1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetInstrInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 #define DEBUG_TYPE "legalizer" 28 29 using namespace llvm; 30 using namespace LegalizeActions; 31 32 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 33 /// 34 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 35 /// with any leftover piece as type \p LeftoverTy 36 /// 37 /// Returns -1 if the breakdown is not satisfiable. 38 static int getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 39 assert(!LeftoverTy.isValid() && "this is an out argument"); 40 41 unsigned Size = OrigTy.getSizeInBits(); 42 unsigned NarrowSize = NarrowTy.getSizeInBits(); 43 unsigned NumParts = Size / NarrowSize; 44 unsigned LeftoverSize = Size - NumParts * NarrowSize; 45 assert(Size > NarrowSize); 46 47 if (LeftoverSize == 0) 48 return NumParts; 49 50 if (NarrowTy.isVector()) { 51 unsigned EltSize = OrigTy.getScalarSizeInBits(); 52 if (LeftoverSize % EltSize != 0) 53 return -1; 54 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 55 } else { 56 LeftoverTy = LLT::scalar(LeftoverSize); 57 } 58 59 return NumParts; 60 } 61 62 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 63 GISelChangeObserver &Observer, 64 MachineIRBuilder &Builder) 65 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 66 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 67 MIRBuilder.setMF(MF); 68 MIRBuilder.setChangeObserver(Observer); 69 } 70 71 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 72 GISelChangeObserver &Observer, 73 MachineIRBuilder &B) 74 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 75 MIRBuilder.setMF(MF); 76 MIRBuilder.setChangeObserver(Observer); 77 } 78 LegalizerHelper::LegalizeResult 79 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 80 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 81 82 auto Step = LI.getAction(MI, MRI); 83 switch (Step.Action) { 84 case Legal: 85 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 86 return AlreadyLegal; 87 case Libcall: 88 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 89 return libcall(MI); 90 case NarrowScalar: 91 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 92 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 93 case WidenScalar: 94 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 95 return widenScalar(MI, Step.TypeIdx, Step.NewType); 96 case Lower: 97 LLVM_DEBUG(dbgs() << ".. Lower\n"); 98 return lower(MI, Step.TypeIdx, Step.NewType); 99 case FewerElements: 100 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 101 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 102 case MoreElements: 103 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 104 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 105 case Custom: 106 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 107 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 108 : UnableToLegalize; 109 default: 110 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 111 return UnableToLegalize; 112 } 113 } 114 115 void LegalizerHelper::extractParts(unsigned Reg, LLT Ty, int NumParts, 116 SmallVectorImpl<unsigned> &VRegs) { 117 for (int i = 0; i < NumParts; ++i) 118 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 119 MIRBuilder.buildUnmerge(VRegs, Reg); 120 } 121 122 bool LegalizerHelper::extractParts(unsigned Reg, LLT RegTy, 123 LLT MainTy, LLT &LeftoverTy, 124 SmallVectorImpl<unsigned> &VRegs, 125 SmallVectorImpl<unsigned> &LeftoverRegs) { 126 assert(!LeftoverTy.isValid() && "this is an out argument"); 127 128 unsigned RegSize = RegTy.getSizeInBits(); 129 unsigned MainSize = MainTy.getSizeInBits(); 130 unsigned NumParts = RegSize / MainSize; 131 unsigned LeftoverSize = RegSize - NumParts * MainSize; 132 133 // Use an unmerge when possible. 134 if (LeftoverSize == 0) { 135 for (unsigned I = 0; I < NumParts; ++I) 136 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 137 MIRBuilder.buildUnmerge(VRegs, Reg); 138 return true; 139 } 140 141 if (MainTy.isVector()) { 142 unsigned EltSize = MainTy.getScalarSizeInBits(); 143 if (LeftoverSize % EltSize != 0) 144 return false; 145 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 146 } else { 147 LeftoverTy = LLT::scalar(LeftoverSize); 148 } 149 150 // For irregular sizes, extract the individual parts. 151 for (unsigned I = 0; I != NumParts; ++I) { 152 unsigned NewReg = MRI.createGenericVirtualRegister(MainTy); 153 VRegs.push_back(NewReg); 154 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 155 } 156 157 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 158 Offset += LeftoverSize) { 159 unsigned NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 160 LeftoverRegs.push_back(NewReg); 161 MIRBuilder.buildExtract(NewReg, Reg, Offset); 162 } 163 164 return true; 165 } 166 167 void LegalizerHelper::insertParts(unsigned DstReg, 168 LLT ResultTy, LLT PartTy, 169 ArrayRef<unsigned> PartRegs, 170 LLT LeftoverTy, 171 ArrayRef<unsigned> LeftoverRegs) { 172 if (!LeftoverTy.isValid()) { 173 assert(LeftoverRegs.empty()); 174 175 if (!ResultTy.isVector()) { 176 MIRBuilder.buildMerge(DstReg, PartRegs); 177 return; 178 } 179 180 if (PartTy.isVector()) 181 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 182 else 183 MIRBuilder.buildBuildVector(DstReg, PartRegs); 184 return; 185 } 186 187 unsigned PartSize = PartTy.getSizeInBits(); 188 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 189 190 unsigned CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 191 MIRBuilder.buildUndef(CurResultReg); 192 193 unsigned Offset = 0; 194 for (unsigned PartReg : PartRegs) { 195 unsigned NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 196 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 197 CurResultReg = NewResultReg; 198 Offset += PartSize; 199 } 200 201 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 202 // Use the original output register for the final insert to avoid a copy. 203 unsigned NewResultReg = (I + 1 == E) ? 204 DstReg : MRI.createGenericVirtualRegister(ResultTy); 205 206 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 207 CurResultReg = NewResultReg; 208 Offset += LeftoverPartSize; 209 } 210 } 211 212 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 213 switch (Opcode) { 214 case TargetOpcode::G_SDIV: 215 assert((Size == 32 || Size == 64) && "Unsupported size"); 216 return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32; 217 case TargetOpcode::G_UDIV: 218 assert((Size == 32 || Size == 64) && "Unsupported size"); 219 return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32; 220 case TargetOpcode::G_SREM: 221 assert((Size == 32 || Size == 64) && "Unsupported size"); 222 return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; 223 case TargetOpcode::G_UREM: 224 assert((Size == 32 || Size == 64) && "Unsupported size"); 225 return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; 226 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 227 assert(Size == 32 && "Unsupported size"); 228 return RTLIB::CTLZ_I32; 229 case TargetOpcode::G_FADD: 230 assert((Size == 32 || Size == 64) && "Unsupported size"); 231 return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; 232 case TargetOpcode::G_FSUB: 233 assert((Size == 32 || Size == 64) && "Unsupported size"); 234 return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; 235 case TargetOpcode::G_FMUL: 236 assert((Size == 32 || Size == 64) && "Unsupported size"); 237 return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; 238 case TargetOpcode::G_FDIV: 239 assert((Size == 32 || Size == 64) && "Unsupported size"); 240 return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; 241 case TargetOpcode::G_FEXP: 242 assert((Size == 32 || Size == 64) && "Unsupported size"); 243 return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; 244 case TargetOpcode::G_FREM: 245 return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; 246 case TargetOpcode::G_FPOW: 247 return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; 248 case TargetOpcode::G_FMA: 249 assert((Size == 32 || Size == 64) && "Unsupported size"); 250 return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; 251 case TargetOpcode::G_FSIN: 252 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 253 return Size == 128 ? RTLIB::SIN_F128 254 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; 255 case TargetOpcode::G_FCOS: 256 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 257 return Size == 128 ? RTLIB::COS_F128 258 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; 259 case TargetOpcode::G_FLOG10: 260 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 261 return Size == 128 ? RTLIB::LOG10_F128 262 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; 263 case TargetOpcode::G_FLOG: 264 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 265 return Size == 128 ? RTLIB::LOG_F128 266 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; 267 case TargetOpcode::G_FLOG2: 268 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 269 return Size == 128 ? RTLIB::LOG2_F128 270 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; 271 } 272 llvm_unreachable("Unknown libcall function"); 273 } 274 275 LegalizerHelper::LegalizeResult 276 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 277 const CallLowering::ArgInfo &Result, 278 ArrayRef<CallLowering::ArgInfo> Args) { 279 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 280 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 281 const char *Name = TLI.getLibcallName(Libcall); 282 283 MIRBuilder.getMF().getFrameInfo().setHasCalls(true); 284 if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall), 285 MachineOperand::CreateES(Name), Result, Args)) 286 return LegalizerHelper::UnableToLegalize; 287 288 return LegalizerHelper::Legalized; 289 } 290 291 // Useful for libcalls where all operands have the same type. 292 static LegalizerHelper::LegalizeResult 293 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 294 Type *OpType) { 295 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 296 297 SmallVector<CallLowering::ArgInfo, 3> Args; 298 for (unsigned i = 1; i < MI.getNumOperands(); i++) 299 Args.push_back({MI.getOperand(i).getReg(), OpType}); 300 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 301 Args); 302 } 303 304 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 305 Type *FromType) { 306 auto ToMVT = MVT::getVT(ToType); 307 auto FromMVT = MVT::getVT(FromType); 308 309 switch (Opcode) { 310 case TargetOpcode::G_FPEXT: 311 return RTLIB::getFPEXT(FromMVT, ToMVT); 312 case TargetOpcode::G_FPTRUNC: 313 return RTLIB::getFPROUND(FromMVT, ToMVT); 314 case TargetOpcode::G_FPTOSI: 315 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 316 case TargetOpcode::G_FPTOUI: 317 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 318 case TargetOpcode::G_SITOFP: 319 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 320 case TargetOpcode::G_UITOFP: 321 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 322 } 323 llvm_unreachable("Unsupported libcall function"); 324 } 325 326 static LegalizerHelper::LegalizeResult 327 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 328 Type *FromType) { 329 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 330 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 331 {{MI.getOperand(1).getReg(), FromType}}); 332 } 333 334 LegalizerHelper::LegalizeResult 335 LegalizerHelper::libcall(MachineInstr &MI) { 336 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 337 unsigned Size = LLTy.getSizeInBits(); 338 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 339 340 MIRBuilder.setInstr(MI); 341 342 switch (MI.getOpcode()) { 343 default: 344 return UnableToLegalize; 345 case TargetOpcode::G_SDIV: 346 case TargetOpcode::G_UDIV: 347 case TargetOpcode::G_SREM: 348 case TargetOpcode::G_UREM: 349 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 350 Type *HLTy = IntegerType::get(Ctx, Size); 351 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 352 if (Status != Legalized) 353 return Status; 354 break; 355 } 356 case TargetOpcode::G_FADD: 357 case TargetOpcode::G_FSUB: 358 case TargetOpcode::G_FMUL: 359 case TargetOpcode::G_FDIV: 360 case TargetOpcode::G_FMA: 361 case TargetOpcode::G_FPOW: 362 case TargetOpcode::G_FREM: 363 case TargetOpcode::G_FCOS: 364 case TargetOpcode::G_FSIN: 365 case TargetOpcode::G_FLOG10: 366 case TargetOpcode::G_FLOG: 367 case TargetOpcode::G_FLOG2: 368 case TargetOpcode::G_FEXP: { 369 if (Size > 64) { 370 LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); 371 return UnableToLegalize; 372 } 373 Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); 374 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 375 if (Status != Legalized) 376 return Status; 377 break; 378 } 379 case TargetOpcode::G_FPEXT: { 380 // FIXME: Support other floating point types (half, fp128 etc) 381 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 382 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 383 if (ToSize != 64 || FromSize != 32) 384 return UnableToLegalize; 385 LegalizeResult Status = conversionLibcall( 386 MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); 387 if (Status != Legalized) 388 return Status; 389 break; 390 } 391 case TargetOpcode::G_FPTRUNC: { 392 // FIXME: Support other floating point types (half, fp128 etc) 393 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 394 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 395 if (ToSize != 32 || FromSize != 64) 396 return UnableToLegalize; 397 LegalizeResult Status = conversionLibcall( 398 MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); 399 if (Status != Legalized) 400 return Status; 401 break; 402 } 403 case TargetOpcode::G_FPTOSI: 404 case TargetOpcode::G_FPTOUI: { 405 // FIXME: Support other types 406 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 407 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 408 if (ToSize != 32 || (FromSize != 32 && FromSize != 64)) 409 return UnableToLegalize; 410 LegalizeResult Status = conversionLibcall( 411 MI, MIRBuilder, Type::getInt32Ty(Ctx), 412 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 413 if (Status != Legalized) 414 return Status; 415 break; 416 } 417 case TargetOpcode::G_SITOFP: 418 case TargetOpcode::G_UITOFP: { 419 // FIXME: Support other types 420 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 421 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 422 if (FromSize != 32 || (ToSize != 32 && ToSize != 64)) 423 return UnableToLegalize; 424 LegalizeResult Status = conversionLibcall( 425 MI, MIRBuilder, 426 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 427 Type::getInt32Ty(Ctx)); 428 if (Status != Legalized) 429 return Status; 430 break; 431 } 432 } 433 434 MI.eraseFromParent(); 435 return Legalized; 436 } 437 438 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 439 unsigned TypeIdx, 440 LLT NarrowTy) { 441 MIRBuilder.setInstr(MI); 442 443 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 444 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 445 446 switch (MI.getOpcode()) { 447 default: 448 return UnableToLegalize; 449 case TargetOpcode::G_IMPLICIT_DEF: { 450 // FIXME: add support for when SizeOp0 isn't an exact multiple of 451 // NarrowSize. 452 if (SizeOp0 % NarrowSize != 0) 453 return UnableToLegalize; 454 int NumParts = SizeOp0 / NarrowSize; 455 456 SmallVector<unsigned, 2> DstRegs; 457 for (int i = 0; i < NumParts; ++i) 458 DstRegs.push_back( 459 MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); 460 461 unsigned DstReg = MI.getOperand(0).getReg(); 462 if(MRI.getType(DstReg).isVector()) 463 MIRBuilder.buildBuildVector(DstReg, DstRegs); 464 else 465 MIRBuilder.buildMerge(DstReg, DstRegs); 466 MI.eraseFromParent(); 467 return Legalized; 468 } 469 case TargetOpcode::G_ADD: { 470 // FIXME: add support for when SizeOp0 isn't an exact multiple of 471 // NarrowSize. 472 if (SizeOp0 % NarrowSize != 0) 473 return UnableToLegalize; 474 // Expand in terms of carry-setting/consuming G_ADDE instructions. 475 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 476 477 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 478 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 479 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 480 481 unsigned CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); 482 MIRBuilder.buildConstant(CarryIn, 0); 483 484 for (int i = 0; i < NumParts; ++i) { 485 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 486 unsigned CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 487 488 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 489 Src2Regs[i], CarryIn); 490 491 DstRegs.push_back(DstReg); 492 CarryIn = CarryOut; 493 } 494 unsigned DstReg = MI.getOperand(0).getReg(); 495 if(MRI.getType(DstReg).isVector()) 496 MIRBuilder.buildBuildVector(DstReg, DstRegs); 497 else 498 MIRBuilder.buildMerge(DstReg, DstRegs); 499 MI.eraseFromParent(); 500 return Legalized; 501 } 502 case TargetOpcode::G_SUB: { 503 // FIXME: add support for when SizeOp0 isn't an exact multiple of 504 // NarrowSize. 505 if (SizeOp0 % NarrowSize != 0) 506 return UnableToLegalize; 507 508 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 509 510 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 511 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 512 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 513 514 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 515 unsigned BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 516 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 517 {Src1Regs[0], Src2Regs[0]}); 518 DstRegs.push_back(DstReg); 519 unsigned BorrowIn = BorrowOut; 520 for (int i = 1; i < NumParts; ++i) { 521 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 522 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 523 524 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 525 {Src1Regs[i], Src2Regs[i], BorrowIn}); 526 527 DstRegs.push_back(DstReg); 528 BorrowIn = BorrowOut; 529 } 530 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); 531 MI.eraseFromParent(); 532 return Legalized; 533 } 534 case TargetOpcode::G_MUL: 535 return narrowScalarMul(MI, TypeIdx, NarrowTy); 536 case TargetOpcode::G_EXTRACT: 537 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 538 case TargetOpcode::G_INSERT: 539 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 540 case TargetOpcode::G_LOAD: { 541 const auto &MMO = **MI.memoperands_begin(); 542 unsigned DstReg = MI.getOperand(0).getReg(); 543 LLT DstTy = MRI.getType(DstReg); 544 if (DstTy.isVector()) 545 return UnableToLegalize; 546 547 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 548 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 549 auto &MMO = **MI.memoperands_begin(); 550 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); 551 MIRBuilder.buildAnyExt(DstReg, TmpReg); 552 MI.eraseFromParent(); 553 return Legalized; 554 } 555 556 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 557 } 558 case TargetOpcode::G_ZEXTLOAD: 559 case TargetOpcode::G_SEXTLOAD: { 560 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 561 unsigned DstReg = MI.getOperand(0).getReg(); 562 unsigned PtrReg = MI.getOperand(1).getReg(); 563 564 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 565 auto &MMO = **MI.memoperands_begin(); 566 if (MMO.getSize() * 8 == NarrowSize) { 567 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 568 } else { 569 unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD 570 : TargetOpcode::G_SEXTLOAD; 571 MIRBuilder.buildInstr(ExtLoad) 572 .addDef(TmpReg) 573 .addUse(PtrReg) 574 .addMemOperand(&MMO); 575 } 576 577 if (ZExt) 578 MIRBuilder.buildZExt(DstReg, TmpReg); 579 else 580 MIRBuilder.buildSExt(DstReg, TmpReg); 581 582 MI.eraseFromParent(); 583 return Legalized; 584 } 585 case TargetOpcode::G_STORE: { 586 const auto &MMO = **MI.memoperands_begin(); 587 588 unsigned SrcReg = MI.getOperand(0).getReg(); 589 LLT SrcTy = MRI.getType(SrcReg); 590 if (SrcTy.isVector()) 591 return UnableToLegalize; 592 593 int NumParts = SizeOp0 / NarrowSize; 594 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 595 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 596 if (SrcTy.isVector() && LeftoverBits != 0) 597 return UnableToLegalize; 598 599 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 600 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 601 auto &MMO = **MI.memoperands_begin(); 602 MIRBuilder.buildTrunc(TmpReg, SrcReg); 603 MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); 604 MI.eraseFromParent(); 605 return Legalized; 606 } 607 608 return reduceLoadStoreWidth(MI, 0, NarrowTy); 609 } 610 case TargetOpcode::G_CONSTANT: { 611 // FIXME: add support for when SizeOp0 isn't an exact multiple of 612 // NarrowSize. 613 if (SizeOp0 % NarrowSize != 0) 614 return UnableToLegalize; 615 int NumParts = SizeOp0 / NarrowSize; 616 const APInt &Cst = MI.getOperand(1).getCImm()->getValue(); 617 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 618 619 SmallVector<unsigned, 2> DstRegs; 620 for (int i = 0; i < NumParts; ++i) { 621 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 622 ConstantInt *CI = 623 ConstantInt::get(Ctx, Cst.lshr(NarrowSize * i).trunc(NarrowSize)); 624 MIRBuilder.buildConstant(DstReg, *CI); 625 DstRegs.push_back(DstReg); 626 } 627 unsigned DstReg = MI.getOperand(0).getReg(); 628 if(MRI.getType(DstReg).isVector()) 629 MIRBuilder.buildBuildVector(DstReg, DstRegs); 630 else 631 MIRBuilder.buildMerge(DstReg, DstRegs); 632 MI.eraseFromParent(); 633 return Legalized; 634 } 635 case TargetOpcode::G_SELECT: 636 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 637 case TargetOpcode::G_AND: 638 case TargetOpcode::G_OR: 639 case TargetOpcode::G_XOR: { 640 // Legalize bitwise operation: 641 // A = BinOp<Ty> B, C 642 // into: 643 // B1, ..., BN = G_UNMERGE_VALUES B 644 // C1, ..., CN = G_UNMERGE_VALUES C 645 // A1 = BinOp<Ty/N> B1, C2 646 // ... 647 // AN = BinOp<Ty/N> BN, CN 648 // A = G_MERGE_VALUES A1, ..., AN 649 650 // FIXME: add support for when SizeOp0 isn't an exact multiple of 651 // NarrowSize. 652 if (SizeOp0 % NarrowSize != 0) 653 return UnableToLegalize; 654 int NumParts = SizeOp0 / NarrowSize; 655 656 // List the registers where the destination will be scattered. 657 SmallVector<unsigned, 2> DstRegs; 658 // List the registers where the first argument will be split. 659 SmallVector<unsigned, 2> SrcsReg1; 660 // List the registers where the second argument will be split. 661 SmallVector<unsigned, 2> SrcsReg2; 662 // Create all the temporary registers. 663 for (int i = 0; i < NumParts; ++i) { 664 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 665 unsigned SrcReg1 = MRI.createGenericVirtualRegister(NarrowTy); 666 unsigned SrcReg2 = MRI.createGenericVirtualRegister(NarrowTy); 667 668 DstRegs.push_back(DstReg); 669 SrcsReg1.push_back(SrcReg1); 670 SrcsReg2.push_back(SrcReg2); 671 } 672 // Explode the big arguments into smaller chunks. 673 MIRBuilder.buildUnmerge(SrcsReg1, MI.getOperand(1).getReg()); 674 MIRBuilder.buildUnmerge(SrcsReg2, MI.getOperand(2).getReg()); 675 676 // Do the operation on each small part. 677 for (int i = 0; i < NumParts; ++i) 678 MIRBuilder.buildInstr(MI.getOpcode(), {DstRegs[i]}, 679 {SrcsReg1[i], SrcsReg2[i]}); 680 681 // Gather the destination registers into the final destination. 682 unsigned DstReg = MI.getOperand(0).getReg(); 683 if(MRI.getType(DstReg).isVector()) 684 MIRBuilder.buildBuildVector(DstReg, DstRegs); 685 else 686 MIRBuilder.buildMerge(DstReg, DstRegs); 687 MI.eraseFromParent(); 688 return Legalized; 689 } 690 case TargetOpcode::G_SHL: 691 case TargetOpcode::G_LSHR: 692 case TargetOpcode::G_ASHR: 693 return narrowScalarShift(MI, TypeIdx, NarrowTy); 694 case TargetOpcode::G_CTLZ: 695 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 696 case TargetOpcode::G_CTTZ: 697 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 698 case TargetOpcode::G_CTPOP: 699 if (TypeIdx != 0) 700 return UnableToLegalize; // TODO 701 702 Observer.changingInstr(MI); 703 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 704 Observer.changedInstr(MI); 705 return Legalized; 706 case TargetOpcode::G_INTTOPTR: 707 if (TypeIdx != 1) 708 return UnableToLegalize; 709 710 Observer.changingInstr(MI); 711 narrowScalarSrc(MI, NarrowTy, 1); 712 Observer.changedInstr(MI); 713 return Legalized; 714 case TargetOpcode::G_PTRTOINT: 715 if (TypeIdx != 0) 716 return UnableToLegalize; 717 718 Observer.changingInstr(MI); 719 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 720 Observer.changedInstr(MI); 721 return Legalized; 722 } 723 } 724 725 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 726 unsigned OpIdx, unsigned ExtOpcode) { 727 MachineOperand &MO = MI.getOperand(OpIdx); 728 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); 729 MO.setReg(ExtB->getOperand(0).getReg()); 730 } 731 732 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 733 unsigned OpIdx) { 734 MachineOperand &MO = MI.getOperand(OpIdx); 735 auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, 736 {MO.getReg()}); 737 MO.setReg(ExtB->getOperand(0).getReg()); 738 } 739 740 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 741 unsigned OpIdx, unsigned TruncOpcode) { 742 MachineOperand &MO = MI.getOperand(OpIdx); 743 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 744 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 745 MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); 746 MO.setReg(DstExt); 747 } 748 749 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 750 unsigned OpIdx, unsigned ExtOpcode) { 751 MachineOperand &MO = MI.getOperand(OpIdx); 752 unsigned DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 753 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 754 MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); 755 MO.setReg(DstTrunc); 756 } 757 758 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 759 unsigned OpIdx) { 760 MachineOperand &MO = MI.getOperand(OpIdx); 761 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 762 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 763 MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); 764 MO.setReg(DstExt); 765 } 766 767 LegalizerHelper::LegalizeResult 768 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 769 LLT WideTy) { 770 if (TypeIdx != 1) 771 return UnableToLegalize; 772 773 unsigned DstReg = MI.getOperand(0).getReg(); 774 LLT DstTy = MRI.getType(DstReg); 775 if (!DstTy.isScalar()) 776 return UnableToLegalize; 777 778 unsigned NumOps = MI.getNumOperands(); 779 unsigned NumSrc = MI.getNumOperands() - 1; 780 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 781 782 unsigned Src1 = MI.getOperand(1).getReg(); 783 unsigned ResultReg = MIRBuilder.buildZExt(DstTy, Src1)->getOperand(0).getReg(); 784 785 for (unsigned I = 2; I != NumOps; ++I) { 786 const unsigned Offset = (I - 1) * PartSize; 787 788 unsigned SrcReg = MI.getOperand(I).getReg(); 789 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 790 791 auto ZextInput = MIRBuilder.buildZExt(DstTy, SrcReg); 792 793 unsigned NextResult = I + 1 == NumOps ? DstReg : 794 MRI.createGenericVirtualRegister(DstTy); 795 796 auto ShiftAmt = MIRBuilder.buildConstant(DstTy, Offset); 797 auto Shl = MIRBuilder.buildShl(DstTy, ZextInput, ShiftAmt); 798 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 799 ResultReg = NextResult; 800 } 801 802 MI.eraseFromParent(); 803 return Legalized; 804 } 805 806 LegalizerHelper::LegalizeResult 807 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 808 LLT WideTy) { 809 if (TypeIdx != 0) 810 return UnableToLegalize; 811 812 unsigned NumDst = MI.getNumOperands() - 1; 813 unsigned SrcReg = MI.getOperand(NumDst).getReg(); 814 LLT SrcTy = MRI.getType(SrcReg); 815 if (!SrcTy.isScalar()) 816 return UnableToLegalize; 817 818 unsigned Dst0Reg = MI.getOperand(0).getReg(); 819 LLT DstTy = MRI.getType(Dst0Reg); 820 if (!DstTy.isScalar()) 821 return UnableToLegalize; 822 823 unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); 824 LLT NewSrcTy = LLT::scalar(NewSrcSize); 825 unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); 826 827 auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); 828 829 for (unsigned I = 1; I != NumDst; ++I) { 830 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); 831 auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); 832 WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); 833 } 834 835 Observer.changingInstr(MI); 836 837 MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); 838 for (unsigned I = 0; I != NumDst; ++I) 839 widenScalarDst(MI, WideTy, I); 840 841 Observer.changedInstr(MI); 842 843 return Legalized; 844 } 845 846 LegalizerHelper::LegalizeResult 847 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 848 LLT WideTy) { 849 if (TypeIdx != 1) 850 return UnableToLegalize; 851 852 unsigned SrcReg = MI.getOperand(1).getReg(); 853 LLT SrcTy = MRI.getType(SrcReg); 854 if (!SrcTy.isVector()) 855 return UnableToLegalize; 856 857 unsigned DstReg = MI.getOperand(0).getReg(); 858 LLT DstTy = MRI.getType(DstReg); 859 if (DstTy != SrcTy.getElementType()) 860 return UnableToLegalize; 861 862 unsigned Offset = MI.getOperand(2).getImm(); 863 if (Offset % SrcTy.getScalarSizeInBits() != 0) 864 return UnableToLegalize; 865 866 Observer.changingInstr(MI); 867 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 868 869 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 870 Offset); 871 widenScalarDst(MI, WideTy.getScalarType(), 0); 872 Observer.changedInstr(MI); 873 return Legalized; 874 } 875 876 LegalizerHelper::LegalizeResult 877 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 878 LLT WideTy) { 879 if (TypeIdx != 0) 880 return UnableToLegalize; 881 Observer.changingInstr(MI); 882 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 883 widenScalarDst(MI, WideTy); 884 Observer.changedInstr(MI); 885 return Legalized; 886 } 887 888 LegalizerHelper::LegalizeResult 889 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 890 MIRBuilder.setInstr(MI); 891 892 switch (MI.getOpcode()) { 893 default: 894 return UnableToLegalize; 895 case TargetOpcode::G_EXTRACT: 896 return widenScalarExtract(MI, TypeIdx, WideTy); 897 case TargetOpcode::G_INSERT: 898 return widenScalarInsert(MI, TypeIdx, WideTy); 899 case TargetOpcode::G_MERGE_VALUES: 900 return widenScalarMergeValues(MI, TypeIdx, WideTy); 901 case TargetOpcode::G_UNMERGE_VALUES: 902 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 903 case TargetOpcode::G_UADDO: 904 case TargetOpcode::G_USUBO: { 905 if (TypeIdx == 1) 906 return UnableToLegalize; // TODO 907 auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 908 {MI.getOperand(2).getReg()}); 909 auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, 910 {MI.getOperand(3).getReg()}); 911 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 912 ? TargetOpcode::G_ADD 913 : TargetOpcode::G_SUB; 914 // Do the arithmetic in the larger type. 915 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 916 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 917 APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); 918 auto AndOp = MIRBuilder.buildInstr( 919 TargetOpcode::G_AND, {WideTy}, 920 {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); 921 // There is no overflow if the AndOp is the same as NewOp. 922 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, 923 AndOp); 924 // Now trunc the NewOp to the original result. 925 MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); 926 MI.eraseFromParent(); 927 return Legalized; 928 } 929 case TargetOpcode::G_CTTZ: 930 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 931 case TargetOpcode::G_CTLZ: 932 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 933 case TargetOpcode::G_CTPOP: { 934 if (TypeIdx == 0) { 935 Observer.changingInstr(MI); 936 widenScalarDst(MI, WideTy, 0); 937 Observer.changedInstr(MI); 938 return Legalized; 939 } 940 941 unsigned SrcReg = MI.getOperand(1).getReg(); 942 943 // First ZEXT the input. 944 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 945 LLT CurTy = MRI.getType(SrcReg); 946 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 947 // The count is the same in the larger type except if the original 948 // value was zero. This can be handled by setting the bit just off 949 // the top of the original type. 950 auto TopBit = 951 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 952 MIBSrc = MIRBuilder.buildOr( 953 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 954 } 955 956 // Perform the operation at the larger size. 957 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 958 // This is already the correct result for CTPOP and CTTZs 959 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 960 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 961 // The correct result is NewOp - (Difference in widety and current ty). 962 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 963 MIBNewOp = MIRBuilder.buildInstr( 964 TargetOpcode::G_SUB, {WideTy}, 965 {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); 966 } 967 968 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 969 MI.eraseFromParent(); 970 return Legalized; 971 } 972 case TargetOpcode::G_BSWAP: { 973 Observer.changingInstr(MI); 974 unsigned DstReg = MI.getOperand(0).getReg(); 975 976 unsigned ShrReg = MRI.createGenericVirtualRegister(WideTy); 977 unsigned DstExt = MRI.createGenericVirtualRegister(WideTy); 978 unsigned ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 979 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 980 981 MI.getOperand(0).setReg(DstExt); 982 983 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 984 985 LLT Ty = MRI.getType(DstReg); 986 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 987 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 988 MIRBuilder.buildInstr(TargetOpcode::G_LSHR) 989 .addDef(ShrReg) 990 .addUse(DstExt) 991 .addUse(ShiftAmtReg); 992 993 MIRBuilder.buildTrunc(DstReg, ShrReg); 994 Observer.changedInstr(MI); 995 return Legalized; 996 } 997 case TargetOpcode::G_ADD: 998 case TargetOpcode::G_AND: 999 case TargetOpcode::G_MUL: 1000 case TargetOpcode::G_OR: 1001 case TargetOpcode::G_XOR: 1002 case TargetOpcode::G_SUB: 1003 // Perform operation at larger width (any extension is fines here, high bits 1004 // don't affect the result) and then truncate the result back to the 1005 // original type. 1006 Observer.changingInstr(MI); 1007 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1008 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1009 widenScalarDst(MI, WideTy); 1010 Observer.changedInstr(MI); 1011 return Legalized; 1012 1013 case TargetOpcode::G_SHL: 1014 Observer.changingInstr(MI); 1015 1016 if (TypeIdx == 0) { 1017 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1018 widenScalarDst(MI, WideTy); 1019 } else { 1020 assert(TypeIdx == 1); 1021 // The "number of bits to shift" operand must preserve its value as an 1022 // unsigned integer: 1023 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1024 } 1025 1026 Observer.changedInstr(MI); 1027 return Legalized; 1028 1029 case TargetOpcode::G_SDIV: 1030 case TargetOpcode::G_SREM: 1031 Observer.changingInstr(MI); 1032 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1033 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1034 widenScalarDst(MI, WideTy); 1035 Observer.changedInstr(MI); 1036 return Legalized; 1037 1038 case TargetOpcode::G_ASHR: 1039 case TargetOpcode::G_LSHR: 1040 Observer.changingInstr(MI); 1041 1042 if (TypeIdx == 0) { 1043 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1044 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1045 1046 widenScalarSrc(MI, WideTy, 1, CvtOp); 1047 widenScalarDst(MI, WideTy); 1048 } else { 1049 assert(TypeIdx == 1); 1050 // The "number of bits to shift" operand must preserve its value as an 1051 // unsigned integer: 1052 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1053 } 1054 1055 Observer.changedInstr(MI); 1056 return Legalized; 1057 case TargetOpcode::G_UDIV: 1058 case TargetOpcode::G_UREM: 1059 Observer.changingInstr(MI); 1060 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1061 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1062 widenScalarDst(MI, WideTy); 1063 Observer.changedInstr(MI); 1064 return Legalized; 1065 1066 case TargetOpcode::G_SELECT: 1067 Observer.changingInstr(MI); 1068 if (TypeIdx == 0) { 1069 // Perform operation at larger width (any extension is fine here, high 1070 // bits don't affect the result) and then truncate the result back to the 1071 // original type. 1072 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1073 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1074 widenScalarDst(MI, WideTy); 1075 } else { 1076 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1077 // Explicit extension is required here since high bits affect the result. 1078 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1079 } 1080 Observer.changedInstr(MI); 1081 return Legalized; 1082 1083 case TargetOpcode::G_FPTOSI: 1084 case TargetOpcode::G_FPTOUI: 1085 if (TypeIdx != 0) 1086 return UnableToLegalize; 1087 Observer.changingInstr(MI); 1088 widenScalarDst(MI, WideTy); 1089 Observer.changedInstr(MI); 1090 return Legalized; 1091 1092 case TargetOpcode::G_SITOFP: 1093 if (TypeIdx != 1) 1094 return UnableToLegalize; 1095 Observer.changingInstr(MI); 1096 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1097 Observer.changedInstr(MI); 1098 return Legalized; 1099 1100 case TargetOpcode::G_UITOFP: 1101 if (TypeIdx != 1) 1102 return UnableToLegalize; 1103 Observer.changingInstr(MI); 1104 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1105 Observer.changedInstr(MI); 1106 return Legalized; 1107 1108 case TargetOpcode::G_LOAD: 1109 case TargetOpcode::G_SEXTLOAD: 1110 case TargetOpcode::G_ZEXTLOAD: 1111 Observer.changingInstr(MI); 1112 widenScalarDst(MI, WideTy); 1113 Observer.changedInstr(MI); 1114 return Legalized; 1115 1116 case TargetOpcode::G_STORE: { 1117 if (TypeIdx != 0) 1118 return UnableToLegalize; 1119 1120 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1121 if (!isPowerOf2_32(Ty.getSizeInBits())) 1122 return UnableToLegalize; 1123 1124 Observer.changingInstr(MI); 1125 1126 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1127 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1128 widenScalarSrc(MI, WideTy, 0, ExtType); 1129 1130 Observer.changedInstr(MI); 1131 return Legalized; 1132 } 1133 case TargetOpcode::G_CONSTANT: { 1134 MachineOperand &SrcMO = MI.getOperand(1); 1135 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1136 const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); 1137 Observer.changingInstr(MI); 1138 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1139 1140 widenScalarDst(MI, WideTy); 1141 Observer.changedInstr(MI); 1142 return Legalized; 1143 } 1144 case TargetOpcode::G_FCONSTANT: { 1145 MachineOperand &SrcMO = MI.getOperand(1); 1146 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1147 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1148 bool LosesInfo; 1149 switch (WideTy.getSizeInBits()) { 1150 case 32: 1151 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1152 &LosesInfo); 1153 break; 1154 case 64: 1155 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1156 &LosesInfo); 1157 break; 1158 default: 1159 return UnableToLegalize; 1160 } 1161 1162 assert(!LosesInfo && "extend should always be lossless"); 1163 1164 Observer.changingInstr(MI); 1165 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1166 1167 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1168 Observer.changedInstr(MI); 1169 return Legalized; 1170 } 1171 case TargetOpcode::G_IMPLICIT_DEF: { 1172 Observer.changingInstr(MI); 1173 widenScalarDst(MI, WideTy); 1174 Observer.changedInstr(MI); 1175 return Legalized; 1176 } 1177 case TargetOpcode::G_BRCOND: 1178 Observer.changingInstr(MI); 1179 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1180 Observer.changedInstr(MI); 1181 return Legalized; 1182 1183 case TargetOpcode::G_FCMP: 1184 Observer.changingInstr(MI); 1185 if (TypeIdx == 0) 1186 widenScalarDst(MI, WideTy); 1187 else { 1188 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1189 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1190 } 1191 Observer.changedInstr(MI); 1192 return Legalized; 1193 1194 case TargetOpcode::G_ICMP: 1195 Observer.changingInstr(MI); 1196 if (TypeIdx == 0) 1197 widenScalarDst(MI, WideTy); 1198 else { 1199 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1200 MI.getOperand(1).getPredicate())) 1201 ? TargetOpcode::G_SEXT 1202 : TargetOpcode::G_ZEXT; 1203 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1204 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1205 } 1206 Observer.changedInstr(MI); 1207 return Legalized; 1208 1209 case TargetOpcode::G_GEP: 1210 assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); 1211 Observer.changingInstr(MI); 1212 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1213 Observer.changedInstr(MI); 1214 return Legalized; 1215 1216 case TargetOpcode::G_PHI: { 1217 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1218 1219 Observer.changingInstr(MI); 1220 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1221 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1222 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1223 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1224 } 1225 1226 MachineBasicBlock &MBB = *MI.getParent(); 1227 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1228 widenScalarDst(MI, WideTy); 1229 Observer.changedInstr(MI); 1230 return Legalized; 1231 } 1232 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1233 if (TypeIdx == 0) { 1234 unsigned VecReg = MI.getOperand(1).getReg(); 1235 LLT VecTy = MRI.getType(VecReg); 1236 Observer.changingInstr(MI); 1237 1238 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1239 WideTy.getSizeInBits()), 1240 1, TargetOpcode::G_SEXT); 1241 1242 widenScalarDst(MI, WideTy, 0); 1243 Observer.changedInstr(MI); 1244 return Legalized; 1245 } 1246 1247 if (TypeIdx != 2) 1248 return UnableToLegalize; 1249 Observer.changingInstr(MI); 1250 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1251 Observer.changedInstr(MI); 1252 return Legalized; 1253 } 1254 case TargetOpcode::G_FADD: 1255 case TargetOpcode::G_FMUL: 1256 case TargetOpcode::G_FSUB: 1257 case TargetOpcode::G_FMA: 1258 case TargetOpcode::G_FNEG: 1259 case TargetOpcode::G_FABS: 1260 case TargetOpcode::G_FCANONICALIZE: 1261 case TargetOpcode::G_FDIV: 1262 case TargetOpcode::G_FREM: 1263 case TargetOpcode::G_FCEIL: 1264 case TargetOpcode::G_FFLOOR: 1265 case TargetOpcode::G_FCOS: 1266 case TargetOpcode::G_FSIN: 1267 case TargetOpcode::G_FLOG10: 1268 case TargetOpcode::G_FLOG: 1269 case TargetOpcode::G_FLOG2: 1270 case TargetOpcode::G_FSQRT: 1271 case TargetOpcode::G_FEXP: 1272 assert(TypeIdx == 0); 1273 Observer.changingInstr(MI); 1274 1275 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 1276 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 1277 1278 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1279 Observer.changedInstr(MI); 1280 return Legalized; 1281 case TargetOpcode::G_INTTOPTR: 1282 if (TypeIdx != 1) 1283 return UnableToLegalize; 1284 1285 Observer.changingInstr(MI); 1286 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1287 Observer.changedInstr(MI); 1288 return Legalized; 1289 case TargetOpcode::G_PTRTOINT: 1290 if (TypeIdx != 0) 1291 return UnableToLegalize; 1292 1293 Observer.changingInstr(MI); 1294 widenScalarDst(MI, WideTy, 0); 1295 Observer.changedInstr(MI); 1296 return Legalized; 1297 } 1298 } 1299 1300 LegalizerHelper::LegalizeResult 1301 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 1302 using namespace TargetOpcode; 1303 MIRBuilder.setInstr(MI); 1304 1305 switch(MI.getOpcode()) { 1306 default: 1307 return UnableToLegalize; 1308 case TargetOpcode::G_SREM: 1309 case TargetOpcode::G_UREM: { 1310 unsigned QuotReg = MRI.createGenericVirtualRegister(Ty); 1311 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) 1312 .addDef(QuotReg) 1313 .addUse(MI.getOperand(1).getReg()) 1314 .addUse(MI.getOperand(2).getReg()); 1315 1316 unsigned ProdReg = MRI.createGenericVirtualRegister(Ty); 1317 MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); 1318 MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), 1319 ProdReg); 1320 MI.eraseFromParent(); 1321 return Legalized; 1322 } 1323 case TargetOpcode::G_SMULO: 1324 case TargetOpcode::G_UMULO: { 1325 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 1326 // result. 1327 unsigned Res = MI.getOperand(0).getReg(); 1328 unsigned Overflow = MI.getOperand(1).getReg(); 1329 unsigned LHS = MI.getOperand(2).getReg(); 1330 unsigned RHS = MI.getOperand(3).getReg(); 1331 1332 MIRBuilder.buildMul(Res, LHS, RHS); 1333 1334 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 1335 ? TargetOpcode::G_SMULH 1336 : TargetOpcode::G_UMULH; 1337 1338 unsigned HiPart = MRI.createGenericVirtualRegister(Ty); 1339 MIRBuilder.buildInstr(Opcode) 1340 .addDef(HiPart) 1341 .addUse(LHS) 1342 .addUse(RHS); 1343 1344 unsigned Zero = MRI.createGenericVirtualRegister(Ty); 1345 MIRBuilder.buildConstant(Zero, 0); 1346 1347 // For *signed* multiply, overflow is detected by checking: 1348 // (hi != (lo >> bitwidth-1)) 1349 if (Opcode == TargetOpcode::G_SMULH) { 1350 unsigned Shifted = MRI.createGenericVirtualRegister(Ty); 1351 unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty); 1352 MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); 1353 MIRBuilder.buildInstr(TargetOpcode::G_ASHR) 1354 .addDef(Shifted) 1355 .addUse(Res) 1356 .addUse(ShiftAmt); 1357 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 1358 } else { 1359 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 1360 } 1361 MI.eraseFromParent(); 1362 return Legalized; 1363 } 1364 case TargetOpcode::G_FNEG: { 1365 // TODO: Handle vector types once we are able to 1366 // represent them. 1367 if (Ty.isVector()) 1368 return UnableToLegalize; 1369 unsigned Res = MI.getOperand(0).getReg(); 1370 Type *ZeroTy; 1371 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1372 switch (Ty.getSizeInBits()) { 1373 case 16: 1374 ZeroTy = Type::getHalfTy(Ctx); 1375 break; 1376 case 32: 1377 ZeroTy = Type::getFloatTy(Ctx); 1378 break; 1379 case 64: 1380 ZeroTy = Type::getDoubleTy(Ctx); 1381 break; 1382 case 128: 1383 ZeroTy = Type::getFP128Ty(Ctx); 1384 break; 1385 default: 1386 llvm_unreachable("unexpected floating-point type"); 1387 } 1388 ConstantFP &ZeroForNegation = 1389 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 1390 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 1391 MIRBuilder.buildInstr(TargetOpcode::G_FSUB) 1392 .addDef(Res) 1393 .addUse(Zero->getOperand(0).getReg()) 1394 .addUse(MI.getOperand(1).getReg()); 1395 MI.eraseFromParent(); 1396 return Legalized; 1397 } 1398 case TargetOpcode::G_FSUB: { 1399 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 1400 // First, check if G_FNEG is marked as Lower. If so, we may 1401 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 1402 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 1403 return UnableToLegalize; 1404 unsigned Res = MI.getOperand(0).getReg(); 1405 unsigned LHS = MI.getOperand(1).getReg(); 1406 unsigned RHS = MI.getOperand(2).getReg(); 1407 unsigned Neg = MRI.createGenericVirtualRegister(Ty); 1408 MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); 1409 MIRBuilder.buildInstr(TargetOpcode::G_FADD) 1410 .addDef(Res) 1411 .addUse(LHS) 1412 .addUse(Neg); 1413 MI.eraseFromParent(); 1414 return Legalized; 1415 } 1416 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 1417 unsigned OldValRes = MI.getOperand(0).getReg(); 1418 unsigned SuccessRes = MI.getOperand(1).getReg(); 1419 unsigned Addr = MI.getOperand(2).getReg(); 1420 unsigned CmpVal = MI.getOperand(3).getReg(); 1421 unsigned NewVal = MI.getOperand(4).getReg(); 1422 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 1423 **MI.memoperands_begin()); 1424 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 1425 MI.eraseFromParent(); 1426 return Legalized; 1427 } 1428 case TargetOpcode::G_LOAD: 1429 case TargetOpcode::G_SEXTLOAD: 1430 case TargetOpcode::G_ZEXTLOAD: { 1431 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 1432 unsigned DstReg = MI.getOperand(0).getReg(); 1433 unsigned PtrReg = MI.getOperand(1).getReg(); 1434 LLT DstTy = MRI.getType(DstReg); 1435 auto &MMO = **MI.memoperands_begin(); 1436 1437 if (DstTy.getSizeInBits() == MMO.getSize() /* in bytes */ * 8) { 1438 // In the case of G_LOAD, this was a non-extending load already and we're 1439 // about to lower to the same instruction. 1440 if (MI.getOpcode() == TargetOpcode::G_LOAD) 1441 return UnableToLegalize; 1442 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 1443 MI.eraseFromParent(); 1444 return Legalized; 1445 } 1446 1447 if (DstTy.isScalar()) { 1448 unsigned TmpReg = MRI.createGenericVirtualRegister( 1449 LLT::scalar(MMO.getSize() /* in bytes */ * 8)); 1450 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 1451 switch (MI.getOpcode()) { 1452 default: 1453 llvm_unreachable("Unexpected opcode"); 1454 case TargetOpcode::G_LOAD: 1455 MIRBuilder.buildAnyExt(DstReg, TmpReg); 1456 break; 1457 case TargetOpcode::G_SEXTLOAD: 1458 MIRBuilder.buildSExt(DstReg, TmpReg); 1459 break; 1460 case TargetOpcode::G_ZEXTLOAD: 1461 MIRBuilder.buildZExt(DstReg, TmpReg); 1462 break; 1463 } 1464 MI.eraseFromParent(); 1465 return Legalized; 1466 } 1467 1468 return UnableToLegalize; 1469 } 1470 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1471 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1472 case TargetOpcode::G_CTLZ: 1473 case TargetOpcode::G_CTTZ: 1474 case TargetOpcode::G_CTPOP: 1475 return lowerBitCount(MI, TypeIdx, Ty); 1476 case G_UADDE: { 1477 unsigned Res = MI.getOperand(0).getReg(); 1478 unsigned CarryOut = MI.getOperand(1).getReg(); 1479 unsigned LHS = MI.getOperand(2).getReg(); 1480 unsigned RHS = MI.getOperand(3).getReg(); 1481 unsigned CarryIn = MI.getOperand(4).getReg(); 1482 1483 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1484 unsigned ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); 1485 1486 MIRBuilder.buildAdd(TmpRes, LHS, RHS); 1487 MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); 1488 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 1489 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 1490 1491 MI.eraseFromParent(); 1492 return Legalized; 1493 } 1494 case G_USUBO: { 1495 unsigned Res = MI.getOperand(0).getReg(); 1496 unsigned BorrowOut = MI.getOperand(1).getReg(); 1497 unsigned LHS = MI.getOperand(2).getReg(); 1498 unsigned RHS = MI.getOperand(3).getReg(); 1499 1500 MIRBuilder.buildSub(Res, LHS, RHS); 1501 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 1502 1503 MI.eraseFromParent(); 1504 return Legalized; 1505 } 1506 case G_USUBE: { 1507 unsigned Res = MI.getOperand(0).getReg(); 1508 unsigned BorrowOut = MI.getOperand(1).getReg(); 1509 unsigned LHS = MI.getOperand(2).getReg(); 1510 unsigned RHS = MI.getOperand(3).getReg(); 1511 unsigned BorrowIn = MI.getOperand(4).getReg(); 1512 1513 unsigned TmpRes = MRI.createGenericVirtualRegister(Ty); 1514 unsigned ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); 1515 unsigned LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1516 unsigned LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); 1517 1518 MIRBuilder.buildSub(TmpRes, LHS, RHS); 1519 MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); 1520 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 1521 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); 1522 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); 1523 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 1524 1525 MI.eraseFromParent(); 1526 return Legalized; 1527 } 1528 } 1529 } 1530 1531 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 1532 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 1533 SmallVector<unsigned, 2> DstRegs; 1534 1535 unsigned NarrowSize = NarrowTy.getSizeInBits(); 1536 unsigned DstReg = MI.getOperand(0).getReg(); 1537 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 1538 int NumParts = Size / NarrowSize; 1539 // FIXME: Don't know how to handle the situation where the small vectors 1540 // aren't all the same size yet. 1541 if (Size % NarrowSize != 0) 1542 return UnableToLegalize; 1543 1544 for (int i = 0; i < NumParts; ++i) { 1545 unsigned TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 1546 MIRBuilder.buildUndef(TmpReg); 1547 DstRegs.push_back(TmpReg); 1548 } 1549 1550 if (NarrowTy.isVector()) 1551 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1552 else 1553 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1554 1555 MI.eraseFromParent(); 1556 return Legalized; 1557 } 1558 1559 LegalizerHelper::LegalizeResult 1560 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 1561 LLT NarrowTy) { 1562 const unsigned Opc = MI.getOpcode(); 1563 const unsigned NumOps = MI.getNumOperands() - 1; 1564 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 1565 const unsigned DstReg = MI.getOperand(0).getReg(); 1566 const unsigned Flags = MI.getFlags(); 1567 const LLT DstTy = MRI.getType(DstReg); 1568 const unsigned Size = DstTy.getSizeInBits(); 1569 const int NumParts = Size / NarrowSize; 1570 const LLT EltTy = DstTy.getElementType(); 1571 const unsigned EltSize = EltTy.getSizeInBits(); 1572 const unsigned BitsForNumParts = NarrowSize * NumParts; 1573 1574 // Check if we have any leftovers. If we do, then only handle the case where 1575 // the leftover is one element. 1576 if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) 1577 return UnableToLegalize; 1578 1579 if (BitsForNumParts != Size) { 1580 unsigned AccumDstReg = MRI.createGenericVirtualRegister(DstTy); 1581 MIRBuilder.buildUndef(AccumDstReg); 1582 1583 // Handle the pieces which evenly divide into the requested type with 1584 // extract/op/insert sequence. 1585 for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { 1586 SmallVector<SrcOp, 4> SrcOps; 1587 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1588 unsigned PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); 1589 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); 1590 SrcOps.push_back(PartOpReg); 1591 } 1592 1593 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); 1594 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1595 1596 unsigned PartInsertReg = MRI.createGenericVirtualRegister(DstTy); 1597 MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); 1598 AccumDstReg = PartInsertReg; 1599 Offset += NarrowSize; 1600 } 1601 1602 // Handle the remaining element sized leftover piece. 1603 SmallVector<SrcOp, 4> SrcOps; 1604 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1605 unsigned PartOpReg = MRI.createGenericVirtualRegister(EltTy); 1606 MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), 1607 BitsForNumParts); 1608 SrcOps.push_back(PartOpReg); 1609 } 1610 1611 unsigned PartDstReg = MRI.createGenericVirtualRegister(EltTy); 1612 MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); 1613 MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); 1614 MI.eraseFromParent(); 1615 1616 return Legalized; 1617 } 1618 1619 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 1620 1621 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); 1622 1623 if (NumOps >= 2) 1624 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); 1625 1626 if (NumOps >= 3) 1627 extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); 1628 1629 for (int i = 0; i < NumParts; ++i) { 1630 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 1631 1632 if (NumOps == 1) 1633 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); 1634 else if (NumOps == 2) { 1635 MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); 1636 } else if (NumOps == 3) { 1637 MIRBuilder.buildInstr(Opc, {DstReg}, 1638 {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); 1639 } 1640 1641 DstRegs.push_back(DstReg); 1642 } 1643 1644 if (NarrowTy.isVector()) 1645 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1646 else 1647 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1648 1649 MI.eraseFromParent(); 1650 return Legalized; 1651 } 1652 1653 // Handle splitting vector operations which need to have the same number of 1654 // elements in each type index, but each type index may have a different element 1655 // type. 1656 // 1657 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 1658 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1659 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1660 // 1661 // Also handles some irregular breakdown cases, e.g. 1662 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 1663 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 1664 // s64 = G_SHL s64, s32 1665 LegalizerHelper::LegalizeResult 1666 LegalizerHelper::fewerElementsVectorMultiEltType( 1667 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 1668 if (TypeIdx != 0) 1669 return UnableToLegalize; 1670 1671 const LLT NarrowTy0 = NarrowTyArg; 1672 const unsigned NewNumElts = 1673 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 1674 1675 const unsigned DstReg = MI.getOperand(0).getReg(); 1676 LLT DstTy = MRI.getType(DstReg); 1677 LLT LeftoverTy0; 1678 1679 // All of the operands need to have the same number of elements, so if we can 1680 // determine a type breakdown for the result type, we can for all of the 1681 // source types. 1682 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0); 1683 if (NumParts < 0) 1684 return UnableToLegalize; 1685 1686 SmallVector<MachineInstrBuilder, 4> NewInsts; 1687 1688 SmallVector<unsigned, 4> DstRegs, LeftoverDstRegs; 1689 SmallVector<unsigned, 4> PartRegs, LeftoverRegs; 1690 1691 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 1692 LLT LeftoverTy; 1693 unsigned SrcReg = MI.getOperand(I).getReg(); 1694 LLT SrcTyI = MRI.getType(SrcReg); 1695 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 1696 LLT LeftoverTyI; 1697 1698 // Split this operand into the requested typed registers, and any leftover 1699 // required to reproduce the original type. 1700 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 1701 LeftoverRegs)) 1702 return UnableToLegalize; 1703 1704 if (I == 1) { 1705 // For the first operand, create an instruction for each part and setup 1706 // the result. 1707 for (unsigned PartReg : PartRegs) { 1708 unsigned PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1709 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1710 .addDef(PartDstReg) 1711 .addUse(PartReg)); 1712 DstRegs.push_back(PartDstReg); 1713 } 1714 1715 for (unsigned LeftoverReg : LeftoverRegs) { 1716 unsigned PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 1717 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 1718 .addDef(PartDstReg) 1719 .addUse(LeftoverReg)); 1720 LeftoverDstRegs.push_back(PartDstReg); 1721 } 1722 } else { 1723 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 1724 1725 // Add the newly created operand splits to the existing instructions. The 1726 // odd-sized pieces are ordered after the requested NarrowTyArg sized 1727 // pieces. 1728 unsigned InstCount = 0; 1729 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 1730 NewInsts[InstCount++].addUse(PartRegs[J]); 1731 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 1732 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 1733 } 1734 1735 PartRegs.clear(); 1736 LeftoverRegs.clear(); 1737 } 1738 1739 // Insert the newly built operations and rebuild the result register. 1740 for (auto &MIB : NewInsts) 1741 MIRBuilder.insertInstr(MIB); 1742 1743 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 1744 1745 MI.eraseFromParent(); 1746 return Legalized; 1747 } 1748 1749 LegalizerHelper::LegalizeResult 1750 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 1751 LLT NarrowTy) { 1752 if (TypeIdx != 0) 1753 return UnableToLegalize; 1754 1755 unsigned DstReg = MI.getOperand(0).getReg(); 1756 unsigned SrcReg = MI.getOperand(1).getReg(); 1757 LLT DstTy = MRI.getType(DstReg); 1758 LLT SrcTy = MRI.getType(SrcReg); 1759 1760 LLT NarrowTy0 = NarrowTy; 1761 LLT NarrowTy1; 1762 unsigned NumParts; 1763 1764 if (NarrowTy.isVector()) { 1765 // Uneven breakdown not handled. 1766 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 1767 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 1768 return UnableToLegalize; 1769 1770 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 1771 } else { 1772 NumParts = DstTy.getNumElements(); 1773 NarrowTy1 = SrcTy.getElementType(); 1774 } 1775 1776 SmallVector<unsigned, 4> SrcRegs, DstRegs; 1777 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 1778 1779 for (unsigned I = 0; I < NumParts; ++I) { 1780 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1781 MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) 1782 .addDef(DstReg) 1783 .addUse(SrcRegs[I]); 1784 1785 NewInst->setFlags(MI.getFlags()); 1786 DstRegs.push_back(DstReg); 1787 } 1788 1789 if (NarrowTy.isVector()) 1790 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1791 else 1792 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1793 1794 MI.eraseFromParent(); 1795 return Legalized; 1796 } 1797 1798 LegalizerHelper::LegalizeResult 1799 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 1800 LLT NarrowTy) { 1801 unsigned DstReg = MI.getOperand(0).getReg(); 1802 unsigned Src0Reg = MI.getOperand(2).getReg(); 1803 LLT DstTy = MRI.getType(DstReg); 1804 LLT SrcTy = MRI.getType(Src0Reg); 1805 1806 unsigned NumParts; 1807 LLT NarrowTy0, NarrowTy1; 1808 1809 if (TypeIdx == 0) { 1810 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1811 unsigned OldElts = DstTy.getNumElements(); 1812 1813 NarrowTy0 = NarrowTy; 1814 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 1815 NarrowTy1 = NarrowTy.isVector() ? 1816 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 1817 SrcTy.getElementType(); 1818 1819 } else { 1820 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 1821 unsigned OldElts = SrcTy.getNumElements(); 1822 1823 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 1824 NarrowTy.getNumElements(); 1825 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 1826 DstTy.getScalarSizeInBits()); 1827 NarrowTy1 = NarrowTy; 1828 } 1829 1830 // FIXME: Don't know how to handle the situation where the small vectors 1831 // aren't all the same size yet. 1832 if (NarrowTy1.isVector() && 1833 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 1834 return UnableToLegalize; 1835 1836 CmpInst::Predicate Pred 1837 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1838 1839 SmallVector<unsigned, 2> Src1Regs, Src2Regs, DstRegs; 1840 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 1841 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 1842 1843 for (unsigned I = 0; I < NumParts; ++I) { 1844 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1845 DstRegs.push_back(DstReg); 1846 1847 if (MI.getOpcode() == TargetOpcode::G_ICMP) 1848 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1849 else { 1850 MachineInstr *NewCmp 1851 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 1852 NewCmp->setFlags(MI.getFlags()); 1853 } 1854 } 1855 1856 if (NarrowTy1.isVector()) 1857 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1858 else 1859 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1860 1861 MI.eraseFromParent(); 1862 return Legalized; 1863 } 1864 1865 LegalizerHelper::LegalizeResult 1866 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 1867 LLT NarrowTy) { 1868 unsigned DstReg = MI.getOperand(0).getReg(); 1869 unsigned CondReg = MI.getOperand(1).getReg(); 1870 1871 unsigned NumParts = 0; 1872 LLT NarrowTy0, NarrowTy1; 1873 1874 LLT DstTy = MRI.getType(DstReg); 1875 LLT CondTy = MRI.getType(CondReg); 1876 unsigned Size = DstTy.getSizeInBits(); 1877 1878 assert(TypeIdx == 0 || CondTy.isVector()); 1879 1880 if (TypeIdx == 0) { 1881 NarrowTy0 = NarrowTy; 1882 NarrowTy1 = CondTy; 1883 1884 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 1885 // FIXME: Don't know how to handle the situation where the small vectors 1886 // aren't all the same size yet. 1887 if (Size % NarrowSize != 0) 1888 return UnableToLegalize; 1889 1890 NumParts = Size / NarrowSize; 1891 1892 // Need to break down the condition type 1893 if (CondTy.isVector()) { 1894 if (CondTy.getNumElements() == NumParts) 1895 NarrowTy1 = CondTy.getElementType(); 1896 else 1897 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 1898 CondTy.getScalarSizeInBits()); 1899 } 1900 } else { 1901 NumParts = CondTy.getNumElements(); 1902 if (NarrowTy.isVector()) { 1903 // TODO: Handle uneven breakdown. 1904 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 1905 return UnableToLegalize; 1906 1907 return UnableToLegalize; 1908 } else { 1909 NarrowTy0 = DstTy.getElementType(); 1910 NarrowTy1 = NarrowTy; 1911 } 1912 } 1913 1914 SmallVector<unsigned, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 1915 if (CondTy.isVector()) 1916 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 1917 1918 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 1919 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 1920 1921 for (unsigned i = 0; i < NumParts; ++i) { 1922 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 1923 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 1924 Src1Regs[i], Src2Regs[i]); 1925 DstRegs.push_back(DstReg); 1926 } 1927 1928 if (NarrowTy0.isVector()) 1929 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 1930 else 1931 MIRBuilder.buildBuildVector(DstReg, DstRegs); 1932 1933 MI.eraseFromParent(); 1934 return Legalized; 1935 } 1936 1937 LegalizerHelper::LegalizeResult 1938 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 1939 LLT NarrowTy) { 1940 // FIXME: Don't know how to handle secondary types yet. 1941 if (TypeIdx != 0) 1942 return UnableToLegalize; 1943 1944 MachineMemOperand *MMO = *MI.memoperands_begin(); 1945 1946 // This implementation doesn't work for atomics. Give up instead of doing 1947 // something invalid. 1948 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 1949 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 1950 return UnableToLegalize; 1951 1952 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 1953 unsigned ValReg = MI.getOperand(0).getReg(); 1954 unsigned AddrReg = MI.getOperand(1).getReg(); 1955 LLT ValTy = MRI.getType(ValReg); 1956 1957 int NumParts = -1; 1958 LLT LeftoverTy; 1959 SmallVector<unsigned, 8> NarrowRegs, NarrowLeftoverRegs; 1960 if (IsLoad) { 1961 NumParts = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 1962 } else { 1963 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 1964 NarrowLeftoverRegs)) 1965 NumParts = NarrowRegs.size(); 1966 } 1967 1968 if (NumParts == -1) 1969 return UnableToLegalize; 1970 1971 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 1972 1973 unsigned TotalSize = ValTy.getSizeInBits(); 1974 1975 // Split the load/store into PartTy sized pieces starting at Offset. If this 1976 // is a load, return the new registers in ValRegs. For a store, each elements 1977 // of ValRegs should be PartTy. Returns the next offset that needs to be 1978 // handled. 1979 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<unsigned> &ValRegs, 1980 unsigned Offset) -> unsigned { 1981 MachineFunction &MF = MIRBuilder.getMF(); 1982 unsigned PartSize = PartTy.getSizeInBits(); 1983 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 1984 Offset += PartSize, ++Idx) { 1985 unsigned ByteSize = PartSize / 8; 1986 unsigned ByteOffset = Offset / 8; 1987 unsigned NewAddrReg = 0; 1988 1989 MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 1990 1991 MachineMemOperand *NewMMO = 1992 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 1993 1994 if (IsLoad) { 1995 unsigned Dst = MRI.createGenericVirtualRegister(PartTy); 1996 ValRegs.push_back(Dst); 1997 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 1998 } else { 1999 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 2000 } 2001 } 2002 2003 return Offset; 2004 }; 2005 2006 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 2007 2008 // Handle the rest of the register if this isn't an even type breakdown. 2009 if (LeftoverTy.isValid()) 2010 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 2011 2012 if (IsLoad) { 2013 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 2014 LeftoverTy, NarrowLeftoverRegs); 2015 } 2016 2017 MI.eraseFromParent(); 2018 return Legalized; 2019 } 2020 2021 LegalizerHelper::LegalizeResult 2022 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 2023 LLT NarrowTy) { 2024 using namespace TargetOpcode; 2025 2026 MIRBuilder.setInstr(MI); 2027 switch (MI.getOpcode()) { 2028 case G_IMPLICIT_DEF: 2029 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 2030 case G_AND: 2031 case G_OR: 2032 case G_XOR: 2033 case G_ADD: 2034 case G_SUB: 2035 case G_MUL: 2036 case G_SMULH: 2037 case G_UMULH: 2038 case G_FADD: 2039 case G_FMUL: 2040 case G_FSUB: 2041 case G_FNEG: 2042 case G_FABS: 2043 case G_FCANONICALIZE: 2044 case G_FDIV: 2045 case G_FREM: 2046 case G_FMA: 2047 case G_FPOW: 2048 case G_FEXP: 2049 case G_FEXP2: 2050 case G_FLOG: 2051 case G_FLOG2: 2052 case G_FLOG10: 2053 case G_FCEIL: 2054 case G_FFLOOR: 2055 case G_INTRINSIC_ROUND: 2056 case G_INTRINSIC_TRUNC: 2057 case G_FCOS: 2058 case G_FSIN: 2059 case G_FSQRT: 2060 case G_BSWAP: 2061 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 2062 case G_SHL: 2063 case G_LSHR: 2064 case G_ASHR: 2065 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 2066 case G_ZEXT: 2067 case G_SEXT: 2068 case G_ANYEXT: 2069 case G_FPEXT: 2070 case G_FPTRUNC: 2071 case G_SITOFP: 2072 case G_UITOFP: 2073 case G_FPTOSI: 2074 case G_FPTOUI: 2075 case G_INTTOPTR: 2076 case G_PTRTOINT: 2077 case G_ADDRSPACE_CAST: 2078 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 2079 case G_ICMP: 2080 case G_FCMP: 2081 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 2082 case G_SELECT: 2083 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 2084 case G_LOAD: 2085 case G_STORE: 2086 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 2087 default: 2088 return UnableToLegalize; 2089 } 2090 } 2091 2092 LegalizerHelper::LegalizeResult 2093 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 2094 const LLT HalfTy, const LLT AmtTy) { 2095 2096 unsigned InL = MRI.createGenericVirtualRegister(HalfTy); 2097 unsigned InH = MRI.createGenericVirtualRegister(HalfTy); 2098 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2099 2100 if (Amt.isNullValue()) { 2101 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); 2102 MI.eraseFromParent(); 2103 return Legalized; 2104 } 2105 2106 LLT NVT = HalfTy; 2107 unsigned NVTBits = HalfTy.getSizeInBits(); 2108 unsigned VTBits = 2 * NVTBits; 2109 2110 SrcOp Lo(0), Hi(0); 2111 if (MI.getOpcode() == TargetOpcode::G_SHL) { 2112 if (Amt.ugt(VTBits)) { 2113 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2114 } else if (Amt.ugt(NVTBits)) { 2115 Lo = MIRBuilder.buildConstant(NVT, 0); 2116 Hi = MIRBuilder.buildShl(NVT, InL, 2117 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2118 } else if (Amt == NVTBits) { 2119 Lo = MIRBuilder.buildConstant(NVT, 0); 2120 Hi = InL; 2121 } else { 2122 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 2123 auto OrLHS = 2124 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 2125 auto OrRHS = MIRBuilder.buildLShr( 2126 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2127 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2128 } 2129 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 2130 if (Amt.ugt(VTBits)) { 2131 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 2132 } else if (Amt.ugt(NVTBits)) { 2133 Lo = MIRBuilder.buildLShr(NVT, InH, 2134 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2135 Hi = MIRBuilder.buildConstant(NVT, 0); 2136 } else if (Amt == NVTBits) { 2137 Lo = InH; 2138 Hi = MIRBuilder.buildConstant(NVT, 0); 2139 } else { 2140 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2141 2142 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2143 auto OrRHS = MIRBuilder.buildShl( 2144 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2145 2146 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2147 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 2148 } 2149 } else { 2150 if (Amt.ugt(VTBits)) { 2151 Hi = Lo = MIRBuilder.buildAShr( 2152 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2153 } else if (Amt.ugt(NVTBits)) { 2154 Lo = MIRBuilder.buildAShr(NVT, InH, 2155 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 2156 Hi = MIRBuilder.buildAShr(NVT, InH, 2157 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2158 } else if (Amt == NVTBits) { 2159 Lo = InH; 2160 Hi = MIRBuilder.buildAShr(NVT, InH, 2161 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 2162 } else { 2163 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 2164 2165 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 2166 auto OrRHS = MIRBuilder.buildShl( 2167 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 2168 2169 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 2170 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 2171 } 2172 } 2173 2174 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); 2175 MI.eraseFromParent(); 2176 2177 return Legalized; 2178 } 2179 2180 // TODO: Optimize if constant shift amount. 2181 LegalizerHelper::LegalizeResult 2182 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 2183 LLT RequestedTy) { 2184 if (TypeIdx == 1) { 2185 Observer.changingInstr(MI); 2186 narrowScalarSrc(MI, RequestedTy, 2); 2187 Observer.changedInstr(MI); 2188 return Legalized; 2189 } 2190 2191 unsigned DstReg = MI.getOperand(0).getReg(); 2192 LLT DstTy = MRI.getType(DstReg); 2193 if (DstTy.isVector()) 2194 return UnableToLegalize; 2195 2196 unsigned Amt = MI.getOperand(2).getReg(); 2197 LLT ShiftAmtTy = MRI.getType(Amt); 2198 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 2199 if (DstEltSize % 2 != 0) 2200 return UnableToLegalize; 2201 2202 // Ignore the input type. We can only go to exactly half the size of the 2203 // input. If that isn't small enough, the resulting pieces will be further 2204 // legalized. 2205 const unsigned NewBitSize = DstEltSize / 2; 2206 const LLT HalfTy = LLT::scalar(NewBitSize); 2207 const LLT CondTy = LLT::scalar(1); 2208 2209 if (const MachineInstr *KShiftAmt = 2210 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 2211 return narrowScalarShiftByConstant( 2212 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 2213 } 2214 2215 // TODO: Expand with known bits. 2216 2217 // Handle the fully general expansion by an unknown amount. 2218 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 2219 2220 unsigned InL = MRI.createGenericVirtualRegister(HalfTy); 2221 unsigned InH = MRI.createGenericVirtualRegister(HalfTy); 2222 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); 2223 2224 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 2225 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 2226 2227 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 2228 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 2229 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 2230 2231 unsigned ResultRegs[2]; 2232 switch (MI.getOpcode()) { 2233 case TargetOpcode::G_SHL: { 2234 // Short: ShAmt < NewBitSize 2235 auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2236 2237 auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt); 2238 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 2239 auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2240 2241 // Long: ShAmt >= NewBitSize 2242 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 2243 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 2244 2245 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 2246 auto Hi = MIRBuilder.buildSelect( 2247 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 2248 2249 ResultRegs[0] = Lo.getReg(0); 2250 ResultRegs[1] = Hi.getReg(0); 2251 break; 2252 } 2253 case TargetOpcode::G_LSHR: { 2254 // Short: ShAmt < NewBitSize 2255 auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt); 2256 2257 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2258 auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 2259 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2260 2261 // Long: ShAmt >= NewBitSize 2262 auto HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 2263 auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2264 2265 auto Lo = MIRBuilder.buildSelect( 2266 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2267 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2268 2269 ResultRegs[0] = Lo.getReg(0); 2270 ResultRegs[1] = Hi.getReg(0); 2271 break; 2272 } 2273 case TargetOpcode::G_ASHR: { 2274 // Short: ShAmt < NewBitSize 2275 auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt); 2276 2277 auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); 2278 auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack); 2279 auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); 2280 2281 // Long: ShAmt >= NewBitSize 2282 2283 // Sign of Hi part. 2284 auto HiL = MIRBuilder.buildAShr( 2285 HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1)); 2286 2287 auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part. 2288 2289 auto Lo = MIRBuilder.buildSelect( 2290 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 2291 2292 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 2293 2294 ResultRegs[0] = Lo.getReg(0); 2295 ResultRegs[1] = Hi.getReg(0); 2296 break; 2297 } 2298 default: 2299 llvm_unreachable("not a shift"); 2300 } 2301 2302 MIRBuilder.buildMerge(DstReg, ResultRegs); 2303 MI.eraseFromParent(); 2304 return Legalized; 2305 } 2306 2307 LegalizerHelper::LegalizeResult 2308 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 2309 LLT MoreTy) { 2310 MIRBuilder.setInstr(MI); 2311 unsigned Opc = MI.getOpcode(); 2312 switch (Opc) { 2313 case TargetOpcode::G_IMPLICIT_DEF: { 2314 Observer.changingInstr(MI); 2315 moreElementsVectorDst(MI, MoreTy, 0); 2316 Observer.changedInstr(MI); 2317 return Legalized; 2318 } 2319 default: 2320 return UnableToLegalize; 2321 } 2322 } 2323 2324 LegalizerHelper::LegalizeResult 2325 LegalizerHelper::narrowScalarMul(MachineInstr &MI, unsigned TypeIdx, LLT NewTy) { 2326 unsigned DstReg = MI.getOperand(0).getReg(); 2327 unsigned Src0 = MI.getOperand(1).getReg(); 2328 unsigned Src1 = MI.getOperand(2).getReg(); 2329 LLT Ty = MRI.getType(DstReg); 2330 if (Ty.isVector()) 2331 return UnableToLegalize; 2332 2333 unsigned Size = Ty.getSizeInBits(); 2334 unsigned NewSize = Size / 2; 2335 if (Size != 2 * NewSize) 2336 return UnableToLegalize; 2337 2338 LLT HalfTy = LLT::scalar(NewSize); 2339 // TODO: if HalfTy != NewTy, handle the breakdown all at once? 2340 2341 unsigned ShiftAmt = MRI.createGenericVirtualRegister(Ty); 2342 unsigned Lo = MRI.createGenericVirtualRegister(HalfTy); 2343 unsigned Hi = MRI.createGenericVirtualRegister(HalfTy); 2344 unsigned ExtLo = MRI.createGenericVirtualRegister(Ty); 2345 unsigned ExtHi = MRI.createGenericVirtualRegister(Ty); 2346 unsigned ShiftedHi = MRI.createGenericVirtualRegister(Ty); 2347 2348 SmallVector<unsigned, 2> Src0Parts; 2349 SmallVector<unsigned, 2> Src1Parts; 2350 2351 extractParts(Src0, HalfTy, 2, Src0Parts); 2352 extractParts(Src1, HalfTy, 2, Src1Parts); 2353 2354 MIRBuilder.buildMul(Lo, Src0Parts[0], Src1Parts[0]); 2355 2356 // TODO: Use smulh or umulh depending on what the target has. 2357 MIRBuilder.buildUMulH(Hi, Src0Parts[1], Src1Parts[1]); 2358 2359 MIRBuilder.buildConstant(ShiftAmt, NewSize); 2360 MIRBuilder.buildAnyExt(ExtHi, Hi); 2361 MIRBuilder.buildShl(ShiftedHi, ExtHi, ShiftAmt); 2362 2363 MIRBuilder.buildZExt(ExtLo, Lo); 2364 MIRBuilder.buildOr(DstReg, ExtLo, ShiftedHi); 2365 MI.eraseFromParent(); 2366 return Legalized; 2367 } 2368 2369 2370 LegalizerHelper::LegalizeResult 2371 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 2372 LLT NarrowTy) { 2373 if (TypeIdx != 1) 2374 return UnableToLegalize; 2375 2376 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2377 2378 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 2379 // FIXME: add support for when SizeOp1 isn't an exact multiple of 2380 // NarrowSize. 2381 if (SizeOp1 % NarrowSize != 0) 2382 return UnableToLegalize; 2383 int NumParts = SizeOp1 / NarrowSize; 2384 2385 SmallVector<unsigned, 2> SrcRegs, DstRegs; 2386 SmallVector<uint64_t, 2> Indexes; 2387 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2388 2389 unsigned OpReg = MI.getOperand(0).getReg(); 2390 uint64_t OpStart = MI.getOperand(2).getImm(); 2391 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2392 for (int i = 0; i < NumParts; ++i) { 2393 unsigned SrcStart = i * NarrowSize; 2394 2395 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 2396 // No part of the extract uses this subregister, ignore it. 2397 continue; 2398 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2399 // The entire subregister is extracted, forward the value. 2400 DstRegs.push_back(SrcRegs[i]); 2401 continue; 2402 } 2403 2404 // OpSegStart is where this destination segment would start in OpReg if it 2405 // extended infinitely in both directions. 2406 int64_t ExtractOffset; 2407 uint64_t SegSize; 2408 if (OpStart < SrcStart) { 2409 ExtractOffset = 0; 2410 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 2411 } else { 2412 ExtractOffset = OpStart - SrcStart; 2413 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 2414 } 2415 2416 unsigned SegReg = SrcRegs[i]; 2417 if (ExtractOffset != 0 || SegSize != NarrowSize) { 2418 // A genuine extract is needed. 2419 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2420 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 2421 } 2422 2423 DstRegs.push_back(SegReg); 2424 } 2425 2426 unsigned DstReg = MI.getOperand(0).getReg(); 2427 if(MRI.getType(DstReg).isVector()) 2428 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2429 else 2430 MIRBuilder.buildMerge(DstReg, DstRegs); 2431 MI.eraseFromParent(); 2432 return Legalized; 2433 } 2434 2435 LegalizerHelper::LegalizeResult 2436 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 2437 LLT NarrowTy) { 2438 // FIXME: Don't know how to handle secondary types yet. 2439 if (TypeIdx != 0) 2440 return UnableToLegalize; 2441 2442 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 2443 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 2444 2445 // FIXME: add support for when SizeOp0 isn't an exact multiple of 2446 // NarrowSize. 2447 if (SizeOp0 % NarrowSize != 0) 2448 return UnableToLegalize; 2449 2450 int NumParts = SizeOp0 / NarrowSize; 2451 2452 SmallVector<unsigned, 2> SrcRegs, DstRegs; 2453 SmallVector<uint64_t, 2> Indexes; 2454 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 2455 2456 unsigned OpReg = MI.getOperand(2).getReg(); 2457 uint64_t OpStart = MI.getOperand(3).getImm(); 2458 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 2459 for (int i = 0; i < NumParts; ++i) { 2460 unsigned DstStart = i * NarrowSize; 2461 2462 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 2463 // No part of the insert affects this subregister, forward the original. 2464 DstRegs.push_back(SrcRegs[i]); 2465 continue; 2466 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 2467 // The entire subregister is defined by this insert, forward the new 2468 // value. 2469 DstRegs.push_back(OpReg); 2470 continue; 2471 } 2472 2473 // OpSegStart is where this destination segment would start in OpReg if it 2474 // extended infinitely in both directions. 2475 int64_t ExtractOffset, InsertOffset; 2476 uint64_t SegSize; 2477 if (OpStart < DstStart) { 2478 InsertOffset = 0; 2479 ExtractOffset = DstStart - OpStart; 2480 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 2481 } else { 2482 InsertOffset = OpStart - DstStart; 2483 ExtractOffset = 0; 2484 SegSize = 2485 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 2486 } 2487 2488 unsigned SegReg = OpReg; 2489 if (ExtractOffset != 0 || SegSize != OpSize) { 2490 // A genuine extract is needed. 2491 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 2492 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 2493 } 2494 2495 unsigned DstReg = MRI.createGenericVirtualRegister(NarrowTy); 2496 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 2497 DstRegs.push_back(DstReg); 2498 } 2499 2500 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 2501 unsigned DstReg = MI.getOperand(0).getReg(); 2502 if(MRI.getType(DstReg).isVector()) 2503 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2504 else 2505 MIRBuilder.buildMerge(DstReg, DstRegs); 2506 MI.eraseFromParent(); 2507 return Legalized; 2508 } 2509 2510 LegalizerHelper::LegalizeResult 2511 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 2512 LLT NarrowTy) { 2513 if (TypeIdx != 0) 2514 return UnableToLegalize; 2515 2516 unsigned CondReg = MI.getOperand(1).getReg(); 2517 LLT CondTy = MRI.getType(CondReg); 2518 if (CondTy.isVector()) // TODO: Handle vselect 2519 return UnableToLegalize; 2520 2521 unsigned DstReg = MI.getOperand(0).getReg(); 2522 LLT DstTy = MRI.getType(DstReg); 2523 2524 SmallVector<unsigned, 4> DstRegs, DstLeftoverRegs; 2525 SmallVector<unsigned, 4> Src1Regs, Src1LeftoverRegs; 2526 SmallVector<unsigned, 4> Src2Regs, Src2LeftoverRegs; 2527 LLT LeftoverTy; 2528 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 2529 Src1Regs, Src1LeftoverRegs)) 2530 return UnableToLegalize; 2531 2532 LLT Unused; 2533 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 2534 Src2Regs, Src2LeftoverRegs)) 2535 llvm_unreachable("inconsistent extractParts result"); 2536 2537 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 2538 auto Select = MIRBuilder.buildSelect(NarrowTy, 2539 CondReg, Src1Regs[I], Src2Regs[I]); 2540 DstRegs.push_back(Select->getOperand(0).getReg()); 2541 } 2542 2543 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 2544 auto Select = MIRBuilder.buildSelect( 2545 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 2546 DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); 2547 } 2548 2549 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 2550 LeftoverTy, DstLeftoverRegs); 2551 2552 MI.eraseFromParent(); 2553 return Legalized; 2554 } 2555 2556 LegalizerHelper::LegalizeResult 2557 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2558 unsigned Opc = MI.getOpcode(); 2559 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2560 auto isSupported = [this](const LegalityQuery &Q) { 2561 auto QAction = LI.getAction(Q).Action; 2562 return QAction == Legal || QAction == Libcall || QAction == Custom; 2563 }; 2564 switch (Opc) { 2565 default: 2566 return UnableToLegalize; 2567 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 2568 // This trivially expands to CTLZ. 2569 Observer.changingInstr(MI); 2570 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 2571 Observer.changedInstr(MI); 2572 return Legalized; 2573 } 2574 case TargetOpcode::G_CTLZ: { 2575 unsigned SrcReg = MI.getOperand(1).getReg(); 2576 unsigned Len = Ty.getSizeInBits(); 2577 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { 2578 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 2579 auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, 2580 {Ty}, {SrcReg}); 2581 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2582 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2583 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2584 SrcReg, MIBZero); 2585 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2586 MIBCtlzZU); 2587 MI.eraseFromParent(); 2588 return Legalized; 2589 } 2590 // for now, we do this: 2591 // NewLen = NextPowerOf2(Len); 2592 // x = x | (x >> 1); 2593 // x = x | (x >> 2); 2594 // ... 2595 // x = x | (x >>16); 2596 // x = x | (x >>32); // for 64-bit input 2597 // Upto NewLen/2 2598 // return Len - popcount(x); 2599 // 2600 // Ref: "Hacker's Delight" by Henry Warren 2601 unsigned Op = SrcReg; 2602 unsigned NewLen = PowerOf2Ceil(Len); 2603 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 2604 auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); 2605 auto MIBOp = MIRBuilder.buildInstr( 2606 TargetOpcode::G_OR, {Ty}, 2607 {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, 2608 {Op, MIBShiftAmt})}); 2609 Op = MIBOp->getOperand(0).getReg(); 2610 } 2611 auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); 2612 MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2613 {MIRBuilder.buildConstant(Ty, Len), MIBPop}); 2614 MI.eraseFromParent(); 2615 return Legalized; 2616 } 2617 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 2618 // This trivially expands to CTTZ. 2619 Observer.changingInstr(MI); 2620 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 2621 Observer.changedInstr(MI); 2622 return Legalized; 2623 } 2624 case TargetOpcode::G_CTTZ: { 2625 unsigned SrcReg = MI.getOperand(1).getReg(); 2626 unsigned Len = Ty.getSizeInBits(); 2627 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { 2628 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 2629 // zero. 2630 auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, 2631 {Ty}, {SrcReg}); 2632 auto MIBZero = MIRBuilder.buildConstant(Ty, 0); 2633 auto MIBLen = MIRBuilder.buildConstant(Ty, Len); 2634 auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 2635 SrcReg, MIBZero); 2636 MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, 2637 MIBCttzZU); 2638 MI.eraseFromParent(); 2639 return Legalized; 2640 } 2641 // for now, we use: { return popcount(~x & (x - 1)); } 2642 // unless the target has ctlz but not ctpop, in which case we use: 2643 // { return 32 - nlz(~x & (x-1)); } 2644 // Ref: "Hacker's Delight" by Henry Warren 2645 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 2646 auto MIBNot = 2647 MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); 2648 auto MIBTmp = MIRBuilder.buildInstr( 2649 TargetOpcode::G_AND, {Ty}, 2650 {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, 2651 {SrcReg, MIBCstNeg1})}); 2652 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 2653 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 2654 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 2655 MIRBuilder.buildInstr( 2656 TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, 2657 {MIBCstLen, 2658 MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); 2659 MI.eraseFromParent(); 2660 return Legalized; 2661 } 2662 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 2663 MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); 2664 return Legalized; 2665 } 2666 } 2667 } 2668