1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 #define DEBUG_TYPE "legalizer"
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace MIPatternMatch;
38 
39 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
40 ///
41 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
42 /// with any leftover piece as type \p LeftoverTy
43 ///
44 /// Returns -1 in the first element of the pair if the breakdown is not
45 /// satisfiable.
46 static std::pair<int, int>
47 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
48   assert(!LeftoverTy.isValid() && "this is an out argument");
49 
50   unsigned Size = OrigTy.getSizeInBits();
51   unsigned NarrowSize = NarrowTy.getSizeInBits();
52   unsigned NumParts = Size / NarrowSize;
53   unsigned LeftoverSize = Size - NumParts * NarrowSize;
54   assert(Size > NarrowSize);
55 
56   if (LeftoverSize == 0)
57     return {NumParts, 0};
58 
59   if (NarrowTy.isVector()) {
60     unsigned EltSize = OrigTy.getScalarSizeInBits();
61     if (LeftoverSize % EltSize != 0)
62       return {-1, -1};
63     LeftoverTy = LLT::scalarOrVector(
64         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
65   } else {
66     LeftoverTy = LLT::scalar(LeftoverSize);
67   }
68 
69   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
70   return std::make_pair(NumParts, NumLeftover);
71 }
72 
73 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
74 
75   if (!Ty.isScalar())
76     return nullptr;
77 
78   switch (Ty.getSizeInBits()) {
79   case 16:
80     return Type::getHalfTy(Ctx);
81   case 32:
82     return Type::getFloatTy(Ctx);
83   case 64:
84     return Type::getDoubleTy(Ctx);
85   case 80:
86     return Type::getX86_FP80Ty(Ctx);
87   case 128:
88     return Type::getFP128Ty(Ctx);
89   default:
90     return nullptr;
91   }
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &Builder)
97     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
98       LI(*MF.getSubtarget().getLegalizerInfo()),
99       TLI(*MF.getSubtarget().getTargetLowering()) { }
100 
101 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
102                                  GISelChangeObserver &Observer,
103                                  MachineIRBuilder &B)
104   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
105     TLI(*MF.getSubtarget().getTargetLowering()) { }
106 
107 LegalizerHelper::LegalizeResult
108 LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
109                                    LostDebugLocObserver &LocObserver) {
110   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
111 
112   MIRBuilder.setInstrAndDebugLoc(MI);
113 
114   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
115       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
116     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
117   auto Step = LI.getAction(MI, MRI);
118   switch (Step.Action) {
119   case Legal:
120     LLVM_DEBUG(dbgs() << ".. Already legal\n");
121     return AlreadyLegal;
122   case Libcall:
123     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
124     return libcall(MI, LocObserver);
125   case NarrowScalar:
126     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
127     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
128   case WidenScalar:
129     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
130     return widenScalar(MI, Step.TypeIdx, Step.NewType);
131   case Bitcast:
132     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
133     return bitcast(MI, Step.TypeIdx, Step.NewType);
134   case Lower:
135     LLVM_DEBUG(dbgs() << ".. Lower\n");
136     return lower(MI, Step.TypeIdx, Step.NewType);
137   case FewerElements:
138     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
139     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
140   case MoreElements:
141     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
142     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
143   case Custom:
144     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
145     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
146   default:
147     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
148     return UnableToLegalize;
149   }
150 }
151 
152 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
153                                    SmallVectorImpl<Register> &VRegs) {
154   for (int i = 0; i < NumParts; ++i)
155     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
156   MIRBuilder.buildUnmerge(VRegs, Reg);
157 }
158 
159 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
160                                    LLT MainTy, LLT &LeftoverTy,
161                                    SmallVectorImpl<Register> &VRegs,
162                                    SmallVectorImpl<Register> &LeftoverRegs) {
163   assert(!LeftoverTy.isValid() && "this is an out argument");
164 
165   unsigned RegSize = RegTy.getSizeInBits();
166   unsigned MainSize = MainTy.getSizeInBits();
167   unsigned NumParts = RegSize / MainSize;
168   unsigned LeftoverSize = RegSize - NumParts * MainSize;
169 
170   // Use an unmerge when possible.
171   if (LeftoverSize == 0) {
172     for (unsigned I = 0; I < NumParts; ++I)
173       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
174     MIRBuilder.buildUnmerge(VRegs, Reg);
175     return true;
176   }
177 
178   if (MainTy.isVector()) {
179     unsigned EltSize = MainTy.getScalarSizeInBits();
180     if (LeftoverSize % EltSize != 0)
181       return false;
182     LeftoverTy = LLT::scalarOrVector(
183         ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
184   } else {
185     LeftoverTy = LLT::scalar(LeftoverSize);
186   }
187 
188   // For irregular sizes, extract the individual parts.
189   for (unsigned I = 0; I != NumParts; ++I) {
190     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
191     VRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
193   }
194 
195   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
196        Offset += LeftoverSize) {
197     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
198     LeftoverRegs.push_back(NewReg);
199     MIRBuilder.buildExtract(NewReg, Reg, Offset);
200   }
201 
202   return true;
203 }
204 
205 void LegalizerHelper::insertParts(Register DstReg,
206                                   LLT ResultTy, LLT PartTy,
207                                   ArrayRef<Register> PartRegs,
208                                   LLT LeftoverTy,
209                                   ArrayRef<Register> LeftoverRegs) {
210   if (!LeftoverTy.isValid()) {
211     assert(LeftoverRegs.empty());
212 
213     if (!ResultTy.isVector()) {
214       MIRBuilder.buildMerge(DstReg, PartRegs);
215       return;
216     }
217 
218     if (PartTy.isVector())
219       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
220     else
221       MIRBuilder.buildBuildVector(DstReg, PartRegs);
222     return;
223   }
224 
225   SmallVector<Register> GCDRegs;
226   LLT GCDTy;
227   for (Register PartReg : PartRegs)
228     GCDTy = extractGCDType(GCDRegs, ResultTy, LeftoverTy, PartReg);
229 
230   for (Register PartReg : LeftoverRegs)
231     extractGCDType(GCDRegs, ResultTy, LeftoverTy, PartReg);
232 
233   LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
234   buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
235 }
236 
237 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
238 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
239                               const MachineInstr &MI) {
240   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
241 
242   const int StartIdx = Regs.size();
243   const int NumResults = MI.getNumOperands() - 1;
244   Regs.resize(Regs.size() + NumResults);
245   for (int I = 0; I != NumResults; ++I)
246     Regs[StartIdx + I] = MI.getOperand(I).getReg();
247 }
248 
249 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
250                                      LLT GCDTy, Register SrcReg) {
251   LLT SrcTy = MRI.getType(SrcReg);
252   if (SrcTy == GCDTy) {
253     // If the source already evenly divides the result type, we don't need to do
254     // anything.
255     Parts.push_back(SrcReg);
256   } else {
257     // Need to split into common type sized pieces.
258     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
259     getUnmergeResults(Parts, *Unmerge);
260   }
261 }
262 
263 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
264                                     LLT NarrowTy, Register SrcReg) {
265   LLT SrcTy = MRI.getType(SrcReg);
266   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
267   extractGCDType(Parts, GCDTy, SrcReg);
268   return GCDTy;
269 }
270 
271 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
272                                          SmallVectorImpl<Register> &VRegs,
273                                          unsigned PadStrategy) {
274   LLT LCMTy = getLCMType(DstTy, NarrowTy);
275 
276   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
277   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
278   int NumOrigSrc = VRegs.size();
279 
280   Register PadReg;
281 
282   // Get a value we can use to pad the source value if the sources won't evenly
283   // cover the result type.
284   if (NumOrigSrc < NumParts * NumSubParts) {
285     if (PadStrategy == TargetOpcode::G_ZEXT)
286       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
287     else if (PadStrategy == TargetOpcode::G_ANYEXT)
288       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
289     else {
290       assert(PadStrategy == TargetOpcode::G_SEXT);
291 
292       // Shift the sign bit of the low register through the high register.
293       auto ShiftAmt =
294         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
295       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
296     }
297   }
298 
299   // Registers for the final merge to be produced.
300   SmallVector<Register, 4> Remerge(NumParts);
301 
302   // Registers needed for intermediate merges, which will be merged into a
303   // source for Remerge.
304   SmallVector<Register, 4> SubMerge(NumSubParts);
305 
306   // Once we've fully read off the end of the original source bits, we can reuse
307   // the same high bits for remaining padding elements.
308   Register AllPadReg;
309 
310   // Build merges to the LCM type to cover the original result type.
311   for (int I = 0; I != NumParts; ++I) {
312     bool AllMergePartsArePadding = true;
313 
314     // Build the requested merges to the requested type.
315     for (int J = 0; J != NumSubParts; ++J) {
316       int Idx = I * NumSubParts + J;
317       if (Idx >= NumOrigSrc) {
318         SubMerge[J] = PadReg;
319         continue;
320       }
321 
322       SubMerge[J] = VRegs[Idx];
323 
324       // There are meaningful bits here we can't reuse later.
325       AllMergePartsArePadding = false;
326     }
327 
328     // If we've filled up a complete piece with padding bits, we can directly
329     // emit the natural sized constant if applicable, rather than a merge of
330     // smaller constants.
331     if (AllMergePartsArePadding && !AllPadReg) {
332       if (PadStrategy == TargetOpcode::G_ANYEXT)
333         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
334       else if (PadStrategy == TargetOpcode::G_ZEXT)
335         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
336 
337       // If this is a sign extension, we can't materialize a trivial constant
338       // with the right type and have to produce a merge.
339     }
340 
341     if (AllPadReg) {
342       // Avoid creating additional instructions if we're just adding additional
343       // copies of padding bits.
344       Remerge[I] = AllPadReg;
345       continue;
346     }
347 
348     if (NumSubParts == 1)
349       Remerge[I] = SubMerge[0];
350     else
351       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
352 
353     // In the sign extend padding case, re-use the first all-signbit merge.
354     if (AllMergePartsArePadding && !AllPadReg)
355       AllPadReg = Remerge[I];
356   }
357 
358   VRegs = std::move(Remerge);
359   return LCMTy;
360 }
361 
362 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
363                                                ArrayRef<Register> RemergeRegs) {
364   LLT DstTy = MRI.getType(DstReg);
365 
366   // Create the merge to the widened source, and extract the relevant bits into
367   // the result.
368 
369   if (DstTy == LCMTy) {
370     MIRBuilder.buildMerge(DstReg, RemergeRegs);
371     return;
372   }
373 
374   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
375   if (DstTy.isScalar() && LCMTy.isScalar()) {
376     MIRBuilder.buildTrunc(DstReg, Remerge);
377     return;
378   }
379 
380   if (LCMTy.isVector()) {
381     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
382     SmallVector<Register, 8> UnmergeDefs(NumDefs);
383     UnmergeDefs[0] = DstReg;
384     for (unsigned I = 1; I != NumDefs; ++I)
385       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
386 
387     MIRBuilder.buildUnmerge(UnmergeDefs,
388                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
389     return;
390   }
391 
392   llvm_unreachable("unhandled case");
393 }
394 
395 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
396 #define RTLIBCASE_INT(LibcallPrefix)                                           \
397   do {                                                                         \
398     switch (Size) {                                                            \
399     case 32:                                                                   \
400       return RTLIB::LibcallPrefix##32;                                         \
401     case 64:                                                                   \
402       return RTLIB::LibcallPrefix##64;                                         \
403     case 128:                                                                  \
404       return RTLIB::LibcallPrefix##128;                                        \
405     default:                                                                   \
406       llvm_unreachable("unexpected size");                                     \
407     }                                                                          \
408   } while (0)
409 
410 #define RTLIBCASE(LibcallPrefix)                                               \
411   do {                                                                         \
412     switch (Size) {                                                            \
413     case 32:                                                                   \
414       return RTLIB::LibcallPrefix##32;                                         \
415     case 64:                                                                   \
416       return RTLIB::LibcallPrefix##64;                                         \
417     case 80:                                                                   \
418       return RTLIB::LibcallPrefix##80;                                         \
419     case 128:                                                                  \
420       return RTLIB::LibcallPrefix##128;                                        \
421     default:                                                                   \
422       llvm_unreachable("unexpected size");                                     \
423     }                                                                          \
424   } while (0)
425 
426   switch (Opcode) {
427   case TargetOpcode::G_SDIV:
428     RTLIBCASE_INT(SDIV_I);
429   case TargetOpcode::G_UDIV:
430     RTLIBCASE_INT(UDIV_I);
431   case TargetOpcode::G_SREM:
432     RTLIBCASE_INT(SREM_I);
433   case TargetOpcode::G_UREM:
434     RTLIBCASE_INT(UREM_I);
435   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
436     RTLIBCASE_INT(CTLZ_I);
437   case TargetOpcode::G_FADD:
438     RTLIBCASE(ADD_F);
439   case TargetOpcode::G_FSUB:
440     RTLIBCASE(SUB_F);
441   case TargetOpcode::G_FMUL:
442     RTLIBCASE(MUL_F);
443   case TargetOpcode::G_FDIV:
444     RTLIBCASE(DIV_F);
445   case TargetOpcode::G_FEXP:
446     RTLIBCASE(EXP_F);
447   case TargetOpcode::G_FEXP2:
448     RTLIBCASE(EXP2_F);
449   case TargetOpcode::G_FREM:
450     RTLIBCASE(REM_F);
451   case TargetOpcode::G_FPOW:
452     RTLIBCASE(POW_F);
453   case TargetOpcode::G_FMA:
454     RTLIBCASE(FMA_F);
455   case TargetOpcode::G_FSIN:
456     RTLIBCASE(SIN_F);
457   case TargetOpcode::G_FCOS:
458     RTLIBCASE(COS_F);
459   case TargetOpcode::G_FLOG10:
460     RTLIBCASE(LOG10_F);
461   case TargetOpcode::G_FLOG:
462     RTLIBCASE(LOG_F);
463   case TargetOpcode::G_FLOG2:
464     RTLIBCASE(LOG2_F);
465   case TargetOpcode::G_FCEIL:
466     RTLIBCASE(CEIL_F);
467   case TargetOpcode::G_FFLOOR:
468     RTLIBCASE(FLOOR_F);
469   case TargetOpcode::G_FMINNUM:
470     RTLIBCASE(FMIN_F);
471   case TargetOpcode::G_FMAXNUM:
472     RTLIBCASE(FMAX_F);
473   case TargetOpcode::G_FSQRT:
474     RTLIBCASE(SQRT_F);
475   case TargetOpcode::G_FRINT:
476     RTLIBCASE(RINT_F);
477   case TargetOpcode::G_FNEARBYINT:
478     RTLIBCASE(NEARBYINT_F);
479   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
480     RTLIBCASE(ROUNDEVEN_F);
481   }
482   llvm_unreachable("Unknown libcall function");
483 }
484 
485 /// True if an instruction is in tail position in its caller. Intended for
486 /// legalizing libcalls as tail calls when possible.
487 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
488                                     MachineInstr &MI) {
489   MachineBasicBlock &MBB = *MI.getParent();
490   const Function &F = MBB.getParent()->getFunction();
491 
492   // Conservatively require the attributes of the call to match those of
493   // the return. Ignore NoAlias and NonNull because they don't affect the
494   // call sequence.
495   AttributeList CallerAttrs = F.getAttributes();
496   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
497           .removeAttribute(Attribute::NoAlias)
498           .removeAttribute(Attribute::NonNull)
499           .hasAttributes())
500     return false;
501 
502   // It's not safe to eliminate the sign / zero extension of the return value.
503   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
504       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
505     return false;
506 
507   // Only tail call if the following instruction is a standard return.
508   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
509   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
510     return false;
511 
512   return true;
513 }
514 
515 LegalizerHelper::LegalizeResult
516 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
517                     const CallLowering::ArgInfo &Result,
518                     ArrayRef<CallLowering::ArgInfo> Args,
519                     const CallingConv::ID CC) {
520   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
521 
522   CallLowering::CallLoweringInfo Info;
523   Info.CallConv = CC;
524   Info.Callee = MachineOperand::CreateES(Name);
525   Info.OrigRet = Result;
526   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
527   if (!CLI.lowerCall(MIRBuilder, Info))
528     return LegalizerHelper::UnableToLegalize;
529 
530   return LegalizerHelper::Legalized;
531 }
532 
533 LegalizerHelper::LegalizeResult
534 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
535                     const CallLowering::ArgInfo &Result,
536                     ArrayRef<CallLowering::ArgInfo> Args) {
537   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
538   const char *Name = TLI.getLibcallName(Libcall);
539   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
540   return createLibcall(MIRBuilder, Name, Result, Args, CC);
541 }
542 
543 // Useful for libcalls where all operands have the same type.
544 static LegalizerHelper::LegalizeResult
545 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
546               Type *OpType) {
547   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
548 
549   // FIXME: What does the original arg index mean here?
550   SmallVector<CallLowering::ArgInfo, 3> Args;
551   for (unsigned i = 1; i < MI.getNumOperands(); i++)
552     Args.push_back({MI.getOperand(i).getReg(), OpType, 0});
553   return createLibcall(MIRBuilder, Libcall,
554                        {MI.getOperand(0).getReg(), OpType, 0}, Args);
555 }
556 
557 LegalizerHelper::LegalizeResult
558 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
559                        MachineInstr &MI, LostDebugLocObserver &LocObserver) {
560   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
561 
562   SmallVector<CallLowering::ArgInfo, 3> Args;
563   // Add all the args, except for the last which is an imm denoting 'tail'.
564   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
565     Register Reg = MI.getOperand(i).getReg();
566 
567     // Need derive an IR type for call lowering.
568     LLT OpLLT = MRI.getType(Reg);
569     Type *OpTy = nullptr;
570     if (OpLLT.isPointer())
571       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
572     else
573       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
574     Args.push_back({Reg, OpTy, 0});
575   }
576 
577   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
578   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
579   RTLIB::Libcall RTLibcall;
580   unsigned Opc = MI.getOpcode();
581   switch (Opc) {
582   case TargetOpcode::G_BZERO:
583     RTLibcall = RTLIB::BZERO;
584     break;
585   case TargetOpcode::G_MEMCPY:
586     RTLibcall = RTLIB::MEMCPY;
587     break;
588   case TargetOpcode::G_MEMMOVE:
589     RTLibcall = RTLIB::MEMMOVE;
590     break;
591   case TargetOpcode::G_MEMSET:
592     RTLibcall = RTLIB::MEMSET;
593     break;
594   default:
595     return LegalizerHelper::UnableToLegalize;
596   }
597   const char *Name = TLI.getLibcallName(RTLibcall);
598 
599   // Unsupported libcall on the target.
600   if (!Name) {
601     LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "
602                       << MIRBuilder.getTII().getName(Opc) << "\n");
603     return LegalizerHelper::UnableToLegalize;
604   }
605 
606   CallLowering::CallLoweringInfo Info;
607   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
608   Info.Callee = MachineOperand::CreateES(Name);
609   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
610   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
611                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
612 
613   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
614   if (!CLI.lowerCall(MIRBuilder, Info))
615     return LegalizerHelper::UnableToLegalize;
616 
617 
618   if (Info.LoweredTailCall) {
619     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
620 
621     // Check debug locations before removing the return.
622     LocObserver.checkpoint(true);
623 
624     // We must have a return following the call (or debug insts) to get past
625     // isLibCallInTailPosition.
626     do {
627       MachineInstr *Next = MI.getNextNode();
628       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
629              "Expected instr following MI to be return or debug inst?");
630       // We lowered a tail call, so the call is now the return from the block.
631       // Delete the old return.
632       Next->eraseFromParent();
633     } while (MI.getNextNode());
634 
635     // We expect to lose the debug location from the return.
636     LocObserver.checkpoint(false);
637   }
638 
639   return LegalizerHelper::Legalized;
640 }
641 
642 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
643                                        Type *FromType) {
644   auto ToMVT = MVT::getVT(ToType);
645   auto FromMVT = MVT::getVT(FromType);
646 
647   switch (Opcode) {
648   case TargetOpcode::G_FPEXT:
649     return RTLIB::getFPEXT(FromMVT, ToMVT);
650   case TargetOpcode::G_FPTRUNC:
651     return RTLIB::getFPROUND(FromMVT, ToMVT);
652   case TargetOpcode::G_FPTOSI:
653     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
654   case TargetOpcode::G_FPTOUI:
655     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
656   case TargetOpcode::G_SITOFP:
657     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
658   case TargetOpcode::G_UITOFP:
659     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
660   }
661   llvm_unreachable("Unsupported libcall function");
662 }
663 
664 static LegalizerHelper::LegalizeResult
665 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
666                   Type *FromType) {
667   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
668   return createLibcall(MIRBuilder, Libcall,
669                        {MI.getOperand(0).getReg(), ToType, 0},
670                        {{MI.getOperand(1).getReg(), FromType, 0}});
671 }
672 
673 LegalizerHelper::LegalizeResult
674 LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
675   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
676   unsigned Size = LLTy.getSizeInBits();
677   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
678 
679   switch (MI.getOpcode()) {
680   default:
681     return UnableToLegalize;
682   case TargetOpcode::G_SDIV:
683   case TargetOpcode::G_UDIV:
684   case TargetOpcode::G_SREM:
685   case TargetOpcode::G_UREM:
686   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
687     Type *HLTy = IntegerType::get(Ctx, Size);
688     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
689     if (Status != Legalized)
690       return Status;
691     break;
692   }
693   case TargetOpcode::G_FADD:
694   case TargetOpcode::G_FSUB:
695   case TargetOpcode::G_FMUL:
696   case TargetOpcode::G_FDIV:
697   case TargetOpcode::G_FMA:
698   case TargetOpcode::G_FPOW:
699   case TargetOpcode::G_FREM:
700   case TargetOpcode::G_FCOS:
701   case TargetOpcode::G_FSIN:
702   case TargetOpcode::G_FLOG10:
703   case TargetOpcode::G_FLOG:
704   case TargetOpcode::G_FLOG2:
705   case TargetOpcode::G_FEXP:
706   case TargetOpcode::G_FEXP2:
707   case TargetOpcode::G_FCEIL:
708   case TargetOpcode::G_FFLOOR:
709   case TargetOpcode::G_FMINNUM:
710   case TargetOpcode::G_FMAXNUM:
711   case TargetOpcode::G_FSQRT:
712   case TargetOpcode::G_FRINT:
713   case TargetOpcode::G_FNEARBYINT:
714   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
715     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
716     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
717       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
718       return UnableToLegalize;
719     }
720     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
721     if (Status != Legalized)
722       return Status;
723     break;
724   }
725   case TargetOpcode::G_FPEXT:
726   case TargetOpcode::G_FPTRUNC: {
727     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
728     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
729     if (!FromTy || !ToTy)
730       return UnableToLegalize;
731     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
732     if (Status != Legalized)
733       return Status;
734     break;
735   }
736   case TargetOpcode::G_FPTOSI:
737   case TargetOpcode::G_FPTOUI: {
738     // FIXME: Support other types
739     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
740     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
741     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
742       return UnableToLegalize;
743     LegalizeResult Status = conversionLibcall(
744         MI, MIRBuilder,
745         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
746         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
747     if (Status != Legalized)
748       return Status;
749     break;
750   }
751   case TargetOpcode::G_SITOFP:
752   case TargetOpcode::G_UITOFP: {
753     // FIXME: Support other types
754     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
755     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
756     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
757       return UnableToLegalize;
758     LegalizeResult Status = conversionLibcall(
759         MI, MIRBuilder,
760         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
761         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
762     if (Status != Legalized)
763       return Status;
764     break;
765   }
766   case TargetOpcode::G_BZERO:
767   case TargetOpcode::G_MEMCPY:
768   case TargetOpcode::G_MEMMOVE:
769   case TargetOpcode::G_MEMSET: {
770     LegalizeResult Result =
771         createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
772     if (Result != Legalized)
773       return Result;
774     MI.eraseFromParent();
775     return Result;
776   }
777   }
778 
779   MI.eraseFromParent();
780   return Legalized;
781 }
782 
783 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
784                                                               unsigned TypeIdx,
785                                                               LLT NarrowTy) {
786   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
787   uint64_t NarrowSize = NarrowTy.getSizeInBits();
788 
789   switch (MI.getOpcode()) {
790   default:
791     return UnableToLegalize;
792   case TargetOpcode::G_IMPLICIT_DEF: {
793     Register DstReg = MI.getOperand(0).getReg();
794     LLT DstTy = MRI.getType(DstReg);
795 
796     // If SizeOp0 is not an exact multiple of NarrowSize, emit
797     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
798     // FIXME: Although this would also be legal for the general case, it causes
799     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
800     //  combines not being hit). This seems to be a problem related to the
801     //  artifact combiner.
802     if (SizeOp0 % NarrowSize != 0) {
803       LLT ImplicitTy = NarrowTy;
804       if (DstTy.isVector())
805         ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
806 
807       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
808       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
809 
810       MI.eraseFromParent();
811       return Legalized;
812     }
813 
814     int NumParts = SizeOp0 / NarrowSize;
815 
816     SmallVector<Register, 2> DstRegs;
817     for (int i = 0; i < NumParts; ++i)
818       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
819 
820     if (DstTy.isVector())
821       MIRBuilder.buildBuildVector(DstReg, DstRegs);
822     else
823       MIRBuilder.buildMerge(DstReg, DstRegs);
824     MI.eraseFromParent();
825     return Legalized;
826   }
827   case TargetOpcode::G_CONSTANT: {
828     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
829     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
830     unsigned TotalSize = Ty.getSizeInBits();
831     unsigned NarrowSize = NarrowTy.getSizeInBits();
832     int NumParts = TotalSize / NarrowSize;
833 
834     SmallVector<Register, 4> PartRegs;
835     for (int I = 0; I != NumParts; ++I) {
836       unsigned Offset = I * NarrowSize;
837       auto K = MIRBuilder.buildConstant(NarrowTy,
838                                         Val.lshr(Offset).trunc(NarrowSize));
839       PartRegs.push_back(K.getReg(0));
840     }
841 
842     LLT LeftoverTy;
843     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
844     SmallVector<Register, 1> LeftoverRegs;
845     if (LeftoverBits != 0) {
846       LeftoverTy = LLT::scalar(LeftoverBits);
847       auto K = MIRBuilder.buildConstant(
848         LeftoverTy,
849         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
850       LeftoverRegs.push_back(K.getReg(0));
851     }
852 
853     insertParts(MI.getOperand(0).getReg(),
854                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
855 
856     MI.eraseFromParent();
857     return Legalized;
858   }
859   case TargetOpcode::G_SEXT:
860   case TargetOpcode::G_ZEXT:
861   case TargetOpcode::G_ANYEXT:
862     return narrowScalarExt(MI, TypeIdx, NarrowTy);
863   case TargetOpcode::G_TRUNC: {
864     if (TypeIdx != 1)
865       return UnableToLegalize;
866 
867     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
868     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
869       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
870       return UnableToLegalize;
871     }
872 
873     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
874     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
875     MI.eraseFromParent();
876     return Legalized;
877   }
878 
879   case TargetOpcode::G_FREEZE:
880     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
881   case TargetOpcode::G_ADD:
882   case TargetOpcode::G_SUB:
883   case TargetOpcode::G_SADDO:
884   case TargetOpcode::G_SSUBO:
885   case TargetOpcode::G_SADDE:
886   case TargetOpcode::G_SSUBE:
887   case TargetOpcode::G_UADDO:
888   case TargetOpcode::G_USUBO:
889   case TargetOpcode::G_UADDE:
890   case TargetOpcode::G_USUBE:
891     return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
892   case TargetOpcode::G_MUL:
893   case TargetOpcode::G_UMULH:
894     return narrowScalarMul(MI, NarrowTy);
895   case TargetOpcode::G_EXTRACT:
896     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
897   case TargetOpcode::G_INSERT:
898     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
899   case TargetOpcode::G_LOAD: {
900     auto &MMO = **MI.memoperands_begin();
901     Register DstReg = MI.getOperand(0).getReg();
902     LLT DstTy = MRI.getType(DstReg);
903     if (DstTy.isVector())
904       return UnableToLegalize;
905 
906     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
907       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
908       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
909       MIRBuilder.buildAnyExt(DstReg, TmpReg);
910       MI.eraseFromParent();
911       return Legalized;
912     }
913 
914     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
915   }
916   case TargetOpcode::G_ZEXTLOAD:
917   case TargetOpcode::G_SEXTLOAD: {
918     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
919     Register DstReg = MI.getOperand(0).getReg();
920     Register PtrReg = MI.getOperand(1).getReg();
921 
922     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
923     auto &MMO = **MI.memoperands_begin();
924     unsigned MemSize = MMO.getSizeInBits();
925 
926     if (MemSize == NarrowSize) {
927       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
928     } else if (MemSize < NarrowSize) {
929       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
930     } else if (MemSize > NarrowSize) {
931       // FIXME: Need to split the load.
932       return UnableToLegalize;
933     }
934 
935     if (ZExt)
936       MIRBuilder.buildZExt(DstReg, TmpReg);
937     else
938       MIRBuilder.buildSExt(DstReg, TmpReg);
939 
940     MI.eraseFromParent();
941     return Legalized;
942   }
943   case TargetOpcode::G_STORE: {
944     const auto &MMO = **MI.memoperands_begin();
945 
946     Register SrcReg = MI.getOperand(0).getReg();
947     LLT SrcTy = MRI.getType(SrcReg);
948     if (SrcTy.isVector())
949       return UnableToLegalize;
950 
951     int NumParts = SizeOp0 / NarrowSize;
952     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
953     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
954     if (SrcTy.isVector() && LeftoverBits != 0)
955       return UnableToLegalize;
956 
957     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
958       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
959       auto &MMO = **MI.memoperands_begin();
960       MIRBuilder.buildTrunc(TmpReg, SrcReg);
961       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
962       MI.eraseFromParent();
963       return Legalized;
964     }
965 
966     return reduceLoadStoreWidth(MI, 0, NarrowTy);
967   }
968   case TargetOpcode::G_SELECT:
969     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
970   case TargetOpcode::G_AND:
971   case TargetOpcode::G_OR:
972   case TargetOpcode::G_XOR: {
973     // Legalize bitwise operation:
974     // A = BinOp<Ty> B, C
975     // into:
976     // B1, ..., BN = G_UNMERGE_VALUES B
977     // C1, ..., CN = G_UNMERGE_VALUES C
978     // A1 = BinOp<Ty/N> B1, C2
979     // ...
980     // AN = BinOp<Ty/N> BN, CN
981     // A = G_MERGE_VALUES A1, ..., AN
982     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
983   }
984   case TargetOpcode::G_SHL:
985   case TargetOpcode::G_LSHR:
986   case TargetOpcode::G_ASHR:
987     return narrowScalarShift(MI, TypeIdx, NarrowTy);
988   case TargetOpcode::G_CTLZ:
989   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
990   case TargetOpcode::G_CTTZ:
991   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
992   case TargetOpcode::G_CTPOP:
993     if (TypeIdx == 1)
994       switch (MI.getOpcode()) {
995       case TargetOpcode::G_CTLZ:
996       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
997         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
998       case TargetOpcode::G_CTTZ:
999       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1000         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1001       case TargetOpcode::G_CTPOP:
1002         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1003       default:
1004         return UnableToLegalize;
1005       }
1006 
1007     Observer.changingInstr(MI);
1008     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1009     Observer.changedInstr(MI);
1010     return Legalized;
1011   case TargetOpcode::G_INTTOPTR:
1012     if (TypeIdx != 1)
1013       return UnableToLegalize;
1014 
1015     Observer.changingInstr(MI);
1016     narrowScalarSrc(MI, NarrowTy, 1);
1017     Observer.changedInstr(MI);
1018     return Legalized;
1019   case TargetOpcode::G_PTRTOINT:
1020     if (TypeIdx != 0)
1021       return UnableToLegalize;
1022 
1023     Observer.changingInstr(MI);
1024     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1025     Observer.changedInstr(MI);
1026     return Legalized;
1027   case TargetOpcode::G_PHI: {
1028     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1029     // NarrowSize.
1030     if (SizeOp0 % NarrowSize != 0)
1031       return UnableToLegalize;
1032 
1033     unsigned NumParts = SizeOp0 / NarrowSize;
1034     SmallVector<Register, 2> DstRegs(NumParts);
1035     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1036     Observer.changingInstr(MI);
1037     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1038       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1039       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1040       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1041                    SrcRegs[i / 2]);
1042     }
1043     MachineBasicBlock &MBB = *MI.getParent();
1044     MIRBuilder.setInsertPt(MBB, MI);
1045     for (unsigned i = 0; i < NumParts; ++i) {
1046       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1047       MachineInstrBuilder MIB =
1048           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1049       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1050         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1051     }
1052     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1053     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1054     Observer.changedInstr(MI);
1055     MI.eraseFromParent();
1056     return Legalized;
1057   }
1058   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1059   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1060     if (TypeIdx != 2)
1061       return UnableToLegalize;
1062 
1063     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1064     Observer.changingInstr(MI);
1065     narrowScalarSrc(MI, NarrowTy, OpIdx);
1066     Observer.changedInstr(MI);
1067     return Legalized;
1068   }
1069   case TargetOpcode::G_ICMP: {
1070     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1071     if (NarrowSize * 2 != SrcSize)
1072       return UnableToLegalize;
1073 
1074     Observer.changingInstr(MI);
1075     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1076     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1077     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1078 
1079     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1080     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1081     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1082 
1083     CmpInst::Predicate Pred =
1084         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1085     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1086 
1087     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1088       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1089       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1090       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1091       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1092       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1093     } else {
1094       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1095       MachineInstrBuilder CmpHEQ =
1096           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1097       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1098           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1099       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1100     }
1101     Observer.changedInstr(MI);
1102     MI.eraseFromParent();
1103     return Legalized;
1104   }
1105   case TargetOpcode::G_SEXT_INREG: {
1106     if (TypeIdx != 0)
1107       return UnableToLegalize;
1108 
1109     int64_t SizeInBits = MI.getOperand(2).getImm();
1110 
1111     // So long as the new type has more bits than the bits we're extending we
1112     // don't need to break it apart.
1113     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1114       Observer.changingInstr(MI);
1115       // We don't lose any non-extension bits by truncating the src and
1116       // sign-extending the dst.
1117       MachineOperand &MO1 = MI.getOperand(1);
1118       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1119       MO1.setReg(TruncMIB.getReg(0));
1120 
1121       MachineOperand &MO2 = MI.getOperand(0);
1122       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1123       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1124       MIRBuilder.buildSExt(MO2, DstExt);
1125       MO2.setReg(DstExt);
1126       Observer.changedInstr(MI);
1127       return Legalized;
1128     }
1129 
1130     // Break it apart. Components below the extension point are unmodified. The
1131     // component containing the extension point becomes a narrower SEXT_INREG.
1132     // Components above it are ashr'd from the component containing the
1133     // extension point.
1134     if (SizeOp0 % NarrowSize != 0)
1135       return UnableToLegalize;
1136     int NumParts = SizeOp0 / NarrowSize;
1137 
1138     // List the registers where the destination will be scattered.
1139     SmallVector<Register, 2> DstRegs;
1140     // List the registers where the source will be split.
1141     SmallVector<Register, 2> SrcRegs;
1142 
1143     // Create all the temporary registers.
1144     for (int i = 0; i < NumParts; ++i) {
1145       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1146 
1147       SrcRegs.push_back(SrcReg);
1148     }
1149 
1150     // Explode the big arguments into smaller chunks.
1151     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1152 
1153     Register AshrCstReg =
1154         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1155             .getReg(0);
1156     Register FullExtensionReg = 0;
1157     Register PartialExtensionReg = 0;
1158 
1159     // Do the operation on each small part.
1160     for (int i = 0; i < NumParts; ++i) {
1161       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1162         DstRegs.push_back(SrcRegs[i]);
1163       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1164         assert(PartialExtensionReg &&
1165                "Expected to visit partial extension before full");
1166         if (FullExtensionReg) {
1167           DstRegs.push_back(FullExtensionReg);
1168           continue;
1169         }
1170         DstRegs.push_back(
1171             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1172                 .getReg(0));
1173         FullExtensionReg = DstRegs.back();
1174       } else {
1175         DstRegs.push_back(
1176             MIRBuilder
1177                 .buildInstr(
1178                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1179                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1180                 .getReg(0));
1181         PartialExtensionReg = DstRegs.back();
1182       }
1183     }
1184 
1185     // Gather the destination registers into the final destination.
1186     Register DstReg = MI.getOperand(0).getReg();
1187     MIRBuilder.buildMerge(DstReg, DstRegs);
1188     MI.eraseFromParent();
1189     return Legalized;
1190   }
1191   case TargetOpcode::G_BSWAP:
1192   case TargetOpcode::G_BITREVERSE: {
1193     if (SizeOp0 % NarrowSize != 0)
1194       return UnableToLegalize;
1195 
1196     Observer.changingInstr(MI);
1197     SmallVector<Register, 2> SrcRegs, DstRegs;
1198     unsigned NumParts = SizeOp0 / NarrowSize;
1199     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1200 
1201     for (unsigned i = 0; i < NumParts; ++i) {
1202       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1203                                            {SrcRegs[NumParts - 1 - i]});
1204       DstRegs.push_back(DstPart.getReg(0));
1205     }
1206 
1207     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1208 
1209     Observer.changedInstr(MI);
1210     MI.eraseFromParent();
1211     return Legalized;
1212   }
1213   case TargetOpcode::G_PTR_ADD:
1214   case TargetOpcode::G_PTRMASK: {
1215     if (TypeIdx != 1)
1216       return UnableToLegalize;
1217     Observer.changingInstr(MI);
1218     narrowScalarSrc(MI, NarrowTy, 2);
1219     Observer.changedInstr(MI);
1220     return Legalized;
1221   }
1222   case TargetOpcode::G_FPTOUI:
1223   case TargetOpcode::G_FPTOSI:
1224     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1225   case TargetOpcode::G_FPEXT:
1226     if (TypeIdx != 0)
1227       return UnableToLegalize;
1228     Observer.changingInstr(MI);
1229     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1230     Observer.changedInstr(MI);
1231     return Legalized;
1232   }
1233 }
1234 
1235 Register LegalizerHelper::coerceToScalar(Register Val) {
1236   LLT Ty = MRI.getType(Val);
1237   if (Ty.isScalar())
1238     return Val;
1239 
1240   const DataLayout &DL = MIRBuilder.getDataLayout();
1241   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1242   if (Ty.isPointer()) {
1243     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1244       return Register();
1245     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1246   }
1247 
1248   Register NewVal = Val;
1249 
1250   assert(Ty.isVector());
1251   LLT EltTy = Ty.getElementType();
1252   if (EltTy.isPointer())
1253     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1254   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1255 }
1256 
1257 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1258                                      unsigned OpIdx, unsigned ExtOpcode) {
1259   MachineOperand &MO = MI.getOperand(OpIdx);
1260   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1261   MO.setReg(ExtB.getReg(0));
1262 }
1263 
1264 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1265                                       unsigned OpIdx) {
1266   MachineOperand &MO = MI.getOperand(OpIdx);
1267   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1268   MO.setReg(ExtB.getReg(0));
1269 }
1270 
1271 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1272                                      unsigned OpIdx, unsigned TruncOpcode) {
1273   MachineOperand &MO = MI.getOperand(OpIdx);
1274   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1275   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1276   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1277   MO.setReg(DstExt);
1278 }
1279 
1280 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1281                                       unsigned OpIdx, unsigned ExtOpcode) {
1282   MachineOperand &MO = MI.getOperand(OpIdx);
1283   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1284   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1285   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1286   MO.setReg(DstTrunc);
1287 }
1288 
1289 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1290                                             unsigned OpIdx) {
1291   MachineOperand &MO = MI.getOperand(OpIdx);
1292   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1293   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1294 }
1295 
1296 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1297                                             unsigned OpIdx) {
1298   MachineOperand &MO = MI.getOperand(OpIdx);
1299 
1300   LLT OldTy = MRI.getType(MO.getReg());
1301   unsigned OldElts = OldTy.getNumElements();
1302   unsigned NewElts = MoreTy.getNumElements();
1303 
1304   unsigned NumParts = NewElts / OldElts;
1305 
1306   // Use concat_vectors if the result is a multiple of the number of elements.
1307   if (NumParts * OldElts == NewElts) {
1308     SmallVector<Register, 8> Parts;
1309     Parts.push_back(MO.getReg());
1310 
1311     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1312     for (unsigned I = 1; I != NumParts; ++I)
1313       Parts.push_back(ImpDef);
1314 
1315     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1316     MO.setReg(Concat.getReg(0));
1317     return;
1318   }
1319 
1320   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1321   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1322   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1323   MO.setReg(MoreReg);
1324 }
1325 
1326 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1327   MachineOperand &Op = MI.getOperand(OpIdx);
1328   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1329 }
1330 
1331 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1332   MachineOperand &MO = MI.getOperand(OpIdx);
1333   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1334   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1335   MIRBuilder.buildBitcast(MO, CastDst);
1336   MO.setReg(CastDst);
1337 }
1338 
1339 LegalizerHelper::LegalizeResult
1340 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1341                                         LLT WideTy) {
1342   if (TypeIdx != 1)
1343     return UnableToLegalize;
1344 
1345   Register DstReg = MI.getOperand(0).getReg();
1346   LLT DstTy = MRI.getType(DstReg);
1347   if (DstTy.isVector())
1348     return UnableToLegalize;
1349 
1350   Register Src1 = MI.getOperand(1).getReg();
1351   LLT SrcTy = MRI.getType(Src1);
1352   const int DstSize = DstTy.getSizeInBits();
1353   const int SrcSize = SrcTy.getSizeInBits();
1354   const int WideSize = WideTy.getSizeInBits();
1355   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1356 
1357   unsigned NumOps = MI.getNumOperands();
1358   unsigned NumSrc = MI.getNumOperands() - 1;
1359   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1360 
1361   if (WideSize >= DstSize) {
1362     // Directly pack the bits in the target type.
1363     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1364 
1365     for (unsigned I = 2; I != NumOps; ++I) {
1366       const unsigned Offset = (I - 1) * PartSize;
1367 
1368       Register SrcReg = MI.getOperand(I).getReg();
1369       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1370 
1371       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1372 
1373       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1374         MRI.createGenericVirtualRegister(WideTy);
1375 
1376       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1377       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1378       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1379       ResultReg = NextResult;
1380     }
1381 
1382     if (WideSize > DstSize)
1383       MIRBuilder.buildTrunc(DstReg, ResultReg);
1384     else if (DstTy.isPointer())
1385       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1386 
1387     MI.eraseFromParent();
1388     return Legalized;
1389   }
1390 
1391   // Unmerge the original values to the GCD type, and recombine to the next
1392   // multiple greater than the original type.
1393   //
1394   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1395   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1396   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1397   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1398   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1399   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1400   // %12:_(s12) = G_MERGE_VALUES %10, %11
1401   //
1402   // Padding with undef if necessary:
1403   //
1404   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1405   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1406   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1407   // %7:_(s2) = G_IMPLICIT_DEF
1408   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1409   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1410   // %10:_(s12) = G_MERGE_VALUES %8, %9
1411 
1412   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1413   LLT GCDTy = LLT::scalar(GCD);
1414 
1415   SmallVector<Register, 8> Parts;
1416   SmallVector<Register, 8> NewMergeRegs;
1417   SmallVector<Register, 8> Unmerges;
1418   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1419 
1420   // Decompose the original operands if they don't evenly divide.
1421   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1422     Register SrcReg = MI.getOperand(I).getReg();
1423     if (GCD == SrcSize) {
1424       Unmerges.push_back(SrcReg);
1425     } else {
1426       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1427       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1428         Unmerges.push_back(Unmerge.getReg(J));
1429     }
1430   }
1431 
1432   // Pad with undef to the next size that is a multiple of the requested size.
1433   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1434     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1435     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1436       Unmerges.push_back(UndefReg);
1437   }
1438 
1439   const int PartsPerGCD = WideSize / GCD;
1440 
1441   // Build merges of each piece.
1442   ArrayRef<Register> Slicer(Unmerges);
1443   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1444     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1445     NewMergeRegs.push_back(Merge.getReg(0));
1446   }
1447 
1448   // A truncate may be necessary if the requested type doesn't evenly divide the
1449   // original result type.
1450   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1451     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1452   } else {
1453     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1454     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1455   }
1456 
1457   MI.eraseFromParent();
1458   return Legalized;
1459 }
1460 
1461 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1462   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1463   LLT OrigTy = MRI.getType(OrigReg);
1464   LLT LCMTy = getLCMType(WideTy, OrigTy);
1465 
1466   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1467   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1468 
1469   Register UnmergeSrc = WideReg;
1470 
1471   // Create a merge to the LCM type, padding with undef
1472   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1473   // =>
1474   // %1:_(<4 x s32>) = G_FOO
1475   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1476   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1477   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1478   if (NumMergeParts > 1) {
1479     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1480     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1481     MergeParts[0] = WideReg;
1482     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1483   }
1484 
1485   // Unmerge to the original register and pad with dead defs.
1486   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1487   UnmergeResults[0] = OrigReg;
1488   for (int I = 1; I != NumUnmergeParts; ++I)
1489     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1490 
1491   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1492   return WideReg;
1493 }
1494 
1495 LegalizerHelper::LegalizeResult
1496 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1497                                           LLT WideTy) {
1498   if (TypeIdx != 0)
1499     return UnableToLegalize;
1500 
1501   int NumDst = MI.getNumOperands() - 1;
1502   Register SrcReg = MI.getOperand(NumDst).getReg();
1503   LLT SrcTy = MRI.getType(SrcReg);
1504   if (SrcTy.isVector())
1505     return UnableToLegalize;
1506 
1507   Register Dst0Reg = MI.getOperand(0).getReg();
1508   LLT DstTy = MRI.getType(Dst0Reg);
1509   if (!DstTy.isScalar())
1510     return UnableToLegalize;
1511 
1512   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1513     if (SrcTy.isPointer()) {
1514       const DataLayout &DL = MIRBuilder.getDataLayout();
1515       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1516         LLVM_DEBUG(
1517             dbgs() << "Not casting non-integral address space integer\n");
1518         return UnableToLegalize;
1519       }
1520 
1521       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1522       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1523     }
1524 
1525     // Widen SrcTy to WideTy. This does not affect the result, but since the
1526     // user requested this size, it is probably better handled than SrcTy and
1527     // should reduce the total number of legalization artifacts
1528     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1529       SrcTy = WideTy;
1530       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1531     }
1532 
1533     // Theres no unmerge type to target. Directly extract the bits from the
1534     // source type
1535     unsigned DstSize = DstTy.getSizeInBits();
1536 
1537     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1538     for (int I = 1; I != NumDst; ++I) {
1539       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1540       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1541       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1542     }
1543 
1544     MI.eraseFromParent();
1545     return Legalized;
1546   }
1547 
1548   // Extend the source to a wider type.
1549   LLT LCMTy = getLCMType(SrcTy, WideTy);
1550 
1551   Register WideSrc = SrcReg;
1552   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1553     // TODO: If this is an integral address space, cast to integer and anyext.
1554     if (SrcTy.isPointer()) {
1555       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1556       return UnableToLegalize;
1557     }
1558 
1559     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1560   }
1561 
1562   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1563 
1564   // Create a sequence of unmerges and merges to the original results. Since we
1565   // may have widened the source, we will need to pad the results with dead defs
1566   // to cover the source register.
1567   // e.g. widen s48 to s64:
1568   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1569   //
1570   // =>
1571   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1572   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1573   //  ; unpack to GCD type, with extra dead defs
1574   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1575   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1576   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1577   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1578   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1579   const LLT GCDTy = getGCDType(WideTy, DstTy);
1580   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1581   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1582 
1583   // Directly unmerge to the destination without going through a GCD type
1584   // if possible
1585   if (PartsPerRemerge == 1) {
1586     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1587 
1588     for (int I = 0; I != NumUnmerge; ++I) {
1589       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1590 
1591       for (int J = 0; J != PartsPerUnmerge; ++J) {
1592         int Idx = I * PartsPerUnmerge + J;
1593         if (Idx < NumDst)
1594           MIB.addDef(MI.getOperand(Idx).getReg());
1595         else {
1596           // Create dead def for excess components.
1597           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1598         }
1599       }
1600 
1601       MIB.addUse(Unmerge.getReg(I));
1602     }
1603   } else {
1604     SmallVector<Register, 16> Parts;
1605     for (int J = 0; J != NumUnmerge; ++J)
1606       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1607 
1608     SmallVector<Register, 8> RemergeParts;
1609     for (int I = 0; I != NumDst; ++I) {
1610       for (int J = 0; J < PartsPerRemerge; ++J) {
1611         const int Idx = I * PartsPerRemerge + J;
1612         RemergeParts.emplace_back(Parts[Idx]);
1613       }
1614 
1615       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1616       RemergeParts.clear();
1617     }
1618   }
1619 
1620   MI.eraseFromParent();
1621   return Legalized;
1622 }
1623 
1624 LegalizerHelper::LegalizeResult
1625 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1626                                     LLT WideTy) {
1627   Register DstReg = MI.getOperand(0).getReg();
1628   Register SrcReg = MI.getOperand(1).getReg();
1629   LLT SrcTy = MRI.getType(SrcReg);
1630 
1631   LLT DstTy = MRI.getType(DstReg);
1632   unsigned Offset = MI.getOperand(2).getImm();
1633 
1634   if (TypeIdx == 0) {
1635     if (SrcTy.isVector() || DstTy.isVector())
1636       return UnableToLegalize;
1637 
1638     SrcOp Src(SrcReg);
1639     if (SrcTy.isPointer()) {
1640       // Extracts from pointers can be handled only if they are really just
1641       // simple integers.
1642       const DataLayout &DL = MIRBuilder.getDataLayout();
1643       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1644         return UnableToLegalize;
1645 
1646       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1647       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1648       SrcTy = SrcAsIntTy;
1649     }
1650 
1651     if (DstTy.isPointer())
1652       return UnableToLegalize;
1653 
1654     if (Offset == 0) {
1655       // Avoid a shift in the degenerate case.
1656       MIRBuilder.buildTrunc(DstReg,
1657                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1658       MI.eraseFromParent();
1659       return Legalized;
1660     }
1661 
1662     // Do a shift in the source type.
1663     LLT ShiftTy = SrcTy;
1664     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1665       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1666       ShiftTy = WideTy;
1667     }
1668 
1669     auto LShr = MIRBuilder.buildLShr(
1670       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1671     MIRBuilder.buildTrunc(DstReg, LShr);
1672     MI.eraseFromParent();
1673     return Legalized;
1674   }
1675 
1676   if (SrcTy.isScalar()) {
1677     Observer.changingInstr(MI);
1678     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1679     Observer.changedInstr(MI);
1680     return Legalized;
1681   }
1682 
1683   if (!SrcTy.isVector())
1684     return UnableToLegalize;
1685 
1686   if (DstTy != SrcTy.getElementType())
1687     return UnableToLegalize;
1688 
1689   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1690     return UnableToLegalize;
1691 
1692   Observer.changingInstr(MI);
1693   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1694 
1695   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1696                           Offset);
1697   widenScalarDst(MI, WideTy.getScalarType(), 0);
1698   Observer.changedInstr(MI);
1699   return Legalized;
1700 }
1701 
1702 LegalizerHelper::LegalizeResult
1703 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1704                                    LLT WideTy) {
1705   if (TypeIdx != 0 || WideTy.isVector())
1706     return UnableToLegalize;
1707   Observer.changingInstr(MI);
1708   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1709   widenScalarDst(MI, WideTy);
1710   Observer.changedInstr(MI);
1711   return Legalized;
1712 }
1713 
1714 LegalizerHelper::LegalizeResult
1715 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1716                                            LLT WideTy) {
1717   if (TypeIdx == 1)
1718     return UnableToLegalize; // TODO
1719 
1720   unsigned Opcode;
1721   unsigned ExtOpcode;
1722   Optional<Register> CarryIn = None;
1723   switch (MI.getOpcode()) {
1724   default:
1725     llvm_unreachable("Unexpected opcode!");
1726   case TargetOpcode::G_SADDO:
1727     Opcode = TargetOpcode::G_ADD;
1728     ExtOpcode = TargetOpcode::G_SEXT;
1729     break;
1730   case TargetOpcode::G_SSUBO:
1731     Opcode = TargetOpcode::G_SUB;
1732     ExtOpcode = TargetOpcode::G_SEXT;
1733     break;
1734   case TargetOpcode::G_UADDO:
1735     Opcode = TargetOpcode::G_ADD;
1736     ExtOpcode = TargetOpcode::G_ZEXT;
1737     break;
1738   case TargetOpcode::G_USUBO:
1739     Opcode = TargetOpcode::G_SUB;
1740     ExtOpcode = TargetOpcode::G_ZEXT;
1741     break;
1742   case TargetOpcode::G_SADDE:
1743     Opcode = TargetOpcode::G_UADDE;
1744     ExtOpcode = TargetOpcode::G_SEXT;
1745     CarryIn = MI.getOperand(4).getReg();
1746     break;
1747   case TargetOpcode::G_SSUBE:
1748     Opcode = TargetOpcode::G_USUBE;
1749     ExtOpcode = TargetOpcode::G_SEXT;
1750     CarryIn = MI.getOperand(4).getReg();
1751     break;
1752   case TargetOpcode::G_UADDE:
1753     Opcode = TargetOpcode::G_UADDE;
1754     ExtOpcode = TargetOpcode::G_ZEXT;
1755     CarryIn = MI.getOperand(4).getReg();
1756     break;
1757   case TargetOpcode::G_USUBE:
1758     Opcode = TargetOpcode::G_USUBE;
1759     ExtOpcode = TargetOpcode::G_ZEXT;
1760     CarryIn = MI.getOperand(4).getReg();
1761     break;
1762   }
1763 
1764   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1765   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1766   // Do the arithmetic in the larger type.
1767   Register NewOp;
1768   if (CarryIn) {
1769     LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1770     NewOp = MIRBuilder
1771                 .buildInstr(Opcode, {WideTy, CarryOutTy},
1772                             {LHSExt, RHSExt, *CarryIn})
1773                 .getReg(0);
1774   } else {
1775     NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1776   }
1777   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1778   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1779   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1780   // There is no overflow if the ExtOp is the same as NewOp.
1781   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1782   // Now trunc the NewOp to the original result.
1783   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1784   MI.eraseFromParent();
1785   return Legalized;
1786 }
1787 
1788 LegalizerHelper::LegalizeResult
1789 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1790                                          LLT WideTy) {
1791   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1792                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1793                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1794   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1795                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1796   // We can convert this to:
1797   //   1. Any extend iN to iM
1798   //   2. SHL by M-N
1799   //   3. [US][ADD|SUB|SHL]SAT
1800   //   4. L/ASHR by M-N
1801   //
1802   // It may be more efficient to lower this to a min and a max operation in
1803   // the higher precision arithmetic if the promoted operation isn't legal,
1804   // but this decision is up to the target's lowering request.
1805   Register DstReg = MI.getOperand(0).getReg();
1806 
1807   unsigned NewBits = WideTy.getScalarSizeInBits();
1808   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1809 
1810   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1811   // must not left shift the RHS to preserve the shift amount.
1812   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1813   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1814                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1815   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1816   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1817   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1818 
1819   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1820                                         {ShiftL, ShiftR}, MI.getFlags());
1821 
1822   // Use a shift that will preserve the number of sign bits when the trunc is
1823   // folded away.
1824   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1825                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1826 
1827   MIRBuilder.buildTrunc(DstReg, Result);
1828   MI.eraseFromParent();
1829   return Legalized;
1830 }
1831 
1832 LegalizerHelper::LegalizeResult
1833 LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1834                                  LLT WideTy) {
1835   if (TypeIdx == 1)
1836     return UnableToLegalize;
1837 
1838   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1839   Register Result = MI.getOperand(0).getReg();
1840   Register OriginalOverflow = MI.getOperand(1).getReg();
1841   Register LHS = MI.getOperand(2).getReg();
1842   Register RHS = MI.getOperand(3).getReg();
1843   LLT SrcTy = MRI.getType(LHS);
1844   LLT OverflowTy = MRI.getType(OriginalOverflow);
1845   unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1846 
1847   // To determine if the result overflowed in the larger type, we extend the
1848   // input to the larger type, do the multiply (checking if it overflows),
1849   // then also check the high bits of the result to see if overflow happened
1850   // there.
1851   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1852   auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
1853   auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
1854 
1855   auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
1856                                     {LeftOperand, RightOperand});
1857   auto Mul = Mulo->getOperand(0);
1858   MIRBuilder.buildTrunc(Result, Mul);
1859 
1860   MachineInstrBuilder ExtResult;
1861   // Overflow occurred if it occurred in the larger type, or if the high part
1862   // of the result does not zero/sign-extend the low part.  Check this second
1863   // possibility first.
1864   if (IsSigned) {
1865     // For signed, overflow occurred when the high part does not sign-extend
1866     // the low part.
1867     ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
1868   } else {
1869     // Unsigned overflow occurred when the high part does not zero-extend the
1870     // low part.
1871     ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
1872   }
1873 
1874   // Multiplication cannot overflow if the WideTy is >= 2 * original width,
1875   // so we don't need to check the overflow result of larger type Mulo.
1876   if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
1877     auto Overflow =
1878         MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
1879     // Finally check if the multiplication in the larger type itself overflowed.
1880     MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
1881   } else {
1882     MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
1883   }
1884   MI.eraseFromParent();
1885   return Legalized;
1886 }
1887 
1888 LegalizerHelper::LegalizeResult
1889 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1890   switch (MI.getOpcode()) {
1891   default:
1892     return UnableToLegalize;
1893   case TargetOpcode::G_EXTRACT:
1894     return widenScalarExtract(MI, TypeIdx, WideTy);
1895   case TargetOpcode::G_INSERT:
1896     return widenScalarInsert(MI, TypeIdx, WideTy);
1897   case TargetOpcode::G_MERGE_VALUES:
1898     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1899   case TargetOpcode::G_UNMERGE_VALUES:
1900     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1901   case TargetOpcode::G_SADDO:
1902   case TargetOpcode::G_SSUBO:
1903   case TargetOpcode::G_UADDO:
1904   case TargetOpcode::G_USUBO:
1905   case TargetOpcode::G_SADDE:
1906   case TargetOpcode::G_SSUBE:
1907   case TargetOpcode::G_UADDE:
1908   case TargetOpcode::G_USUBE:
1909     return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
1910   case TargetOpcode::G_UMULO:
1911   case TargetOpcode::G_SMULO:
1912     return widenScalarMulo(MI, TypeIdx, WideTy);
1913   case TargetOpcode::G_SADDSAT:
1914   case TargetOpcode::G_SSUBSAT:
1915   case TargetOpcode::G_SSHLSAT:
1916   case TargetOpcode::G_UADDSAT:
1917   case TargetOpcode::G_USUBSAT:
1918   case TargetOpcode::G_USHLSAT:
1919     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1920   case TargetOpcode::G_CTTZ:
1921   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1922   case TargetOpcode::G_CTLZ:
1923   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1924   case TargetOpcode::G_CTPOP: {
1925     if (TypeIdx == 0) {
1926       Observer.changingInstr(MI);
1927       widenScalarDst(MI, WideTy, 0);
1928       Observer.changedInstr(MI);
1929       return Legalized;
1930     }
1931 
1932     Register SrcReg = MI.getOperand(1).getReg();
1933 
1934     // First ZEXT the input.
1935     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1936     LLT CurTy = MRI.getType(SrcReg);
1937     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1938       // The count is the same in the larger type except if the original
1939       // value was zero.  This can be handled by setting the bit just off
1940       // the top of the original type.
1941       auto TopBit =
1942           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1943       MIBSrc = MIRBuilder.buildOr(
1944         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1945     }
1946 
1947     // Perform the operation at the larger size.
1948     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1949     // This is already the correct result for CTPOP and CTTZs
1950     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1951         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1952       // The correct result is NewOp - (Difference in widety and current ty).
1953       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1954       MIBNewOp = MIRBuilder.buildSub(
1955           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1956     }
1957 
1958     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1959     MI.eraseFromParent();
1960     return Legalized;
1961   }
1962   case TargetOpcode::G_BSWAP: {
1963     Observer.changingInstr(MI);
1964     Register DstReg = MI.getOperand(0).getReg();
1965 
1966     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1967     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1968     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1969     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1970 
1971     MI.getOperand(0).setReg(DstExt);
1972 
1973     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1974 
1975     LLT Ty = MRI.getType(DstReg);
1976     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1977     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1978     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1979 
1980     MIRBuilder.buildTrunc(DstReg, ShrReg);
1981     Observer.changedInstr(MI);
1982     return Legalized;
1983   }
1984   case TargetOpcode::G_BITREVERSE: {
1985     Observer.changingInstr(MI);
1986 
1987     Register DstReg = MI.getOperand(0).getReg();
1988     LLT Ty = MRI.getType(DstReg);
1989     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1990 
1991     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1992     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1993     MI.getOperand(0).setReg(DstExt);
1994     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1995 
1996     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1997     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1998     MIRBuilder.buildTrunc(DstReg, Shift);
1999     Observer.changedInstr(MI);
2000     return Legalized;
2001   }
2002   case TargetOpcode::G_FREEZE:
2003     Observer.changingInstr(MI);
2004     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2005     widenScalarDst(MI, WideTy);
2006     Observer.changedInstr(MI);
2007     return Legalized;
2008 
2009   case TargetOpcode::G_ABS:
2010     Observer.changingInstr(MI);
2011     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2012     widenScalarDst(MI, WideTy);
2013     Observer.changedInstr(MI);
2014     return Legalized;
2015 
2016   case TargetOpcode::G_ADD:
2017   case TargetOpcode::G_AND:
2018   case TargetOpcode::G_MUL:
2019   case TargetOpcode::G_OR:
2020   case TargetOpcode::G_XOR:
2021   case TargetOpcode::G_SUB:
2022     // Perform operation at larger width (any extension is fines here, high bits
2023     // don't affect the result) and then truncate the result back to the
2024     // original type.
2025     Observer.changingInstr(MI);
2026     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2027     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2028     widenScalarDst(MI, WideTy);
2029     Observer.changedInstr(MI);
2030     return Legalized;
2031 
2032   case TargetOpcode::G_SBFX:
2033   case TargetOpcode::G_UBFX:
2034     Observer.changingInstr(MI);
2035 
2036     if (TypeIdx == 0) {
2037       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2038       widenScalarDst(MI, WideTy);
2039     } else {
2040       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2041       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2042     }
2043 
2044     Observer.changedInstr(MI);
2045     return Legalized;
2046 
2047   case TargetOpcode::G_SHL:
2048     Observer.changingInstr(MI);
2049 
2050     if (TypeIdx == 0) {
2051       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2052       widenScalarDst(MI, WideTy);
2053     } else {
2054       assert(TypeIdx == 1);
2055       // The "number of bits to shift" operand must preserve its value as an
2056       // unsigned integer:
2057       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2058     }
2059 
2060     Observer.changedInstr(MI);
2061     return Legalized;
2062 
2063   case TargetOpcode::G_SDIV:
2064   case TargetOpcode::G_SREM:
2065   case TargetOpcode::G_SMIN:
2066   case TargetOpcode::G_SMAX:
2067     Observer.changingInstr(MI);
2068     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2069     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2070     widenScalarDst(MI, WideTy);
2071     Observer.changedInstr(MI);
2072     return Legalized;
2073 
2074   case TargetOpcode::G_SDIVREM:
2075     Observer.changingInstr(MI);
2076     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2077     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2078     widenScalarDst(MI, WideTy);
2079     widenScalarDst(MI, WideTy, 1);
2080     Observer.changedInstr(MI);
2081     return Legalized;
2082 
2083   case TargetOpcode::G_ASHR:
2084   case TargetOpcode::G_LSHR:
2085     Observer.changingInstr(MI);
2086 
2087     if (TypeIdx == 0) {
2088       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2089         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2090 
2091       widenScalarSrc(MI, WideTy, 1, CvtOp);
2092       widenScalarDst(MI, WideTy);
2093     } else {
2094       assert(TypeIdx == 1);
2095       // The "number of bits to shift" operand must preserve its value as an
2096       // unsigned integer:
2097       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2098     }
2099 
2100     Observer.changedInstr(MI);
2101     return Legalized;
2102   case TargetOpcode::G_UDIV:
2103   case TargetOpcode::G_UREM:
2104   case TargetOpcode::G_UMIN:
2105   case TargetOpcode::G_UMAX:
2106     Observer.changingInstr(MI);
2107     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2108     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2109     widenScalarDst(MI, WideTy);
2110     Observer.changedInstr(MI);
2111     return Legalized;
2112 
2113   case TargetOpcode::G_UDIVREM:
2114     Observer.changingInstr(MI);
2115     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2116     widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2117     widenScalarDst(MI, WideTy);
2118     widenScalarDst(MI, WideTy, 1);
2119     Observer.changedInstr(MI);
2120     return Legalized;
2121 
2122   case TargetOpcode::G_SELECT:
2123     Observer.changingInstr(MI);
2124     if (TypeIdx == 0) {
2125       // Perform operation at larger width (any extension is fine here, high
2126       // bits don't affect the result) and then truncate the result back to the
2127       // original type.
2128       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2129       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2130       widenScalarDst(MI, WideTy);
2131     } else {
2132       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2133       // Explicit extension is required here since high bits affect the result.
2134       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2135     }
2136     Observer.changedInstr(MI);
2137     return Legalized;
2138 
2139   case TargetOpcode::G_FPTOSI:
2140   case TargetOpcode::G_FPTOUI:
2141     Observer.changingInstr(MI);
2142 
2143     if (TypeIdx == 0)
2144       widenScalarDst(MI, WideTy);
2145     else
2146       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2147 
2148     Observer.changedInstr(MI);
2149     return Legalized;
2150   case TargetOpcode::G_SITOFP:
2151     Observer.changingInstr(MI);
2152 
2153     if (TypeIdx == 0)
2154       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2155     else
2156       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2157 
2158     Observer.changedInstr(MI);
2159     return Legalized;
2160   case TargetOpcode::G_UITOFP:
2161     Observer.changingInstr(MI);
2162 
2163     if (TypeIdx == 0)
2164       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2165     else
2166       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2167 
2168     Observer.changedInstr(MI);
2169     return Legalized;
2170   case TargetOpcode::G_LOAD:
2171   case TargetOpcode::G_SEXTLOAD:
2172   case TargetOpcode::G_ZEXTLOAD:
2173     Observer.changingInstr(MI);
2174     widenScalarDst(MI, WideTy);
2175     Observer.changedInstr(MI);
2176     return Legalized;
2177 
2178   case TargetOpcode::G_STORE: {
2179     if (TypeIdx != 0)
2180       return UnableToLegalize;
2181 
2182     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2183     if (!Ty.isScalar())
2184       return UnableToLegalize;
2185 
2186     Observer.changingInstr(MI);
2187 
2188     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2189       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2190     widenScalarSrc(MI, WideTy, 0, ExtType);
2191 
2192     Observer.changedInstr(MI);
2193     return Legalized;
2194   }
2195   case TargetOpcode::G_CONSTANT: {
2196     MachineOperand &SrcMO = MI.getOperand(1);
2197     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2198     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2199         MRI.getType(MI.getOperand(0).getReg()));
2200     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2201             ExtOpc == TargetOpcode::G_ANYEXT) &&
2202            "Illegal Extend");
2203     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2204     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2205                            ? SrcVal.sext(WideTy.getSizeInBits())
2206                            : SrcVal.zext(WideTy.getSizeInBits());
2207     Observer.changingInstr(MI);
2208     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2209 
2210     widenScalarDst(MI, WideTy);
2211     Observer.changedInstr(MI);
2212     return Legalized;
2213   }
2214   case TargetOpcode::G_FCONSTANT: {
2215     MachineOperand &SrcMO = MI.getOperand(1);
2216     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2217     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2218     bool LosesInfo;
2219     switch (WideTy.getSizeInBits()) {
2220     case 32:
2221       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2222                   &LosesInfo);
2223       break;
2224     case 64:
2225       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2226                   &LosesInfo);
2227       break;
2228     default:
2229       return UnableToLegalize;
2230     }
2231 
2232     assert(!LosesInfo && "extend should always be lossless");
2233 
2234     Observer.changingInstr(MI);
2235     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2236 
2237     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2238     Observer.changedInstr(MI);
2239     return Legalized;
2240   }
2241   case TargetOpcode::G_IMPLICIT_DEF: {
2242     Observer.changingInstr(MI);
2243     widenScalarDst(MI, WideTy);
2244     Observer.changedInstr(MI);
2245     return Legalized;
2246   }
2247   case TargetOpcode::G_BRCOND:
2248     Observer.changingInstr(MI);
2249     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2250     Observer.changedInstr(MI);
2251     return Legalized;
2252 
2253   case TargetOpcode::G_FCMP:
2254     Observer.changingInstr(MI);
2255     if (TypeIdx == 0)
2256       widenScalarDst(MI, WideTy);
2257     else {
2258       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2259       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2260     }
2261     Observer.changedInstr(MI);
2262     return Legalized;
2263 
2264   case TargetOpcode::G_ICMP:
2265     Observer.changingInstr(MI);
2266     if (TypeIdx == 0)
2267       widenScalarDst(MI, WideTy);
2268     else {
2269       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2270                                MI.getOperand(1).getPredicate()))
2271                                ? TargetOpcode::G_SEXT
2272                                : TargetOpcode::G_ZEXT;
2273       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2274       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2275     }
2276     Observer.changedInstr(MI);
2277     return Legalized;
2278 
2279   case TargetOpcode::G_PTR_ADD:
2280     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2281     Observer.changingInstr(MI);
2282     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2283     Observer.changedInstr(MI);
2284     return Legalized;
2285 
2286   case TargetOpcode::G_PHI: {
2287     assert(TypeIdx == 0 && "Expecting only Idx 0");
2288 
2289     Observer.changingInstr(MI);
2290     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2291       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2292       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2293       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2294     }
2295 
2296     MachineBasicBlock &MBB = *MI.getParent();
2297     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2298     widenScalarDst(MI, WideTy);
2299     Observer.changedInstr(MI);
2300     return Legalized;
2301   }
2302   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2303     if (TypeIdx == 0) {
2304       Register VecReg = MI.getOperand(1).getReg();
2305       LLT VecTy = MRI.getType(VecReg);
2306       Observer.changingInstr(MI);
2307 
2308       widenScalarSrc(
2309           MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2310           TargetOpcode::G_SEXT);
2311 
2312       widenScalarDst(MI, WideTy, 0);
2313       Observer.changedInstr(MI);
2314       return Legalized;
2315     }
2316 
2317     if (TypeIdx != 2)
2318       return UnableToLegalize;
2319     Observer.changingInstr(MI);
2320     // TODO: Probably should be zext
2321     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2322     Observer.changedInstr(MI);
2323     return Legalized;
2324   }
2325   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2326     if (TypeIdx == 1) {
2327       Observer.changingInstr(MI);
2328 
2329       Register VecReg = MI.getOperand(1).getReg();
2330       LLT VecTy = MRI.getType(VecReg);
2331       LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2332 
2333       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2334       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2335       widenScalarDst(MI, WideVecTy, 0);
2336       Observer.changedInstr(MI);
2337       return Legalized;
2338     }
2339 
2340     if (TypeIdx == 2) {
2341       Observer.changingInstr(MI);
2342       // TODO: Probably should be zext
2343       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2344       Observer.changedInstr(MI);
2345       return Legalized;
2346     }
2347 
2348     return UnableToLegalize;
2349   }
2350   case TargetOpcode::G_FADD:
2351   case TargetOpcode::G_FMUL:
2352   case TargetOpcode::G_FSUB:
2353   case TargetOpcode::G_FMA:
2354   case TargetOpcode::G_FMAD:
2355   case TargetOpcode::G_FNEG:
2356   case TargetOpcode::G_FABS:
2357   case TargetOpcode::G_FCANONICALIZE:
2358   case TargetOpcode::G_FMINNUM:
2359   case TargetOpcode::G_FMAXNUM:
2360   case TargetOpcode::G_FMINNUM_IEEE:
2361   case TargetOpcode::G_FMAXNUM_IEEE:
2362   case TargetOpcode::G_FMINIMUM:
2363   case TargetOpcode::G_FMAXIMUM:
2364   case TargetOpcode::G_FDIV:
2365   case TargetOpcode::G_FREM:
2366   case TargetOpcode::G_FCEIL:
2367   case TargetOpcode::G_FFLOOR:
2368   case TargetOpcode::G_FCOS:
2369   case TargetOpcode::G_FSIN:
2370   case TargetOpcode::G_FLOG10:
2371   case TargetOpcode::G_FLOG:
2372   case TargetOpcode::G_FLOG2:
2373   case TargetOpcode::G_FRINT:
2374   case TargetOpcode::G_FNEARBYINT:
2375   case TargetOpcode::G_FSQRT:
2376   case TargetOpcode::G_FEXP:
2377   case TargetOpcode::G_FEXP2:
2378   case TargetOpcode::G_FPOW:
2379   case TargetOpcode::G_INTRINSIC_TRUNC:
2380   case TargetOpcode::G_INTRINSIC_ROUND:
2381   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2382     assert(TypeIdx == 0);
2383     Observer.changingInstr(MI);
2384 
2385     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2386       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2387 
2388     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2389     Observer.changedInstr(MI);
2390     return Legalized;
2391   case TargetOpcode::G_FPOWI: {
2392     if (TypeIdx != 0)
2393       return UnableToLegalize;
2394     Observer.changingInstr(MI);
2395     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2396     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2397     Observer.changedInstr(MI);
2398     return Legalized;
2399   }
2400   case TargetOpcode::G_INTTOPTR:
2401     if (TypeIdx != 1)
2402       return UnableToLegalize;
2403 
2404     Observer.changingInstr(MI);
2405     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2406     Observer.changedInstr(MI);
2407     return Legalized;
2408   case TargetOpcode::G_PTRTOINT:
2409     if (TypeIdx != 0)
2410       return UnableToLegalize;
2411 
2412     Observer.changingInstr(MI);
2413     widenScalarDst(MI, WideTy, 0);
2414     Observer.changedInstr(MI);
2415     return Legalized;
2416   case TargetOpcode::G_BUILD_VECTOR: {
2417     Observer.changingInstr(MI);
2418 
2419     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2420     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2421       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2422 
2423     // Avoid changing the result vector type if the source element type was
2424     // requested.
2425     if (TypeIdx == 1) {
2426       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2427     } else {
2428       widenScalarDst(MI, WideTy, 0);
2429     }
2430 
2431     Observer.changedInstr(MI);
2432     return Legalized;
2433   }
2434   case TargetOpcode::G_SEXT_INREG:
2435     if (TypeIdx != 0)
2436       return UnableToLegalize;
2437 
2438     Observer.changingInstr(MI);
2439     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2440     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2441     Observer.changedInstr(MI);
2442     return Legalized;
2443   case TargetOpcode::G_PTRMASK: {
2444     if (TypeIdx != 1)
2445       return UnableToLegalize;
2446     Observer.changingInstr(MI);
2447     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2448     Observer.changedInstr(MI);
2449     return Legalized;
2450   }
2451   }
2452 }
2453 
2454 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2455                              MachineIRBuilder &B, Register Src, LLT Ty) {
2456   auto Unmerge = B.buildUnmerge(Ty, Src);
2457   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2458     Pieces.push_back(Unmerge.getReg(I));
2459 }
2460 
2461 LegalizerHelper::LegalizeResult
2462 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2463   Register Dst = MI.getOperand(0).getReg();
2464   Register Src = MI.getOperand(1).getReg();
2465   LLT DstTy = MRI.getType(Dst);
2466   LLT SrcTy = MRI.getType(Src);
2467 
2468   if (SrcTy.isVector()) {
2469     LLT SrcEltTy = SrcTy.getElementType();
2470     SmallVector<Register, 8> SrcRegs;
2471 
2472     if (DstTy.isVector()) {
2473       int NumDstElt = DstTy.getNumElements();
2474       int NumSrcElt = SrcTy.getNumElements();
2475 
2476       LLT DstEltTy = DstTy.getElementType();
2477       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2478       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2479 
2480       // If there's an element size mismatch, insert intermediate casts to match
2481       // the result element type.
2482       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2483         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2484         //
2485         // =>
2486         //
2487         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2488         // %3:_(<2 x s8>) = G_BITCAST %2
2489         // %4:_(<2 x s8>) = G_BITCAST %3
2490         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2491         DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2492         SrcPartTy = SrcEltTy;
2493       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2494         //
2495         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2496         //
2497         // =>
2498         //
2499         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2500         // %3:_(s16) = G_BITCAST %2
2501         // %4:_(s16) = G_BITCAST %3
2502         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2503         SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2504         DstCastTy = DstEltTy;
2505       }
2506 
2507       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2508       for (Register &SrcReg : SrcRegs)
2509         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2510     } else
2511       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2512 
2513     MIRBuilder.buildMerge(Dst, SrcRegs);
2514     MI.eraseFromParent();
2515     return Legalized;
2516   }
2517 
2518   if (DstTy.isVector()) {
2519     SmallVector<Register, 8> SrcRegs;
2520     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2521     MIRBuilder.buildMerge(Dst, SrcRegs);
2522     MI.eraseFromParent();
2523     return Legalized;
2524   }
2525 
2526   return UnableToLegalize;
2527 }
2528 
2529 /// Figure out the bit offset into a register when coercing a vector index for
2530 /// the wide element type. This is only for the case when promoting vector to
2531 /// one with larger elements.
2532 //
2533 ///
2534 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2535 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2536 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2537                                                    Register Idx,
2538                                                    unsigned NewEltSize,
2539                                                    unsigned OldEltSize) {
2540   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2541   LLT IdxTy = B.getMRI()->getType(Idx);
2542 
2543   // Now figure out the amount we need to shift to get the target bits.
2544   auto OffsetMask = B.buildConstant(
2545     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2546   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2547   return B.buildShl(IdxTy, OffsetIdx,
2548                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2549 }
2550 
2551 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2552 /// is casting to a vector with a smaller element size, perform multiple element
2553 /// extracts and merge the results. If this is coercing to a vector with larger
2554 /// elements, index the bitcasted vector and extract the target element with bit
2555 /// operations. This is intended to force the indexing in the native register
2556 /// size for architectures that can dynamically index the register file.
2557 LegalizerHelper::LegalizeResult
2558 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2559                                          LLT CastTy) {
2560   if (TypeIdx != 1)
2561     return UnableToLegalize;
2562 
2563   Register Dst = MI.getOperand(0).getReg();
2564   Register SrcVec = MI.getOperand(1).getReg();
2565   Register Idx = MI.getOperand(2).getReg();
2566   LLT SrcVecTy = MRI.getType(SrcVec);
2567   LLT IdxTy = MRI.getType(Idx);
2568 
2569   LLT SrcEltTy = SrcVecTy.getElementType();
2570   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2571   unsigned OldNumElts = SrcVecTy.getNumElements();
2572 
2573   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2574   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2575 
2576   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2577   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2578   if (NewNumElts > OldNumElts) {
2579     // Decreasing the vector element size
2580     //
2581     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2582     //  =>
2583     //  v4i32:castx = bitcast x:v2i64
2584     //
2585     // i64 = bitcast
2586     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2587     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2588     //
2589     if (NewNumElts % OldNumElts != 0)
2590       return UnableToLegalize;
2591 
2592     // Type of the intermediate result vector.
2593     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2594     LLT MidTy =
2595         LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2596 
2597     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2598 
2599     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2600     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2601 
2602     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2603       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2604       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2605       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2606       NewOps[I] = Elt.getReg(0);
2607     }
2608 
2609     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2610     MIRBuilder.buildBitcast(Dst, NewVec);
2611     MI.eraseFromParent();
2612     return Legalized;
2613   }
2614 
2615   if (NewNumElts < OldNumElts) {
2616     if (NewEltSize % OldEltSize != 0)
2617       return UnableToLegalize;
2618 
2619     // This only depends on powers of 2 because we use bit tricks to figure out
2620     // the bit offset we need to shift to get the target element. A general
2621     // expansion could emit division/multiply.
2622     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2623       return UnableToLegalize;
2624 
2625     // Increasing the vector element size.
2626     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2627     //
2628     //   =>
2629     //
2630     // %cast = G_BITCAST %vec
2631     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2632     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2633     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2634     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2635     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2636     // %elt = G_TRUNC %elt_bits
2637 
2638     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2639     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2640 
2641     // Divide to get the index in the wider element type.
2642     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2643 
2644     Register WideElt = CastVec;
2645     if (CastTy.isVector()) {
2646       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2647                                                      ScaledIdx).getReg(0);
2648     }
2649 
2650     // Compute the bit offset into the register of the target element.
2651     Register OffsetBits = getBitcastWiderVectorElementOffset(
2652       MIRBuilder, Idx, NewEltSize, OldEltSize);
2653 
2654     // Shift the wide element to get the target element.
2655     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2656     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2657     MI.eraseFromParent();
2658     return Legalized;
2659   }
2660 
2661   return UnableToLegalize;
2662 }
2663 
2664 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2665 /// TargetReg, while preserving other bits in \p TargetReg.
2666 ///
2667 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2668 static Register buildBitFieldInsert(MachineIRBuilder &B,
2669                                     Register TargetReg, Register InsertReg,
2670                                     Register OffsetBits) {
2671   LLT TargetTy = B.getMRI()->getType(TargetReg);
2672   LLT InsertTy = B.getMRI()->getType(InsertReg);
2673   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2674   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2675 
2676   // Produce a bitmask of the value to insert
2677   auto EltMask = B.buildConstant(
2678     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2679                                    InsertTy.getSizeInBits()));
2680   // Shift it into position
2681   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2682   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2683 
2684   // Clear out the bits in the wide element
2685   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2686 
2687   // The value to insert has all zeros already, so stick it into the masked
2688   // wide element.
2689   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2690 }
2691 
2692 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2693 /// is increasing the element size, perform the indexing in the target element
2694 /// type, and use bit operations to insert at the element position. This is
2695 /// intended for architectures that can dynamically index the register file and
2696 /// want to force indexing in the native register size.
2697 LegalizerHelper::LegalizeResult
2698 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2699                                         LLT CastTy) {
2700   if (TypeIdx != 0)
2701     return UnableToLegalize;
2702 
2703   Register Dst = MI.getOperand(0).getReg();
2704   Register SrcVec = MI.getOperand(1).getReg();
2705   Register Val = MI.getOperand(2).getReg();
2706   Register Idx = MI.getOperand(3).getReg();
2707 
2708   LLT VecTy = MRI.getType(Dst);
2709   LLT IdxTy = MRI.getType(Idx);
2710 
2711   LLT VecEltTy = VecTy.getElementType();
2712   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2713   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2714   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2715 
2716   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2717   unsigned OldNumElts = VecTy.getNumElements();
2718 
2719   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2720   if (NewNumElts < OldNumElts) {
2721     if (NewEltSize % OldEltSize != 0)
2722       return UnableToLegalize;
2723 
2724     // This only depends on powers of 2 because we use bit tricks to figure out
2725     // the bit offset we need to shift to get the target element. A general
2726     // expansion could emit division/multiply.
2727     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2728       return UnableToLegalize;
2729 
2730     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2731     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2732 
2733     // Divide to get the index in the wider element type.
2734     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2735 
2736     Register ExtractedElt = CastVec;
2737     if (CastTy.isVector()) {
2738       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2739                                                           ScaledIdx).getReg(0);
2740     }
2741 
2742     // Compute the bit offset into the register of the target element.
2743     Register OffsetBits = getBitcastWiderVectorElementOffset(
2744       MIRBuilder, Idx, NewEltSize, OldEltSize);
2745 
2746     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2747                                                Val, OffsetBits);
2748     if (CastTy.isVector()) {
2749       InsertedElt = MIRBuilder.buildInsertVectorElement(
2750         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2751     }
2752 
2753     MIRBuilder.buildBitcast(Dst, InsertedElt);
2754     MI.eraseFromParent();
2755     return Legalized;
2756   }
2757 
2758   return UnableToLegalize;
2759 }
2760 
2761 LegalizerHelper::LegalizeResult
2762 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2763   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2764   Register DstReg = MI.getOperand(0).getReg();
2765   Register PtrReg = MI.getOperand(1).getReg();
2766   LLT DstTy = MRI.getType(DstReg);
2767   MachineMemOperand &MMO = **MI.memoperands_begin();
2768   LLT MemTy = MMO.getMemoryType();
2769   MachineFunction &MF = MIRBuilder.getMF();
2770   if (MemTy.isVector())
2771     return UnableToLegalize;
2772 
2773   unsigned MemSizeInBits = MemTy.getSizeInBits();
2774   unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
2775 
2776   if (MemSizeInBits != MemStoreSizeInBits) {
2777     // Promote to a byte-sized load if not loading an integral number of
2778     // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2779     LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
2780     MachineMemOperand *NewMMO =
2781         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
2782 
2783     Register LoadReg = DstReg;
2784     LLT LoadTy = DstTy;
2785 
2786     // If this wasn't already an extending load, we need to widen the result
2787     // register to avoid creating a load with a narrower result than the source.
2788     if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
2789       LoadTy = WideMemTy;
2790       LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
2791     }
2792 
2793     if (MI.getOpcode() == TargetOpcode::G_SEXTLOAD) {
2794       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2795       MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
2796     } else if (MI.getOpcode() == TargetOpcode::G_ZEXTLOAD ||
2797                WideMemTy == DstTy) {
2798       auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2799       // The extra bits are guaranteed to be zero, since we stored them that
2800       // way.  A zext load from Wide thus automatically gives zext from MemVT.
2801       MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
2802     } else {
2803       MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
2804     }
2805 
2806     if (DstTy != LoadTy)
2807       MIRBuilder.buildTrunc(DstReg, LoadReg);
2808 
2809     MI.eraseFromParent();
2810     return Legalized;
2811   }
2812 
2813   if (DstTy.getSizeInBits() != MMO.getSizeInBits())
2814     return UnableToLegalize;
2815 
2816   if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2817     // This load needs splitting into power of 2 sized loads.
2818     if (DstTy.isVector())
2819       return UnableToLegalize;
2820     if (isPowerOf2_32(DstTy.getSizeInBits()))
2821       return UnableToLegalize; // Don't know what we're being asked to do.
2822 
2823     // Our strategy here is to generate anyextending loads for the smaller
2824     // types up to next power-2 result type, and then combine the two larger
2825     // result values together, before truncating back down to the non-pow-2
2826     // type.
2827     // E.g. v1 = i24 load =>
2828     // v2 = i32 zextload (2 byte)
2829     // v3 = i32 load (1 byte)
2830     // v4 = i32 shl v3, 16
2831     // v5 = i32 or v4, v2
2832     // v1 = i24 trunc v5
2833     // By doing this we generate the correct truncate which should get
2834     // combined away as an artifact with a matching extend.
2835     uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2836     uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2837 
2838     MachineFunction &MF = MIRBuilder.getMF();
2839     MachineMemOperand *LargeMMO =
2840       MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2841     MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2842       &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2843 
2844     LLT PtrTy = MRI.getType(PtrReg);
2845     unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2846     LLT AnyExtTy = LLT::scalar(AnyExtSize);
2847     auto LargeLoad = MIRBuilder.buildLoadInstr(
2848       TargetOpcode::G_ZEXTLOAD, AnyExtTy, PtrReg, *LargeMMO);
2849 
2850     auto OffsetCst = MIRBuilder.buildConstant(
2851       LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2852     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2853     auto SmallPtr =
2854       MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2855     auto SmallLoad = MIRBuilder.buildLoad(AnyExtTy, SmallPtr,
2856                                           *SmallMMO);
2857 
2858     auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2859     auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2860     auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2861     MIRBuilder.buildTrunc(DstReg, {Or});
2862     MI.eraseFromParent();
2863     return Legalized;
2864   }
2865 
2866   return UnableToLegalize;
2867 }
2868 
2869 LegalizerHelper::LegalizeResult
2870 LegalizerHelper::lowerStore(MachineInstr &MI) {
2871   // Lower a non-power of 2 store into multiple pow-2 stores.
2872   // E.g. split an i24 store into an i16 store + i8 store.
2873   // We do this by first extending the stored value to the next largest power
2874   // of 2 type, and then using truncating stores to store the components.
2875   // By doing this, likewise with G_LOAD, generate an extend that can be
2876   // artifact-combined away instead of leaving behind extracts.
2877   Register SrcReg = MI.getOperand(0).getReg();
2878   Register PtrReg = MI.getOperand(1).getReg();
2879   LLT SrcTy = MRI.getType(SrcReg);
2880   MachineFunction &MF = MIRBuilder.getMF();
2881   MachineMemOperand &MMO = **MI.memoperands_begin();
2882   LLT MemTy = MMO.getMemoryType();
2883 
2884   if (SrcTy.isVector())
2885     return UnableToLegalize;
2886 
2887   unsigned StoreWidth = MemTy.getSizeInBits();
2888   unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
2889 
2890   if (StoreWidth != StoreSizeInBits) {
2891     // Promote to a byte-sized store with upper bits zero if not
2892     // storing an integral number of bytes.  For example, promote
2893     // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
2894     LLT WideTy = LLT::scalar(StoreSizeInBits);
2895 
2896     if (StoreSizeInBits > SrcTy.getSizeInBits()) {
2897       // Avoid creating a store with a narrower source than result.
2898       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
2899       SrcTy = WideTy;
2900     }
2901 
2902     auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
2903 
2904     MachineMemOperand *NewMMO =
2905         MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
2906     MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
2907     MI.eraseFromParent();
2908     return Legalized;
2909   }
2910 
2911   if (isPowerOf2_32(MemTy.getSizeInBits()))
2912     return UnableToLegalize; // Don't know what we're being asked to do.
2913 
2914   // Extend to the next pow-2.
2915   const LLT ExtendTy = LLT::scalar(NextPowerOf2(MemTy.getSizeInBits()));
2916   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2917 
2918   // Obtain the smaller value by shifting away the larger value.
2919   uint64_t LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
2920   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2921   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2922   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2923 
2924   // Generate the PtrAdd and truncating stores.
2925   LLT PtrTy = MRI.getType(PtrReg);
2926   auto OffsetCst = MIRBuilder.buildConstant(
2927     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2928   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2929   auto SmallPtr =
2930     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
2931 
2932   MachineMemOperand *LargeMMO =
2933     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2934   MachineMemOperand *SmallMMO =
2935     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2936   MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
2937   MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
2938   MI.eraseFromParent();
2939   return Legalized;
2940 }
2941 
2942 LegalizerHelper::LegalizeResult
2943 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2944   switch (MI.getOpcode()) {
2945   case TargetOpcode::G_LOAD: {
2946     if (TypeIdx != 0)
2947       return UnableToLegalize;
2948 
2949     Observer.changingInstr(MI);
2950     bitcastDst(MI, CastTy, 0);
2951     Observer.changedInstr(MI);
2952     return Legalized;
2953   }
2954   case TargetOpcode::G_STORE: {
2955     if (TypeIdx != 0)
2956       return UnableToLegalize;
2957 
2958     Observer.changingInstr(MI);
2959     bitcastSrc(MI, CastTy, 0);
2960     Observer.changedInstr(MI);
2961     return Legalized;
2962   }
2963   case TargetOpcode::G_SELECT: {
2964     if (TypeIdx != 0)
2965       return UnableToLegalize;
2966 
2967     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2968       LLVM_DEBUG(
2969           dbgs() << "bitcast action not implemented for vector select\n");
2970       return UnableToLegalize;
2971     }
2972 
2973     Observer.changingInstr(MI);
2974     bitcastSrc(MI, CastTy, 2);
2975     bitcastSrc(MI, CastTy, 3);
2976     bitcastDst(MI, CastTy, 0);
2977     Observer.changedInstr(MI);
2978     return Legalized;
2979   }
2980   case TargetOpcode::G_AND:
2981   case TargetOpcode::G_OR:
2982   case TargetOpcode::G_XOR: {
2983     Observer.changingInstr(MI);
2984     bitcastSrc(MI, CastTy, 1);
2985     bitcastSrc(MI, CastTy, 2);
2986     bitcastDst(MI, CastTy, 0);
2987     Observer.changedInstr(MI);
2988     return Legalized;
2989   }
2990   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2991     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2992   case TargetOpcode::G_INSERT_VECTOR_ELT:
2993     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2994   default:
2995     return UnableToLegalize;
2996   }
2997 }
2998 
2999 // Legalize an instruction by changing the opcode in place.
3000 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
3001     Observer.changingInstr(MI);
3002     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3003     Observer.changedInstr(MI);
3004 }
3005 
3006 LegalizerHelper::LegalizeResult
3007 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3008   using namespace TargetOpcode;
3009 
3010   switch(MI.getOpcode()) {
3011   default:
3012     return UnableToLegalize;
3013   case TargetOpcode::G_BITCAST:
3014     return lowerBitcast(MI);
3015   case TargetOpcode::G_SREM:
3016   case TargetOpcode::G_UREM: {
3017     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3018     auto Quot =
3019         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3020                               {MI.getOperand(1), MI.getOperand(2)});
3021 
3022     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3023     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3024     MI.eraseFromParent();
3025     return Legalized;
3026   }
3027   case TargetOpcode::G_SADDO:
3028   case TargetOpcode::G_SSUBO:
3029     return lowerSADDO_SSUBO(MI);
3030   case TargetOpcode::G_UMULH:
3031   case TargetOpcode::G_SMULH:
3032     return lowerSMULH_UMULH(MI);
3033   case TargetOpcode::G_SMULO:
3034   case TargetOpcode::G_UMULO: {
3035     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3036     // result.
3037     Register Res = MI.getOperand(0).getReg();
3038     Register Overflow = MI.getOperand(1).getReg();
3039     Register LHS = MI.getOperand(2).getReg();
3040     Register RHS = MI.getOperand(3).getReg();
3041     LLT Ty = MRI.getType(Res);
3042 
3043     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3044                           ? TargetOpcode::G_SMULH
3045                           : TargetOpcode::G_UMULH;
3046 
3047     Observer.changingInstr(MI);
3048     const auto &TII = MIRBuilder.getTII();
3049     MI.setDesc(TII.get(TargetOpcode::G_MUL));
3050     MI.RemoveOperand(1);
3051     Observer.changedInstr(MI);
3052 
3053     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3054     auto Zero = MIRBuilder.buildConstant(Ty, 0);
3055 
3056     // Move insert point forward so we can use the Res register if needed.
3057     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3058 
3059     // For *signed* multiply, overflow is detected by checking:
3060     // (hi != (lo >> bitwidth-1))
3061     if (Opcode == TargetOpcode::G_SMULH) {
3062       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3063       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3064       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3065     } else {
3066       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3067     }
3068     return Legalized;
3069   }
3070   case TargetOpcode::G_FNEG: {
3071     Register Res = MI.getOperand(0).getReg();
3072     LLT Ty = MRI.getType(Res);
3073 
3074     // TODO: Handle vector types once we are able to
3075     // represent them.
3076     if (Ty.isVector())
3077       return UnableToLegalize;
3078     auto SignMask =
3079         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3080     Register SubByReg = MI.getOperand(1).getReg();
3081     MIRBuilder.buildXor(Res, SubByReg, SignMask);
3082     MI.eraseFromParent();
3083     return Legalized;
3084   }
3085   case TargetOpcode::G_FSUB: {
3086     Register Res = MI.getOperand(0).getReg();
3087     LLT Ty = MRI.getType(Res);
3088 
3089     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3090     // First, check if G_FNEG is marked as Lower. If so, we may
3091     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3092     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3093       return UnableToLegalize;
3094     Register LHS = MI.getOperand(1).getReg();
3095     Register RHS = MI.getOperand(2).getReg();
3096     Register Neg = MRI.createGenericVirtualRegister(Ty);
3097     MIRBuilder.buildFNeg(Neg, RHS);
3098     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3099     MI.eraseFromParent();
3100     return Legalized;
3101   }
3102   case TargetOpcode::G_FMAD:
3103     return lowerFMad(MI);
3104   case TargetOpcode::G_FFLOOR:
3105     return lowerFFloor(MI);
3106   case TargetOpcode::G_INTRINSIC_ROUND:
3107     return lowerIntrinsicRound(MI);
3108   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3109     // Since round even is the assumed rounding mode for unconstrained FP
3110     // operations, rint and roundeven are the same operation.
3111     changeOpcode(MI, TargetOpcode::G_FRINT);
3112     return Legalized;
3113   }
3114   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3115     Register OldValRes = MI.getOperand(0).getReg();
3116     Register SuccessRes = MI.getOperand(1).getReg();
3117     Register Addr = MI.getOperand(2).getReg();
3118     Register CmpVal = MI.getOperand(3).getReg();
3119     Register NewVal = MI.getOperand(4).getReg();
3120     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3121                                   **MI.memoperands_begin());
3122     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3123     MI.eraseFromParent();
3124     return Legalized;
3125   }
3126   case TargetOpcode::G_LOAD:
3127   case TargetOpcode::G_SEXTLOAD:
3128   case TargetOpcode::G_ZEXTLOAD:
3129     return lowerLoad(MI);
3130   case TargetOpcode::G_STORE:
3131     return lowerStore(MI);
3132   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3133   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3134   case TargetOpcode::G_CTLZ:
3135   case TargetOpcode::G_CTTZ:
3136   case TargetOpcode::G_CTPOP:
3137     return lowerBitCount(MI);
3138   case G_UADDO: {
3139     Register Res = MI.getOperand(0).getReg();
3140     Register CarryOut = MI.getOperand(1).getReg();
3141     Register LHS = MI.getOperand(2).getReg();
3142     Register RHS = MI.getOperand(3).getReg();
3143 
3144     MIRBuilder.buildAdd(Res, LHS, RHS);
3145     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3146 
3147     MI.eraseFromParent();
3148     return Legalized;
3149   }
3150   case G_UADDE: {
3151     Register Res = MI.getOperand(0).getReg();
3152     Register CarryOut = MI.getOperand(1).getReg();
3153     Register LHS = MI.getOperand(2).getReg();
3154     Register RHS = MI.getOperand(3).getReg();
3155     Register CarryIn = MI.getOperand(4).getReg();
3156     LLT Ty = MRI.getType(Res);
3157 
3158     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3159     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3160     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3161     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3162 
3163     MI.eraseFromParent();
3164     return Legalized;
3165   }
3166   case G_USUBO: {
3167     Register Res = MI.getOperand(0).getReg();
3168     Register BorrowOut = MI.getOperand(1).getReg();
3169     Register LHS = MI.getOperand(2).getReg();
3170     Register RHS = MI.getOperand(3).getReg();
3171 
3172     MIRBuilder.buildSub(Res, LHS, RHS);
3173     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3174 
3175     MI.eraseFromParent();
3176     return Legalized;
3177   }
3178   case G_USUBE: {
3179     Register Res = MI.getOperand(0).getReg();
3180     Register BorrowOut = MI.getOperand(1).getReg();
3181     Register LHS = MI.getOperand(2).getReg();
3182     Register RHS = MI.getOperand(3).getReg();
3183     Register BorrowIn = MI.getOperand(4).getReg();
3184     const LLT CondTy = MRI.getType(BorrowOut);
3185     const LLT Ty = MRI.getType(Res);
3186 
3187     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3188     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3189     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3190 
3191     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3192     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3193     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3194 
3195     MI.eraseFromParent();
3196     return Legalized;
3197   }
3198   case G_UITOFP:
3199     return lowerUITOFP(MI);
3200   case G_SITOFP:
3201     return lowerSITOFP(MI);
3202   case G_FPTOUI:
3203     return lowerFPTOUI(MI);
3204   case G_FPTOSI:
3205     return lowerFPTOSI(MI);
3206   case G_FPTRUNC:
3207     return lowerFPTRUNC(MI);
3208   case G_FPOWI:
3209     return lowerFPOWI(MI);
3210   case G_SMIN:
3211   case G_SMAX:
3212   case G_UMIN:
3213   case G_UMAX:
3214     return lowerMinMax(MI);
3215   case G_FCOPYSIGN:
3216     return lowerFCopySign(MI);
3217   case G_FMINNUM:
3218   case G_FMAXNUM:
3219     return lowerFMinNumMaxNum(MI);
3220   case G_MERGE_VALUES:
3221     return lowerMergeValues(MI);
3222   case G_UNMERGE_VALUES:
3223     return lowerUnmergeValues(MI);
3224   case TargetOpcode::G_SEXT_INREG: {
3225     assert(MI.getOperand(2).isImm() && "Expected immediate");
3226     int64_t SizeInBits = MI.getOperand(2).getImm();
3227 
3228     Register DstReg = MI.getOperand(0).getReg();
3229     Register SrcReg = MI.getOperand(1).getReg();
3230     LLT DstTy = MRI.getType(DstReg);
3231     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3232 
3233     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3234     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3235     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3236     MI.eraseFromParent();
3237     return Legalized;
3238   }
3239   case G_EXTRACT_VECTOR_ELT:
3240   case G_INSERT_VECTOR_ELT:
3241     return lowerExtractInsertVectorElt(MI);
3242   case G_SHUFFLE_VECTOR:
3243     return lowerShuffleVector(MI);
3244   case G_DYN_STACKALLOC:
3245     return lowerDynStackAlloc(MI);
3246   case G_EXTRACT:
3247     return lowerExtract(MI);
3248   case G_INSERT:
3249     return lowerInsert(MI);
3250   case G_BSWAP:
3251     return lowerBswap(MI);
3252   case G_BITREVERSE:
3253     return lowerBitreverse(MI);
3254   case G_READ_REGISTER:
3255   case G_WRITE_REGISTER:
3256     return lowerReadWriteRegister(MI);
3257   case G_UADDSAT:
3258   case G_USUBSAT: {
3259     // Try to make a reasonable guess about which lowering strategy to use. The
3260     // target can override this with custom lowering and calling the
3261     // implementation functions.
3262     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3263     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3264       return lowerAddSubSatToMinMax(MI);
3265     return lowerAddSubSatToAddoSubo(MI);
3266   }
3267   case G_SADDSAT:
3268   case G_SSUBSAT: {
3269     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3270 
3271     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3272     // since it's a shorter expansion. However, we would need to figure out the
3273     // preferred boolean type for the carry out for the query.
3274     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3275       return lowerAddSubSatToMinMax(MI);
3276     return lowerAddSubSatToAddoSubo(MI);
3277   }
3278   case G_SSHLSAT:
3279   case G_USHLSAT:
3280     return lowerShlSat(MI);
3281   case G_ABS:
3282     return lowerAbsToAddXor(MI);
3283   case G_SELECT:
3284     return lowerSelect(MI);
3285   case G_SDIVREM:
3286   case G_UDIVREM:
3287     return lowerDIVREM(MI);
3288   case G_FSHL:
3289   case G_FSHR:
3290     return lowerFunnelShift(MI);
3291   case G_ROTL:
3292   case G_ROTR:
3293     return lowerRotate(MI);
3294   }
3295 }
3296 
3297 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3298                                                   Align MinAlign) const {
3299   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3300   // datalayout for the preferred alignment. Also there should be a target hook
3301   // for this to allow targets to reduce the alignment and ignore the
3302   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3303   // the type.
3304   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3305 }
3306 
3307 MachineInstrBuilder
3308 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3309                                       MachinePointerInfo &PtrInfo) {
3310   MachineFunction &MF = MIRBuilder.getMF();
3311   const DataLayout &DL = MIRBuilder.getDataLayout();
3312   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3313 
3314   unsigned AddrSpace = DL.getAllocaAddrSpace();
3315   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3316 
3317   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3318   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3319 }
3320 
3321 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3322                                         LLT VecTy) {
3323   int64_t IdxVal;
3324   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3325     return IdxReg;
3326 
3327   LLT IdxTy = B.getMRI()->getType(IdxReg);
3328   unsigned NElts = VecTy.getNumElements();
3329   if (isPowerOf2_32(NElts)) {
3330     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3331     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3332   }
3333 
3334   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3335       .getReg(0);
3336 }
3337 
3338 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3339                                                   Register Index) {
3340   LLT EltTy = VecTy.getElementType();
3341 
3342   // Calculate the element offset and add it to the pointer.
3343   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3344   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3345          "Converting bits to bytes lost precision");
3346 
3347   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3348 
3349   LLT IdxTy = MRI.getType(Index);
3350   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3351                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3352 
3353   LLT PtrTy = MRI.getType(VecPtr);
3354   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3355 }
3356 
3357 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3358     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3359   Register DstReg = MI.getOperand(0).getReg();
3360   LLT DstTy = MRI.getType(DstReg);
3361   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3362 
3363   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3364 
3365   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3366   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3367 
3368   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3369   MI.eraseFromParent();
3370   return Legalized;
3371 }
3372 
3373 // Handle splitting vector operations which need to have the same number of
3374 // elements in each type index, but each type index may have a different element
3375 // type.
3376 //
3377 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3378 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3379 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3380 //
3381 // Also handles some irregular breakdown cases, e.g.
3382 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3383 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3384 //             s64 = G_SHL s64, s32
3385 LegalizerHelper::LegalizeResult
3386 LegalizerHelper::fewerElementsVectorMultiEltType(
3387   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3388   if (TypeIdx != 0)
3389     return UnableToLegalize;
3390 
3391   const LLT NarrowTy0 = NarrowTyArg;
3392   const Register DstReg = MI.getOperand(0).getReg();
3393   LLT DstTy = MRI.getType(DstReg);
3394   LLT LeftoverTy0;
3395 
3396   // All of the operands need to have the same number of elements, so if we can
3397   // determine a type breakdown for the result type, we can for all of the
3398   // source types.
3399   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3400   if (NumParts < 0)
3401     return UnableToLegalize;
3402 
3403   SmallVector<MachineInstrBuilder, 4> NewInsts;
3404 
3405   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3406   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3407 
3408   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3409     Register SrcReg = MI.getOperand(I).getReg();
3410     LLT SrcTyI = MRI.getType(SrcReg);
3411     const auto NewEC = NarrowTy0.isVector() ? NarrowTy0.getElementCount()
3412                                             : ElementCount::getFixed(1);
3413     LLT NarrowTyI = LLT::scalarOrVector(NewEC, SrcTyI.getScalarType());
3414     LLT LeftoverTyI;
3415 
3416     // Split this operand into the requested typed registers, and any leftover
3417     // required to reproduce the original type.
3418     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3419                       LeftoverRegs))
3420       return UnableToLegalize;
3421 
3422     if (I == 1) {
3423       // For the first operand, create an instruction for each part and setup
3424       // the result.
3425       for (Register PartReg : PartRegs) {
3426         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3427         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3428                                .addDef(PartDstReg)
3429                                .addUse(PartReg));
3430         DstRegs.push_back(PartDstReg);
3431       }
3432 
3433       for (Register LeftoverReg : LeftoverRegs) {
3434         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3435         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3436                                .addDef(PartDstReg)
3437                                .addUse(LeftoverReg));
3438         LeftoverDstRegs.push_back(PartDstReg);
3439       }
3440     } else {
3441       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3442 
3443       // Add the newly created operand splits to the existing instructions. The
3444       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3445       // pieces.
3446       unsigned InstCount = 0;
3447       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3448         NewInsts[InstCount++].addUse(PartRegs[J]);
3449       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3450         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3451     }
3452 
3453     PartRegs.clear();
3454     LeftoverRegs.clear();
3455   }
3456 
3457   // Insert the newly built operations and rebuild the result register.
3458   for (auto &MIB : NewInsts)
3459     MIRBuilder.insertInstr(MIB);
3460 
3461   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3462 
3463   MI.eraseFromParent();
3464   return Legalized;
3465 }
3466 
3467 LegalizerHelper::LegalizeResult
3468 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3469                                           LLT NarrowTy) {
3470   if (TypeIdx != 0)
3471     return UnableToLegalize;
3472 
3473   Register DstReg = MI.getOperand(0).getReg();
3474   Register SrcReg = MI.getOperand(1).getReg();
3475   LLT DstTy = MRI.getType(DstReg);
3476   LLT SrcTy = MRI.getType(SrcReg);
3477 
3478   LLT NarrowTy0 = NarrowTy;
3479   LLT NarrowTy1;
3480   unsigned NumParts;
3481 
3482   if (NarrowTy.isVector()) {
3483     // Uneven breakdown not handled.
3484     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3485     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3486       return UnableToLegalize;
3487 
3488     NarrowTy1 = LLT::vector(NarrowTy.getElementCount(), SrcTy.getElementType());
3489   } else {
3490     NumParts = DstTy.getNumElements();
3491     NarrowTy1 = SrcTy.getElementType();
3492   }
3493 
3494   SmallVector<Register, 4> SrcRegs, DstRegs;
3495   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3496 
3497   for (unsigned I = 0; I < NumParts; ++I) {
3498     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3499     MachineInstr *NewInst =
3500         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3501 
3502     NewInst->setFlags(MI.getFlags());
3503     DstRegs.push_back(DstReg);
3504   }
3505 
3506   if (NarrowTy.isVector())
3507     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3508   else
3509     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3510 
3511   MI.eraseFromParent();
3512   return Legalized;
3513 }
3514 
3515 LegalizerHelper::LegalizeResult
3516 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3517                                         LLT NarrowTy) {
3518   Register DstReg = MI.getOperand(0).getReg();
3519   Register Src0Reg = MI.getOperand(2).getReg();
3520   LLT DstTy = MRI.getType(DstReg);
3521   LLT SrcTy = MRI.getType(Src0Reg);
3522 
3523   unsigned NumParts;
3524   LLT NarrowTy0, NarrowTy1;
3525 
3526   if (TypeIdx == 0) {
3527     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3528     unsigned OldElts = DstTy.getNumElements();
3529 
3530     NarrowTy0 = NarrowTy;
3531     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3532     NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getElementCount(),
3533                                                   SrcTy.getScalarSizeInBits())
3534                                     : SrcTy.getElementType();
3535 
3536   } else {
3537     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3538     unsigned OldElts = SrcTy.getNumElements();
3539 
3540     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3541       NarrowTy.getNumElements();
3542     NarrowTy0 =
3543         LLT::vector(NarrowTy.getElementCount(), DstTy.getScalarSizeInBits());
3544     NarrowTy1 = NarrowTy;
3545   }
3546 
3547   // FIXME: Don't know how to handle the situation where the small vectors
3548   // aren't all the same size yet.
3549   if (NarrowTy1.isVector() &&
3550       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3551     return UnableToLegalize;
3552 
3553   CmpInst::Predicate Pred
3554     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3555 
3556   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3557   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3558   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3559 
3560   for (unsigned I = 0; I < NumParts; ++I) {
3561     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3562     DstRegs.push_back(DstReg);
3563 
3564     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3565       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3566     else {
3567       MachineInstr *NewCmp
3568         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3569       NewCmp->setFlags(MI.getFlags());
3570     }
3571   }
3572 
3573   if (NarrowTy1.isVector())
3574     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3575   else
3576     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3577 
3578   MI.eraseFromParent();
3579   return Legalized;
3580 }
3581 
3582 LegalizerHelper::LegalizeResult
3583 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3584                                            LLT NarrowTy) {
3585   Register DstReg = MI.getOperand(0).getReg();
3586   Register CondReg = MI.getOperand(1).getReg();
3587 
3588   unsigned NumParts = 0;
3589   LLT NarrowTy0, NarrowTy1;
3590 
3591   LLT DstTy = MRI.getType(DstReg);
3592   LLT CondTy = MRI.getType(CondReg);
3593   unsigned Size = DstTy.getSizeInBits();
3594 
3595   assert(TypeIdx == 0 || CondTy.isVector());
3596 
3597   if (TypeIdx == 0) {
3598     NarrowTy0 = NarrowTy;
3599     NarrowTy1 = CondTy;
3600 
3601     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3602     // FIXME: Don't know how to handle the situation where the small vectors
3603     // aren't all the same size yet.
3604     if (Size % NarrowSize != 0)
3605       return UnableToLegalize;
3606 
3607     NumParts = Size / NarrowSize;
3608 
3609     // Need to break down the condition type
3610     if (CondTy.isVector()) {
3611       if (CondTy.getNumElements() == NumParts)
3612         NarrowTy1 = CondTy.getElementType();
3613       else
3614         NarrowTy1 =
3615             LLT::vector(CondTy.getElementCount().divideCoefficientBy(NumParts),
3616                         CondTy.getScalarSizeInBits());
3617     }
3618   } else {
3619     NumParts = CondTy.getNumElements();
3620     if (NarrowTy.isVector()) {
3621       // TODO: Handle uneven breakdown.
3622       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3623         return UnableToLegalize;
3624 
3625       return UnableToLegalize;
3626     } else {
3627       NarrowTy0 = DstTy.getElementType();
3628       NarrowTy1 = NarrowTy;
3629     }
3630   }
3631 
3632   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3633   if (CondTy.isVector())
3634     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3635 
3636   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3637   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3638 
3639   for (unsigned i = 0; i < NumParts; ++i) {
3640     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3641     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3642                            Src1Regs[i], Src2Regs[i]);
3643     DstRegs.push_back(DstReg);
3644   }
3645 
3646   if (NarrowTy0.isVector())
3647     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3648   else
3649     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3650 
3651   MI.eraseFromParent();
3652   return Legalized;
3653 }
3654 
3655 LegalizerHelper::LegalizeResult
3656 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3657                                         LLT NarrowTy) {
3658   const Register DstReg = MI.getOperand(0).getReg();
3659   LLT PhiTy = MRI.getType(DstReg);
3660   LLT LeftoverTy;
3661 
3662   // All of the operands need to have the same number of elements, so if we can
3663   // determine a type breakdown for the result type, we can for all of the
3664   // source types.
3665   int NumParts, NumLeftover;
3666   std::tie(NumParts, NumLeftover)
3667     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3668   if (NumParts < 0)
3669     return UnableToLegalize;
3670 
3671   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3672   SmallVector<MachineInstrBuilder, 4> NewInsts;
3673 
3674   const int TotalNumParts = NumParts + NumLeftover;
3675 
3676   // Insert the new phis in the result block first.
3677   for (int I = 0; I != TotalNumParts; ++I) {
3678     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3679     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3680     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3681                        .addDef(PartDstReg));
3682     if (I < NumParts)
3683       DstRegs.push_back(PartDstReg);
3684     else
3685       LeftoverDstRegs.push_back(PartDstReg);
3686   }
3687 
3688   MachineBasicBlock *MBB = MI.getParent();
3689   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3690   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3691 
3692   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3693 
3694   // Insert code to extract the incoming values in each predecessor block.
3695   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3696     PartRegs.clear();
3697     LeftoverRegs.clear();
3698 
3699     Register SrcReg = MI.getOperand(I).getReg();
3700     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3701     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3702 
3703     LLT Unused;
3704     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3705                       LeftoverRegs))
3706       return UnableToLegalize;
3707 
3708     // Add the newly created operand splits to the existing instructions. The
3709     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3710     // pieces.
3711     for (int J = 0; J != TotalNumParts; ++J) {
3712       MachineInstrBuilder MIB = NewInsts[J];
3713       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3714       MIB.addMBB(&OpMBB);
3715     }
3716   }
3717 
3718   MI.eraseFromParent();
3719   return Legalized;
3720 }
3721 
3722 LegalizerHelper::LegalizeResult
3723 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3724                                                   unsigned TypeIdx,
3725                                                   LLT NarrowTy) {
3726   if (TypeIdx != 1)
3727     return UnableToLegalize;
3728 
3729   const int NumDst = MI.getNumOperands() - 1;
3730   const Register SrcReg = MI.getOperand(NumDst).getReg();
3731   LLT SrcTy = MRI.getType(SrcReg);
3732 
3733   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3734 
3735   // TODO: Create sequence of extracts.
3736   if (DstTy == NarrowTy)
3737     return UnableToLegalize;
3738 
3739   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3740   if (DstTy == GCDTy) {
3741     // This would just be a copy of the same unmerge.
3742     // TODO: Create extracts, pad with undef and create intermediate merges.
3743     return UnableToLegalize;
3744   }
3745 
3746   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3747   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3748   const int PartsPerUnmerge = NumDst / NumUnmerge;
3749 
3750   for (int I = 0; I != NumUnmerge; ++I) {
3751     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3752 
3753     for (int J = 0; J != PartsPerUnmerge; ++J)
3754       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3755     MIB.addUse(Unmerge.getReg(I));
3756   }
3757 
3758   MI.eraseFromParent();
3759   return Legalized;
3760 }
3761 
3762 LegalizerHelper::LegalizeResult
3763 LegalizerHelper::fewerElementsVectorMulo(MachineInstr &MI, unsigned TypeIdx,
3764                                          LLT NarrowTy) {
3765   Register Result = MI.getOperand(0).getReg();
3766   Register Overflow = MI.getOperand(1).getReg();
3767   Register LHS = MI.getOperand(2).getReg();
3768   Register RHS = MI.getOperand(3).getReg();
3769 
3770   LLT SrcTy = MRI.getType(LHS);
3771   if (!SrcTy.isVector())
3772     return UnableToLegalize;
3773 
3774   LLT ElementType = SrcTy.getElementType();
3775   LLT OverflowElementTy = MRI.getType(Overflow).getElementType();
3776   const ElementCount NumResult = SrcTy.getElementCount();
3777   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3778 
3779   // Unmerge the operands to smaller parts of GCD type.
3780   auto UnmergeLHS = MIRBuilder.buildUnmerge(GCDTy, LHS);
3781   auto UnmergeRHS = MIRBuilder.buildUnmerge(GCDTy, RHS);
3782 
3783   const int NumOps = UnmergeLHS->getNumOperands() - 1;
3784   const ElementCount PartsPerUnmerge = NumResult.divideCoefficientBy(NumOps);
3785   LLT OverflowTy = LLT::scalarOrVector(PartsPerUnmerge, OverflowElementTy);
3786   LLT ResultTy = LLT::scalarOrVector(PartsPerUnmerge, ElementType);
3787 
3788   // Perform the operation over unmerged parts.
3789   SmallVector<Register, 8> ResultParts;
3790   SmallVector<Register, 8> OverflowParts;
3791   for (int I = 0; I != NumOps; ++I) {
3792     Register Operand1 = UnmergeLHS->getOperand(I).getReg();
3793     Register Operand2 = UnmergeRHS->getOperand(I).getReg();
3794     auto PartMul = MIRBuilder.buildInstr(MI.getOpcode(), {ResultTy, OverflowTy},
3795                                          {Operand1, Operand2});
3796     ResultParts.push_back(PartMul->getOperand(0).getReg());
3797     OverflowParts.push_back(PartMul->getOperand(1).getReg());
3798   }
3799 
3800   LLT ResultLCMTy = buildLCMMergePieces(SrcTy, NarrowTy, GCDTy, ResultParts);
3801   LLT OverflowLCMTy =
3802       LLT::scalarOrVector(ResultLCMTy.getElementCount(), OverflowElementTy);
3803 
3804   // Recombine the pieces to the original result and overflow registers.
3805   buildWidenedRemergeToDst(Result, ResultLCMTy, ResultParts);
3806   buildWidenedRemergeToDst(Overflow, OverflowLCMTy, OverflowParts);
3807   MI.eraseFromParent();
3808   return Legalized;
3809 }
3810 
3811 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3812 // a vector
3813 //
3814 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3815 // undef as necessary.
3816 //
3817 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3818 //   -> <2 x s16>
3819 //
3820 // %4:_(s16) = G_IMPLICIT_DEF
3821 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3822 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3823 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3824 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3825 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3826 LegalizerHelper::LegalizeResult
3827 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3828                                           LLT NarrowTy) {
3829   Register DstReg = MI.getOperand(0).getReg();
3830   LLT DstTy = MRI.getType(DstReg);
3831   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3832   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3833 
3834   // Break into a common type
3835   SmallVector<Register, 16> Parts;
3836   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3837     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3838 
3839   // Build the requested new merge, padding with undef.
3840   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3841                                   TargetOpcode::G_ANYEXT);
3842 
3843   // Pack into the original result register.
3844   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3845 
3846   MI.eraseFromParent();
3847   return Legalized;
3848 }
3849 
3850 LegalizerHelper::LegalizeResult
3851 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3852                                                            unsigned TypeIdx,
3853                                                            LLT NarrowVecTy) {
3854   Register DstReg = MI.getOperand(0).getReg();
3855   Register SrcVec = MI.getOperand(1).getReg();
3856   Register InsertVal;
3857   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3858 
3859   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3860   if (IsInsert)
3861     InsertVal = MI.getOperand(2).getReg();
3862 
3863   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3864 
3865   // TODO: Handle total scalarization case.
3866   if (!NarrowVecTy.isVector())
3867     return UnableToLegalize;
3868 
3869   LLT VecTy = MRI.getType(SrcVec);
3870 
3871   // If the index is a constant, we can really break this down as you would
3872   // expect, and index into the target size pieces.
3873   int64_t IdxVal;
3874   auto MaybeCst =
3875       getConstantVRegValWithLookThrough(Idx, MRI, /*LookThroughInstrs*/ true,
3876                                         /*HandleFConstants*/ false);
3877   if (MaybeCst) {
3878     IdxVal = MaybeCst->Value.getSExtValue();
3879     // Avoid out of bounds indexing the pieces.
3880     if (IdxVal >= VecTy.getNumElements()) {
3881       MIRBuilder.buildUndef(DstReg);
3882       MI.eraseFromParent();
3883       return Legalized;
3884     }
3885 
3886     SmallVector<Register, 8> VecParts;
3887     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3888 
3889     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3890     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3891                                     TargetOpcode::G_ANYEXT);
3892 
3893     unsigned NewNumElts = NarrowVecTy.getNumElements();
3894 
3895     LLT IdxTy = MRI.getType(Idx);
3896     int64_t PartIdx = IdxVal / NewNumElts;
3897     auto NewIdx =
3898         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3899 
3900     if (IsInsert) {
3901       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3902 
3903       // Use the adjusted index to insert into one of the subvectors.
3904       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3905           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3906       VecParts[PartIdx] = InsertPart.getReg(0);
3907 
3908       // Recombine the inserted subvector with the others to reform the result
3909       // vector.
3910       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3911     } else {
3912       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3913     }
3914 
3915     MI.eraseFromParent();
3916     return Legalized;
3917   }
3918 
3919   // With a variable index, we can't perform the operation in a smaller type, so
3920   // we're forced to expand this.
3921   //
3922   // TODO: We could emit a chain of compare/select to figure out which piece to
3923   // index.
3924   return lowerExtractInsertVectorElt(MI);
3925 }
3926 
3927 LegalizerHelper::LegalizeResult
3928 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3929                                       LLT NarrowTy) {
3930   // FIXME: Don't know how to handle secondary types yet.
3931   if (TypeIdx != 0)
3932     return UnableToLegalize;
3933 
3934   MachineMemOperand *MMO = *MI.memoperands_begin();
3935 
3936   // This implementation doesn't work for atomics. Give up instead of doing
3937   // something invalid.
3938   if (MMO->isAtomic())
3939     return UnableToLegalize;
3940 
3941   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3942   Register ValReg = MI.getOperand(0).getReg();
3943   Register AddrReg = MI.getOperand(1).getReg();
3944   LLT ValTy = MRI.getType(ValReg);
3945 
3946   // FIXME: Do we need a distinct NarrowMemory legalize action?
3947   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3948     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3949     return UnableToLegalize;
3950   }
3951 
3952   int NumParts = -1;
3953   int NumLeftover = -1;
3954   LLT LeftoverTy;
3955   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3956   if (IsLoad) {
3957     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3958   } else {
3959     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3960                      NarrowLeftoverRegs)) {
3961       NumParts = NarrowRegs.size();
3962       NumLeftover = NarrowLeftoverRegs.size();
3963     }
3964   }
3965 
3966   if (NumParts == -1)
3967     return UnableToLegalize;
3968 
3969   LLT PtrTy = MRI.getType(AddrReg);
3970   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3971 
3972   unsigned TotalSize = ValTy.getSizeInBits();
3973 
3974   // Split the load/store into PartTy sized pieces starting at Offset. If this
3975   // is a load, return the new registers in ValRegs. For a store, each elements
3976   // of ValRegs should be PartTy. Returns the next offset that needs to be
3977   // handled.
3978   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3979                              unsigned Offset) -> unsigned {
3980     MachineFunction &MF = MIRBuilder.getMF();
3981     unsigned PartSize = PartTy.getSizeInBits();
3982     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3983          Offset += PartSize, ++Idx) {
3984       unsigned ByteOffset = Offset / 8;
3985       Register NewAddrReg;
3986 
3987       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3988 
3989       MachineMemOperand *NewMMO =
3990         MF.getMachineMemOperand(MMO, ByteOffset, PartTy);
3991 
3992       if (IsLoad) {
3993         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3994         ValRegs.push_back(Dst);
3995         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3996       } else {
3997         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3998       }
3999     }
4000 
4001     return Offset;
4002   };
4003 
4004   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
4005 
4006   // Handle the rest of the register if this isn't an even type breakdown.
4007   if (LeftoverTy.isValid())
4008     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
4009 
4010   if (IsLoad) {
4011     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4012                 LeftoverTy, NarrowLeftoverRegs);
4013   }
4014 
4015   MI.eraseFromParent();
4016   return Legalized;
4017 }
4018 
4019 LegalizerHelper::LegalizeResult
4020 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
4021                                       LLT NarrowTy) {
4022   assert(TypeIdx == 0 && "only one type index expected");
4023 
4024   const unsigned Opc = MI.getOpcode();
4025   const int NumDefOps = MI.getNumExplicitDefs();
4026   const int NumSrcOps = MI.getNumOperands() - NumDefOps;
4027   const unsigned Flags = MI.getFlags();
4028   const unsigned NarrowSize = NarrowTy.getSizeInBits();
4029   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
4030 
4031   assert(MI.getNumOperands() <= 4 && "expected instruction with either 1 "
4032                                      "result and 1-3 sources or 2 results and "
4033                                      "1-2 sources");
4034 
4035   SmallVector<Register, 2> DstRegs;
4036   for (int I = 0; I < NumDefOps; ++I)
4037     DstRegs.push_back(MI.getOperand(I).getReg());
4038 
4039   // First of all check whether we are narrowing (changing the element type)
4040   // or reducing the vector elements
4041   const LLT DstTy = MRI.getType(DstRegs[0]);
4042   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
4043 
4044   SmallVector<Register, 8> ExtractedRegs[3];
4045   SmallVector<Register, 8> Parts;
4046 
4047   // Break down all the sources into NarrowTy pieces we can operate on. This may
4048   // involve creating merges to a wider type, padded with undef.
4049   for (int I = 0; I != NumSrcOps; ++I) {
4050     Register SrcReg = MI.getOperand(I + NumDefOps).getReg();
4051     LLT SrcTy = MRI.getType(SrcReg);
4052 
4053     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
4054     // For fewerElements, this is a smaller vector with the same element type.
4055     LLT OpNarrowTy;
4056     if (IsNarrow) {
4057       OpNarrowTy = NarrowScalarTy;
4058 
4059       // In case of narrowing, we need to cast vectors to scalars for this to
4060       // work properly
4061       // FIXME: Can we do without the bitcast here if we're narrowing?
4062       if (SrcTy.isVector()) {
4063         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
4064         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
4065       }
4066     } else {
4067       auto NarrowEC = NarrowTy.isVector() ? NarrowTy.getElementCount()
4068                                           : ElementCount::getFixed(1);
4069       OpNarrowTy = LLT::scalarOrVector(NarrowEC, SrcTy.getScalarType());
4070     }
4071 
4072     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
4073 
4074     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
4075     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
4076                         TargetOpcode::G_ANYEXT);
4077   }
4078 
4079   SmallVector<Register, 8> ResultRegs[2];
4080 
4081   // Input operands for each sub-instruction.
4082   SmallVector<SrcOp, 4> InputRegs(NumSrcOps, Register());
4083 
4084   int NumParts = ExtractedRegs[0].size();
4085   const unsigned DstSize = DstTy.getSizeInBits();
4086   const LLT DstScalarTy = LLT::scalar(DstSize);
4087 
4088   // Narrowing needs to use scalar types
4089   LLT DstLCMTy, NarrowDstTy;
4090   if (IsNarrow) {
4091     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
4092     NarrowDstTy = NarrowScalarTy;
4093   } else {
4094     DstLCMTy = getLCMType(DstTy, NarrowTy);
4095     NarrowDstTy = NarrowTy;
4096   }
4097 
4098   // We widened the source registers to satisfy merge/unmerge size
4099   // constraints. We'll have some extra fully undef parts.
4100   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
4101 
4102   for (int I = 0; I != NumRealParts; ++I) {
4103     // Emit this instruction on each of the split pieces.
4104     for (int J = 0; J != NumSrcOps; ++J)
4105       InputRegs[J] = ExtractedRegs[J][I];
4106 
4107     MachineInstrBuilder Inst;
4108     if (NumDefOps == 1)
4109       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
4110     else
4111       Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy, NarrowDstTy}, InputRegs,
4112                                    Flags);
4113 
4114     for (int J = 0; J != NumDefOps; ++J)
4115       ResultRegs[J].push_back(Inst.getReg(J));
4116   }
4117 
4118   // Fill out the widened result with undef instead of creating instructions
4119   // with undef inputs.
4120   int NumUndefParts = NumParts - NumRealParts;
4121   if (NumUndefParts != 0) {
4122     Register Undef = MIRBuilder.buildUndef(NarrowDstTy).getReg(0);
4123     for (int I = 0; I != NumDefOps; ++I)
4124       ResultRegs[I].append(NumUndefParts, Undef);
4125   }
4126 
4127   // Extract the possibly padded result. Use a scratch register if we need to do
4128   // a final bitcast, otherwise use the original result register.
4129   Register MergeDstReg;
4130   for (int I = 0; I != NumDefOps; ++I) {
4131     if (IsNarrow && DstTy.isVector())
4132       MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
4133     else
4134       MergeDstReg = DstRegs[I];
4135 
4136     buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs[I]);
4137 
4138     // Recast to vector if we narrowed a vector
4139     if (IsNarrow && DstTy.isVector())
4140       MIRBuilder.buildBitcast(DstRegs[I], MergeDstReg);
4141   }
4142 
4143   MI.eraseFromParent();
4144   return Legalized;
4145 }
4146 
4147 LegalizerHelper::LegalizeResult
4148 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
4149                                               LLT NarrowTy) {
4150   Register DstReg = MI.getOperand(0).getReg();
4151   Register SrcReg = MI.getOperand(1).getReg();
4152   int64_t Imm = MI.getOperand(2).getImm();
4153 
4154   LLT DstTy = MRI.getType(DstReg);
4155 
4156   SmallVector<Register, 8> Parts;
4157   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4158   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
4159 
4160   for (Register &R : Parts)
4161     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
4162 
4163   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4164 
4165   MI.eraseFromParent();
4166   return Legalized;
4167 }
4168 
4169 LegalizerHelper::LegalizeResult
4170 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4171                                      LLT NarrowTy) {
4172   using namespace TargetOpcode;
4173 
4174   switch (MI.getOpcode()) {
4175   case G_IMPLICIT_DEF:
4176     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
4177   case G_TRUNC:
4178   case G_AND:
4179   case G_OR:
4180   case G_XOR:
4181   case G_ADD:
4182   case G_SUB:
4183   case G_MUL:
4184   case G_PTR_ADD:
4185   case G_SMULH:
4186   case G_UMULH:
4187   case G_FADD:
4188   case G_FMUL:
4189   case G_FSUB:
4190   case G_FNEG:
4191   case G_FABS:
4192   case G_FCANONICALIZE:
4193   case G_FDIV:
4194   case G_FREM:
4195   case G_FMA:
4196   case G_FMAD:
4197   case G_FPOW:
4198   case G_FEXP:
4199   case G_FEXP2:
4200   case G_FLOG:
4201   case G_FLOG2:
4202   case G_FLOG10:
4203   case G_FNEARBYINT:
4204   case G_FCEIL:
4205   case G_FFLOOR:
4206   case G_FRINT:
4207   case G_INTRINSIC_ROUND:
4208   case G_INTRINSIC_ROUNDEVEN:
4209   case G_INTRINSIC_TRUNC:
4210   case G_FCOS:
4211   case G_FSIN:
4212   case G_FSQRT:
4213   case G_BSWAP:
4214   case G_BITREVERSE:
4215   case G_SDIV:
4216   case G_UDIV:
4217   case G_SREM:
4218   case G_UREM:
4219   case G_SDIVREM:
4220   case G_UDIVREM:
4221   case G_SMIN:
4222   case G_SMAX:
4223   case G_UMIN:
4224   case G_UMAX:
4225   case G_ABS:
4226   case G_FMINNUM:
4227   case G_FMAXNUM:
4228   case G_FMINNUM_IEEE:
4229   case G_FMAXNUM_IEEE:
4230   case G_FMINIMUM:
4231   case G_FMAXIMUM:
4232   case G_FSHL:
4233   case G_FSHR:
4234   case G_FREEZE:
4235   case G_SADDSAT:
4236   case G_SSUBSAT:
4237   case G_UADDSAT:
4238   case G_USUBSAT:
4239     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4240   case G_UMULO:
4241   case G_SMULO:
4242     return fewerElementsVectorMulo(MI, TypeIdx, NarrowTy);
4243   case G_SHL:
4244   case G_LSHR:
4245   case G_ASHR:
4246   case G_SSHLSAT:
4247   case G_USHLSAT:
4248   case G_CTLZ:
4249   case G_CTLZ_ZERO_UNDEF:
4250   case G_CTTZ:
4251   case G_CTTZ_ZERO_UNDEF:
4252   case G_CTPOP:
4253   case G_FCOPYSIGN:
4254     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4255   case G_ZEXT:
4256   case G_SEXT:
4257   case G_ANYEXT:
4258   case G_FPEXT:
4259   case G_FPTRUNC:
4260   case G_SITOFP:
4261   case G_UITOFP:
4262   case G_FPTOSI:
4263   case G_FPTOUI:
4264   case G_INTTOPTR:
4265   case G_PTRTOINT:
4266   case G_ADDRSPACE_CAST:
4267     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4268   case G_ICMP:
4269   case G_FCMP:
4270     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4271   case G_SELECT:
4272     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4273   case G_PHI:
4274     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4275   case G_UNMERGE_VALUES:
4276     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4277   case G_BUILD_VECTOR:
4278     assert(TypeIdx == 0 && "not a vector type index");
4279     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4280   case G_CONCAT_VECTORS:
4281     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4282       return UnableToLegalize;
4283     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4284   case G_EXTRACT_VECTOR_ELT:
4285   case G_INSERT_VECTOR_ELT:
4286     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4287   case G_LOAD:
4288   case G_STORE:
4289     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4290   case G_SEXT_INREG:
4291     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4292   GISEL_VECREDUCE_CASES_NONSEQ
4293     return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4294   case G_SHUFFLE_VECTOR:
4295     return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4296   default:
4297     return UnableToLegalize;
4298   }
4299 }
4300 
4301 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4302     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4303   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
4304   if (TypeIdx != 0)
4305     return UnableToLegalize;
4306 
4307   Register DstReg = MI.getOperand(0).getReg();
4308   Register Src1Reg = MI.getOperand(1).getReg();
4309   Register Src2Reg = MI.getOperand(2).getReg();
4310   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4311   LLT DstTy = MRI.getType(DstReg);
4312   LLT Src1Ty = MRI.getType(Src1Reg);
4313   LLT Src2Ty = MRI.getType(Src2Reg);
4314   // The shuffle should be canonicalized by now.
4315   if (DstTy != Src1Ty)
4316     return UnableToLegalize;
4317   if (DstTy != Src2Ty)
4318     return UnableToLegalize;
4319 
4320   if (!isPowerOf2_32(DstTy.getNumElements()))
4321     return UnableToLegalize;
4322 
4323   // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4324   // Further legalization attempts will be needed to do split further.
4325   NarrowTy =
4326       DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4327   unsigned NewElts = NarrowTy.getNumElements();
4328 
4329   SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4330   extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4331   extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4332   Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4333                         SplitSrc2Regs[1]};
4334 
4335   Register Hi, Lo;
4336 
4337   // If Lo or Hi uses elements from at most two of the four input vectors, then
4338   // express it as a vector shuffle of those two inputs.  Otherwise extract the
4339   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4340   SmallVector<int, 16> Ops;
4341   for (unsigned High = 0; High < 2; ++High) {
4342     Register &Output = High ? Hi : Lo;
4343 
4344     // Build a shuffle mask for the output, discovering on the fly which
4345     // input vectors to use as shuffle operands (recorded in InputUsed).
4346     // If building a suitable shuffle vector proves too hard, then bail
4347     // out with useBuildVector set.
4348     unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4349     unsigned FirstMaskIdx = High * NewElts;
4350     bool UseBuildVector = false;
4351     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4352       // The mask element.  This indexes into the input.
4353       int Idx = Mask[FirstMaskIdx + MaskOffset];
4354 
4355       // The input vector this mask element indexes into.
4356       unsigned Input = (unsigned)Idx / NewElts;
4357 
4358       if (Input >= array_lengthof(Inputs)) {
4359         // The mask element does not index into any input vector.
4360         Ops.push_back(-1);
4361         continue;
4362       }
4363 
4364       // Turn the index into an offset from the start of the input vector.
4365       Idx -= Input * NewElts;
4366 
4367       // Find or create a shuffle vector operand to hold this input.
4368       unsigned OpNo;
4369       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4370         if (InputUsed[OpNo] == Input) {
4371           // This input vector is already an operand.
4372           break;
4373         } else if (InputUsed[OpNo] == -1U) {
4374           // Create a new operand for this input vector.
4375           InputUsed[OpNo] = Input;
4376           break;
4377         }
4378       }
4379 
4380       if (OpNo >= array_lengthof(InputUsed)) {
4381         // More than two input vectors used!  Give up on trying to create a
4382         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
4383         UseBuildVector = true;
4384         break;
4385       }
4386 
4387       // Add the mask index for the new shuffle vector.
4388       Ops.push_back(Idx + OpNo * NewElts);
4389     }
4390 
4391     if (UseBuildVector) {
4392       LLT EltTy = NarrowTy.getElementType();
4393       SmallVector<Register, 16> SVOps;
4394 
4395       // Extract the input elements by hand.
4396       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4397         // The mask element.  This indexes into the input.
4398         int Idx = Mask[FirstMaskIdx + MaskOffset];
4399 
4400         // The input vector this mask element indexes into.
4401         unsigned Input = (unsigned)Idx / NewElts;
4402 
4403         if (Input >= array_lengthof(Inputs)) {
4404           // The mask element is "undef" or indexes off the end of the input.
4405           SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4406           continue;
4407         }
4408 
4409         // Turn the index into an offset from the start of the input vector.
4410         Idx -= Input * NewElts;
4411 
4412         // Extract the vector element by hand.
4413         SVOps.push_back(MIRBuilder
4414                             .buildExtractVectorElement(
4415                                 EltTy, Inputs[Input],
4416                                 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4417                             .getReg(0));
4418       }
4419 
4420       // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4421       Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4422     } else if (InputUsed[0] == -1U) {
4423       // No input vectors were used! The result is undefined.
4424       Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4425     } else {
4426       Register Op0 = Inputs[InputUsed[0]];
4427       // If only one input was used, use an undefined vector for the other.
4428       Register Op1 = InputUsed[1] == -1U
4429                          ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4430                          : Inputs[InputUsed[1]];
4431       // At least one input vector was used. Create a new shuffle vector.
4432       Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4433     }
4434 
4435     Ops.clear();
4436   }
4437 
4438   MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4439   MI.eraseFromParent();
4440   return Legalized;
4441 }
4442 
4443 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4444     MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4445   unsigned Opc = MI.getOpcode();
4446   assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&
4447          Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
4448          "Sequential reductions not expected");
4449 
4450   if (TypeIdx != 1)
4451     return UnableToLegalize;
4452 
4453   // The semantics of the normal non-sequential reductions allow us to freely
4454   // re-associate the operation.
4455   Register SrcReg = MI.getOperand(1).getReg();
4456   LLT SrcTy = MRI.getType(SrcReg);
4457   Register DstReg = MI.getOperand(0).getReg();
4458   LLT DstTy = MRI.getType(DstReg);
4459 
4460   if (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)
4461     return UnableToLegalize;
4462 
4463   SmallVector<Register> SplitSrcs;
4464   const unsigned NumParts = SrcTy.getNumElements() / NarrowTy.getNumElements();
4465   extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4466   SmallVector<Register> PartialReductions;
4467   for (unsigned Part = 0; Part < NumParts; ++Part) {
4468     PartialReductions.push_back(
4469         MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4470   }
4471 
4472   unsigned ScalarOpc;
4473   switch (Opc) {
4474   case TargetOpcode::G_VECREDUCE_FADD:
4475     ScalarOpc = TargetOpcode::G_FADD;
4476     break;
4477   case TargetOpcode::G_VECREDUCE_FMUL:
4478     ScalarOpc = TargetOpcode::G_FMUL;
4479     break;
4480   case TargetOpcode::G_VECREDUCE_FMAX:
4481     ScalarOpc = TargetOpcode::G_FMAXNUM;
4482     break;
4483   case TargetOpcode::G_VECREDUCE_FMIN:
4484     ScalarOpc = TargetOpcode::G_FMINNUM;
4485     break;
4486   case TargetOpcode::G_VECREDUCE_ADD:
4487     ScalarOpc = TargetOpcode::G_ADD;
4488     break;
4489   case TargetOpcode::G_VECREDUCE_MUL:
4490     ScalarOpc = TargetOpcode::G_MUL;
4491     break;
4492   case TargetOpcode::G_VECREDUCE_AND:
4493     ScalarOpc = TargetOpcode::G_AND;
4494     break;
4495   case TargetOpcode::G_VECREDUCE_OR:
4496     ScalarOpc = TargetOpcode::G_OR;
4497     break;
4498   case TargetOpcode::G_VECREDUCE_XOR:
4499     ScalarOpc = TargetOpcode::G_XOR;
4500     break;
4501   case TargetOpcode::G_VECREDUCE_SMAX:
4502     ScalarOpc = TargetOpcode::G_SMAX;
4503     break;
4504   case TargetOpcode::G_VECREDUCE_SMIN:
4505     ScalarOpc = TargetOpcode::G_SMIN;
4506     break;
4507   case TargetOpcode::G_VECREDUCE_UMAX:
4508     ScalarOpc = TargetOpcode::G_UMAX;
4509     break;
4510   case TargetOpcode::G_VECREDUCE_UMIN:
4511     ScalarOpc = TargetOpcode::G_UMIN;
4512     break;
4513   default:
4514     LLVM_DEBUG(dbgs() << "Can't legalize: unknown reduction kind.\n");
4515     return UnableToLegalize;
4516   }
4517 
4518   // If the types involved are powers of 2, we can generate intermediate vector
4519   // ops, before generating a final reduction operation.
4520   if (isPowerOf2_32(SrcTy.getNumElements()) &&
4521       isPowerOf2_32(NarrowTy.getNumElements())) {
4522     return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4523   }
4524 
4525   Register Acc = PartialReductions[0];
4526   for (unsigned Part = 1; Part < NumParts; ++Part) {
4527     if (Part == NumParts - 1) {
4528       MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4529                             {Acc, PartialReductions[Part]});
4530     } else {
4531       Acc = MIRBuilder
4532                 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4533                 .getReg(0);
4534     }
4535   }
4536   MI.eraseFromParent();
4537   return Legalized;
4538 }
4539 
4540 LegalizerHelper::LegalizeResult
4541 LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4542                                         LLT SrcTy, LLT NarrowTy,
4543                                         unsigned ScalarOpc) {
4544   SmallVector<Register> SplitSrcs;
4545   // Split the sources into NarrowTy size pieces.
4546   extractParts(SrcReg, NarrowTy,
4547                SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4548   // We're going to do a tree reduction using vector operations until we have
4549   // one NarrowTy size value left.
4550   while (SplitSrcs.size() > 1) {
4551     SmallVector<Register> PartialRdxs;
4552     for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4553       Register LHS = SplitSrcs[Idx];
4554       Register RHS = SplitSrcs[Idx + 1];
4555       // Create the intermediate vector op.
4556       Register Res =
4557           MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4558       PartialRdxs.push_back(Res);
4559     }
4560     SplitSrcs = std::move(PartialRdxs);
4561   }
4562   // Finally generate the requested NarrowTy based reduction.
4563   Observer.changingInstr(MI);
4564   MI.getOperand(1).setReg(SplitSrcs[0]);
4565   Observer.changedInstr(MI);
4566   return Legalized;
4567 }
4568 
4569 LegalizerHelper::LegalizeResult
4570 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4571                                              const LLT HalfTy, const LLT AmtTy) {
4572 
4573   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4574   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4575   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4576 
4577   if (Amt.isNullValue()) {
4578     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4579     MI.eraseFromParent();
4580     return Legalized;
4581   }
4582 
4583   LLT NVT = HalfTy;
4584   unsigned NVTBits = HalfTy.getSizeInBits();
4585   unsigned VTBits = 2 * NVTBits;
4586 
4587   SrcOp Lo(Register(0)), Hi(Register(0));
4588   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4589     if (Amt.ugt(VTBits)) {
4590       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4591     } else if (Amt.ugt(NVTBits)) {
4592       Lo = MIRBuilder.buildConstant(NVT, 0);
4593       Hi = MIRBuilder.buildShl(NVT, InL,
4594                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4595     } else if (Amt == NVTBits) {
4596       Lo = MIRBuilder.buildConstant(NVT, 0);
4597       Hi = InL;
4598     } else {
4599       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4600       auto OrLHS =
4601           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4602       auto OrRHS = MIRBuilder.buildLShr(
4603           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4604       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4605     }
4606   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4607     if (Amt.ugt(VTBits)) {
4608       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4609     } else if (Amt.ugt(NVTBits)) {
4610       Lo = MIRBuilder.buildLShr(NVT, InH,
4611                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4612       Hi = MIRBuilder.buildConstant(NVT, 0);
4613     } else if (Amt == NVTBits) {
4614       Lo = InH;
4615       Hi = MIRBuilder.buildConstant(NVT, 0);
4616     } else {
4617       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4618 
4619       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4620       auto OrRHS = MIRBuilder.buildShl(
4621           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4622 
4623       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4624       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4625     }
4626   } else {
4627     if (Amt.ugt(VTBits)) {
4628       Hi = Lo = MIRBuilder.buildAShr(
4629           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4630     } else if (Amt.ugt(NVTBits)) {
4631       Lo = MIRBuilder.buildAShr(NVT, InH,
4632                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4633       Hi = MIRBuilder.buildAShr(NVT, InH,
4634                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4635     } else if (Amt == NVTBits) {
4636       Lo = InH;
4637       Hi = MIRBuilder.buildAShr(NVT, InH,
4638                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4639     } else {
4640       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4641 
4642       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4643       auto OrRHS = MIRBuilder.buildShl(
4644           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4645 
4646       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4647       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4648     }
4649   }
4650 
4651   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4652   MI.eraseFromParent();
4653 
4654   return Legalized;
4655 }
4656 
4657 // TODO: Optimize if constant shift amount.
4658 LegalizerHelper::LegalizeResult
4659 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4660                                    LLT RequestedTy) {
4661   if (TypeIdx == 1) {
4662     Observer.changingInstr(MI);
4663     narrowScalarSrc(MI, RequestedTy, 2);
4664     Observer.changedInstr(MI);
4665     return Legalized;
4666   }
4667 
4668   Register DstReg = MI.getOperand(0).getReg();
4669   LLT DstTy = MRI.getType(DstReg);
4670   if (DstTy.isVector())
4671     return UnableToLegalize;
4672 
4673   Register Amt = MI.getOperand(2).getReg();
4674   LLT ShiftAmtTy = MRI.getType(Amt);
4675   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4676   if (DstEltSize % 2 != 0)
4677     return UnableToLegalize;
4678 
4679   // Ignore the input type. We can only go to exactly half the size of the
4680   // input. If that isn't small enough, the resulting pieces will be further
4681   // legalized.
4682   const unsigned NewBitSize = DstEltSize / 2;
4683   const LLT HalfTy = LLT::scalar(NewBitSize);
4684   const LLT CondTy = LLT::scalar(1);
4685 
4686   if (const MachineInstr *KShiftAmt =
4687           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4688     return narrowScalarShiftByConstant(
4689         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4690   }
4691 
4692   // TODO: Expand with known bits.
4693 
4694   // Handle the fully general expansion by an unknown amount.
4695   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4696 
4697   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4698   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4699   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4700 
4701   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4702   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4703 
4704   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4705   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4706   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4707 
4708   Register ResultRegs[2];
4709   switch (MI.getOpcode()) {
4710   case TargetOpcode::G_SHL: {
4711     // Short: ShAmt < NewBitSize
4712     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4713 
4714     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4715     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4716     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4717 
4718     // Long: ShAmt >= NewBitSize
4719     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4720     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4721 
4722     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4723     auto Hi = MIRBuilder.buildSelect(
4724         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4725 
4726     ResultRegs[0] = Lo.getReg(0);
4727     ResultRegs[1] = Hi.getReg(0);
4728     break;
4729   }
4730   case TargetOpcode::G_LSHR:
4731   case TargetOpcode::G_ASHR: {
4732     // Short: ShAmt < NewBitSize
4733     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4734 
4735     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4736     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4737     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4738 
4739     // Long: ShAmt >= NewBitSize
4740     MachineInstrBuilder HiL;
4741     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4742       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4743     } else {
4744       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4745       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4746     }
4747     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4748                                      {InH, AmtExcess});     // Lo from Hi part.
4749 
4750     auto Lo = MIRBuilder.buildSelect(
4751         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4752 
4753     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4754 
4755     ResultRegs[0] = Lo.getReg(0);
4756     ResultRegs[1] = Hi.getReg(0);
4757     break;
4758   }
4759   default:
4760     llvm_unreachable("not a shift");
4761   }
4762 
4763   MIRBuilder.buildMerge(DstReg, ResultRegs);
4764   MI.eraseFromParent();
4765   return Legalized;
4766 }
4767 
4768 LegalizerHelper::LegalizeResult
4769 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4770                                        LLT MoreTy) {
4771   assert(TypeIdx == 0 && "Expecting only Idx 0");
4772 
4773   Observer.changingInstr(MI);
4774   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4775     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4776     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4777     moreElementsVectorSrc(MI, MoreTy, I);
4778   }
4779 
4780   MachineBasicBlock &MBB = *MI.getParent();
4781   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4782   moreElementsVectorDst(MI, MoreTy, 0);
4783   Observer.changedInstr(MI);
4784   return Legalized;
4785 }
4786 
4787 LegalizerHelper::LegalizeResult
4788 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4789                                     LLT MoreTy) {
4790   unsigned Opc = MI.getOpcode();
4791   switch (Opc) {
4792   case TargetOpcode::G_IMPLICIT_DEF:
4793   case TargetOpcode::G_LOAD: {
4794     if (TypeIdx != 0)
4795       return UnableToLegalize;
4796     Observer.changingInstr(MI);
4797     moreElementsVectorDst(MI, MoreTy, 0);
4798     Observer.changedInstr(MI);
4799     return Legalized;
4800   }
4801   case TargetOpcode::G_STORE:
4802     if (TypeIdx != 0)
4803       return UnableToLegalize;
4804     Observer.changingInstr(MI);
4805     moreElementsVectorSrc(MI, MoreTy, 0);
4806     Observer.changedInstr(MI);
4807     return Legalized;
4808   case TargetOpcode::G_AND:
4809   case TargetOpcode::G_OR:
4810   case TargetOpcode::G_XOR:
4811   case TargetOpcode::G_SMIN:
4812   case TargetOpcode::G_SMAX:
4813   case TargetOpcode::G_UMIN:
4814   case TargetOpcode::G_UMAX:
4815   case TargetOpcode::G_FMINNUM:
4816   case TargetOpcode::G_FMAXNUM:
4817   case TargetOpcode::G_FMINNUM_IEEE:
4818   case TargetOpcode::G_FMAXNUM_IEEE:
4819   case TargetOpcode::G_FMINIMUM:
4820   case TargetOpcode::G_FMAXIMUM: {
4821     Observer.changingInstr(MI);
4822     moreElementsVectorSrc(MI, MoreTy, 1);
4823     moreElementsVectorSrc(MI, MoreTy, 2);
4824     moreElementsVectorDst(MI, MoreTy, 0);
4825     Observer.changedInstr(MI);
4826     return Legalized;
4827   }
4828   case TargetOpcode::G_EXTRACT:
4829     if (TypeIdx != 1)
4830       return UnableToLegalize;
4831     Observer.changingInstr(MI);
4832     moreElementsVectorSrc(MI, MoreTy, 1);
4833     Observer.changedInstr(MI);
4834     return Legalized;
4835   case TargetOpcode::G_INSERT:
4836   case TargetOpcode::G_FREEZE:
4837     if (TypeIdx != 0)
4838       return UnableToLegalize;
4839     Observer.changingInstr(MI);
4840     moreElementsVectorSrc(MI, MoreTy, 1);
4841     moreElementsVectorDst(MI, MoreTy, 0);
4842     Observer.changedInstr(MI);
4843     return Legalized;
4844   case TargetOpcode::G_SELECT:
4845     if (TypeIdx != 0)
4846       return UnableToLegalize;
4847     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4848       return UnableToLegalize;
4849 
4850     Observer.changingInstr(MI);
4851     moreElementsVectorSrc(MI, MoreTy, 2);
4852     moreElementsVectorSrc(MI, MoreTy, 3);
4853     moreElementsVectorDst(MI, MoreTy, 0);
4854     Observer.changedInstr(MI);
4855     return Legalized;
4856   case TargetOpcode::G_UNMERGE_VALUES: {
4857     if (TypeIdx != 1)
4858       return UnableToLegalize;
4859 
4860     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4861     int NumDst = MI.getNumOperands() - 1;
4862     moreElementsVectorSrc(MI, MoreTy, NumDst);
4863 
4864     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4865     for (int I = 0; I != NumDst; ++I)
4866       MIB.addDef(MI.getOperand(I).getReg());
4867 
4868     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4869     for (int I = NumDst; I != NewNumDst; ++I)
4870       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4871 
4872     MIB.addUse(MI.getOperand(NumDst).getReg());
4873     MI.eraseFromParent();
4874     return Legalized;
4875   }
4876   case TargetOpcode::G_PHI:
4877     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4878   default:
4879     return UnableToLegalize;
4880   }
4881 }
4882 
4883 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4884                                         ArrayRef<Register> Src1Regs,
4885                                         ArrayRef<Register> Src2Regs,
4886                                         LLT NarrowTy) {
4887   MachineIRBuilder &B = MIRBuilder;
4888   unsigned SrcParts = Src1Regs.size();
4889   unsigned DstParts = DstRegs.size();
4890 
4891   unsigned DstIdx = 0; // Low bits of the result.
4892   Register FactorSum =
4893       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4894   DstRegs[DstIdx] = FactorSum;
4895 
4896   unsigned CarrySumPrevDstIdx;
4897   SmallVector<Register, 4> Factors;
4898 
4899   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4900     // Collect low parts of muls for DstIdx.
4901     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4902          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4903       MachineInstrBuilder Mul =
4904           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4905       Factors.push_back(Mul.getReg(0));
4906     }
4907     // Collect high parts of muls from previous DstIdx.
4908     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4909          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4910       MachineInstrBuilder Umulh =
4911           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4912       Factors.push_back(Umulh.getReg(0));
4913     }
4914     // Add CarrySum from additions calculated for previous DstIdx.
4915     if (DstIdx != 1) {
4916       Factors.push_back(CarrySumPrevDstIdx);
4917     }
4918 
4919     Register CarrySum;
4920     // Add all factors and accumulate all carries into CarrySum.
4921     if (DstIdx != DstParts - 1) {
4922       MachineInstrBuilder Uaddo =
4923           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4924       FactorSum = Uaddo.getReg(0);
4925       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4926       for (unsigned i = 2; i < Factors.size(); ++i) {
4927         MachineInstrBuilder Uaddo =
4928             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4929         FactorSum = Uaddo.getReg(0);
4930         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4931         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4932       }
4933     } else {
4934       // Since value for the next index is not calculated, neither is CarrySum.
4935       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4936       for (unsigned i = 2; i < Factors.size(); ++i)
4937         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4938     }
4939 
4940     CarrySumPrevDstIdx = CarrySum;
4941     DstRegs[DstIdx] = FactorSum;
4942     Factors.clear();
4943   }
4944 }
4945 
4946 LegalizerHelper::LegalizeResult
4947 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
4948                                     LLT NarrowTy) {
4949   if (TypeIdx != 0)
4950     return UnableToLegalize;
4951 
4952   Register DstReg = MI.getOperand(0).getReg();
4953   LLT DstType = MRI.getType(DstReg);
4954   // FIXME: add support for vector types
4955   if (DstType.isVector())
4956     return UnableToLegalize;
4957 
4958   unsigned Opcode = MI.getOpcode();
4959   unsigned OpO, OpE, OpF;
4960   switch (Opcode) {
4961   case TargetOpcode::G_SADDO:
4962   case TargetOpcode::G_SADDE:
4963   case TargetOpcode::G_UADDO:
4964   case TargetOpcode::G_UADDE:
4965   case TargetOpcode::G_ADD:
4966     OpO = TargetOpcode::G_UADDO;
4967     OpE = TargetOpcode::G_UADDE;
4968     OpF = TargetOpcode::G_UADDE;
4969     if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
4970       OpF = TargetOpcode::G_SADDE;
4971     break;
4972   case TargetOpcode::G_SSUBO:
4973   case TargetOpcode::G_SSUBE:
4974   case TargetOpcode::G_USUBO:
4975   case TargetOpcode::G_USUBE:
4976   case TargetOpcode::G_SUB:
4977     OpO = TargetOpcode::G_USUBO;
4978     OpE = TargetOpcode::G_USUBE;
4979     OpF = TargetOpcode::G_USUBE;
4980     if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
4981       OpF = TargetOpcode::G_SSUBE;
4982     break;
4983   default:
4984     llvm_unreachable("Unexpected add/sub opcode!");
4985   }
4986 
4987   // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
4988   unsigned NumDefs = MI.getNumExplicitDefs();
4989   Register Src1 = MI.getOperand(NumDefs).getReg();
4990   Register Src2 = MI.getOperand(NumDefs + 1).getReg();
4991   Register CarryDst, CarryIn;
4992   if (NumDefs == 2)
4993     CarryDst = MI.getOperand(1).getReg();
4994   if (MI.getNumOperands() == NumDefs + 3)
4995     CarryIn = MI.getOperand(NumDefs + 2).getReg();
4996 
4997   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
4998   LLT LeftoverTy, DummyTy;
4999   SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5000   extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
5001   extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
5002 
5003   int NarrowParts = Src1Regs.size();
5004   for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5005     Src1Regs.push_back(Src1Left[I]);
5006     Src2Regs.push_back(Src2Left[I]);
5007   }
5008   DstRegs.reserve(Src1Regs.size());
5009 
5010   for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5011     Register DstReg =
5012         MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5013     Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5014     // Forward the final carry-out to the destination register
5015     if (i == e - 1 && CarryDst)
5016       CarryOut = CarryDst;
5017 
5018     if (!CarryIn) {
5019       MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5020                             {Src1Regs[i], Src2Regs[i]});
5021     } else if (i == e - 1) {
5022       MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5023                             {Src1Regs[i], Src2Regs[i], CarryIn});
5024     } else {
5025       MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5026                             {Src1Regs[i], Src2Regs[i], CarryIn});
5027     }
5028 
5029     DstRegs.push_back(DstReg);
5030     CarryIn = CarryOut;
5031   }
5032   insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5033               makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5034               makeArrayRef(DstRegs).drop_front(NarrowParts));
5035 
5036   MI.eraseFromParent();
5037   return Legalized;
5038 }
5039 
5040 LegalizerHelper::LegalizeResult
5041 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5042   Register DstReg = MI.getOperand(0).getReg();
5043   Register Src1 = MI.getOperand(1).getReg();
5044   Register Src2 = MI.getOperand(2).getReg();
5045 
5046   LLT Ty = MRI.getType(DstReg);
5047   if (Ty.isVector())
5048     return UnableToLegalize;
5049 
5050   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
5051   unsigned DstSize = Ty.getSizeInBits();
5052   unsigned NarrowSize = NarrowTy.getSizeInBits();
5053   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
5054     return UnableToLegalize;
5055 
5056   unsigned NumDstParts = DstSize / NarrowSize;
5057   unsigned NumSrcParts = SrcSize / NarrowSize;
5058   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5059   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
5060 
5061   SmallVector<Register, 2> Src1Parts, Src2Parts;
5062   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5063   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
5064   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
5065   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5066 
5067   // Take only high half of registers if this is high mul.
5068   ArrayRef<Register> DstRegs(
5069       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
5070   MIRBuilder.buildMerge(DstReg, DstRegs);
5071   MI.eraseFromParent();
5072   return Legalized;
5073 }
5074 
5075 LegalizerHelper::LegalizeResult
5076 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5077                                    LLT NarrowTy) {
5078   if (TypeIdx != 0)
5079     return UnableToLegalize;
5080 
5081   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5082 
5083   Register Src = MI.getOperand(1).getReg();
5084   LLT SrcTy = MRI.getType(Src);
5085 
5086   // If all finite floats fit into the narrowed integer type, we can just swap
5087   // out the result type. This is practically only useful for conversions from
5088   // half to at least 16-bits, so just handle the one case.
5089   if (SrcTy.getScalarType() != LLT::scalar(16) ||
5090       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5091     return UnableToLegalize;
5092 
5093   Observer.changingInstr(MI);
5094   narrowScalarDst(MI, NarrowTy, 0,
5095                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5096   Observer.changedInstr(MI);
5097   return Legalized;
5098 }
5099 
5100 LegalizerHelper::LegalizeResult
5101 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5102                                      LLT NarrowTy) {
5103   if (TypeIdx != 1)
5104     return UnableToLegalize;
5105 
5106   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5107 
5108   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5109   // FIXME: add support for when SizeOp1 isn't an exact multiple of
5110   // NarrowSize.
5111   if (SizeOp1 % NarrowSize != 0)
5112     return UnableToLegalize;
5113   int NumParts = SizeOp1 / NarrowSize;
5114 
5115   SmallVector<Register, 2> SrcRegs, DstRegs;
5116   SmallVector<uint64_t, 2> Indexes;
5117   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5118 
5119   Register OpReg = MI.getOperand(0).getReg();
5120   uint64_t OpStart = MI.getOperand(2).getImm();
5121   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5122   for (int i = 0; i < NumParts; ++i) {
5123     unsigned SrcStart = i * NarrowSize;
5124 
5125     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5126       // No part of the extract uses this subregister, ignore it.
5127       continue;
5128     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5129       // The entire subregister is extracted, forward the value.
5130       DstRegs.push_back(SrcRegs[i]);
5131       continue;
5132     }
5133 
5134     // OpSegStart is where this destination segment would start in OpReg if it
5135     // extended infinitely in both directions.
5136     int64_t ExtractOffset;
5137     uint64_t SegSize;
5138     if (OpStart < SrcStart) {
5139       ExtractOffset = 0;
5140       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5141     } else {
5142       ExtractOffset = OpStart - SrcStart;
5143       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5144     }
5145 
5146     Register SegReg = SrcRegs[i];
5147     if (ExtractOffset != 0 || SegSize != NarrowSize) {
5148       // A genuine extract is needed.
5149       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5150       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5151     }
5152 
5153     DstRegs.push_back(SegReg);
5154   }
5155 
5156   Register DstReg = MI.getOperand(0).getReg();
5157   if (MRI.getType(DstReg).isVector())
5158     MIRBuilder.buildBuildVector(DstReg, DstRegs);
5159   else if (DstRegs.size() > 1)
5160     MIRBuilder.buildMerge(DstReg, DstRegs);
5161   else
5162     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5163   MI.eraseFromParent();
5164   return Legalized;
5165 }
5166 
5167 LegalizerHelper::LegalizeResult
5168 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5169                                     LLT NarrowTy) {
5170   // FIXME: Don't know how to handle secondary types yet.
5171   if (TypeIdx != 0)
5172     return UnableToLegalize;
5173 
5174   SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5175   SmallVector<uint64_t, 2> Indexes;
5176   LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5177   LLT LeftoverTy;
5178   extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5179                LeftoverRegs);
5180 
5181   for (Register Reg : LeftoverRegs)
5182     SrcRegs.push_back(Reg);
5183 
5184   uint64_t NarrowSize = NarrowTy.getSizeInBits();
5185   Register OpReg = MI.getOperand(2).getReg();
5186   uint64_t OpStart = MI.getOperand(3).getImm();
5187   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5188   for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5189     unsigned DstStart = I * NarrowSize;
5190 
5191     if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5192       // The entire subregister is defined by this insert, forward the new
5193       // value.
5194       DstRegs.push_back(OpReg);
5195       continue;
5196     }
5197 
5198     Register SrcReg = SrcRegs[I];
5199     if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5200       // The leftover reg is smaller than NarrowTy, so we need to extend it.
5201       SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5202       MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5203     }
5204 
5205     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5206       // No part of the insert affects this subregister, forward the original.
5207       DstRegs.push_back(SrcReg);
5208       continue;
5209     }
5210 
5211     // OpSegStart is where this destination segment would start in OpReg if it
5212     // extended infinitely in both directions.
5213     int64_t ExtractOffset, InsertOffset;
5214     uint64_t SegSize;
5215     if (OpStart < DstStart) {
5216       InsertOffset = 0;
5217       ExtractOffset = DstStart - OpStart;
5218       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5219     } else {
5220       InsertOffset = OpStart - DstStart;
5221       ExtractOffset = 0;
5222       SegSize =
5223         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5224     }
5225 
5226     Register SegReg = OpReg;
5227     if (ExtractOffset != 0 || SegSize != OpSize) {
5228       // A genuine extract is needed.
5229       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5230       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5231     }
5232 
5233     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5234     MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5235     DstRegs.push_back(DstReg);
5236   }
5237 
5238   uint64_t WideSize = DstRegs.size() * NarrowSize;
5239   Register DstReg = MI.getOperand(0).getReg();
5240   if (WideSize > RegTy.getSizeInBits()) {
5241     Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5242     MIRBuilder.buildMerge(MergeReg, DstRegs);
5243     MIRBuilder.buildTrunc(DstReg, MergeReg);
5244   } else
5245     MIRBuilder.buildMerge(DstReg, DstRegs);
5246 
5247   MI.eraseFromParent();
5248   return Legalized;
5249 }
5250 
5251 LegalizerHelper::LegalizeResult
5252 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5253                                    LLT NarrowTy) {
5254   Register DstReg = MI.getOperand(0).getReg();
5255   LLT DstTy = MRI.getType(DstReg);
5256 
5257   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
5258 
5259   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5260   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5261   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5262   LLT LeftoverTy;
5263   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5264                     Src0Regs, Src0LeftoverRegs))
5265     return UnableToLegalize;
5266 
5267   LLT Unused;
5268   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5269                     Src1Regs, Src1LeftoverRegs))
5270     llvm_unreachable("inconsistent extractParts result");
5271 
5272   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5273     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5274                                         {Src0Regs[I], Src1Regs[I]});
5275     DstRegs.push_back(Inst.getReg(0));
5276   }
5277 
5278   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5279     auto Inst = MIRBuilder.buildInstr(
5280       MI.getOpcode(),
5281       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5282     DstLeftoverRegs.push_back(Inst.getReg(0));
5283   }
5284 
5285   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5286               LeftoverTy, DstLeftoverRegs);
5287 
5288   MI.eraseFromParent();
5289   return Legalized;
5290 }
5291 
5292 LegalizerHelper::LegalizeResult
5293 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5294                                  LLT NarrowTy) {
5295   if (TypeIdx != 0)
5296     return UnableToLegalize;
5297 
5298   Register DstReg = MI.getOperand(0).getReg();
5299   Register SrcReg = MI.getOperand(1).getReg();
5300 
5301   LLT DstTy = MRI.getType(DstReg);
5302   if (DstTy.isVector())
5303     return UnableToLegalize;
5304 
5305   SmallVector<Register, 8> Parts;
5306   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5307   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5308   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5309 
5310   MI.eraseFromParent();
5311   return Legalized;
5312 }
5313 
5314 LegalizerHelper::LegalizeResult
5315 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5316                                     LLT NarrowTy) {
5317   if (TypeIdx != 0)
5318     return UnableToLegalize;
5319 
5320   Register CondReg = MI.getOperand(1).getReg();
5321   LLT CondTy = MRI.getType(CondReg);
5322   if (CondTy.isVector()) // TODO: Handle vselect
5323     return UnableToLegalize;
5324 
5325   Register DstReg = MI.getOperand(0).getReg();
5326   LLT DstTy = MRI.getType(DstReg);
5327 
5328   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5329   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5330   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5331   LLT LeftoverTy;
5332   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5333                     Src1Regs, Src1LeftoverRegs))
5334     return UnableToLegalize;
5335 
5336   LLT Unused;
5337   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5338                     Src2Regs, Src2LeftoverRegs))
5339     llvm_unreachable("inconsistent extractParts result");
5340 
5341   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5342     auto Select = MIRBuilder.buildSelect(NarrowTy,
5343                                          CondReg, Src1Regs[I], Src2Regs[I]);
5344     DstRegs.push_back(Select.getReg(0));
5345   }
5346 
5347   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5348     auto Select = MIRBuilder.buildSelect(
5349       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5350     DstLeftoverRegs.push_back(Select.getReg(0));
5351   }
5352 
5353   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5354               LeftoverTy, DstLeftoverRegs);
5355 
5356   MI.eraseFromParent();
5357   return Legalized;
5358 }
5359 
5360 LegalizerHelper::LegalizeResult
5361 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5362                                   LLT NarrowTy) {
5363   if (TypeIdx != 1)
5364     return UnableToLegalize;
5365 
5366   Register DstReg = MI.getOperand(0).getReg();
5367   Register SrcReg = MI.getOperand(1).getReg();
5368   LLT DstTy = MRI.getType(DstReg);
5369   LLT SrcTy = MRI.getType(SrcReg);
5370   unsigned NarrowSize = NarrowTy.getSizeInBits();
5371 
5372   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5373     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5374 
5375     MachineIRBuilder &B = MIRBuilder;
5376     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5377     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5378     auto C_0 = B.buildConstant(NarrowTy, 0);
5379     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5380                                 UnmergeSrc.getReg(1), C_0);
5381     auto LoCTLZ = IsUndef ?
5382       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5383       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5384     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5385     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5386     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5387     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5388 
5389     MI.eraseFromParent();
5390     return Legalized;
5391   }
5392 
5393   return UnableToLegalize;
5394 }
5395 
5396 LegalizerHelper::LegalizeResult
5397 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5398                                   LLT NarrowTy) {
5399   if (TypeIdx != 1)
5400     return UnableToLegalize;
5401 
5402   Register DstReg = MI.getOperand(0).getReg();
5403   Register SrcReg = MI.getOperand(1).getReg();
5404   LLT DstTy = MRI.getType(DstReg);
5405   LLT SrcTy = MRI.getType(SrcReg);
5406   unsigned NarrowSize = NarrowTy.getSizeInBits();
5407 
5408   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5409     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5410 
5411     MachineIRBuilder &B = MIRBuilder;
5412     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5413     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5414     auto C_0 = B.buildConstant(NarrowTy, 0);
5415     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5416                                 UnmergeSrc.getReg(0), C_0);
5417     auto HiCTTZ = IsUndef ?
5418       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5419       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5420     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5421     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5422     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5423     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5424 
5425     MI.eraseFromParent();
5426     return Legalized;
5427   }
5428 
5429   return UnableToLegalize;
5430 }
5431 
5432 LegalizerHelper::LegalizeResult
5433 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5434                                    LLT NarrowTy) {
5435   if (TypeIdx != 1)
5436     return UnableToLegalize;
5437 
5438   Register DstReg = MI.getOperand(0).getReg();
5439   LLT DstTy = MRI.getType(DstReg);
5440   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5441   unsigned NarrowSize = NarrowTy.getSizeInBits();
5442 
5443   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5444     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5445 
5446     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5447     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5448     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5449 
5450     MI.eraseFromParent();
5451     return Legalized;
5452   }
5453 
5454   return UnableToLegalize;
5455 }
5456 
5457 LegalizerHelper::LegalizeResult
5458 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5459   unsigned Opc = MI.getOpcode();
5460   const auto &TII = MIRBuilder.getTII();
5461   auto isSupported = [this](const LegalityQuery &Q) {
5462     auto QAction = LI.getAction(Q).Action;
5463     return QAction == Legal || QAction == Libcall || QAction == Custom;
5464   };
5465   switch (Opc) {
5466   default:
5467     return UnableToLegalize;
5468   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5469     // This trivially expands to CTLZ.
5470     Observer.changingInstr(MI);
5471     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5472     Observer.changedInstr(MI);
5473     return Legalized;
5474   }
5475   case TargetOpcode::G_CTLZ: {
5476     Register DstReg = MI.getOperand(0).getReg();
5477     Register SrcReg = MI.getOperand(1).getReg();
5478     LLT DstTy = MRI.getType(DstReg);
5479     LLT SrcTy = MRI.getType(SrcReg);
5480     unsigned Len = SrcTy.getSizeInBits();
5481 
5482     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5483       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5484       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5485       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5486       auto ICmp = MIRBuilder.buildICmp(
5487           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5488       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5489       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5490       MI.eraseFromParent();
5491       return Legalized;
5492     }
5493     // for now, we do this:
5494     // NewLen = NextPowerOf2(Len);
5495     // x = x | (x >> 1);
5496     // x = x | (x >> 2);
5497     // ...
5498     // x = x | (x >>16);
5499     // x = x | (x >>32); // for 64-bit input
5500     // Upto NewLen/2
5501     // return Len - popcount(x);
5502     //
5503     // Ref: "Hacker's Delight" by Henry Warren
5504     Register Op = SrcReg;
5505     unsigned NewLen = PowerOf2Ceil(Len);
5506     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5507       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5508       auto MIBOp = MIRBuilder.buildOr(
5509           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5510       Op = MIBOp.getReg(0);
5511     }
5512     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5513     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5514                         MIBPop);
5515     MI.eraseFromParent();
5516     return Legalized;
5517   }
5518   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5519     // This trivially expands to CTTZ.
5520     Observer.changingInstr(MI);
5521     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5522     Observer.changedInstr(MI);
5523     return Legalized;
5524   }
5525   case TargetOpcode::G_CTTZ: {
5526     Register DstReg = MI.getOperand(0).getReg();
5527     Register SrcReg = MI.getOperand(1).getReg();
5528     LLT DstTy = MRI.getType(DstReg);
5529     LLT SrcTy = MRI.getType(SrcReg);
5530 
5531     unsigned Len = SrcTy.getSizeInBits();
5532     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5533       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5534       // zero.
5535       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5536       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5537       auto ICmp = MIRBuilder.buildICmp(
5538           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5539       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5540       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5541       MI.eraseFromParent();
5542       return Legalized;
5543     }
5544     // for now, we use: { return popcount(~x & (x - 1)); }
5545     // unless the target has ctlz but not ctpop, in which case we use:
5546     // { return 32 - nlz(~x & (x-1)); }
5547     // Ref: "Hacker's Delight" by Henry Warren
5548     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5549     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5550     auto MIBTmp = MIRBuilder.buildAnd(
5551         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5552     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5553         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5554       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5555       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5556                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5557       MI.eraseFromParent();
5558       return Legalized;
5559     }
5560     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5561     MI.getOperand(1).setReg(MIBTmp.getReg(0));
5562     return Legalized;
5563   }
5564   case TargetOpcode::G_CTPOP: {
5565     Register SrcReg = MI.getOperand(1).getReg();
5566     LLT Ty = MRI.getType(SrcReg);
5567     unsigned Size = Ty.getSizeInBits();
5568     MachineIRBuilder &B = MIRBuilder;
5569 
5570     // Count set bits in blocks of 2 bits. Default approach would be
5571     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5572     // We use following formula instead:
5573     // B2Count = val - { (val >> 1) & 0x55555555 }
5574     // since it gives same result in blocks of 2 with one instruction less.
5575     auto C_1 = B.buildConstant(Ty, 1);
5576     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5577     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5578     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5579     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5580     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5581 
5582     // In order to get count in blocks of 4 add values from adjacent block of 2.
5583     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5584     auto C_2 = B.buildConstant(Ty, 2);
5585     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5586     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5587     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5588     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5589     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5590     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5591 
5592     // For count in blocks of 8 bits we don't have to mask high 4 bits before
5593     // addition since count value sits in range {0,...,8} and 4 bits are enough
5594     // to hold such binary values. After addition high 4 bits still hold count
5595     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5596     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5597     auto C_4 = B.buildConstant(Ty, 4);
5598     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5599     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5600     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5601     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5602     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5603 
5604     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5605     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5606     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5607     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5608     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5609 
5610     // Shift count result from 8 high bits to low bits.
5611     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5612     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5613 
5614     MI.eraseFromParent();
5615     return Legalized;
5616   }
5617   }
5618 }
5619 
5620 // Check that (every element of) Reg is undef or not an exact multiple of BW.
5621 static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5622                                         Register Reg, unsigned BW) {
5623   return matchUnaryPredicate(
5624       MRI, Reg,
5625       [=](const Constant *C) {
5626         // Null constant here means an undef.
5627         const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5628         return !CI || CI->getValue().urem(BW) != 0;
5629       },
5630       /*AllowUndefs*/ true);
5631 }
5632 
5633 LegalizerHelper::LegalizeResult
5634 LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5635   Register Dst = MI.getOperand(0).getReg();
5636   Register X = MI.getOperand(1).getReg();
5637   Register Y = MI.getOperand(2).getReg();
5638   Register Z = MI.getOperand(3).getReg();
5639   LLT Ty = MRI.getType(Dst);
5640   LLT ShTy = MRI.getType(Z);
5641 
5642   unsigned BW = Ty.getScalarSizeInBits();
5643 
5644   if (!isPowerOf2_32(BW))
5645     return UnableToLegalize;
5646 
5647   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5648   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5649 
5650   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5651     // fshl X, Y, Z -> fshr X, Y, -Z
5652     // fshr X, Y, Z -> fshl X, Y, -Z
5653     auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5654     Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5655   } else {
5656     // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5657     // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5658     auto One = MIRBuilder.buildConstant(ShTy, 1);
5659     if (IsFSHL) {
5660       Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5661       X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5662     } else {
5663       X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5664       Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5665     }
5666 
5667     Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5668   }
5669 
5670   MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5671   MI.eraseFromParent();
5672   return Legalized;
5673 }
5674 
5675 LegalizerHelper::LegalizeResult
5676 LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5677   Register Dst = MI.getOperand(0).getReg();
5678   Register X = MI.getOperand(1).getReg();
5679   Register Y = MI.getOperand(2).getReg();
5680   Register Z = MI.getOperand(3).getReg();
5681   LLT Ty = MRI.getType(Dst);
5682   LLT ShTy = MRI.getType(Z);
5683 
5684   const unsigned BW = Ty.getScalarSizeInBits();
5685   const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5686 
5687   Register ShX, ShY;
5688   Register ShAmt, InvShAmt;
5689 
5690   // FIXME: Emit optimized urem by constant instead of letting it expand later.
5691   if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5692     // fshl: X << C | Y >> (BW - C)
5693     // fshr: X << (BW - C) | Y >> C
5694     // where C = Z % BW is not zero
5695     auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5696     ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5697     InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5698     ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5699     ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5700   } else {
5701     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5702     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5703     auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5704     if (isPowerOf2_32(BW)) {
5705       // Z % BW -> Z & (BW - 1)
5706       ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5707       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5708       auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5709       InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5710     } else {
5711       auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5712       ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5713       InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5714     }
5715 
5716     auto One = MIRBuilder.buildConstant(ShTy, 1);
5717     if (IsFSHL) {
5718       ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5719       auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5720       ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5721     } else {
5722       auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5723       ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5724       ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5725     }
5726   }
5727 
5728   MIRBuilder.buildOr(Dst, ShX, ShY);
5729   MI.eraseFromParent();
5730   return Legalized;
5731 }
5732 
5733 LegalizerHelper::LegalizeResult
5734 LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5735   // These operations approximately do the following (while avoiding undefined
5736   // shifts by BW):
5737   // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5738   // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5739   Register Dst = MI.getOperand(0).getReg();
5740   LLT Ty = MRI.getType(Dst);
5741   LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5742 
5743   bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5744   unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5745 
5746   // TODO: Use smarter heuristic that accounts for vector legalization.
5747   if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5748     return lowerFunnelShiftAsShifts(MI);
5749 
5750   // This only works for powers of 2, fallback to shifts if it fails.
5751   LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5752   if (Result == UnableToLegalize)
5753     return lowerFunnelShiftAsShifts(MI);
5754   return Result;
5755 }
5756 
5757 LegalizerHelper::LegalizeResult
5758 LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5759   Register Dst = MI.getOperand(0).getReg();
5760   Register Src = MI.getOperand(1).getReg();
5761   Register Amt = MI.getOperand(2).getReg();
5762   LLT AmtTy = MRI.getType(Amt);
5763   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5764   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5765   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5766   auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5767   MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5768   MI.eraseFromParent();
5769   return Legalized;
5770 }
5771 
5772 LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5773   Register Dst = MI.getOperand(0).getReg();
5774   Register Src = MI.getOperand(1).getReg();
5775   Register Amt = MI.getOperand(2).getReg();
5776   LLT DstTy = MRI.getType(Dst);
5777   LLT SrcTy = MRI.getType(Dst);
5778   LLT AmtTy = MRI.getType(Amt);
5779 
5780   unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5781   bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5782 
5783   MIRBuilder.setInstrAndDebugLoc(MI);
5784 
5785   // If a rotate in the other direction is supported, use it.
5786   unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5787   if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5788       isPowerOf2_32(EltSizeInBits))
5789     return lowerRotateWithReverseRotate(MI);
5790 
5791   auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5792   unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5793   unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5794   auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5795   Register ShVal;
5796   Register RevShiftVal;
5797   if (isPowerOf2_32(EltSizeInBits)) {
5798     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5799     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5800     auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5801     auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5802     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5803     auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5804     RevShiftVal =
5805         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5806   } else {
5807     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5808     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5809     auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5810     auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5811     ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5812     auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5813     auto One = MIRBuilder.buildConstant(AmtTy, 1);
5814     auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5815     RevShiftVal =
5816         MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5817   }
5818   MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5819   MI.eraseFromParent();
5820   return Legalized;
5821 }
5822 
5823 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5824 // representation.
5825 LegalizerHelper::LegalizeResult
5826 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5827   Register Dst = MI.getOperand(0).getReg();
5828   Register Src = MI.getOperand(1).getReg();
5829   const LLT S64 = LLT::scalar(64);
5830   const LLT S32 = LLT::scalar(32);
5831   const LLT S1 = LLT::scalar(1);
5832 
5833   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5834 
5835   // unsigned cul2f(ulong u) {
5836   //   uint lz = clz(u);
5837   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5838   //   u = (u << lz) & 0x7fffffffffffffffUL;
5839   //   ulong t = u & 0xffffffffffUL;
5840   //   uint v = (e << 23) | (uint)(u >> 40);
5841   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5842   //   return as_float(v + r);
5843   // }
5844 
5845   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5846   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5847 
5848   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5849 
5850   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5851   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5852 
5853   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5854   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5855 
5856   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5857   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5858 
5859   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5860 
5861   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5862   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5863 
5864   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5865   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5866   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5867 
5868   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5869   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5870   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5871   auto One = MIRBuilder.buildConstant(S32, 1);
5872 
5873   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5874   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5875   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5876   MIRBuilder.buildAdd(Dst, V, R);
5877 
5878   MI.eraseFromParent();
5879   return Legalized;
5880 }
5881 
5882 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5883   Register Dst = MI.getOperand(0).getReg();
5884   Register Src = MI.getOperand(1).getReg();
5885   LLT DstTy = MRI.getType(Dst);
5886   LLT SrcTy = MRI.getType(Src);
5887 
5888   if (SrcTy == LLT::scalar(1)) {
5889     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5890     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5891     MIRBuilder.buildSelect(Dst, Src, True, False);
5892     MI.eraseFromParent();
5893     return Legalized;
5894   }
5895 
5896   if (SrcTy != LLT::scalar(64))
5897     return UnableToLegalize;
5898 
5899   if (DstTy == LLT::scalar(32)) {
5900     // TODO: SelectionDAG has several alternative expansions to port which may
5901     // be more reasonble depending on the available instructions. If a target
5902     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5903     // intermediate type, this is probably worse.
5904     return lowerU64ToF32BitOps(MI);
5905   }
5906 
5907   return UnableToLegalize;
5908 }
5909 
5910 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5911   Register Dst = MI.getOperand(0).getReg();
5912   Register Src = MI.getOperand(1).getReg();
5913   LLT DstTy = MRI.getType(Dst);
5914   LLT SrcTy = MRI.getType(Src);
5915 
5916   const LLT S64 = LLT::scalar(64);
5917   const LLT S32 = LLT::scalar(32);
5918   const LLT S1 = LLT::scalar(1);
5919 
5920   if (SrcTy == S1) {
5921     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5922     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5923     MIRBuilder.buildSelect(Dst, Src, True, False);
5924     MI.eraseFromParent();
5925     return Legalized;
5926   }
5927 
5928   if (SrcTy != S64)
5929     return UnableToLegalize;
5930 
5931   if (DstTy == S32) {
5932     // signed cl2f(long l) {
5933     //   long s = l >> 63;
5934     //   float r = cul2f((l + s) ^ s);
5935     //   return s ? -r : r;
5936     // }
5937     Register L = Src;
5938     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5939     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5940 
5941     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5942     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5943     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5944 
5945     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5946     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5947                                             MIRBuilder.buildConstant(S64, 0));
5948     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5949     MI.eraseFromParent();
5950     return Legalized;
5951   }
5952 
5953   return UnableToLegalize;
5954 }
5955 
5956 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5957   Register Dst = MI.getOperand(0).getReg();
5958   Register Src = MI.getOperand(1).getReg();
5959   LLT DstTy = MRI.getType(Dst);
5960   LLT SrcTy = MRI.getType(Src);
5961   const LLT S64 = LLT::scalar(64);
5962   const LLT S32 = LLT::scalar(32);
5963 
5964   if (SrcTy != S64 && SrcTy != S32)
5965     return UnableToLegalize;
5966   if (DstTy != S32 && DstTy != S64)
5967     return UnableToLegalize;
5968 
5969   // FPTOSI gives same result as FPTOUI for positive signed integers.
5970   // FPTOUI needs to deal with fp values that convert to unsigned integers
5971   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5972 
5973   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5974   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5975                                                 : APFloat::IEEEdouble(),
5976                     APInt::getNullValue(SrcTy.getSizeInBits()));
5977   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5978 
5979   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5980 
5981   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5982   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5983   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5984   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5985   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5986   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5987   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5988 
5989   const LLT S1 = LLT::scalar(1);
5990 
5991   MachineInstrBuilder FCMP =
5992       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5993   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5994 
5995   MI.eraseFromParent();
5996   return Legalized;
5997 }
5998 
5999 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
6000   Register Dst = MI.getOperand(0).getReg();
6001   Register Src = MI.getOperand(1).getReg();
6002   LLT DstTy = MRI.getType(Dst);
6003   LLT SrcTy = MRI.getType(Src);
6004   const LLT S64 = LLT::scalar(64);
6005   const LLT S32 = LLT::scalar(32);
6006 
6007   // FIXME: Only f32 to i64 conversions are supported.
6008   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6009     return UnableToLegalize;
6010 
6011   // Expand f32 -> i64 conversion
6012   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6013   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6014 
6015   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6016 
6017   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6018   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6019 
6020   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6021   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6022 
6023   auto SignMask = MIRBuilder.buildConstant(SrcTy,
6024                                            APInt::getSignMask(SrcEltBits));
6025   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6026   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6027   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6028   Sign = MIRBuilder.buildSExt(DstTy, Sign);
6029 
6030   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6031   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6032   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6033 
6034   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6035   R = MIRBuilder.buildZExt(DstTy, R);
6036 
6037   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6038   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6039   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6040   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6041 
6042   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6043   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6044 
6045   const LLT S1 = LLT::scalar(1);
6046   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6047                                     S1, Exponent, ExponentLoBit);
6048 
6049   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6050 
6051   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6052   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6053 
6054   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6055 
6056   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6057                                           S1, Exponent, ZeroSrcTy);
6058 
6059   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6060   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6061 
6062   MI.eraseFromParent();
6063   return Legalized;
6064 }
6065 
6066 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
6067 LegalizerHelper::LegalizeResult
6068 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6069   Register Dst = MI.getOperand(0).getReg();
6070   Register Src = MI.getOperand(1).getReg();
6071 
6072   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6073     return UnableToLegalize;
6074 
6075   const unsigned ExpMask = 0x7ff;
6076   const unsigned ExpBiasf64 = 1023;
6077   const unsigned ExpBiasf16 = 15;
6078   const LLT S32 = LLT::scalar(32);
6079   const LLT S1 = LLT::scalar(1);
6080 
6081   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6082   Register U = Unmerge.getReg(0);
6083   Register UH = Unmerge.getReg(1);
6084 
6085   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6086   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6087 
6088   // Subtract the fp64 exponent bias (1023) to get the real exponent and
6089   // add the f16 bias (15) to get the biased exponent for the f16 format.
6090   E = MIRBuilder.buildAdd(
6091     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6092 
6093   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6094   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6095 
6096   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6097                                        MIRBuilder.buildConstant(S32, 0x1ff));
6098   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6099 
6100   auto Zero = MIRBuilder.buildConstant(S32, 0);
6101   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6102   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6103   M = MIRBuilder.buildOr(S32, M, Lo40Set);
6104 
6105   // (M != 0 ? 0x0200 : 0) | 0x7c00;
6106   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6107   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6108   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6109 
6110   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6111   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6112 
6113   // N = M | (E << 12);
6114   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6115   auto N = MIRBuilder.buildOr(S32, M, EShl12);
6116 
6117   // B = clamp(1-E, 0, 13);
6118   auto One = MIRBuilder.buildConstant(S32, 1);
6119   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6120   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6121   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6122 
6123   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6124                                        MIRBuilder.buildConstant(S32, 0x1000));
6125 
6126   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6127   auto D0 = MIRBuilder.buildShl(S32, D, B);
6128 
6129   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6130                                              D0, SigSetHigh);
6131   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6132   D = MIRBuilder.buildOr(S32, D, D1);
6133 
6134   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6135   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6136 
6137   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6138   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6139 
6140   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6141                                        MIRBuilder.buildConstant(S32, 3));
6142   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6143 
6144   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6145                                        MIRBuilder.buildConstant(S32, 5));
6146   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6147 
6148   V1 = MIRBuilder.buildOr(S32, V0, V1);
6149   V = MIRBuilder.buildAdd(S32, V, V1);
6150 
6151   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
6152                                        E, MIRBuilder.buildConstant(S32, 30));
6153   V = MIRBuilder.buildSelect(S32, CmpEGt30,
6154                              MIRBuilder.buildConstant(S32, 0x7c00), V);
6155 
6156   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6157                                          E, MIRBuilder.buildConstant(S32, 1039));
6158   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6159 
6160   // Extract the sign bit.
6161   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6162   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6163 
6164   // Insert the sign bit
6165   V = MIRBuilder.buildOr(S32, Sign, V);
6166 
6167   MIRBuilder.buildTrunc(Dst, V);
6168   MI.eraseFromParent();
6169   return Legalized;
6170 }
6171 
6172 LegalizerHelper::LegalizeResult
6173 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6174   Register Dst = MI.getOperand(0).getReg();
6175   Register Src = MI.getOperand(1).getReg();
6176 
6177   LLT DstTy = MRI.getType(Dst);
6178   LLT SrcTy = MRI.getType(Src);
6179   const LLT S64 = LLT::scalar(64);
6180   const LLT S16 = LLT::scalar(16);
6181 
6182   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6183     return lowerFPTRUNC_F64_TO_F16(MI);
6184 
6185   return UnableToLegalize;
6186 }
6187 
6188 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6189 // multiplication tree.
6190 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6191   Register Dst = MI.getOperand(0).getReg();
6192   Register Src0 = MI.getOperand(1).getReg();
6193   Register Src1 = MI.getOperand(2).getReg();
6194   LLT Ty = MRI.getType(Dst);
6195 
6196   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6197   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6198   MI.eraseFromParent();
6199   return Legalized;
6200 }
6201 
6202 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6203   switch (Opc) {
6204   case TargetOpcode::G_SMIN:
6205     return CmpInst::ICMP_SLT;
6206   case TargetOpcode::G_SMAX:
6207     return CmpInst::ICMP_SGT;
6208   case TargetOpcode::G_UMIN:
6209     return CmpInst::ICMP_ULT;
6210   case TargetOpcode::G_UMAX:
6211     return CmpInst::ICMP_UGT;
6212   default:
6213     llvm_unreachable("not in integer min/max");
6214   }
6215 }
6216 
6217 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6218   Register Dst = MI.getOperand(0).getReg();
6219   Register Src0 = MI.getOperand(1).getReg();
6220   Register Src1 = MI.getOperand(2).getReg();
6221 
6222   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6223   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6224 
6225   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6226   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6227 
6228   MI.eraseFromParent();
6229   return Legalized;
6230 }
6231 
6232 LegalizerHelper::LegalizeResult
6233 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6234   Register Dst = MI.getOperand(0).getReg();
6235   Register Src0 = MI.getOperand(1).getReg();
6236   Register Src1 = MI.getOperand(2).getReg();
6237 
6238   const LLT Src0Ty = MRI.getType(Src0);
6239   const LLT Src1Ty = MRI.getType(Src1);
6240 
6241   const int Src0Size = Src0Ty.getScalarSizeInBits();
6242   const int Src1Size = Src1Ty.getScalarSizeInBits();
6243 
6244   auto SignBitMask = MIRBuilder.buildConstant(
6245     Src0Ty, APInt::getSignMask(Src0Size));
6246 
6247   auto NotSignBitMask = MIRBuilder.buildConstant(
6248     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6249 
6250   Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6251   Register And1;
6252   if (Src0Ty == Src1Ty) {
6253     And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6254   } else if (Src0Size > Src1Size) {
6255     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6256     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6257     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6258     And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6259   } else {
6260     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6261     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6262     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6263     And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6264   }
6265 
6266   // Be careful about setting nsz/nnan/ninf on every instruction, since the
6267   // constants are a nan and -0.0, but the final result should preserve
6268   // everything.
6269   unsigned Flags = MI.getFlags();
6270   MIRBuilder.buildOr(Dst, And0, And1, Flags);
6271 
6272   MI.eraseFromParent();
6273   return Legalized;
6274 }
6275 
6276 LegalizerHelper::LegalizeResult
6277 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6278   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6279     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6280 
6281   Register Dst = MI.getOperand(0).getReg();
6282   Register Src0 = MI.getOperand(1).getReg();
6283   Register Src1 = MI.getOperand(2).getReg();
6284   LLT Ty = MRI.getType(Dst);
6285 
6286   if (!MI.getFlag(MachineInstr::FmNoNans)) {
6287     // Insert canonicalizes if it's possible we need to quiet to get correct
6288     // sNaN behavior.
6289 
6290     // Note this must be done here, and not as an optimization combine in the
6291     // absence of a dedicate quiet-snan instruction as we're using an
6292     // omni-purpose G_FCANONICALIZE.
6293     if (!isKnownNeverSNaN(Src0, MRI))
6294       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6295 
6296     if (!isKnownNeverSNaN(Src1, MRI))
6297       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6298   }
6299 
6300   // If there are no nans, it's safe to simply replace this with the non-IEEE
6301   // version.
6302   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6303   MI.eraseFromParent();
6304   return Legalized;
6305 }
6306 
6307 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6308   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6309   Register DstReg = MI.getOperand(0).getReg();
6310   LLT Ty = MRI.getType(DstReg);
6311   unsigned Flags = MI.getFlags();
6312 
6313   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6314                                   Flags);
6315   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6316   MI.eraseFromParent();
6317   return Legalized;
6318 }
6319 
6320 LegalizerHelper::LegalizeResult
6321 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6322   Register DstReg = MI.getOperand(0).getReg();
6323   Register X = MI.getOperand(1).getReg();
6324   const unsigned Flags = MI.getFlags();
6325   const LLT Ty = MRI.getType(DstReg);
6326   const LLT CondTy = Ty.changeElementSize(1);
6327 
6328   // round(x) =>
6329   //  t = trunc(x);
6330   //  d = fabs(x - t);
6331   //  o = copysign(1.0f, x);
6332   //  return t + (d >= 0.5 ? o : 0.0);
6333 
6334   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6335 
6336   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6337   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6338   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6339   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6340   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6341   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6342 
6343   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6344                                   Flags);
6345   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6346 
6347   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6348 
6349   MI.eraseFromParent();
6350   return Legalized;
6351 }
6352 
6353 LegalizerHelper::LegalizeResult
6354 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6355   Register DstReg = MI.getOperand(0).getReg();
6356   Register SrcReg = MI.getOperand(1).getReg();
6357   unsigned Flags = MI.getFlags();
6358   LLT Ty = MRI.getType(DstReg);
6359   const LLT CondTy = Ty.changeElementSize(1);
6360 
6361   // result = trunc(src);
6362   // if (src < 0.0 && src != result)
6363   //   result += -1.0.
6364 
6365   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6366   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6367 
6368   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6369                                   SrcReg, Zero, Flags);
6370   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6371                                       SrcReg, Trunc, Flags);
6372   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6373   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6374 
6375   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6376   MI.eraseFromParent();
6377   return Legalized;
6378 }
6379 
6380 LegalizerHelper::LegalizeResult
6381 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6382   const unsigned NumOps = MI.getNumOperands();
6383   Register DstReg = MI.getOperand(0).getReg();
6384   Register Src0Reg = MI.getOperand(1).getReg();
6385   LLT DstTy = MRI.getType(DstReg);
6386   LLT SrcTy = MRI.getType(Src0Reg);
6387   unsigned PartSize = SrcTy.getSizeInBits();
6388 
6389   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6390   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6391 
6392   for (unsigned I = 2; I != NumOps; ++I) {
6393     const unsigned Offset = (I - 1) * PartSize;
6394 
6395     Register SrcReg = MI.getOperand(I).getReg();
6396     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6397 
6398     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6399       MRI.createGenericVirtualRegister(WideTy);
6400 
6401     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6402     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6403     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6404     ResultReg = NextResult;
6405   }
6406 
6407   if (DstTy.isPointer()) {
6408     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6409           DstTy.getAddressSpace())) {
6410       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
6411       return UnableToLegalize;
6412     }
6413 
6414     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6415   }
6416 
6417   MI.eraseFromParent();
6418   return Legalized;
6419 }
6420 
6421 LegalizerHelper::LegalizeResult
6422 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6423   const unsigned NumDst = MI.getNumOperands() - 1;
6424   Register SrcReg = MI.getOperand(NumDst).getReg();
6425   Register Dst0Reg = MI.getOperand(0).getReg();
6426   LLT DstTy = MRI.getType(Dst0Reg);
6427   if (DstTy.isPointer())
6428     return UnableToLegalize; // TODO
6429 
6430   SrcReg = coerceToScalar(SrcReg);
6431   if (!SrcReg)
6432     return UnableToLegalize;
6433 
6434   // Expand scalarizing unmerge as bitcast to integer and shift.
6435   LLT IntTy = MRI.getType(SrcReg);
6436 
6437   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6438 
6439   const unsigned DstSize = DstTy.getSizeInBits();
6440   unsigned Offset = DstSize;
6441   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6442     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6443     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6444     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6445   }
6446 
6447   MI.eraseFromParent();
6448   return Legalized;
6449 }
6450 
6451 /// Lower a vector extract or insert by writing the vector to a stack temporary
6452 /// and reloading the element or vector.
6453 ///
6454 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6455 ///  =>
6456 ///  %stack_temp = G_FRAME_INDEX
6457 ///  G_STORE %vec, %stack_temp
6458 ///  %idx = clamp(%idx, %vec.getNumElements())
6459 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
6460 ///  %dst = G_LOAD %element_ptr
6461 LegalizerHelper::LegalizeResult
6462 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6463   Register DstReg = MI.getOperand(0).getReg();
6464   Register SrcVec = MI.getOperand(1).getReg();
6465   Register InsertVal;
6466   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6467     InsertVal = MI.getOperand(2).getReg();
6468 
6469   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6470 
6471   LLT VecTy = MRI.getType(SrcVec);
6472   LLT EltTy = VecTy.getElementType();
6473   if (!EltTy.isByteSized()) { // Not implemented.
6474     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
6475     return UnableToLegalize;
6476   }
6477 
6478   unsigned EltBytes = EltTy.getSizeInBytes();
6479   Align VecAlign = getStackTemporaryAlignment(VecTy);
6480   Align EltAlign;
6481 
6482   MachinePointerInfo PtrInfo;
6483   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6484                                         VecAlign, PtrInfo);
6485   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6486 
6487   // Get the pointer to the element, and be sure not to hit undefined behavior
6488   // if the index is out of bounds.
6489   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6490 
6491   int64_t IdxVal;
6492   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6493     int64_t Offset = IdxVal * EltBytes;
6494     PtrInfo = PtrInfo.getWithOffset(Offset);
6495     EltAlign = commonAlignment(VecAlign, Offset);
6496   } else {
6497     // We lose information with a variable offset.
6498     EltAlign = getStackTemporaryAlignment(EltTy);
6499     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6500   }
6501 
6502   if (InsertVal) {
6503     // Write the inserted element
6504     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6505 
6506     // Reload the whole vector.
6507     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6508   } else {
6509     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6510   }
6511 
6512   MI.eraseFromParent();
6513   return Legalized;
6514 }
6515 
6516 LegalizerHelper::LegalizeResult
6517 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6518   Register DstReg = MI.getOperand(0).getReg();
6519   Register Src0Reg = MI.getOperand(1).getReg();
6520   Register Src1Reg = MI.getOperand(2).getReg();
6521   LLT Src0Ty = MRI.getType(Src0Reg);
6522   LLT DstTy = MRI.getType(DstReg);
6523   LLT IdxTy = LLT::scalar(32);
6524 
6525   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6526 
6527   if (DstTy.isScalar()) {
6528     if (Src0Ty.isVector())
6529       return UnableToLegalize;
6530 
6531     // This is just a SELECT.
6532     assert(Mask.size() == 1 && "Expected a single mask element");
6533     Register Val;
6534     if (Mask[0] < 0 || Mask[0] > 1)
6535       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6536     else
6537       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6538     MIRBuilder.buildCopy(DstReg, Val);
6539     MI.eraseFromParent();
6540     return Legalized;
6541   }
6542 
6543   Register Undef;
6544   SmallVector<Register, 32> BuildVec;
6545   LLT EltTy = DstTy.getElementType();
6546 
6547   for (int Idx : Mask) {
6548     if (Idx < 0) {
6549       if (!Undef.isValid())
6550         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6551       BuildVec.push_back(Undef);
6552       continue;
6553     }
6554 
6555     if (Src0Ty.isScalar()) {
6556       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6557     } else {
6558       int NumElts = Src0Ty.getNumElements();
6559       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6560       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6561       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6562       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6563       BuildVec.push_back(Extract.getReg(0));
6564     }
6565   }
6566 
6567   MIRBuilder.buildBuildVector(DstReg, BuildVec);
6568   MI.eraseFromParent();
6569   return Legalized;
6570 }
6571 
6572 LegalizerHelper::LegalizeResult
6573 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6574   const auto &MF = *MI.getMF();
6575   const auto &TFI = *MF.getSubtarget().getFrameLowering();
6576   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6577     return UnableToLegalize;
6578 
6579   Register Dst = MI.getOperand(0).getReg();
6580   Register AllocSize = MI.getOperand(1).getReg();
6581   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6582 
6583   LLT PtrTy = MRI.getType(Dst);
6584   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6585 
6586   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6587   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6588   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6589 
6590   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6591   // have to generate an extra instruction to negate the alloc and then use
6592   // G_PTR_ADD to add the negative offset.
6593   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6594   if (Alignment > Align(1)) {
6595     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6596     AlignMask.negate();
6597     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6598     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6599   }
6600 
6601   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6602   MIRBuilder.buildCopy(SPReg, SPTmp);
6603   MIRBuilder.buildCopy(Dst, SPTmp);
6604 
6605   MI.eraseFromParent();
6606   return Legalized;
6607 }
6608 
6609 LegalizerHelper::LegalizeResult
6610 LegalizerHelper::lowerExtract(MachineInstr &MI) {
6611   Register Dst = MI.getOperand(0).getReg();
6612   Register Src = MI.getOperand(1).getReg();
6613   unsigned Offset = MI.getOperand(2).getImm();
6614 
6615   LLT DstTy = MRI.getType(Dst);
6616   LLT SrcTy = MRI.getType(Src);
6617 
6618   if (DstTy.isScalar() &&
6619       (SrcTy.isScalar() ||
6620        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6621     LLT SrcIntTy = SrcTy;
6622     if (!SrcTy.isScalar()) {
6623       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6624       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6625     }
6626 
6627     if (Offset == 0)
6628       MIRBuilder.buildTrunc(Dst, Src);
6629     else {
6630       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6631       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6632       MIRBuilder.buildTrunc(Dst, Shr);
6633     }
6634 
6635     MI.eraseFromParent();
6636     return Legalized;
6637   }
6638 
6639   return UnableToLegalize;
6640 }
6641 
6642 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6643   Register Dst = MI.getOperand(0).getReg();
6644   Register Src = MI.getOperand(1).getReg();
6645   Register InsertSrc = MI.getOperand(2).getReg();
6646   uint64_t Offset = MI.getOperand(3).getImm();
6647 
6648   LLT DstTy = MRI.getType(Src);
6649   LLT InsertTy = MRI.getType(InsertSrc);
6650 
6651   if (InsertTy.isVector() ||
6652       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6653     return UnableToLegalize;
6654 
6655   const DataLayout &DL = MIRBuilder.getDataLayout();
6656   if ((DstTy.isPointer() &&
6657        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6658       (InsertTy.isPointer() &&
6659        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6660     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
6661     return UnableToLegalize;
6662   }
6663 
6664   LLT IntDstTy = DstTy;
6665 
6666   if (!DstTy.isScalar()) {
6667     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6668     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6669   }
6670 
6671   if (!InsertTy.isScalar()) {
6672     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6673     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6674   }
6675 
6676   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6677   if (Offset != 0) {
6678     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6679     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6680   }
6681 
6682   APInt MaskVal = APInt::getBitsSetWithWrap(
6683       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6684 
6685   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6686   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6687   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6688 
6689   MIRBuilder.buildCast(Dst, Or);
6690   MI.eraseFromParent();
6691   return Legalized;
6692 }
6693 
6694 LegalizerHelper::LegalizeResult
6695 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6696   Register Dst0 = MI.getOperand(0).getReg();
6697   Register Dst1 = MI.getOperand(1).getReg();
6698   Register LHS = MI.getOperand(2).getReg();
6699   Register RHS = MI.getOperand(3).getReg();
6700   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6701 
6702   LLT Ty = MRI.getType(Dst0);
6703   LLT BoolTy = MRI.getType(Dst1);
6704 
6705   if (IsAdd)
6706     MIRBuilder.buildAdd(Dst0, LHS, RHS);
6707   else
6708     MIRBuilder.buildSub(Dst0, LHS, RHS);
6709 
6710   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6711 
6712   auto Zero = MIRBuilder.buildConstant(Ty, 0);
6713 
6714   // For an addition, the result should be less than one of the operands (LHS)
6715   // if and only if the other operand (RHS) is negative, otherwise there will
6716   // be overflow.
6717   // For a subtraction, the result should be less than one of the operands
6718   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6719   // otherwise there will be overflow.
6720   auto ResultLowerThanLHS =
6721       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6722   auto ConditionRHS = MIRBuilder.buildICmp(
6723       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6724 
6725   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6726   MI.eraseFromParent();
6727   return Legalized;
6728 }
6729 
6730 LegalizerHelper::LegalizeResult
6731 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6732   Register Res = MI.getOperand(0).getReg();
6733   Register LHS = MI.getOperand(1).getReg();
6734   Register RHS = MI.getOperand(2).getReg();
6735   LLT Ty = MRI.getType(Res);
6736   bool IsSigned;
6737   bool IsAdd;
6738   unsigned BaseOp;
6739   switch (MI.getOpcode()) {
6740   default:
6741     llvm_unreachable("unexpected addsat/subsat opcode");
6742   case TargetOpcode::G_UADDSAT:
6743     IsSigned = false;
6744     IsAdd = true;
6745     BaseOp = TargetOpcode::G_ADD;
6746     break;
6747   case TargetOpcode::G_SADDSAT:
6748     IsSigned = true;
6749     IsAdd = true;
6750     BaseOp = TargetOpcode::G_ADD;
6751     break;
6752   case TargetOpcode::G_USUBSAT:
6753     IsSigned = false;
6754     IsAdd = false;
6755     BaseOp = TargetOpcode::G_SUB;
6756     break;
6757   case TargetOpcode::G_SSUBSAT:
6758     IsSigned = true;
6759     IsAdd = false;
6760     BaseOp = TargetOpcode::G_SUB;
6761     break;
6762   }
6763 
6764   if (IsSigned) {
6765     // sadd.sat(a, b) ->
6766     //   hi = 0x7fffffff - smax(a, 0)
6767     //   lo = 0x80000000 - smin(a, 0)
6768     //   a + smin(smax(lo, b), hi)
6769     // ssub.sat(a, b) ->
6770     //   lo = smax(a, -1) - 0x7fffffff
6771     //   hi = smin(a, -1) - 0x80000000
6772     //   a - smin(smax(lo, b), hi)
6773     // TODO: AMDGPU can use a "median of 3" instruction here:
6774     //   a +/- med3(lo, b, hi)
6775     uint64_t NumBits = Ty.getScalarSizeInBits();
6776     auto MaxVal =
6777         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6778     auto MinVal =
6779         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6780     MachineInstrBuilder Hi, Lo;
6781     if (IsAdd) {
6782       auto Zero = MIRBuilder.buildConstant(Ty, 0);
6783       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6784       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6785     } else {
6786       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6787       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6788                                MaxVal);
6789       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6790                                MinVal);
6791     }
6792     auto RHSClamped =
6793         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6794     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6795   } else {
6796     // uadd.sat(a, b) -> a + umin(~a, b)
6797     // usub.sat(a, b) -> a - umin(a, b)
6798     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6799     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6800     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6801   }
6802 
6803   MI.eraseFromParent();
6804   return Legalized;
6805 }
6806 
6807 LegalizerHelper::LegalizeResult
6808 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6809   Register Res = MI.getOperand(0).getReg();
6810   Register LHS = MI.getOperand(1).getReg();
6811   Register RHS = MI.getOperand(2).getReg();
6812   LLT Ty = MRI.getType(Res);
6813   LLT BoolTy = Ty.changeElementSize(1);
6814   bool IsSigned;
6815   bool IsAdd;
6816   unsigned OverflowOp;
6817   switch (MI.getOpcode()) {
6818   default:
6819     llvm_unreachable("unexpected addsat/subsat opcode");
6820   case TargetOpcode::G_UADDSAT:
6821     IsSigned = false;
6822     IsAdd = true;
6823     OverflowOp = TargetOpcode::G_UADDO;
6824     break;
6825   case TargetOpcode::G_SADDSAT:
6826     IsSigned = true;
6827     IsAdd = true;
6828     OverflowOp = TargetOpcode::G_SADDO;
6829     break;
6830   case TargetOpcode::G_USUBSAT:
6831     IsSigned = false;
6832     IsAdd = false;
6833     OverflowOp = TargetOpcode::G_USUBO;
6834     break;
6835   case TargetOpcode::G_SSUBSAT:
6836     IsSigned = true;
6837     IsAdd = false;
6838     OverflowOp = TargetOpcode::G_SSUBO;
6839     break;
6840   }
6841 
6842   auto OverflowRes =
6843       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6844   Register Tmp = OverflowRes.getReg(0);
6845   Register Ov = OverflowRes.getReg(1);
6846   MachineInstrBuilder Clamp;
6847   if (IsSigned) {
6848     // sadd.sat(a, b) ->
6849     //   {tmp, ov} = saddo(a, b)
6850     //   ov ? (tmp >>s 31) + 0x80000000 : r
6851     // ssub.sat(a, b) ->
6852     //   {tmp, ov} = ssubo(a, b)
6853     //   ov ? (tmp >>s 31) + 0x80000000 : r
6854     uint64_t NumBits = Ty.getScalarSizeInBits();
6855     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6856     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6857     auto MinVal =
6858         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6859     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6860   } else {
6861     // uadd.sat(a, b) ->
6862     //   {tmp, ov} = uaddo(a, b)
6863     //   ov ? 0xffffffff : tmp
6864     // usub.sat(a, b) ->
6865     //   {tmp, ov} = usubo(a, b)
6866     //   ov ? 0 : tmp
6867     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6868   }
6869   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6870 
6871   MI.eraseFromParent();
6872   return Legalized;
6873 }
6874 
6875 LegalizerHelper::LegalizeResult
6876 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6877   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6878           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6879          "Expected shlsat opcode!");
6880   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6881   Register Res = MI.getOperand(0).getReg();
6882   Register LHS = MI.getOperand(1).getReg();
6883   Register RHS = MI.getOperand(2).getReg();
6884   LLT Ty = MRI.getType(Res);
6885   LLT BoolTy = Ty.changeElementSize(1);
6886 
6887   unsigned BW = Ty.getScalarSizeInBits();
6888   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6889   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6890                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6891 
6892   MachineInstrBuilder SatVal;
6893   if (IsSigned) {
6894     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6895     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6896     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6897                                     MIRBuilder.buildConstant(Ty, 0));
6898     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6899   } else {
6900     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6901   }
6902   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6903   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6904 
6905   MI.eraseFromParent();
6906   return Legalized;
6907 }
6908 
6909 LegalizerHelper::LegalizeResult
6910 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6911   Register Dst = MI.getOperand(0).getReg();
6912   Register Src = MI.getOperand(1).getReg();
6913   const LLT Ty = MRI.getType(Src);
6914   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6915   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6916 
6917   // Swap most and least significant byte, set remaining bytes in Res to zero.
6918   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6919   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6920   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6921   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6922 
6923   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6924   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6925     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6926     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6927     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6928     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6929     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6930     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6931     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6932     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6933     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6934     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6935     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6936     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6937   }
6938   Res.getInstr()->getOperand(0).setReg(Dst);
6939 
6940   MI.eraseFromParent();
6941   return Legalized;
6942 }
6943 
6944 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
6945 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6946                                  MachineInstrBuilder Src, APInt Mask) {
6947   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6948   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6949   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6950   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6951   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6952   return B.buildOr(Dst, LHS, RHS);
6953 }
6954 
6955 LegalizerHelper::LegalizeResult
6956 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6957   Register Dst = MI.getOperand(0).getReg();
6958   Register Src = MI.getOperand(1).getReg();
6959   const LLT Ty = MRI.getType(Src);
6960   unsigned Size = Ty.getSizeInBits();
6961 
6962   MachineInstrBuilder BSWAP =
6963       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6964 
6965   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6966   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6967   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6968   MachineInstrBuilder Swap4 =
6969       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6970 
6971   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6972   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6973   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6974   MachineInstrBuilder Swap2 =
6975       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6976 
6977   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6978   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6979   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6980   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6981 
6982   MI.eraseFromParent();
6983   return Legalized;
6984 }
6985 
6986 LegalizerHelper::LegalizeResult
6987 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6988   MachineFunction &MF = MIRBuilder.getMF();
6989 
6990   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6991   int NameOpIdx = IsRead ? 1 : 0;
6992   int ValRegIndex = IsRead ? 0 : 1;
6993 
6994   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6995   const LLT Ty = MRI.getType(ValReg);
6996   const MDString *RegStr = cast<MDString>(
6997     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6998 
6999   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
7000   if (!PhysReg.isValid())
7001     return UnableToLegalize;
7002 
7003   if (IsRead)
7004     MIRBuilder.buildCopy(ValReg, PhysReg);
7005   else
7006     MIRBuilder.buildCopy(PhysReg, ValReg);
7007 
7008   MI.eraseFromParent();
7009   return Legalized;
7010 }
7011 
7012 LegalizerHelper::LegalizeResult
7013 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7014   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7015   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7016   Register Result = MI.getOperand(0).getReg();
7017   LLT OrigTy = MRI.getType(Result);
7018   auto SizeInBits = OrigTy.getScalarSizeInBits();
7019   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7020 
7021   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7022   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7023   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7024   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7025 
7026   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7027   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7028   MIRBuilder.buildTrunc(Result, Shifted);
7029 
7030   MI.eraseFromParent();
7031   return Legalized;
7032 }
7033 
7034 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7035   // Implement vector G_SELECT in terms of XOR, AND, OR.
7036   Register DstReg = MI.getOperand(0).getReg();
7037   Register MaskReg = MI.getOperand(1).getReg();
7038   Register Op1Reg = MI.getOperand(2).getReg();
7039   Register Op2Reg = MI.getOperand(3).getReg();
7040   LLT DstTy = MRI.getType(DstReg);
7041   LLT MaskTy = MRI.getType(MaskReg);
7042   LLT Op1Ty = MRI.getType(Op1Reg);
7043   if (!DstTy.isVector())
7044     return UnableToLegalize;
7045 
7046   // Vector selects can have a scalar predicate. If so, splat into a vector and
7047   // finish for later legalization attempts to try again.
7048   if (MaskTy.isScalar()) {
7049     Register MaskElt = MaskReg;
7050     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
7051       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
7052     // Generate a vector splat idiom to be pattern matched later.
7053     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7054     Observer.changingInstr(MI);
7055     MI.getOperand(1).setReg(ShufSplat.getReg(0));
7056     Observer.changedInstr(MI);
7057     return Legalized;
7058   }
7059 
7060   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
7061     return UnableToLegalize;
7062   }
7063 
7064   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7065   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7066   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7067   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7068   MI.eraseFromParent();
7069   return Legalized;
7070 }
7071 
7072 LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7073   // Split DIVREM into individual instructions.
7074   unsigned Opcode = MI.getOpcode();
7075 
7076   MIRBuilder.buildInstr(
7077       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7078                                         : TargetOpcode::G_UDIV,
7079       {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7080   MIRBuilder.buildInstr(
7081       Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7082                                         : TargetOpcode::G_UREM,
7083       {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7084   MI.eraseFromParent();
7085   return Legalized;
7086 }
7087 
7088 LegalizerHelper::LegalizeResult
7089 LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7090   // Expand %res = G_ABS %a into:
7091   // %v1 = G_ASHR %a, scalar_size-1
7092   // %v2 = G_ADD %a, %v1
7093   // %res = G_XOR %v2, %v1
7094   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7095   Register OpReg = MI.getOperand(1).getReg();
7096   auto ShiftAmt =
7097       MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7098   auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7099   auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7100   MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7101   MI.eraseFromParent();
7102   return Legalized;
7103 }
7104 
7105 LegalizerHelper::LegalizeResult
7106 LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7107   // Expand %res = G_ABS %a into:
7108   // %v1 = G_CONSTANT 0
7109   // %v2 = G_SUB %v1, %a
7110   // %res = G_SMAX %a, %v2
7111   Register SrcReg = MI.getOperand(1).getReg();
7112   LLT Ty = MRI.getType(SrcReg);
7113   auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7114   auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7115   MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7116   MI.eraseFromParent();
7117   return Legalized;
7118 }
7119