1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LegalizerHelper class to legalize 10 /// individual instructions and the LegalizeMachineIR wrapper pass for the 11 /// primary legalization. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetFrameLowering.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 #define DEBUG_TYPE "legalizer" 29 30 using namespace llvm; 31 using namespace LegalizeActions; 32 33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces. 34 /// 35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, 36 /// with any leftover piece as type \p LeftoverTy 37 /// 38 /// Returns -1 in the first element of the pair if the breakdown is not 39 /// satisfiable. 40 static std::pair<int, int> 41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { 42 assert(!LeftoverTy.isValid() && "this is an out argument"); 43 44 unsigned Size = OrigTy.getSizeInBits(); 45 unsigned NarrowSize = NarrowTy.getSizeInBits(); 46 unsigned NumParts = Size / NarrowSize; 47 unsigned LeftoverSize = Size - NumParts * NarrowSize; 48 assert(Size > NarrowSize); 49 50 if (LeftoverSize == 0) 51 return {NumParts, 0}; 52 53 if (NarrowTy.isVector()) { 54 unsigned EltSize = OrigTy.getScalarSizeInBits(); 55 if (LeftoverSize % EltSize != 0) 56 return {-1, -1}; 57 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 58 } else { 59 LeftoverTy = LLT::scalar(LeftoverSize); 60 } 61 62 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); 63 return std::make_pair(NumParts, NumLeftover); 64 } 65 66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { 67 68 if (!Ty.isScalar()) 69 return nullptr; 70 71 switch (Ty.getSizeInBits()) { 72 case 16: 73 return Type::getHalfTy(Ctx); 74 case 32: 75 return Type::getFloatTy(Ctx); 76 case 64: 77 return Type::getDoubleTy(Ctx); 78 case 128: 79 return Type::getFP128Ty(Ctx); 80 default: 81 return nullptr; 82 } 83 } 84 85 LegalizerHelper::LegalizerHelper(MachineFunction &MF, 86 GISelChangeObserver &Observer, 87 MachineIRBuilder &Builder) 88 : MIRBuilder(Builder), MRI(MF.getRegInfo()), 89 LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { 90 MIRBuilder.setMF(MF); 91 MIRBuilder.setChangeObserver(Observer); 92 } 93 94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, 95 GISelChangeObserver &Observer, 96 MachineIRBuilder &B) 97 : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { 98 MIRBuilder.setMF(MF); 99 MIRBuilder.setChangeObserver(Observer); 100 } 101 LegalizerHelper::LegalizeResult 102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { 103 LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); 104 105 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || 106 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) 107 return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized 108 : UnableToLegalize; 109 auto Step = LI.getAction(MI, MRI); 110 switch (Step.Action) { 111 case Legal: 112 LLVM_DEBUG(dbgs() << ".. Already legal\n"); 113 return AlreadyLegal; 114 case Libcall: 115 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); 116 return libcall(MI); 117 case NarrowScalar: 118 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); 119 return narrowScalar(MI, Step.TypeIdx, Step.NewType); 120 case WidenScalar: 121 LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); 122 return widenScalar(MI, Step.TypeIdx, Step.NewType); 123 case Lower: 124 LLVM_DEBUG(dbgs() << ".. Lower\n"); 125 return lower(MI, Step.TypeIdx, Step.NewType); 126 case FewerElements: 127 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); 128 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); 129 case MoreElements: 130 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); 131 return moreElementsVector(MI, Step.TypeIdx, Step.NewType); 132 case Custom: 133 LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); 134 return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized 135 : UnableToLegalize; 136 default: 137 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); 138 return UnableToLegalize; 139 } 140 } 141 142 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, 143 SmallVectorImpl<Register> &VRegs) { 144 for (int i = 0; i < NumParts; ++i) 145 VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); 146 MIRBuilder.buildUnmerge(VRegs, Reg); 147 } 148 149 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, 150 LLT MainTy, LLT &LeftoverTy, 151 SmallVectorImpl<Register> &VRegs, 152 SmallVectorImpl<Register> &LeftoverRegs) { 153 assert(!LeftoverTy.isValid() && "this is an out argument"); 154 155 unsigned RegSize = RegTy.getSizeInBits(); 156 unsigned MainSize = MainTy.getSizeInBits(); 157 unsigned NumParts = RegSize / MainSize; 158 unsigned LeftoverSize = RegSize - NumParts * MainSize; 159 160 // Use an unmerge when possible. 161 if (LeftoverSize == 0) { 162 for (unsigned I = 0; I < NumParts; ++I) 163 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); 164 MIRBuilder.buildUnmerge(VRegs, Reg); 165 return true; 166 } 167 168 if (MainTy.isVector()) { 169 unsigned EltSize = MainTy.getScalarSizeInBits(); 170 if (LeftoverSize % EltSize != 0) 171 return false; 172 LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); 173 } else { 174 LeftoverTy = LLT::scalar(LeftoverSize); 175 } 176 177 // For irregular sizes, extract the individual parts. 178 for (unsigned I = 0; I != NumParts; ++I) { 179 Register NewReg = MRI.createGenericVirtualRegister(MainTy); 180 VRegs.push_back(NewReg); 181 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); 182 } 183 184 for (unsigned Offset = MainSize * NumParts; Offset < RegSize; 185 Offset += LeftoverSize) { 186 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); 187 LeftoverRegs.push_back(NewReg); 188 MIRBuilder.buildExtract(NewReg, Reg, Offset); 189 } 190 191 return true; 192 } 193 194 void LegalizerHelper::insertParts(Register DstReg, 195 LLT ResultTy, LLT PartTy, 196 ArrayRef<Register> PartRegs, 197 LLT LeftoverTy, 198 ArrayRef<Register> LeftoverRegs) { 199 if (!LeftoverTy.isValid()) { 200 assert(LeftoverRegs.empty()); 201 202 if (!ResultTy.isVector()) { 203 MIRBuilder.buildMerge(DstReg, PartRegs); 204 return; 205 } 206 207 if (PartTy.isVector()) 208 MIRBuilder.buildConcatVectors(DstReg, PartRegs); 209 else 210 MIRBuilder.buildBuildVector(DstReg, PartRegs); 211 return; 212 } 213 214 unsigned PartSize = PartTy.getSizeInBits(); 215 unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); 216 217 Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); 218 MIRBuilder.buildUndef(CurResultReg); 219 220 unsigned Offset = 0; 221 for (Register PartReg : PartRegs) { 222 Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); 223 MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); 224 CurResultReg = NewResultReg; 225 Offset += PartSize; 226 } 227 228 for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { 229 // Use the original output register for the final insert to avoid a copy. 230 Register NewResultReg = (I + 1 == E) ? 231 DstReg : MRI.createGenericVirtualRegister(ResultTy); 232 233 MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); 234 CurResultReg = NewResultReg; 235 Offset += LeftoverPartSize; 236 } 237 } 238 239 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs 240 static void getUnmergeResults(SmallVectorImpl<Register> &Regs, 241 const MachineInstr &MI) { 242 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); 243 244 const int NumResults = MI.getNumOperands() - 1; 245 Regs.resize(NumResults); 246 for (int I = 0; I != NumResults; ++I) 247 Regs[I] = MI.getOperand(I).getReg(); 248 } 249 250 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, 251 LLT NarrowTy, Register SrcReg) { 252 LLT SrcTy = MRI.getType(SrcReg); 253 254 LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy)); 255 if (SrcTy == GCDTy) { 256 // If the source already evenly divides the result type, we don't need to do 257 // anything. 258 Parts.push_back(SrcReg); 259 } else { 260 // Need to split into common type sized pieces. 261 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 262 getUnmergeResults(Parts, *Unmerge); 263 } 264 265 return GCDTy; 266 } 267 268 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, 269 SmallVectorImpl<Register> &VRegs, 270 unsigned PadStrategy) { 271 LLT LCMTy = getLCMType(DstTy, NarrowTy); 272 273 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); 274 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); 275 int NumOrigSrc = VRegs.size(); 276 277 Register PadReg; 278 279 // Get a value we can use to pad the source value if the sources won't evenly 280 // cover the result type. 281 if (NumOrigSrc < NumParts * NumSubParts) { 282 if (PadStrategy == TargetOpcode::G_ZEXT) 283 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); 284 else if (PadStrategy == TargetOpcode::G_ANYEXT) 285 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 286 else { 287 assert(PadStrategy == TargetOpcode::G_SEXT); 288 289 // Shift the sign bit of the low register through the high register. 290 auto ShiftAmt = 291 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); 292 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); 293 } 294 } 295 296 // Registers for the final merge to be produced. 297 SmallVector<Register, 4> Remerge(NumParts); 298 299 // Registers needed for intermediate merges, which will be merged into a 300 // source for Remerge. 301 SmallVector<Register, 4> SubMerge(NumSubParts); 302 303 // Once we've fully read off the end of the original source bits, we can reuse 304 // the same high bits for remaining padding elements. 305 Register AllPadReg; 306 307 // Build merges to the LCM type to cover the original result type. 308 for (int I = 0; I != NumParts; ++I) { 309 bool AllMergePartsArePadding = true; 310 311 // Build the requested merges to the requested type. 312 for (int J = 0; J != NumSubParts; ++J) { 313 int Idx = I * NumSubParts + J; 314 if (Idx >= NumOrigSrc) { 315 SubMerge[J] = PadReg; 316 continue; 317 } 318 319 SubMerge[J] = VRegs[Idx]; 320 321 // There are meaningful bits here we can't reuse later. 322 AllMergePartsArePadding = false; 323 } 324 325 // If we've filled up a complete piece with padding bits, we can directly 326 // emit the natural sized constant if applicable, rather than a merge of 327 // smaller constants. 328 if (AllMergePartsArePadding && !AllPadReg) { 329 if (PadStrategy == TargetOpcode::G_ANYEXT) 330 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); 331 else if (PadStrategy == TargetOpcode::G_ZEXT) 332 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); 333 334 // If this is a sign extension, we can't materialize a trivial constant 335 // with the right type and have to produce a merge. 336 } 337 338 if (AllPadReg) { 339 // Avoid creating additional instructions if we're just adding additional 340 // copies of padding bits. 341 Remerge[I] = AllPadReg; 342 continue; 343 } 344 345 if (NumSubParts == 1) 346 Remerge[I] = SubMerge[0]; 347 else 348 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0); 349 350 // In the sign extend padding case, re-use the first all-signbit merge. 351 if (AllMergePartsArePadding && !AllPadReg) 352 AllPadReg = Remerge[I]; 353 } 354 355 VRegs = std::move(Remerge); 356 return LCMTy; 357 } 358 359 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, 360 ArrayRef<Register> RemergeRegs) { 361 LLT DstTy = MRI.getType(DstReg); 362 363 // Create the merge to the widened source, and extract the relevant bits into 364 // the result. 365 366 if (DstTy == LCMTy) { 367 MIRBuilder.buildMerge(DstReg, RemergeRegs); 368 return; 369 } 370 371 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs); 372 if (DstTy.isScalar() && LCMTy.isScalar()) { 373 MIRBuilder.buildTrunc(DstReg, Remerge); 374 return; 375 } 376 377 if (LCMTy.isVector()) { 378 MIRBuilder.buildExtract(DstReg, Remerge, 0); 379 return; 380 } 381 382 llvm_unreachable("unhandled case"); 383 } 384 385 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { 386 #define RTLIBCASE(LibcallPrefix) \ 387 do { \ 388 switch (Size) { \ 389 case 32: \ 390 return RTLIB::LibcallPrefix##32; \ 391 case 64: \ 392 return RTLIB::LibcallPrefix##64; \ 393 case 128: \ 394 return RTLIB::LibcallPrefix##128; \ 395 default: \ 396 llvm_unreachable("unexpected size"); \ 397 } \ 398 } while (0) 399 400 assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); 401 402 switch (Opcode) { 403 case TargetOpcode::G_SDIV: 404 RTLIBCASE(SDIV_I); 405 case TargetOpcode::G_UDIV: 406 RTLIBCASE(UDIV_I); 407 case TargetOpcode::G_SREM: 408 RTLIBCASE(SREM_I); 409 case TargetOpcode::G_UREM: 410 RTLIBCASE(UREM_I); 411 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 412 RTLIBCASE(CTLZ_I); 413 case TargetOpcode::G_FADD: 414 RTLIBCASE(ADD_F); 415 case TargetOpcode::G_FSUB: 416 RTLIBCASE(SUB_F); 417 case TargetOpcode::G_FMUL: 418 RTLIBCASE(MUL_F); 419 case TargetOpcode::G_FDIV: 420 RTLIBCASE(DIV_F); 421 case TargetOpcode::G_FEXP: 422 RTLIBCASE(EXP_F); 423 case TargetOpcode::G_FEXP2: 424 RTLIBCASE(EXP2_F); 425 case TargetOpcode::G_FREM: 426 RTLIBCASE(REM_F); 427 case TargetOpcode::G_FPOW: 428 RTLIBCASE(POW_F); 429 case TargetOpcode::G_FMA: 430 RTLIBCASE(FMA_F); 431 case TargetOpcode::G_FSIN: 432 RTLIBCASE(SIN_F); 433 case TargetOpcode::G_FCOS: 434 RTLIBCASE(COS_F); 435 case TargetOpcode::G_FLOG10: 436 RTLIBCASE(LOG10_F); 437 case TargetOpcode::G_FLOG: 438 RTLIBCASE(LOG_F); 439 case TargetOpcode::G_FLOG2: 440 RTLIBCASE(LOG2_F); 441 case TargetOpcode::G_FCEIL: 442 RTLIBCASE(CEIL_F); 443 case TargetOpcode::G_FFLOOR: 444 RTLIBCASE(FLOOR_F); 445 case TargetOpcode::G_FMINNUM: 446 RTLIBCASE(FMIN_F); 447 case TargetOpcode::G_FMAXNUM: 448 RTLIBCASE(FMAX_F); 449 case TargetOpcode::G_FSQRT: 450 RTLIBCASE(SQRT_F); 451 case TargetOpcode::G_FRINT: 452 RTLIBCASE(RINT_F); 453 case TargetOpcode::G_FNEARBYINT: 454 RTLIBCASE(NEARBYINT_F); 455 } 456 llvm_unreachable("Unknown libcall function"); 457 } 458 459 /// True if an instruction is in tail position in its caller. Intended for 460 /// legalizing libcalls as tail calls when possible. 461 static bool isLibCallInTailPosition(MachineInstr &MI) { 462 const Function &F = MI.getParent()->getParent()->getFunction(); 463 464 // Conservatively require the attributes of the call to match those of 465 // the return. Ignore NoAlias and NonNull because they don't affect the 466 // call sequence. 467 AttributeList CallerAttrs = F.getAttributes(); 468 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 469 .removeAttribute(Attribute::NoAlias) 470 .removeAttribute(Attribute::NonNull) 471 .hasAttributes()) 472 return false; 473 474 // It's not safe to eliminate the sign / zero extension of the return value. 475 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 476 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 477 return false; 478 479 // Only tail call if the following instruction is a standard return. 480 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 481 MachineInstr *Next = MI.getNextNode(); 482 if (!Next || TII.isTailCall(*Next) || !Next->isReturn()) 483 return false; 484 485 return true; 486 } 487 488 LegalizerHelper::LegalizeResult 489 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, 490 const CallLowering::ArgInfo &Result, 491 ArrayRef<CallLowering::ArgInfo> Args) { 492 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 493 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 494 const char *Name = TLI.getLibcallName(Libcall); 495 496 CallLowering::CallLoweringInfo Info; 497 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 498 Info.Callee = MachineOperand::CreateES(Name); 499 Info.OrigRet = Result; 500 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 501 if (!CLI.lowerCall(MIRBuilder, Info)) 502 return LegalizerHelper::UnableToLegalize; 503 504 return LegalizerHelper::Legalized; 505 } 506 507 // Useful for libcalls where all operands have the same type. 508 static LegalizerHelper::LegalizeResult 509 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, 510 Type *OpType) { 511 auto Libcall = getRTLibDesc(MI.getOpcode(), Size); 512 513 SmallVector<CallLowering::ArgInfo, 3> Args; 514 for (unsigned i = 1; i < MI.getNumOperands(); i++) 515 Args.push_back({MI.getOperand(i).getReg(), OpType}); 516 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, 517 Args); 518 } 519 520 LegalizerHelper::LegalizeResult 521 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 522 MachineInstr &MI) { 523 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); 524 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 525 526 SmallVector<CallLowering::ArgInfo, 3> Args; 527 // Add all the args, except for the last which is an imm denoting 'tail'. 528 for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) { 529 Register Reg = MI.getOperand(i).getReg(); 530 531 // Need derive an IR type for call lowering. 532 LLT OpLLT = MRI.getType(Reg); 533 Type *OpTy = nullptr; 534 if (OpLLT.isPointer()) 535 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace()); 536 else 537 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); 538 Args.push_back({Reg, OpTy}); 539 } 540 541 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); 542 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); 543 Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID(); 544 RTLIB::Libcall RTLibcall; 545 switch (ID) { 546 case Intrinsic::memcpy: 547 RTLibcall = RTLIB::MEMCPY; 548 break; 549 case Intrinsic::memset: 550 RTLibcall = RTLIB::MEMSET; 551 break; 552 case Intrinsic::memmove: 553 RTLibcall = RTLIB::MEMMOVE; 554 break; 555 default: 556 return LegalizerHelper::UnableToLegalize; 557 } 558 const char *Name = TLI.getLibcallName(RTLibcall); 559 560 MIRBuilder.setInstr(MI); 561 562 CallLowering::CallLoweringInfo Info; 563 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); 564 Info.Callee = MachineOperand::CreateES(Name); 565 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx)); 566 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 && 567 isLibCallInTailPosition(MI); 568 569 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); 570 if (!CLI.lowerCall(MIRBuilder, Info)) 571 return LegalizerHelper::UnableToLegalize; 572 573 if (Info.LoweredTailCall) { 574 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); 575 // We must have a return following the call to get past 576 // isLibCallInTailPosition. 577 assert(MI.getNextNode() && MI.getNextNode()->isReturn() && 578 "Expected instr following MI to be a return?"); 579 580 // We lowered a tail call, so the call is now the return from the block. 581 // Delete the old return. 582 MI.getNextNode()->eraseFromParent(); 583 } 584 585 return LegalizerHelper::Legalized; 586 } 587 588 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, 589 Type *FromType) { 590 auto ToMVT = MVT::getVT(ToType); 591 auto FromMVT = MVT::getVT(FromType); 592 593 switch (Opcode) { 594 case TargetOpcode::G_FPEXT: 595 return RTLIB::getFPEXT(FromMVT, ToMVT); 596 case TargetOpcode::G_FPTRUNC: 597 return RTLIB::getFPROUND(FromMVT, ToMVT); 598 case TargetOpcode::G_FPTOSI: 599 return RTLIB::getFPTOSINT(FromMVT, ToMVT); 600 case TargetOpcode::G_FPTOUI: 601 return RTLIB::getFPTOUINT(FromMVT, ToMVT); 602 case TargetOpcode::G_SITOFP: 603 return RTLIB::getSINTTOFP(FromMVT, ToMVT); 604 case TargetOpcode::G_UITOFP: 605 return RTLIB::getUINTTOFP(FromMVT, ToMVT); 606 } 607 llvm_unreachable("Unsupported libcall function"); 608 } 609 610 static LegalizerHelper::LegalizeResult 611 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, 612 Type *FromType) { 613 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); 614 return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, 615 {{MI.getOperand(1).getReg(), FromType}}); 616 } 617 618 LegalizerHelper::LegalizeResult 619 LegalizerHelper::libcall(MachineInstr &MI) { 620 LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); 621 unsigned Size = LLTy.getSizeInBits(); 622 auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); 623 624 MIRBuilder.setInstr(MI); 625 626 switch (MI.getOpcode()) { 627 default: 628 return UnableToLegalize; 629 case TargetOpcode::G_SDIV: 630 case TargetOpcode::G_UDIV: 631 case TargetOpcode::G_SREM: 632 case TargetOpcode::G_UREM: 633 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 634 Type *HLTy = IntegerType::get(Ctx, Size); 635 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 636 if (Status != Legalized) 637 return Status; 638 break; 639 } 640 case TargetOpcode::G_FADD: 641 case TargetOpcode::G_FSUB: 642 case TargetOpcode::G_FMUL: 643 case TargetOpcode::G_FDIV: 644 case TargetOpcode::G_FMA: 645 case TargetOpcode::G_FPOW: 646 case TargetOpcode::G_FREM: 647 case TargetOpcode::G_FCOS: 648 case TargetOpcode::G_FSIN: 649 case TargetOpcode::G_FLOG10: 650 case TargetOpcode::G_FLOG: 651 case TargetOpcode::G_FLOG2: 652 case TargetOpcode::G_FEXP: 653 case TargetOpcode::G_FEXP2: 654 case TargetOpcode::G_FCEIL: 655 case TargetOpcode::G_FFLOOR: 656 case TargetOpcode::G_FMINNUM: 657 case TargetOpcode::G_FMAXNUM: 658 case TargetOpcode::G_FSQRT: 659 case TargetOpcode::G_FRINT: 660 case TargetOpcode::G_FNEARBYINT: { 661 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); 662 if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) { 663 LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n"); 664 return UnableToLegalize; 665 } 666 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); 667 if (Status != Legalized) 668 return Status; 669 break; 670 } 671 case TargetOpcode::G_FPEXT: 672 case TargetOpcode::G_FPTRUNC: { 673 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); 674 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); 675 if (!FromTy || !ToTy) 676 return UnableToLegalize; 677 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); 678 if (Status != Legalized) 679 return Status; 680 break; 681 } 682 case TargetOpcode::G_FPTOSI: 683 case TargetOpcode::G_FPTOUI: { 684 // FIXME: Support other types 685 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 686 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 687 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) 688 return UnableToLegalize; 689 LegalizeResult Status = conversionLibcall( 690 MI, MIRBuilder, 691 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), 692 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); 693 if (Status != Legalized) 694 return Status; 695 break; 696 } 697 case TargetOpcode::G_SITOFP: 698 case TargetOpcode::G_UITOFP: { 699 // FIXME: Support other types 700 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 701 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 702 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) 703 return UnableToLegalize; 704 LegalizeResult Status = conversionLibcall( 705 MI, MIRBuilder, 706 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), 707 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); 708 if (Status != Legalized) 709 return Status; 710 break; 711 } 712 } 713 714 MI.eraseFromParent(); 715 return Legalized; 716 } 717 718 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, 719 unsigned TypeIdx, 720 LLT NarrowTy) { 721 MIRBuilder.setInstr(MI); 722 723 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 724 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 725 726 switch (MI.getOpcode()) { 727 default: 728 return UnableToLegalize; 729 case TargetOpcode::G_IMPLICIT_DEF: { 730 // FIXME: add support for when SizeOp0 isn't an exact multiple of 731 // NarrowSize. 732 if (SizeOp0 % NarrowSize != 0) 733 return UnableToLegalize; 734 int NumParts = SizeOp0 / NarrowSize; 735 736 SmallVector<Register, 2> DstRegs; 737 for (int i = 0; i < NumParts; ++i) 738 DstRegs.push_back( 739 MIRBuilder.buildUndef(NarrowTy).getReg(0)); 740 741 Register DstReg = MI.getOperand(0).getReg(); 742 if(MRI.getType(DstReg).isVector()) 743 MIRBuilder.buildBuildVector(DstReg, DstRegs); 744 else 745 MIRBuilder.buildMerge(DstReg, DstRegs); 746 MI.eraseFromParent(); 747 return Legalized; 748 } 749 case TargetOpcode::G_CONSTANT: { 750 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 751 const APInt &Val = MI.getOperand(1).getCImm()->getValue(); 752 unsigned TotalSize = Ty.getSizeInBits(); 753 unsigned NarrowSize = NarrowTy.getSizeInBits(); 754 int NumParts = TotalSize / NarrowSize; 755 756 SmallVector<Register, 4> PartRegs; 757 for (int I = 0; I != NumParts; ++I) { 758 unsigned Offset = I * NarrowSize; 759 auto K = MIRBuilder.buildConstant(NarrowTy, 760 Val.lshr(Offset).trunc(NarrowSize)); 761 PartRegs.push_back(K.getReg(0)); 762 } 763 764 LLT LeftoverTy; 765 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; 766 SmallVector<Register, 1> LeftoverRegs; 767 if (LeftoverBits != 0) { 768 LeftoverTy = LLT::scalar(LeftoverBits); 769 auto K = MIRBuilder.buildConstant( 770 LeftoverTy, 771 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); 772 LeftoverRegs.push_back(K.getReg(0)); 773 } 774 775 insertParts(MI.getOperand(0).getReg(), 776 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); 777 778 MI.eraseFromParent(); 779 return Legalized; 780 } 781 case TargetOpcode::G_SEXT: 782 case TargetOpcode::G_ZEXT: 783 case TargetOpcode::G_ANYEXT: 784 return narrowScalarExt(MI, TypeIdx, NarrowTy); 785 case TargetOpcode::G_TRUNC: { 786 if (TypeIdx != 1) 787 return UnableToLegalize; 788 789 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 790 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { 791 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); 792 return UnableToLegalize; 793 } 794 795 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 796 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); 797 MI.eraseFromParent(); 798 return Legalized; 799 } 800 801 case TargetOpcode::G_ADD: { 802 // FIXME: add support for when SizeOp0 isn't an exact multiple of 803 // NarrowSize. 804 if (SizeOp0 % NarrowSize != 0) 805 return UnableToLegalize; 806 // Expand in terms of carry-setting/consuming G_ADDE instructions. 807 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 808 809 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 810 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 811 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 812 813 Register CarryIn; 814 for (int i = 0; i < NumParts; ++i) { 815 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 816 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 817 818 if (i == 0) 819 MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]); 820 else { 821 MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], 822 Src2Regs[i], CarryIn); 823 } 824 825 DstRegs.push_back(DstReg); 826 CarryIn = CarryOut; 827 } 828 Register DstReg = MI.getOperand(0).getReg(); 829 if(MRI.getType(DstReg).isVector()) 830 MIRBuilder.buildBuildVector(DstReg, DstRegs); 831 else 832 MIRBuilder.buildMerge(DstReg, DstRegs); 833 MI.eraseFromParent(); 834 return Legalized; 835 } 836 case TargetOpcode::G_SUB: { 837 // FIXME: add support for when SizeOp0 isn't an exact multiple of 838 // NarrowSize. 839 if (SizeOp0 % NarrowSize != 0) 840 return UnableToLegalize; 841 842 int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); 843 844 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 845 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); 846 extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); 847 848 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 849 Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 850 MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, 851 {Src1Regs[0], Src2Regs[0]}); 852 DstRegs.push_back(DstReg); 853 Register BorrowIn = BorrowOut; 854 for (int i = 1; i < NumParts; ++i) { 855 DstReg = MRI.createGenericVirtualRegister(NarrowTy); 856 BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); 857 858 MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, 859 {Src1Regs[i], Src2Regs[i], BorrowIn}); 860 861 DstRegs.push_back(DstReg); 862 BorrowIn = BorrowOut; 863 } 864 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 865 MI.eraseFromParent(); 866 return Legalized; 867 } 868 case TargetOpcode::G_MUL: 869 case TargetOpcode::G_UMULH: 870 return narrowScalarMul(MI, NarrowTy); 871 case TargetOpcode::G_EXTRACT: 872 return narrowScalarExtract(MI, TypeIdx, NarrowTy); 873 case TargetOpcode::G_INSERT: 874 return narrowScalarInsert(MI, TypeIdx, NarrowTy); 875 case TargetOpcode::G_LOAD: { 876 const auto &MMO = **MI.memoperands_begin(); 877 Register DstReg = MI.getOperand(0).getReg(); 878 LLT DstTy = MRI.getType(DstReg); 879 if (DstTy.isVector()) 880 return UnableToLegalize; 881 882 if (8 * MMO.getSize() != DstTy.getSizeInBits()) { 883 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 884 auto &MMO = **MI.memoperands_begin(); 885 MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO); 886 MIRBuilder.buildAnyExt(DstReg, TmpReg); 887 MI.eraseFromParent(); 888 return Legalized; 889 } 890 891 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 892 } 893 case TargetOpcode::G_ZEXTLOAD: 894 case TargetOpcode::G_SEXTLOAD: { 895 bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; 896 Register DstReg = MI.getOperand(0).getReg(); 897 Register PtrReg = MI.getOperand(1).getReg(); 898 899 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 900 auto &MMO = **MI.memoperands_begin(); 901 if (MMO.getSizeInBits() == NarrowSize) { 902 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 903 } else { 904 MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO); 905 } 906 907 if (ZExt) 908 MIRBuilder.buildZExt(DstReg, TmpReg); 909 else 910 MIRBuilder.buildSExt(DstReg, TmpReg); 911 912 MI.eraseFromParent(); 913 return Legalized; 914 } 915 case TargetOpcode::G_STORE: { 916 const auto &MMO = **MI.memoperands_begin(); 917 918 Register SrcReg = MI.getOperand(0).getReg(); 919 LLT SrcTy = MRI.getType(SrcReg); 920 if (SrcTy.isVector()) 921 return UnableToLegalize; 922 923 int NumParts = SizeOp0 / NarrowSize; 924 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); 925 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; 926 if (SrcTy.isVector() && LeftoverBits != 0) 927 return UnableToLegalize; 928 929 if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { 930 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 931 auto &MMO = **MI.memoperands_begin(); 932 MIRBuilder.buildTrunc(TmpReg, SrcReg); 933 MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO); 934 MI.eraseFromParent(); 935 return Legalized; 936 } 937 938 return reduceLoadStoreWidth(MI, 0, NarrowTy); 939 } 940 case TargetOpcode::G_SELECT: 941 return narrowScalarSelect(MI, TypeIdx, NarrowTy); 942 case TargetOpcode::G_AND: 943 case TargetOpcode::G_OR: 944 case TargetOpcode::G_XOR: { 945 // Legalize bitwise operation: 946 // A = BinOp<Ty> B, C 947 // into: 948 // B1, ..., BN = G_UNMERGE_VALUES B 949 // C1, ..., CN = G_UNMERGE_VALUES C 950 // A1 = BinOp<Ty/N> B1, C2 951 // ... 952 // AN = BinOp<Ty/N> BN, CN 953 // A = G_MERGE_VALUES A1, ..., AN 954 return narrowScalarBasic(MI, TypeIdx, NarrowTy); 955 } 956 case TargetOpcode::G_SHL: 957 case TargetOpcode::G_LSHR: 958 case TargetOpcode::G_ASHR: 959 return narrowScalarShift(MI, TypeIdx, NarrowTy); 960 case TargetOpcode::G_CTLZ: 961 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 962 case TargetOpcode::G_CTTZ: 963 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 964 case TargetOpcode::G_CTPOP: 965 if (TypeIdx == 1) 966 switch (MI.getOpcode()) { 967 case TargetOpcode::G_CTLZ: 968 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 969 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); 970 case TargetOpcode::G_CTTZ: 971 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 972 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); 973 case TargetOpcode::G_CTPOP: 974 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); 975 default: 976 return UnableToLegalize; 977 } 978 979 Observer.changingInstr(MI); 980 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 981 Observer.changedInstr(MI); 982 return Legalized; 983 case TargetOpcode::G_INTTOPTR: 984 if (TypeIdx != 1) 985 return UnableToLegalize; 986 987 Observer.changingInstr(MI); 988 narrowScalarSrc(MI, NarrowTy, 1); 989 Observer.changedInstr(MI); 990 return Legalized; 991 case TargetOpcode::G_PTRTOINT: 992 if (TypeIdx != 0) 993 return UnableToLegalize; 994 995 Observer.changingInstr(MI); 996 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); 997 Observer.changedInstr(MI); 998 return Legalized; 999 case TargetOpcode::G_PHI: { 1000 unsigned NumParts = SizeOp0 / NarrowSize; 1001 SmallVector<Register, 2> DstRegs(NumParts); 1002 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); 1003 Observer.changingInstr(MI); 1004 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { 1005 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); 1006 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1007 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, 1008 SrcRegs[i / 2]); 1009 } 1010 MachineBasicBlock &MBB = *MI.getParent(); 1011 MIRBuilder.setInsertPt(MBB, MI); 1012 for (unsigned i = 0; i < NumParts; ++i) { 1013 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); 1014 MachineInstrBuilder MIB = 1015 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); 1016 for (unsigned j = 1; j < MI.getNumOperands(); j += 2) 1017 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); 1018 } 1019 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); 1020 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1021 Observer.changedInstr(MI); 1022 MI.eraseFromParent(); 1023 return Legalized; 1024 } 1025 case TargetOpcode::G_EXTRACT_VECTOR_ELT: 1026 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1027 if (TypeIdx != 2) 1028 return UnableToLegalize; 1029 1030 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; 1031 Observer.changingInstr(MI); 1032 narrowScalarSrc(MI, NarrowTy, OpIdx); 1033 Observer.changedInstr(MI); 1034 return Legalized; 1035 } 1036 case TargetOpcode::G_ICMP: { 1037 uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 1038 if (NarrowSize * 2 != SrcSize) 1039 return UnableToLegalize; 1040 1041 Observer.changingInstr(MI); 1042 Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); 1043 Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); 1044 MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2)); 1045 1046 Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); 1047 Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); 1048 MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3)); 1049 1050 CmpInst::Predicate Pred = 1051 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 1052 LLT ResTy = MRI.getType(MI.getOperand(0).getReg()); 1053 1054 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1055 MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); 1056 MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); 1057 MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); 1058 MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); 1059 MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero); 1060 } else { 1061 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); 1062 MachineInstrBuilder CmpHEQ = 1063 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); 1064 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( 1065 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); 1066 MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH); 1067 } 1068 Observer.changedInstr(MI); 1069 MI.eraseFromParent(); 1070 return Legalized; 1071 } 1072 case TargetOpcode::G_SEXT_INREG: { 1073 if (TypeIdx != 0) 1074 return UnableToLegalize; 1075 1076 int64_t SizeInBits = MI.getOperand(2).getImm(); 1077 1078 // So long as the new type has more bits than the bits we're extending we 1079 // don't need to break it apart. 1080 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { 1081 Observer.changingInstr(MI); 1082 // We don't lose any non-extension bits by truncating the src and 1083 // sign-extending the dst. 1084 MachineOperand &MO1 = MI.getOperand(1); 1085 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); 1086 MO1.setReg(TruncMIB.getReg(0)); 1087 1088 MachineOperand &MO2 = MI.getOperand(0); 1089 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); 1090 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1091 MIRBuilder.buildSExt(MO2, DstExt); 1092 MO2.setReg(DstExt); 1093 Observer.changedInstr(MI); 1094 return Legalized; 1095 } 1096 1097 // Break it apart. Components below the extension point are unmodified. The 1098 // component containing the extension point becomes a narrower SEXT_INREG. 1099 // Components above it are ashr'd from the component containing the 1100 // extension point. 1101 if (SizeOp0 % NarrowSize != 0) 1102 return UnableToLegalize; 1103 int NumParts = SizeOp0 / NarrowSize; 1104 1105 // List the registers where the destination will be scattered. 1106 SmallVector<Register, 2> DstRegs; 1107 // List the registers where the source will be split. 1108 SmallVector<Register, 2> SrcRegs; 1109 1110 // Create all the temporary registers. 1111 for (int i = 0; i < NumParts; ++i) { 1112 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); 1113 1114 SrcRegs.push_back(SrcReg); 1115 } 1116 1117 // Explode the big arguments into smaller chunks. 1118 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); 1119 1120 Register AshrCstReg = 1121 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) 1122 .getReg(0); 1123 Register FullExtensionReg = 0; 1124 Register PartialExtensionReg = 0; 1125 1126 // Do the operation on each small part. 1127 for (int i = 0; i < NumParts; ++i) { 1128 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) 1129 DstRegs.push_back(SrcRegs[i]); 1130 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { 1131 assert(PartialExtensionReg && 1132 "Expected to visit partial extension before full"); 1133 if (FullExtensionReg) { 1134 DstRegs.push_back(FullExtensionReg); 1135 continue; 1136 } 1137 DstRegs.push_back( 1138 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) 1139 .getReg(0)); 1140 FullExtensionReg = DstRegs.back(); 1141 } else { 1142 DstRegs.push_back( 1143 MIRBuilder 1144 .buildInstr( 1145 TargetOpcode::G_SEXT_INREG, {NarrowTy}, 1146 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) 1147 .getReg(0)); 1148 PartialExtensionReg = DstRegs.back(); 1149 } 1150 } 1151 1152 // Gather the destination registers into the final destination. 1153 Register DstReg = MI.getOperand(0).getReg(); 1154 MIRBuilder.buildMerge(DstReg, DstRegs); 1155 MI.eraseFromParent(); 1156 return Legalized; 1157 } 1158 case TargetOpcode::G_BSWAP: 1159 case TargetOpcode::G_BITREVERSE: { 1160 if (SizeOp0 % NarrowSize != 0) 1161 return UnableToLegalize; 1162 1163 Observer.changingInstr(MI); 1164 SmallVector<Register, 2> SrcRegs, DstRegs; 1165 unsigned NumParts = SizeOp0 / NarrowSize; 1166 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 1167 1168 for (unsigned i = 0; i < NumParts; ++i) { 1169 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 1170 {SrcRegs[NumParts - 1 - i]}); 1171 DstRegs.push_back(DstPart.getReg(0)); 1172 } 1173 1174 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs); 1175 1176 Observer.changedInstr(MI); 1177 MI.eraseFromParent(); 1178 return Legalized; 1179 } 1180 } 1181 } 1182 1183 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, 1184 unsigned OpIdx, unsigned ExtOpcode) { 1185 MachineOperand &MO = MI.getOperand(OpIdx); 1186 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); 1187 MO.setReg(ExtB.getReg(0)); 1188 } 1189 1190 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, 1191 unsigned OpIdx) { 1192 MachineOperand &MO = MI.getOperand(OpIdx); 1193 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); 1194 MO.setReg(ExtB.getReg(0)); 1195 } 1196 1197 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, 1198 unsigned OpIdx, unsigned TruncOpcode) { 1199 MachineOperand &MO = MI.getOperand(OpIdx); 1200 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1201 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1202 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); 1203 MO.setReg(DstExt); 1204 } 1205 1206 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, 1207 unsigned OpIdx, unsigned ExtOpcode) { 1208 MachineOperand &MO = MI.getOperand(OpIdx); 1209 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); 1210 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1211 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); 1212 MO.setReg(DstTrunc); 1213 } 1214 1215 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, 1216 unsigned OpIdx) { 1217 MachineOperand &MO = MI.getOperand(OpIdx); 1218 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1219 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1220 MIRBuilder.buildExtract(MO, DstExt, 0); 1221 MO.setReg(DstExt); 1222 } 1223 1224 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, 1225 unsigned OpIdx) { 1226 MachineOperand &MO = MI.getOperand(OpIdx); 1227 1228 LLT OldTy = MRI.getType(MO.getReg()); 1229 unsigned OldElts = OldTy.getNumElements(); 1230 unsigned NewElts = MoreTy.getNumElements(); 1231 1232 unsigned NumParts = NewElts / OldElts; 1233 1234 // Use concat_vectors if the result is a multiple of the number of elements. 1235 if (NumParts * OldElts == NewElts) { 1236 SmallVector<Register, 8> Parts; 1237 Parts.push_back(MO.getReg()); 1238 1239 Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); 1240 for (unsigned I = 1; I != NumParts; ++I) 1241 Parts.push_back(ImpDef); 1242 1243 auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); 1244 MO.setReg(Concat.getReg(0)); 1245 return; 1246 } 1247 1248 Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); 1249 Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); 1250 MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); 1251 MO.setReg(MoreReg); 1252 } 1253 1254 LegalizerHelper::LegalizeResult 1255 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, 1256 LLT WideTy) { 1257 if (TypeIdx != 1) 1258 return UnableToLegalize; 1259 1260 Register DstReg = MI.getOperand(0).getReg(); 1261 LLT DstTy = MRI.getType(DstReg); 1262 if (DstTy.isVector()) 1263 return UnableToLegalize; 1264 1265 Register Src1 = MI.getOperand(1).getReg(); 1266 LLT SrcTy = MRI.getType(Src1); 1267 const int DstSize = DstTy.getSizeInBits(); 1268 const int SrcSize = SrcTy.getSizeInBits(); 1269 const int WideSize = WideTy.getSizeInBits(); 1270 const int NumMerge = (DstSize + WideSize - 1) / WideSize; 1271 1272 unsigned NumOps = MI.getNumOperands(); 1273 unsigned NumSrc = MI.getNumOperands() - 1; 1274 unsigned PartSize = DstTy.getSizeInBits() / NumSrc; 1275 1276 if (WideSize >= DstSize) { 1277 // Directly pack the bits in the target type. 1278 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); 1279 1280 for (unsigned I = 2; I != NumOps; ++I) { 1281 const unsigned Offset = (I - 1) * PartSize; 1282 1283 Register SrcReg = MI.getOperand(I).getReg(); 1284 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); 1285 1286 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); 1287 1288 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : 1289 MRI.createGenericVirtualRegister(WideTy); 1290 1291 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); 1292 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); 1293 MIRBuilder.buildOr(NextResult, ResultReg, Shl); 1294 ResultReg = NextResult; 1295 } 1296 1297 if (WideSize > DstSize) 1298 MIRBuilder.buildTrunc(DstReg, ResultReg); 1299 else if (DstTy.isPointer()) 1300 MIRBuilder.buildIntToPtr(DstReg, ResultReg); 1301 1302 MI.eraseFromParent(); 1303 return Legalized; 1304 } 1305 1306 // Unmerge the original values to the GCD type, and recombine to the next 1307 // multiple greater than the original type. 1308 // 1309 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 1310 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 1311 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 1312 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 1313 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 1314 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 1315 // %12:_(s12) = G_MERGE_VALUES %10, %11 1316 // 1317 // Padding with undef if necessary: 1318 // 1319 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 1320 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 1321 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 1322 // %7:_(s2) = G_IMPLICIT_DEF 1323 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 1324 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 1325 // %10:_(s12) = G_MERGE_VALUES %8, %9 1326 1327 const int GCD = greatestCommonDivisor(SrcSize, WideSize); 1328 LLT GCDTy = LLT::scalar(GCD); 1329 1330 SmallVector<Register, 8> Parts; 1331 SmallVector<Register, 8> NewMergeRegs; 1332 SmallVector<Register, 8> Unmerges; 1333 LLT WideDstTy = LLT::scalar(NumMerge * WideSize); 1334 1335 // Decompose the original operands if they don't evenly divide. 1336 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { 1337 Register SrcReg = MI.getOperand(I).getReg(); 1338 if (GCD == SrcSize) { 1339 Unmerges.push_back(SrcReg); 1340 } else { 1341 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 1342 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) 1343 Unmerges.push_back(Unmerge.getReg(J)); 1344 } 1345 } 1346 1347 // Pad with undef to the next size that is a multiple of the requested size. 1348 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { 1349 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); 1350 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) 1351 Unmerges.push_back(UndefReg); 1352 } 1353 1354 const int PartsPerGCD = WideSize / GCD; 1355 1356 // Build merges of each piece. 1357 ArrayRef<Register> Slicer(Unmerges); 1358 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { 1359 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); 1360 NewMergeRegs.push_back(Merge.getReg(0)); 1361 } 1362 1363 // A truncate may be necessary if the requested type doesn't evenly divide the 1364 // original result type. 1365 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { 1366 MIRBuilder.buildMerge(DstReg, NewMergeRegs); 1367 } else { 1368 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); 1369 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); 1370 } 1371 1372 MI.eraseFromParent(); 1373 return Legalized; 1374 } 1375 1376 LegalizerHelper::LegalizeResult 1377 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, 1378 LLT WideTy) { 1379 if (TypeIdx != 0) 1380 return UnableToLegalize; 1381 1382 int NumDst = MI.getNumOperands() - 1; 1383 Register SrcReg = MI.getOperand(NumDst).getReg(); 1384 LLT SrcTy = MRI.getType(SrcReg); 1385 if (SrcTy.isVector()) 1386 return UnableToLegalize; 1387 1388 Register Dst0Reg = MI.getOperand(0).getReg(); 1389 LLT DstTy = MRI.getType(Dst0Reg); 1390 if (!DstTy.isScalar()) 1391 return UnableToLegalize; 1392 1393 if (WideTy.getSizeInBits() == SrcTy.getSizeInBits()) { 1394 if (SrcTy.isPointer()) { 1395 const DataLayout &DL = MIRBuilder.getDataLayout(); 1396 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { 1397 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); 1398 return UnableToLegalize; 1399 } 1400 1401 SrcTy = LLT::scalar(SrcTy.getSizeInBits()); 1402 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); 1403 } 1404 1405 // Theres no unmerge type to target. Directly extract the bits from the 1406 // source type 1407 unsigned DstSize = DstTy.getSizeInBits(); 1408 1409 MIRBuilder.buildTrunc(Dst0Reg, SrcReg); 1410 for (int I = 1; I != NumDst; ++I) { 1411 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); 1412 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); 1413 MIRBuilder.buildTrunc(MI.getOperand(I), Shr); 1414 } 1415 1416 MI.eraseFromParent(); 1417 return Legalized; 1418 } 1419 1420 // TODO 1421 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1422 return UnableToLegalize; 1423 1424 // Extend the source to a wider type. 1425 LLT LCMTy = getLCMType(SrcTy, WideTy); 1426 1427 Register WideSrc = SrcReg; 1428 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { 1429 // TODO: If this is an integral address space, cast to integer and anyext. 1430 if (SrcTy.isPointer()) { 1431 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); 1432 return UnableToLegalize; 1433 } 1434 1435 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); 1436 } 1437 1438 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); 1439 1440 // Create a sequence of unmerges to the original results. since we may have 1441 // widened the source, we will need to pad the results with dead defs to cover 1442 // the source register. 1443 // e.g. widen s16 to s32: 1444 // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48) 1445 // 1446 // => 1447 // %4:_(s64) = G_ANYEXT %0:_(s48) 1448 // %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge 1449 // %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs 1450 // %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def 1451 1452 const int NumUnmerge = Unmerge->getNumOperands() - 1; 1453 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); 1454 1455 for (int I = 0; I != NumUnmerge; ++I) { 1456 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 1457 1458 for (int J = 0; J != PartsPerUnmerge; ++J) { 1459 int Idx = I * PartsPerUnmerge + J; 1460 if (Idx < NumDst) 1461 MIB.addDef(MI.getOperand(Idx).getReg()); 1462 else { 1463 // Create dead def for excess components. 1464 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 1465 } 1466 } 1467 1468 MIB.addUse(Unmerge.getReg(I)); 1469 } 1470 1471 MI.eraseFromParent(); 1472 return Legalized; 1473 } 1474 1475 LegalizerHelper::LegalizeResult 1476 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, 1477 LLT WideTy) { 1478 Register DstReg = MI.getOperand(0).getReg(); 1479 Register SrcReg = MI.getOperand(1).getReg(); 1480 LLT SrcTy = MRI.getType(SrcReg); 1481 1482 LLT DstTy = MRI.getType(DstReg); 1483 unsigned Offset = MI.getOperand(2).getImm(); 1484 1485 if (TypeIdx == 0) { 1486 if (SrcTy.isVector() || DstTy.isVector()) 1487 return UnableToLegalize; 1488 1489 SrcOp Src(SrcReg); 1490 if (SrcTy.isPointer()) { 1491 // Extracts from pointers can be handled only if they are really just 1492 // simple integers. 1493 const DataLayout &DL = MIRBuilder.getDataLayout(); 1494 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) 1495 return UnableToLegalize; 1496 1497 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); 1498 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); 1499 SrcTy = SrcAsIntTy; 1500 } 1501 1502 if (DstTy.isPointer()) 1503 return UnableToLegalize; 1504 1505 if (Offset == 0) { 1506 // Avoid a shift in the degenerate case. 1507 MIRBuilder.buildTrunc(DstReg, 1508 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); 1509 MI.eraseFromParent(); 1510 return Legalized; 1511 } 1512 1513 // Do a shift in the source type. 1514 LLT ShiftTy = SrcTy; 1515 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { 1516 Src = MIRBuilder.buildAnyExt(WideTy, Src); 1517 ShiftTy = WideTy; 1518 } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) 1519 return UnableToLegalize; 1520 1521 auto LShr = MIRBuilder.buildLShr( 1522 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); 1523 MIRBuilder.buildTrunc(DstReg, LShr); 1524 MI.eraseFromParent(); 1525 return Legalized; 1526 } 1527 1528 if (SrcTy.isScalar()) { 1529 Observer.changingInstr(MI); 1530 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1531 Observer.changedInstr(MI); 1532 return Legalized; 1533 } 1534 1535 if (!SrcTy.isVector()) 1536 return UnableToLegalize; 1537 1538 if (DstTy != SrcTy.getElementType()) 1539 return UnableToLegalize; 1540 1541 if (Offset % SrcTy.getScalarSizeInBits() != 0) 1542 return UnableToLegalize; 1543 1544 Observer.changingInstr(MI); 1545 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1546 1547 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * 1548 Offset); 1549 widenScalarDst(MI, WideTy.getScalarType(), 0); 1550 Observer.changedInstr(MI); 1551 return Legalized; 1552 } 1553 1554 LegalizerHelper::LegalizeResult 1555 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, 1556 LLT WideTy) { 1557 if (TypeIdx != 0) 1558 return UnableToLegalize; 1559 Observer.changingInstr(MI); 1560 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1561 widenScalarDst(MI, WideTy); 1562 Observer.changedInstr(MI); 1563 return Legalized; 1564 } 1565 1566 LegalizerHelper::LegalizeResult 1567 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { 1568 MIRBuilder.setInstr(MI); 1569 1570 switch (MI.getOpcode()) { 1571 default: 1572 return UnableToLegalize; 1573 case TargetOpcode::G_EXTRACT: 1574 return widenScalarExtract(MI, TypeIdx, WideTy); 1575 case TargetOpcode::G_INSERT: 1576 return widenScalarInsert(MI, TypeIdx, WideTy); 1577 case TargetOpcode::G_MERGE_VALUES: 1578 return widenScalarMergeValues(MI, TypeIdx, WideTy); 1579 case TargetOpcode::G_UNMERGE_VALUES: 1580 return widenScalarUnmergeValues(MI, TypeIdx, WideTy); 1581 case TargetOpcode::G_UADDO: 1582 case TargetOpcode::G_USUBO: { 1583 if (TypeIdx == 1) 1584 return UnableToLegalize; // TODO 1585 auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2)); 1586 auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3)); 1587 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO 1588 ? TargetOpcode::G_ADD 1589 : TargetOpcode::G_SUB; 1590 // Do the arithmetic in the larger type. 1591 auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); 1592 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); 1593 APInt Mask = 1594 APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits()); 1595 auto AndOp = MIRBuilder.buildAnd( 1596 WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask)); 1597 // There is no overflow if the AndOp is the same as NewOp. 1598 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp); 1599 // Now trunc the NewOp to the original result. 1600 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); 1601 MI.eraseFromParent(); 1602 return Legalized; 1603 } 1604 case TargetOpcode::G_CTTZ: 1605 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 1606 case TargetOpcode::G_CTLZ: 1607 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 1608 case TargetOpcode::G_CTPOP: { 1609 if (TypeIdx == 0) { 1610 Observer.changingInstr(MI); 1611 widenScalarDst(MI, WideTy, 0); 1612 Observer.changedInstr(MI); 1613 return Legalized; 1614 } 1615 1616 Register SrcReg = MI.getOperand(1).getReg(); 1617 1618 // First ZEXT the input. 1619 auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); 1620 LLT CurTy = MRI.getType(SrcReg); 1621 if (MI.getOpcode() == TargetOpcode::G_CTTZ) { 1622 // The count is the same in the larger type except if the original 1623 // value was zero. This can be handled by setting the bit just off 1624 // the top of the original type. 1625 auto TopBit = 1626 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); 1627 MIBSrc = MIRBuilder.buildOr( 1628 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); 1629 } 1630 1631 // Perform the operation at the larger size. 1632 auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); 1633 // This is already the correct result for CTPOP and CTTZs 1634 if (MI.getOpcode() == TargetOpcode::G_CTLZ || 1635 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { 1636 // The correct result is NewOp - (Difference in widety and current ty). 1637 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); 1638 MIBNewOp = MIRBuilder.buildSub( 1639 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); 1640 } 1641 1642 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); 1643 MI.eraseFromParent(); 1644 return Legalized; 1645 } 1646 case TargetOpcode::G_BSWAP: { 1647 Observer.changingInstr(MI); 1648 Register DstReg = MI.getOperand(0).getReg(); 1649 1650 Register ShrReg = MRI.createGenericVirtualRegister(WideTy); 1651 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1652 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); 1653 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1654 1655 MI.getOperand(0).setReg(DstExt); 1656 1657 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1658 1659 LLT Ty = MRI.getType(DstReg); 1660 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1661 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); 1662 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); 1663 1664 MIRBuilder.buildTrunc(DstReg, ShrReg); 1665 Observer.changedInstr(MI); 1666 return Legalized; 1667 } 1668 case TargetOpcode::G_BITREVERSE: { 1669 Observer.changingInstr(MI); 1670 1671 Register DstReg = MI.getOperand(0).getReg(); 1672 LLT Ty = MRI.getType(DstReg); 1673 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); 1674 1675 Register DstExt = MRI.createGenericVirtualRegister(WideTy); 1676 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1677 MI.getOperand(0).setReg(DstExt); 1678 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 1679 1680 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); 1681 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); 1682 MIRBuilder.buildTrunc(DstReg, Shift); 1683 Observer.changedInstr(MI); 1684 return Legalized; 1685 } 1686 case TargetOpcode::G_ADD: 1687 case TargetOpcode::G_AND: 1688 case TargetOpcode::G_MUL: 1689 case TargetOpcode::G_OR: 1690 case TargetOpcode::G_XOR: 1691 case TargetOpcode::G_SUB: 1692 // Perform operation at larger width (any extension is fines here, high bits 1693 // don't affect the result) and then truncate the result back to the 1694 // original type. 1695 Observer.changingInstr(MI); 1696 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1697 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1698 widenScalarDst(MI, WideTy); 1699 Observer.changedInstr(MI); 1700 return Legalized; 1701 1702 case TargetOpcode::G_SHL: 1703 Observer.changingInstr(MI); 1704 1705 if (TypeIdx == 0) { 1706 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 1707 widenScalarDst(MI, WideTy); 1708 } else { 1709 assert(TypeIdx == 1); 1710 // The "number of bits to shift" operand must preserve its value as an 1711 // unsigned integer: 1712 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1713 } 1714 1715 Observer.changedInstr(MI); 1716 return Legalized; 1717 1718 case TargetOpcode::G_SDIV: 1719 case TargetOpcode::G_SREM: 1720 case TargetOpcode::G_SMIN: 1721 case TargetOpcode::G_SMAX: 1722 Observer.changingInstr(MI); 1723 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1724 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1725 widenScalarDst(MI, WideTy); 1726 Observer.changedInstr(MI); 1727 return Legalized; 1728 1729 case TargetOpcode::G_ASHR: 1730 case TargetOpcode::G_LSHR: 1731 Observer.changingInstr(MI); 1732 1733 if (TypeIdx == 0) { 1734 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? 1735 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; 1736 1737 widenScalarSrc(MI, WideTy, 1, CvtOp); 1738 widenScalarDst(MI, WideTy); 1739 } else { 1740 assert(TypeIdx == 1); 1741 // The "number of bits to shift" operand must preserve its value as an 1742 // unsigned integer: 1743 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1744 } 1745 1746 Observer.changedInstr(MI); 1747 return Legalized; 1748 case TargetOpcode::G_UDIV: 1749 case TargetOpcode::G_UREM: 1750 case TargetOpcode::G_UMIN: 1751 case TargetOpcode::G_UMAX: 1752 Observer.changingInstr(MI); 1753 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1754 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); 1755 widenScalarDst(MI, WideTy); 1756 Observer.changedInstr(MI); 1757 return Legalized; 1758 1759 case TargetOpcode::G_SELECT: 1760 Observer.changingInstr(MI); 1761 if (TypeIdx == 0) { 1762 // Perform operation at larger width (any extension is fine here, high 1763 // bits don't affect the result) and then truncate the result back to the 1764 // original type. 1765 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1766 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); 1767 widenScalarDst(MI, WideTy); 1768 } else { 1769 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); 1770 // Explicit extension is required here since high bits affect the result. 1771 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); 1772 } 1773 Observer.changedInstr(MI); 1774 return Legalized; 1775 1776 case TargetOpcode::G_FPTOSI: 1777 case TargetOpcode::G_FPTOUI: 1778 Observer.changingInstr(MI); 1779 1780 if (TypeIdx == 0) 1781 widenScalarDst(MI, WideTy); 1782 else 1783 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); 1784 1785 Observer.changedInstr(MI); 1786 return Legalized; 1787 case TargetOpcode::G_SITOFP: 1788 if (TypeIdx != 1) 1789 return UnableToLegalize; 1790 Observer.changingInstr(MI); 1791 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); 1792 Observer.changedInstr(MI); 1793 return Legalized; 1794 1795 case TargetOpcode::G_UITOFP: 1796 if (TypeIdx != 1) 1797 return UnableToLegalize; 1798 Observer.changingInstr(MI); 1799 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 1800 Observer.changedInstr(MI); 1801 return Legalized; 1802 1803 case TargetOpcode::G_LOAD: 1804 case TargetOpcode::G_SEXTLOAD: 1805 case TargetOpcode::G_ZEXTLOAD: 1806 Observer.changingInstr(MI); 1807 widenScalarDst(MI, WideTy); 1808 Observer.changedInstr(MI); 1809 return Legalized; 1810 1811 case TargetOpcode::G_STORE: { 1812 if (TypeIdx != 0) 1813 return UnableToLegalize; 1814 1815 LLT Ty = MRI.getType(MI.getOperand(0).getReg()); 1816 if (!isPowerOf2_32(Ty.getSizeInBits())) 1817 return UnableToLegalize; 1818 1819 Observer.changingInstr(MI); 1820 1821 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? 1822 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; 1823 widenScalarSrc(MI, WideTy, 0, ExtType); 1824 1825 Observer.changedInstr(MI); 1826 return Legalized; 1827 } 1828 case TargetOpcode::G_CONSTANT: { 1829 MachineOperand &SrcMO = MI.getOperand(1); 1830 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1831 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( 1832 MRI.getType(MI.getOperand(0).getReg())); 1833 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || 1834 ExtOpc == TargetOpcode::G_ANYEXT) && 1835 "Illegal Extend"); 1836 const APInt &SrcVal = SrcMO.getCImm()->getValue(); 1837 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) 1838 ? SrcVal.sext(WideTy.getSizeInBits()) 1839 : SrcVal.zext(WideTy.getSizeInBits()); 1840 Observer.changingInstr(MI); 1841 SrcMO.setCImm(ConstantInt::get(Ctx, Val)); 1842 1843 widenScalarDst(MI, WideTy); 1844 Observer.changedInstr(MI); 1845 return Legalized; 1846 } 1847 case TargetOpcode::G_FCONSTANT: { 1848 MachineOperand &SrcMO = MI.getOperand(1); 1849 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 1850 APFloat Val = SrcMO.getFPImm()->getValueAPF(); 1851 bool LosesInfo; 1852 switch (WideTy.getSizeInBits()) { 1853 case 32: 1854 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1855 &LosesInfo); 1856 break; 1857 case 64: 1858 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1859 &LosesInfo); 1860 break; 1861 default: 1862 return UnableToLegalize; 1863 } 1864 1865 assert(!LosesInfo && "extend should always be lossless"); 1866 1867 Observer.changingInstr(MI); 1868 SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); 1869 1870 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 1871 Observer.changedInstr(MI); 1872 return Legalized; 1873 } 1874 case TargetOpcode::G_IMPLICIT_DEF: { 1875 Observer.changingInstr(MI); 1876 widenScalarDst(MI, WideTy); 1877 Observer.changedInstr(MI); 1878 return Legalized; 1879 } 1880 case TargetOpcode::G_BRCOND: 1881 Observer.changingInstr(MI); 1882 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); 1883 Observer.changedInstr(MI); 1884 return Legalized; 1885 1886 case TargetOpcode::G_FCMP: 1887 Observer.changingInstr(MI); 1888 if (TypeIdx == 0) 1889 widenScalarDst(MI, WideTy); 1890 else { 1891 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); 1892 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); 1893 } 1894 Observer.changedInstr(MI); 1895 return Legalized; 1896 1897 case TargetOpcode::G_ICMP: 1898 Observer.changingInstr(MI); 1899 if (TypeIdx == 0) 1900 widenScalarDst(MI, WideTy); 1901 else { 1902 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( 1903 MI.getOperand(1).getPredicate())) 1904 ? TargetOpcode::G_SEXT 1905 : TargetOpcode::G_ZEXT; 1906 widenScalarSrc(MI, WideTy, 2, ExtOpcode); 1907 widenScalarSrc(MI, WideTy, 3, ExtOpcode); 1908 } 1909 Observer.changedInstr(MI); 1910 return Legalized; 1911 1912 case TargetOpcode::G_PTR_ADD: 1913 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); 1914 Observer.changingInstr(MI); 1915 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1916 Observer.changedInstr(MI); 1917 return Legalized; 1918 1919 case TargetOpcode::G_PHI: { 1920 assert(TypeIdx == 0 && "Expecting only Idx 0"); 1921 1922 Observer.changingInstr(MI); 1923 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { 1924 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 1925 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 1926 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); 1927 } 1928 1929 MachineBasicBlock &MBB = *MI.getParent(); 1930 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 1931 widenScalarDst(MI, WideTy); 1932 Observer.changedInstr(MI); 1933 return Legalized; 1934 } 1935 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1936 if (TypeIdx == 0) { 1937 Register VecReg = MI.getOperand(1).getReg(); 1938 LLT VecTy = MRI.getType(VecReg); 1939 Observer.changingInstr(MI); 1940 1941 widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), 1942 WideTy.getSizeInBits()), 1943 1, TargetOpcode::G_SEXT); 1944 1945 widenScalarDst(MI, WideTy, 0); 1946 Observer.changedInstr(MI); 1947 return Legalized; 1948 } 1949 1950 if (TypeIdx != 2) 1951 return UnableToLegalize; 1952 Observer.changingInstr(MI); 1953 // TODO: Probably should be zext 1954 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); 1955 Observer.changedInstr(MI); 1956 return Legalized; 1957 } 1958 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1959 if (TypeIdx == 1) { 1960 Observer.changingInstr(MI); 1961 1962 Register VecReg = MI.getOperand(1).getReg(); 1963 LLT VecTy = MRI.getType(VecReg); 1964 LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy); 1965 1966 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); 1967 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); 1968 widenScalarDst(MI, WideVecTy, 0); 1969 Observer.changedInstr(MI); 1970 return Legalized; 1971 } 1972 1973 if (TypeIdx == 2) { 1974 Observer.changingInstr(MI); 1975 // TODO: Probably should be zext 1976 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); 1977 Observer.changedInstr(MI); 1978 } 1979 1980 return Legalized; 1981 } 1982 case TargetOpcode::G_FADD: 1983 case TargetOpcode::G_FMUL: 1984 case TargetOpcode::G_FSUB: 1985 case TargetOpcode::G_FMA: 1986 case TargetOpcode::G_FMAD: 1987 case TargetOpcode::G_FNEG: 1988 case TargetOpcode::G_FABS: 1989 case TargetOpcode::G_FCANONICALIZE: 1990 case TargetOpcode::G_FMINNUM: 1991 case TargetOpcode::G_FMAXNUM: 1992 case TargetOpcode::G_FMINNUM_IEEE: 1993 case TargetOpcode::G_FMAXNUM_IEEE: 1994 case TargetOpcode::G_FMINIMUM: 1995 case TargetOpcode::G_FMAXIMUM: 1996 case TargetOpcode::G_FDIV: 1997 case TargetOpcode::G_FREM: 1998 case TargetOpcode::G_FCEIL: 1999 case TargetOpcode::G_FFLOOR: 2000 case TargetOpcode::G_FCOS: 2001 case TargetOpcode::G_FSIN: 2002 case TargetOpcode::G_FLOG10: 2003 case TargetOpcode::G_FLOG: 2004 case TargetOpcode::G_FLOG2: 2005 case TargetOpcode::G_FRINT: 2006 case TargetOpcode::G_FNEARBYINT: 2007 case TargetOpcode::G_FSQRT: 2008 case TargetOpcode::G_FEXP: 2009 case TargetOpcode::G_FEXP2: 2010 case TargetOpcode::G_FPOW: 2011 case TargetOpcode::G_INTRINSIC_TRUNC: 2012 case TargetOpcode::G_INTRINSIC_ROUND: 2013 assert(TypeIdx == 0); 2014 Observer.changingInstr(MI); 2015 2016 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) 2017 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); 2018 2019 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); 2020 Observer.changedInstr(MI); 2021 return Legalized; 2022 case TargetOpcode::G_INTTOPTR: 2023 if (TypeIdx != 1) 2024 return UnableToLegalize; 2025 2026 Observer.changingInstr(MI); 2027 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); 2028 Observer.changedInstr(MI); 2029 return Legalized; 2030 case TargetOpcode::G_PTRTOINT: 2031 if (TypeIdx != 0) 2032 return UnableToLegalize; 2033 2034 Observer.changingInstr(MI); 2035 widenScalarDst(MI, WideTy, 0); 2036 Observer.changedInstr(MI); 2037 return Legalized; 2038 case TargetOpcode::G_BUILD_VECTOR: { 2039 Observer.changingInstr(MI); 2040 2041 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); 2042 for (int I = 1, E = MI.getNumOperands(); I != E; ++I) 2043 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); 2044 2045 // Avoid changing the result vector type if the source element type was 2046 // requested. 2047 if (TypeIdx == 1) { 2048 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 2049 MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); 2050 } else { 2051 widenScalarDst(MI, WideTy, 0); 2052 } 2053 2054 Observer.changedInstr(MI); 2055 return Legalized; 2056 } 2057 case TargetOpcode::G_SEXT_INREG: 2058 if (TypeIdx != 0) 2059 return UnableToLegalize; 2060 2061 Observer.changingInstr(MI); 2062 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); 2063 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); 2064 Observer.changedInstr(MI); 2065 return Legalized; 2066 } 2067 } 2068 2069 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, 2070 MachineIRBuilder &B, Register Src, LLT Ty) { 2071 auto Unmerge = B.buildUnmerge(Ty, Src); 2072 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) 2073 Pieces.push_back(Unmerge.getReg(I)); 2074 } 2075 2076 LegalizerHelper::LegalizeResult 2077 LegalizerHelper::lowerBitcast(MachineInstr &MI) { 2078 Register Dst = MI.getOperand(0).getReg(); 2079 Register Src = MI.getOperand(1).getReg(); 2080 LLT DstTy = MRI.getType(Dst); 2081 LLT SrcTy = MRI.getType(Src); 2082 2083 if (SrcTy.isVector() && !DstTy.isVector()) { 2084 SmallVector<Register, 8> SrcRegs; 2085 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType()); 2086 MIRBuilder.buildMerge(Dst, SrcRegs); 2087 MI.eraseFromParent(); 2088 return Legalized; 2089 } 2090 2091 if (DstTy.isVector() && !SrcTy.isVector()) { 2092 SmallVector<Register, 8> SrcRegs; 2093 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); 2094 MIRBuilder.buildMerge(Dst, SrcRegs); 2095 MI.eraseFromParent(); 2096 return Legalized; 2097 } 2098 2099 return UnableToLegalize; 2100 } 2101 2102 LegalizerHelper::LegalizeResult 2103 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 2104 using namespace TargetOpcode; 2105 MIRBuilder.setInstr(MI); 2106 2107 switch(MI.getOpcode()) { 2108 default: 2109 return UnableToLegalize; 2110 case TargetOpcode::G_BITCAST: 2111 return lowerBitcast(MI); 2112 case TargetOpcode::G_SREM: 2113 case TargetOpcode::G_UREM: { 2114 auto Quot = 2115 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, 2116 {MI.getOperand(1), MI.getOperand(2)}); 2117 2118 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); 2119 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); 2120 MI.eraseFromParent(); 2121 return Legalized; 2122 } 2123 case TargetOpcode::G_SADDO: 2124 case TargetOpcode::G_SSUBO: 2125 return lowerSADDO_SSUBO(MI); 2126 case TargetOpcode::G_SMULO: 2127 case TargetOpcode::G_UMULO: { 2128 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the 2129 // result. 2130 Register Res = MI.getOperand(0).getReg(); 2131 Register Overflow = MI.getOperand(1).getReg(); 2132 Register LHS = MI.getOperand(2).getReg(); 2133 Register RHS = MI.getOperand(3).getReg(); 2134 2135 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO 2136 ? TargetOpcode::G_SMULH 2137 : TargetOpcode::G_UMULH; 2138 2139 Observer.changingInstr(MI); 2140 const auto &TII = MIRBuilder.getTII(); 2141 MI.setDesc(TII.get(TargetOpcode::G_MUL)); 2142 MI.RemoveOperand(1); 2143 Observer.changedInstr(MI); 2144 2145 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); 2146 2147 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); 2148 auto Zero = MIRBuilder.buildConstant(Ty, 0); 2149 2150 // For *signed* multiply, overflow is detected by checking: 2151 // (hi != (lo >> bitwidth-1)) 2152 if (Opcode == TargetOpcode::G_SMULH) { 2153 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); 2154 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); 2155 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); 2156 } else { 2157 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); 2158 } 2159 return Legalized; 2160 } 2161 case TargetOpcode::G_FNEG: { 2162 // TODO: Handle vector types once we are able to 2163 // represent them. 2164 if (Ty.isVector()) 2165 return UnableToLegalize; 2166 Register Res = MI.getOperand(0).getReg(); 2167 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 2168 Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty); 2169 if (!ZeroTy) 2170 return UnableToLegalize; 2171 ConstantFP &ZeroForNegation = 2172 *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy)); 2173 auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); 2174 Register SubByReg = MI.getOperand(1).getReg(); 2175 Register ZeroReg = Zero.getReg(0); 2176 MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags()); 2177 MI.eraseFromParent(); 2178 return Legalized; 2179 } 2180 case TargetOpcode::G_FSUB: { 2181 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). 2182 // First, check if G_FNEG is marked as Lower. If so, we may 2183 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. 2184 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) 2185 return UnableToLegalize; 2186 Register Res = MI.getOperand(0).getReg(); 2187 Register LHS = MI.getOperand(1).getReg(); 2188 Register RHS = MI.getOperand(2).getReg(); 2189 Register Neg = MRI.createGenericVirtualRegister(Ty); 2190 MIRBuilder.buildFNeg(Neg, RHS); 2191 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); 2192 MI.eraseFromParent(); 2193 return Legalized; 2194 } 2195 case TargetOpcode::G_FMAD: 2196 return lowerFMad(MI); 2197 case TargetOpcode::G_INTRINSIC_ROUND: 2198 return lowerIntrinsicRound(MI); 2199 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { 2200 Register OldValRes = MI.getOperand(0).getReg(); 2201 Register SuccessRes = MI.getOperand(1).getReg(); 2202 Register Addr = MI.getOperand(2).getReg(); 2203 Register CmpVal = MI.getOperand(3).getReg(); 2204 Register NewVal = MI.getOperand(4).getReg(); 2205 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, 2206 **MI.memoperands_begin()); 2207 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); 2208 MI.eraseFromParent(); 2209 return Legalized; 2210 } 2211 case TargetOpcode::G_LOAD: 2212 case TargetOpcode::G_SEXTLOAD: 2213 case TargetOpcode::G_ZEXTLOAD: { 2214 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT 2215 Register DstReg = MI.getOperand(0).getReg(); 2216 Register PtrReg = MI.getOperand(1).getReg(); 2217 LLT DstTy = MRI.getType(DstReg); 2218 auto &MMO = **MI.memoperands_begin(); 2219 2220 if (DstTy.getSizeInBits() == MMO.getSizeInBits()) { 2221 if (MI.getOpcode() == TargetOpcode::G_LOAD) { 2222 // This load needs splitting into power of 2 sized loads. 2223 if (DstTy.isVector()) 2224 return UnableToLegalize; 2225 if (isPowerOf2_32(DstTy.getSizeInBits())) 2226 return UnableToLegalize; // Don't know what we're being asked to do. 2227 2228 // Our strategy here is to generate anyextending loads for the smaller 2229 // types up to next power-2 result type, and then combine the two larger 2230 // result values together, before truncating back down to the non-pow-2 2231 // type. 2232 // E.g. v1 = i24 load => 2233 // v2 = i32 zextload (2 byte) 2234 // v3 = i32 load (1 byte) 2235 // v4 = i32 shl v3, 16 2236 // v5 = i32 or v4, v2 2237 // v1 = i24 trunc v5 2238 // By doing this we generate the correct truncate which should get 2239 // combined away as an artifact with a matching extend. 2240 uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits()); 2241 uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize; 2242 2243 MachineFunction &MF = MIRBuilder.getMF(); 2244 MachineMemOperand *LargeMMO = 2245 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2246 MachineMemOperand *SmallMMO = MF.getMachineMemOperand( 2247 &MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2248 2249 LLT PtrTy = MRI.getType(PtrReg); 2250 unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits()); 2251 LLT AnyExtTy = LLT::scalar(AnyExtSize); 2252 Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2253 Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy); 2254 auto LargeLoad = MIRBuilder.buildLoadInstr( 2255 TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO); 2256 2257 auto OffsetCst = MIRBuilder.buildConstant( 2258 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2259 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2260 auto SmallPtr = 2261 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2262 auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0), 2263 *SmallMMO); 2264 2265 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); 2266 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); 2267 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); 2268 MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)}); 2269 MI.eraseFromParent(); 2270 return Legalized; 2271 } 2272 MIRBuilder.buildLoad(DstReg, PtrReg, MMO); 2273 MI.eraseFromParent(); 2274 return Legalized; 2275 } 2276 2277 if (DstTy.isScalar()) { 2278 Register TmpReg = 2279 MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); 2280 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); 2281 switch (MI.getOpcode()) { 2282 default: 2283 llvm_unreachable("Unexpected opcode"); 2284 case TargetOpcode::G_LOAD: 2285 MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg); 2286 break; 2287 case TargetOpcode::G_SEXTLOAD: 2288 MIRBuilder.buildSExt(DstReg, TmpReg); 2289 break; 2290 case TargetOpcode::G_ZEXTLOAD: 2291 MIRBuilder.buildZExt(DstReg, TmpReg); 2292 break; 2293 } 2294 MI.eraseFromParent(); 2295 return Legalized; 2296 } 2297 2298 return UnableToLegalize; 2299 } 2300 case TargetOpcode::G_STORE: { 2301 // Lower a non-power of 2 store into multiple pow-2 stores. 2302 // E.g. split an i24 store into an i16 store + i8 store. 2303 // We do this by first extending the stored value to the next largest power 2304 // of 2 type, and then using truncating stores to store the components. 2305 // By doing this, likewise with G_LOAD, generate an extend that can be 2306 // artifact-combined away instead of leaving behind extracts. 2307 Register SrcReg = MI.getOperand(0).getReg(); 2308 Register PtrReg = MI.getOperand(1).getReg(); 2309 LLT SrcTy = MRI.getType(SrcReg); 2310 MachineMemOperand &MMO = **MI.memoperands_begin(); 2311 if (SrcTy.getSizeInBits() != MMO.getSizeInBits()) 2312 return UnableToLegalize; 2313 if (SrcTy.isVector()) 2314 return UnableToLegalize; 2315 if (isPowerOf2_32(SrcTy.getSizeInBits())) 2316 return UnableToLegalize; // Don't know what we're being asked to do. 2317 2318 // Extend to the next pow-2. 2319 const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits())); 2320 auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg); 2321 2322 // Obtain the smaller value by shifting away the larger value. 2323 uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits()); 2324 uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize; 2325 auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize); 2326 auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt); 2327 2328 // Generate the PtrAdd and truncating stores. 2329 LLT PtrTy = MRI.getType(PtrReg); 2330 auto OffsetCst = MIRBuilder.buildConstant( 2331 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); 2332 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); 2333 auto SmallPtr = 2334 MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0)); 2335 2336 MachineFunction &MF = MIRBuilder.getMF(); 2337 MachineMemOperand *LargeMMO = 2338 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); 2339 MachineMemOperand *SmallMMO = 2340 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); 2341 MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO); 2342 MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO); 2343 MI.eraseFromParent(); 2344 return Legalized; 2345 } 2346 case TargetOpcode::G_CTLZ_ZERO_UNDEF: 2347 case TargetOpcode::G_CTTZ_ZERO_UNDEF: 2348 case TargetOpcode::G_CTLZ: 2349 case TargetOpcode::G_CTTZ: 2350 case TargetOpcode::G_CTPOP: 2351 return lowerBitCount(MI, TypeIdx, Ty); 2352 case G_UADDO: { 2353 Register Res = MI.getOperand(0).getReg(); 2354 Register CarryOut = MI.getOperand(1).getReg(); 2355 Register LHS = MI.getOperand(2).getReg(); 2356 Register RHS = MI.getOperand(3).getReg(); 2357 2358 MIRBuilder.buildAdd(Res, LHS, RHS); 2359 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); 2360 2361 MI.eraseFromParent(); 2362 return Legalized; 2363 } 2364 case G_UADDE: { 2365 Register Res = MI.getOperand(0).getReg(); 2366 Register CarryOut = MI.getOperand(1).getReg(); 2367 Register LHS = MI.getOperand(2).getReg(); 2368 Register RHS = MI.getOperand(3).getReg(); 2369 Register CarryIn = MI.getOperand(4).getReg(); 2370 LLT Ty = MRI.getType(Res); 2371 2372 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); 2373 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); 2374 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); 2375 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); 2376 2377 MI.eraseFromParent(); 2378 return Legalized; 2379 } 2380 case G_USUBO: { 2381 Register Res = MI.getOperand(0).getReg(); 2382 Register BorrowOut = MI.getOperand(1).getReg(); 2383 Register LHS = MI.getOperand(2).getReg(); 2384 Register RHS = MI.getOperand(3).getReg(); 2385 2386 MIRBuilder.buildSub(Res, LHS, RHS); 2387 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); 2388 2389 MI.eraseFromParent(); 2390 return Legalized; 2391 } 2392 case G_USUBE: { 2393 Register Res = MI.getOperand(0).getReg(); 2394 Register BorrowOut = MI.getOperand(1).getReg(); 2395 Register LHS = MI.getOperand(2).getReg(); 2396 Register RHS = MI.getOperand(3).getReg(); 2397 Register BorrowIn = MI.getOperand(4).getReg(); 2398 const LLT CondTy = MRI.getType(BorrowOut); 2399 const LLT Ty = MRI.getType(Res); 2400 2401 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); 2402 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); 2403 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); 2404 2405 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS); 2406 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS); 2407 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); 2408 2409 MI.eraseFromParent(); 2410 return Legalized; 2411 } 2412 case G_UITOFP: 2413 return lowerUITOFP(MI, TypeIdx, Ty); 2414 case G_SITOFP: 2415 return lowerSITOFP(MI, TypeIdx, Ty); 2416 case G_FPTOUI: 2417 return lowerFPTOUI(MI, TypeIdx, Ty); 2418 case G_FPTOSI: 2419 return lowerFPTOSI(MI); 2420 case G_FPTRUNC: 2421 return lowerFPTRUNC(MI, TypeIdx, Ty); 2422 case G_SMIN: 2423 case G_SMAX: 2424 case G_UMIN: 2425 case G_UMAX: 2426 return lowerMinMax(MI, TypeIdx, Ty); 2427 case G_FCOPYSIGN: 2428 return lowerFCopySign(MI, TypeIdx, Ty); 2429 case G_FMINNUM: 2430 case G_FMAXNUM: 2431 return lowerFMinNumMaxNum(MI); 2432 case G_UNMERGE_VALUES: 2433 return lowerUnmergeValues(MI); 2434 case TargetOpcode::G_SEXT_INREG: { 2435 assert(MI.getOperand(2).isImm() && "Expected immediate"); 2436 int64_t SizeInBits = MI.getOperand(2).getImm(); 2437 2438 Register DstReg = MI.getOperand(0).getReg(); 2439 Register SrcReg = MI.getOperand(1).getReg(); 2440 LLT DstTy = MRI.getType(DstReg); 2441 Register TmpRes = MRI.createGenericVirtualRegister(DstTy); 2442 2443 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); 2444 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); 2445 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); 2446 MI.eraseFromParent(); 2447 return Legalized; 2448 } 2449 case G_SHUFFLE_VECTOR: 2450 return lowerShuffleVector(MI); 2451 case G_DYN_STACKALLOC: 2452 return lowerDynStackAlloc(MI); 2453 case G_EXTRACT: 2454 return lowerExtract(MI); 2455 case G_INSERT: 2456 return lowerInsert(MI); 2457 case G_BSWAP: 2458 return lowerBswap(MI); 2459 case G_BITREVERSE: 2460 return lowerBitreverse(MI); 2461 case G_READ_REGISTER: 2462 case G_WRITE_REGISTER: 2463 return lowerReadWriteRegister(MI); 2464 } 2465 } 2466 2467 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( 2468 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { 2469 SmallVector<Register, 2> DstRegs; 2470 2471 unsigned NarrowSize = NarrowTy.getSizeInBits(); 2472 Register DstReg = MI.getOperand(0).getReg(); 2473 unsigned Size = MRI.getType(DstReg).getSizeInBits(); 2474 int NumParts = Size / NarrowSize; 2475 // FIXME: Don't know how to handle the situation where the small vectors 2476 // aren't all the same size yet. 2477 if (Size % NarrowSize != 0) 2478 return UnableToLegalize; 2479 2480 for (int i = 0; i < NumParts; ++i) { 2481 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); 2482 MIRBuilder.buildUndef(TmpReg); 2483 DstRegs.push_back(TmpReg); 2484 } 2485 2486 if (NarrowTy.isVector()) 2487 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2488 else 2489 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2490 2491 MI.eraseFromParent(); 2492 return Legalized; 2493 } 2494 2495 // Handles operands with different types, but all must have the same number of 2496 // elements. There will be multiple type indexes. NarrowTy is expected to have 2497 // the result element type. 2498 LegalizerHelper::LegalizeResult 2499 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, 2500 LLT NarrowTy) { 2501 assert(TypeIdx == 0 && "only one type index expected"); 2502 2503 const unsigned Opc = MI.getOpcode(); 2504 const int NumOps = MI.getNumOperands() - 1; 2505 const Register DstReg = MI.getOperand(0).getReg(); 2506 const unsigned Flags = MI.getFlags(); 2507 2508 assert(NumOps <= 3 && "expected instrution with 1 result and 1-3 sources"); 2509 2510 SmallVector<Register, 8> ExtractedRegs[3]; 2511 SmallVector<Register, 8> Parts; 2512 2513 unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2514 2515 // Break down all the sources into NarrowTy pieces we can operate on. This may 2516 // involve creating merges to a wider type, padded with undef. 2517 for (int I = 0; I != NumOps; ++I) { 2518 Register SrcReg = MI.getOperand(I + 1).getReg(); 2519 LLT SrcTy = MRI.getType(SrcReg); 2520 2521 // Each operand may have its own type, but only the number of elements 2522 // matters. 2523 LLT OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType()); 2524 LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg); 2525 2526 // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand. 2527 buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, 2528 ExtractedRegs[I], TargetOpcode::G_ANYEXT); 2529 } 2530 2531 SmallVector<Register, 8> ResultRegs; 2532 2533 // Input operands for each sub-instruction. 2534 SmallVector<SrcOp, 4> InputRegs(NumOps, Register()); 2535 2536 int NumParts = ExtractedRegs[0].size(); 2537 const LLT DstTy = MRI.getType(DstReg); 2538 const unsigned DstSize = DstTy.getSizeInBits(); 2539 LLT DstLCMTy = getLCMType(DstTy, NarrowTy); 2540 2541 const unsigned NarrowSize = NarrowTy.getSizeInBits(); 2542 2543 // We widened the source registers to satisfy merge/unmerge size 2544 // constraints. We'll have some extra fully undef parts. 2545 const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize; 2546 2547 for (int I = 0; I != NumRealParts; ++I) { 2548 // Emit this instruction on each of the split pieces. 2549 for (int J = 0; J != NumOps; ++J) 2550 InputRegs[J] = ExtractedRegs[J][I]; 2551 2552 auto Inst = MIRBuilder.buildInstr(Opc, {NarrowTy}, InputRegs, Flags); 2553 ResultRegs.push_back(Inst.getReg(0)); 2554 } 2555 2556 // Fill out the widened result with undef instead of creating instructions 2557 // with undef inputs. 2558 int NumUndefParts = NumParts - NumRealParts; 2559 if (NumUndefParts != 0) 2560 ResultRegs.append(NumUndefParts, MIRBuilder.buildUndef(NarrowTy).getReg(0)); 2561 2562 // Extract the possibly padded result to the original result register. 2563 buildWidenedRemergeToDst(DstReg, DstLCMTy, ResultRegs); 2564 2565 MI.eraseFromParent(); 2566 return Legalized; 2567 } 2568 2569 // Handle splitting vector operations which need to have the same number of 2570 // elements in each type index, but each type index may have a different element 2571 // type. 2572 // 2573 // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> 2574 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2575 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2576 // 2577 // Also handles some irregular breakdown cases, e.g. 2578 // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> 2579 // <2 x s64> = G_SHL <2 x s64>, <2 x s32> 2580 // s64 = G_SHL s64, s32 2581 LegalizerHelper::LegalizeResult 2582 LegalizerHelper::fewerElementsVectorMultiEltType( 2583 MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { 2584 if (TypeIdx != 0) 2585 return UnableToLegalize; 2586 2587 const LLT NarrowTy0 = NarrowTyArg; 2588 const unsigned NewNumElts = 2589 NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; 2590 2591 const Register DstReg = MI.getOperand(0).getReg(); 2592 LLT DstTy = MRI.getType(DstReg); 2593 LLT LeftoverTy0; 2594 2595 // All of the operands need to have the same number of elements, so if we can 2596 // determine a type breakdown for the result type, we can for all of the 2597 // source types. 2598 int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; 2599 if (NumParts < 0) 2600 return UnableToLegalize; 2601 2602 SmallVector<MachineInstrBuilder, 4> NewInsts; 2603 2604 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2605 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2606 2607 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { 2608 LLT LeftoverTy; 2609 Register SrcReg = MI.getOperand(I).getReg(); 2610 LLT SrcTyI = MRI.getType(SrcReg); 2611 LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); 2612 LLT LeftoverTyI; 2613 2614 // Split this operand into the requested typed registers, and any leftover 2615 // required to reproduce the original type. 2616 if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, 2617 LeftoverRegs)) 2618 return UnableToLegalize; 2619 2620 if (I == 1) { 2621 // For the first operand, create an instruction for each part and setup 2622 // the result. 2623 for (Register PartReg : PartRegs) { 2624 Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2625 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2626 .addDef(PartDstReg) 2627 .addUse(PartReg)); 2628 DstRegs.push_back(PartDstReg); 2629 } 2630 2631 for (Register LeftoverReg : LeftoverRegs) { 2632 Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); 2633 NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) 2634 .addDef(PartDstReg) 2635 .addUse(LeftoverReg)); 2636 LeftoverDstRegs.push_back(PartDstReg); 2637 } 2638 } else { 2639 assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); 2640 2641 // Add the newly created operand splits to the existing instructions. The 2642 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2643 // pieces. 2644 unsigned InstCount = 0; 2645 for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) 2646 NewInsts[InstCount++].addUse(PartRegs[J]); 2647 for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) 2648 NewInsts[InstCount++].addUse(LeftoverRegs[J]); 2649 } 2650 2651 PartRegs.clear(); 2652 LeftoverRegs.clear(); 2653 } 2654 2655 // Insert the newly built operations and rebuild the result register. 2656 for (auto &MIB : NewInsts) 2657 MIRBuilder.insertInstr(MIB); 2658 2659 insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); 2660 2661 MI.eraseFromParent(); 2662 return Legalized; 2663 } 2664 2665 LegalizerHelper::LegalizeResult 2666 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, 2667 LLT NarrowTy) { 2668 if (TypeIdx != 0) 2669 return UnableToLegalize; 2670 2671 Register DstReg = MI.getOperand(0).getReg(); 2672 Register SrcReg = MI.getOperand(1).getReg(); 2673 LLT DstTy = MRI.getType(DstReg); 2674 LLT SrcTy = MRI.getType(SrcReg); 2675 2676 LLT NarrowTy0 = NarrowTy; 2677 LLT NarrowTy1; 2678 unsigned NumParts; 2679 2680 if (NarrowTy.isVector()) { 2681 // Uneven breakdown not handled. 2682 NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); 2683 if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) 2684 return UnableToLegalize; 2685 2686 NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); 2687 } else { 2688 NumParts = DstTy.getNumElements(); 2689 NarrowTy1 = SrcTy.getElementType(); 2690 } 2691 2692 SmallVector<Register, 4> SrcRegs, DstRegs; 2693 extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); 2694 2695 for (unsigned I = 0; I < NumParts; ++I) { 2696 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2697 MachineInstr *NewInst = 2698 MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]}); 2699 2700 NewInst->setFlags(MI.getFlags()); 2701 DstRegs.push_back(DstReg); 2702 } 2703 2704 if (NarrowTy.isVector()) 2705 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2706 else 2707 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2708 2709 MI.eraseFromParent(); 2710 return Legalized; 2711 } 2712 2713 LegalizerHelper::LegalizeResult 2714 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, 2715 LLT NarrowTy) { 2716 Register DstReg = MI.getOperand(0).getReg(); 2717 Register Src0Reg = MI.getOperand(2).getReg(); 2718 LLT DstTy = MRI.getType(DstReg); 2719 LLT SrcTy = MRI.getType(Src0Reg); 2720 2721 unsigned NumParts; 2722 LLT NarrowTy0, NarrowTy1; 2723 2724 if (TypeIdx == 0) { 2725 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2726 unsigned OldElts = DstTy.getNumElements(); 2727 2728 NarrowTy0 = NarrowTy; 2729 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); 2730 NarrowTy1 = NarrowTy.isVector() ? 2731 LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : 2732 SrcTy.getElementType(); 2733 2734 } else { 2735 unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; 2736 unsigned OldElts = SrcTy.getNumElements(); 2737 2738 NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : 2739 NarrowTy.getNumElements(); 2740 NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), 2741 DstTy.getScalarSizeInBits()); 2742 NarrowTy1 = NarrowTy; 2743 } 2744 2745 // FIXME: Don't know how to handle the situation where the small vectors 2746 // aren't all the same size yet. 2747 if (NarrowTy1.isVector() && 2748 NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) 2749 return UnableToLegalize; 2750 2751 CmpInst::Predicate Pred 2752 = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 2753 2754 SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs; 2755 extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); 2756 extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); 2757 2758 for (unsigned I = 0; I < NumParts; ++I) { 2759 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2760 DstRegs.push_back(DstReg); 2761 2762 if (MI.getOpcode() == TargetOpcode::G_ICMP) 2763 MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2764 else { 2765 MachineInstr *NewCmp 2766 = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); 2767 NewCmp->setFlags(MI.getFlags()); 2768 } 2769 } 2770 2771 if (NarrowTy1.isVector()) 2772 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2773 else 2774 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2775 2776 MI.eraseFromParent(); 2777 return Legalized; 2778 } 2779 2780 LegalizerHelper::LegalizeResult 2781 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, 2782 LLT NarrowTy) { 2783 Register DstReg = MI.getOperand(0).getReg(); 2784 Register CondReg = MI.getOperand(1).getReg(); 2785 2786 unsigned NumParts = 0; 2787 LLT NarrowTy0, NarrowTy1; 2788 2789 LLT DstTy = MRI.getType(DstReg); 2790 LLT CondTy = MRI.getType(CondReg); 2791 unsigned Size = DstTy.getSizeInBits(); 2792 2793 assert(TypeIdx == 0 || CondTy.isVector()); 2794 2795 if (TypeIdx == 0) { 2796 NarrowTy0 = NarrowTy; 2797 NarrowTy1 = CondTy; 2798 2799 unsigned NarrowSize = NarrowTy0.getSizeInBits(); 2800 // FIXME: Don't know how to handle the situation where the small vectors 2801 // aren't all the same size yet. 2802 if (Size % NarrowSize != 0) 2803 return UnableToLegalize; 2804 2805 NumParts = Size / NarrowSize; 2806 2807 // Need to break down the condition type 2808 if (CondTy.isVector()) { 2809 if (CondTy.getNumElements() == NumParts) 2810 NarrowTy1 = CondTy.getElementType(); 2811 else 2812 NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, 2813 CondTy.getScalarSizeInBits()); 2814 } 2815 } else { 2816 NumParts = CondTy.getNumElements(); 2817 if (NarrowTy.isVector()) { 2818 // TODO: Handle uneven breakdown. 2819 if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) 2820 return UnableToLegalize; 2821 2822 return UnableToLegalize; 2823 } else { 2824 NarrowTy0 = DstTy.getElementType(); 2825 NarrowTy1 = NarrowTy; 2826 } 2827 } 2828 2829 SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs; 2830 if (CondTy.isVector()) 2831 extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); 2832 2833 extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); 2834 extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); 2835 2836 for (unsigned i = 0; i < NumParts; ++i) { 2837 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); 2838 MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, 2839 Src1Regs[i], Src2Regs[i]); 2840 DstRegs.push_back(DstReg); 2841 } 2842 2843 if (NarrowTy0.isVector()) 2844 MIRBuilder.buildConcatVectors(DstReg, DstRegs); 2845 else 2846 MIRBuilder.buildBuildVector(DstReg, DstRegs); 2847 2848 MI.eraseFromParent(); 2849 return Legalized; 2850 } 2851 2852 LegalizerHelper::LegalizeResult 2853 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 2854 LLT NarrowTy) { 2855 const Register DstReg = MI.getOperand(0).getReg(); 2856 LLT PhiTy = MRI.getType(DstReg); 2857 LLT LeftoverTy; 2858 2859 // All of the operands need to have the same number of elements, so if we can 2860 // determine a type breakdown for the result type, we can for all of the 2861 // source types. 2862 int NumParts, NumLeftover; 2863 std::tie(NumParts, NumLeftover) 2864 = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); 2865 if (NumParts < 0) 2866 return UnableToLegalize; 2867 2868 SmallVector<Register, 4> DstRegs, LeftoverDstRegs; 2869 SmallVector<MachineInstrBuilder, 4> NewInsts; 2870 2871 const int TotalNumParts = NumParts + NumLeftover; 2872 2873 // Insert the new phis in the result block first. 2874 for (int I = 0; I != TotalNumParts; ++I) { 2875 LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; 2876 Register PartDstReg = MRI.createGenericVirtualRegister(Ty); 2877 NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) 2878 .addDef(PartDstReg)); 2879 if (I < NumParts) 2880 DstRegs.push_back(PartDstReg); 2881 else 2882 LeftoverDstRegs.push_back(PartDstReg); 2883 } 2884 2885 MachineBasicBlock *MBB = MI.getParent(); 2886 MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); 2887 insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); 2888 2889 SmallVector<Register, 4> PartRegs, LeftoverRegs; 2890 2891 // Insert code to extract the incoming values in each predecessor block. 2892 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2893 PartRegs.clear(); 2894 LeftoverRegs.clear(); 2895 2896 Register SrcReg = MI.getOperand(I).getReg(); 2897 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 2898 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 2899 2900 LLT Unused; 2901 if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, 2902 LeftoverRegs)) 2903 return UnableToLegalize; 2904 2905 // Add the newly created operand splits to the existing instructions. The 2906 // odd-sized pieces are ordered after the requested NarrowTyArg sized 2907 // pieces. 2908 for (int J = 0; J != TotalNumParts; ++J) { 2909 MachineInstrBuilder MIB = NewInsts[J]; 2910 MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); 2911 MIB.addMBB(&OpMBB); 2912 } 2913 } 2914 2915 MI.eraseFromParent(); 2916 return Legalized; 2917 } 2918 2919 LegalizerHelper::LegalizeResult 2920 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, 2921 unsigned TypeIdx, 2922 LLT NarrowTy) { 2923 if (TypeIdx != 1) 2924 return UnableToLegalize; 2925 2926 const int NumDst = MI.getNumOperands() - 1; 2927 const Register SrcReg = MI.getOperand(NumDst).getReg(); 2928 LLT SrcTy = MRI.getType(SrcReg); 2929 2930 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 2931 2932 // TODO: Create sequence of extracts. 2933 if (DstTy == NarrowTy) 2934 return UnableToLegalize; 2935 2936 LLT GCDTy = getGCDType(SrcTy, NarrowTy); 2937 if (DstTy == GCDTy) { 2938 // This would just be a copy of the same unmerge. 2939 // TODO: Create extracts, pad with undef and create intermediate merges. 2940 return UnableToLegalize; 2941 } 2942 2943 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); 2944 const int NumUnmerge = Unmerge->getNumOperands() - 1; 2945 const int PartsPerUnmerge = NumDst / NumUnmerge; 2946 2947 for (int I = 0; I != NumUnmerge; ++I) { 2948 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 2949 2950 for (int J = 0; J != PartsPerUnmerge; ++J) 2951 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); 2952 MIB.addUse(Unmerge.getReg(I)); 2953 } 2954 2955 MI.eraseFromParent(); 2956 return Legalized; 2957 } 2958 2959 LegalizerHelper::LegalizeResult 2960 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI, 2961 unsigned TypeIdx, 2962 LLT NarrowTy) { 2963 assert(TypeIdx == 0 && "not a vector type index"); 2964 Register DstReg = MI.getOperand(0).getReg(); 2965 LLT DstTy = MRI.getType(DstReg); 2966 LLT SrcTy = DstTy.getElementType(); 2967 2968 int DstNumElts = DstTy.getNumElements(); 2969 int NarrowNumElts = NarrowTy.getNumElements(); 2970 int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts; 2971 LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy); 2972 2973 SmallVector<Register, 8> ConcatOps; 2974 SmallVector<Register, 8> SubBuildVector; 2975 2976 Register UndefReg; 2977 if (WidenedDstTy != DstTy) 2978 UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0); 2979 2980 // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as 2981 // necessary. 2982 // 2983 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2 2984 // -> <2 x s16> 2985 // 2986 // %4:_(s16) = G_IMPLICIT_DEF 2987 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1 2988 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4 2989 // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6 2990 // %3:_(<3 x s16>) = G_EXTRACT %7, 0 2991 for (int I = 0; I != NumConcat; ++I) { 2992 for (int J = 0; J != NarrowNumElts; ++J) { 2993 int SrcIdx = NarrowNumElts * I + J; 2994 2995 if (SrcIdx < DstNumElts) { 2996 Register SrcReg = MI.getOperand(SrcIdx + 1).getReg(); 2997 SubBuildVector.push_back(SrcReg); 2998 } else 2999 SubBuildVector.push_back(UndefReg); 3000 } 3001 3002 auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector); 3003 ConcatOps.push_back(BuildVec.getReg(0)); 3004 SubBuildVector.clear(); 3005 } 3006 3007 if (DstTy == WidenedDstTy) 3008 MIRBuilder.buildConcatVectors(DstReg, ConcatOps); 3009 else { 3010 auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps); 3011 MIRBuilder.buildExtract(DstReg, Concat, 0); 3012 } 3013 3014 MI.eraseFromParent(); 3015 return Legalized; 3016 } 3017 3018 LegalizerHelper::LegalizeResult 3019 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, 3020 LLT NarrowTy) { 3021 // FIXME: Don't know how to handle secondary types yet. 3022 if (TypeIdx != 0) 3023 return UnableToLegalize; 3024 3025 MachineMemOperand *MMO = *MI.memoperands_begin(); 3026 3027 // This implementation doesn't work for atomics. Give up instead of doing 3028 // something invalid. 3029 if (MMO->getOrdering() != AtomicOrdering::NotAtomic || 3030 MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) 3031 return UnableToLegalize; 3032 3033 bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; 3034 Register ValReg = MI.getOperand(0).getReg(); 3035 Register AddrReg = MI.getOperand(1).getReg(); 3036 LLT ValTy = MRI.getType(ValReg); 3037 3038 // FIXME: Do we need a distinct NarrowMemory legalize action? 3039 if (ValTy.getSizeInBits() != 8 * MMO->getSize()) { 3040 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); 3041 return UnableToLegalize; 3042 } 3043 3044 int NumParts = -1; 3045 int NumLeftover = -1; 3046 LLT LeftoverTy; 3047 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; 3048 if (IsLoad) { 3049 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); 3050 } else { 3051 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, 3052 NarrowLeftoverRegs)) { 3053 NumParts = NarrowRegs.size(); 3054 NumLeftover = NarrowLeftoverRegs.size(); 3055 } 3056 } 3057 3058 if (NumParts == -1) 3059 return UnableToLegalize; 3060 3061 const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); 3062 3063 unsigned TotalSize = ValTy.getSizeInBits(); 3064 3065 // Split the load/store into PartTy sized pieces starting at Offset. If this 3066 // is a load, return the new registers in ValRegs. For a store, each elements 3067 // of ValRegs should be PartTy. Returns the next offset that needs to be 3068 // handled. 3069 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, 3070 unsigned Offset) -> unsigned { 3071 MachineFunction &MF = MIRBuilder.getMF(); 3072 unsigned PartSize = PartTy.getSizeInBits(); 3073 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; 3074 Offset += PartSize, ++Idx) { 3075 unsigned ByteSize = PartSize / 8; 3076 unsigned ByteOffset = Offset / 8; 3077 Register NewAddrReg; 3078 3079 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); 3080 3081 MachineMemOperand *NewMMO = 3082 MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); 3083 3084 if (IsLoad) { 3085 Register Dst = MRI.createGenericVirtualRegister(PartTy); 3086 ValRegs.push_back(Dst); 3087 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); 3088 } else { 3089 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); 3090 } 3091 } 3092 3093 return Offset; 3094 }; 3095 3096 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); 3097 3098 // Handle the rest of the register if this isn't an even type breakdown. 3099 if (LeftoverTy.isValid()) 3100 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); 3101 3102 if (IsLoad) { 3103 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, 3104 LeftoverTy, NarrowLeftoverRegs); 3105 } 3106 3107 MI.eraseFromParent(); 3108 return Legalized; 3109 } 3110 3111 LegalizerHelper::LegalizeResult 3112 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx, 3113 LLT NarrowTy) { 3114 Register DstReg = MI.getOperand(0).getReg(); 3115 Register SrcReg = MI.getOperand(1).getReg(); 3116 int64_t Imm = MI.getOperand(2).getImm(); 3117 3118 LLT DstTy = MRI.getType(DstReg); 3119 3120 SmallVector<Register, 8> Parts; 3121 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3122 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts); 3123 3124 for (Register &R : Parts) 3125 R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0); 3126 3127 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3128 3129 MI.eraseFromParent(); 3130 return Legalized; 3131 } 3132 3133 LegalizerHelper::LegalizeResult 3134 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, 3135 LLT NarrowTy) { 3136 using namespace TargetOpcode; 3137 3138 MIRBuilder.setInstr(MI); 3139 switch (MI.getOpcode()) { 3140 case G_IMPLICIT_DEF: 3141 return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); 3142 case G_TRUNC: 3143 case G_AND: 3144 case G_OR: 3145 case G_XOR: 3146 case G_ADD: 3147 case G_SUB: 3148 case G_MUL: 3149 case G_SMULH: 3150 case G_UMULH: 3151 case G_FADD: 3152 case G_FMUL: 3153 case G_FSUB: 3154 case G_FNEG: 3155 case G_FABS: 3156 case G_FCANONICALIZE: 3157 case G_FDIV: 3158 case G_FREM: 3159 case G_FMA: 3160 case G_FMAD: 3161 case G_FPOW: 3162 case G_FEXP: 3163 case G_FEXP2: 3164 case G_FLOG: 3165 case G_FLOG2: 3166 case G_FLOG10: 3167 case G_FNEARBYINT: 3168 case G_FCEIL: 3169 case G_FFLOOR: 3170 case G_FRINT: 3171 case G_INTRINSIC_ROUND: 3172 case G_INTRINSIC_TRUNC: 3173 case G_FCOS: 3174 case G_FSIN: 3175 case G_FSQRT: 3176 case G_BSWAP: 3177 case G_BITREVERSE: 3178 case G_SDIV: 3179 case G_UDIV: 3180 case G_SREM: 3181 case G_UREM: 3182 case G_SMIN: 3183 case G_SMAX: 3184 case G_UMIN: 3185 case G_UMAX: 3186 case G_FMINNUM: 3187 case G_FMAXNUM: 3188 case G_FMINNUM_IEEE: 3189 case G_FMAXNUM_IEEE: 3190 case G_FMINIMUM: 3191 case G_FMAXIMUM: 3192 return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); 3193 case G_SHL: 3194 case G_LSHR: 3195 case G_ASHR: 3196 case G_CTLZ: 3197 case G_CTLZ_ZERO_UNDEF: 3198 case G_CTTZ: 3199 case G_CTTZ_ZERO_UNDEF: 3200 case G_CTPOP: 3201 case G_FCOPYSIGN: 3202 return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); 3203 case G_ZEXT: 3204 case G_SEXT: 3205 case G_ANYEXT: 3206 case G_FPEXT: 3207 case G_FPTRUNC: 3208 case G_SITOFP: 3209 case G_UITOFP: 3210 case G_FPTOSI: 3211 case G_FPTOUI: 3212 case G_INTTOPTR: 3213 case G_PTRTOINT: 3214 case G_ADDRSPACE_CAST: 3215 return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); 3216 case G_ICMP: 3217 case G_FCMP: 3218 return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); 3219 case G_SELECT: 3220 return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); 3221 case G_PHI: 3222 return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); 3223 case G_UNMERGE_VALUES: 3224 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); 3225 case G_BUILD_VECTOR: 3226 return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy); 3227 case G_LOAD: 3228 case G_STORE: 3229 return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); 3230 case G_SEXT_INREG: 3231 return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy); 3232 default: 3233 return UnableToLegalize; 3234 } 3235 } 3236 3237 LegalizerHelper::LegalizeResult 3238 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, 3239 const LLT HalfTy, const LLT AmtTy) { 3240 3241 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3242 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3243 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3244 3245 if (Amt.isNullValue()) { 3246 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH}); 3247 MI.eraseFromParent(); 3248 return Legalized; 3249 } 3250 3251 LLT NVT = HalfTy; 3252 unsigned NVTBits = HalfTy.getSizeInBits(); 3253 unsigned VTBits = 2 * NVTBits; 3254 3255 SrcOp Lo(Register(0)), Hi(Register(0)); 3256 if (MI.getOpcode() == TargetOpcode::G_SHL) { 3257 if (Amt.ugt(VTBits)) { 3258 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3259 } else if (Amt.ugt(NVTBits)) { 3260 Lo = MIRBuilder.buildConstant(NVT, 0); 3261 Hi = MIRBuilder.buildShl(NVT, InL, 3262 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3263 } else if (Amt == NVTBits) { 3264 Lo = MIRBuilder.buildConstant(NVT, 0); 3265 Hi = InL; 3266 } else { 3267 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); 3268 auto OrLHS = 3269 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); 3270 auto OrRHS = MIRBuilder.buildLShr( 3271 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3272 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3273 } 3274 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3275 if (Amt.ugt(VTBits)) { 3276 Lo = Hi = MIRBuilder.buildConstant(NVT, 0); 3277 } else if (Amt.ugt(NVTBits)) { 3278 Lo = MIRBuilder.buildLShr(NVT, InH, 3279 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3280 Hi = MIRBuilder.buildConstant(NVT, 0); 3281 } else if (Amt == NVTBits) { 3282 Lo = InH; 3283 Hi = MIRBuilder.buildConstant(NVT, 0); 3284 } else { 3285 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3286 3287 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3288 auto OrRHS = MIRBuilder.buildShl( 3289 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3290 3291 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3292 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); 3293 } 3294 } else { 3295 if (Amt.ugt(VTBits)) { 3296 Hi = Lo = MIRBuilder.buildAShr( 3297 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3298 } else if (Amt.ugt(NVTBits)) { 3299 Lo = MIRBuilder.buildAShr(NVT, InH, 3300 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); 3301 Hi = MIRBuilder.buildAShr(NVT, InH, 3302 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3303 } else if (Amt == NVTBits) { 3304 Lo = InH; 3305 Hi = MIRBuilder.buildAShr(NVT, InH, 3306 MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); 3307 } else { 3308 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); 3309 3310 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); 3311 auto OrRHS = MIRBuilder.buildShl( 3312 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); 3313 3314 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); 3315 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); 3316 } 3317 } 3318 3319 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi}); 3320 MI.eraseFromParent(); 3321 3322 return Legalized; 3323 } 3324 3325 // TODO: Optimize if constant shift amount. 3326 LegalizerHelper::LegalizeResult 3327 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, 3328 LLT RequestedTy) { 3329 if (TypeIdx == 1) { 3330 Observer.changingInstr(MI); 3331 narrowScalarSrc(MI, RequestedTy, 2); 3332 Observer.changedInstr(MI); 3333 return Legalized; 3334 } 3335 3336 Register DstReg = MI.getOperand(0).getReg(); 3337 LLT DstTy = MRI.getType(DstReg); 3338 if (DstTy.isVector()) 3339 return UnableToLegalize; 3340 3341 Register Amt = MI.getOperand(2).getReg(); 3342 LLT ShiftAmtTy = MRI.getType(Amt); 3343 const unsigned DstEltSize = DstTy.getScalarSizeInBits(); 3344 if (DstEltSize % 2 != 0) 3345 return UnableToLegalize; 3346 3347 // Ignore the input type. We can only go to exactly half the size of the 3348 // input. If that isn't small enough, the resulting pieces will be further 3349 // legalized. 3350 const unsigned NewBitSize = DstEltSize / 2; 3351 const LLT HalfTy = LLT::scalar(NewBitSize); 3352 const LLT CondTy = LLT::scalar(1); 3353 3354 if (const MachineInstr *KShiftAmt = 3355 getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { 3356 return narrowScalarShiftByConstant( 3357 MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); 3358 } 3359 3360 // TODO: Expand with known bits. 3361 3362 // Handle the fully general expansion by an unknown amount. 3363 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); 3364 3365 Register InL = MRI.createGenericVirtualRegister(HalfTy); 3366 Register InH = MRI.createGenericVirtualRegister(HalfTy); 3367 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); 3368 3369 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); 3370 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); 3371 3372 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); 3373 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); 3374 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); 3375 3376 Register ResultRegs[2]; 3377 switch (MI.getOpcode()) { 3378 case TargetOpcode::G_SHL: { 3379 // Short: ShAmt < NewBitSize 3380 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); 3381 3382 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); 3383 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); 3384 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3385 3386 // Long: ShAmt >= NewBitSize 3387 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. 3388 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. 3389 3390 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); 3391 auto Hi = MIRBuilder.buildSelect( 3392 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); 3393 3394 ResultRegs[0] = Lo.getReg(0); 3395 ResultRegs[1] = Hi.getReg(0); 3396 break; 3397 } 3398 case TargetOpcode::G_LSHR: 3399 case TargetOpcode::G_ASHR: { 3400 // Short: ShAmt < NewBitSize 3401 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); 3402 3403 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); 3404 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); 3405 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); 3406 3407 // Long: ShAmt >= NewBitSize 3408 MachineInstrBuilder HiL; 3409 if (MI.getOpcode() == TargetOpcode::G_LSHR) { 3410 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. 3411 } else { 3412 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); 3413 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. 3414 } 3415 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, 3416 {InH, AmtExcess}); // Lo from Hi part. 3417 3418 auto Lo = MIRBuilder.buildSelect( 3419 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); 3420 3421 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); 3422 3423 ResultRegs[0] = Lo.getReg(0); 3424 ResultRegs[1] = Hi.getReg(0); 3425 break; 3426 } 3427 default: 3428 llvm_unreachable("not a shift"); 3429 } 3430 3431 MIRBuilder.buildMerge(DstReg, ResultRegs); 3432 MI.eraseFromParent(); 3433 return Legalized; 3434 } 3435 3436 LegalizerHelper::LegalizeResult 3437 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, 3438 LLT MoreTy) { 3439 assert(TypeIdx == 0 && "Expecting only Idx 0"); 3440 3441 Observer.changingInstr(MI); 3442 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 3443 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); 3444 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); 3445 moreElementsVectorSrc(MI, MoreTy, I); 3446 } 3447 3448 MachineBasicBlock &MBB = *MI.getParent(); 3449 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); 3450 moreElementsVectorDst(MI, MoreTy, 0); 3451 Observer.changedInstr(MI); 3452 return Legalized; 3453 } 3454 3455 LegalizerHelper::LegalizeResult 3456 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, 3457 LLT MoreTy) { 3458 MIRBuilder.setInstr(MI); 3459 unsigned Opc = MI.getOpcode(); 3460 switch (Opc) { 3461 case TargetOpcode::G_IMPLICIT_DEF: 3462 case TargetOpcode::G_LOAD: { 3463 if (TypeIdx != 0) 3464 return UnableToLegalize; 3465 Observer.changingInstr(MI); 3466 moreElementsVectorDst(MI, MoreTy, 0); 3467 Observer.changedInstr(MI); 3468 return Legalized; 3469 } 3470 case TargetOpcode::G_STORE: 3471 if (TypeIdx != 0) 3472 return UnableToLegalize; 3473 Observer.changingInstr(MI); 3474 moreElementsVectorSrc(MI, MoreTy, 0); 3475 Observer.changedInstr(MI); 3476 return Legalized; 3477 case TargetOpcode::G_AND: 3478 case TargetOpcode::G_OR: 3479 case TargetOpcode::G_XOR: 3480 case TargetOpcode::G_SMIN: 3481 case TargetOpcode::G_SMAX: 3482 case TargetOpcode::G_UMIN: 3483 case TargetOpcode::G_UMAX: 3484 case TargetOpcode::G_FMINNUM: 3485 case TargetOpcode::G_FMAXNUM: 3486 case TargetOpcode::G_FMINNUM_IEEE: 3487 case TargetOpcode::G_FMAXNUM_IEEE: 3488 case TargetOpcode::G_FMINIMUM: 3489 case TargetOpcode::G_FMAXIMUM: { 3490 Observer.changingInstr(MI); 3491 moreElementsVectorSrc(MI, MoreTy, 1); 3492 moreElementsVectorSrc(MI, MoreTy, 2); 3493 moreElementsVectorDst(MI, MoreTy, 0); 3494 Observer.changedInstr(MI); 3495 return Legalized; 3496 } 3497 case TargetOpcode::G_EXTRACT: 3498 if (TypeIdx != 1) 3499 return UnableToLegalize; 3500 Observer.changingInstr(MI); 3501 moreElementsVectorSrc(MI, MoreTy, 1); 3502 Observer.changedInstr(MI); 3503 return Legalized; 3504 case TargetOpcode::G_INSERT: 3505 if (TypeIdx != 0) 3506 return UnableToLegalize; 3507 Observer.changingInstr(MI); 3508 moreElementsVectorSrc(MI, MoreTy, 1); 3509 moreElementsVectorDst(MI, MoreTy, 0); 3510 Observer.changedInstr(MI); 3511 return Legalized; 3512 case TargetOpcode::G_SELECT: 3513 if (TypeIdx != 0) 3514 return UnableToLegalize; 3515 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) 3516 return UnableToLegalize; 3517 3518 Observer.changingInstr(MI); 3519 moreElementsVectorSrc(MI, MoreTy, 2); 3520 moreElementsVectorSrc(MI, MoreTy, 3); 3521 moreElementsVectorDst(MI, MoreTy, 0); 3522 Observer.changedInstr(MI); 3523 return Legalized; 3524 case TargetOpcode::G_UNMERGE_VALUES: { 3525 if (TypeIdx != 1) 3526 return UnableToLegalize; 3527 3528 LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); 3529 int NumDst = MI.getNumOperands() - 1; 3530 moreElementsVectorSrc(MI, MoreTy, NumDst); 3531 3532 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); 3533 for (int I = 0; I != NumDst; ++I) 3534 MIB.addDef(MI.getOperand(I).getReg()); 3535 3536 int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits(); 3537 for (int I = NumDst; I != NewNumDst; ++I) 3538 MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); 3539 3540 MIB.addUse(MI.getOperand(NumDst).getReg()); 3541 MI.eraseFromParent(); 3542 return Legalized; 3543 } 3544 case TargetOpcode::G_PHI: 3545 return moreElementsVectorPhi(MI, TypeIdx, MoreTy); 3546 default: 3547 return UnableToLegalize; 3548 } 3549 } 3550 3551 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, 3552 ArrayRef<Register> Src1Regs, 3553 ArrayRef<Register> Src2Regs, 3554 LLT NarrowTy) { 3555 MachineIRBuilder &B = MIRBuilder; 3556 unsigned SrcParts = Src1Regs.size(); 3557 unsigned DstParts = DstRegs.size(); 3558 3559 unsigned DstIdx = 0; // Low bits of the result. 3560 Register FactorSum = 3561 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); 3562 DstRegs[DstIdx] = FactorSum; 3563 3564 unsigned CarrySumPrevDstIdx; 3565 SmallVector<Register, 4> Factors; 3566 3567 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { 3568 // Collect low parts of muls for DstIdx. 3569 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; 3570 i <= std::min(DstIdx, SrcParts - 1); ++i) { 3571 MachineInstrBuilder Mul = 3572 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); 3573 Factors.push_back(Mul.getReg(0)); 3574 } 3575 // Collect high parts of muls from previous DstIdx. 3576 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; 3577 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { 3578 MachineInstrBuilder Umulh = 3579 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); 3580 Factors.push_back(Umulh.getReg(0)); 3581 } 3582 // Add CarrySum from additions calculated for previous DstIdx. 3583 if (DstIdx != 1) { 3584 Factors.push_back(CarrySumPrevDstIdx); 3585 } 3586 3587 Register CarrySum; 3588 // Add all factors and accumulate all carries into CarrySum. 3589 if (DstIdx != DstParts - 1) { 3590 MachineInstrBuilder Uaddo = 3591 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); 3592 FactorSum = Uaddo.getReg(0); 3593 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); 3594 for (unsigned i = 2; i < Factors.size(); ++i) { 3595 MachineInstrBuilder Uaddo = 3596 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); 3597 FactorSum = Uaddo.getReg(0); 3598 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); 3599 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); 3600 } 3601 } else { 3602 // Since value for the next index is not calculated, neither is CarrySum. 3603 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); 3604 for (unsigned i = 2; i < Factors.size(); ++i) 3605 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); 3606 } 3607 3608 CarrySumPrevDstIdx = CarrySum; 3609 DstRegs[DstIdx] = FactorSum; 3610 Factors.clear(); 3611 } 3612 } 3613 3614 LegalizerHelper::LegalizeResult 3615 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { 3616 Register DstReg = MI.getOperand(0).getReg(); 3617 Register Src1 = MI.getOperand(1).getReg(); 3618 Register Src2 = MI.getOperand(2).getReg(); 3619 3620 LLT Ty = MRI.getType(DstReg); 3621 if (Ty.isVector()) 3622 return UnableToLegalize; 3623 3624 unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); 3625 unsigned DstSize = Ty.getSizeInBits(); 3626 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3627 if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) 3628 return UnableToLegalize; 3629 3630 unsigned NumDstParts = DstSize / NarrowSize; 3631 unsigned NumSrcParts = SrcSize / NarrowSize; 3632 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; 3633 unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); 3634 3635 SmallVector<Register, 2> Src1Parts, Src2Parts; 3636 SmallVector<Register, 2> DstTmpRegs(DstTmpParts); 3637 extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); 3638 extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); 3639 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); 3640 3641 // Take only high half of registers if this is high mul. 3642 ArrayRef<Register> DstRegs( 3643 IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); 3644 MIRBuilder.buildMerge(DstReg, DstRegs); 3645 MI.eraseFromParent(); 3646 return Legalized; 3647 } 3648 3649 LegalizerHelper::LegalizeResult 3650 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, 3651 LLT NarrowTy) { 3652 if (TypeIdx != 1) 3653 return UnableToLegalize; 3654 3655 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3656 3657 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); 3658 // FIXME: add support for when SizeOp1 isn't an exact multiple of 3659 // NarrowSize. 3660 if (SizeOp1 % NarrowSize != 0) 3661 return UnableToLegalize; 3662 int NumParts = SizeOp1 / NarrowSize; 3663 3664 SmallVector<Register, 2> SrcRegs, DstRegs; 3665 SmallVector<uint64_t, 2> Indexes; 3666 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3667 3668 Register OpReg = MI.getOperand(0).getReg(); 3669 uint64_t OpStart = MI.getOperand(2).getImm(); 3670 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3671 for (int i = 0; i < NumParts; ++i) { 3672 unsigned SrcStart = i * NarrowSize; 3673 3674 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { 3675 // No part of the extract uses this subregister, ignore it. 3676 continue; 3677 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3678 // The entire subregister is extracted, forward the value. 3679 DstRegs.push_back(SrcRegs[i]); 3680 continue; 3681 } 3682 3683 // OpSegStart is where this destination segment would start in OpReg if it 3684 // extended infinitely in both directions. 3685 int64_t ExtractOffset; 3686 uint64_t SegSize; 3687 if (OpStart < SrcStart) { 3688 ExtractOffset = 0; 3689 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); 3690 } else { 3691 ExtractOffset = OpStart - SrcStart; 3692 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); 3693 } 3694 3695 Register SegReg = SrcRegs[i]; 3696 if (ExtractOffset != 0 || SegSize != NarrowSize) { 3697 // A genuine extract is needed. 3698 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3699 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); 3700 } 3701 3702 DstRegs.push_back(SegReg); 3703 } 3704 3705 Register DstReg = MI.getOperand(0).getReg(); 3706 if (MRI.getType(DstReg).isVector()) 3707 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3708 else if (DstRegs.size() > 1) 3709 MIRBuilder.buildMerge(DstReg, DstRegs); 3710 else 3711 MIRBuilder.buildCopy(DstReg, DstRegs[0]); 3712 MI.eraseFromParent(); 3713 return Legalized; 3714 } 3715 3716 LegalizerHelper::LegalizeResult 3717 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, 3718 LLT NarrowTy) { 3719 // FIXME: Don't know how to handle secondary types yet. 3720 if (TypeIdx != 0) 3721 return UnableToLegalize; 3722 3723 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); 3724 uint64_t NarrowSize = NarrowTy.getSizeInBits(); 3725 3726 // FIXME: add support for when SizeOp0 isn't an exact multiple of 3727 // NarrowSize. 3728 if (SizeOp0 % NarrowSize != 0) 3729 return UnableToLegalize; 3730 3731 int NumParts = SizeOp0 / NarrowSize; 3732 3733 SmallVector<Register, 2> SrcRegs, DstRegs; 3734 SmallVector<uint64_t, 2> Indexes; 3735 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); 3736 3737 Register OpReg = MI.getOperand(2).getReg(); 3738 uint64_t OpStart = MI.getOperand(3).getImm(); 3739 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); 3740 for (int i = 0; i < NumParts; ++i) { 3741 unsigned DstStart = i * NarrowSize; 3742 3743 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { 3744 // No part of the insert affects this subregister, forward the original. 3745 DstRegs.push_back(SrcRegs[i]); 3746 continue; 3747 } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { 3748 // The entire subregister is defined by this insert, forward the new 3749 // value. 3750 DstRegs.push_back(OpReg); 3751 continue; 3752 } 3753 3754 // OpSegStart is where this destination segment would start in OpReg if it 3755 // extended infinitely in both directions. 3756 int64_t ExtractOffset, InsertOffset; 3757 uint64_t SegSize; 3758 if (OpStart < DstStart) { 3759 InsertOffset = 0; 3760 ExtractOffset = DstStart - OpStart; 3761 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); 3762 } else { 3763 InsertOffset = OpStart - DstStart; 3764 ExtractOffset = 0; 3765 SegSize = 3766 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); 3767 } 3768 3769 Register SegReg = OpReg; 3770 if (ExtractOffset != 0 || SegSize != OpSize) { 3771 // A genuine extract is needed. 3772 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); 3773 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); 3774 } 3775 3776 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); 3777 MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); 3778 DstRegs.push_back(DstReg); 3779 } 3780 3781 assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); 3782 Register DstReg = MI.getOperand(0).getReg(); 3783 if(MRI.getType(DstReg).isVector()) 3784 MIRBuilder.buildBuildVector(DstReg, DstRegs); 3785 else 3786 MIRBuilder.buildMerge(DstReg, DstRegs); 3787 MI.eraseFromParent(); 3788 return Legalized; 3789 } 3790 3791 LegalizerHelper::LegalizeResult 3792 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, 3793 LLT NarrowTy) { 3794 Register DstReg = MI.getOperand(0).getReg(); 3795 LLT DstTy = MRI.getType(DstReg); 3796 3797 assert(MI.getNumOperands() == 3 && TypeIdx == 0); 3798 3799 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3800 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; 3801 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3802 LLT LeftoverTy; 3803 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, 3804 Src0Regs, Src0LeftoverRegs)) 3805 return UnableToLegalize; 3806 3807 LLT Unused; 3808 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, 3809 Src1Regs, Src1LeftoverRegs)) 3810 llvm_unreachable("inconsistent extractParts result"); 3811 3812 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3813 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, 3814 {Src0Regs[I], Src1Regs[I]}); 3815 DstRegs.push_back(Inst.getReg(0)); 3816 } 3817 3818 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3819 auto Inst = MIRBuilder.buildInstr( 3820 MI.getOpcode(), 3821 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); 3822 DstLeftoverRegs.push_back(Inst.getReg(0)); 3823 } 3824 3825 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3826 LeftoverTy, DstLeftoverRegs); 3827 3828 MI.eraseFromParent(); 3829 return Legalized; 3830 } 3831 3832 LegalizerHelper::LegalizeResult 3833 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, 3834 LLT NarrowTy) { 3835 if (TypeIdx != 0) 3836 return UnableToLegalize; 3837 3838 Register DstReg = MI.getOperand(0).getReg(); 3839 Register SrcReg = MI.getOperand(1).getReg(); 3840 3841 LLT DstTy = MRI.getType(DstReg); 3842 if (DstTy.isVector()) 3843 return UnableToLegalize; 3844 3845 SmallVector<Register, 8> Parts; 3846 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); 3847 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); 3848 buildWidenedRemergeToDst(DstReg, LCMTy, Parts); 3849 3850 MI.eraseFromParent(); 3851 return Legalized; 3852 } 3853 3854 LegalizerHelper::LegalizeResult 3855 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, 3856 LLT NarrowTy) { 3857 if (TypeIdx != 0) 3858 return UnableToLegalize; 3859 3860 Register CondReg = MI.getOperand(1).getReg(); 3861 LLT CondTy = MRI.getType(CondReg); 3862 if (CondTy.isVector()) // TODO: Handle vselect 3863 return UnableToLegalize; 3864 3865 Register DstReg = MI.getOperand(0).getReg(); 3866 LLT DstTy = MRI.getType(DstReg); 3867 3868 SmallVector<Register, 4> DstRegs, DstLeftoverRegs; 3869 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; 3870 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; 3871 LLT LeftoverTy; 3872 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, 3873 Src1Regs, Src1LeftoverRegs)) 3874 return UnableToLegalize; 3875 3876 LLT Unused; 3877 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, 3878 Src2Regs, Src2LeftoverRegs)) 3879 llvm_unreachable("inconsistent extractParts result"); 3880 3881 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { 3882 auto Select = MIRBuilder.buildSelect(NarrowTy, 3883 CondReg, Src1Regs[I], Src2Regs[I]); 3884 DstRegs.push_back(Select.getReg(0)); 3885 } 3886 3887 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { 3888 auto Select = MIRBuilder.buildSelect( 3889 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); 3890 DstLeftoverRegs.push_back(Select.getReg(0)); 3891 } 3892 3893 insertParts(DstReg, DstTy, NarrowTy, DstRegs, 3894 LeftoverTy, DstLeftoverRegs); 3895 3896 MI.eraseFromParent(); 3897 return Legalized; 3898 } 3899 3900 LegalizerHelper::LegalizeResult 3901 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, 3902 LLT NarrowTy) { 3903 if (TypeIdx != 1) 3904 return UnableToLegalize; 3905 3906 Register DstReg = MI.getOperand(0).getReg(); 3907 Register SrcReg = MI.getOperand(1).getReg(); 3908 LLT DstTy = MRI.getType(DstReg); 3909 LLT SrcTy = MRI.getType(SrcReg); 3910 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3911 3912 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 3913 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; 3914 3915 MachineIRBuilder &B = MIRBuilder; 3916 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 3917 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) 3918 auto C_0 = B.buildConstant(NarrowTy, 0); 3919 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3920 UnmergeSrc.getReg(1), C_0); 3921 auto LoCTLZ = IsUndef ? 3922 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : 3923 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); 3924 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 3925 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); 3926 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); 3927 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); 3928 3929 MI.eraseFromParent(); 3930 return Legalized; 3931 } 3932 3933 return UnableToLegalize; 3934 } 3935 3936 LegalizerHelper::LegalizeResult 3937 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, 3938 LLT NarrowTy) { 3939 if (TypeIdx != 1) 3940 return UnableToLegalize; 3941 3942 Register DstReg = MI.getOperand(0).getReg(); 3943 Register SrcReg = MI.getOperand(1).getReg(); 3944 LLT DstTy = MRI.getType(DstReg); 3945 LLT SrcTy = MRI.getType(SrcReg); 3946 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3947 3948 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 3949 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; 3950 3951 MachineIRBuilder &B = MIRBuilder; 3952 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); 3953 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) 3954 auto C_0 = B.buildConstant(NarrowTy, 0); 3955 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), 3956 UnmergeSrc.getReg(0), C_0); 3957 auto HiCTTZ = IsUndef ? 3958 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : 3959 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); 3960 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); 3961 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); 3962 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); 3963 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); 3964 3965 MI.eraseFromParent(); 3966 return Legalized; 3967 } 3968 3969 return UnableToLegalize; 3970 } 3971 3972 LegalizerHelper::LegalizeResult 3973 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, 3974 LLT NarrowTy) { 3975 if (TypeIdx != 1) 3976 return UnableToLegalize; 3977 3978 Register DstReg = MI.getOperand(0).getReg(); 3979 LLT DstTy = MRI.getType(DstReg); 3980 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg()); 3981 unsigned NarrowSize = NarrowTy.getSizeInBits(); 3982 3983 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { 3984 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); 3985 3986 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); 3987 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); 3988 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); 3989 3990 MI.eraseFromParent(); 3991 return Legalized; 3992 } 3993 3994 return UnableToLegalize; 3995 } 3996 3997 LegalizerHelper::LegalizeResult 3998 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 3999 unsigned Opc = MI.getOpcode(); 4000 auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 4001 auto isSupported = [this](const LegalityQuery &Q) { 4002 auto QAction = LI.getAction(Q).Action; 4003 return QAction == Legal || QAction == Libcall || QAction == Custom; 4004 }; 4005 switch (Opc) { 4006 default: 4007 return UnableToLegalize; 4008 case TargetOpcode::G_CTLZ_ZERO_UNDEF: { 4009 // This trivially expands to CTLZ. 4010 Observer.changingInstr(MI); 4011 MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); 4012 Observer.changedInstr(MI); 4013 return Legalized; 4014 } 4015 case TargetOpcode::G_CTLZ: { 4016 Register DstReg = MI.getOperand(0).getReg(); 4017 Register SrcReg = MI.getOperand(1).getReg(); 4018 LLT DstTy = MRI.getType(DstReg); 4019 LLT SrcTy = MRI.getType(SrcReg); 4020 unsigned Len = SrcTy.getSizeInBits(); 4021 4022 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4023 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. 4024 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); 4025 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); 4026 auto ICmp = MIRBuilder.buildICmp( 4027 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); 4028 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4029 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); 4030 MI.eraseFromParent(); 4031 return Legalized; 4032 } 4033 // for now, we do this: 4034 // NewLen = NextPowerOf2(Len); 4035 // x = x | (x >> 1); 4036 // x = x | (x >> 2); 4037 // ... 4038 // x = x | (x >>16); 4039 // x = x | (x >>32); // for 64-bit input 4040 // Upto NewLen/2 4041 // return Len - popcount(x); 4042 // 4043 // Ref: "Hacker's Delight" by Henry Warren 4044 Register Op = SrcReg; 4045 unsigned NewLen = PowerOf2Ceil(Len); 4046 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { 4047 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); 4048 auto MIBOp = MIRBuilder.buildOr( 4049 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); 4050 Op = MIBOp.getReg(0); 4051 } 4052 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); 4053 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), 4054 MIBPop); 4055 MI.eraseFromParent(); 4056 return Legalized; 4057 } 4058 case TargetOpcode::G_CTTZ_ZERO_UNDEF: { 4059 // This trivially expands to CTTZ. 4060 Observer.changingInstr(MI); 4061 MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); 4062 Observer.changedInstr(MI); 4063 return Legalized; 4064 } 4065 case TargetOpcode::G_CTTZ: { 4066 Register DstReg = MI.getOperand(0).getReg(); 4067 Register SrcReg = MI.getOperand(1).getReg(); 4068 LLT DstTy = MRI.getType(DstReg); 4069 LLT SrcTy = MRI.getType(SrcReg); 4070 4071 unsigned Len = SrcTy.getSizeInBits(); 4072 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { 4073 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with 4074 // zero. 4075 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); 4076 auto Zero = MIRBuilder.buildConstant(SrcTy, 0); 4077 auto ICmp = MIRBuilder.buildICmp( 4078 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); 4079 auto LenConst = MIRBuilder.buildConstant(DstTy, Len); 4080 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); 4081 MI.eraseFromParent(); 4082 return Legalized; 4083 } 4084 // for now, we use: { return popcount(~x & (x - 1)); } 4085 // unless the target has ctlz but not ctpop, in which case we use: 4086 // { return 32 - nlz(~x & (x-1)); } 4087 // Ref: "Hacker's Delight" by Henry Warren 4088 auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); 4089 auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1); 4090 auto MIBTmp = MIRBuilder.buildAnd( 4091 Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1)); 4092 if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && 4093 isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { 4094 auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); 4095 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, 4096 MIRBuilder.buildCTLZ(Ty, MIBTmp)); 4097 MI.eraseFromParent(); 4098 return Legalized; 4099 } 4100 MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); 4101 MI.getOperand(1).setReg(MIBTmp.getReg(0)); 4102 return Legalized; 4103 } 4104 case TargetOpcode::G_CTPOP: { 4105 unsigned Size = Ty.getSizeInBits(); 4106 MachineIRBuilder &B = MIRBuilder; 4107 4108 // Count set bits in blocks of 2 bits. Default approach would be 4109 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } 4110 // We use following formula instead: 4111 // B2Count = val - { (val >> 1) & 0x55555555 } 4112 // since it gives same result in blocks of 2 with one instruction less. 4113 auto C_1 = B.buildConstant(Ty, 1); 4114 auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1); 4115 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); 4116 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); 4117 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); 4118 auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi); 4119 4120 // In order to get count in blocks of 4 add values from adjacent block of 2. 4121 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } 4122 auto C_2 = B.buildConstant(Ty, 2); 4123 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); 4124 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); 4125 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); 4126 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); 4127 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); 4128 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); 4129 4130 // For count in blocks of 8 bits we don't have to mask high 4 bits before 4131 // addition since count value sits in range {0,...,8} and 4 bits are enough 4132 // to hold such binary values. After addition high 4 bits still hold count 4133 // of set bits in high 4 bit block, set them to zero and get 8 bit result. 4134 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F 4135 auto C_4 = B.buildConstant(Ty, 4); 4136 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); 4137 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); 4138 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); 4139 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); 4140 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); 4141 4142 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); 4143 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this 4144 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. 4145 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); 4146 auto ResTmp = B.buildMul(Ty, B8Count, MulMask); 4147 4148 // Shift count result from 8 high bits to low bits. 4149 auto C_SizeM8 = B.buildConstant(Ty, Size - 8); 4150 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); 4151 4152 MI.eraseFromParent(); 4153 return Legalized; 4154 } 4155 } 4156 } 4157 4158 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float 4159 // representation. 4160 LegalizerHelper::LegalizeResult 4161 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { 4162 Register Dst = MI.getOperand(0).getReg(); 4163 Register Src = MI.getOperand(1).getReg(); 4164 const LLT S64 = LLT::scalar(64); 4165 const LLT S32 = LLT::scalar(32); 4166 const LLT S1 = LLT::scalar(1); 4167 4168 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); 4169 4170 // unsigned cul2f(ulong u) { 4171 // uint lz = clz(u); 4172 // uint e = (u != 0) ? 127U + 63U - lz : 0; 4173 // u = (u << lz) & 0x7fffffffffffffffUL; 4174 // ulong t = u & 0xffffffffffUL; 4175 // uint v = (e << 23) | (uint)(u >> 40); 4176 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); 4177 // return as_float(v + r); 4178 // } 4179 4180 auto Zero32 = MIRBuilder.buildConstant(S32, 0); 4181 auto Zero64 = MIRBuilder.buildConstant(S64, 0); 4182 4183 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); 4184 4185 auto K = MIRBuilder.buildConstant(S32, 127U + 63U); 4186 auto Sub = MIRBuilder.buildSub(S32, K, LZ); 4187 4188 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); 4189 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); 4190 4191 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); 4192 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); 4193 4194 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); 4195 4196 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); 4197 auto T = MIRBuilder.buildAnd(S64, U, Mask1); 4198 4199 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); 4200 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); 4201 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); 4202 4203 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); 4204 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); 4205 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); 4206 auto One = MIRBuilder.buildConstant(S32, 1); 4207 4208 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); 4209 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); 4210 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); 4211 MIRBuilder.buildAdd(Dst, V, R); 4212 4213 return Legalized; 4214 } 4215 4216 LegalizerHelper::LegalizeResult 4217 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4218 Register Dst = MI.getOperand(0).getReg(); 4219 Register Src = MI.getOperand(1).getReg(); 4220 LLT DstTy = MRI.getType(Dst); 4221 LLT SrcTy = MRI.getType(Src); 4222 4223 if (SrcTy == LLT::scalar(1)) { 4224 auto True = MIRBuilder.buildFConstant(DstTy, 1.0); 4225 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4226 MIRBuilder.buildSelect(Dst, Src, True, False); 4227 MI.eraseFromParent(); 4228 return Legalized; 4229 } 4230 4231 if (SrcTy != LLT::scalar(64)) 4232 return UnableToLegalize; 4233 4234 if (DstTy == LLT::scalar(32)) { 4235 // TODO: SelectionDAG has several alternative expansions to port which may 4236 // be more reasonble depending on the available instructions. If a target 4237 // has sitofp, does not have CTLZ, or can efficiently use f64 as an 4238 // intermediate type, this is probably worse. 4239 return lowerU64ToF32BitOps(MI); 4240 } 4241 4242 return UnableToLegalize; 4243 } 4244 4245 LegalizerHelper::LegalizeResult 4246 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4247 Register Dst = MI.getOperand(0).getReg(); 4248 Register Src = MI.getOperand(1).getReg(); 4249 LLT DstTy = MRI.getType(Dst); 4250 LLT SrcTy = MRI.getType(Src); 4251 4252 const LLT S64 = LLT::scalar(64); 4253 const LLT S32 = LLT::scalar(32); 4254 const LLT S1 = LLT::scalar(1); 4255 4256 if (SrcTy == S1) { 4257 auto True = MIRBuilder.buildFConstant(DstTy, -1.0); 4258 auto False = MIRBuilder.buildFConstant(DstTy, 0.0); 4259 MIRBuilder.buildSelect(Dst, Src, True, False); 4260 MI.eraseFromParent(); 4261 return Legalized; 4262 } 4263 4264 if (SrcTy != S64) 4265 return UnableToLegalize; 4266 4267 if (DstTy == S32) { 4268 // signed cl2f(long l) { 4269 // long s = l >> 63; 4270 // float r = cul2f((l + s) ^ s); 4271 // return s ? -r : r; 4272 // } 4273 Register L = Src; 4274 auto SignBit = MIRBuilder.buildConstant(S64, 63); 4275 auto S = MIRBuilder.buildAShr(S64, L, SignBit); 4276 4277 auto LPlusS = MIRBuilder.buildAdd(S64, L, S); 4278 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); 4279 auto R = MIRBuilder.buildUITOFP(S32, Xor); 4280 4281 auto RNeg = MIRBuilder.buildFNeg(S32, R); 4282 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, 4283 MIRBuilder.buildConstant(S64, 0)); 4284 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); 4285 return Legalized; 4286 } 4287 4288 return UnableToLegalize; 4289 } 4290 4291 LegalizerHelper::LegalizeResult 4292 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4293 Register Dst = MI.getOperand(0).getReg(); 4294 Register Src = MI.getOperand(1).getReg(); 4295 LLT DstTy = MRI.getType(Dst); 4296 LLT SrcTy = MRI.getType(Src); 4297 const LLT S64 = LLT::scalar(64); 4298 const LLT S32 = LLT::scalar(32); 4299 4300 if (SrcTy != S64 && SrcTy != S32) 4301 return UnableToLegalize; 4302 if (DstTy != S32 && DstTy != S64) 4303 return UnableToLegalize; 4304 4305 // FPTOSI gives same result as FPTOUI for positive signed integers. 4306 // FPTOUI needs to deal with fp values that convert to unsigned integers 4307 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. 4308 4309 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); 4310 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() 4311 : APFloat::IEEEdouble(), 4312 APInt::getNullValue(SrcTy.getSizeInBits())); 4313 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); 4314 4315 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); 4316 4317 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); 4318 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on 4319 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. 4320 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); 4321 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); 4322 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); 4323 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); 4324 4325 const LLT S1 = LLT::scalar(1); 4326 4327 MachineInstrBuilder FCMP = 4328 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); 4329 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); 4330 4331 MI.eraseFromParent(); 4332 return Legalized; 4333 } 4334 4335 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { 4336 Register Dst = MI.getOperand(0).getReg(); 4337 Register Src = MI.getOperand(1).getReg(); 4338 LLT DstTy = MRI.getType(Dst); 4339 LLT SrcTy = MRI.getType(Src); 4340 const LLT S64 = LLT::scalar(64); 4341 const LLT S32 = LLT::scalar(32); 4342 4343 // FIXME: Only f32 to i64 conversions are supported. 4344 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) 4345 return UnableToLegalize; 4346 4347 // Expand f32 -> i64 conversion 4348 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4349 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4350 4351 unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); 4352 4353 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); 4354 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); 4355 4356 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); 4357 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); 4358 4359 auto SignMask = MIRBuilder.buildConstant(SrcTy, 4360 APInt::getSignMask(SrcEltBits)); 4361 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); 4362 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); 4363 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); 4364 Sign = MIRBuilder.buildSExt(DstTy, Sign); 4365 4366 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); 4367 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); 4368 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); 4369 4370 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); 4371 R = MIRBuilder.buildZExt(DstTy, R); 4372 4373 auto Bias = MIRBuilder.buildConstant(SrcTy, 127); 4374 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); 4375 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); 4376 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); 4377 4378 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); 4379 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); 4380 4381 const LLT S1 = LLT::scalar(1); 4382 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, 4383 S1, Exponent, ExponentLoBit); 4384 4385 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); 4386 4387 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); 4388 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); 4389 4390 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); 4391 4392 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, 4393 S1, Exponent, ZeroSrcTy); 4394 4395 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); 4396 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); 4397 4398 MI.eraseFromParent(); 4399 return Legalized; 4400 } 4401 4402 // f64 -> f16 conversion using round-to-nearest-even rounding mode. 4403 LegalizerHelper::LegalizeResult 4404 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { 4405 Register Dst = MI.getOperand(0).getReg(); 4406 Register Src = MI.getOperand(1).getReg(); 4407 4408 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. 4409 return UnableToLegalize; 4410 4411 const unsigned ExpMask = 0x7ff; 4412 const unsigned ExpBiasf64 = 1023; 4413 const unsigned ExpBiasf16 = 15; 4414 const LLT S32 = LLT::scalar(32); 4415 const LLT S1 = LLT::scalar(1); 4416 4417 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); 4418 Register U = Unmerge.getReg(0); 4419 Register UH = Unmerge.getReg(1); 4420 4421 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); 4422 4423 // Subtract the fp64 exponent bias (1023) to get the real exponent and 4424 // add the f16 bias (15) to get the biased exponent for the f16 format. 4425 E = MIRBuilder.buildAdd( 4426 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); 4427 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); 4428 4429 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); 4430 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); 4431 4432 auto MaskedSig = MIRBuilder.buildAnd(S32, UH, 4433 MIRBuilder.buildConstant(S32, 0x1ff)); 4434 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); 4435 4436 auto Zero = MIRBuilder.buildConstant(S32, 0); 4437 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); 4438 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); 4439 M = MIRBuilder.buildOr(S32, M, Lo40Set); 4440 4441 // (M != 0 ? 0x0200 : 0) | 0x7c00; 4442 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); 4443 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); 4444 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); 4445 4446 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); 4447 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); 4448 4449 // N = M | (E << 12); 4450 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); 4451 auto N = MIRBuilder.buildOr(S32, M, EShl12); 4452 4453 // B = clamp(1-E, 0, 13); 4454 auto One = MIRBuilder.buildConstant(S32, 1); 4455 auto OneSubExp = MIRBuilder.buildSub(S32, One, E); 4456 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); 4457 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); 4458 4459 auto SigSetHigh = MIRBuilder.buildOr(S32, M, 4460 MIRBuilder.buildConstant(S32, 0x1000)); 4461 4462 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); 4463 auto D0 = MIRBuilder.buildShl(S32, D, B); 4464 4465 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, 4466 D0, SigSetHigh); 4467 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); 4468 D = MIRBuilder.buildOr(S32, D, D1); 4469 4470 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); 4471 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); 4472 4473 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); 4474 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); 4475 4476 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, 4477 MIRBuilder.buildConstant(S32, 3)); 4478 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); 4479 4480 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, 4481 MIRBuilder.buildConstant(S32, 5)); 4482 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); 4483 4484 V1 = MIRBuilder.buildOr(S32, V0, V1); 4485 V = MIRBuilder.buildAdd(S32, V, V1); 4486 4487 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, 4488 E, MIRBuilder.buildConstant(S32, 30)); 4489 V = MIRBuilder.buildSelect(S32, CmpEGt30, 4490 MIRBuilder.buildConstant(S32, 0x7c00), V); 4491 4492 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, 4493 E, MIRBuilder.buildConstant(S32, 1039)); 4494 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); 4495 4496 // Extract the sign bit. 4497 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); 4498 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); 4499 4500 // Insert the sign bit 4501 V = MIRBuilder.buildOr(S32, Sign, V); 4502 4503 MIRBuilder.buildTrunc(Dst, V); 4504 MI.eraseFromParent(); 4505 return Legalized; 4506 } 4507 4508 LegalizerHelper::LegalizeResult 4509 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4510 Register Dst = MI.getOperand(0).getReg(); 4511 Register Src = MI.getOperand(1).getReg(); 4512 4513 LLT DstTy = MRI.getType(Dst); 4514 LLT SrcTy = MRI.getType(Src); 4515 const LLT S64 = LLT::scalar(64); 4516 const LLT S16 = LLT::scalar(16); 4517 4518 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) 4519 return lowerFPTRUNC_F64_TO_F16(MI); 4520 4521 return UnableToLegalize; 4522 } 4523 4524 static CmpInst::Predicate minMaxToCompare(unsigned Opc) { 4525 switch (Opc) { 4526 case TargetOpcode::G_SMIN: 4527 return CmpInst::ICMP_SLT; 4528 case TargetOpcode::G_SMAX: 4529 return CmpInst::ICMP_SGT; 4530 case TargetOpcode::G_UMIN: 4531 return CmpInst::ICMP_ULT; 4532 case TargetOpcode::G_UMAX: 4533 return CmpInst::ICMP_UGT; 4534 default: 4535 llvm_unreachable("not in integer min/max"); 4536 } 4537 } 4538 4539 LegalizerHelper::LegalizeResult 4540 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4541 Register Dst = MI.getOperand(0).getReg(); 4542 Register Src0 = MI.getOperand(1).getReg(); 4543 Register Src1 = MI.getOperand(2).getReg(); 4544 4545 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); 4546 LLT CmpType = MRI.getType(Dst).changeElementSize(1); 4547 4548 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); 4549 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); 4550 4551 MI.eraseFromParent(); 4552 return Legalized; 4553 } 4554 4555 LegalizerHelper::LegalizeResult 4556 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { 4557 Register Dst = MI.getOperand(0).getReg(); 4558 Register Src0 = MI.getOperand(1).getReg(); 4559 Register Src1 = MI.getOperand(2).getReg(); 4560 4561 const LLT Src0Ty = MRI.getType(Src0); 4562 const LLT Src1Ty = MRI.getType(Src1); 4563 4564 const int Src0Size = Src0Ty.getScalarSizeInBits(); 4565 const int Src1Size = Src1Ty.getScalarSizeInBits(); 4566 4567 auto SignBitMask = MIRBuilder.buildConstant( 4568 Src0Ty, APInt::getSignMask(Src0Size)); 4569 4570 auto NotSignBitMask = MIRBuilder.buildConstant( 4571 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); 4572 4573 auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); 4574 MachineInstr *Or; 4575 4576 if (Src0Ty == Src1Ty) { 4577 auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); 4578 Or = MIRBuilder.buildOr(Dst, And0, And1); 4579 } else if (Src0Size > Src1Size) { 4580 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); 4581 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); 4582 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); 4583 auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); 4584 Or = MIRBuilder.buildOr(Dst, And0, And1); 4585 } else { 4586 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); 4587 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); 4588 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); 4589 auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); 4590 Or = MIRBuilder.buildOr(Dst, And0, And1); 4591 } 4592 4593 // Be careful about setting nsz/nnan/ninf on every instruction, since the 4594 // constants are a nan and -0.0, but the final result should preserve 4595 // everything. 4596 if (unsigned Flags = MI.getFlags()) 4597 Or->setFlags(Flags); 4598 4599 MI.eraseFromParent(); 4600 return Legalized; 4601 } 4602 4603 LegalizerHelper::LegalizeResult 4604 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { 4605 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? 4606 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; 4607 4608 Register Dst = MI.getOperand(0).getReg(); 4609 Register Src0 = MI.getOperand(1).getReg(); 4610 Register Src1 = MI.getOperand(2).getReg(); 4611 LLT Ty = MRI.getType(Dst); 4612 4613 if (!MI.getFlag(MachineInstr::FmNoNans)) { 4614 // Insert canonicalizes if it's possible we need to quiet to get correct 4615 // sNaN behavior. 4616 4617 // Note this must be done here, and not as an optimization combine in the 4618 // absence of a dedicate quiet-snan instruction as we're using an 4619 // omni-purpose G_FCANONICALIZE. 4620 if (!isKnownNeverSNaN(Src0, MRI)) 4621 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); 4622 4623 if (!isKnownNeverSNaN(Src1, MRI)) 4624 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); 4625 } 4626 4627 // If there are no nans, it's safe to simply replace this with the non-IEEE 4628 // version. 4629 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); 4630 MI.eraseFromParent(); 4631 return Legalized; 4632 } 4633 4634 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { 4635 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c 4636 Register DstReg = MI.getOperand(0).getReg(); 4637 LLT Ty = MRI.getType(DstReg); 4638 unsigned Flags = MI.getFlags(); 4639 4640 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), 4641 Flags); 4642 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); 4643 MI.eraseFromParent(); 4644 return Legalized; 4645 } 4646 4647 LegalizerHelper::LegalizeResult 4648 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { 4649 Register DstReg = MI.getOperand(0).getReg(); 4650 Register SrcReg = MI.getOperand(1).getReg(); 4651 unsigned Flags = MI.getFlags(); 4652 LLT Ty = MRI.getType(DstReg); 4653 const LLT CondTy = Ty.changeElementSize(1); 4654 4655 // result = trunc(src); 4656 // if (src < 0.0 && src != result) 4657 // result += -1.0. 4658 4659 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); 4660 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); 4661 4662 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, 4663 SrcReg, Zero, Flags); 4664 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, 4665 SrcReg, Trunc, Flags); 4666 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); 4667 auto AddVal = MIRBuilder.buildSITOFP(Ty, And); 4668 4669 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal); 4670 MI.eraseFromParent(); 4671 return Legalized; 4672 } 4673 4674 LegalizerHelper::LegalizeResult 4675 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { 4676 const unsigned NumDst = MI.getNumOperands() - 1; 4677 const Register SrcReg = MI.getOperand(NumDst).getReg(); 4678 LLT SrcTy = MRI.getType(SrcReg); 4679 4680 Register Dst0Reg = MI.getOperand(0).getReg(); 4681 LLT DstTy = MRI.getType(Dst0Reg); 4682 4683 4684 // Expand scalarizing unmerge as bitcast to integer and shift. 4685 if (!DstTy.isVector() && SrcTy.isVector() && 4686 SrcTy.getElementType() == DstTy) { 4687 LLT IntTy = LLT::scalar(SrcTy.getSizeInBits()); 4688 Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0); 4689 4690 MIRBuilder.buildTrunc(Dst0Reg, Cast); 4691 4692 const unsigned DstSize = DstTy.getSizeInBits(); 4693 unsigned Offset = DstSize; 4694 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { 4695 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); 4696 auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt); 4697 MIRBuilder.buildTrunc(MI.getOperand(I), Shift); 4698 } 4699 4700 MI.eraseFromParent(); 4701 return Legalized; 4702 } 4703 4704 return UnableToLegalize; 4705 } 4706 4707 LegalizerHelper::LegalizeResult 4708 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { 4709 Register DstReg = MI.getOperand(0).getReg(); 4710 Register Src0Reg = MI.getOperand(1).getReg(); 4711 Register Src1Reg = MI.getOperand(2).getReg(); 4712 LLT Src0Ty = MRI.getType(Src0Reg); 4713 LLT DstTy = MRI.getType(DstReg); 4714 LLT IdxTy = LLT::scalar(32); 4715 4716 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); 4717 4718 if (DstTy.isScalar()) { 4719 if (Src0Ty.isVector()) 4720 return UnableToLegalize; 4721 4722 // This is just a SELECT. 4723 assert(Mask.size() == 1 && "Expected a single mask element"); 4724 Register Val; 4725 if (Mask[0] < 0 || Mask[0] > 1) 4726 Val = MIRBuilder.buildUndef(DstTy).getReg(0); 4727 else 4728 Val = Mask[0] == 0 ? Src0Reg : Src1Reg; 4729 MIRBuilder.buildCopy(DstReg, Val); 4730 MI.eraseFromParent(); 4731 return Legalized; 4732 } 4733 4734 Register Undef; 4735 SmallVector<Register, 32> BuildVec; 4736 LLT EltTy = DstTy.getElementType(); 4737 4738 for (int Idx : Mask) { 4739 if (Idx < 0) { 4740 if (!Undef.isValid()) 4741 Undef = MIRBuilder.buildUndef(EltTy).getReg(0); 4742 BuildVec.push_back(Undef); 4743 continue; 4744 } 4745 4746 if (Src0Ty.isScalar()) { 4747 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); 4748 } else { 4749 int NumElts = Src0Ty.getNumElements(); 4750 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; 4751 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; 4752 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); 4753 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); 4754 BuildVec.push_back(Extract.getReg(0)); 4755 } 4756 } 4757 4758 MIRBuilder.buildBuildVector(DstReg, BuildVec); 4759 MI.eraseFromParent(); 4760 return Legalized; 4761 } 4762 4763 LegalizerHelper::LegalizeResult 4764 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { 4765 Register Dst = MI.getOperand(0).getReg(); 4766 Register AllocSize = MI.getOperand(1).getReg(); 4767 unsigned Align = MI.getOperand(2).getImm(); 4768 4769 const auto &MF = *MI.getMF(); 4770 const auto &TLI = *MF.getSubtarget().getTargetLowering(); 4771 4772 LLT PtrTy = MRI.getType(Dst); 4773 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); 4774 4775 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 4776 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); 4777 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); 4778 4779 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't 4780 // have to generate an extra instruction to negate the alloc and then use 4781 // G_PTR_ADD to add the negative offset. 4782 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); 4783 if (Align) { 4784 APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true); 4785 AlignMask.negate(); 4786 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); 4787 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); 4788 } 4789 4790 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); 4791 MIRBuilder.buildCopy(SPReg, SPTmp); 4792 MIRBuilder.buildCopy(Dst, SPTmp); 4793 4794 MI.eraseFromParent(); 4795 return Legalized; 4796 } 4797 4798 LegalizerHelper::LegalizeResult 4799 LegalizerHelper::lowerExtract(MachineInstr &MI) { 4800 Register Dst = MI.getOperand(0).getReg(); 4801 Register Src = MI.getOperand(1).getReg(); 4802 unsigned Offset = MI.getOperand(2).getImm(); 4803 4804 LLT DstTy = MRI.getType(Dst); 4805 LLT SrcTy = MRI.getType(Src); 4806 4807 if (DstTy.isScalar() && 4808 (SrcTy.isScalar() || 4809 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { 4810 LLT SrcIntTy = SrcTy; 4811 if (!SrcTy.isScalar()) { 4812 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); 4813 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0); 4814 } 4815 4816 if (Offset == 0) 4817 MIRBuilder.buildTrunc(Dst, Src); 4818 else { 4819 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); 4820 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt); 4821 MIRBuilder.buildTrunc(Dst, Shr); 4822 } 4823 4824 MI.eraseFromParent(); 4825 return Legalized; 4826 } 4827 4828 return UnableToLegalize; 4829 } 4830 4831 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { 4832 Register Dst = MI.getOperand(0).getReg(); 4833 Register Src = MI.getOperand(1).getReg(); 4834 Register InsertSrc = MI.getOperand(2).getReg(); 4835 uint64_t Offset = MI.getOperand(3).getImm(); 4836 4837 LLT DstTy = MRI.getType(Src); 4838 LLT InsertTy = MRI.getType(InsertSrc); 4839 4840 if (InsertTy.isScalar() && 4841 (DstTy.isScalar() || 4842 (DstTy.isVector() && DstTy.getElementType() == InsertTy))) { 4843 LLT IntDstTy = DstTy; 4844 if (!DstTy.isScalar()) { 4845 IntDstTy = LLT::scalar(DstTy.getSizeInBits()); 4846 Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0); 4847 } 4848 4849 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); 4850 if (Offset != 0) { 4851 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); 4852 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); 4853 } 4854 4855 APInt MaskVal = APInt::getBitsSetWithWrap(DstTy.getSizeInBits(), 4856 Offset + InsertTy.getSizeInBits(), 4857 Offset); 4858 4859 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); 4860 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); 4861 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); 4862 4863 MIRBuilder.buildBitcast(Dst, Or); 4864 MI.eraseFromParent(); 4865 return Legalized; 4866 } 4867 4868 return UnableToLegalize; 4869 } 4870 4871 LegalizerHelper::LegalizeResult 4872 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { 4873 Register Dst0 = MI.getOperand(0).getReg(); 4874 Register Dst1 = MI.getOperand(1).getReg(); 4875 Register LHS = MI.getOperand(2).getReg(); 4876 Register RHS = MI.getOperand(3).getReg(); 4877 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; 4878 4879 LLT Ty = MRI.getType(Dst0); 4880 LLT BoolTy = MRI.getType(Dst1); 4881 4882 if (IsAdd) 4883 MIRBuilder.buildAdd(Dst0, LHS, RHS); 4884 else 4885 MIRBuilder.buildSub(Dst0, LHS, RHS); 4886 4887 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 4888 4889 auto Zero = MIRBuilder.buildConstant(Ty, 0); 4890 4891 // For an addition, the result should be less than one of the operands (LHS) 4892 // if and only if the other operand (RHS) is negative, otherwise there will 4893 // be overflow. 4894 // For a subtraction, the result should be less than one of the operands 4895 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 4896 // otherwise there will be overflow. 4897 auto ResultLowerThanLHS = 4898 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); 4899 auto ConditionRHS = MIRBuilder.buildICmp( 4900 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); 4901 4902 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); 4903 MI.eraseFromParent(); 4904 return Legalized; 4905 } 4906 4907 LegalizerHelper::LegalizeResult 4908 LegalizerHelper::lowerBswap(MachineInstr &MI) { 4909 Register Dst = MI.getOperand(0).getReg(); 4910 Register Src = MI.getOperand(1).getReg(); 4911 const LLT Ty = MRI.getType(Src); 4912 unsigned SizeInBytes = Ty.getSizeInBytes(); 4913 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; 4914 4915 // Swap most and least significant byte, set remaining bytes in Res to zero. 4916 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); 4917 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); 4918 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4919 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); 4920 4921 // Set i-th high/low byte in Res to i-th low/high byte from Src. 4922 for (unsigned i = 1; i < SizeInBytes / 2; ++i) { 4923 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. 4924 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); 4925 auto Mask = MIRBuilder.buildConstant(Ty, APMask); 4926 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); 4927 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. 4928 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); 4929 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); 4930 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); 4931 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. 4932 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); 4933 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); 4934 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); 4935 } 4936 Res.getInstr()->getOperand(0).setReg(Dst); 4937 4938 MI.eraseFromParent(); 4939 return Legalized; 4940 } 4941 4942 //{ (Src & Mask) >> N } | { (Src << N) & Mask } 4943 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, 4944 MachineInstrBuilder Src, APInt Mask) { 4945 const LLT Ty = Dst.getLLTTy(*B.getMRI()); 4946 MachineInstrBuilder C_N = B.buildConstant(Ty, N); 4947 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); 4948 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); 4949 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); 4950 return B.buildOr(Dst, LHS, RHS); 4951 } 4952 4953 LegalizerHelper::LegalizeResult 4954 LegalizerHelper::lowerBitreverse(MachineInstr &MI) { 4955 Register Dst = MI.getOperand(0).getReg(); 4956 Register Src = MI.getOperand(1).getReg(); 4957 const LLT Ty = MRI.getType(Src); 4958 unsigned Size = Ty.getSizeInBits(); 4959 4960 MachineInstrBuilder BSWAP = 4961 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); 4962 4963 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 4964 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] 4965 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] 4966 MachineInstrBuilder Swap4 = 4967 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); 4968 4969 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 4970 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] 4971 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] 4972 MachineInstrBuilder Swap2 = 4973 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); 4974 4975 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 4976 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] 4977 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] 4978 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); 4979 4980 MI.eraseFromParent(); 4981 return Legalized; 4982 } 4983 4984 LegalizerHelper::LegalizeResult 4985 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { 4986 MachineFunction &MF = MIRBuilder.getMF(); 4987 const TargetSubtargetInfo &STI = MF.getSubtarget(); 4988 const TargetLowering *TLI = STI.getTargetLowering(); 4989 4990 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; 4991 int NameOpIdx = IsRead ? 1 : 0; 4992 int ValRegIndex = IsRead ? 0 : 1; 4993 4994 Register ValReg = MI.getOperand(ValRegIndex).getReg(); 4995 const LLT Ty = MRI.getType(ValReg); 4996 const MDString *RegStr = cast<MDString>( 4997 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); 4998 4999 Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF); 5000 if (!PhysReg.isValid()) 5001 return UnableToLegalize; 5002 5003 if (IsRead) 5004 MIRBuilder.buildCopy(ValReg, PhysReg); 5005 else 5006 MIRBuilder.buildCopy(PhysReg, ValReg); 5007 5008 MI.eraseFromParent(); 5009 return Legalized; 5010 } 5011