Legalized;
5178   }
5179 
5180   return UnableToLegalize;
5181 }
5182 
5183 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5184   Register Dst = MI.getOperand(0).getReg();
5185   Register Src = MI.getOperand(1).getReg();
5186   Register InsertSrc = MI.getOperand(2).getReg();
5187   uint64_t Offset = MI.getOperand(3).getImm();
5188 
5189   LLT DstTy = MRI.getType(Src);
5190   LLT InsertTy = MRI.getType(InsertSrc);
5191 
5192   if (InsertTy.isVector() ||
5193       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5194     return UnableToLegalize;
5195 
5196   const DataLayout &DL = MIRBuilder.getDataLayout();
5197   if ((DstTy.isPointer() &&
5198        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5199       (InsertTy.isPointer() &&
5200        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5201     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5202     return UnableToLegalize;
5203   }
5204 
5205   LLT IntDstTy = DstTy;
5206 
5207   if (!DstTy.isScalar()) {
5208     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5209     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5210   }
5211 
5212   if (!InsertTy.isScalar()) {
5213     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5214     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5215   }
5216 
5217   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5218   if (Offset != 0) {
5219     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5220     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5221   }
5222 
5223   APInt MaskVal = APInt::getBitsSetWithWrap(
5224       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5225 
5226   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5227   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5228   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5229 
5230   MIRBuilder.buildCast(Dst, Or);
5231   MI.eraseFromParent();
5232   return Legalized;
5233 }
5234 
5235 LegalizerHelper::LegalizeResult
5236 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5237   Register Dst0 = MI.getOperand(0).getReg();
5238   Register Dst1 = MI.getOperand(1).getReg();
5239   Register LHS = MI.getOperand(2).getReg();
5240   Register RHS = MI.getOperand(3).getReg();
5241   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5242 
5243   LLT Ty = MRI.getType(Dst0);
5244   LLT BoolTy = MRI.getType(Dst1);
5245 
5246   if (IsAdd)
5247     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5248   else
5249     MIRBuilder.buildSub(Dst0, LHS, RHS);
5250 
5251   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5252 
5253   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5254 
5255   // For an addition, the result should be less than one of the operands (LHS)
5256   // if and only if the other operand (RHS) is negative, otherwise there will
5257   // be overflow.
5258   // For a subtraction, the result should be less than one of the operands
5259   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5260   // otherwise there will be overflow.
5261   auto ResultLowerThanLHS =
5262       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5263   auto ConditionRHS = MIRBuilder.buildICmp(
5264       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5265 
5266   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5267   MI.eraseFromParent();
5268   return Legalized;
5269 }
5270 
5271 LegalizerHelper::LegalizeResult
5272 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5273   Register Dst = MI.getOperand(0).getReg();
5274   Register Src = MI.getOperand(1).getReg();
5275   const LLT Ty = MRI.getType(Src);
5276   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5277   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5278 
5279   // Swap most and least significant byte, set remaining bytes in Res to zero.
5280   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5281   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5282   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5283   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5284 
5285   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5286   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5287     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5288     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5289     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5290     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5291     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5292     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5293     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5294     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5295     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5296     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5297     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5298     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5299   }
5300   Res.getInstr()->getOperand(0).setReg(Dst);
5301 
5302   MI.eraseFromParent();
5303   return Legalized;
5304 }
5305 
5306 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5307 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5308                                  MachineInstrBuilder Src, APInt Mask) {
5309   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5310   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5311   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5312   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5313   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5314   return B.buildOr(Dst, LHS, RHS);
5315 }
5316 
5317 LegalizerHelper::LegalizeResult
5318 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5319   Register Dst = MI.getOperand(0).getReg();
5320   Register Src = MI.getOperand(1).getReg();
5321   const LLT Ty = MRI.getType(Src);
5322   unsigned Size = Ty.getSizeInBits();
5323 
5324   MachineInstrBuilder BSWAP =
5325       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5326 
5327   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5328   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5329   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5330   MachineInstrBuilder Swap4 =
5331       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5332 
5333   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5334   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5335   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5336   MachineInstrBuilder Swap2 =
5337       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5338 
5339   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5340   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5341   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5342   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5343 
5344   MI.eraseFromParent();
5345   return Legalized;
5346 }
5347 
5348 LegalizerHelper::LegalizeResult
5349 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5350   MachineFunction &MF = MIRBuilder.getMF();
5351   const TargetSubtargetInfo &STI = MF.getSubtarget();
5352   const TargetLowering *TLI = STI.getTargetLowering();
5353 
5354   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5355   int NameOpIdx = IsRead ? 1 : 0;
5356   int ValRegIndex = IsRead ? 0 : 1;
5357 
5358   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5359   const LLT Ty = MRI.getType(ValReg);
5360   const MDString *RegStr = cast<MDString>(
5361     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5362 
5363   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5364   if (!PhysReg.isValid())
5365     return UnableToLegalize;
5366 
5367   if (IsRead)
5368     MIRBuilder.buildCopy(ValReg, PhysReg);
5369   else
5370     MIRBuilder.buildCopy(PhysReg, ValReg);
5371 
5372   MI.eraseFromParent();
5373   return Legalized;
5374 }
5375