1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetFrameLowering.h" 22 #include "llvm/CodeGen/TargetInstrInfo.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 #define DEBUG_TYPE "legalizer" 30 31 using namespace llvm; 32 using namespace LegalizeActions; 33 using namespace MIPatternMatch; 34 35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 36 /// 37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 38 /// with any leftover piece as type \p LeftoverTy 39 /// 40 /// Returns -1 in the first element of the pair if the breakdown is not 41 /// satisfiable. 42 static std::pair<int, int> 43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 44 assert(!LeftoverTy.isValid() && "this is an out argument"); 45 46 unsigned Size = OrigTy.getSizeInBits(); 47 unsigned NarrowSize = NarrowTy.getSizeInBits(); 48 unsigned NumParts = Size / NarrowSize; 49 unsigned LeftoverSize = Size - NumParts * NarrowSize; 50 assert(Size > NarrowSize); 51 52 if (LeftoverSize == 0) 53 return {NumParts, 0}; 54 55 if (NarrowTy.isVector()) { 56 unsigned EltSize = OrigTy.getScalarSizeInBits(); 57 if (LeftoverSize % EltSize != 0) 58 return {-1, -1}; 59 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 60 } else { 61 LeftoverTy = LLT::scalar(LeftoverSize); 62 } 63 64 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 65 return std::make_pair(NumParts, NumLeftover); 66 } 67 68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 69 70 if (!Ty.isScalar()) 71 return nullptr; 72 73 switch (Ty.getSizeInBits()) { 74 case 16: 75 return Type::getHalfTy(Ctx); 76 case 32: 77 return Type::getFloatTy(Ctx); 78 case 64: 79 return Type::getDoubleTy(Ctx); 80 case 80: 81 return Type::getX86_FP80Ty(Ctx); 82 case 128: 83 return Type::getFP128Ty(Ctx); 84 default: 85 return nullptr; 86 } 87 } 88 89 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 90 GISelChangeObserver &Observer, 91 MachineIRBuilder &Builder) 92 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), 93 LI(*MF.getSubtarget().getLegalizerInfo()), 94 TLI(*MF.getSubtarget().getTargetLowering()) { } 95 96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 97 GISelChangeObserver &Observer, 98 MachineIRBuilder &B) 99 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), 100 TLI(*MF.getSubtarget().getTargetLowering()) { } 101 102 LegalizerHelper::LegalizeResult 103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 104 LLVM_DEBUG(dbgs() << "Legalizing: " << MI); 105 106 MIRBuilder.setInstrAndDebugLoc(MI); 107 108 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 109 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 110 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; 111 auto Step = LI.getAction(MI, MRI); 112 switch (Step.Action) { 113 case Legal: 114 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 115 return AlreadyLegal; 116 case Libcall: 117 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 118 return libcall(MI); 119 case NarrowScalar: 120 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 121 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 122 case WidenScalar: 123 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 124 return widenScalar(MI, Step.TypeIdx, Step.NewType); 125 case Bitcast: 126 LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); 127 return bitcast(MI, Step.TypeIdx, Step.NewType); 128 case Lower: 129 LLVM_DEBUG(dbgs() << ".. Lower\n"); 130 return lower(MI, Step.TypeIdx, Step.NewType); 131 case FewerElements: 132 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 133 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 134 case MoreElements: 135 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 136 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 137 case Custom: 138 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 139 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; 140 default: 141 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 142 return UnableToLegalize; 143 } 144 } 145 146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 147 SmallVectorImpl<Register> &VRegs) { 148 for (int i = 0; i < NumParts; ++i) 149 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 150 MIRBuilder.buildUnmerge(VRegs, Reg); 151 } 152 153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 154 LLT MainTy, LLT &LeftoverTy, 155 SmallVectorImpl<Register> &VRegs, 156 SmallVectorImpl<Register> &LeftoverRegs) { 157 assert(!LeftoverTy.isValid() && "this is an out argument"); 158 159 unsigned RegSize = RegTy.getSizeInBits(); 160 unsigned MainSize = MainTy.getSizeInBits(); 161 unsigned NumParts = RegSize / MainSize; 162 unsigned LeftoverSize = RegSize - NumParts * MainSize; 163 164 // Use an unmerge when possible. 165 if (LeftoverSize == 0) { 166 for (unsigned I = 0; I < NumParts; ++I) 167 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 168 MIRBuilder.buildUnmerge(VRegs, Reg); 169 return true; 170 } 171 172 if (MainTy.isVector()) { 173 unsigned EltSize = MainTy.getScalarSizeInBits(); 174 if (LeftoverSize % EltSize != 0) 175 return false; 176 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 177 } else { 178 LeftoverTy = LLT::scalar(LeftoverSize); 179 } 180 181 // For irregular sizes, extract the individual parts. 182 for (unsigned I = 0; I != NumParts; ++I) { 183 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 184 VRegs.push_back(NewReg); 185 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 186 } 187 188 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 189 Offset += LeftoverSize) { 190 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 191 LeftoverRegs.push_back(NewReg); 192 MIRBuilder.buildExtract(NewReg, Reg, Offset); 193 } 194 195 return true; 196 } 197 198 void LegalizerHelper::insertParts(Register DstReg, 199 LLT ResultTy, LLT PartTy, 200 ArrayRef<Register> PartRegs, 201 LLT LeftoverTy, 202 ArrayRef<Register> LeftoverRegs) { 203 if (!LeftoverTy.isValid()) { 204 assert(LeftoverRegs.empty()); 205 206 if (!ResultTy.isVector()) { 207 MIRBuilder.buildMerge(DstReg, PartRegs); 208 return; 209 } 210 211 if (PartTy.isVector()) 212 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 213 else 214 MIRBuilder.buildBuildVector(DstReg, PartRegs); 215 return; 216 } 217 218 unsigned PartSize = PartTy.getSizeInBits(); 219 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 220 221 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 222 MIRBuilder.buildUndef(CurResultReg); 223 224 unsigned Offset = 0; 225 for (Register PartReg : PartRegs) { 226 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 227 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 228 CurResultReg = NewResultReg; 229 Offset += PartSize; 230 } 231 232 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 233 // Use the original output register for the final insert to avoid a copy. 234 Register NewResultReg = (I + 1 == E) ? 235 DstReg : MRI.createGenericVirtualRegister(ResultTy); 236 237 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 238 CurResultReg = NewResultReg; 239 Offset += LeftoverPartSize; 240 } 241 } 242 243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. 244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 245 const MachineInstr &MI) { 246 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 247 248 const int StartIdx = Regs.size(); 249 const int NumResults = MI.getNumOperands() - 1; 250 Regs.resize(Regs.size() + NumResults); 251 for (int I = 0; I != NumResults; ++I) 252 Regs[StartIdx + I] = MI.getOperand(I).getReg(); 253 } 254 255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, 256 LLT GCDTy, Register SrcReg) { 257 LLT SrcTy = MRI.getType(SrcReg); 258 if (SrcTy == GCDTy) { 259 // If the source already evenly divides the result type, we don't need to do 260 // anything. 261 Parts.push_back(SrcReg); 262 } else { 263 // Need to split into common type sized pieces. 264 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 265 getUnmergeResults(Parts, *Unmerge); 266 } 267 } 268 269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 270 LLT NarrowTy, Register SrcReg) { 271 LLT SrcTy = MRI.getType(SrcReg); 272 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 273 extractGCDType(Parts, GCDTy, SrcReg); 274 return GCDTy; 275 } 276 277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 278 SmallVectorImpl<Register> &VRegs, 279 unsigned PadStrategy) { 280 LLT LCMTy = getLCMType(DstTy, NarrowTy); 281 282 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 283 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 284 int NumOrigSrc = VRegs.size(); 285 286 Register PadReg; 287 288 // Get a value we can use to pad the source value if the sources won't evenly 289 // cover the result type. 290 if (NumOrigSrc < NumParts * NumSubParts) { 291 if (PadStrategy == TargetOpcode::G_ZEXT) 292 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 293 else if (PadStrategy == TargetOpcode::G_ANYEXT) 294 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 295 else { 296 assert(PadStrategy == TargetOpcode::G_SEXT); 297 298 // Shift the sign bit of the low register through the high register. 299 auto ShiftAmt = 300 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 301 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 302 } 303 } 304 305 // Registers for the final merge to be produced. 306 SmallVector<Register, 4> Remerge(NumParts); 307 308 // Registers needed for intermediate merges, which will be merged into a 309 // source for Remerge. 310 SmallVector<Register, 4> SubMerge(NumSubParts); 311 312 // Once we've fully read off the end of the original source bits, we can reuse 313 // the same high bits for remaining padding elements. 314 Register AllPadReg; 315 316 // Build merges to the LCM type to cover the original result type. 317 for (int I = 0; I != NumParts; ++I) { 318 bool AllMergePartsArePadding = true; 319 320 // Build the requested merges to the requested type. 321 for (int J = 0; J != NumSubParts; ++J) { 322 int Idx = I * NumSubParts + J; 323 if (Idx >= NumOrigSrc) { 324 SubMerge[J] = PadReg; 325 continue; 326 } 327 328 SubMerge[J] = VRegs[Idx]; 329 330 // There are meaningful bits here we can't reuse later. 331 AllMergePartsArePadding = false; 332 } 333 334 // If we've filled up a complete piece with padding bits, we can directly 335 // emit the natural sized constant if applicable, rather than a merge of 336 // smaller constants. 337 if (AllMergePartsArePadding && !AllPadReg) { 338 if (PadStrategy == TargetOpcode::G_ANYEXT) 339 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 340 else if (PadStrategy == TargetOpcode::G_ZEXT) 341 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 342 343 // If this is a sign extension, we can't materialize a trivial constant 344 // with the right type and have to produce a merge. 345 } 346 347 if (AllPadReg) { 348 // Avoid creating additional instructions if we're just adding additional 349 // copies of padding bits. 350 Remerge[I] = AllPadReg; 351 continue; 352 } 353 354 if (NumSubParts == 1) 355 Remerge[I] = SubMerge[0]; 356 else 357 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 358 359 // In the sign extend padding case, re-use the first all-signbit merge. 360 if (AllMergePartsArePadding && !AllPadReg) 361 AllPadReg = Remerge[I]; 362 } 363 364 VRegs = std::move(Remerge); 365 return LCMTy; 366 } 367 368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 369 ArrayRef<Register> RemergeRegs) { 370 LLT DstTy = MRI.getType(DstReg); 371 372 // Create the merge to the widened source, and extract the relevant bits into 373 // the result. 374 375 if (DstTy == LCMTy) { 376 MIRBuilder.buildMerge(DstReg, RemergeRegs); 377 return; 378 } 379 380 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 381 if (DstTy.isScalar() && LCMTy.isScalar()) { 382 MIRBuilder.buildTrunc(DstReg, Remerge); 383 return; 384 } 385 386 if (LCMTy.isVector()) { 387 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); 388 SmallVector<Register, 8> UnmergeDefs(NumDefs); 389 UnmergeDefs[0] = DstReg; 390 for (unsigned I = 1; I != NumDefs; ++I) 391 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); 392 393 MIRBuilder.buildUnmerge(UnmergeDefs, 394 MIRBuilder.buildMerge(LCMTy, RemergeRegs)); 395 return; 396 } 397 398 llvm_unreachable("unhandled case"); 399 } 400 401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 402 #define RTLIBCASE_INT(LibcallPrefix) \ 403 do { \ 404 switch (Size) { \ 405 case 32: \ 406 return RTLIB::LibcallPrefix##32; \ 407 case 64: \ 408 return RTLIB::LibcallPrefix##64; \ 409 case 128: \ 410 return RTLIB::LibcallPrefix##128; \ 411 default: \ 412 llvm_unreachable("unexpected size"); \ 413 } \ 414 } while (0) 415 416 #define RTLIBCASE(LibcallPrefix) \ 417 do { \ 418 switch (Size) { \ 419 case 32: \ 420 return RTLIB::LibcallPrefix##32; \ 421 case 64: \ 422 return RTLIB::LibcallPrefix##64; \ 423 case 80: \ 424 return RTLIB::LibcallPrefix##80; \ 425 case 128: \ 426 return RTLIB::LibcallPrefix##128; \ 427 default: \ 428 llvm_unreachable("unexpected size"); \ 429 } \ 430 } while (0) 431 432 switch (Opcode) { 433 case TargetOpcode::G_SDIV: 434 RTLIBCASE_INT(SDIV_I); 435 case TargetOpcode::G_UDIV: 436 RTLIBCASE_INT(UDIV_I); 437 case TargetOpcode::G_SREM: 438 RTLIBCASE_INT(SREM_I); 439 case TargetOpcode::G_UREM: 440 RTLIBCASE_INT(UREM_I); 441 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 442 RTLIBCASE_INT(CTLZ_I); 443 case TargetOpcode::G_FADD: 444 RTLIBCASE(ADD_F); 445 case TargetOpcode::G_FSUB: 446 RTLIBCASE(SUB_F); 447 case TargetOpcode::G_FMUL: 448 RTLIBCASE(MUL_F); 449 case TargetOpcode::G_FDIV: 450 RTLIBCASE(DIV_F); 451 case TargetOpcode::G_FEXP: 452 RTLIBCASE(EXP_F); 453 case TargetOpcode::G_FEXP2: 454 RTLIBCASE(EXP2_F); 455 case TargetOpcode::G_FREM: 456 RTLIBCASE(REM_F); 457 case TargetOpcode::G_FPOW: 458 RTLIBCASE(POW_F); 459 case TargetOpcode::G_FMA: 460 RTLIBCASE(FMA_F); 461 case TargetOpcode::G_FSIN: 462 RTLIBCASE(SIN_F); 463 case TargetOpcode::G_FCOS: 464 RTLIBCASE(COS_F); 465 case TargetOpcode::G_FLOG10: 466 RTLIBCASE(LOG10_F); 467 case TargetOpcode::G_FLOG: 468 RTLIBCASE(LOG_F); 469 case TargetOpcode::G_FLOG2: 470 RTLIBCASE(LOG2_F); 471 case TargetOpcode::G_FCEIL: 472 RTLIBCASE(CEIL_F); 473 case TargetOpcode::G_FFLOOR: 474 RTLIBCASE(FLOOR_F); 475 case TargetOpcode::G_FMINNUM: 476 RTLIBCASE(FMIN_F); 477 case TargetOpcode::G_FMAXNUM: 478 RTLIBCASE(FMAX_F); 479 case TargetOpcode::G_FSQRT: 480 RTLIBCASE(SQRT_F); 481 case TargetOpcode::G_FRINT: 482 RTLIBCASE(RINT_F); 483 case TargetOpcode::G_FNEARBYINT: 484 RTLIBCASE(NEARBYINT_F); 485 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 486 RTLIBCASE(ROUNDEVEN_F); 487 } 488 llvm_unreachable("Unknown libcall function"); 489 } 490 491 /// True if an instruction is in tail position in its caller. Intended for 492 /// legalizing libcalls as tail calls when possible. 493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII, 494 MachineInstr &MI) { 495 MachineBasicBlock &MBB = *MI.getParent(); 496 const Function &F = MBB.getParent()->getFunction(); 497 498 // Conservatively require the attributes of the call to match those of 499 // the return. Ignore NoAlias and NonNull because they don't affect the 500 // call sequence. 501 AttributeList CallerAttrs = F.getAttributes(); 502 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 503 .removeAttribute(Attribute::NoAlias) 504 .removeAttribute(Attribute::NonNull) 505 .hasAttributes()) 506 return false; 507 508 // It's not safe to eliminate the sign / zero extension of the return value. 509 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 510 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 511 return false; 512 513 // Only tail call if the following instruction is a standard return. 514 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); 515 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) 516 return false; 517 518 return true; 519 } 520 521 LegalizerHelper::LegalizeResult 522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, 523 const CallLowering::ArgInfo &Result, 524 ArrayRef<CallLowering::ArgInfo> Args, 525 const CallingConv::ID CC) { 526 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 527 528 CallLowering::CallLoweringInfo Info; 529 Info.CallConv = CC; 530 Info.Callee = MachineOperand::CreateES(Name); 531 Info.OrigRet = Result; 532 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 533 if (!CLI.lowerCall(MIRBuilder, Info)) 534 return LegalizerHelper::UnableToLegalize; 535 536 return LegalizerHelper::Legalized; 537 } 538 539 LegalizerHelper::LegalizeResult 540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 541 const CallLowering::ArgInfo &Result, 542 ArrayRef<CallLowering::ArgInfo> Args) { 543 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 544 const char *Name = TLI.getLibcallName(Libcall); 545 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); 546 return createLibcall(MIRBuilder, Name, Result, Args, CC); 547 } 548 549 // Useful for libcalls where all operands have the same type. 550 static LegalizerHelper::LegalizeResult 551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 552 Type *OpType) { 553 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 554 555 SmallVector<CallLowering::ArgInfo, 3> Args; 556 for (unsigned i = 1; i < MI.getNumOperands(); i++) 557 Args.push_back({MI.getOperand(i).getReg(), OpType}); 558 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 559 Args); 560 } 561 562 LegalizerHelper::LegalizeResult 563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 564 MachineInstr &MI) { 565 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 566 567 SmallVector<CallLowering::ArgInfo, 3> Args; 568 // Add all the args, except for the last which is an imm denoting 'tail'. 569 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { 570 Register Reg = MI.getOperand(i).getReg(); 571 572 // Need derive an IR type for call lowering. 573 LLT OpLLT = MRI.getType(Reg); 574 Type *OpTy = nullptr; 575 if (OpLLT.isPointer()) 576 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 577 else 578 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 579 Args.push_back({Reg, OpTy}); 580 } 581 582 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 583 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 584 RTLIB::Libcall RTLibcall; 585 switch (MI.getOpcode()) { 586 case TargetOpcode::G_MEMCPY: 587 RTLibcall = RTLIB::MEMCPY; 588 break; 589 case TargetOpcode::G_MEMMOVE: 590 RTLibcall = RTLIB::MEMMOVE; 591 break; 592 case TargetOpcode::G_MEMSET: 593 RTLibcall = RTLIB::MEMSET; 594 break; 595 default: 596 return LegalizerHelper::UnableToLegalize; 597 } 598 const char *Name = TLI.getLibcallName(RTLibcall); 599 600 CallLowering::CallLoweringInfo Info; 601 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 602 Info.Callee = MachineOperand::CreateES(Name); 603 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 604 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && 605 isLibCallInTailPosition(MIRBuilder.getTII(), MI); 606 607 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 608 if (!CLI.lowerCall(MIRBuilder, Info)) 609 return LegalizerHelper::UnableToLegalize; 610 611 if (Info.LoweredTailCall) { 612 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 613 // We must have a return following the call (or debug insts) to get past 614 // isLibCallInTailPosition. 615 do { 616 MachineInstr *Next = MI.getNextNode(); 617 assert(Next && (Next->isReturn() || Next->isDebugInstr()) && 618 "Expected instr following MI to be return or debug inst?"); 619 // We lowered a tail call, so the call is now the return from the block. 620 // Delete the old return. 621 Next->eraseFromParent(); 622 } while (MI.getNextNode()); 623 } 624 625 return LegalizerHelper::Legalized; 626 } 627 628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 629 Type *FromType) { 630 auto ToMVT = MVT::getVT(ToType); 631 auto FromMVT = MVT::getVT(FromType); 632 633 switch (Opcode) { 634 case TargetOpcode::G_FPEXT: 635 return RTLIB::getFPEXT(FromMVT, ToMVT); 636 case TargetOpcode::G_FPTRUNC: 637 return RTLIB::getFPROUND(FromMVT, ToMVT); 638 case TargetOpcode::G_FPTOSI: 639 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 640 case TargetOpcode::G_FPTOUI: 641 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 642 case TargetOpcode::G_SITOFP: 643 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 644 case TargetOpcode::G_UITOFP: 645 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 646 } 647 llvm_unreachable("Unsupported libcall function"); 648 } 649 650 static LegalizerHelper::LegalizeResult 651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 652 Type *FromType) { 653 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 654 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 655 {{MI.getOperand(1).getReg(), FromType}}); 656 } 657 658 LegalizerHelper::LegalizeResult 659 LegalizerHelper::libcall(MachineInstr &MI) { 660 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 661 unsigned Size = LLTy.getSizeInBits(); 662 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 663 664 switch (MI.getOpcode()) { 665 default: 666 return UnableToLegalize; 667 case TargetOpcode::G_SDIV: 668 case TargetOpcode::G_UDIV: 669 case TargetOpcode::G_SREM: 670 case TargetOpcode::G_UREM: 671 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 672 Type *HLTy = IntegerType::get(Ctx, Size); 673 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 674 if (Status != Legalized) 675 return Status; 676 break; 677 } 678 case TargetOpcode::G_FADD: 679 case TargetOpcode::G_FSUB: 680 case TargetOpcode::G_FMUL: 681 case TargetOpcode::G_FDIV: 682 case TargetOpcode::G_FMA: 683 case TargetOpcode::G_FPOW: 684 case TargetOpcode::G_FREM: 685 case TargetOpcode::G_FCOS: 686 case TargetOpcode::G_FSIN: 687 case TargetOpcode::G_FLOG10: 688 case TargetOpcode::G_FLOG: 689 case TargetOpcode::G_FLOG2: 690 case TargetOpcode::G_FEXP: 691 case TargetOpcode::G_FEXP2: 692 case TargetOpcode::G_FCEIL: 693 case TargetOpcode::G_FFLOOR: 694 case TargetOpcode::G_FMINNUM: 695 case TargetOpcode::G_FMAXNUM: 696 case TargetOpcode::G_FSQRT: 697 case TargetOpcode::G_FRINT: 698 case TargetOpcode::G_FNEARBYINT: 699 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 700 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 701 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { 702 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); 703 return UnableToLegalize; 704 } 705 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 706 if (Status != Legalized) 707 return Status; 708 break; 709 } 710 case TargetOpcode::G_FPEXT: 711 case TargetOpcode::G_FPTRUNC: { 712 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 713 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 714 if (!FromTy || !ToTy) 715 return UnableToLegalize; 716 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 717 if (Status != Legalized) 718 return Status; 719 break; 720 } 721 case TargetOpcode::G_FPTOSI: 722 case TargetOpcode::G_FPTOUI: { 723 // FIXME: Support other types 724 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 725 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 726 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 727 return UnableToLegalize; 728 LegalizeResult Status = conversionLibcall( 729 MI, MIRBuilder, 730 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 731 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 732 if (Status != Legalized) 733 return Status; 734 break; 735 } 736 case TargetOpcode::G_SITOFP: 737 case TargetOpcode::G_UITOFP: { 738 // FIXME: Support other types 739 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 740 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 741 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 742 return UnableToLegalize; 743 LegalizeResult Status = conversionLibcall( 744 MI, MIRBuilder, 745 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 746 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 747 if (Status != Legalized) 748 return Status; 749 break; 750 } 751 case TargetOpcode::G_MEMCPY: 752 case TargetOpcode::G_MEMMOVE: 753 case TargetOpcode::G_MEMSET: { 754 LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI); 755 MI.eraseFromParent(); 756 return Result; 757 } 758 } 759 760 MI.eraseFromParent(); 761 return Legalized; 762 } 763 764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 765 unsigned TypeIdx, 766 LLT NarrowTy) { 767 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 768 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 769 770 switch (MI.getOpcode()) { 771 default: 772 return UnableToLegalize; 773 case TargetOpcode::G_IMPLICIT_DEF: { 774 Register DstReg = MI.getOperand(0).getReg(); 775 LLT DstTy = MRI.getType(DstReg); 776 777 // If SizeOp0 is not an exact multiple of NarrowSize, emit 778 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. 779 // FIXME: Although this would also be legal for the general case, it causes 780 // a lot of regressions in the emitted code (superfluous COPYs, artifact 781 // combines not being hit). This seems to be a problem related to the 782 // artifact combiner. 783 if (SizeOp0 % NarrowSize != 0) { 784 LLT ImplicitTy = NarrowTy; 785 if (DstTy.isVector()) 786 ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy); 787 788 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); 789 MIRBuilder.buildAnyExt(DstReg, ImplicitReg); 790 791 MI.eraseFromParent(); 792 return Legalized; 793 } 794 795 int NumParts = SizeOp0 / NarrowSize; 796 797 SmallVector<Register, 2> DstRegs; 798 for (int i = 0; i < NumParts; ++i) 799 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); 800 801 if (DstTy.isVector()) 802 MIRBuilder.buildBuildVector(DstReg, DstRegs); 803 else 804 MIRBuilder.buildMerge(DstReg, DstRegs); 805 MI.eraseFromParent(); 806 return Legalized; 807 } 808 case TargetOpcode::G_CONSTANT: { 809 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 810 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 811 unsigned TotalSize = Ty.getSizeInBits(); 812 unsigned NarrowSize = NarrowTy.getSizeInBits(); 813 int NumParts = TotalSize / NarrowSize; 814 815 SmallVector<Register, 4> PartRegs; 816 for (int I = 0; I != NumParts; ++I) { 817 unsigned Offset = I * NarrowSize; 818 auto K = MIRBuilder.buildConstant(NarrowTy, 819 Val.lshr(Offset).trunc(NarrowSize)); 820 PartRegs.push_back(K.getReg(0)); 821 } 822 823 LLT LeftoverTy; 824 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 825 SmallVector<Register, 1> LeftoverRegs; 826 if (LeftoverBits != 0) { 827 LeftoverTy = LLT::scalar(LeftoverBits); 828 auto K = MIRBuilder.buildConstant( 829 LeftoverTy, 830 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 831 LeftoverRegs.push_back(K.getReg(0)); 832 } 833 834 insertParts(MI.getOperand(0).getReg(), 835 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 836 837 MI.eraseFromParent(); 838 return Legalized; 839 } 840 case TargetOpcode::G_SEXT: 841 case TargetOpcode::G_ZEXT: 842 case TargetOpcode::G_ANYEXT: 843 return narrowScalarExt(MI, TypeIdx, NarrowTy); 844 case TargetOpcode::G_TRUNC: { 845 if (TypeIdx != 1) 846 return UnableToLegalize; 847 848 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 849 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 850 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 851 return UnableToLegalize; 852 } 853 854 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 855 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 856 MI.eraseFromParent(); 857 return Legalized; 858 } 859 860 case TargetOpcode::G_FREEZE: 861 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 862 case TargetOpcode::G_ADD: 863 case TargetOpcode::G_SUB: 864 case TargetOpcode::G_SADDO: 865 case TargetOpcode::G_SSUBO: 866 case TargetOpcode::G_SADDE: 867 case TargetOpcode::G_SSUBE: 868 case TargetOpcode::G_UADDO: 869 case TargetOpcode::G_USUBO: 870 case TargetOpcode::G_UADDE: 871 case TargetOpcode::G_USUBE: 872 return narrowScalarAddSub(MI, TypeIdx, NarrowTy); 873 case TargetOpcode::G_MUL: 874 case TargetOpcode::G_UMULH: 875 return narrowScalarMul(MI, NarrowTy); 876 case TargetOpcode::G_EXTRACT: 877 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 878 case TargetOpcode::G_INSERT: 879 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 880 case TargetOpcode::G_LOAD: { 881 auto &MMO = **MI.memoperands_begin(); 882 Register DstReg = MI.getOperand(0).getReg(); 883 LLT DstTy = MRI.getType(DstReg); 884 if (DstTy.isVector()) 885 return UnableToLegalize; 886 887 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 888 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 889 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 890 MIRBuilder.buildAnyExt(DstReg, TmpReg); 891 MI.eraseFromParent(); 892 return Legalized; 893 } 894 895 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 896 } 897 case TargetOpcode::G_ZEXTLOAD: 898 case TargetOpcode::G_SEXTLOAD: { 899 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 900 Register DstReg = MI.getOperand(0).getReg(); 901 Register PtrReg = MI.getOperand(1).getReg(); 902 903 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 904 auto &MMO = **MI.memoperands_begin(); 905 unsigned MemSize = MMO.getSizeInBits(); 906 907 if (MemSize == NarrowSize) { 908 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 909 } else if (MemSize < NarrowSize) { 910 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 911 } else if (MemSize > NarrowSize) { 912 // FIXME: Need to split the load. 913 return UnableToLegalize; 914 } 915 916 if (ZExt) 917 MIRBuilder.buildZExt(DstReg, TmpReg); 918 else 919 MIRBuilder.buildSExt(DstReg, TmpReg); 920 921 MI.eraseFromParent(); 922 return Legalized; 923 } 924 case TargetOpcode::G_STORE: { 925 const auto &MMO = **MI.memoperands_begin(); 926 927 Register SrcReg = MI.getOperand(0).getReg(); 928 LLT SrcTy = MRI.getType(SrcReg); 929 if (SrcTy.isVector()) 930 return UnableToLegalize; 931 932 int NumParts = SizeOp0 / NarrowSize; 933 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 934 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 935 if (SrcTy.isVector() && LeftoverBits != 0) 936 return UnableToLegalize; 937 938 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 939 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 940 auto &MMO = **MI.memoperands_begin(); 941 MIRBuilder.buildTrunc(TmpReg, SrcReg); 942 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 943 MI.eraseFromParent(); 944 return Legalized; 945 } 946 947 return reduceLoadStoreWidth(MI, 0, NarrowTy); 948 } 949 case TargetOpcode::G_SELECT: 950 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 951 case TargetOpcode::G_AND: 952 case TargetOpcode::G_OR: 953 case TargetOpcode::G_XOR: { 954 // Legalize bitwise operation: 955 // A = BinOp<Ty> B, C 956 // into: 957 // B1, ..., BN = G_UNMERGE_VALUES B 958 // C1, ..., CN = G_UNMERGE_VALUES C 959 // A1 = BinOp<Ty/N> B1, C2 960 // ... 961 // AN = BinOp<Ty/N> BN, CN 962 // A = G_MERGE_VALUES A1, ..., AN 963 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 964 } 965 case TargetOpcode::G_SHL: 966 case TargetOpcode::G_LSHR: 967 case TargetOpcode::G_ASHR: 968 return narrowScalarShift(MI, TypeIdx, NarrowTy); 969 case TargetOpcode::G_CTLZ: 970 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 971 case TargetOpcode::G_CTTZ: 972 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 973 case TargetOpcode::G_CTPOP: 974 if (TypeIdx == 1) 975 switch (MI.getOpcode()) { 976 case TargetOpcode::G_CTLZ: 977 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 978 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 979 case TargetOpcode::G_CTTZ: 980 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 981 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 982 case TargetOpcode::G_CTPOP: 983 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 984 default: 985 return UnableToLegalize; 986 } 987 988 Observer.changingInstr(MI); 989 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 990 Observer.changedInstr(MI); 991 return Legalized; 992 case TargetOpcode::G_INTTOPTR: 993 if (TypeIdx != 1) 994 return UnableToLegalize; 995 996 Observer.changingInstr(MI); 997 narrowScalarSrc(MI, NarrowTy, 1); 998 Observer.changedInstr(MI); 999 return Legalized; 1000 case TargetOpcode::G_PTRTOINT: 1001 if (TypeIdx != 0) 1002 return UnableToLegalize; 1003 1004 Observer.changingInstr(MI); 1005 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1006 Observer.changedInstr(MI); 1007 return Legalized; 1008 case TargetOpcode::G_PHI: { 1009 unsigned NumParts = SizeOp0 / NarrowSize; 1010 SmallVector<Register, 2> DstRegs(NumParts); 1011 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1012 Observer.changingInstr(MI); 1013 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1014 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1015 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1016 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1017 SrcRegs[i / 2]); 1018 } 1019 MachineBasicBlock &MBB = *MI.getParent(); 1020 MIRBuilder.setInsertPt(MBB, MI); 1021 for (unsigned i = 0; i < NumParts; ++i) { 1022 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1023 MachineInstrBuilder MIB = 1024 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1025 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1026 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1027 } 1028 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1029 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1030 Observer.changedInstr(MI); 1031 MI.eraseFromParent(); 1032 return Legalized; 1033 } 1034 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1035 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1036 if (TypeIdx != 2) 1037 return UnableToLegalize; 1038 1039 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1040 Observer.changingInstr(MI); 1041 narrowScalarSrc(MI, NarrowTy, OpIdx); 1042 Observer.changedInstr(MI); 1043 return Legalized; 1044 } 1045 case TargetOpcode::G_ICMP: { 1046 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1047 if (NarrowSize * 2 != SrcSize) 1048 return UnableToLegalize; 1049 1050 Observer.changingInstr(MI); 1051 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1052 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1053 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1054 1055 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1056 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1057 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1058 1059 CmpInst::Predicate Pred = 1060 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1061 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1062 1063 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1064 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1065 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1066 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1067 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1068 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1069 } else { 1070 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1071 MachineInstrBuilder CmpHEQ = 1072 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1073 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1074 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1075 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1076 } 1077 Observer.changedInstr(MI); 1078 MI.eraseFromParent(); 1079 return Legalized; 1080 } 1081 case TargetOpcode::G_SEXT_INREG: { 1082 if (TypeIdx != 0) 1083 return UnableToLegalize; 1084 1085 int64_t SizeInBits = MI.getOperand(2).getImm(); 1086 1087 // So long as the new type has more bits than the bits we're extending we 1088 // don't need to break it apart. 1089 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1090 Observer.changingInstr(MI); 1091 // We don't lose any non-extension bits by truncating the src and 1092 // sign-extending the dst. 1093 MachineOperand &MO1 = MI.getOperand(1); 1094 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1095 MO1.setReg(TruncMIB.getReg(0)); 1096 1097 MachineOperand &MO2 = MI.getOperand(0); 1098 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1099 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1100 MIRBuilder.buildSExt(MO2, DstExt); 1101 MO2.setReg(DstExt); 1102 Observer.changedInstr(MI); 1103 return Legalized; 1104 } 1105 1106 // Break it apart. Components below the extension point are unmodified. The 1107 // component containing the extension point becomes a narrower SEXT_INREG. 1108 // Components above it are ashr'd from the component containing the 1109 // extension point. 1110 if (SizeOp0 % NarrowSize != 0) 1111 return UnableToLegalize; 1112 int NumParts = SizeOp0 / NarrowSize; 1113 1114 // List the registers where the destination will be scattered. 1115 SmallVector<Register, 2> DstRegs; 1116 // List the registers where the source will be split. 1117 SmallVector<Register, 2> SrcRegs; 1118 1119 // Create all the temporary registers. 1120 for (int i = 0; i < NumParts; ++i) { 1121 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1122 1123 SrcRegs.push_back(SrcReg); 1124 } 1125 1126 // Explode the big arguments into smaller chunks. 1127 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1128 1129 Register AshrCstReg = 1130 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1131 .getReg(0); 1132 Register FullExtensionReg = 0; 1133 Register PartialExtensionReg = 0; 1134 1135 // Do the operation on each small part. 1136 for (int i = 0; i < NumParts; ++i) { 1137 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1138 DstRegs.push_back(SrcRegs[i]); 1139 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1140 assert(PartialExtensionReg && 1141 "Expected to visit partial extension before full"); 1142 if (FullExtensionReg) { 1143 DstRegs.push_back(FullExtensionReg); 1144 continue; 1145 } 1146 DstRegs.push_back( 1147 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1148 .getReg(0)); 1149 FullExtensionReg = DstRegs.back(); 1150 } else { 1151 DstRegs.push_back( 1152 MIRBuilder 1153 .buildInstr( 1154 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1155 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1156 .getReg(0)); 1157 PartialExtensionReg = DstRegs.back(); 1158 } 1159 } 1160 1161 // Gather the destination registers into the final destination. 1162 Register DstReg = MI.getOperand(0).getReg(); 1163 MIRBuilder.buildMerge(DstReg, DstRegs); 1164 MI.eraseFromParent(); 1165 return Legalized; 1166 } 1167 case TargetOpcode::G_BSWAP: 1168 case TargetOpcode::G_BITREVERSE: { 1169 if (SizeOp0 % NarrowSize != 0) 1170 return UnableToLegalize; 1171 1172 Observer.changingInstr(MI); 1173 SmallVector<Register, 2> SrcRegs, DstRegs; 1174 unsigned NumParts = SizeOp0 / NarrowSize; 1175 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1176 1177 for (unsigned i = 0; i < NumParts; ++i) { 1178 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1179 {SrcRegs[NumParts - 1 - i]}); 1180 DstRegs.push_back(DstPart.getReg(0)); 1181 } 1182 1183 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1184 1185 Observer.changedInstr(MI); 1186 MI.eraseFromParent(); 1187 return Legalized; 1188 } 1189 case TargetOpcode::G_PTR_ADD: 1190 case TargetOpcode::G_PTRMASK: { 1191 if (TypeIdx != 1) 1192 return UnableToLegalize; 1193 Observer.changingInstr(MI); 1194 narrowScalarSrc(MI, NarrowTy, 2); 1195 Observer.changedInstr(MI); 1196 return Legalized; 1197 } 1198 case TargetOpcode::G_FPTOUI: { 1199 if (TypeIdx != 0) 1200 return UnableToLegalize; 1201 Observer.changingInstr(MI); 1202 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 1203 Observer.changedInstr(MI); 1204 return Legalized; 1205 } 1206 case TargetOpcode::G_FPTOSI: { 1207 if (TypeIdx != 0) 1208 return UnableToLegalize; 1209 Observer.changingInstr(MI); 1210 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT); 1211 Observer.changedInstr(MI); 1212 return Legalized; 1213 } 1214 case TargetOpcode::G_FPEXT: 1215 if (TypeIdx != 0) 1216 return UnableToLegalize; 1217 Observer.changingInstr(MI); 1218 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); 1219 Observer.changedInstr(MI); 1220 return Legalized; 1221 } 1222 } 1223 1224 Register LegalizerHelper::coerceToScalar(Register Val) { 1225 LLT Ty = MRI.getType(Val); 1226 if (Ty.isScalar()) 1227 return Val; 1228 1229 const DataLayout &DL = MIRBuilder.getDataLayout(); 1230 LLT NewTy = LLT::scalar(Ty.getSizeInBits()); 1231 if (Ty.isPointer()) { 1232 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) 1233 return Register(); 1234 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); 1235 } 1236 1237 Register NewVal = Val; 1238 1239 assert(Ty.isVector()); 1240 LLT EltTy = Ty.getElementType(); 1241 if (EltTy.isPointer()) 1242 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); 1243 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); 1244 } 1245 1246 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1247 unsigned OpIdx, unsigned ExtOpcode) { 1248 MachineOperand &MO = MI.getOperand(OpIdx); 1249 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1250 MO.setReg(ExtB.getReg(0)); 1251 } 1252 1253 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1254 unsigned OpIdx) { 1255 MachineOperand &MO = MI.getOperand(OpIdx); 1256 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1257 MO.setReg(ExtB.getReg(0)); 1258 } 1259 1260 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1261 unsigned OpIdx, unsigned TruncOpcode) { 1262 MachineOperand &MO = MI.getOperand(OpIdx); 1263 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1264 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1265 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1266 MO.setReg(DstExt); 1267 } 1268 1269 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1270 unsigned OpIdx, unsigned ExtOpcode) { 1271 MachineOperand &MO = MI.getOperand(OpIdx); 1272 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1273 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1274 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1275 MO.setReg(DstTrunc); 1276 } 1277 1278 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1279 unsigned OpIdx) { 1280 MachineOperand &MO = MI.getOperand(OpIdx); 1281 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1282 MO.setReg(widenWithUnmerge(WideTy, MO.getReg())); 1283 } 1284 1285 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1286 unsigned OpIdx) { 1287 MachineOperand &MO = MI.getOperand(OpIdx); 1288 1289 LLT OldTy = MRI.getType(MO.getReg()); 1290 unsigned OldElts = OldTy.getNumElements(); 1291 unsigned NewElts = MoreTy.getNumElements(); 1292 1293 unsigned NumParts = NewElts / OldElts; 1294 1295 // Use concat_vectors if the result is a multiple of the number of elements. 1296 if (NumParts * OldElts == NewElts) { 1297 SmallVector<Register, 8> Parts; 1298 Parts.push_back(MO.getReg()); 1299 1300 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1301 for (unsigned I = 1; I != NumParts; ++I) 1302 Parts.push_back(ImpDef); 1303 1304 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1305 MO.setReg(Concat.getReg(0)); 1306 return; 1307 } 1308 1309 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1310 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1311 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1312 MO.setReg(MoreReg); 1313 } 1314 1315 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1316 MachineOperand &Op = MI.getOperand(OpIdx); 1317 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); 1318 } 1319 1320 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { 1321 MachineOperand &MO = MI.getOperand(OpIdx); 1322 Register CastDst = MRI.createGenericVirtualRegister(CastTy); 1323 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1324 MIRBuilder.buildBitcast(MO, CastDst); 1325 MO.setReg(CastDst); 1326 } 1327 1328 LegalizerHelper::LegalizeResult 1329 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1330 LLT WideTy) { 1331 if (TypeIdx != 1) 1332 return UnableToLegalize; 1333 1334 Register DstReg = MI.getOperand(0).getReg(); 1335 LLT DstTy = MRI.getType(DstReg); 1336 if (DstTy.isVector()) 1337 return UnableToLegalize; 1338 1339 Register Src1 = MI.getOperand(1).getReg(); 1340 LLT SrcTy = MRI.getType(Src1); 1341 const int DstSize = DstTy.getSizeInBits(); 1342 const int SrcSize = SrcTy.getSizeInBits(); 1343 const int WideSize = WideTy.getSizeInBits(); 1344 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1345 1346 unsigned NumOps = MI.getNumOperands(); 1347 unsigned NumSrc = MI.getNumOperands() - 1; 1348 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1349 1350 if (WideSize >= DstSize) { 1351 // Directly pack the bits in the target type. 1352 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1353 1354 for (unsigned I = 2; I != NumOps; ++I) { 1355 const unsigned Offset = (I - 1) * PartSize; 1356 1357 Register SrcReg = MI.getOperand(I).getReg(); 1358 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1359 1360 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1361 1362 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1363 MRI.createGenericVirtualRegister(WideTy); 1364 1365 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1366 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1367 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1368 ResultReg = NextResult; 1369 } 1370 1371 if (WideSize > DstSize) 1372 MIRBuilder.buildTrunc(DstReg, ResultReg); 1373 else if (DstTy.isPointer()) 1374 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1375 1376 MI.eraseFromParent(); 1377 return Legalized; 1378 } 1379 1380 // Unmerge the original values to the GCD type, and recombine to the next 1381 // multiple greater than the original type. 1382 // 1383 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1384 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1385 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1386 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1387 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1388 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1389 // %12:_(s12) = G_MERGE_VALUES %10, %11 1390 // 1391 // Padding with undef if necessary: 1392 // 1393 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1394 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1395 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1396 // %7:_(s2) = G_IMPLICIT_DEF 1397 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1398 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1399 // %10:_(s12) = G_MERGE_VALUES %8, %9 1400 1401 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1402 LLT GCDTy = LLT::scalar(GCD); 1403 1404 SmallVector<Register, 8> Parts; 1405 SmallVector<Register, 8> NewMergeRegs; 1406 SmallVector<Register, 8> Unmerges; 1407 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1408 1409 // Decompose the original operands if they don't evenly divide. 1410 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1411 Register SrcReg = MI.getOperand(I).getReg(); 1412 if (GCD == SrcSize) { 1413 Unmerges.push_back(SrcReg); 1414 } else { 1415 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1416 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1417 Unmerges.push_back(Unmerge.getReg(J)); 1418 } 1419 } 1420 1421 // Pad with undef to the next size that is a multiple of the requested size. 1422 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1423 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1424 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1425 Unmerges.push_back(UndefReg); 1426 } 1427 1428 const int PartsPerGCD = WideSize / GCD; 1429 1430 // Build merges of each piece. 1431 ArrayRef<Register> Slicer(Unmerges); 1432 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1433 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1434 NewMergeRegs.push_back(Merge.getReg(0)); 1435 } 1436 1437 // A truncate may be necessary if the requested type doesn't evenly divide the 1438 // original result type. 1439 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1440 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1441 } else { 1442 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1443 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1444 } 1445 1446 MI.eraseFromParent(); 1447 return Legalized; 1448 } 1449 1450 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) { 1451 Register WideReg = MRI.createGenericVirtualRegister(WideTy); 1452 LLT OrigTy = MRI.getType(OrigReg); 1453 LLT LCMTy = getLCMType(WideTy, OrigTy); 1454 1455 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits(); 1456 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits(); 1457 1458 Register UnmergeSrc = WideReg; 1459 1460 // Create a merge to the LCM type, padding with undef 1461 // %0:_(<3 x s32>) = G_FOO => <4 x s32> 1462 // => 1463 // %1:_(<4 x s32>) = G_FOO 1464 // %2:_(<4 x s32>) = G_IMPLICIT_DEF 1465 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2 1466 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3 1467 if (NumMergeParts > 1) { 1468 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0); 1469 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef); 1470 MergeParts[0] = WideReg; 1471 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0); 1472 } 1473 1474 // Unmerge to the original register and pad with dead defs. 1475 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts); 1476 UnmergeResults[0] = OrigReg; 1477 for (int I = 1; I != NumUnmergeParts; ++I) 1478 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy); 1479 1480 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc); 1481 return WideReg; 1482 } 1483 1484 LegalizerHelper::LegalizeResult 1485 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1486 LLT WideTy) { 1487 if (TypeIdx != 0) 1488 return UnableToLegalize; 1489 1490 int NumDst = MI.getNumOperands() - 1; 1491 Register SrcReg = MI.getOperand(NumDst).getReg(); 1492 LLT SrcTy = MRI.getType(SrcReg); 1493 if (SrcTy.isVector()) 1494 return UnableToLegalize; 1495 1496 Register Dst0Reg = MI.getOperand(0).getReg(); 1497 LLT DstTy = MRI.getType(Dst0Reg); 1498 if (!DstTy.isScalar()) 1499 return UnableToLegalize; 1500 1501 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { 1502 if (SrcTy.isPointer()) { 1503 const DataLayout &DL = MIRBuilder.getDataLayout(); 1504 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1505 LLVM_DEBUG( 1506 dbgs() << "Not casting non-integral address space integer\n"); 1507 return UnableToLegalize; 1508 } 1509 1510 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1511 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1512 } 1513 1514 // Widen SrcTy to WideTy. This does not affect the result, but since the 1515 // user requested this size, it is probably better handled than SrcTy and 1516 // should reduce the total number of legalization artifacts 1517 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1518 SrcTy = WideTy; 1519 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); 1520 } 1521 1522 // Theres no unmerge type to target. Directly extract the bits from the 1523 // source type 1524 unsigned DstSize = DstTy.getSizeInBits(); 1525 1526 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1527 for (int I = 1; I != NumDst; ++I) { 1528 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1529 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1530 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1531 } 1532 1533 MI.eraseFromParent(); 1534 return Legalized; 1535 } 1536 1537 // Extend the source to a wider type. 1538 LLT LCMTy = getLCMType(SrcTy, WideTy); 1539 1540 Register WideSrc = SrcReg; 1541 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1542 // TODO: If this is an integral address space, cast to integer and anyext. 1543 if (SrcTy.isPointer()) { 1544 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1545 return UnableToLegalize; 1546 } 1547 1548 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1549 } 1550 1551 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1552 1553 // Create a sequence of unmerges and merges to the original results. Since we 1554 // may have widened the source, we will need to pad the results with dead defs 1555 // to cover the source register. 1556 // e.g. widen s48 to s64: 1557 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) 1558 // 1559 // => 1560 // %4:_(s192) = G_ANYEXT %0:_(s96) 1561 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge 1562 // ; unpack to GCD type, with extra dead defs 1563 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) 1564 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) 1565 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) 1566 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination 1567 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination 1568 const LLT GCDTy = getGCDType(WideTy, DstTy); 1569 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1570 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); 1571 1572 // Directly unmerge to the destination without going through a GCD type 1573 // if possible 1574 if (PartsPerRemerge == 1) { 1575 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1576 1577 for (int I = 0; I != NumUnmerge; ++I) { 1578 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1579 1580 for (int J = 0; J != PartsPerUnmerge; ++J) { 1581 int Idx = I * PartsPerUnmerge + J; 1582 if (Idx < NumDst) 1583 MIB.addDef(MI.getOperand(Idx).getReg()); 1584 else { 1585 // Create dead def for excess components. 1586 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1587 } 1588 } 1589 1590 MIB.addUse(Unmerge.getReg(I)); 1591 } 1592 } else { 1593 SmallVector<Register, 16> Parts; 1594 for (int J = 0; J != NumUnmerge; ++J) 1595 extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); 1596 1597 SmallVector<Register, 8> RemergeParts; 1598 for (int I = 0; I != NumDst; ++I) { 1599 for (int J = 0; J < PartsPerRemerge; ++J) { 1600 const int Idx = I * PartsPerRemerge + J; 1601 RemergeParts.emplace_back(Parts[Idx]); 1602 } 1603 1604 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts); 1605 RemergeParts.clear(); 1606 } 1607 } 1608 1609 MI.eraseFromParent(); 1610 return Legalized; 1611 } 1612 1613 LegalizerHelper::LegalizeResult 1614 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1615 LLT WideTy) { 1616 Register DstReg = MI.getOperand(0).getReg(); 1617 Register SrcReg = MI.getOperand(1).getReg(); 1618 LLT SrcTy = MRI.getType(SrcReg); 1619 1620 LLT DstTy = MRI.getType(DstReg); 1621 unsigned Offset = MI.getOperand(2).getImm(); 1622 1623 if (TypeIdx == 0) { 1624 if (SrcTy.isVector() || DstTy.isVector()) 1625 return UnableToLegalize; 1626 1627 SrcOp Src(SrcReg); 1628 if (SrcTy.isPointer()) { 1629 // Extracts from pointers can be handled only if they are really just 1630 // simple integers. 1631 const DataLayout &DL = MIRBuilder.getDataLayout(); 1632 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1633 return UnableToLegalize; 1634 1635 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1636 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1637 SrcTy = SrcAsIntTy; 1638 } 1639 1640 if (DstTy.isPointer()) 1641 return UnableToLegalize; 1642 1643 if (Offset == 0) { 1644 // Avoid a shift in the degenerate case. 1645 MIRBuilder.buildTrunc(DstReg, 1646 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1647 MI.eraseFromParent(); 1648 return Legalized; 1649 } 1650 1651 // Do a shift in the source type. 1652 LLT ShiftTy = SrcTy; 1653 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1654 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1655 ShiftTy = WideTy; 1656 } 1657 1658 auto LShr = MIRBuilder.buildLShr( 1659 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1660 MIRBuilder.buildTrunc(DstReg, LShr); 1661 MI.eraseFromParent(); 1662 return Legalized; 1663 } 1664 1665 if (SrcTy.isScalar()) { 1666 Observer.changingInstr(MI); 1667 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1668 Observer.changedInstr(MI); 1669 return Legalized; 1670 } 1671 1672 if (!SrcTy.isVector()) 1673 return UnableToLegalize; 1674 1675 if (DstTy != SrcTy.getElementType()) 1676 return UnableToLegalize; 1677 1678 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1679 return UnableToLegalize; 1680 1681 Observer.changingInstr(MI); 1682 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1683 1684 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1685 Offset); 1686 widenScalarDst(MI, WideTy.getScalarType(), 0); 1687 Observer.changedInstr(MI); 1688 return Legalized; 1689 } 1690 1691 LegalizerHelper::LegalizeResult 1692 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1693 LLT WideTy) { 1694 if (TypeIdx != 0 || WideTy.isVector()) 1695 return UnableToLegalize; 1696 Observer.changingInstr(MI); 1697 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1698 widenScalarDst(MI, WideTy); 1699 Observer.changedInstr(MI); 1700 return Legalized; 1701 } 1702 1703 LegalizerHelper::LegalizeResult 1704 LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, 1705 LLT WideTy) { 1706 if (TypeIdx == 1) 1707 return UnableToLegalize; // TODO 1708 1709 unsigned Opcode; 1710 unsigned ExtOpcode; 1711 Optional<Register> CarryIn = None; 1712 switch (MI.getOpcode()) { 1713 default: 1714 llvm_unreachable("Unexpected opcode!"); 1715 case TargetOpcode::G_SADDO: 1716 Opcode = TargetOpcode::G_ADD; 1717 ExtOpcode = TargetOpcode::G_SEXT; 1718 break; 1719 case TargetOpcode::G_SSUBO: 1720 Opcode = TargetOpcode::G_SUB; 1721 ExtOpcode = TargetOpcode::G_SEXT; 1722 break; 1723 case TargetOpcode::G_UADDO: 1724 Opcode = TargetOpcode::G_ADD; 1725 ExtOpcode = TargetOpcode::G_ZEXT; 1726 break; 1727 case TargetOpcode::G_USUBO: 1728 Opcode = TargetOpcode::G_SUB; 1729 ExtOpcode = TargetOpcode::G_ZEXT; 1730 break; 1731 case TargetOpcode::G_SADDE: 1732 Opcode = TargetOpcode::G_UADDE; 1733 ExtOpcode = TargetOpcode::G_SEXT; 1734 CarryIn = MI.getOperand(4).getReg(); 1735 break; 1736 case TargetOpcode::G_SSUBE: 1737 Opcode = TargetOpcode::G_USUBE; 1738 ExtOpcode = TargetOpcode::G_SEXT; 1739 CarryIn = MI.getOperand(4).getReg(); 1740 break; 1741 case TargetOpcode::G_UADDE: 1742 Opcode = TargetOpcode::G_UADDE; 1743 ExtOpcode = TargetOpcode::G_ZEXT; 1744 CarryIn = MI.getOperand(4).getReg(); 1745 break; 1746 case TargetOpcode::G_USUBE: 1747 Opcode = TargetOpcode::G_USUBE; 1748 ExtOpcode = TargetOpcode::G_ZEXT; 1749 CarryIn = MI.getOperand(4).getReg(); 1750 break; 1751 } 1752 1753 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); 1754 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); 1755 // Do the arithmetic in the larger type. 1756 Register NewOp; 1757 if (CarryIn) { 1758 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); 1759 NewOp = MIRBuilder 1760 .buildInstr(Opcode, {WideTy, CarryOutTy}, 1761 {LHSExt, RHSExt, *CarryIn}) 1762 .getReg(0); 1763 } else { 1764 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); 1765 } 1766 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1767 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); 1768 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); 1769 // There is no overflow if the ExtOp is the same as NewOp. 1770 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); 1771 // Now trunc the NewOp to the original result. 1772 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1773 MI.eraseFromParent(); 1774 return Legalized; 1775 } 1776 1777 LegalizerHelper::LegalizeResult 1778 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, 1779 LLT WideTy) { 1780 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || 1781 MI.getOpcode() == TargetOpcode::G_SSUBSAT || 1782 MI.getOpcode() == TargetOpcode::G_SSHLSAT; 1783 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || 1784 MI.getOpcode() == TargetOpcode::G_USHLSAT; 1785 // We can convert this to: 1786 // 1. Any extend iN to iM 1787 // 2. SHL by M-N 1788 // 3. [US][ADD|SUB|SHL]SAT 1789 // 4. L/ASHR by M-N 1790 // 1791 // It may be more efficient to lower this to a min and a max operation in 1792 // the higher precision arithmetic if the promoted operation isn't legal, 1793 // but this decision is up to the target's lowering request. 1794 Register DstReg = MI.getOperand(0).getReg(); 1795 1796 unsigned NewBits = WideTy.getScalarSizeInBits(); 1797 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); 1798 1799 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and 1800 // must not left shift the RHS to preserve the shift amount. 1801 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); 1802 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) 1803 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); 1804 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); 1805 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); 1806 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); 1807 1808 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, 1809 {ShiftL, ShiftR}, MI.getFlags()); 1810 1811 // Use a shift that will preserve the number of sign bits when the trunc is 1812 // folded away. 1813 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) 1814 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); 1815 1816 MIRBuilder.buildTrunc(DstReg, Result); 1817 MI.eraseFromParent(); 1818 return Legalized; 1819 } 1820 1821 LegalizerHelper::LegalizeResult 1822 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1823 switch (MI.getOpcode()) { 1824 default: 1825 return UnableToLegalize; 1826 case TargetOpcode::G_EXTRACT: 1827 return widenScalarExtract(MI, TypeIdx, WideTy); 1828 case TargetOpcode::G_INSERT: 1829 return widenScalarInsert(MI, TypeIdx, WideTy); 1830 case TargetOpcode::G_MERGE_VALUES: 1831 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1832 case TargetOpcode::G_UNMERGE_VALUES: 1833 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1834 case TargetOpcode::G_SADDO: 1835 case TargetOpcode::G_SSUBO: 1836 case TargetOpcode::G_UADDO: 1837 case TargetOpcode::G_USUBO: 1838 case TargetOpcode::G_SADDE: 1839 case TargetOpcode::G_SSUBE: 1840 case TargetOpcode::G_UADDE: 1841 case TargetOpcode::G_USUBE: 1842 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); 1843 case TargetOpcode::G_SADDSAT: 1844 case TargetOpcode::G_SSUBSAT: 1845 case TargetOpcode::G_SSHLSAT: 1846 case TargetOpcode::G_UADDSAT: 1847 case TargetOpcode::G_USUBSAT: 1848 case TargetOpcode::G_USHLSAT: 1849 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); 1850 case TargetOpcode::G_CTTZ: 1851 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1852 case TargetOpcode::G_CTLZ: 1853 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1854 case TargetOpcode::G_CTPOP: { 1855 if (TypeIdx == 0) { 1856 Observer.changingInstr(MI); 1857 widenScalarDst(MI, WideTy, 0); 1858 Observer.changedInstr(MI); 1859 return Legalized; 1860 } 1861 1862 Register SrcReg = MI.getOperand(1).getReg(); 1863 1864 // First ZEXT the input. 1865 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1866 LLT CurTy = MRI.getType(SrcReg); 1867 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1868 // The count is the same in the larger type except if the original 1869 // value was zero. This can be handled by setting the bit just off 1870 // the top of the original type. 1871 auto TopBit = 1872 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1873 MIBSrc = MIRBuilder.buildOr( 1874 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1875 } 1876 1877 // Perform the operation at the larger size. 1878 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1879 // This is already the correct result for CTPOP and CTTZs 1880 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1881 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1882 // The correct result is NewOp - (Difference in widety and current ty). 1883 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1884 MIBNewOp = MIRBuilder.buildSub( 1885 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1886 } 1887 1888 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1889 MI.eraseFromParent(); 1890 return Legalized; 1891 } 1892 case TargetOpcode::G_BSWAP: { 1893 Observer.changingInstr(MI); 1894 Register DstReg = MI.getOperand(0).getReg(); 1895 1896 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1897 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1898 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1899 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1900 1901 MI.getOperand(0).setReg(DstExt); 1902 1903 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1904 1905 LLT Ty = MRI.getType(DstReg); 1906 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1907 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1908 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1909 1910 MIRBuilder.buildTrunc(DstReg, ShrReg); 1911 Observer.changedInstr(MI); 1912 return Legalized; 1913 } 1914 case TargetOpcode::G_BITREVERSE: { 1915 Observer.changingInstr(MI); 1916 1917 Register DstReg = MI.getOperand(0).getReg(); 1918 LLT Ty = MRI.getType(DstReg); 1919 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1920 1921 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1922 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1923 MI.getOperand(0).setReg(DstExt); 1924 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1925 1926 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1927 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1928 MIRBuilder.buildTrunc(DstReg, Shift); 1929 Observer.changedInstr(MI); 1930 return Legalized; 1931 } 1932 case TargetOpcode::G_FREEZE: 1933 Observer.changingInstr(MI); 1934 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1935 widenScalarDst(MI, WideTy); 1936 Observer.changedInstr(MI); 1937 return Legalized; 1938 1939 case TargetOpcode::G_ADD: 1940 case TargetOpcode::G_AND: 1941 case TargetOpcode::G_MUL: 1942 case TargetOpcode::G_OR: 1943 case TargetOpcode::G_XOR: 1944 case TargetOpcode::G_SUB: 1945 // Perform operation at larger width (any extension is fines here, high bits 1946 // don't affect the result) and then truncate the result back to the 1947 // original type. 1948 Observer.changingInstr(MI); 1949 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1950 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1951 widenScalarDst(MI, WideTy); 1952 Observer.changedInstr(MI); 1953 return Legalized; 1954 1955 case TargetOpcode::G_SHL: 1956 Observer.changingInstr(MI); 1957 1958 if (TypeIdx == 0) { 1959 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1960 widenScalarDst(MI, WideTy); 1961 } else { 1962 assert(TypeIdx == 1); 1963 // The "number of bits to shift" operand must preserve its value as an 1964 // unsigned integer: 1965 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1966 } 1967 1968 Observer.changedInstr(MI); 1969 return Legalized; 1970 1971 case TargetOpcode::G_SDIV: 1972 case TargetOpcode::G_SREM: 1973 case TargetOpcode::G_SMIN: 1974 case TargetOpcode::G_SMAX: 1975 Observer.changingInstr(MI); 1976 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1977 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1978 widenScalarDst(MI, WideTy); 1979 Observer.changedInstr(MI); 1980 return Legalized; 1981 1982 case TargetOpcode::G_ASHR: 1983 case TargetOpcode::G_LSHR: 1984 Observer.changingInstr(MI); 1985 1986 if (TypeIdx == 0) { 1987 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1988 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1989 1990 widenScalarSrc(MI, WideTy, 1, CvtOp); 1991 widenScalarDst(MI, WideTy); 1992 } else { 1993 assert(TypeIdx == 1); 1994 // The "number of bits to shift" operand must preserve its value as an 1995 // unsigned integer: 1996 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1997 } 1998 1999 Observer.changedInstr(MI); 2000 return Legalized; 2001 case TargetOpcode::G_UDIV: 2002 case TargetOpcode::G_UREM: 2003 case TargetOpcode::G_UMIN: 2004 case TargetOpcode::G_UMAX: 2005 Observer.changingInstr(MI); 2006 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2007 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2008 widenScalarDst(MI, WideTy); 2009 Observer.changedInstr(MI); 2010 return Legalized; 2011 2012 case TargetOpcode::G_SELECT: 2013 Observer.changingInstr(MI); 2014 if (TypeIdx == 0) { 2015 // Perform operation at larger width (any extension is fine here, high 2016 // bits don't affect the result) and then truncate the result back to the 2017 // original type. 2018 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2019 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 2020 widenScalarDst(MI, WideTy); 2021 } else { 2022 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 2023 // Explicit extension is required here since high bits affect the result. 2024 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 2025 } 2026 Observer.changedInstr(MI); 2027 return Legalized; 2028 2029 case TargetOpcode::G_FPTOSI: 2030 case TargetOpcode::G_FPTOUI: 2031 Observer.changingInstr(MI); 2032 2033 if (TypeIdx == 0) 2034 widenScalarDst(MI, WideTy); 2035 else 2036 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2037 2038 Observer.changedInstr(MI); 2039 return Legalized; 2040 case TargetOpcode::G_SITOFP: 2041 Observer.changingInstr(MI); 2042 2043 if (TypeIdx == 0) 2044 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2045 else 2046 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 2047 2048 Observer.changedInstr(MI); 2049 return Legalized; 2050 case TargetOpcode::G_UITOFP: 2051 Observer.changingInstr(MI); 2052 2053 if (TypeIdx == 0) 2054 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2055 else 2056 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2057 2058 Observer.changedInstr(MI); 2059 return Legalized; 2060 case TargetOpcode::G_LOAD: 2061 case TargetOpcode::G_SEXTLOAD: 2062 case TargetOpcode::G_ZEXTLOAD: 2063 Observer.changingInstr(MI); 2064 widenScalarDst(MI, WideTy); 2065 Observer.changedInstr(MI); 2066 return Legalized; 2067 2068 case TargetOpcode::G_STORE: { 2069 if (TypeIdx != 0) 2070 return UnableToLegalize; 2071 2072 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2073 if (!Ty.isScalar()) 2074 return UnableToLegalize; 2075 2076 Observer.changingInstr(MI); 2077 2078 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 2079 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 2080 widenScalarSrc(MI, WideTy, 0, ExtType); 2081 2082 Observer.changedInstr(MI); 2083 return Legalized; 2084 } 2085 case TargetOpcode::G_CONSTANT: { 2086 MachineOperand &SrcMO = MI.getOperand(1); 2087 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2088 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 2089 MRI.getType(MI.getOperand(0).getReg())); 2090 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 2091 ExtOpc == TargetOpcode::G_ANYEXT) && 2092 "Illegal Extend"); 2093 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 2094 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 2095 ? SrcVal.sext(WideTy.getSizeInBits()) 2096 : SrcVal.zext(WideTy.getSizeInBits()); 2097 Observer.changingInstr(MI); 2098 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 2099 2100 widenScalarDst(MI, WideTy); 2101 Observer.changedInstr(MI); 2102 return Legalized; 2103 } 2104 case TargetOpcode::G_FCONSTANT: { 2105 MachineOperand &SrcMO = MI.getOperand(1); 2106 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2107 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 2108 bool LosesInfo; 2109 switch (WideTy.getSizeInBits()) { 2110 case 32: 2111 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 2112 &LosesInfo); 2113 break; 2114 case 64: 2115 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 2116 &LosesInfo); 2117 break; 2118 default: 2119 return UnableToLegalize; 2120 } 2121 2122 assert(!LosesInfo && "extend should always be lossless"); 2123 2124 Observer.changingInstr(MI); 2125 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 2126 2127 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2128 Observer.changedInstr(MI); 2129 return Legalized; 2130 } 2131 case TargetOpcode::G_IMPLICIT_DEF: { 2132 Observer.changingInstr(MI); 2133 widenScalarDst(MI, WideTy); 2134 Observer.changedInstr(MI); 2135 return Legalized; 2136 } 2137 case TargetOpcode::G_BRCOND: 2138 Observer.changingInstr(MI); 2139 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 2140 Observer.changedInstr(MI); 2141 return Legalized; 2142 2143 case TargetOpcode::G_FCMP: 2144 Observer.changingInstr(MI); 2145 if (TypeIdx == 0) 2146 widenScalarDst(MI, WideTy); 2147 else { 2148 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 2149 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 2150 } 2151 Observer.changedInstr(MI); 2152 return Legalized; 2153 2154 case TargetOpcode::G_ICMP: 2155 Observer.changingInstr(MI); 2156 if (TypeIdx == 0) 2157 widenScalarDst(MI, WideTy); 2158 else { 2159 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 2160 MI.getOperand(1).getPredicate())) 2161 ? TargetOpcode::G_SEXT 2162 : TargetOpcode::G_ZEXT; 2163 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 2164 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 2165 } 2166 Observer.changedInstr(MI); 2167 return Legalized; 2168 2169 case TargetOpcode::G_PTR_ADD: 2170 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 2171 Observer.changingInstr(MI); 2172 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2173 Observer.changedInstr(MI); 2174 return Legalized; 2175 2176 case TargetOpcode::G_PHI: { 2177 assert(TypeIdx == 0 && "Expecting only Idx 0"); 2178 2179 Observer.changingInstr(MI); 2180 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 2181 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2182 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2183 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 2184 } 2185 2186 MachineBasicBlock &MBB = *MI.getParent(); 2187 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 2188 widenScalarDst(MI, WideTy); 2189 Observer.changedInstr(MI); 2190 return Legalized; 2191 } 2192 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 2193 if (TypeIdx == 0) { 2194 Register VecReg = MI.getOperand(1).getReg(); 2195 LLT VecTy = MRI.getType(VecReg); 2196 Observer.changingInstr(MI); 2197 2198 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 2199 WideTy.getSizeInBits()), 2200 1, TargetOpcode::G_SEXT); 2201 2202 widenScalarDst(MI, WideTy, 0); 2203 Observer.changedInstr(MI); 2204 return Legalized; 2205 } 2206 2207 if (TypeIdx != 2) 2208 return UnableToLegalize; 2209 Observer.changingInstr(MI); 2210 // TODO: Probably should be zext 2211 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 2212 Observer.changedInstr(MI); 2213 return Legalized; 2214 } 2215 case TargetOpcode::G_INSERT_VECTOR_ELT: { 2216 if (TypeIdx == 1) { 2217 Observer.changingInstr(MI); 2218 2219 Register VecReg = MI.getOperand(1).getReg(); 2220 LLT VecTy = MRI.getType(VecReg); 2221 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 2222 2223 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 2224 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 2225 widenScalarDst(MI, WideVecTy, 0); 2226 Observer.changedInstr(MI); 2227 return Legalized; 2228 } 2229 2230 if (TypeIdx == 2) { 2231 Observer.changingInstr(MI); 2232 // TODO: Probably should be zext 2233 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 2234 Observer.changedInstr(MI); 2235 return Legalized; 2236 } 2237 2238 return UnableToLegalize; 2239 } 2240 case TargetOpcode::G_FADD: 2241 case TargetOpcode::G_FMUL: 2242 case TargetOpcode::G_FSUB: 2243 case TargetOpcode::G_FMA: 2244 case TargetOpcode::G_FMAD: 2245 case TargetOpcode::G_FNEG: 2246 case TargetOpcode::G_FABS: 2247 case TargetOpcode::G_FCANONICALIZE: 2248 case TargetOpcode::G_FMINNUM: 2249 case TargetOpcode::G_FMAXNUM: 2250 case TargetOpcode::G_FMINNUM_IEEE: 2251 case TargetOpcode::G_FMAXNUM_IEEE: 2252 case TargetOpcode::G_FMINIMUM: 2253 case TargetOpcode::G_FMAXIMUM: 2254 case TargetOpcode::G_FDIV: 2255 case TargetOpcode::G_FREM: 2256 case TargetOpcode::G_FCEIL: 2257 case TargetOpcode::G_FFLOOR: 2258 case TargetOpcode::G_FCOS: 2259 case TargetOpcode::G_FSIN: 2260 case TargetOpcode::G_FLOG10: 2261 case TargetOpcode::G_FLOG: 2262 case TargetOpcode::G_FLOG2: 2263 case TargetOpcode::G_FRINT: 2264 case TargetOpcode::G_FNEARBYINT: 2265 case TargetOpcode::G_FSQRT: 2266 case TargetOpcode::G_FEXP: 2267 case TargetOpcode::G_FEXP2: 2268 case TargetOpcode::G_FPOW: 2269 case TargetOpcode::G_INTRINSIC_TRUNC: 2270 case TargetOpcode::G_INTRINSIC_ROUND: 2271 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: 2272 assert(TypeIdx == 0); 2273 Observer.changingInstr(MI); 2274 2275 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2276 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2277 2278 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2279 Observer.changedInstr(MI); 2280 return Legalized; 2281 case TargetOpcode::G_FPOWI: { 2282 if (TypeIdx != 0) 2283 return UnableToLegalize; 2284 Observer.changingInstr(MI); 2285 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 2286 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2287 Observer.changedInstr(MI); 2288 return Legalized; 2289 } 2290 case TargetOpcode::G_INTTOPTR: 2291 if (TypeIdx != 1) 2292 return UnableToLegalize; 2293 2294 Observer.changingInstr(MI); 2295 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2296 Observer.changedInstr(MI); 2297 return Legalized; 2298 case TargetOpcode::G_PTRTOINT: 2299 if (TypeIdx != 0) 2300 return UnableToLegalize; 2301 2302 Observer.changingInstr(MI); 2303 widenScalarDst(MI, WideTy, 0); 2304 Observer.changedInstr(MI); 2305 return Legalized; 2306 case TargetOpcode::G_BUILD_VECTOR: { 2307 Observer.changingInstr(MI); 2308 2309 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2310 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2311 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2312 2313 // Avoid changing the result vector type if the source element type was 2314 // requested. 2315 if (TypeIdx == 1) { 2316 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2317 } else { 2318 widenScalarDst(MI, WideTy, 0); 2319 } 2320 2321 Observer.changedInstr(MI); 2322 return Legalized; 2323 } 2324 case TargetOpcode::G_SEXT_INREG: 2325 if (TypeIdx != 0) 2326 return UnableToLegalize; 2327 2328 Observer.changingInstr(MI); 2329 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2330 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2331 Observer.changedInstr(MI); 2332 return Legalized; 2333 case TargetOpcode::G_PTRMASK: { 2334 if (TypeIdx != 1) 2335 return UnableToLegalize; 2336 Observer.changingInstr(MI); 2337 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 2338 Observer.changedInstr(MI); 2339 return Legalized; 2340 } 2341 } 2342 } 2343 2344 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2345 MachineIRBuilder &B, Register Src, LLT Ty) { 2346 auto Unmerge = B.buildUnmerge(Ty, Src); 2347 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2348 Pieces.push_back(Unmerge.getReg(I)); 2349 } 2350 2351 LegalizerHelper::LegalizeResult 2352 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2353 Register Dst = MI.getOperand(0).getReg(); 2354 Register Src = MI.getOperand(1).getReg(); 2355 LLT DstTy = MRI.getType(Dst); 2356 LLT SrcTy = MRI.getType(Src); 2357 2358 if (SrcTy.isVector()) { 2359 LLT SrcEltTy = SrcTy.getElementType(); 2360 SmallVector<Register, 8> SrcRegs; 2361 2362 if (DstTy.isVector()) { 2363 int NumDstElt = DstTy.getNumElements(); 2364 int NumSrcElt = SrcTy.getNumElements(); 2365 2366 LLT DstEltTy = DstTy.getElementType(); 2367 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type 2368 LLT SrcPartTy = SrcEltTy; // Original unmerge result type. 2369 2370 // If there's an element size mismatch, insert intermediate casts to match 2371 // the result element type. 2372 if (NumSrcElt < NumDstElt) { // Source element type is larger. 2373 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) 2374 // 2375 // => 2376 // 2377 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 2378 // %3:_(<2 x s8>) = G_BITCAST %2 2379 // %4:_(<2 x s8>) = G_BITCAST %3 2380 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 2381 DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy); 2382 SrcPartTy = SrcEltTy; 2383 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. 2384 // 2385 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) 2386 // 2387 // => 2388 // 2389 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 2390 // %3:_(s16) = G_BITCAST %2 2391 // %4:_(s16) = G_BITCAST %3 2392 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 2393 SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy); 2394 DstCastTy = DstEltTy; 2395 } 2396 2397 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); 2398 for (Register &SrcReg : SrcRegs) 2399 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); 2400 } else 2401 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); 2402 2403 MIRBuilder.buildMerge(Dst, SrcRegs); 2404 MI.eraseFromParent(); 2405 return Legalized; 2406 } 2407 2408 if (DstTy.isVector()) { 2409 SmallVector<Register, 8> SrcRegs; 2410 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2411 MIRBuilder.buildMerge(Dst, SrcRegs); 2412 MI.eraseFromParent(); 2413 return Legalized; 2414 } 2415 2416 return UnableToLegalize; 2417 } 2418 2419 /// Figure out the bit offset into a register when coercing a vector index for 2420 /// the wide element type. This is only for the case when promoting vector to 2421 /// one with larger elements. 2422 // 2423 /// 2424 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2425 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2426 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, 2427 Register Idx, 2428 unsigned NewEltSize, 2429 unsigned OldEltSize) { 2430 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2431 LLT IdxTy = B.getMRI()->getType(Idx); 2432 2433 // Now figure out the amount we need to shift to get the target bits. 2434 auto OffsetMask = B.buildConstant( 2435 IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio)); 2436 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); 2437 return B.buildShl(IdxTy, OffsetIdx, 2438 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); 2439 } 2440 2441 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this 2442 /// is casting to a vector with a smaller element size, perform multiple element 2443 /// extracts and merge the results. If this is coercing to a vector with larger 2444 /// elements, index the bitcasted vector and extract the target element with bit 2445 /// operations. This is intended to force the indexing in the native register 2446 /// size for architectures that can dynamically index the register file. 2447 LegalizerHelper::LegalizeResult 2448 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, 2449 LLT CastTy) { 2450 if (TypeIdx != 1) 2451 return UnableToLegalize; 2452 2453 Register Dst = MI.getOperand(0).getReg(); 2454 Register SrcVec = MI.getOperand(1).getReg(); 2455 Register Idx = MI.getOperand(2).getReg(); 2456 LLT SrcVecTy = MRI.getType(SrcVec); 2457 LLT IdxTy = MRI.getType(Idx); 2458 2459 LLT SrcEltTy = SrcVecTy.getElementType(); 2460 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2461 unsigned OldNumElts = SrcVecTy.getNumElements(); 2462 2463 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2464 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2465 2466 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2467 const unsigned OldEltSize = SrcEltTy.getSizeInBits(); 2468 if (NewNumElts > OldNumElts) { 2469 // Decreasing the vector element size 2470 // 2471 // e.g. i64 = extract_vector_elt x:v2i64, y:i32 2472 // => 2473 // v4i32:castx = bitcast x:v2i64 2474 // 2475 // i64 = bitcast 2476 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 2477 // (i32 (extract_vector_elt castx, (2 * y + 1))) 2478 // 2479 if (NewNumElts % OldNumElts != 0) 2480 return UnableToLegalize; 2481 2482 // Type of the intermediate result vector. 2483 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; 2484 LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy); 2485 2486 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); 2487 2488 SmallVector<Register, 8> NewOps(NewEltsPerOldElt); 2489 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); 2490 2491 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 2492 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); 2493 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); 2494 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); 2495 NewOps[I] = Elt.getReg(0); 2496 } 2497 2498 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); 2499 MIRBuilder.buildBitcast(Dst, NewVec); 2500 MI.eraseFromParent(); 2501 return Legalized; 2502 } 2503 2504 if (NewNumElts < OldNumElts) { 2505 if (NewEltSize % OldEltSize != 0) 2506 return UnableToLegalize; 2507 2508 // This only depends on powers of 2 because we use bit tricks to figure out 2509 // the bit offset we need to shift to get the target element. A general 2510 // expansion could emit division/multiply. 2511 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2512 return UnableToLegalize; 2513 2514 // Increasing the vector element size. 2515 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx 2516 // 2517 // => 2518 // 2519 // %cast = G_BITCAST %vec 2520 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) 2521 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx 2522 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) 2523 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) 2524 // %elt_bits = G_LSHR %wide_elt, %offset_bits 2525 // %elt = G_TRUNC %elt_bits 2526 2527 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2528 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2529 2530 // Divide to get the index in the wider element type. 2531 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2532 2533 Register WideElt = CastVec; 2534 if (CastTy.isVector()) { 2535 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2536 ScaledIdx).getReg(0); 2537 } 2538 2539 // Compute the bit offset into the register of the target element. 2540 Register OffsetBits = getBitcastWiderVectorElementOffset( 2541 MIRBuilder, Idx, NewEltSize, OldEltSize); 2542 2543 // Shift the wide element to get the target element. 2544 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); 2545 MIRBuilder.buildTrunc(Dst, ExtractedBits); 2546 MI.eraseFromParent(); 2547 return Legalized; 2548 } 2549 2550 return UnableToLegalize; 2551 } 2552 2553 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p 2554 /// TargetReg, while preserving other bits in \p TargetReg. 2555 /// 2556 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) 2557 static Register buildBitFieldInsert(MachineIRBuilder &B, 2558 Register TargetReg, Register InsertReg, 2559 Register OffsetBits) { 2560 LLT TargetTy = B.getMRI()->getType(TargetReg); 2561 LLT InsertTy = B.getMRI()->getType(InsertReg); 2562 auto ZextVal = B.buildZExt(TargetTy, InsertReg); 2563 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); 2564 2565 // Produce a bitmask of the value to insert 2566 auto EltMask = B.buildConstant( 2567 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), 2568 InsertTy.getSizeInBits())); 2569 // Shift it into position 2570 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); 2571 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); 2572 2573 // Clear out the bits in the wide element 2574 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); 2575 2576 // The value to insert has all zeros already, so stick it into the masked 2577 // wide element. 2578 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); 2579 } 2580 2581 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this 2582 /// is increasing the element size, perform the indexing in the target element 2583 /// type, and use bit operations to insert at the element position. This is 2584 /// intended for architectures that can dynamically index the register file and 2585 /// want to force indexing in the native register size. 2586 LegalizerHelper::LegalizeResult 2587 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, 2588 LLT CastTy) { 2589 if (TypeIdx != 0) 2590 return UnableToLegalize; 2591 2592 Register Dst = MI.getOperand(0).getReg(); 2593 Register SrcVec = MI.getOperand(1).getReg(); 2594 Register Val = MI.getOperand(2).getReg(); 2595 Register Idx = MI.getOperand(3).getReg(); 2596 2597 LLT VecTy = MRI.getType(Dst); 2598 LLT IdxTy = MRI.getType(Idx); 2599 2600 LLT VecEltTy = VecTy.getElementType(); 2601 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; 2602 const unsigned NewEltSize = NewEltTy.getSizeInBits(); 2603 const unsigned OldEltSize = VecEltTy.getSizeInBits(); 2604 2605 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; 2606 unsigned OldNumElts = VecTy.getNumElements(); 2607 2608 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); 2609 if (NewNumElts < OldNumElts) { 2610 if (NewEltSize % OldEltSize != 0) 2611 return UnableToLegalize; 2612 2613 // This only depends on powers of 2 because we use bit tricks to figure out 2614 // the bit offset we need to shift to get the target element. A general 2615 // expansion could emit division/multiply. 2616 if (!isPowerOf2_32(NewEltSize / OldEltSize)) 2617 return UnableToLegalize; 2618 2619 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); 2620 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); 2621 2622 // Divide to get the index in the wider element type. 2623 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); 2624 2625 Register ExtractedElt = CastVec; 2626 if (CastTy.isVector()) { 2627 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, 2628 ScaledIdx).getReg(0); 2629 } 2630 2631 // Compute the bit offset into the register of the target element. 2632 Register OffsetBits = getBitcastWiderVectorElementOffset( 2633 MIRBuilder, Idx, NewEltSize, OldEltSize); 2634 2635 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, 2636 Val, OffsetBits); 2637 if (CastTy.isVector()) { 2638 InsertedElt = MIRBuilder.buildInsertVectorElement( 2639 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); 2640 } 2641 2642 MIRBuilder.buildBitcast(Dst, InsertedElt); 2643 MI.eraseFromParent(); 2644 return Legalized; 2645 } 2646 2647 return UnableToLegalize; 2648 } 2649 2650 LegalizerHelper::LegalizeResult 2651 LegalizerHelper::lowerLoad(MachineInstr &MI) { 2652 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2653 Register DstReg = MI.getOperand(0).getReg(); 2654 Register PtrReg = MI.getOperand(1).getReg(); 2655 LLT DstTy = MRI.getType(DstReg); 2656 auto &MMO = **MI.memoperands_begin(); 2657 2658 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2659 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2660 // This load needs splitting into power of 2 sized loads. 2661 if (DstTy.isVector()) 2662 return UnableToLegalize; 2663 if (isPowerOf2_32(DstTy.getSizeInBits())) 2664 return UnableToLegalize; // Don't know what we're being asked to do. 2665 2666 // Our strategy here is to generate anyextending loads for the smaller 2667 // types up to next power-2 result type, and then combine the two larger 2668 // result values together, before truncating back down to the non-pow-2 2669 // type. 2670 // E.g. v1 = i24 load => 2671 // v2 = i32 zextload (2 byte) 2672 // v3 = i32 load (1 byte) 2673 // v4 = i32 shl v3, 16 2674 // v5 = i32 or v4, v2 2675 // v1 = i24 trunc v5 2676 // By doing this we generate the correct truncate which should get 2677 // combined away as an artifact with a matching extend. 2678 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2679 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2680 2681 MachineFunction &MF = MIRBuilder.getMF(); 2682 MachineMemOperand *LargeMMO = 2683 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2684 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2685 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2686 2687 LLT PtrTy = MRI.getType(PtrReg); 2688 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2689 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2690 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2691 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2692 auto LargeLoad = MIRBuilder.buildLoadInstr( 2693 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2694 2695 auto OffsetCst = MIRBuilder.buildConstant( 2696 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2697 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2698 auto SmallPtr = 2699 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2700 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2701 *SmallMMO); 2702 2703 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2704 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2705 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2706 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2707 MI.eraseFromParent(); 2708 return Legalized; 2709 } 2710 2711 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2712 MI.eraseFromParent(); 2713 return Legalized; 2714 } 2715 2716 if (DstTy.isScalar()) { 2717 Register TmpReg = 2718 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2719 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2720 switch (MI.getOpcode()) { 2721 default: 2722 llvm_unreachable("Unexpected opcode"); 2723 case TargetOpcode::G_LOAD: 2724 MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg); 2725 break; 2726 case TargetOpcode::G_SEXTLOAD: 2727 MIRBuilder.buildSExt(DstReg, TmpReg); 2728 break; 2729 case TargetOpcode::G_ZEXTLOAD: 2730 MIRBuilder.buildZExt(DstReg, TmpReg); 2731 break; 2732 } 2733 2734 MI.eraseFromParent(); 2735 return Legalized; 2736 } 2737 2738 return UnableToLegalize; 2739 } 2740 2741 LegalizerHelper::LegalizeResult 2742 LegalizerHelper::lowerStore(MachineInstr &MI) { 2743 // Lower a non-power of 2 store into multiple pow-2 stores. 2744 // E.g. split an i24 store into an i16 store + i8 store. 2745 // We do this by first extending the stored value to the next largest power 2746 // of 2 type, and then using truncating stores to store the components. 2747 // By doing this, likewise with G_LOAD, generate an extend that can be 2748 // artifact-combined away instead of leaving behind extracts. 2749 Register SrcReg = MI.getOperand(0).getReg(); 2750 Register PtrReg = MI.getOperand(1).getReg(); 2751 LLT SrcTy = MRI.getType(SrcReg); 2752 MachineMemOperand &MMO = **MI.memoperands_begin(); 2753 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2754 return UnableToLegalize; 2755 if (SrcTy.isVector()) 2756 return UnableToLegalize; 2757 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2758 return UnableToLegalize; // Don't know what we're being asked to do. 2759 2760 // Extend to the next pow-2. 2761 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2762 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2763 2764 // Obtain the smaller value by shifting away the larger value. 2765 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2766 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2767 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2768 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2769 2770 // Generate the PtrAdd and truncating stores. 2771 LLT PtrTy = MRI.getType(PtrReg); 2772 auto OffsetCst = MIRBuilder.buildConstant( 2773 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2774 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2775 auto SmallPtr = 2776 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2777 2778 MachineFunction &MF = MIRBuilder.getMF(); 2779 MachineMemOperand *LargeMMO = 2780 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2781 MachineMemOperand *SmallMMO = 2782 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2783 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2784 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2785 MI.eraseFromParent(); 2786 return Legalized; 2787 } 2788 2789 LegalizerHelper::LegalizeResult 2790 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { 2791 switch (MI.getOpcode()) { 2792 case TargetOpcode::G_LOAD: { 2793 if (TypeIdx != 0) 2794 return UnableToLegalize; 2795 2796 Observer.changingInstr(MI); 2797 bitcastDst(MI, CastTy, 0); 2798 Observer.changedInstr(MI); 2799 return Legalized; 2800 } 2801 case TargetOpcode::G_STORE: { 2802 if (TypeIdx != 0) 2803 return UnableToLegalize; 2804 2805 Observer.changingInstr(MI); 2806 bitcastSrc(MI, CastTy, 0); 2807 Observer.changedInstr(MI); 2808 return Legalized; 2809 } 2810 case TargetOpcode::G_SELECT: { 2811 if (TypeIdx != 0) 2812 return UnableToLegalize; 2813 2814 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { 2815 LLVM_DEBUG( 2816 dbgs() << "bitcast action not implemented for vector select\n"); 2817 return UnableToLegalize; 2818 } 2819 2820 Observer.changingInstr(MI); 2821 bitcastSrc(MI, CastTy, 2); 2822 bitcastSrc(MI, CastTy, 3); 2823 bitcastDst(MI, CastTy, 0); 2824 Observer.changedInstr(MI); 2825 return Legalized; 2826 } 2827 case TargetOpcode::G_AND: 2828 case TargetOpcode::G_OR: 2829 case TargetOpcode::G_XOR: { 2830 Observer.changingInstr(MI); 2831 bitcastSrc(MI, CastTy, 1); 2832 bitcastSrc(MI, CastTy, 2); 2833 bitcastDst(MI, CastTy, 0); 2834 Observer.changedInstr(MI); 2835 return Legalized; 2836 } 2837 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 2838 return bitcastExtractVectorElt(MI, TypeIdx, CastTy); 2839 case TargetOpcode::G_INSERT_VECTOR_ELT: 2840 return bitcastInsertVectorElt(MI, TypeIdx, CastTy); 2841 default: 2842 return UnableToLegalize; 2843 } 2844 } 2845 2846 // Legalize an instruction by changing the opcode in place. 2847 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { 2848 Observer.changingInstr(MI); 2849 MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); 2850 Observer.changedInstr(MI); 2851 } 2852 2853 LegalizerHelper::LegalizeResult 2854 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { 2855 using namespace TargetOpcode; 2856 2857 switch(MI.getOpcode()) { 2858 default: 2859 return UnableToLegalize; 2860 case TargetOpcode::G_BITCAST: 2861 return lowerBitcast(MI); 2862 case TargetOpcode::G_SREM: 2863 case TargetOpcode::G_UREM: { 2864 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 2865 auto Quot = 2866 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2867 {MI.getOperand(1), MI.getOperand(2)}); 2868 2869 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2870 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2871 MI.eraseFromParent(); 2872 return Legalized; 2873 } 2874 case TargetOpcode::G_SADDO: 2875 case TargetOpcode::G_SSUBO: 2876 return lowerSADDO_SSUBO(MI); 2877 case TargetOpcode::G_UMULH: 2878 case TargetOpcode::G_SMULH: 2879 return lowerSMULH_UMULH(MI); 2880 case TargetOpcode::G_SMULO: 2881 case TargetOpcode::G_UMULO: { 2882 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2883 // result. 2884 Register Res = MI.getOperand(0).getReg(); 2885 Register Overflow = MI.getOperand(1).getReg(); 2886 Register LHS = MI.getOperand(2).getReg(); 2887 Register RHS = MI.getOperand(3).getReg(); 2888 LLT Ty = MRI.getType(Res); 2889 2890 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2891 ? TargetOpcode::G_SMULH 2892 : TargetOpcode::G_UMULH; 2893 2894 Observer.changingInstr(MI); 2895 const auto &TII = MIRBuilder.getTII(); 2896 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2897 MI.RemoveOperand(1); 2898 Observer.changedInstr(MI); 2899 2900 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2901 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2902 2903 // Move insert point forward so we can use the Res register if needed. 2904 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2905 2906 // For *signed* multiply, overflow is detected by checking: 2907 // (hi != (lo >> bitwidth-1)) 2908 if (Opcode == TargetOpcode::G_SMULH) { 2909 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2910 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2911 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2912 } else { 2913 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2914 } 2915 return Legalized; 2916 } 2917 case TargetOpcode::G_FNEG: { 2918 Register Res = MI.getOperand(0).getReg(); 2919 LLT Ty = MRI.getType(Res); 2920 2921 // TODO: Handle vector types once we are able to 2922 // represent them. 2923 if (Ty.isVector()) 2924 return UnableToLegalize; 2925 auto SignMask = 2926 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); 2927 Register SubByReg = MI.getOperand(1).getReg(); 2928 MIRBuilder.buildXor(Res, SubByReg, SignMask); 2929 MI.eraseFromParent(); 2930 return Legalized; 2931 } 2932 case TargetOpcode::G_FSUB: { 2933 Register Res = MI.getOperand(0).getReg(); 2934 LLT Ty = MRI.getType(Res); 2935 2936 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2937 // First, check if G_FNEG is marked as Lower. If so, we may 2938 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2939 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2940 return UnableToLegalize; 2941 Register LHS = MI.getOperand(1).getReg(); 2942 Register RHS = MI.getOperand(2).getReg(); 2943 Register Neg = MRI.createGenericVirtualRegister(Ty); 2944 MIRBuilder.buildFNeg(Neg, RHS); 2945 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2946 MI.eraseFromParent(); 2947 return Legalized; 2948 } 2949 case TargetOpcode::G_FMAD: 2950 return lowerFMad(MI); 2951 case TargetOpcode::G_FFLOOR: 2952 return lowerFFloor(MI); 2953 case TargetOpcode::G_INTRINSIC_ROUND: 2954 return lowerIntrinsicRound(MI); 2955 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { 2956 // Since round even is the assumed rounding mode for unconstrained FP 2957 // operations, rint and roundeven are the same operation. 2958 changeOpcode(MI, TargetOpcode::G_FRINT); 2959 return Legalized; 2960 } 2961 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2962 Register OldValRes = MI.getOperand(0).getReg(); 2963 Register SuccessRes = MI.getOperand(1).getReg(); 2964 Register Addr = MI.getOperand(2).getReg(); 2965 Register CmpVal = MI.getOperand(3).getReg(); 2966 Register NewVal = MI.getOperand(4).getReg(); 2967 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2968 **MI.memoperands_begin()); 2969 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2970 MI.eraseFromParent(); 2971 return Legalized; 2972 } 2973 case TargetOpcode::G_LOAD: 2974 case TargetOpcode::G_SEXTLOAD: 2975 case TargetOpcode::G_ZEXTLOAD: 2976 return lowerLoad(MI); 2977 case TargetOpcode::G_STORE: 2978 return lowerStore(MI); 2979 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2980 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2981 case TargetOpcode::G_CTLZ: 2982 case TargetOpcode::G_CTTZ: 2983 case TargetOpcode::G_CTPOP: 2984 return lowerBitCount(MI); 2985 case G_UADDO: { 2986 Register Res = MI.getOperand(0).getReg(); 2987 Register CarryOut = MI.getOperand(1).getReg(); 2988 Register LHS = MI.getOperand(2).getReg(); 2989 Register RHS = MI.getOperand(3).getReg(); 2990 2991 MIRBuilder.buildAdd(Res, LHS, RHS); 2992 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2993 2994 MI.eraseFromParent(); 2995 return Legalized; 2996 } 2997 case G_UADDE: { 2998 Register Res = MI.getOperand(0).getReg(); 2999 Register CarryOut = MI.getOperand(1).getReg(); 3000 Register LHS = MI.getOperand(2).getReg(); 3001 Register RHS = MI.getOperand(3).getReg(); 3002 Register CarryIn = MI.getOperand(4).getReg(); 3003 LLT Ty = MRI.getType(Res); 3004 3005 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 3006 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 3007 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 3008 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 3009 3010 MI.eraseFromParent(); 3011 return Legalized; 3012 } 3013 case G_USUBO: { 3014 Register Res = MI.getOperand(0).getReg(); 3015 Register BorrowOut = MI.getOperand(1).getReg(); 3016 Register LHS = MI.getOperand(2).getReg(); 3017 Register RHS = MI.getOperand(3).getReg(); 3018 3019 MIRBuilder.buildSub(Res, LHS, RHS); 3020 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 3021 3022 MI.eraseFromParent(); 3023 return Legalized; 3024 } 3025 case G_USUBE: { 3026 Register Res = MI.getOperand(0).getReg(); 3027 Register BorrowOut = MI.getOperand(1).getReg(); 3028 Register LHS = MI.getOperand(2).getReg(); 3029 Register RHS = MI.getOperand(3).getReg(); 3030 Register BorrowIn = MI.getOperand(4).getReg(); 3031 const LLT CondTy = MRI.getType(BorrowOut); 3032 const LLT Ty = MRI.getType(Res); 3033 3034 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 3035 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 3036 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 3037 3038 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 3039 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 3040 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 3041 3042 MI.eraseFromParent(); 3043 return Legalized; 3044 } 3045 case G_UITOFP: 3046 return lowerUITOFP(MI); 3047 case G_SITOFP: 3048 return lowerSITOFP(MI); 3049 case G_FPTOUI: 3050 return lowerFPTOUI(MI); 3051 case G_FPTOSI: 3052 return lowerFPTOSI(MI); 3053 case G_FPTRUNC: 3054 return lowerFPTRUNC(MI); 3055 case G_FPOWI: 3056 return lowerFPOWI(MI); 3057 case G_SMIN: 3058 case G_SMAX: 3059 case G_UMIN: 3060 case G_UMAX: 3061 return lowerMinMax(MI); 3062 case G_FCOPYSIGN: 3063 return lowerFCopySign(MI); 3064 case G_FMINNUM: 3065 case G_FMAXNUM: 3066 return lowerFMinNumMaxNum(MI); 3067 case G_MERGE_VALUES: 3068 return lowerMergeValues(MI); 3069 case G_UNMERGE_VALUES: 3070 return lowerUnmergeValues(MI); 3071 case TargetOpcode::G_SEXT_INREG: { 3072 assert(MI.getOperand(2).isImm() && "Expected immediate"); 3073 int64_t SizeInBits = MI.getOperand(2).getImm(); 3074 3075 Register DstReg = MI.getOperand(0).getReg(); 3076 Register SrcReg = MI.getOperand(1).getReg(); 3077 LLT DstTy = MRI.getType(DstReg); 3078 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 3079 3080 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 3081 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 3082 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 3083 MI.eraseFromParent(); 3084 return Legalized; 3085 } 3086 case G_EXTRACT_VECTOR_ELT: 3087 case G_INSERT_VECTOR_ELT: 3088 return lowerExtractInsertVectorElt(MI); 3089 case G_SHUFFLE_VECTOR: 3090 return lowerShuffleVector(MI); 3091 case G_DYN_STACKALLOC: 3092 return lowerDynStackAlloc(MI); 3093 case G_EXTRACT: 3094 return lowerExtract(MI); 3095 case G_INSERT: 3096 return lowerInsert(MI); 3097 case G_BSWAP: 3098 return lowerBswap(MI); 3099 case G_BITREVERSE: 3100 return lowerBitreverse(MI); 3101 case G_READ_REGISTER: 3102 case G_WRITE_REGISTER: 3103 return lowerReadWriteRegister(MI); 3104 case G_UADDSAT: 3105 case G_USUBSAT: { 3106 // Try to make a reasonable guess about which lowering strategy to use. The 3107 // target can override this with custom lowering and calling the 3108 // implementation functions. 3109 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3110 if (LI.isLegalOrCustom({G_UMIN, Ty})) 3111 return lowerAddSubSatToMinMax(MI); 3112 return lowerAddSubSatToAddoSubo(MI); 3113 } 3114 case G_SADDSAT: 3115 case G_SSUBSAT: { 3116 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 3117 3118 // FIXME: It would probably make more sense to see if G_SADDO is preferred, 3119 // since it's a shorter expansion. However, we would need to figure out the 3120 // preferred boolean type for the carry out for the query. 3121 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) 3122 return lowerAddSubSatToMinMax(MI); 3123 return lowerAddSubSatToAddoSubo(MI); 3124 } 3125 case G_SSHLSAT: 3126 case G_USHLSAT: 3127 return lowerShlSat(MI); 3128 case G_ABS: { 3129 // Expand %res = G_ABS %a into: 3130 // %v1 = G_ASHR %a, scalar_size-1 3131 // %v2 = G_ADD %a, %v1 3132 // %res = G_XOR %v2, %v1 3133 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3134 Register OpReg = MI.getOperand(1).getReg(); 3135 auto ShiftAmt = 3136 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); 3137 auto Shift = 3138 MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); 3139 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); 3140 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); 3141 MI.eraseFromParent(); 3142 return Legalized; 3143 } 3144 case G_SELECT: 3145 return lowerSelect(MI); 3146 } 3147 } 3148 3149 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, 3150 Align MinAlign) const { 3151 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the 3152 // datalayout for the preferred alignment. Also there should be a target hook 3153 // for this to allow targets to reduce the alignment and ignore the 3154 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of 3155 // the type. 3156 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); 3157 } 3158 3159 MachineInstrBuilder 3160 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, 3161 MachinePointerInfo &PtrInfo) { 3162 MachineFunction &MF = MIRBuilder.getMF(); 3163 const DataLayout &DL = MIRBuilder.getDataLayout(); 3164 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); 3165 3166 unsigned AddrSpace = DL.getAllocaAddrSpace(); 3167 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); 3168 3169 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); 3170 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); 3171 } 3172 3173 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, 3174 LLT VecTy) { 3175 int64_t IdxVal; 3176 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) 3177 return IdxReg; 3178 3179 LLT IdxTy = B.getMRI()->getType(IdxReg); 3180 unsigned NElts = VecTy.getNumElements(); 3181 if (isPowerOf2_32(NElts)) { 3182 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); 3183 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); 3184 } 3185 3186 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) 3187 .getReg(0); 3188 } 3189 3190 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, 3191 Register Index) { 3192 LLT EltTy = VecTy.getElementType(); 3193 3194 // Calculate the element offset and add it to the pointer. 3195 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. 3196 assert(EltSize * 8 == EltTy.getSizeInBits() && 3197 "Converting bits to bytes lost precision"); 3198 3199 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); 3200 3201 LLT IdxTy = MRI.getType(Index); 3202 auto Mul = MIRBuilder.buildMul(IdxTy, Index, 3203 MIRBuilder.buildConstant(IdxTy, EltSize)); 3204 3205 LLT PtrTy = MRI.getType(VecPtr); 3206 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); 3207 } 3208 3209 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 3210 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 3211 Register DstReg = MI.getOperand(0).getReg(); 3212 LLT DstTy = MRI.getType(DstReg); 3213 LLT LCMTy = getLCMType(DstTy, NarrowTy); 3214 3215 unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 3216 3217 auto NewUndef = MIRBuilder.buildUndef(NarrowTy); 3218 SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0)); 3219 3220 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3221 MI.eraseFromParent(); 3222 return Legalized; 3223 } 3224 3225 // Handle splitting vector operations which need to have the same number of 3226 // elements in each type index, but each type index may have a different element 3227 // type. 3228 // 3229 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 3230 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3231 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3232 // 3233 // Also handles some irregular breakdown cases, e.g. 3234 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 3235 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 3236 // s64 = G_SHL s64, s32 3237 LegalizerHelper::LegalizeResult 3238 LegalizerHelper::fewerElementsVectorMultiEltType( 3239 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 3240 if (TypeIdx != 0) 3241 return UnableToLegalize; 3242 3243 const LLT NarrowTy0 = NarrowTyArg; 3244 const unsigned NewNumElts = 3245 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 3246 3247 const Register DstReg = MI.getOperand(0).getReg(); 3248 LLT DstTy = MRI.getType(DstReg); 3249 LLT LeftoverTy0; 3250 3251 // All of the operands need to have the same number of elements, so if we can 3252 // determine a type breakdown for the result type, we can for all of the 3253 // source types. 3254 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 3255 if (NumParts < 0) 3256 return UnableToLegalize; 3257 3258 SmallVector<MachineInstrBuilder, 4> NewInsts; 3259 3260 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3261 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3262 3263 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 3264 Register SrcReg = MI.getOperand(I).getReg(); 3265 LLT SrcTyI = MRI.getType(SrcReg); 3266 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 3267 LLT LeftoverTyI; 3268 3269 // Split this operand into the requested typed registers, and any leftover 3270 // required to reproduce the original type. 3271 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 3272 LeftoverRegs)) 3273 return UnableToLegalize; 3274 3275 if (I == 1) { 3276 // For the first operand, create an instruction for each part and setup 3277 // the result. 3278 for (Register PartReg : PartRegs) { 3279 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3280 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3281 .addDef(PartDstReg) 3282 .addUse(PartReg)); 3283 DstRegs.push_back(PartDstReg); 3284 } 3285 3286 for (Register LeftoverReg : LeftoverRegs) { 3287 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 3288 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 3289 .addDef(PartDstReg) 3290 .addUse(LeftoverReg)); 3291 LeftoverDstRegs.push_back(PartDstReg); 3292 } 3293 } else { 3294 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 3295 3296 // Add the newly created operand splits to the existing instructions. The 3297 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3298 // pieces. 3299 unsigned InstCount = 0; 3300 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 3301 NewInsts[InstCount++].addUse(PartRegs[J]); 3302 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 3303 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 3304 } 3305 3306 PartRegs.clear(); 3307 LeftoverRegs.clear(); 3308 } 3309 3310 // Insert the newly built operations and rebuild the result register. 3311 for (auto &MIB : NewInsts) 3312 MIRBuilder.insertInstr(MIB); 3313 3314 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 3315 3316 MI.eraseFromParent(); 3317 return Legalized; 3318 } 3319 3320 LegalizerHelper::LegalizeResult 3321 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 3322 LLT NarrowTy) { 3323 if (TypeIdx != 0) 3324 return UnableToLegalize; 3325 3326 Register DstReg = MI.getOperand(0).getReg(); 3327 Register SrcReg = MI.getOperand(1).getReg(); 3328 LLT DstTy = MRI.getType(DstReg); 3329 LLT SrcTy = MRI.getType(SrcReg); 3330 3331 LLT NarrowTy0 = NarrowTy; 3332 LLT NarrowTy1; 3333 unsigned NumParts; 3334 3335 if (NarrowTy.isVector()) { 3336 // Uneven breakdown not handled. 3337 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 3338 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 3339 return UnableToLegalize; 3340 3341 NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType()); 3342 } else { 3343 NumParts = DstTy.getNumElements(); 3344 NarrowTy1 = SrcTy.getElementType(); 3345 } 3346 3347 SmallVector<Register, 4> SrcRegs, DstRegs; 3348 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 3349 3350 for (unsigned I = 0; I < NumParts; ++I) { 3351 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3352 MachineInstr *NewInst = 3353 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 3354 3355 NewInst->setFlags(MI.getFlags()); 3356 DstRegs.push_back(DstReg); 3357 } 3358 3359 if (NarrowTy.isVector()) 3360 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3361 else 3362 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3363 3364 MI.eraseFromParent(); 3365 return Legalized; 3366 } 3367 3368 LegalizerHelper::LegalizeResult 3369 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 3370 LLT NarrowTy) { 3371 Register DstReg = MI.getOperand(0).getReg(); 3372 Register Src0Reg = MI.getOperand(2).getReg(); 3373 LLT DstTy = MRI.getType(DstReg); 3374 LLT SrcTy = MRI.getType(Src0Reg); 3375 3376 unsigned NumParts; 3377 LLT NarrowTy0, NarrowTy1; 3378 3379 if (TypeIdx == 0) { 3380 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3381 unsigned OldElts = DstTy.getNumElements(); 3382 3383 NarrowTy0 = NarrowTy; 3384 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 3385 NarrowTy1 = NarrowTy.isVector() ? 3386 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 3387 SrcTy.getElementType(); 3388 3389 } else { 3390 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3391 unsigned OldElts = SrcTy.getNumElements(); 3392 3393 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 3394 NarrowTy.getNumElements(); 3395 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 3396 DstTy.getScalarSizeInBits()); 3397 NarrowTy1 = NarrowTy; 3398 } 3399 3400 // FIXME: Don't know how to handle the situation where the small vectors 3401 // aren't all the same size yet. 3402 if (NarrowTy1.isVector() && 3403 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 3404 return UnableToLegalize; 3405 3406 CmpInst::Predicate Pred 3407 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 3408 3409 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 3410 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 3411 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 3412 3413 for (unsigned I = 0; I < NumParts; ++I) { 3414 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3415 DstRegs.push_back(DstReg); 3416 3417 if (MI.getOpcode() == TargetOpcode::G_ICMP) 3418 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3419 else { 3420 MachineInstr *NewCmp 3421 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 3422 NewCmp->setFlags(MI.getFlags()); 3423 } 3424 } 3425 3426 if (NarrowTy1.isVector()) 3427 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3428 else 3429 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3430 3431 MI.eraseFromParent(); 3432 return Legalized; 3433 } 3434 3435 LegalizerHelper::LegalizeResult 3436 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 3437 LLT NarrowTy) { 3438 Register DstReg = MI.getOperand(0).getReg(); 3439 Register CondReg = MI.getOperand(1).getReg(); 3440 3441 unsigned NumParts = 0; 3442 LLT NarrowTy0, NarrowTy1; 3443 3444 LLT DstTy = MRI.getType(DstReg); 3445 LLT CondTy = MRI.getType(CondReg); 3446 unsigned Size = DstTy.getSizeInBits(); 3447 3448 assert(TypeIdx == 0 || CondTy.isVector()); 3449 3450 if (TypeIdx == 0) { 3451 NarrowTy0 = NarrowTy; 3452 NarrowTy1 = CondTy; 3453 3454 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 3455 // FIXME: Don't know how to handle the situation where the small vectors 3456 // aren't all the same size yet. 3457 if (Size % NarrowSize != 0) 3458 return UnableToLegalize; 3459 3460 NumParts = Size / NarrowSize; 3461 3462 // Need to break down the condition type 3463 if (CondTy.isVector()) { 3464 if (CondTy.getNumElements() == NumParts) 3465 NarrowTy1 = CondTy.getElementType(); 3466 else 3467 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 3468 CondTy.getScalarSizeInBits()); 3469 } 3470 } else { 3471 NumParts = CondTy.getNumElements(); 3472 if (NarrowTy.isVector()) { 3473 // TODO: Handle uneven breakdown. 3474 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 3475 return UnableToLegalize; 3476 3477 return UnableToLegalize; 3478 } else { 3479 NarrowTy0 = DstTy.getElementType(); 3480 NarrowTy1 = NarrowTy; 3481 } 3482 } 3483 3484 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 3485 if (CondTy.isVector()) 3486 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 3487 3488 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 3489 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 3490 3491 for (unsigned i = 0; i < NumParts; ++i) { 3492 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 3493 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 3494 Src1Regs[i], Src2Regs[i]); 3495 DstRegs.push_back(DstReg); 3496 } 3497 3498 if (NarrowTy0.isVector()) 3499 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 3500 else 3501 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3502 3503 MI.eraseFromParent(); 3504 return Legalized; 3505 } 3506 3507 LegalizerHelper::LegalizeResult 3508 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3509 LLT NarrowTy) { 3510 const Register DstReg = MI.getOperand(0).getReg(); 3511 LLT PhiTy = MRI.getType(DstReg); 3512 LLT LeftoverTy; 3513 3514 // All of the operands need to have the same number of elements, so if we can 3515 // determine a type breakdown for the result type, we can for all of the 3516 // source types. 3517 int NumParts, NumLeftover; 3518 std::tie(NumParts, NumLeftover) 3519 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 3520 if (NumParts < 0) 3521 return UnableToLegalize; 3522 3523 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 3524 SmallVector<MachineInstrBuilder, 4> NewInsts; 3525 3526 const int TotalNumParts = NumParts + NumLeftover; 3527 3528 // Insert the new phis in the result block first. 3529 for (int I = 0; I != TotalNumParts; ++I) { 3530 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 3531 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 3532 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 3533 .addDef(PartDstReg)); 3534 if (I < NumParts) 3535 DstRegs.push_back(PartDstReg); 3536 else 3537 LeftoverDstRegs.push_back(PartDstReg); 3538 } 3539 3540 MachineBasicBlock *MBB = MI.getParent(); 3541 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 3542 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 3543 3544 SmallVector<Register, 4> PartRegs, LeftoverRegs; 3545 3546 // Insert code to extract the incoming values in each predecessor block. 3547 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3548 PartRegs.clear(); 3549 LeftoverRegs.clear(); 3550 3551 Register SrcReg = MI.getOperand(I).getReg(); 3552 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3553 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3554 3555 LLT Unused; 3556 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 3557 LeftoverRegs)) 3558 return UnableToLegalize; 3559 3560 // Add the newly created operand splits to the existing instructions. The 3561 // odd-sized pieces are ordered after the requested NarrowTyArg sized 3562 // pieces. 3563 for (int J = 0; J != TotalNumParts; ++J) { 3564 MachineInstrBuilder MIB = NewInsts[J]; 3565 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 3566 MIB.addMBB(&OpMBB); 3567 } 3568 } 3569 3570 MI.eraseFromParent(); 3571 return Legalized; 3572 } 3573 3574 LegalizerHelper::LegalizeResult 3575 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 3576 unsigned TypeIdx, 3577 LLT NarrowTy) { 3578 if (TypeIdx != 1) 3579 return UnableToLegalize; 3580 3581 const int NumDst = MI.getNumOperands() - 1; 3582 const Register SrcReg = MI.getOperand(NumDst).getReg(); 3583 LLT SrcTy = MRI.getType(SrcReg); 3584 3585 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3586 3587 // TODO: Create sequence of extracts. 3588 if (DstTy == NarrowTy) 3589 return UnableToLegalize; 3590 3591 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 3592 if (DstTy == GCDTy) { 3593 // This would just be a copy of the same unmerge. 3594 // TODO: Create extracts, pad with undef and create intermediate merges. 3595 return UnableToLegalize; 3596 } 3597 3598 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 3599 const int NumUnmerge = Unmerge->getNumOperands() - 1; 3600 const int PartsPerUnmerge = NumDst / NumUnmerge; 3601 3602 for (int I = 0; I != NumUnmerge; ++I) { 3603 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3604 3605 for (int J = 0; J != PartsPerUnmerge; ++J) 3606 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 3607 MIB.addUse(Unmerge.getReg(I)); 3608 } 3609 3610 MI.eraseFromParent(); 3611 return Legalized; 3612 } 3613 3614 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces 3615 // a vector 3616 // 3617 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with 3618 // undef as necessary. 3619 // 3620 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 3621 // -> <2 x s16> 3622 // 3623 // %4:_(s16) = G_IMPLICIT_DEF 3624 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 3625 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 3626 // %7:_(<2 x s16>) = G_IMPLICIT_DEF 3627 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7 3628 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8 3629 LegalizerHelper::LegalizeResult 3630 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, 3631 LLT NarrowTy) { 3632 Register DstReg = MI.getOperand(0).getReg(); 3633 LLT DstTy = MRI.getType(DstReg); 3634 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3635 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); 3636 3637 // Break into a common type 3638 SmallVector<Register, 16> Parts; 3639 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 3640 extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg()); 3641 3642 // Build the requested new merge, padding with undef. 3643 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, 3644 TargetOpcode::G_ANYEXT); 3645 3646 // Pack into the original result register. 3647 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3648 3649 MI.eraseFromParent(); 3650 return Legalized; 3651 } 3652 3653 LegalizerHelper::LegalizeResult 3654 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, 3655 unsigned TypeIdx, 3656 LLT NarrowVecTy) { 3657 Register DstReg = MI.getOperand(0).getReg(); 3658 Register SrcVec = MI.getOperand(1).getReg(); 3659 Register InsertVal; 3660 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; 3661 3662 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); 3663 if (IsInsert) 3664 InsertVal = MI.getOperand(2).getReg(); 3665 3666 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 3667 3668 // TODO: Handle total scalarization case. 3669 if (!NarrowVecTy.isVector()) 3670 return UnableToLegalize; 3671 3672 LLT VecTy = MRI.getType(SrcVec); 3673 3674 // If the index is a constant, we can really break this down as you would 3675 // expect, and index into the target size pieces. 3676 int64_t IdxVal; 3677 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 3678 // Avoid out of bounds indexing the pieces. 3679 if (IdxVal >= VecTy.getNumElements()) { 3680 MIRBuilder.buildUndef(DstReg); 3681 MI.eraseFromParent(); 3682 return Legalized; 3683 } 3684 3685 SmallVector<Register, 8> VecParts; 3686 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); 3687 3688 // Build a sequence of NarrowTy pieces in VecParts for this operand. 3689 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, 3690 TargetOpcode::G_ANYEXT); 3691 3692 unsigned NewNumElts = NarrowVecTy.getNumElements(); 3693 3694 LLT IdxTy = MRI.getType(Idx); 3695 int64_t PartIdx = IdxVal / NewNumElts; 3696 auto NewIdx = 3697 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); 3698 3699 if (IsInsert) { 3700 LLT PartTy = MRI.getType(VecParts[PartIdx]); 3701 3702 // Use the adjusted index to insert into one of the subvectors. 3703 auto InsertPart = MIRBuilder.buildInsertVectorElement( 3704 PartTy, VecParts[PartIdx], InsertVal, NewIdx); 3705 VecParts[PartIdx] = InsertPart.getReg(0); 3706 3707 // Recombine the inserted subvector with the others to reform the result 3708 // vector. 3709 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); 3710 } else { 3711 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); 3712 } 3713 3714 MI.eraseFromParent(); 3715 return Legalized; 3716 } 3717 3718 // With a variable index, we can't perform the operation in a smaller type, so 3719 // we're forced to expand this. 3720 // 3721 // TODO: We could emit a chain of compare/select to figure out which piece to 3722 // index. 3723 return lowerExtractInsertVectorElt(MI); 3724 } 3725 3726 LegalizerHelper::LegalizeResult 3727 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3728 LLT NarrowTy) { 3729 // FIXME: Don't know how to handle secondary types yet. 3730 if (TypeIdx != 0) 3731 return UnableToLegalize; 3732 3733 MachineMemOperand *MMO = *MI.memoperands_begin(); 3734 3735 // This implementation doesn't work for atomics. Give up instead of doing 3736 // something invalid. 3737 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3738 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3739 return UnableToLegalize; 3740 3741 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3742 Register ValReg = MI.getOperand(0).getReg(); 3743 Register AddrReg = MI.getOperand(1).getReg(); 3744 LLT ValTy = MRI.getType(ValReg); 3745 3746 // FIXME: Do we need a distinct NarrowMemory legalize action? 3747 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3748 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3749 return UnableToLegalize; 3750 } 3751 3752 int NumParts = -1; 3753 int NumLeftover = -1; 3754 LLT LeftoverTy; 3755 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3756 if (IsLoad) { 3757 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3758 } else { 3759 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3760 NarrowLeftoverRegs)) { 3761 NumParts = NarrowRegs.size(); 3762 NumLeftover = NarrowLeftoverRegs.size(); 3763 } 3764 } 3765 3766 if (NumParts == -1) 3767 return UnableToLegalize; 3768 3769 LLT PtrTy = MRI.getType(AddrReg); 3770 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); 3771 3772 unsigned TotalSize = ValTy.getSizeInBits(); 3773 3774 // Split the load/store into PartTy sized pieces starting at Offset. If this 3775 // is a load, return the new registers in ValRegs. For a store, each elements 3776 // of ValRegs should be PartTy. Returns the next offset that needs to be 3777 // handled. 3778 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3779 unsigned Offset) -> unsigned { 3780 MachineFunction &MF = MIRBuilder.getMF(); 3781 unsigned PartSize = PartTy.getSizeInBits(); 3782 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3783 Offset += PartSize, ++Idx) { 3784 unsigned ByteSize = PartSize / 8; 3785 unsigned ByteOffset = Offset / 8; 3786 Register NewAddrReg; 3787 3788 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3789 3790 MachineMemOperand *NewMMO = 3791 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3792 3793 if (IsLoad) { 3794 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3795 ValRegs.push_back(Dst); 3796 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3797 } else { 3798 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3799 } 3800 } 3801 3802 return Offset; 3803 }; 3804 3805 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3806 3807 // Handle the rest of the register if this isn't an even type breakdown. 3808 if (LeftoverTy.isValid()) 3809 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3810 3811 if (IsLoad) { 3812 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3813 LeftoverTy, NarrowLeftoverRegs); 3814 } 3815 3816 MI.eraseFromParent(); 3817 return Legalized; 3818 } 3819 3820 LegalizerHelper::LegalizeResult 3821 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx, 3822 LLT NarrowTy) { 3823 assert(TypeIdx == 0 && "only one type index expected"); 3824 3825 const unsigned Opc = MI.getOpcode(); 3826 const int NumOps = MI.getNumOperands() - 1; 3827 const Register DstReg = MI.getOperand(0).getReg(); 3828 const unsigned Flags = MI.getFlags(); 3829 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 3830 const LLT NarrowScalarTy = LLT::scalar(NarrowSize); 3831 3832 assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources"); 3833 3834 // First of all check whether we are narrowing (changing the element type) 3835 // or reducing the vector elements 3836 const LLT DstTy = MRI.getType(DstReg); 3837 const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType(); 3838 3839 SmallVector<Register, 8> ExtractedRegs[3]; 3840 SmallVector<Register, 8> Parts; 3841 3842 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 3843 3844 // Break down all the sources into NarrowTy pieces we can operate on. This may 3845 // involve creating merges to a wider type, padded with undef. 3846 for (int I = 0; I != NumOps; ++I) { 3847 Register SrcReg = MI.getOperand(I + 1).getReg(); 3848 LLT SrcTy = MRI.getType(SrcReg); 3849 3850 // The type to narrow SrcReg to. For narrowing, this is a smaller scalar. 3851 // For fewerElements, this is a smaller vector with the same element type. 3852 LLT OpNarrowTy; 3853 if (IsNarrow) { 3854 OpNarrowTy = NarrowScalarTy; 3855 3856 // In case of narrowing, we need to cast vectors to scalars for this to 3857 // work properly 3858 // FIXME: Can we do without the bitcast here if we're narrowing? 3859 if (SrcTy.isVector()) { 3860 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 3861 SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0); 3862 } 3863 } else { 3864 OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 3865 } 3866 3867 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 3868 3869 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 3870 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I], 3871 TargetOpcode::G_ANYEXT); 3872 } 3873 3874 SmallVector<Register, 8> ResultRegs; 3875 3876 // Input operands for each sub-instruction. 3877 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 3878 3879 int NumParts = ExtractedRegs[0].size(); 3880 const unsigned DstSize = DstTy.getSizeInBits(); 3881 const LLT DstScalarTy = LLT::scalar(DstSize); 3882 3883 // Narrowing needs to use scalar types 3884 LLT DstLCMTy, NarrowDstTy; 3885 if (IsNarrow) { 3886 DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy); 3887 NarrowDstTy = NarrowScalarTy; 3888 } else { 3889 DstLCMTy = getLCMType(DstTy, NarrowTy); 3890 NarrowDstTy = NarrowTy; 3891 } 3892 3893 // We widened the source registers to satisfy merge/unmerge size 3894 // constraints. We'll have some extra fully undef parts. 3895 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 3896 3897 for (int I = 0; I != NumRealParts; ++I) { 3898 // Emit this instruction on each of the split pieces. 3899 for (int J = 0; J != NumOps; ++J) 3900 InputRegs[J] = ExtractedRegs[J][I]; 3901 3902 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags); 3903 ResultRegs.push_back(Inst.getReg(0)); 3904 } 3905 3906 // Fill out the widened result with undef instead of creating instructions 3907 // with undef inputs. 3908 int NumUndefParts = NumParts - NumRealParts; 3909 if (NumUndefParts != 0) 3910 ResultRegs.append(NumUndefParts, 3911 MIRBuilder.buildUndef(NarrowDstTy).getReg(0)); 3912 3913 // Extract the possibly padded result. Use a scratch register if we need to do 3914 // a final bitcast, otherwise use the original result register. 3915 Register MergeDstReg; 3916 if (IsNarrow && DstTy.isVector()) 3917 MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy); 3918 else 3919 MergeDstReg = DstReg; 3920 3921 buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs); 3922 3923 // Recast to vector if we narrowed a vector 3924 if (IsNarrow && DstTy.isVector()) 3925 MIRBuilder.buildBitcast(DstReg, MergeDstReg); 3926 3927 MI.eraseFromParent(); 3928 return Legalized; 3929 } 3930 3931 LegalizerHelper::LegalizeResult 3932 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3933 LLT NarrowTy) { 3934 Register DstReg = MI.getOperand(0).getReg(); 3935 Register SrcReg = MI.getOperand(1).getReg(); 3936 int64_t Imm = MI.getOperand(2).getImm(); 3937 3938 LLT DstTy = MRI.getType(DstReg); 3939 3940 SmallVector<Register, 8> Parts; 3941 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3942 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3943 3944 for (Register &R : Parts) 3945 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3946 3947 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3948 3949 MI.eraseFromParent(); 3950 return Legalized; 3951 } 3952 3953 LegalizerHelper::LegalizeResult 3954 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3955 LLT NarrowTy) { 3956 using namespace TargetOpcode; 3957 3958 switch (MI.getOpcode()) { 3959 case G_IMPLICIT_DEF: 3960 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3961 case G_TRUNC: 3962 case G_AND: 3963 case G_OR: 3964 case G_XOR: 3965 case G_ADD: 3966 case G_SUB: 3967 case G_MUL: 3968 case G_PTR_ADD: 3969 case G_SMULH: 3970 case G_UMULH: 3971 case G_FADD: 3972 case G_FMUL: 3973 case G_FSUB: 3974 case G_FNEG: 3975 case G_FABS: 3976 case G_FCANONICALIZE: 3977 case G_FDIV: 3978 case G_FREM: 3979 case G_FMA: 3980 case G_FMAD: 3981 case G_FPOW: 3982 case G_FEXP: 3983 case G_FEXP2: 3984 case G_FLOG: 3985 case G_FLOG2: 3986 case G_FLOG10: 3987 case G_FNEARBYINT: 3988 case G_FCEIL: 3989 case G_FFLOOR: 3990 case G_FRINT: 3991 case G_INTRINSIC_ROUND: 3992 case G_INTRINSIC_ROUNDEVEN: 3993 case G_INTRINSIC_TRUNC: 3994 case G_FCOS: 3995 case G_FSIN: 3996 case G_FSQRT: 3997 case G_BSWAP: 3998 case G_BITREVERSE: 3999 case G_SDIV: 4000 case G_UDIV: 4001 case G_SREM: 4002 case G_UREM: 4003 case G_SMIN: 4004 case G_SMAX: 4005 case G_UMIN: 4006 case G_UMAX: 4007 case G_FMINNUM: 4008 case G_FMAXNUM: 4009 case G_FMINNUM_IEEE: 4010 case G_FMAXNUM_IEEE: 4011 case G_FMINIMUM: 4012 case G_FMAXIMUM: 4013 case G_FSHL: 4014 case G_FSHR: 4015 case G_FREEZE: 4016 case G_SADDSAT: 4017 case G_SSUBSAT: 4018 case G_UADDSAT: 4019 case G_USUBSAT: 4020 return reduceOperationWidth(MI, TypeIdx, NarrowTy); 4021 case G_SHL: 4022 case G_LSHR: 4023 case G_ASHR: 4024 case G_SSHLSAT: 4025 case G_USHLSAT: 4026 case G_CTLZ: 4027 case G_CTLZ_ZERO_UNDEF: 4028 case G_CTTZ: 4029 case G_CTTZ_ZERO_UNDEF: 4030 case G_CTPOP: 4031 case G_FCOPYSIGN: 4032 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 4033 case G_ZEXT: 4034 case G_SEXT: 4035 case G_ANYEXT: 4036 case G_FPEXT: 4037 case G_FPTRUNC: 4038 case G_SITOFP: 4039 case G_UITOFP: 4040 case G_FPTOSI: 4041 case G_FPTOUI: 4042 case G_INTTOPTR: 4043 case G_PTRTOINT: 4044 case G_ADDRSPACE_CAST: 4045 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 4046 case G_ICMP: 4047 case G_FCMP: 4048 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 4049 case G_SELECT: 4050 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 4051 case G_PHI: 4052 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 4053 case G_UNMERGE_VALUES: 4054 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 4055 case G_BUILD_VECTOR: 4056 assert(TypeIdx == 0 && "not a vector type index"); 4057 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4058 case G_CONCAT_VECTORS: 4059 if (TypeIdx != 1) // TODO: This probably does work as expected already. 4060 return UnableToLegalize; 4061 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); 4062 case G_EXTRACT_VECTOR_ELT: 4063 case G_INSERT_VECTOR_ELT: 4064 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); 4065 case G_LOAD: 4066 case G_STORE: 4067 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 4068 case G_SEXT_INREG: 4069 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 4070 default: 4071 return UnableToLegalize; 4072 } 4073 } 4074 4075 LegalizerHelper::LegalizeResult 4076 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 4077 const LLT HalfTy, const LLT AmtTy) { 4078 4079 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4080 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4081 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4082 4083 if (Amt.isNullValue()) { 4084 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 4085 MI.eraseFromParent(); 4086 return Legalized; 4087 } 4088 4089 LLT NVT = HalfTy; 4090 unsigned NVTBits = HalfTy.getSizeInBits(); 4091 unsigned VTBits = 2 * NVTBits; 4092 4093 SrcOp Lo(Register(0)), Hi(Register(0)); 4094 if (MI.getOpcode() == TargetOpcode::G_SHL) { 4095 if (Amt.ugt(VTBits)) { 4096 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4097 } else if (Amt.ugt(NVTBits)) { 4098 Lo = MIRBuilder.buildConstant(NVT, 0); 4099 Hi = MIRBuilder.buildShl(NVT, InL, 4100 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4101 } else if (Amt == NVTBits) { 4102 Lo = MIRBuilder.buildConstant(NVT, 0); 4103 Hi = InL; 4104 } else { 4105 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 4106 auto OrLHS = 4107 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 4108 auto OrRHS = MIRBuilder.buildLShr( 4109 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4110 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4111 } 4112 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4113 if (Amt.ugt(VTBits)) { 4114 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 4115 } else if (Amt.ugt(NVTBits)) { 4116 Lo = MIRBuilder.buildLShr(NVT, InH, 4117 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4118 Hi = MIRBuilder.buildConstant(NVT, 0); 4119 } else if (Amt == NVTBits) { 4120 Lo = InH; 4121 Hi = MIRBuilder.buildConstant(NVT, 0); 4122 } else { 4123 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4124 4125 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4126 auto OrRHS = MIRBuilder.buildShl( 4127 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4128 4129 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4130 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 4131 } 4132 } else { 4133 if (Amt.ugt(VTBits)) { 4134 Hi = Lo = MIRBuilder.buildAShr( 4135 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4136 } else if (Amt.ugt(NVTBits)) { 4137 Lo = MIRBuilder.buildAShr(NVT, InH, 4138 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 4139 Hi = MIRBuilder.buildAShr(NVT, InH, 4140 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4141 } else if (Amt == NVTBits) { 4142 Lo = InH; 4143 Hi = MIRBuilder.buildAShr(NVT, InH, 4144 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 4145 } else { 4146 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 4147 4148 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 4149 auto OrRHS = MIRBuilder.buildShl( 4150 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 4151 4152 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 4153 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 4154 } 4155 } 4156 4157 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 4158 MI.eraseFromParent(); 4159 4160 return Legalized; 4161 } 4162 4163 // TODO: Optimize if constant shift amount. 4164 LegalizerHelper::LegalizeResult 4165 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 4166 LLT RequestedTy) { 4167 if (TypeIdx == 1) { 4168 Observer.changingInstr(MI); 4169 narrowScalarSrc(MI, RequestedTy, 2); 4170 Observer.changedInstr(MI); 4171 return Legalized; 4172 } 4173 4174 Register DstReg = MI.getOperand(0).getReg(); 4175 LLT DstTy = MRI.getType(DstReg); 4176 if (DstTy.isVector()) 4177 return UnableToLegalize; 4178 4179 Register Amt = MI.getOperand(2).getReg(); 4180 LLT ShiftAmtTy = MRI.getType(Amt); 4181 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 4182 if (DstEltSize % 2 != 0) 4183 return UnableToLegalize; 4184 4185 // Ignore the input type. We can only go to exactly half the size of the 4186 // input. If that isn't small enough, the resulting pieces will be further 4187 // legalized. 4188 const unsigned NewBitSize = DstEltSize / 2; 4189 const LLT HalfTy = LLT::scalar(NewBitSize); 4190 const LLT CondTy = LLT::scalar(1); 4191 4192 if (const MachineInstr *KShiftAmt = 4193 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 4194 return narrowScalarShiftByConstant( 4195 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 4196 } 4197 4198 // TODO: Expand with known bits. 4199 4200 // Handle the fully general expansion by an unknown amount. 4201 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 4202 4203 Register InL = MRI.createGenericVirtualRegister(HalfTy); 4204 Register InH = MRI.createGenericVirtualRegister(HalfTy); 4205 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 4206 4207 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 4208 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 4209 4210 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 4211 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 4212 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 4213 4214 Register ResultRegs[2]; 4215 switch (MI.getOpcode()) { 4216 case TargetOpcode::G_SHL: { 4217 // Short: ShAmt < NewBitSize 4218 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 4219 4220 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 4221 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 4222 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4223 4224 // Long: ShAmt >= NewBitSize 4225 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 4226 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 4227 4228 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 4229 auto Hi = MIRBuilder.buildSelect( 4230 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 4231 4232 ResultRegs[0] = Lo.getReg(0); 4233 ResultRegs[1] = Hi.getReg(0); 4234 break; 4235 } 4236 case TargetOpcode::G_LSHR: 4237 case TargetOpcode::G_ASHR: { 4238 // Short: ShAmt < NewBitSize 4239 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 4240 4241 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 4242 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 4243 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 4244 4245 // Long: ShAmt >= NewBitSize 4246 MachineInstrBuilder HiL; 4247 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 4248 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 4249 } else { 4250 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 4251 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 4252 } 4253 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 4254 {InH, AmtExcess}); // Lo from Hi part. 4255 4256 auto Lo = MIRBuilder.buildSelect( 4257 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 4258 4259 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 4260 4261 ResultRegs[0] = Lo.getReg(0); 4262 ResultRegs[1] = Hi.getReg(0); 4263 break; 4264 } 4265 default: 4266 llvm_unreachable("not a shift"); 4267 } 4268 4269 MIRBuilder.buildMerge(DstReg, ResultRegs); 4270 MI.eraseFromParent(); 4271 return Legalized; 4272 } 4273 4274 LegalizerHelper::LegalizeResult 4275 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 4276 LLT MoreTy) { 4277 assert(TypeIdx == 0 && "Expecting only Idx 0"); 4278 4279 Observer.changingInstr(MI); 4280 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 4281 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 4282 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 4283 moreElementsVectorSrc(MI, MoreTy, I); 4284 } 4285 4286 MachineBasicBlock &MBB = *MI.getParent(); 4287 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 4288 moreElementsVectorDst(MI, MoreTy, 0); 4289 Observer.changedInstr(MI); 4290 return Legalized; 4291 } 4292 4293 LegalizerHelper::LegalizeResult 4294 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 4295 LLT MoreTy) { 4296 unsigned Opc = MI.getOpcode(); 4297 switch (Opc) { 4298 case TargetOpcode::G_IMPLICIT_DEF: 4299 case TargetOpcode::G_LOAD: { 4300 if (TypeIdx != 0) 4301 return UnableToLegalize; 4302 Observer.changingInstr(MI); 4303 moreElementsVectorDst(MI, MoreTy, 0); 4304 Observer.changedInstr(MI); 4305 return Legalized; 4306 } 4307 case TargetOpcode::G_STORE: 4308 if (TypeIdx != 0) 4309 return UnableToLegalize; 4310 Observer.changingInstr(MI); 4311 moreElementsVectorSrc(MI, MoreTy, 0); 4312 Observer.changedInstr(MI); 4313 return Legalized; 4314 case TargetOpcode::G_AND: 4315 case TargetOpcode::G_OR: 4316 case TargetOpcode::G_XOR: 4317 case TargetOpcode::G_SMIN: 4318 case TargetOpcode::G_SMAX: 4319 case TargetOpcode::G_UMIN: 4320 case TargetOpcode::G_UMAX: 4321 case TargetOpcode::G_FMINNUM: 4322 case TargetOpcode::G_FMAXNUM: 4323 case TargetOpcode::G_FMINNUM_IEEE: 4324 case TargetOpcode::G_FMAXNUM_IEEE: 4325 case TargetOpcode::G_FMINIMUM: 4326 case TargetOpcode::G_FMAXIMUM: { 4327 Observer.changingInstr(MI); 4328 moreElementsVectorSrc(MI, MoreTy, 1); 4329 moreElementsVectorSrc(MI, MoreTy, 2); 4330 moreElementsVectorDst(MI, MoreTy, 0); 4331 Observer.changedInstr(MI); 4332 return Legalized; 4333 } 4334 case TargetOpcode::G_EXTRACT: 4335 if (TypeIdx != 1) 4336 return UnableToLegalize; 4337 Observer.changingInstr(MI); 4338 moreElementsVectorSrc(MI, MoreTy, 1); 4339 Observer.changedInstr(MI); 4340 return Legalized; 4341 case TargetOpcode::G_INSERT: 4342 case TargetOpcode::G_FREEZE: 4343 if (TypeIdx != 0) 4344 return UnableToLegalize; 4345 Observer.changingInstr(MI); 4346 moreElementsVectorSrc(MI, MoreTy, 1); 4347 moreElementsVectorDst(MI, MoreTy, 0); 4348 Observer.changedInstr(MI); 4349 return Legalized; 4350 case TargetOpcode::G_SELECT: 4351 if (TypeIdx != 0) 4352 return UnableToLegalize; 4353 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 4354 return UnableToLegalize; 4355 4356 Observer.changingInstr(MI); 4357 moreElementsVectorSrc(MI, MoreTy, 2); 4358 moreElementsVectorSrc(MI, MoreTy, 3); 4359 moreElementsVectorDst(MI, MoreTy, 0); 4360 Observer.changedInstr(MI); 4361 return Legalized; 4362 case TargetOpcode::G_UNMERGE_VALUES: { 4363 if (TypeIdx != 1) 4364 return UnableToLegalize; 4365 4366 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 4367 int NumDst = MI.getNumOperands() - 1; 4368 moreElementsVectorSrc(MI, MoreTy, NumDst); 4369 4370 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 4371 for (int I = 0; I != NumDst; ++I) 4372 MIB.addDef(MI.getOperand(I).getReg()); 4373 4374 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 4375 for (int I = NumDst; I != NewNumDst; ++I) 4376 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 4377 4378 MIB.addUse(MI.getOperand(NumDst).getReg()); 4379 MI.eraseFromParent(); 4380 return Legalized; 4381 } 4382 case TargetOpcode::G_PHI: 4383 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 4384 default: 4385 return UnableToLegalize; 4386 } 4387 } 4388 4389 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 4390 ArrayRef<Register> Src1Regs, 4391 ArrayRef<Register> Src2Regs, 4392 LLT NarrowTy) { 4393 MachineIRBuilder &B = MIRBuilder; 4394 unsigned SrcParts = Src1Regs.size(); 4395 unsigned DstParts = DstRegs.size(); 4396 4397 unsigned DstIdx = 0; // Low bits of the result. 4398 Register FactorSum = 4399 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 4400 DstRegs[DstIdx] = FactorSum; 4401 4402 unsigned CarrySumPrevDstIdx; 4403 SmallVector<Register, 4> Factors; 4404 4405 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 4406 // Collect low parts of muls for DstIdx. 4407 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 4408 i <= std::min(DstIdx, SrcParts - 1); ++i) { 4409 MachineInstrBuilder Mul = 4410 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 4411 Factors.push_back(Mul.getReg(0)); 4412 } 4413 // Collect high parts of muls from previous DstIdx. 4414 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 4415 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 4416 MachineInstrBuilder Umulh = 4417 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 4418 Factors.push_back(Umulh.getReg(0)); 4419 } 4420 // Add CarrySum from additions calculated for previous DstIdx. 4421 if (DstIdx != 1) { 4422 Factors.push_back(CarrySumPrevDstIdx); 4423 } 4424 4425 Register CarrySum; 4426 // Add all factors and accumulate all carries into CarrySum. 4427 if (DstIdx != DstParts - 1) { 4428 MachineInstrBuilder Uaddo = 4429 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 4430 FactorSum = Uaddo.getReg(0); 4431 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 4432 for (unsigned i = 2; i < Factors.size(); ++i) { 4433 MachineInstrBuilder Uaddo = 4434 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 4435 FactorSum = Uaddo.getReg(0); 4436 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 4437 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 4438 } 4439 } else { 4440 // Since value for the next index is not calculated, neither is CarrySum. 4441 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 4442 for (unsigned i = 2; i < Factors.size(); ++i) 4443 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 4444 } 4445 4446 CarrySumPrevDstIdx = CarrySum; 4447 DstRegs[DstIdx] = FactorSum; 4448 Factors.clear(); 4449 } 4450 } 4451 4452 LegalizerHelper::LegalizeResult 4453 LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, 4454 LLT NarrowTy) { 4455 if (TypeIdx != 0) 4456 return UnableToLegalize; 4457 4458 Register DstReg = MI.getOperand(0).getReg(); 4459 LLT DstType = MRI.getType(DstReg); 4460 // FIXME: add support for vector types 4461 if (DstType.isVector()) 4462 return UnableToLegalize; 4463 4464 uint64_t SizeOp0 = DstType.getSizeInBits(); 4465 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4466 4467 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4468 // NarrowSize. 4469 if (SizeOp0 % NarrowSize != 0) 4470 return UnableToLegalize; 4471 4472 // Expand in terms of carry-setting/consuming G_<Op>E instructions. 4473 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 4474 4475 unsigned Opcode = MI.getOpcode(); 4476 unsigned OpO, OpE, OpF; 4477 switch (Opcode) { 4478 case TargetOpcode::G_SADDO: 4479 case TargetOpcode::G_SADDE: 4480 case TargetOpcode::G_UADDO: 4481 case TargetOpcode::G_UADDE: 4482 case TargetOpcode::G_ADD: 4483 OpO = TargetOpcode::G_UADDO; 4484 OpE = TargetOpcode::G_UADDE; 4485 OpF = TargetOpcode::G_UADDE; 4486 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) 4487 OpF = TargetOpcode::G_SADDE; 4488 break; 4489 case TargetOpcode::G_SSUBO: 4490 case TargetOpcode::G_SSUBE: 4491 case TargetOpcode::G_USUBO: 4492 case TargetOpcode::G_USUBE: 4493 case TargetOpcode::G_SUB: 4494 OpO = TargetOpcode::G_USUBO; 4495 OpE = TargetOpcode::G_USUBE; 4496 OpF = TargetOpcode::G_USUBE; 4497 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) 4498 OpF = TargetOpcode::G_SSUBE; 4499 break; 4500 default: 4501 llvm_unreachable("Unexpected add/sub opcode!"); 4502 } 4503 4504 // 1 for a plain add/sub, 2 if this is an operation with a carry-out. 4505 unsigned NumDefs = MI.getNumExplicitDefs(); 4506 Register Src1 = MI.getOperand(NumDefs).getReg(); 4507 Register Src2 = MI.getOperand(NumDefs + 1).getReg(); 4508 Register CarryDst; 4509 if (NumDefs == 2) 4510 CarryDst = MI.getOperand(1).getReg(); 4511 Register CarryIn; 4512 if (MI.getNumOperands() == NumDefs + 3) 4513 CarryIn = MI.getOperand(NumDefs + 2).getReg(); 4514 4515 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 4516 extractParts(Src1, NarrowTy, NumParts, Src1Regs); 4517 extractParts(Src2, NarrowTy, NumParts, Src2Regs); 4518 4519 for (int i = 0; i < NumParts; ++i) { 4520 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4521 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 4522 // Forward the final carry-out to the destination register 4523 if (i == NumParts - 1 && CarryDst) 4524 CarryOut = CarryDst; 4525 4526 if (!CarryIn) { 4527 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, 4528 {Src1Regs[i], Src2Regs[i]}); 4529 } else if (i == NumParts - 1) { 4530 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, 4531 {Src1Regs[i], Src2Regs[i], CarryIn}); 4532 } else { 4533 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, 4534 {Src1Regs[i], Src2Regs[i], CarryIn}); 4535 } 4536 4537 DstRegs.push_back(DstReg); 4538 CarryIn = CarryOut; 4539 } 4540 MIRBuilder.buildMerge(DstReg, DstRegs); 4541 MI.eraseFromParent(); 4542 return Legalized; 4543 } 4544 4545 LegalizerHelper::LegalizeResult 4546 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 4547 Register DstReg = MI.getOperand(0).getReg(); 4548 Register Src1 = MI.getOperand(1).getReg(); 4549 Register Src2 = MI.getOperand(2).getReg(); 4550 4551 LLT Ty = MRI.getType(DstReg); 4552 if (Ty.isVector()) 4553 return UnableToLegalize; 4554 4555 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 4556 unsigned DstSize = Ty.getSizeInBits(); 4557 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4558 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 4559 return UnableToLegalize; 4560 4561 unsigned NumDstParts = DstSize / NarrowSize; 4562 unsigned NumSrcParts = SrcSize / NarrowSize; 4563 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 4564 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 4565 4566 SmallVector<Register, 2> Src1Parts, Src2Parts; 4567 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 4568 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 4569 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 4570 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 4571 4572 // Take only high half of registers if this is high mul. 4573 ArrayRef<Register> DstRegs( 4574 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 4575 MIRBuilder.buildMerge(DstReg, DstRegs); 4576 MI.eraseFromParent(); 4577 return Legalized; 4578 } 4579 4580 LegalizerHelper::LegalizeResult 4581 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 4582 LLT NarrowTy) { 4583 if (TypeIdx != 1) 4584 return UnableToLegalize; 4585 4586 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4587 4588 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 4589 // FIXME: add support for when SizeOp1 isn't an exact multiple of 4590 // NarrowSize. 4591 if (SizeOp1 % NarrowSize != 0) 4592 return UnableToLegalize; 4593 int NumParts = SizeOp1 / NarrowSize; 4594 4595 SmallVector<Register, 2> SrcRegs, DstRegs; 4596 SmallVector<uint64_t, 2> Indexes; 4597 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4598 4599 Register OpReg = MI.getOperand(0).getReg(); 4600 uint64_t OpStart = MI.getOperand(2).getImm(); 4601 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4602 for (int i = 0; i < NumParts; ++i) { 4603 unsigned SrcStart = i * NarrowSize; 4604 4605 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 4606 // No part of the extract uses this subregister, ignore it. 4607 continue; 4608 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4609 // The entire subregister is extracted, forward the value. 4610 DstRegs.push_back(SrcRegs[i]); 4611 continue; 4612 } 4613 4614 // OpSegStart is where this destination segment would start in OpReg if it 4615 // extended infinitely in both directions. 4616 int64_t ExtractOffset; 4617 uint64_t SegSize; 4618 if (OpStart < SrcStart) { 4619 ExtractOffset = 0; 4620 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 4621 } else { 4622 ExtractOffset = OpStart - SrcStart; 4623 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 4624 } 4625 4626 Register SegReg = SrcRegs[i]; 4627 if (ExtractOffset != 0 || SegSize != NarrowSize) { 4628 // A genuine extract is needed. 4629 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4630 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 4631 } 4632 4633 DstRegs.push_back(SegReg); 4634 } 4635 4636 Register DstReg = MI.getOperand(0).getReg(); 4637 if (MRI.getType(DstReg).isVector()) 4638 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4639 else if (DstRegs.size() > 1) 4640 MIRBuilder.buildMerge(DstReg, DstRegs); 4641 else 4642 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 4643 MI.eraseFromParent(); 4644 return Legalized; 4645 } 4646 4647 LegalizerHelper::LegalizeResult 4648 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 4649 LLT NarrowTy) { 4650 // FIXME: Don't know how to handle secondary types yet. 4651 if (TypeIdx != 0) 4652 return UnableToLegalize; 4653 4654 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 4655 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 4656 4657 // FIXME: add support for when SizeOp0 isn't an exact multiple of 4658 // NarrowSize. 4659 if (SizeOp0 % NarrowSize != 0) 4660 return UnableToLegalize; 4661 4662 int NumParts = SizeOp0 / NarrowSize; 4663 4664 SmallVector<Register, 2> SrcRegs, DstRegs; 4665 SmallVector<uint64_t, 2> Indexes; 4666 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 4667 4668 Register OpReg = MI.getOperand(2).getReg(); 4669 uint64_t OpStart = MI.getOperand(3).getImm(); 4670 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 4671 for (int i = 0; i < NumParts; ++i) { 4672 unsigned DstStart = i * NarrowSize; 4673 4674 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 4675 // No part of the insert affects this subregister, forward the original. 4676 DstRegs.push_back(SrcRegs[i]); 4677 continue; 4678 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 4679 // The entire subregister is defined by this insert, forward the new 4680 // value. 4681 DstRegs.push_back(OpReg); 4682 continue; 4683 } 4684 4685 // OpSegStart is where this destination segment would start in OpReg if it 4686 // extended infinitely in both directions. 4687 int64_t ExtractOffset, InsertOffset; 4688 uint64_t SegSize; 4689 if (OpStart < DstStart) { 4690 InsertOffset = 0; 4691 ExtractOffset = DstStart - OpStart; 4692 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 4693 } else { 4694 InsertOffset = OpStart - DstStart; 4695 ExtractOffset = 0; 4696 SegSize = 4697 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 4698 } 4699 4700 Register SegReg = OpReg; 4701 if (ExtractOffset != 0 || SegSize != OpSize) { 4702 // A genuine extract is needed. 4703 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 4704 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 4705 } 4706 4707 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 4708 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 4709 DstRegs.push_back(DstReg); 4710 } 4711 4712 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 4713 Register DstReg = MI.getOperand(0).getReg(); 4714 if(MRI.getType(DstReg).isVector()) 4715 MIRBuilder.buildBuildVector(DstReg, DstRegs); 4716 else 4717 MIRBuilder.buildMerge(DstReg, DstRegs); 4718 MI.eraseFromParent(); 4719 return Legalized; 4720 } 4721 4722 LegalizerHelper::LegalizeResult 4723 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 4724 LLT NarrowTy) { 4725 Register DstReg = MI.getOperand(0).getReg(); 4726 LLT DstTy = MRI.getType(DstReg); 4727 4728 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 4729 4730 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4731 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 4732 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4733 LLT LeftoverTy; 4734 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 4735 Src0Regs, Src0LeftoverRegs)) 4736 return UnableToLegalize; 4737 4738 LLT Unused; 4739 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 4740 Src1Regs, Src1LeftoverRegs)) 4741 llvm_unreachable("inconsistent extractParts result"); 4742 4743 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4744 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 4745 {Src0Regs[I], Src1Regs[I]}); 4746 DstRegs.push_back(Inst.getReg(0)); 4747 } 4748 4749 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4750 auto Inst = MIRBuilder.buildInstr( 4751 MI.getOpcode(), 4752 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 4753 DstLeftoverRegs.push_back(Inst.getReg(0)); 4754 } 4755 4756 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4757 LeftoverTy, DstLeftoverRegs); 4758 4759 MI.eraseFromParent(); 4760 return Legalized; 4761 } 4762 4763 LegalizerHelper::LegalizeResult 4764 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 4765 LLT NarrowTy) { 4766 if (TypeIdx != 0) 4767 return UnableToLegalize; 4768 4769 Register DstReg = MI.getOperand(0).getReg(); 4770 Register SrcReg = MI.getOperand(1).getReg(); 4771 4772 LLT DstTy = MRI.getType(DstReg); 4773 if (DstTy.isVector()) 4774 return UnableToLegalize; 4775 4776 SmallVector<Register, 8> Parts; 4777 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 4778 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 4779 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 4780 4781 MI.eraseFromParent(); 4782 return Legalized; 4783 } 4784 4785 LegalizerHelper::LegalizeResult 4786 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 4787 LLT NarrowTy) { 4788 if (TypeIdx != 0) 4789 return UnableToLegalize; 4790 4791 Register CondReg = MI.getOperand(1).getReg(); 4792 LLT CondTy = MRI.getType(CondReg); 4793 if (CondTy.isVector()) // TODO: Handle vselect 4794 return UnableToLegalize; 4795 4796 Register DstReg = MI.getOperand(0).getReg(); 4797 LLT DstTy = MRI.getType(DstReg); 4798 4799 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 4800 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 4801 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 4802 LLT LeftoverTy; 4803 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 4804 Src1Regs, Src1LeftoverRegs)) 4805 return UnableToLegalize; 4806 4807 LLT Unused; 4808 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 4809 Src2Regs, Src2LeftoverRegs)) 4810 llvm_unreachable("inconsistent extractParts result"); 4811 4812 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 4813 auto Select = MIRBuilder.buildSelect(NarrowTy, 4814 CondReg, Src1Regs[I], Src2Regs[I]); 4815 DstRegs.push_back(Select.getReg(0)); 4816 } 4817 4818 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 4819 auto Select = MIRBuilder.buildSelect( 4820 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 4821 DstLeftoverRegs.push_back(Select.getReg(0)); 4822 } 4823 4824 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 4825 LeftoverTy, DstLeftoverRegs); 4826 4827 MI.eraseFromParent(); 4828 return Legalized; 4829 } 4830 4831 LegalizerHelper::LegalizeResult 4832 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 4833 LLT NarrowTy) { 4834 if (TypeIdx != 1) 4835 return UnableToLegalize; 4836 4837 Register DstReg = MI.getOperand(0).getReg(); 4838 Register SrcReg = MI.getOperand(1).getReg(); 4839 LLT DstTy = MRI.getType(DstReg); 4840 LLT SrcTy = MRI.getType(SrcReg); 4841 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4842 4843 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4844 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 4845 4846 MachineIRBuilder &B = MIRBuilder; 4847 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4848 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 4849 auto C_0 = B.buildConstant(NarrowTy, 0); 4850 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4851 UnmergeSrc.getReg(1), C_0); 4852 auto LoCTLZ = IsUndef ? 4853 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 4854 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 4855 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4856 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 4857 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 4858 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 4859 4860 MI.eraseFromParent(); 4861 return Legalized; 4862 } 4863 4864 return UnableToLegalize; 4865 } 4866 4867 LegalizerHelper::LegalizeResult 4868 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 4869 LLT NarrowTy) { 4870 if (TypeIdx != 1) 4871 return UnableToLegalize; 4872 4873 Register DstReg = MI.getOperand(0).getReg(); 4874 Register SrcReg = MI.getOperand(1).getReg(); 4875 LLT DstTy = MRI.getType(DstReg); 4876 LLT SrcTy = MRI.getType(SrcReg); 4877 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4878 4879 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4880 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 4881 4882 MachineIRBuilder &B = MIRBuilder; 4883 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 4884 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 4885 auto C_0 = B.buildConstant(NarrowTy, 0); 4886 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 4887 UnmergeSrc.getReg(0), C_0); 4888 auto HiCTTZ = IsUndef ? 4889 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 4890 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 4891 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 4892 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 4893 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 4894 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 4895 4896 MI.eraseFromParent(); 4897 return Legalized; 4898 } 4899 4900 return UnableToLegalize; 4901 } 4902 4903 LegalizerHelper::LegalizeResult 4904 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 4905 LLT NarrowTy) { 4906 if (TypeIdx != 1) 4907 return UnableToLegalize; 4908 4909 Register DstReg = MI.getOperand(0).getReg(); 4910 LLT DstTy = MRI.getType(DstReg); 4911 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 4912 unsigned NarrowSize = NarrowTy.getSizeInBits(); 4913 4914 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 4915 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 4916 4917 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 4918 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 4919 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 4920 4921 MI.eraseFromParent(); 4922 return Legalized; 4923 } 4924 4925 return UnableToLegalize; 4926 } 4927 4928 LegalizerHelper::LegalizeResult 4929 LegalizerHelper::lowerBitCount(MachineInstr &MI) { 4930 unsigned Opc = MI.getOpcode(); 4931 const auto &TII = MIRBuilder.getTII(); 4932 auto isSupported = [this](const LegalityQuery &Q) { 4933 auto QAction = LI.getAction(Q).Action; 4934 return QAction == Legal || QAction == Libcall || QAction == Custom; 4935 }; 4936 switch (Opc) { 4937 default: 4938 return UnableToLegalize; 4939 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4940 // This trivially expands to CTLZ. 4941 Observer.changingInstr(MI); 4942 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4943 Observer.changedInstr(MI); 4944 return Legalized; 4945 } 4946 case TargetOpcode::G_CTLZ: { 4947 Register DstReg = MI.getOperand(0).getReg(); 4948 Register SrcReg = MI.getOperand(1).getReg(); 4949 LLT DstTy = MRI.getType(DstReg); 4950 LLT SrcTy = MRI.getType(SrcReg); 4951 unsigned Len = SrcTy.getSizeInBits(); 4952 4953 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4954 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4955 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4956 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4957 auto ICmp = MIRBuilder.buildICmp( 4958 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4959 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4960 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4961 MI.eraseFromParent(); 4962 return Legalized; 4963 } 4964 // for now, we do this: 4965 // NewLen = NextPowerOf2(Len); 4966 // x = x | (x >> 1); 4967 // x = x | (x >> 2); 4968 // ... 4969 // x = x | (x >>16); 4970 // x = x | (x >>32); // for 64-bit input 4971 // Upto NewLen/2 4972 // return Len - popcount(x); 4973 // 4974 // Ref: "Hacker's Delight" by Henry Warren 4975 Register Op = SrcReg; 4976 unsigned NewLen = PowerOf2Ceil(Len); 4977 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4978 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4979 auto MIBOp = MIRBuilder.buildOr( 4980 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4981 Op = MIBOp.getReg(0); 4982 } 4983 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4984 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4985 MIBPop); 4986 MI.eraseFromParent(); 4987 return Legalized; 4988 } 4989 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4990 // This trivially expands to CTTZ. 4991 Observer.changingInstr(MI); 4992 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4993 Observer.changedInstr(MI); 4994 return Legalized; 4995 } 4996 case TargetOpcode::G_CTTZ: { 4997 Register DstReg = MI.getOperand(0).getReg(); 4998 Register SrcReg = MI.getOperand(1).getReg(); 4999 LLT DstTy = MRI.getType(DstReg); 5000 LLT SrcTy = MRI.getType(SrcReg); 5001 5002 unsigned Len = SrcTy.getSizeInBits(); 5003 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 5004 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 5005 // zero. 5006 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 5007 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 5008 auto ICmp = MIRBuilder.buildICmp( 5009 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 5010 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 5011 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 5012 MI.eraseFromParent(); 5013 return Legalized; 5014 } 5015 // for now, we use: { return popcount(~x & (x - 1)); } 5016 // unless the target has ctlz but not ctpop, in which case we use: 5017 // { return 32 - nlz(~x & (x-1)); } 5018 // Ref: "Hacker's Delight" by Henry Warren 5019 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); 5020 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); 5021 auto MIBTmp = MIRBuilder.buildAnd( 5022 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); 5023 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && 5024 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { 5025 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); 5026 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 5027 MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); 5028 MI.eraseFromParent(); 5029 return Legalized; 5030 } 5031 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 5032 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 5033 return Legalized; 5034 } 5035 case TargetOpcode::G_CTPOP: { 5036 Register SrcReg = MI.getOperand(1).getReg(); 5037 LLT Ty = MRI.getType(SrcReg); 5038 unsigned Size = Ty.getSizeInBits(); 5039 MachineIRBuilder &B = MIRBuilder; 5040 5041 // Count set bits in blocks of 2 bits. Default approach would be 5042 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 5043 // We use following formula instead: 5044 // B2Count = val - { (val >> 1) & 0x55555555 } 5045 // since it gives same result in blocks of 2 with one instruction less. 5046 auto C_1 = B.buildConstant(Ty, 1); 5047 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); 5048 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 5049 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 5050 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 5051 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); 5052 5053 // In order to get count in blocks of 4 add values from adjacent block of 2. 5054 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 5055 auto C_2 = B.buildConstant(Ty, 2); 5056 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 5057 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 5058 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 5059 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 5060 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 5061 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 5062 5063 // For count in blocks of 8 bits we don't have to mask high 4 bits before 5064 // addition since count value sits in range {0,...,8} and 4 bits are enough 5065 // to hold such binary values. After addition high 4 bits still hold count 5066 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 5067 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 5068 auto C_4 = B.buildConstant(Ty, 4); 5069 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 5070 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 5071 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 5072 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 5073 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 5074 5075 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 5076 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 5077 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 5078 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 5079 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 5080 5081 // Shift count result from 8 high bits to low bits. 5082 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 5083 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 5084 5085 MI.eraseFromParent(); 5086 return Legalized; 5087 } 5088 } 5089 } 5090 5091 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 5092 // representation. 5093 LegalizerHelper::LegalizeResult 5094 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 5095 Register Dst = MI.getOperand(0).getReg(); 5096 Register Src = MI.getOperand(1).getReg(); 5097 const LLT S64 = LLT::scalar(64); 5098 const LLT S32 = LLT::scalar(32); 5099 const LLT S1 = LLT::scalar(1); 5100 5101 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 5102 5103 // unsigned cul2f(ulong u) { 5104 // uint lz = clz(u); 5105 // uint e = (u != 0) ? 127U + 63U - lz : 0; 5106 // u = (u << lz) & 0x7fffffffffffffffUL; 5107 // ulong t = u & 0xffffffffffUL; 5108 // uint v = (e << 23) | (uint)(u >> 40); 5109 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 5110 // return as_float(v + r); 5111 // } 5112 5113 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 5114 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 5115 5116 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 5117 5118 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 5119 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 5120 5121 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 5122 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 5123 5124 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 5125 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 5126 5127 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 5128 5129 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 5130 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 5131 5132 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 5133 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 5134 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 5135 5136 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 5137 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 5138 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 5139 auto One = MIRBuilder.buildConstant(S32, 1); 5140 5141 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 5142 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 5143 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 5144 MIRBuilder.buildAdd(Dst, V, R); 5145 5146 MI.eraseFromParent(); 5147 return Legalized; 5148 } 5149 5150 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { 5151 Register Dst = MI.getOperand(0).getReg(); 5152 Register Src = MI.getOperand(1).getReg(); 5153 LLT DstTy = MRI.getType(Dst); 5154 LLT SrcTy = MRI.getType(Src); 5155 5156 if (SrcTy == LLT::scalar(1)) { 5157 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 5158 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5159 MIRBuilder.buildSelect(Dst, Src, True, False); 5160 MI.eraseFromParent(); 5161 return Legalized; 5162 } 5163 5164 if (SrcTy != LLT::scalar(64)) 5165 return UnableToLegalize; 5166 5167 if (DstTy == LLT::scalar(32)) { 5168 // TODO: SelectionDAG has several alternative expansions to port which may 5169 // be more reasonble depending on the available instructions. If a target 5170 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 5171 // intermediate type, this is probably worse. 5172 return lowerU64ToF32BitOps(MI); 5173 } 5174 5175 return UnableToLegalize; 5176 } 5177 5178 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { 5179 Register Dst = MI.getOperand(0).getReg(); 5180 Register Src = MI.getOperand(1).getReg(); 5181 LLT DstTy = MRI.getType(Dst); 5182 LLT SrcTy = MRI.getType(Src); 5183 5184 const LLT S64 = LLT::scalar(64); 5185 const LLT S32 = LLT::scalar(32); 5186 const LLT S1 = LLT::scalar(1); 5187 5188 if (SrcTy == S1) { 5189 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 5190 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 5191 MIRBuilder.buildSelect(Dst, Src, True, False); 5192 MI.eraseFromParent(); 5193 return Legalized; 5194 } 5195 5196 if (SrcTy != S64) 5197 return UnableToLegalize; 5198 5199 if (DstTy == S32) { 5200 // signed cl2f(long l) { 5201 // long s = l >> 63; 5202 // float r = cul2f((l + s) ^ s); 5203 // return s ? -r : r; 5204 // } 5205 Register L = Src; 5206 auto SignBit = MIRBuilder.buildConstant(S64, 63); 5207 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 5208 5209 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 5210 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 5211 auto R = MIRBuilder.buildUITOFP(S32, Xor); 5212 5213 auto RNeg = MIRBuilder.buildFNeg(S32, R); 5214 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 5215 MIRBuilder.buildConstant(S64, 0)); 5216 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 5217 MI.eraseFromParent(); 5218 return Legalized; 5219 } 5220 5221 return UnableToLegalize; 5222 } 5223 5224 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { 5225 Register Dst = MI.getOperand(0).getReg(); 5226 Register Src = MI.getOperand(1).getReg(); 5227 LLT DstTy = MRI.getType(Dst); 5228 LLT SrcTy = MRI.getType(Src); 5229 const LLT S64 = LLT::scalar(64); 5230 const LLT S32 = LLT::scalar(32); 5231 5232 if (SrcTy != S64 && SrcTy != S32) 5233 return UnableToLegalize; 5234 if (DstTy != S32 && DstTy != S64) 5235 return UnableToLegalize; 5236 5237 // FPTOSI gives same result as FPTOUI for positive signed integers. 5238 // FPTOUI needs to deal with fp values that convert to unsigned integers 5239 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 5240 5241 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 5242 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 5243 : APFloat::IEEEdouble(), 5244 APInt::getNullValue(SrcTy.getSizeInBits())); 5245 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 5246 5247 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 5248 5249 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 5250 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 5251 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 5252 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 5253 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 5254 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 5255 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 5256 5257 const LLT S1 = LLT::scalar(1); 5258 5259 MachineInstrBuilder FCMP = 5260 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 5261 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 5262 5263 MI.eraseFromParent(); 5264 return Legalized; 5265 } 5266 5267 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 5268 Register Dst = MI.getOperand(0).getReg(); 5269 Register Src = MI.getOperand(1).getReg(); 5270 LLT DstTy = MRI.getType(Dst); 5271 LLT SrcTy = MRI.getType(Src); 5272 const LLT S64 = LLT::scalar(64); 5273 const LLT S32 = LLT::scalar(32); 5274 5275 // FIXME: Only f32 to i64 conversions are supported. 5276 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 5277 return UnableToLegalize; 5278 5279 // Expand f32 -> i64 conversion 5280 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5281 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 5282 5283 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 5284 5285 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 5286 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 5287 5288 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 5289 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 5290 5291 auto SignMask = MIRBuilder.buildConstant(SrcTy, 5292 APInt::getSignMask(SrcEltBits)); 5293 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 5294 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 5295 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 5296 Sign = MIRBuilder.buildSExt(DstTy, Sign); 5297 5298 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 5299 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 5300 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 5301 5302 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 5303 R = MIRBuilder.buildZExt(DstTy, R); 5304 5305 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 5306 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 5307 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 5308 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 5309 5310 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 5311 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 5312 5313 const LLT S1 = LLT::scalar(1); 5314 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 5315 S1, Exponent, ExponentLoBit); 5316 5317 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 5318 5319 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 5320 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 5321 5322 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 5323 5324 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 5325 S1, Exponent, ZeroSrcTy); 5326 5327 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 5328 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 5329 5330 MI.eraseFromParent(); 5331 return Legalized; 5332 } 5333 5334 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 5335 LegalizerHelper::LegalizeResult 5336 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 5337 Register Dst = MI.getOperand(0).getReg(); 5338 Register Src = MI.getOperand(1).getReg(); 5339 5340 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 5341 return UnableToLegalize; 5342 5343 const unsigned ExpMask = 0x7ff; 5344 const unsigned ExpBiasf64 = 1023; 5345 const unsigned ExpBiasf16 = 15; 5346 const LLT S32 = LLT::scalar(32); 5347 const LLT S1 = LLT::scalar(1); 5348 5349 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 5350 Register U = Unmerge.getReg(0); 5351 Register UH = Unmerge.getReg(1); 5352 5353 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 5354 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 5355 5356 // Subtract the fp64 exponent bias (1023) to get the real exponent and 5357 // add the f16 bias (15) to get the biased exponent for the f16 format. 5358 E = MIRBuilder.buildAdd( 5359 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 5360 5361 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 5362 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 5363 5364 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 5365 MIRBuilder.buildConstant(S32, 0x1ff)); 5366 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 5367 5368 auto Zero = MIRBuilder.buildConstant(S32, 0); 5369 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 5370 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 5371 M = MIRBuilder.buildOr(S32, M, Lo40Set); 5372 5373 // (M != 0 ? 0x0200 : 0) | 0x7c00; 5374 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 5375 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 5376 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 5377 5378 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 5379 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 5380 5381 // N = M | (E << 12); 5382 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 5383 auto N = MIRBuilder.buildOr(S32, M, EShl12); 5384 5385 // B = clamp(1-E, 0, 13); 5386 auto One = MIRBuilder.buildConstant(S32, 1); 5387 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 5388 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 5389 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 5390 5391 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 5392 MIRBuilder.buildConstant(S32, 0x1000)); 5393 5394 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 5395 auto D0 = MIRBuilder.buildShl(S32, D, B); 5396 5397 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 5398 D0, SigSetHigh); 5399 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 5400 D = MIRBuilder.buildOr(S32, D, D1); 5401 5402 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 5403 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 5404 5405 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 5406 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 5407 5408 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 5409 MIRBuilder.buildConstant(S32, 3)); 5410 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 5411 5412 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 5413 MIRBuilder.buildConstant(S32, 5)); 5414 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 5415 5416 V1 = MIRBuilder.buildOr(S32, V0, V1); 5417 V = MIRBuilder.buildAdd(S32, V, V1); 5418 5419 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 5420 E, MIRBuilder.buildConstant(S32, 30)); 5421 V = MIRBuilder.buildSelect(S32, CmpEGt30, 5422 MIRBuilder.buildConstant(S32, 0x7c00), V); 5423 5424 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 5425 E, MIRBuilder.buildConstant(S32, 1039)); 5426 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 5427 5428 // Extract the sign bit. 5429 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 5430 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 5431 5432 // Insert the sign bit 5433 V = MIRBuilder.buildOr(S32, Sign, V); 5434 5435 MIRBuilder.buildTrunc(Dst, V); 5436 MI.eraseFromParent(); 5437 return Legalized; 5438 } 5439 5440 LegalizerHelper::LegalizeResult 5441 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { 5442 Register Dst = MI.getOperand(0).getReg(); 5443 Register Src = MI.getOperand(1).getReg(); 5444 5445 LLT DstTy = MRI.getType(Dst); 5446 LLT SrcTy = MRI.getType(Src); 5447 const LLT S64 = LLT::scalar(64); 5448 const LLT S16 = LLT::scalar(16); 5449 5450 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 5451 return lowerFPTRUNC_F64_TO_F16(MI); 5452 5453 return UnableToLegalize; 5454 } 5455 5456 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a 5457 // multiplication tree. 5458 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { 5459 Register Dst = MI.getOperand(0).getReg(); 5460 Register Src0 = MI.getOperand(1).getReg(); 5461 Register Src1 = MI.getOperand(2).getReg(); 5462 LLT Ty = MRI.getType(Dst); 5463 5464 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); 5465 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); 5466 MI.eraseFromParent(); 5467 return Legalized; 5468 } 5469 5470 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 5471 switch (Opc) { 5472 case TargetOpcode::G_SMIN: 5473 return CmpInst::ICMP_SLT; 5474 case TargetOpcode::G_SMAX: 5475 return CmpInst::ICMP_SGT; 5476 case TargetOpcode::G_UMIN: 5477 return CmpInst::ICMP_ULT; 5478 case TargetOpcode::G_UMAX: 5479 return CmpInst::ICMP_UGT; 5480 default: 5481 llvm_unreachable("not in integer min/max"); 5482 } 5483 } 5484 5485 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { 5486 Register Dst = MI.getOperand(0).getReg(); 5487 Register Src0 = MI.getOperand(1).getReg(); 5488 Register Src1 = MI.getOperand(2).getReg(); 5489 5490 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 5491 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 5492 5493 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 5494 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 5495 5496 MI.eraseFromParent(); 5497 return Legalized; 5498 } 5499 5500 LegalizerHelper::LegalizeResult 5501 LegalizerHelper::lowerFCopySign(MachineInstr &MI) { 5502 Register Dst = MI.getOperand(0).getReg(); 5503 Register Src0 = MI.getOperand(1).getReg(); 5504 Register Src1 = MI.getOperand(2).getReg(); 5505 5506 const LLT Src0Ty = MRI.getType(Src0); 5507 const LLT Src1Ty = MRI.getType(Src1); 5508 5509 const int Src0Size = Src0Ty.getScalarSizeInBits(); 5510 const int Src1Size = Src1Ty.getScalarSizeInBits(); 5511 5512 auto SignBitMask = MIRBuilder.buildConstant( 5513 Src0Ty, APInt::getSignMask(Src0Size)); 5514 5515 auto NotSignBitMask = MIRBuilder.buildConstant( 5516 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 5517 5518 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); 5519 Register And1; 5520 if (Src0Ty == Src1Ty) { 5521 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); 5522 } else if (Src0Size > Src1Size) { 5523 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 5524 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 5525 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 5526 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); 5527 } else { 5528 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 5529 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 5530 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 5531 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); 5532 } 5533 5534 // Be careful about setting nsz/nnan/ninf on every instruction, since the 5535 // constants are a nan and -0.0, but the final result should preserve 5536 // everything. 5537 unsigned Flags = MI.getFlags(); 5538 MIRBuilder.buildOr(Dst, And0, And1, Flags); 5539 5540 MI.eraseFromParent(); 5541 return Legalized; 5542 } 5543 5544 LegalizerHelper::LegalizeResult 5545 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 5546 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 5547 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 5548 5549 Register Dst = MI.getOperand(0).getReg(); 5550 Register Src0 = MI.getOperand(1).getReg(); 5551 Register Src1 = MI.getOperand(2).getReg(); 5552 LLT Ty = MRI.getType(Dst); 5553 5554 if (!MI.getFlag(MachineInstr::FmNoNans)) { 5555 // Insert canonicalizes if it's possible we need to quiet to get correct 5556 // sNaN behavior. 5557 5558 // Note this must be done here, and not as an optimization combine in the 5559 // absence of a dedicate quiet-snan instruction as we're using an 5560 // omni-purpose G_FCANONICALIZE. 5561 if (!isKnownNeverSNaN(Src0, MRI)) 5562 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 5563 5564 if (!isKnownNeverSNaN(Src1, MRI)) 5565 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 5566 } 5567 5568 // If there are no nans, it's safe to simply replace this with the non-IEEE 5569 // version. 5570 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 5571 MI.eraseFromParent(); 5572 return Legalized; 5573 } 5574 5575 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 5576 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 5577 Register DstReg = MI.getOperand(0).getReg(); 5578 LLT Ty = MRI.getType(DstReg); 5579 unsigned Flags = MI.getFlags(); 5580 5581 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 5582 Flags); 5583 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 5584 MI.eraseFromParent(); 5585 return Legalized; 5586 } 5587 5588 LegalizerHelper::LegalizeResult 5589 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 5590 Register DstReg = MI.getOperand(0).getReg(); 5591 Register X = MI.getOperand(1).getReg(); 5592 const unsigned Flags = MI.getFlags(); 5593 const LLT Ty = MRI.getType(DstReg); 5594 const LLT CondTy = Ty.changeElementSize(1); 5595 5596 // round(x) => 5597 // t = trunc(x); 5598 // d = fabs(x - t); 5599 // o = copysign(1.0f, x); 5600 // return t + (d >= 0.5 ? o : 0.0); 5601 5602 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); 5603 5604 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); 5605 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); 5606 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5607 auto One = MIRBuilder.buildFConstant(Ty, 1.0); 5608 auto Half = MIRBuilder.buildFConstant(Ty, 0.5); 5609 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X); 5610 5611 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, 5612 Flags); 5613 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags); 5614 5615 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags); 5616 5617 MI.eraseFromParent(); 5618 return Legalized; 5619 } 5620 5621 LegalizerHelper::LegalizeResult 5622 LegalizerHelper::lowerFFloor(MachineInstr &MI) { 5623 Register DstReg = MI.getOperand(0).getReg(); 5624 Register SrcReg = MI.getOperand(1).getReg(); 5625 unsigned Flags = MI.getFlags(); 5626 LLT Ty = MRI.getType(DstReg); 5627 const LLT CondTy = Ty.changeElementSize(1); 5628 5629 // result = trunc(src); 5630 // if (src < 0.0 && src != result) 5631 // result += -1.0. 5632 5633 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 5634 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 5635 5636 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 5637 SrcReg, Zero, Flags); 5638 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 5639 SrcReg, Trunc, Flags); 5640 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 5641 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 5642 5643 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); 5644 MI.eraseFromParent(); 5645 return Legalized; 5646 } 5647 5648 LegalizerHelper::LegalizeResult 5649 LegalizerHelper::lowerMergeValues(MachineInstr &MI) { 5650 const unsigned NumOps = MI.getNumOperands(); 5651 Register DstReg = MI.getOperand(0).getReg(); 5652 Register Src0Reg = MI.getOperand(1).getReg(); 5653 LLT DstTy = MRI.getType(DstReg); 5654 LLT SrcTy = MRI.getType(Src0Reg); 5655 unsigned PartSize = SrcTy.getSizeInBits(); 5656 5657 LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); 5658 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); 5659 5660 for (unsigned I = 2; I != NumOps; ++I) { 5661 const unsigned Offset = (I - 1) * PartSize; 5662 5663 Register SrcReg = MI.getOperand(I).getReg(); 5664 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 5665 5666 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 5667 MRI.createGenericVirtualRegister(WideTy); 5668 5669 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 5670 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 5671 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 5672 ResultReg = NextResult; 5673 } 5674 5675 if (DstTy.isPointer()) { 5676 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( 5677 DstTy.getAddressSpace())) { 5678 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); 5679 return UnableToLegalize; 5680 } 5681 5682 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 5683 } 5684 5685 MI.eraseFromParent(); 5686 return Legalized; 5687 } 5688 5689 LegalizerHelper::LegalizeResult 5690 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 5691 const unsigned NumDst = MI.getNumOperands() - 1; 5692 Register SrcReg = MI.getOperand(NumDst).getReg(); 5693 Register Dst0Reg = MI.getOperand(0).getReg(); 5694 LLT DstTy = MRI.getType(Dst0Reg); 5695 if (DstTy.isPointer()) 5696 return UnableToLegalize; // TODO 5697 5698 SrcReg = coerceToScalar(SrcReg); 5699 if (!SrcReg) 5700 return UnableToLegalize; 5701 5702 // Expand scalarizing unmerge as bitcast to integer and shift. 5703 LLT IntTy = MRI.getType(SrcReg); 5704 5705 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 5706 5707 const unsigned DstSize = DstTy.getSizeInBits(); 5708 unsigned Offset = DstSize; 5709 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 5710 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 5711 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); 5712 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 5713 } 5714 5715 MI.eraseFromParent(); 5716 return Legalized; 5717 } 5718 5719 /// Lower a vector extract or insert by writing the vector to a stack temporary 5720 /// and reloading the element or vector. 5721 /// 5722 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx 5723 /// => 5724 /// %stack_temp = G_FRAME_INDEX 5725 /// G_STORE %vec, %stack_temp 5726 /// %idx = clamp(%idx, %vec.getNumElements()) 5727 /// %element_ptr = G_PTR_ADD %stack_temp, %idx 5728 /// %dst = G_LOAD %element_ptr 5729 LegalizerHelper::LegalizeResult 5730 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { 5731 Register DstReg = MI.getOperand(0).getReg(); 5732 Register SrcVec = MI.getOperand(1).getReg(); 5733 Register InsertVal; 5734 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) 5735 InsertVal = MI.getOperand(2).getReg(); 5736 5737 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); 5738 5739 LLT VecTy = MRI.getType(SrcVec); 5740 LLT EltTy = VecTy.getElementType(); 5741 if (!EltTy.isByteSized()) { // Not implemented. 5742 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); 5743 return UnableToLegalize; 5744 } 5745 5746 unsigned EltBytes = EltTy.getSizeInBytes(); 5747 Align VecAlign = getStackTemporaryAlignment(VecTy); 5748 Align EltAlign; 5749 5750 MachinePointerInfo PtrInfo; 5751 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), 5752 VecAlign, PtrInfo); 5753 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); 5754 5755 // Get the pointer to the element, and be sure not to hit undefined behavior 5756 // if the index is out of bounds. 5757 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); 5758 5759 int64_t IdxVal; 5760 if (mi_match(Idx, MRI, m_ICst(IdxVal))) { 5761 int64_t Offset = IdxVal * EltBytes; 5762 PtrInfo = PtrInfo.getWithOffset(Offset); 5763 EltAlign = commonAlignment(VecAlign, Offset); 5764 } else { 5765 // We lose information with a variable offset. 5766 EltAlign = getStackTemporaryAlignment(EltTy); 5767 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); 5768 } 5769 5770 if (InsertVal) { 5771 // Write the inserted element 5772 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); 5773 5774 // Reload the whole vector. 5775 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); 5776 } else { 5777 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); 5778 } 5779 5780 MI.eraseFromParent(); 5781 return Legalized; 5782 } 5783 5784 LegalizerHelper::LegalizeResult 5785 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 5786 Register DstReg = MI.getOperand(0).getReg(); 5787 Register Src0Reg = MI.getOperand(1).getReg(); 5788 Register Src1Reg = MI.getOperand(2).getReg(); 5789 LLT Src0Ty = MRI.getType(Src0Reg); 5790 LLT DstTy = MRI.getType(DstReg); 5791 LLT IdxTy = LLT::scalar(32); 5792 5793 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 5794 5795 if (DstTy.isScalar()) { 5796 if (Src0Ty.isVector()) 5797 return UnableToLegalize; 5798 5799 // This is just a SELECT. 5800 assert(Mask.size() == 1 && "Expected a single mask element"); 5801 Register Val; 5802 if (Mask[0] < 0 || Mask[0] > 1) 5803 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 5804 else 5805 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 5806 MIRBuilder.buildCopy(DstReg, Val); 5807 MI.eraseFromParent(); 5808 return Legalized; 5809 } 5810 5811 Register Undef; 5812 SmallVector<Register, 32> BuildVec; 5813 LLT EltTy = DstTy.getElementType(); 5814 5815 for (int Idx : Mask) { 5816 if (Idx < 0) { 5817 if (!Undef.isValid()) 5818 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 5819 BuildVec.push_back(Undef); 5820 continue; 5821 } 5822 5823 if (Src0Ty.isScalar()) { 5824 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 5825 } else { 5826 int NumElts = Src0Ty.getNumElements(); 5827 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 5828 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 5829 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 5830 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 5831 BuildVec.push_back(Extract.getReg(0)); 5832 } 5833 } 5834 5835 MIRBuilder.buildBuildVector(DstReg, BuildVec); 5836 MI.eraseFromParent(); 5837 return Legalized; 5838 } 5839 5840 LegalizerHelper::LegalizeResult 5841 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 5842 const auto &MF = *MI.getMF(); 5843 const auto &TFI = *MF.getSubtarget().getFrameLowering(); 5844 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) 5845 return UnableToLegalize; 5846 5847 Register Dst = MI.getOperand(0).getReg(); 5848 Register AllocSize = MI.getOperand(1).getReg(); 5849 Align Alignment = assumeAligned(MI.getOperand(2).getImm()); 5850 5851 LLT PtrTy = MRI.getType(Dst); 5852 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 5853 5854 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 5855 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 5856 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 5857 5858 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 5859 // have to generate an extra instruction to negate the alloc and then use 5860 // G_PTR_ADD to add the negative offset. 5861 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 5862 if (Alignment > Align(1)) { 5863 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); 5864 AlignMask.negate(); 5865 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 5866 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 5867 } 5868 5869 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 5870 MIRBuilder.buildCopy(SPReg, SPTmp); 5871 MIRBuilder.buildCopy(Dst, SPTmp); 5872 5873 MI.eraseFromParent(); 5874 return Legalized; 5875 } 5876 5877 LegalizerHelper::LegalizeResult 5878 LegalizerHelper::lowerExtract(MachineInstr &MI) { 5879 Register Dst = MI.getOperand(0).getReg(); 5880 Register Src = MI.getOperand(1).getReg(); 5881 unsigned Offset = MI.getOperand(2).getImm(); 5882 5883 LLT DstTy = MRI.getType(Dst); 5884 LLT SrcTy = MRI.getType(Src); 5885 5886 if (DstTy.isScalar() && 5887 (SrcTy.isScalar() || 5888 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 5889 LLT SrcIntTy = SrcTy; 5890 if (!SrcTy.isScalar()) { 5891 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 5892 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 5893 } 5894 5895 if (Offset == 0) 5896 MIRBuilder.buildTrunc(Dst, Src); 5897 else { 5898 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 5899 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 5900 MIRBuilder.buildTrunc(Dst, Shr); 5901 } 5902 5903 MI.eraseFromParent(); 5904 return Legalized; 5905 } 5906 5907 return UnableToLegalize; 5908 } 5909 5910 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 5911 Register Dst = MI.getOperand(0).getReg(); 5912 Register Src = MI.getOperand(1).getReg(); 5913 Register InsertSrc = MI.getOperand(2).getReg(); 5914 uint64_t Offset = MI.getOperand(3).getImm(); 5915 5916 LLT DstTy = MRI.getType(Src); 5917 LLT InsertTy = MRI.getType(InsertSrc); 5918 5919 if (InsertTy.isVector() || 5920 (DstTy.isVector() && DstTy.getElementType() != InsertTy)) 5921 return UnableToLegalize; 5922 5923 const DataLayout &DL = MIRBuilder.getDataLayout(); 5924 if ((DstTy.isPointer() && 5925 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || 5926 (InsertTy.isPointer() && 5927 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { 5928 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 5929 return UnableToLegalize; 5930 } 5931 5932 LLT IntDstTy = DstTy; 5933 5934 if (!DstTy.isScalar()) { 5935 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 5936 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); 5937 } 5938 5939 if (!InsertTy.isScalar()) { 5940 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); 5941 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); 5942 } 5943 5944 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 5945 if (Offset != 0) { 5946 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 5947 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 5948 } 5949 5950 APInt MaskVal = APInt::getBitsSetWithWrap( 5951 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); 5952 5953 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 5954 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 5955 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 5956 5957 MIRBuilder.buildCast(Dst, Or); 5958 MI.eraseFromParent(); 5959 return Legalized; 5960 } 5961 5962 LegalizerHelper::LegalizeResult 5963 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 5964 Register Dst0 = MI.getOperand(0).getReg(); 5965 Register Dst1 = MI.getOperand(1).getReg(); 5966 Register LHS = MI.getOperand(2).getReg(); 5967 Register RHS = MI.getOperand(3).getReg(); 5968 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 5969 5970 LLT Ty = MRI.getType(Dst0); 5971 LLT BoolTy = MRI.getType(Dst1); 5972 5973 if (IsAdd) 5974 MIRBuilder.buildAdd(Dst0, LHS, RHS); 5975 else 5976 MIRBuilder.buildSub(Dst0, LHS, RHS); 5977 5978 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5979 5980 auto Zero = MIRBuilder.buildConstant(Ty, 0); 5981 5982 // For an addition, the result should be less than one of the operands (LHS) 5983 // if and only if the other operand (RHS) is negative, otherwise there will 5984 // be overflow. 5985 // For a subtraction, the result should be less than one of the operands 5986 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 5987 // otherwise there will be overflow. 5988 auto ResultLowerThanLHS = 5989 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 5990 auto ConditionRHS = MIRBuilder.buildICmp( 5991 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 5992 5993 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 5994 MI.eraseFromParent(); 5995 return Legalized; 5996 } 5997 5998 LegalizerHelper::LegalizeResult 5999 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { 6000 Register Res = MI.getOperand(0).getReg(); 6001 Register LHS = MI.getOperand(1).getReg(); 6002 Register RHS = MI.getOperand(2).getReg(); 6003 LLT Ty = MRI.getType(Res); 6004 bool IsSigned; 6005 bool IsAdd; 6006 unsigned BaseOp; 6007 switch (MI.getOpcode()) { 6008 default: 6009 llvm_unreachable("unexpected addsat/subsat opcode"); 6010 case TargetOpcode::G_UADDSAT: 6011 IsSigned = false; 6012 IsAdd = true; 6013 BaseOp = TargetOpcode::G_ADD; 6014 break; 6015 case TargetOpcode::G_SADDSAT: 6016 IsSigned = true; 6017 IsAdd = true; 6018 BaseOp = TargetOpcode::G_ADD; 6019 break; 6020 case TargetOpcode::G_USUBSAT: 6021 IsSigned = false; 6022 IsAdd = false; 6023 BaseOp = TargetOpcode::G_SUB; 6024 break; 6025 case TargetOpcode::G_SSUBSAT: 6026 IsSigned = true; 6027 IsAdd = false; 6028 BaseOp = TargetOpcode::G_SUB; 6029 break; 6030 } 6031 6032 if (IsSigned) { 6033 // sadd.sat(a, b) -> 6034 // hi = 0x7fffffff - smax(a, 0) 6035 // lo = 0x80000000 - smin(a, 0) 6036 // a + smin(smax(lo, b), hi) 6037 // ssub.sat(a, b) -> 6038 // lo = smax(a, -1) - 0x7fffffff 6039 // hi = smin(a, -1) - 0x80000000 6040 // a - smin(smax(lo, b), hi) 6041 // TODO: AMDGPU can use a "median of 3" instruction here: 6042 // a +/- med3(lo, b, hi) 6043 uint64_t NumBits = Ty.getScalarSizeInBits(); 6044 auto MaxVal = 6045 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); 6046 auto MinVal = 6047 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6048 MachineInstrBuilder Hi, Lo; 6049 if (IsAdd) { 6050 auto Zero = MIRBuilder.buildConstant(Ty, 0); 6051 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); 6052 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); 6053 } else { 6054 auto NegOne = MIRBuilder.buildConstant(Ty, -1); 6055 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), 6056 MaxVal); 6057 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), 6058 MinVal); 6059 } 6060 auto RHSClamped = 6061 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); 6062 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); 6063 } else { 6064 // uadd.sat(a, b) -> a + umin(~a, b) 6065 // usub.sat(a, b) -> a - umin(a, b) 6066 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; 6067 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); 6068 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); 6069 } 6070 6071 MI.eraseFromParent(); 6072 return Legalized; 6073 } 6074 6075 LegalizerHelper::LegalizeResult 6076 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { 6077 Register Res = MI.getOperand(0).getReg(); 6078 Register LHS = MI.getOperand(1).getReg(); 6079 Register RHS = MI.getOperand(2).getReg(); 6080 LLT Ty = MRI.getType(Res); 6081 LLT BoolTy = Ty.changeElementSize(1); 6082 bool IsSigned; 6083 bool IsAdd; 6084 unsigned OverflowOp; 6085 switch (MI.getOpcode()) { 6086 default: 6087 llvm_unreachable("unexpected addsat/subsat opcode"); 6088 case TargetOpcode::G_UADDSAT: 6089 IsSigned = false; 6090 IsAdd = true; 6091 OverflowOp = TargetOpcode::G_UADDO; 6092 break; 6093 case TargetOpcode::G_SADDSAT: 6094 IsSigned = true; 6095 IsAdd = true; 6096 OverflowOp = TargetOpcode::G_SADDO; 6097 break; 6098 case TargetOpcode::G_USUBSAT: 6099 IsSigned = false; 6100 IsAdd = false; 6101 OverflowOp = TargetOpcode::G_USUBO; 6102 break; 6103 case TargetOpcode::G_SSUBSAT: 6104 IsSigned = true; 6105 IsAdd = false; 6106 OverflowOp = TargetOpcode::G_SSUBO; 6107 break; 6108 } 6109 6110 auto OverflowRes = 6111 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); 6112 Register Tmp = OverflowRes.getReg(0); 6113 Register Ov = OverflowRes.getReg(1); 6114 MachineInstrBuilder Clamp; 6115 if (IsSigned) { 6116 // sadd.sat(a, b) -> 6117 // {tmp, ov} = saddo(a, b) 6118 // ov ? (tmp >>s 31) + 0x80000000 : r 6119 // ssub.sat(a, b) -> 6120 // {tmp, ov} = ssubo(a, b) 6121 // ov ? (tmp >>s 31) + 0x80000000 : r 6122 uint64_t NumBits = Ty.getScalarSizeInBits(); 6123 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); 6124 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); 6125 auto MinVal = 6126 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); 6127 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); 6128 } else { 6129 // uadd.sat(a, b) -> 6130 // {tmp, ov} = uaddo(a, b) 6131 // ov ? 0xffffffff : tmp 6132 // usub.sat(a, b) -> 6133 // {tmp, ov} = usubo(a, b) 6134 // ov ? 0 : tmp 6135 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); 6136 } 6137 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); 6138 6139 MI.eraseFromParent(); 6140 return Legalized; 6141 } 6142 6143 LegalizerHelper::LegalizeResult 6144 LegalizerHelper::lowerShlSat(MachineInstr &MI) { 6145 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || 6146 MI.getOpcode() == TargetOpcode::G_USHLSAT) && 6147 "Expected shlsat opcode!"); 6148 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; 6149 Register Res = MI.getOperand(0).getReg(); 6150 Register LHS = MI.getOperand(1).getReg(); 6151 Register RHS = MI.getOperand(2).getReg(); 6152 LLT Ty = MRI.getType(Res); 6153 LLT BoolTy = Ty.changeElementSize(1); 6154 6155 unsigned BW = Ty.getScalarSizeInBits(); 6156 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); 6157 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) 6158 : MIRBuilder.buildLShr(Ty, Result, RHS); 6159 6160 MachineInstrBuilder SatVal; 6161 if (IsSigned) { 6162 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); 6163 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); 6164 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, 6165 MIRBuilder.buildConstant(Ty, 0)); 6166 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); 6167 } else { 6168 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); 6169 } 6170 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); 6171 MIRBuilder.buildSelect(Res, Ov, SatVal, Result); 6172 6173 MI.eraseFromParent(); 6174 return Legalized; 6175 } 6176 6177 LegalizerHelper::LegalizeResult 6178 LegalizerHelper::lowerBswap(MachineInstr &MI) { 6179 Register Dst = MI.getOperand(0).getReg(); 6180 Register Src = MI.getOperand(1).getReg(); 6181 const LLT Ty = MRI.getType(Src); 6182 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; 6183 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 6184 6185 // Swap most and least significant byte, set remaining bytes in Res to zero. 6186 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 6187 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 6188 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6189 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 6190 6191 // Set i-th high/low byte in Res to i-th low/high byte from Src. 6192 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 6193 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 6194 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 6195 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 6196 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 6197 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 6198 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 6199 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 6200 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 6201 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 6202 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 6203 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 6204 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 6205 } 6206 Res.getInstr()->getOperand(0).setReg(Dst); 6207 6208 MI.eraseFromParent(); 6209 return Legalized; 6210 } 6211 6212 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 6213 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 6214 MachineInstrBuilder Src, APInt Mask) { 6215 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 6216 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 6217 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 6218 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 6219 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 6220 return B.buildOr(Dst, LHS, RHS); 6221 } 6222 6223 LegalizerHelper::LegalizeResult 6224 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 6225 Register Dst = MI.getOperand(0).getReg(); 6226 Register Src = MI.getOperand(1).getReg(); 6227 const LLT Ty = MRI.getType(Src); 6228 unsigned Size = Ty.getSizeInBits(); 6229 6230 MachineInstrBuilder BSWAP = 6231 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 6232 6233 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 6234 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 6235 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 6236 MachineInstrBuilder Swap4 = 6237 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 6238 6239 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 6240 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 6241 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 6242 MachineInstrBuilder Swap2 = 6243 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 6244 6245 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 6246 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 6247 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 6248 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 6249 6250 MI.eraseFromParent(); 6251 return Legalized; 6252 } 6253 6254 LegalizerHelper::LegalizeResult 6255 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 6256 MachineFunction &MF = MIRBuilder.getMF(); 6257 6258 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 6259 int NameOpIdx = IsRead ? 1 : 0; 6260 int ValRegIndex = IsRead ? 0 : 1; 6261 6262 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 6263 const LLT Ty = MRI.getType(ValReg); 6264 const MDString *RegStr = cast<MDString>( 6265 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 6266 6267 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); 6268 if (!PhysReg.isValid()) 6269 return UnableToLegalize; 6270 6271 if (IsRead) 6272 MIRBuilder.buildCopy(ValReg, PhysReg); 6273 else 6274 MIRBuilder.buildCopy(PhysReg, ValReg); 6275 6276 MI.eraseFromParent(); 6277 return Legalized; 6278 } 6279 6280 LegalizerHelper::LegalizeResult 6281 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { 6282 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; 6283 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 6284 Register Result = MI.getOperand(0).getReg(); 6285 LLT OrigTy = MRI.getType(Result); 6286 auto SizeInBits = OrigTy.getScalarSizeInBits(); 6287 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); 6288 6289 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); 6290 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); 6291 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); 6292 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; 6293 6294 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); 6295 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); 6296 MIRBuilder.buildTrunc(Result, Shifted); 6297 6298 MI.eraseFromParent(); 6299 return Legalized; 6300 } 6301 6302 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { 6303 // Implement vector G_SELECT in terms of XOR, AND, OR. 6304 Register DstReg = MI.getOperand(0).getReg(); 6305 Register MaskReg = MI.getOperand(1).getReg(); 6306 Register Op1Reg = MI.getOperand(2).getReg(); 6307 Register Op2Reg = MI.getOperand(3).getReg(); 6308 LLT DstTy = MRI.getType(DstReg); 6309 LLT MaskTy = MRI.getType(MaskReg); 6310 LLT Op1Ty = MRI.getType(Op1Reg); 6311 if (!DstTy.isVector()) 6312 return UnableToLegalize; 6313 6314 // Vector selects can have a scalar predicate. If so, splat into a vector and 6315 // finish for later legalization attempts to try again. 6316 if (MaskTy.isScalar()) { 6317 Register MaskElt = MaskReg; 6318 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits()) 6319 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0); 6320 // Generate a vector splat idiom to be pattern matched later. 6321 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); 6322 Observer.changingInstr(MI); 6323 MI.getOperand(1).setReg(ShufSplat.getReg(0)); 6324 Observer.changedInstr(MI); 6325 return Legalized; 6326 } 6327 6328 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) { 6329 return UnableToLegalize; 6330 } 6331 6332 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); 6333 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); 6334 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); 6335 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); 6336 MI.eraseFromParent(); 6337 return Legalized; 6338 } 6339