1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetFrameLowering.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 #define DEBUG_TYPE "legalizer"
29 
30 using namespace llvm;
31 using namespace LegalizeActions;
32 
33 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
34 ///
35 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
36 /// with any leftover piece as type \p LeftoverTy
37 ///
38 /// Returns -1 in the first element of the pair if the breakdown is not
39 /// satisfiable.
40 static std::pair<int, int>
41 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
42   assert(!LeftoverTy.isValid() && "this is an out argument");
43 
44   unsigned Size = OrigTy.getSizeInBits();
45   unsigned NarrowSize = NarrowTy.getSizeInBits();
46   unsigned NumParts = Size / NarrowSize;
47   unsigned LeftoverSize = Size - NumParts * NarrowSize;
48   assert(Size > NarrowSize);
49 
50   if (LeftoverSize == 0)
51     return {NumParts, 0};
52 
53   if (NarrowTy.isVector()) {
54     unsigned EltSize = OrigTy.getScalarSizeInBits();
55     if (LeftoverSize % EltSize != 0)
56       return {-1, -1};
57     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
58   } else {
59     LeftoverTy = LLT::scalar(LeftoverSize);
60   }
61 
62   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
63   return std::make_pair(NumParts, NumLeftover);
64 }
65 
66 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
67 
68   if (!Ty.isScalar())
69     return nullptr;
70 
71   switch (Ty.getSizeInBits()) {
72   case 16:
73     return Type::getHalfTy(Ctx);
74   case 32:
75     return Type::getFloatTy(Ctx);
76   case 64:
77     return Type::getDoubleTy(Ctx);
78   case 128:
79     return Type::getFP128Ty(Ctx);
80   default:
81     return nullptr;
82   }
83 }
84 
85 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
86                                  GISelChangeObserver &Observer,
87                                  MachineIRBuilder &Builder)
88     : MIRBuilder(Builder), MRI(MF.getRegInfo()),
89       LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) {
90   MIRBuilder.setMF(MF);
91   MIRBuilder.setChangeObserver(Observer);
92 }
93 
94 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
95                                  GISelChangeObserver &Observer,
96                                  MachineIRBuilder &B)
97     : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) {
98   MIRBuilder.setMF(MF);
99   MIRBuilder.setChangeObserver(Observer);
100 }
101 LegalizerHelper::LegalizeResult
102 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
103   LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs()));
104 
105   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
106       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
107     return LI.legalizeIntrinsic(MI, MIRBuilder, Observer) ? Legalized
108                                                           : UnableToLegalize;
109   auto Step = LI.getAction(MI, MRI);
110   switch (Step.Action) {
111   case Legal:
112     LLVM_DEBUG(dbgs() << ".. Already legal\n");
113     return AlreadyLegal;
114   case Libcall:
115     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
116     return libcall(MI);
117   case NarrowScalar:
118     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
119     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
120   case WidenScalar:
121     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
122     return widenScalar(MI, Step.TypeIdx, Step.NewType);
123   case Lower:
124     LLVM_DEBUG(dbgs() << ".. Lower\n");
125     return lower(MI, Step.TypeIdx, Step.NewType);
126   case FewerElements:
127     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
128     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
129   case MoreElements:
130     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
131     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
132   case Custom:
133     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
134     return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized
135                                                             : UnableToLegalize;
136   default:
137     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
138     return UnableToLegalize;
139   }
140 }
141 
142 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
143                                    SmallVectorImpl<Register> &VRegs) {
144   for (int i = 0; i < NumParts; ++i)
145     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
146   MIRBuilder.buildUnmerge(VRegs, Reg);
147 }
148 
149 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
150                                    LLT MainTy, LLT &LeftoverTy,
151                                    SmallVectorImpl<Register> &VRegs,
152                                    SmallVectorImpl<Register> &LeftoverRegs) {
153   assert(!LeftoverTy.isValid() && "this is an out argument");
154 
155   unsigned RegSize = RegTy.getSizeInBits();
156   unsigned MainSize = MainTy.getSizeInBits();
157   unsigned NumParts = RegSize / MainSize;
158   unsigned LeftoverSize = RegSize - NumParts * MainSize;
159 
160   // Use an unmerge when possible.
161   if (LeftoverSize == 0) {
162     for (unsigned I = 0; I < NumParts; ++I)
163       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
164     MIRBuilder.buildUnmerge(VRegs, Reg);
165     return true;
166   }
167 
168   if (MainTy.isVector()) {
169     unsigned EltSize = MainTy.getScalarSizeInBits();
170     if (LeftoverSize % EltSize != 0)
171       return false;
172     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
173   } else {
174     LeftoverTy = LLT::scalar(LeftoverSize);
175   }
176 
177   // For irregular sizes, extract the individual parts.
178   for (unsigned I = 0; I != NumParts; ++I) {
179     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
180     VRegs.push_back(NewReg);
181     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
182   }
183 
184   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
185        Offset += LeftoverSize) {
186     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
187     LeftoverRegs.push_back(NewReg);
188     MIRBuilder.buildExtract(NewReg, Reg, Offset);
189   }
190 
191   return true;
192 }
193 
194 void LegalizerHelper::insertParts(Register DstReg,
195                                   LLT ResultTy, LLT PartTy,
196                                   ArrayRef<Register> PartRegs,
197                                   LLT LeftoverTy,
198                                   ArrayRef<Register> LeftoverRegs) {
199   if (!LeftoverTy.isValid()) {
200     assert(LeftoverRegs.empty());
201 
202     if (!ResultTy.isVector()) {
203       MIRBuilder.buildMerge(DstReg, PartRegs);
204       return;
205     }
206 
207     if (PartTy.isVector())
208       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
209     else
210       MIRBuilder.buildBuildVector(DstReg, PartRegs);
211     return;
212   }
213 
214   unsigned PartSize = PartTy.getSizeInBits();
215   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
216 
217   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
218   MIRBuilder.buildUndef(CurResultReg);
219 
220   unsigned Offset = 0;
221   for (Register PartReg : PartRegs) {
222     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
223     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
224     CurResultReg = NewResultReg;
225     Offset += PartSize;
226   }
227 
228   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
229     // Use the original output register for the final insert to avoid a copy.
230     Register NewResultReg = (I + 1 == E) ?
231       DstReg : MRI.createGenericVirtualRegister(ResultTy);
232 
233     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
234     CurResultReg = NewResultReg;
235     Offset += LeftoverPartSize;
236   }
237 }
238 
239 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
240 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
241                               const MachineInstr &MI) {
242   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
243 
244   const int NumResults = MI.getNumOperands() - 1;
245   Regs.resize(NumResults);
246   for (int I = 0; I != NumResults; ++I)
247     Regs[I] = MI.getOperand(I).getReg();
248 }
249 
250 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
251                                     LLT NarrowTy, Register SrcReg) {
252   LLT SrcTy = MRI.getType(SrcReg);
253 
254   LLT GCDTy = getGCDType(DstTy, getGCDType(SrcTy, NarrowTy));
255   if (SrcTy == GCDTy) {
256     // If the source already evenly divides the result type, we don't need to do
257     // anything.
258     Parts.push_back(SrcReg);
259   } else {
260     // Need to split into common type sized pieces.
261     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
262     getUnmergeResults(Parts, *Unmerge);
263   }
264 
265   return GCDTy;
266 }
267 
268 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
269                                          SmallVectorImpl<Register> &VRegs,
270                                          unsigned PadStrategy) {
271   LLT LCMTy = getLCMType(DstTy, NarrowTy);
272 
273   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
274   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
275   int NumOrigSrc = VRegs.size();
276 
277   Register PadReg;
278 
279   // Get a value we can use to pad the source value if the sources won't evenly
280   // cover the result type.
281   if (NumOrigSrc < NumParts * NumSubParts) {
282     if (PadStrategy == TargetOpcode::G_ZEXT)
283       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
284     else if (PadStrategy == TargetOpcode::G_ANYEXT)
285       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
286     else {
287       assert(PadStrategy == TargetOpcode::G_SEXT);
288 
289       // Shift the sign bit of the low register through the high register.
290       auto ShiftAmt =
291         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
292       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
293     }
294   }
295 
296   // Registers for the final merge to be produced.
297   SmallVector<Register, 4> Remerge(NumParts);
298 
299   // Registers needed for intermediate merges, which will be merged into a
300   // source for Remerge.
301   SmallVector<Register, 4> SubMerge(NumSubParts);
302 
303   // Once we've fully read off the end of the original source bits, we can reuse
304   // the same high bits for remaining padding elements.
305   Register AllPadReg;
306 
307   // Build merges to the LCM type to cover the original result type.
308   for (int I = 0; I != NumParts; ++I) {
309     bool AllMergePartsArePadding = true;
310 
311     // Build the requested merges to the requested type.
312     for (int J = 0; J != NumSubParts; ++J) {
313       int Idx = I * NumSubParts + J;
314       if (Idx >= NumOrigSrc) {
315         SubMerge[J] = PadReg;
316         continue;
317       }
318 
319       SubMerge[J] = VRegs[Idx];
320 
321       // There are meaningful bits here we can't reuse later.
322       AllMergePartsArePadding = false;
323     }
324 
325     // If we've filled up a complete piece with padding bits, we can directly
326     // emit the natural sized constant if applicable, rather than a merge of
327     // smaller constants.
328     if (AllMergePartsArePadding && !AllPadReg) {
329       if (PadStrategy == TargetOpcode::G_ANYEXT)
330         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
331       else if (PadStrategy == TargetOpcode::G_ZEXT)
332         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
333 
334       // If this is a sign extension, we can't materialize a trivial constant
335       // with the right type and have to produce a merge.
336     }
337 
338     if (AllPadReg) {
339       // Avoid creating additional instructions if we're just adding additional
340       // copies of padding bits.
341       Remerge[I] = AllPadReg;
342       continue;
343     }
344 
345     if (NumSubParts == 1)
346       Remerge[I] = SubMerge[0];
347     else
348       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
349 
350     // In the sign extend padding case, re-use the first all-signbit merge.
351     if (AllMergePartsArePadding && !AllPadReg)
352       AllPadReg = Remerge[I];
353   }
354 
355   VRegs = std::move(Remerge);
356   return LCMTy;
357 }
358 
359 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
360                                                ArrayRef<Register> RemergeRegs) {
361   LLT DstTy = MRI.getType(DstReg);
362 
363   // Create the merge to the widened source, and extract the relevant bits into
364   // the result.
365 
366   if (DstTy == LCMTy) {
367     MIRBuilder.buildMerge(DstReg, RemergeRegs);
368     return;
369   }
370 
371   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
372   if (DstTy.isScalar() && LCMTy.isScalar()) {
373     MIRBuilder.buildTrunc(DstReg, Remerge);
374     return;
375   }
376 
377   if (LCMTy.isVector()) {
378     MIRBuilder.buildExtract(DstReg, Remerge, 0);
379     return;
380   }
381 
382   llvm_unreachable("unhandled case");
383 }
384 
385 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
386 #define RTLIBCASE(LibcallPrefix)                                               \
387   do {                                                                         \
388     switch (Size) {                                                            \
389     case 32:                                                                   \
390       return RTLIB::LibcallPrefix##32;                                         \
391     case 64:                                                                   \
392       return RTLIB::LibcallPrefix##64;                                         \
393     case 128:                                                                  \
394       return RTLIB::LibcallPrefix##128;                                        \
395     default:                                                                   \
396       llvm_unreachable("unexpected size");                                     \
397     }                                                                          \
398   } while (0)
399 
400   assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size");
401 
402   switch (Opcode) {
403   case TargetOpcode::G_SDIV:
404     RTLIBCASE(SDIV_I);
405   case TargetOpcode::G_UDIV:
406     RTLIBCASE(UDIV_I);
407   case TargetOpcode::G_SREM:
408     RTLIBCASE(SREM_I);
409   case TargetOpcode::G_UREM:
410     RTLIBCASE(UREM_I);
411   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
412     RTLIBCASE(CTLZ_I);
413   case TargetOpcode::G_FADD:
414     RTLIBCASE(ADD_F);
415   case TargetOpcode::G_FSUB:
416     RTLIBCASE(SUB_F);
417   case TargetOpcode::G_FMUL:
418     RTLIBCASE(MUL_F);
419   case TargetOpcode::G_FDIV:
420     RTLIBCASE(DIV_F);
421   case TargetOpcode::G_FEXP:
422     RTLIBCASE(EXP_F);
423   case TargetOpcode::G_FEXP2:
424     RTLIBCASE(EXP2_F);
425   case TargetOpcode::G_FREM:
426     RTLIBCASE(REM_F);
427   case TargetOpcode::G_FPOW:
428     RTLIBCASE(POW_F);
429   case TargetOpcode::G_FMA:
430     RTLIBCASE(FMA_F);
431   case TargetOpcode::G_FSIN:
432     RTLIBCASE(SIN_F);
433   case TargetOpcode::G_FCOS:
434     RTLIBCASE(COS_F);
435   case TargetOpcode::G_FLOG10:
436     RTLIBCASE(LOG10_F);
437   case TargetOpcode::G_FLOG:
438     RTLIBCASE(LOG_F);
439   case TargetOpcode::G_FLOG2:
440     RTLIBCASE(LOG2_F);
441   case TargetOpcode::G_FCEIL:
442     RTLIBCASE(CEIL_F);
443   case TargetOpcode::G_FFLOOR:
444     RTLIBCASE(FLOOR_F);
445   case TargetOpcode::G_FMINNUM:
446     RTLIBCASE(FMIN_F);
447   case TargetOpcode::G_FMAXNUM:
448     RTLIBCASE(FMAX_F);
449   case TargetOpcode::G_FSQRT:
450     RTLIBCASE(SQRT_F);
451   case TargetOpcode::G_FRINT:
452     RTLIBCASE(RINT_F);
453   case TargetOpcode::G_FNEARBYINT:
454     RTLIBCASE(NEARBYINT_F);
455   }
456   llvm_unreachable("Unknown libcall function");
457 }
458 
459 /// True if an instruction is in tail position in its caller. Intended for
460 /// legalizing libcalls as tail calls when possible.
461 static bool isLibCallInTailPosition(MachineInstr &MI) {
462   const Function &F = MI.getParent()->getParent()->getFunction();
463 
464   // Conservatively require the attributes of the call to match those of
465   // the return. Ignore NoAlias and NonNull because they don't affect the
466   // call sequence.
467   AttributeList CallerAttrs = F.getAttributes();
468   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
469           .removeAttribute(Attribute::NoAlias)
470           .removeAttribute(Attribute::NonNull)
471           .hasAttributes())
472     return false;
473 
474   // It's not safe to eliminate the sign / zero extension of the return value.
475   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
476       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
477     return false;
478 
479   // Only tail call if the following instruction is a standard return.
480   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
481   MachineInstr *Next = MI.getNextNode();
482   if (!Next || TII.isTailCall(*Next) || !Next->isReturn())
483     return false;
484 
485   return true;
486 }
487 
488 LegalizerHelper::LegalizeResult
489 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
490                     const CallLowering::ArgInfo &Result,
491                     ArrayRef<CallLowering::ArgInfo> Args) {
492   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
493   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
494   const char *Name = TLI.getLibcallName(Libcall);
495 
496   CallLowering::CallLoweringInfo Info;
497   Info.CallConv = TLI.getLibcallCallingConv(Libcall);
498   Info.Callee = MachineOperand::CreateES(Name);
499   Info.OrigRet = Result;
500   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
501   if (!CLI.lowerCall(MIRBuilder, Info))
502     return LegalizerHelper::UnableToLegalize;
503 
504   return LegalizerHelper::Legalized;
505 }
506 
507 // Useful for libcalls where all operands have the same type.
508 static LegalizerHelper::LegalizeResult
509 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
510               Type *OpType) {
511   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
512 
513   SmallVector<CallLowering::ArgInfo, 3> Args;
514   for (unsigned i = 1; i < MI.getNumOperands(); i++)
515     Args.push_back({MI.getOperand(i).getReg(), OpType});
516   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
517                        Args);
518 }
519 
520 LegalizerHelper::LegalizeResult
521 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
522                        MachineInstr &MI) {
523   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
524   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
525 
526   SmallVector<CallLowering::ArgInfo, 3> Args;
527   // Add all the args, except for the last which is an imm denoting 'tail'.
528   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
529     Register Reg = MI.getOperand(i).getReg();
530 
531     // Need derive an IR type for call lowering.
532     LLT OpLLT = MRI.getType(Reg);
533     Type *OpTy = nullptr;
534     if (OpLLT.isPointer())
535       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
536     else
537       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
538     Args.push_back({Reg, OpTy});
539   }
540 
541   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
542   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
543   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
544   RTLIB::Libcall RTLibcall;
545   switch (ID) {
546   case Intrinsic::memcpy:
547     RTLibcall = RTLIB::MEMCPY;
548     break;
549   case Intrinsic::memset:
550     RTLibcall = RTLIB::MEMSET;
551     break;
552   case Intrinsic::memmove:
553     RTLibcall = RTLIB::MEMMOVE;
554     break;
555   default:
556     return LegalizerHelper::UnableToLegalize;
557   }
558   const char *Name = TLI.getLibcallName(RTLibcall);
559 
560   MIRBuilder.setInstr(MI);
561 
562   CallLowering::CallLoweringInfo Info;
563   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
564   Info.Callee = MachineOperand::CreateES(Name);
565   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
566   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
567                     isLibCallInTailPosition(MI);
568 
569   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
570   if (!CLI.lowerCall(MIRBuilder, Info))
571     return LegalizerHelper::UnableToLegalize;
572 
573   if (Info.LoweredTailCall) {
574     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
575     // We must have a return following the call to get past
576     // isLibCallInTailPosition.
577     assert(MI.getNextNode() && MI.getNextNode()->isReturn() &&
578            "Expected instr following MI to be a return?");
579 
580     // We lowered a tail call, so the call is now the return from the block.
581     // Delete the old return.
582     MI.getNextNode()->eraseFromParent();
583   }
584 
585   return LegalizerHelper::Legalized;
586 }
587 
588 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
589                                        Type *FromType) {
590   auto ToMVT = MVT::getVT(ToType);
591   auto FromMVT = MVT::getVT(FromType);
592 
593   switch (Opcode) {
594   case TargetOpcode::G_FPEXT:
595     return RTLIB::getFPEXT(FromMVT, ToMVT);
596   case TargetOpcode::G_FPTRUNC:
597     return RTLIB::getFPROUND(FromMVT, ToMVT);
598   case TargetOpcode::G_FPTOSI:
599     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
600   case TargetOpcode::G_FPTOUI:
601     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
602   case TargetOpcode::G_SITOFP:
603     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
604   case TargetOpcode::G_UITOFP:
605     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
606   }
607   llvm_unreachable("Unsupported libcall function");
608 }
609 
610 static LegalizerHelper::LegalizeResult
611 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
612                   Type *FromType) {
613   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
614   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
615                        {{MI.getOperand(1).getReg(), FromType}});
616 }
617 
618 LegalizerHelper::LegalizeResult
619 LegalizerHelper::libcall(MachineInstr &MI) {
620   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
621   unsigned Size = LLTy.getSizeInBits();
622   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
623 
624   MIRBuilder.setInstr(MI);
625 
626   switch (MI.getOpcode()) {
627   default:
628     return UnableToLegalize;
629   case TargetOpcode::G_SDIV:
630   case TargetOpcode::G_UDIV:
631   case TargetOpcode::G_SREM:
632   case TargetOpcode::G_UREM:
633   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
634     Type *HLTy = IntegerType::get(Ctx, Size);
635     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
636     if (Status != Legalized)
637       return Status;
638     break;
639   }
640   case TargetOpcode::G_FADD:
641   case TargetOpcode::G_FSUB:
642   case TargetOpcode::G_FMUL:
643   case TargetOpcode::G_FDIV:
644   case TargetOpcode::G_FMA:
645   case TargetOpcode::G_FPOW:
646   case TargetOpcode::G_FREM:
647   case TargetOpcode::G_FCOS:
648   case TargetOpcode::G_FSIN:
649   case TargetOpcode::G_FLOG10:
650   case TargetOpcode::G_FLOG:
651   case TargetOpcode::G_FLOG2:
652   case TargetOpcode::G_FEXP:
653   case TargetOpcode::G_FEXP2:
654   case TargetOpcode::G_FCEIL:
655   case TargetOpcode::G_FFLOOR:
656   case TargetOpcode::G_FMINNUM:
657   case TargetOpcode::G_FMAXNUM:
658   case TargetOpcode::G_FSQRT:
659   case TargetOpcode::G_FRINT:
660   case TargetOpcode::G_FNEARBYINT: {
661     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
662     if (!HLTy || (Size != 32 && Size != 64 && Size != 128)) {
663       LLVM_DEBUG(dbgs() << "No libcall available for size " << Size << ".\n");
664       return UnableToLegalize;
665     }
666     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
667     if (Status != Legalized)
668       return Status;
669     break;
670   }
671   case TargetOpcode::G_FPEXT:
672   case TargetOpcode::G_FPTRUNC: {
673     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
674     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
675     if (!FromTy || !ToTy)
676       return UnableToLegalize;
677     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
678     if (Status != Legalized)
679       return Status;
680     break;
681   }
682   case TargetOpcode::G_FPTOSI:
683   case TargetOpcode::G_FPTOUI: {
684     // FIXME: Support other types
685     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
686     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
687     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
688       return UnableToLegalize;
689     LegalizeResult Status = conversionLibcall(
690         MI, MIRBuilder,
691         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
692         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
693     if (Status != Legalized)
694       return Status;
695     break;
696   }
697   case TargetOpcode::G_SITOFP:
698   case TargetOpcode::G_UITOFP: {
699     // FIXME: Support other types
700     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
701     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
702     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
703       return UnableToLegalize;
704     LegalizeResult Status = conversionLibcall(
705         MI, MIRBuilder,
706         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
707         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
708     if (Status != Legalized)
709       return Status;
710     break;
711   }
712   }
713 
714   MI.eraseFromParent();
715   return Legalized;
716 }
717 
718 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
719                                                               unsigned TypeIdx,
720                                                               LLT NarrowTy) {
721   MIRBuilder.setInstr(MI);
722 
723   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
724   uint64_t NarrowSize = NarrowTy.getSizeInBits();
725 
726   switch (MI.getOpcode()) {
727   default:
728     return UnableToLegalize;
729   case TargetOpcode::G_IMPLICIT_DEF: {
730     // FIXME: add support for when SizeOp0 isn't an exact multiple of
731     // NarrowSize.
732     if (SizeOp0 % NarrowSize != 0)
733       return UnableToLegalize;
734     int NumParts = SizeOp0 / NarrowSize;
735 
736     SmallVector<Register, 2> DstRegs;
737     for (int i = 0; i < NumParts; ++i)
738       DstRegs.push_back(
739           MIRBuilder.buildUndef(NarrowTy).getReg(0));
740 
741     Register DstReg = MI.getOperand(0).getReg();
742     if(MRI.getType(DstReg).isVector())
743       MIRBuilder.buildBuildVector(DstReg, DstRegs);
744     else
745       MIRBuilder.buildMerge(DstReg, DstRegs);
746     MI.eraseFromParent();
747     return Legalized;
748   }
749   case TargetOpcode::G_CONSTANT: {
750     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
751     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
752     unsigned TotalSize = Ty.getSizeInBits();
753     unsigned NarrowSize = NarrowTy.getSizeInBits();
754     int NumParts = TotalSize / NarrowSize;
755 
756     SmallVector<Register, 4> PartRegs;
757     for (int I = 0; I != NumParts; ++I) {
758       unsigned Offset = I * NarrowSize;
759       auto K = MIRBuilder.buildConstant(NarrowTy,
760                                         Val.lshr(Offset).trunc(NarrowSize));
761       PartRegs.push_back(K.getReg(0));
762     }
763 
764     LLT LeftoverTy;
765     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
766     SmallVector<Register, 1> LeftoverRegs;
767     if (LeftoverBits != 0) {
768       LeftoverTy = LLT::scalar(LeftoverBits);
769       auto K = MIRBuilder.buildConstant(
770         LeftoverTy,
771         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
772       LeftoverRegs.push_back(K.getReg(0));
773     }
774 
775     insertParts(MI.getOperand(0).getReg(),
776                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
777 
778     MI.eraseFromParent();
779     return Legalized;
780   }
781   case TargetOpcode::G_SEXT:
782   case TargetOpcode::G_ZEXT:
783   case TargetOpcode::G_ANYEXT:
784     return narrowScalarExt(MI, TypeIdx, NarrowTy);
785   case TargetOpcode::G_TRUNC: {
786     if (TypeIdx != 1)
787       return UnableToLegalize;
788 
789     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
790     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
791       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
792       return UnableToLegalize;
793     }
794 
795     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
796     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
797     MI.eraseFromParent();
798     return Legalized;
799   }
800 
801   case TargetOpcode::G_ADD: {
802     // FIXME: add support for when SizeOp0 isn't an exact multiple of
803     // NarrowSize.
804     if (SizeOp0 % NarrowSize != 0)
805       return UnableToLegalize;
806     // Expand in terms of carry-setting/consuming G_ADDE instructions.
807     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
808 
809     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
810     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
811     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
812 
813     Register CarryIn;
814     for (int i = 0; i < NumParts; ++i) {
815       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
816       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
817 
818       if (i == 0)
819         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
820       else {
821         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
822                               Src2Regs[i], CarryIn);
823       }
824 
825       DstRegs.push_back(DstReg);
826       CarryIn = CarryOut;
827     }
828     Register DstReg = MI.getOperand(0).getReg();
829     if(MRI.getType(DstReg).isVector())
830       MIRBuilder.buildBuildVector(DstReg, DstRegs);
831     else
832       MIRBuilder.buildMerge(DstReg, DstRegs);
833     MI.eraseFromParent();
834     return Legalized;
835   }
836   case TargetOpcode::G_SUB: {
837     // FIXME: add support for when SizeOp0 isn't an exact multiple of
838     // NarrowSize.
839     if (SizeOp0 % NarrowSize != 0)
840       return UnableToLegalize;
841 
842     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
843 
844     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
845     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
846     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
847 
848     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
849     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
850     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
851                           {Src1Regs[0], Src2Regs[0]});
852     DstRegs.push_back(DstReg);
853     Register BorrowIn = BorrowOut;
854     for (int i = 1; i < NumParts; ++i) {
855       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
856       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
857 
858       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
859                             {Src1Regs[i], Src2Regs[i], BorrowIn});
860 
861       DstRegs.push_back(DstReg);
862       BorrowIn = BorrowOut;
863     }
864     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
865     MI.eraseFromParent();
866     return Legalized;
867   }
868   case TargetOpcode::G_MUL:
869   case TargetOpcode::G_UMULH:
870     return narrowScalarMul(MI, NarrowTy);
871   case TargetOpcode::G_EXTRACT:
872     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
873   case TargetOpcode::G_INSERT:
874     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
875   case TargetOpcode::G_LOAD: {
876     const auto &MMO = **MI.memoperands_begin();
877     Register DstReg = MI.getOperand(0).getReg();
878     LLT DstTy = MRI.getType(DstReg);
879     if (DstTy.isVector())
880       return UnableToLegalize;
881 
882     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
883       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
884       auto &MMO = **MI.memoperands_begin();
885       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
886       MIRBuilder.buildAnyExt(DstReg, TmpReg);
887       MI.eraseFromParent();
888       return Legalized;
889     }
890 
891     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
892   }
893   case TargetOpcode::G_ZEXTLOAD:
894   case TargetOpcode::G_SEXTLOAD: {
895     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
896     Register DstReg = MI.getOperand(0).getReg();
897     Register PtrReg = MI.getOperand(1).getReg();
898 
899     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
900     auto &MMO = **MI.memoperands_begin();
901     if (MMO.getSizeInBits() == NarrowSize) {
902       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
903     } else {
904       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
905     }
906 
907     if (ZExt)
908       MIRBuilder.buildZExt(DstReg, TmpReg);
909     else
910       MIRBuilder.buildSExt(DstReg, TmpReg);
911 
912     MI.eraseFromParent();
913     return Legalized;
914   }
915   case TargetOpcode::G_STORE: {
916     const auto &MMO = **MI.memoperands_begin();
917 
918     Register SrcReg = MI.getOperand(0).getReg();
919     LLT SrcTy = MRI.getType(SrcReg);
920     if (SrcTy.isVector())
921       return UnableToLegalize;
922 
923     int NumParts = SizeOp0 / NarrowSize;
924     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
925     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
926     if (SrcTy.isVector() && LeftoverBits != 0)
927       return UnableToLegalize;
928 
929     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
930       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
931       auto &MMO = **MI.memoperands_begin();
932       MIRBuilder.buildTrunc(TmpReg, SrcReg);
933       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
934       MI.eraseFromParent();
935       return Legalized;
936     }
937 
938     return reduceLoadStoreWidth(MI, 0, NarrowTy);
939   }
940   case TargetOpcode::G_SELECT:
941     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
942   case TargetOpcode::G_AND:
943   case TargetOpcode::G_OR:
944   case TargetOpcode::G_XOR: {
945     // Legalize bitwise operation:
946     // A = BinOp<Ty> B, C
947     // into:
948     // B1, ..., BN = G_UNMERGE_VALUES B
949     // C1, ..., CN = G_UNMERGE_VALUES C
950     // A1 = BinOp<Ty/N> B1, C2
951     // ...
952     // AN = BinOp<Ty/N> BN, CN
953     // A = G_MERGE_VALUES A1, ..., AN
954     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
955   }
956   case TargetOpcode::G_SHL:
957   case TargetOpcode::G_LSHR:
958   case TargetOpcode::G_ASHR:
959     return narrowScalarShift(MI, TypeIdx, NarrowTy);
960   case TargetOpcode::G_CTLZ:
961   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
962   case TargetOpcode::G_CTTZ:
963   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
964   case TargetOpcode::G_CTPOP:
965     if (TypeIdx == 1)
966       switch (MI.getOpcode()) {
967       case TargetOpcode::G_CTLZ:
968       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
969         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
970       case TargetOpcode::G_CTTZ:
971       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
972         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
973       case TargetOpcode::G_CTPOP:
974         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
975       default:
976         return UnableToLegalize;
977       }
978 
979     Observer.changingInstr(MI);
980     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
981     Observer.changedInstr(MI);
982     return Legalized;
983   case TargetOpcode::G_INTTOPTR:
984     if (TypeIdx != 1)
985       return UnableToLegalize;
986 
987     Observer.changingInstr(MI);
988     narrowScalarSrc(MI, NarrowTy, 1);
989     Observer.changedInstr(MI);
990     return Legalized;
991   case TargetOpcode::G_PTRTOINT:
992     if (TypeIdx != 0)
993       return UnableToLegalize;
994 
995     Observer.changingInstr(MI);
996     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
997     Observer.changedInstr(MI);
998     return Legalized;
999   case TargetOpcode::G_PHI: {
1000     unsigned NumParts = SizeOp0 / NarrowSize;
1001     SmallVector<Register, 2> DstRegs(NumParts);
1002     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1003     Observer.changingInstr(MI);
1004     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1005       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1006       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1007       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1008                    SrcRegs[i / 2]);
1009     }
1010     MachineBasicBlock &MBB = *MI.getParent();
1011     MIRBuilder.setInsertPt(MBB, MI);
1012     for (unsigned i = 0; i < NumParts; ++i) {
1013       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1014       MachineInstrBuilder MIB =
1015           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1016       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1017         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1018     }
1019     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1020     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1021     Observer.changedInstr(MI);
1022     MI.eraseFromParent();
1023     return Legalized;
1024   }
1025   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1026   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1027     if (TypeIdx != 2)
1028       return UnableToLegalize;
1029 
1030     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1031     Observer.changingInstr(MI);
1032     narrowScalarSrc(MI, NarrowTy, OpIdx);
1033     Observer.changedInstr(MI);
1034     return Legalized;
1035   }
1036   case TargetOpcode::G_ICMP: {
1037     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1038     if (NarrowSize * 2 != SrcSize)
1039       return UnableToLegalize;
1040 
1041     Observer.changingInstr(MI);
1042     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1043     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1044     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1045 
1046     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1047     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1048     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1049 
1050     CmpInst::Predicate Pred =
1051         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1052     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1053 
1054     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1055       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1056       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1057       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1058       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1059       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1060     } else {
1061       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1062       MachineInstrBuilder CmpHEQ =
1063           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1064       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1065           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1066       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1067     }
1068     Observer.changedInstr(MI);
1069     MI.eraseFromParent();
1070     return Legalized;
1071   }
1072   case TargetOpcode::G_SEXT_INREG: {
1073     if (TypeIdx != 0)
1074       return UnableToLegalize;
1075 
1076     int64_t SizeInBits = MI.getOperand(2).getImm();
1077 
1078     // So long as the new type has more bits than the bits we're extending we
1079     // don't need to break it apart.
1080     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1081       Observer.changingInstr(MI);
1082       // We don't lose any non-extension bits by truncating the src and
1083       // sign-extending the dst.
1084       MachineOperand &MO1 = MI.getOperand(1);
1085       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1086       MO1.setReg(TruncMIB.getReg(0));
1087 
1088       MachineOperand &MO2 = MI.getOperand(0);
1089       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1090       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1091       MIRBuilder.buildSExt(MO2, DstExt);
1092       MO2.setReg(DstExt);
1093       Observer.changedInstr(MI);
1094       return Legalized;
1095     }
1096 
1097     // Break it apart. Components below the extension point are unmodified. The
1098     // component containing the extension point becomes a narrower SEXT_INREG.
1099     // Components above it are ashr'd from the component containing the
1100     // extension point.
1101     if (SizeOp0 % NarrowSize != 0)
1102       return UnableToLegalize;
1103     int NumParts = SizeOp0 / NarrowSize;
1104 
1105     // List the registers where the destination will be scattered.
1106     SmallVector<Register, 2> DstRegs;
1107     // List the registers where the source will be split.
1108     SmallVector<Register, 2> SrcRegs;
1109 
1110     // Create all the temporary registers.
1111     for (int i = 0; i < NumParts; ++i) {
1112       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1113 
1114       SrcRegs.push_back(SrcReg);
1115     }
1116 
1117     // Explode the big arguments into smaller chunks.
1118     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1119 
1120     Register AshrCstReg =
1121         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1122             .getReg(0);
1123     Register FullExtensionReg = 0;
1124     Register PartialExtensionReg = 0;
1125 
1126     // Do the operation on each small part.
1127     for (int i = 0; i < NumParts; ++i) {
1128       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1129         DstRegs.push_back(SrcRegs[i]);
1130       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1131         assert(PartialExtensionReg &&
1132                "Expected to visit partial extension before full");
1133         if (FullExtensionReg) {
1134           DstRegs.push_back(FullExtensionReg);
1135           continue;
1136         }
1137         DstRegs.push_back(
1138             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1139                 .getReg(0));
1140         FullExtensionReg = DstRegs.back();
1141       } else {
1142         DstRegs.push_back(
1143             MIRBuilder
1144                 .buildInstr(
1145                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1146                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1147                 .getReg(0));
1148         PartialExtensionReg = DstRegs.back();
1149       }
1150     }
1151 
1152     // Gather the destination registers into the final destination.
1153     Register DstReg = MI.getOperand(0).getReg();
1154     MIRBuilder.buildMerge(DstReg, DstRegs);
1155     MI.eraseFromParent();
1156     return Legalized;
1157   }
1158   case TargetOpcode::G_BSWAP:
1159   case TargetOpcode::G_BITREVERSE: {
1160     if (SizeOp0 % NarrowSize != 0)
1161       return UnableToLegalize;
1162 
1163     Observer.changingInstr(MI);
1164     SmallVector<Register, 2> SrcRegs, DstRegs;
1165     unsigned NumParts = SizeOp0 / NarrowSize;
1166     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1167 
1168     for (unsigned i = 0; i < NumParts; ++i) {
1169       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1170                                            {SrcRegs[NumParts - 1 - i]});
1171       DstRegs.push_back(DstPart.getReg(0));
1172     }
1173 
1174     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1175 
1176     Observer.changedInstr(MI);
1177     MI.eraseFromParent();
1178     return Legalized;
1179   }
1180   }
1181 }
1182 
1183 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1184                                      unsigned OpIdx, unsigned ExtOpcode) {
1185   MachineOperand &MO = MI.getOperand(OpIdx);
1186   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1187   MO.setReg(ExtB.getReg(0));
1188 }
1189 
1190 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1191                                       unsigned OpIdx) {
1192   MachineOperand &MO = MI.getOperand(OpIdx);
1193   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1194   MO.setReg(ExtB.getReg(0));
1195 }
1196 
1197 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1198                                      unsigned OpIdx, unsigned TruncOpcode) {
1199   MachineOperand &MO = MI.getOperand(OpIdx);
1200   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1201   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1202   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1203   MO.setReg(DstExt);
1204 }
1205 
1206 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1207                                       unsigned OpIdx, unsigned ExtOpcode) {
1208   MachineOperand &MO = MI.getOperand(OpIdx);
1209   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1210   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1211   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1212   MO.setReg(DstTrunc);
1213 }
1214 
1215 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1216                                             unsigned OpIdx) {
1217   MachineOperand &MO = MI.getOperand(OpIdx);
1218   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1219   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1220   MIRBuilder.buildExtract(MO, DstExt, 0);
1221   MO.setReg(DstExt);
1222 }
1223 
1224 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1225                                             unsigned OpIdx) {
1226   MachineOperand &MO = MI.getOperand(OpIdx);
1227 
1228   LLT OldTy = MRI.getType(MO.getReg());
1229   unsigned OldElts = OldTy.getNumElements();
1230   unsigned NewElts = MoreTy.getNumElements();
1231 
1232   unsigned NumParts = NewElts / OldElts;
1233 
1234   // Use concat_vectors if the result is a multiple of the number of elements.
1235   if (NumParts * OldElts == NewElts) {
1236     SmallVector<Register, 8> Parts;
1237     Parts.push_back(MO.getReg());
1238 
1239     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1240     for (unsigned I = 1; I != NumParts; ++I)
1241       Parts.push_back(ImpDef);
1242 
1243     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1244     MO.setReg(Concat.getReg(0));
1245     return;
1246   }
1247 
1248   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1249   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1250   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1251   MO.setReg(MoreReg);
1252 }
1253 
1254 LegalizerHelper::LegalizeResult
1255 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1256                                         LLT WideTy) {
1257   if (TypeIdx != 1)
1258     return UnableToLegalize;
1259 
1260   Register DstReg = MI.getOperand(0).getReg();
1261   LLT DstTy = MRI.getType(DstReg);
1262   if (DstTy.isVector())
1263     return UnableToLegalize;
1264 
1265   Register Src1 = MI.getOperand(1).getReg();
1266   LLT SrcTy = MRI.getType(Src1);
1267   const int DstSize = DstTy.getSizeInBits();
1268   const int SrcSize = SrcTy.getSizeInBits();
1269   const int WideSize = WideTy.getSizeInBits();
1270   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1271 
1272   unsigned NumOps = MI.getNumOperands();
1273   unsigned NumSrc = MI.getNumOperands() - 1;
1274   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1275 
1276   if (WideSize >= DstSize) {
1277     // Directly pack the bits in the target type.
1278     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1279 
1280     for (unsigned I = 2; I != NumOps; ++I) {
1281       const unsigned Offset = (I - 1) * PartSize;
1282 
1283       Register SrcReg = MI.getOperand(I).getReg();
1284       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1285 
1286       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1287 
1288       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1289         MRI.createGenericVirtualRegister(WideTy);
1290 
1291       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1292       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1293       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1294       ResultReg = NextResult;
1295     }
1296 
1297     if (WideSize > DstSize)
1298       MIRBuilder.buildTrunc(DstReg, ResultReg);
1299     else if (DstTy.isPointer())
1300       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1301 
1302     MI.eraseFromParent();
1303     return Legalized;
1304   }
1305 
1306   // Unmerge the original values to the GCD type, and recombine to the next
1307   // multiple greater than the original type.
1308   //
1309   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1310   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1311   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1312   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1313   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1314   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1315   // %12:_(s12) = G_MERGE_VALUES %10, %11
1316   //
1317   // Padding with undef if necessary:
1318   //
1319   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1320   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1321   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1322   // %7:_(s2) = G_IMPLICIT_DEF
1323   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1324   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1325   // %10:_(s12) = G_MERGE_VALUES %8, %9
1326 
1327   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1328   LLT GCDTy = LLT::scalar(GCD);
1329 
1330   SmallVector<Register, 8> Parts;
1331   SmallVector<Register, 8> NewMergeRegs;
1332   SmallVector<Register, 8> Unmerges;
1333   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1334 
1335   // Decompose the original operands if they don't evenly divide.
1336   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1337     Register SrcReg = MI.getOperand(I).getReg();
1338     if (GCD == SrcSize) {
1339       Unmerges.push_back(SrcReg);
1340     } else {
1341       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1342       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1343         Unmerges.push_back(Unmerge.getReg(J));
1344     }
1345   }
1346 
1347   // Pad with undef to the next size that is a multiple of the requested size.
1348   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1349     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1350     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1351       Unmerges.push_back(UndefReg);
1352   }
1353 
1354   const int PartsPerGCD = WideSize / GCD;
1355 
1356   // Build merges of each piece.
1357   ArrayRef<Register> Slicer(Unmerges);
1358   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1359     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1360     NewMergeRegs.push_back(Merge.getReg(0));
1361   }
1362 
1363   // A truncate may be necessary if the requested type doesn't evenly divide the
1364   // original result type.
1365   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1366     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1367   } else {
1368     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1369     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1370   }
1371 
1372   MI.eraseFromParent();
1373   return Legalized;
1374 }
1375 
1376 LegalizerHelper::LegalizeResult
1377 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1378                                           LLT WideTy) {
1379   if (TypeIdx != 0)
1380     return UnableToLegalize;
1381 
1382   int NumDst = MI.getNumOperands() - 1;
1383   Register SrcReg = MI.getOperand(NumDst).getReg();
1384   LLT SrcTy = MRI.getType(SrcReg);
1385   if (SrcTy.isVector())
1386     return UnableToLegalize;
1387 
1388   Register Dst0Reg = MI.getOperand(0).getReg();
1389   LLT DstTy = MRI.getType(Dst0Reg);
1390   if (!DstTy.isScalar())
1391     return UnableToLegalize;
1392 
1393   if (WideTy.getSizeInBits() == SrcTy.getSizeInBits()) {
1394     if (SrcTy.isPointer()) {
1395       const DataLayout &DL = MIRBuilder.getDataLayout();
1396       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1397         LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
1398         return UnableToLegalize;
1399       }
1400 
1401       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1402       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1403     }
1404 
1405     // Theres no unmerge type to target. Directly extract the bits from the
1406     // source type
1407     unsigned DstSize = DstTy.getSizeInBits();
1408 
1409     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1410     for (int I = 1; I != NumDst; ++I) {
1411       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1412       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1413       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1414     }
1415 
1416     MI.eraseFromParent();
1417     return Legalized;
1418   }
1419 
1420   // TODO
1421   if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1422     return UnableToLegalize;
1423 
1424   // Extend the source to a wider type.
1425   LLT LCMTy = getLCMType(SrcTy, WideTy);
1426 
1427   Register WideSrc = SrcReg;
1428   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1429     // TODO: If this is an integral address space, cast to integer and anyext.
1430     if (SrcTy.isPointer()) {
1431       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1432       return UnableToLegalize;
1433     }
1434 
1435     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1436   }
1437 
1438   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1439 
1440   // Create a sequence of unmerges to the original results. since we may have
1441   // widened the source, we will need to pad the results with dead defs to cover
1442   // the source register.
1443   // e.g. widen s16 to s32:
1444   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1445   //
1446   // =>
1447   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1448   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1449   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1450   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1451 
1452   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1453   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1454 
1455   for (int I = 0; I != NumUnmerge; ++I) {
1456     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1457 
1458     for (int J = 0; J != PartsPerUnmerge; ++J) {
1459       int Idx = I * PartsPerUnmerge + J;
1460       if (Idx < NumDst)
1461         MIB.addDef(MI.getOperand(Idx).getReg());
1462       else {
1463         // Create dead def for excess components.
1464         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1465       }
1466     }
1467 
1468     MIB.addUse(Unmerge.getReg(I));
1469   }
1470 
1471   MI.eraseFromParent();
1472   return Legalized;
1473 }
1474 
1475 LegalizerHelper::LegalizeResult
1476 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1477                                     LLT WideTy) {
1478   Register DstReg = MI.getOperand(0).getReg();
1479   Register SrcReg = MI.getOperand(1).getReg();
1480   LLT SrcTy = MRI.getType(SrcReg);
1481 
1482   LLT DstTy = MRI.getType(DstReg);
1483   unsigned Offset = MI.getOperand(2).getImm();
1484 
1485   if (TypeIdx == 0) {
1486     if (SrcTy.isVector() || DstTy.isVector())
1487       return UnableToLegalize;
1488 
1489     SrcOp Src(SrcReg);
1490     if (SrcTy.isPointer()) {
1491       // Extracts from pointers can be handled only if they are really just
1492       // simple integers.
1493       const DataLayout &DL = MIRBuilder.getDataLayout();
1494       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1495         return UnableToLegalize;
1496 
1497       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1498       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1499       SrcTy = SrcAsIntTy;
1500     }
1501 
1502     if (DstTy.isPointer())
1503       return UnableToLegalize;
1504 
1505     if (Offset == 0) {
1506       // Avoid a shift in the degenerate case.
1507       MIRBuilder.buildTrunc(DstReg,
1508                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1509       MI.eraseFromParent();
1510       return Legalized;
1511     }
1512 
1513     // Do a shift in the source type.
1514     LLT ShiftTy = SrcTy;
1515     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1516       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1517       ShiftTy = WideTy;
1518     } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits())
1519       return UnableToLegalize;
1520 
1521     auto LShr = MIRBuilder.buildLShr(
1522       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1523     MIRBuilder.buildTrunc(DstReg, LShr);
1524     MI.eraseFromParent();
1525     return Legalized;
1526   }
1527 
1528   if (SrcTy.isScalar()) {
1529     Observer.changingInstr(MI);
1530     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1531     Observer.changedInstr(MI);
1532     return Legalized;
1533   }
1534 
1535   if (!SrcTy.isVector())
1536     return UnableToLegalize;
1537 
1538   if (DstTy != SrcTy.getElementType())
1539     return UnableToLegalize;
1540 
1541   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1542     return UnableToLegalize;
1543 
1544   Observer.changingInstr(MI);
1545   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1546 
1547   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1548                           Offset);
1549   widenScalarDst(MI, WideTy.getScalarType(), 0);
1550   Observer.changedInstr(MI);
1551   return Legalized;
1552 }
1553 
1554 LegalizerHelper::LegalizeResult
1555 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1556                                    LLT WideTy) {
1557   if (TypeIdx != 0)
1558     return UnableToLegalize;
1559   Observer.changingInstr(MI);
1560   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1561   widenScalarDst(MI, WideTy);
1562   Observer.changedInstr(MI);
1563   return Legalized;
1564 }
1565 
1566 LegalizerHelper::LegalizeResult
1567 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1568   MIRBuilder.setInstr(MI);
1569 
1570   switch (MI.getOpcode()) {
1571   default:
1572     return UnableToLegalize;
1573   case TargetOpcode::G_EXTRACT:
1574     return widenScalarExtract(MI, TypeIdx, WideTy);
1575   case TargetOpcode::G_INSERT:
1576     return widenScalarInsert(MI, TypeIdx, WideTy);
1577   case TargetOpcode::G_MERGE_VALUES:
1578     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1579   case TargetOpcode::G_UNMERGE_VALUES:
1580     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1581   case TargetOpcode::G_UADDO:
1582   case TargetOpcode::G_USUBO: {
1583     if (TypeIdx == 1)
1584       return UnableToLegalize; // TODO
1585     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1586     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1587     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1588                           ? TargetOpcode::G_ADD
1589                           : TargetOpcode::G_SUB;
1590     // Do the arithmetic in the larger type.
1591     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1592     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1593     APInt Mask =
1594         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1595     auto AndOp = MIRBuilder.buildAnd(
1596         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1597     // There is no overflow if the AndOp is the same as NewOp.
1598     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1599     // Now trunc the NewOp to the original result.
1600     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1601     MI.eraseFromParent();
1602     return Legalized;
1603   }
1604   case TargetOpcode::G_CTTZ:
1605   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1606   case TargetOpcode::G_CTLZ:
1607   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1608   case TargetOpcode::G_CTPOP: {
1609     if (TypeIdx == 0) {
1610       Observer.changingInstr(MI);
1611       widenScalarDst(MI, WideTy, 0);
1612       Observer.changedInstr(MI);
1613       return Legalized;
1614     }
1615 
1616     Register SrcReg = MI.getOperand(1).getReg();
1617 
1618     // First ZEXT the input.
1619     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1620     LLT CurTy = MRI.getType(SrcReg);
1621     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1622       // The count is the same in the larger type except if the original
1623       // value was zero.  This can be handled by setting the bit just off
1624       // the top of the original type.
1625       auto TopBit =
1626           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1627       MIBSrc = MIRBuilder.buildOr(
1628         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1629     }
1630 
1631     // Perform the operation at the larger size.
1632     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1633     // This is already the correct result for CTPOP and CTTZs
1634     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1635         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1636       // The correct result is NewOp - (Difference in widety and current ty).
1637       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1638       MIBNewOp = MIRBuilder.buildSub(
1639           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1640     }
1641 
1642     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1643     MI.eraseFromParent();
1644     return Legalized;
1645   }
1646   case TargetOpcode::G_BSWAP: {
1647     Observer.changingInstr(MI);
1648     Register DstReg = MI.getOperand(0).getReg();
1649 
1650     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1651     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1652     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1653     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1654 
1655     MI.getOperand(0).setReg(DstExt);
1656 
1657     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1658 
1659     LLT Ty = MRI.getType(DstReg);
1660     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1661     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1662     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1663 
1664     MIRBuilder.buildTrunc(DstReg, ShrReg);
1665     Observer.changedInstr(MI);
1666     return Legalized;
1667   }
1668   case TargetOpcode::G_BITREVERSE: {
1669     Observer.changingInstr(MI);
1670 
1671     Register DstReg = MI.getOperand(0).getReg();
1672     LLT Ty = MRI.getType(DstReg);
1673     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1674 
1675     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1676     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1677     MI.getOperand(0).setReg(DstExt);
1678     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1679 
1680     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1681     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1682     MIRBuilder.buildTrunc(DstReg, Shift);
1683     Observer.changedInstr(MI);
1684     return Legalized;
1685   }
1686   case TargetOpcode::G_ADD:
1687   case TargetOpcode::G_AND:
1688   case TargetOpcode::G_MUL:
1689   case TargetOpcode::G_OR:
1690   case TargetOpcode::G_XOR:
1691   case TargetOpcode::G_SUB:
1692     // Perform operation at larger width (any extension is fines here, high bits
1693     // don't affect the result) and then truncate the result back to the
1694     // original type.
1695     Observer.changingInstr(MI);
1696     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1697     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1698     widenScalarDst(MI, WideTy);
1699     Observer.changedInstr(MI);
1700     return Legalized;
1701 
1702   case TargetOpcode::G_SHL:
1703     Observer.changingInstr(MI);
1704 
1705     if (TypeIdx == 0) {
1706       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1707       widenScalarDst(MI, WideTy);
1708     } else {
1709       assert(TypeIdx == 1);
1710       // The "number of bits to shift" operand must preserve its value as an
1711       // unsigned integer:
1712       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1713     }
1714 
1715     Observer.changedInstr(MI);
1716     return Legalized;
1717 
1718   case TargetOpcode::G_SDIV:
1719   case TargetOpcode::G_SREM:
1720   case TargetOpcode::G_SMIN:
1721   case TargetOpcode::G_SMAX:
1722     Observer.changingInstr(MI);
1723     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1724     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1725     widenScalarDst(MI, WideTy);
1726     Observer.changedInstr(MI);
1727     return Legalized;
1728 
1729   case TargetOpcode::G_ASHR:
1730   case TargetOpcode::G_LSHR:
1731     Observer.changingInstr(MI);
1732 
1733     if (TypeIdx == 0) {
1734       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1735         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1736 
1737       widenScalarSrc(MI, WideTy, 1, CvtOp);
1738       widenScalarDst(MI, WideTy);
1739     } else {
1740       assert(TypeIdx == 1);
1741       // The "number of bits to shift" operand must preserve its value as an
1742       // unsigned integer:
1743       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1744     }
1745 
1746     Observer.changedInstr(MI);
1747     return Legalized;
1748   case TargetOpcode::G_UDIV:
1749   case TargetOpcode::G_UREM:
1750   case TargetOpcode::G_UMIN:
1751   case TargetOpcode::G_UMAX:
1752     Observer.changingInstr(MI);
1753     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1754     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1755     widenScalarDst(MI, WideTy);
1756     Observer.changedInstr(MI);
1757     return Legalized;
1758 
1759   case TargetOpcode::G_SELECT:
1760     Observer.changingInstr(MI);
1761     if (TypeIdx == 0) {
1762       // Perform operation at larger width (any extension is fine here, high
1763       // bits don't affect the result) and then truncate the result back to the
1764       // original type.
1765       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1766       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1767       widenScalarDst(MI, WideTy);
1768     } else {
1769       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1770       // Explicit extension is required here since high bits affect the result.
1771       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1772     }
1773     Observer.changedInstr(MI);
1774     return Legalized;
1775 
1776   case TargetOpcode::G_FPTOSI:
1777   case TargetOpcode::G_FPTOUI:
1778     Observer.changingInstr(MI);
1779 
1780     if (TypeIdx == 0)
1781       widenScalarDst(MI, WideTy);
1782     else
1783       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1784 
1785     Observer.changedInstr(MI);
1786     return Legalized;
1787   case TargetOpcode::G_SITOFP:
1788     if (TypeIdx != 1)
1789       return UnableToLegalize;
1790     Observer.changingInstr(MI);
1791     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1792     Observer.changedInstr(MI);
1793     return Legalized;
1794 
1795   case TargetOpcode::G_UITOFP:
1796     if (TypeIdx != 1)
1797       return UnableToLegalize;
1798     Observer.changingInstr(MI);
1799     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1800     Observer.changedInstr(MI);
1801     return Legalized;
1802 
1803   case TargetOpcode::G_LOAD:
1804   case TargetOpcode::G_SEXTLOAD:
1805   case TargetOpcode::G_ZEXTLOAD:
1806     Observer.changingInstr(MI);
1807     widenScalarDst(MI, WideTy);
1808     Observer.changedInstr(MI);
1809     return Legalized;
1810 
1811   case TargetOpcode::G_STORE: {
1812     if (TypeIdx != 0)
1813       return UnableToLegalize;
1814 
1815     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1816     if (!isPowerOf2_32(Ty.getSizeInBits()))
1817       return UnableToLegalize;
1818 
1819     Observer.changingInstr(MI);
1820 
1821     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
1822       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
1823     widenScalarSrc(MI, WideTy, 0, ExtType);
1824 
1825     Observer.changedInstr(MI);
1826     return Legalized;
1827   }
1828   case TargetOpcode::G_CONSTANT: {
1829     MachineOperand &SrcMO = MI.getOperand(1);
1830     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1831     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
1832         MRI.getType(MI.getOperand(0).getReg()));
1833     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
1834             ExtOpc == TargetOpcode::G_ANYEXT) &&
1835            "Illegal Extend");
1836     const APInt &SrcVal = SrcMO.getCImm()->getValue();
1837     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
1838                            ? SrcVal.sext(WideTy.getSizeInBits())
1839                            : SrcVal.zext(WideTy.getSizeInBits());
1840     Observer.changingInstr(MI);
1841     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
1842 
1843     widenScalarDst(MI, WideTy);
1844     Observer.changedInstr(MI);
1845     return Legalized;
1846   }
1847   case TargetOpcode::G_FCONSTANT: {
1848     MachineOperand &SrcMO = MI.getOperand(1);
1849     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
1850     APFloat Val = SrcMO.getFPImm()->getValueAPF();
1851     bool LosesInfo;
1852     switch (WideTy.getSizeInBits()) {
1853     case 32:
1854       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1855                   &LosesInfo);
1856       break;
1857     case 64:
1858       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1859                   &LosesInfo);
1860       break;
1861     default:
1862       return UnableToLegalize;
1863     }
1864 
1865     assert(!LosesInfo && "extend should always be lossless");
1866 
1867     Observer.changingInstr(MI);
1868     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
1869 
1870     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1871     Observer.changedInstr(MI);
1872     return Legalized;
1873   }
1874   case TargetOpcode::G_IMPLICIT_DEF: {
1875     Observer.changingInstr(MI);
1876     widenScalarDst(MI, WideTy);
1877     Observer.changedInstr(MI);
1878     return Legalized;
1879   }
1880   case TargetOpcode::G_BRCOND:
1881     Observer.changingInstr(MI);
1882     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
1883     Observer.changedInstr(MI);
1884     return Legalized;
1885 
1886   case TargetOpcode::G_FCMP:
1887     Observer.changingInstr(MI);
1888     if (TypeIdx == 0)
1889       widenScalarDst(MI, WideTy);
1890     else {
1891       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
1892       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
1893     }
1894     Observer.changedInstr(MI);
1895     return Legalized;
1896 
1897   case TargetOpcode::G_ICMP:
1898     Observer.changingInstr(MI);
1899     if (TypeIdx == 0)
1900       widenScalarDst(MI, WideTy);
1901     else {
1902       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
1903                                MI.getOperand(1).getPredicate()))
1904                                ? TargetOpcode::G_SEXT
1905                                : TargetOpcode::G_ZEXT;
1906       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
1907       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
1908     }
1909     Observer.changedInstr(MI);
1910     return Legalized;
1911 
1912   case TargetOpcode::G_PTR_ADD:
1913     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
1914     Observer.changingInstr(MI);
1915     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1916     Observer.changedInstr(MI);
1917     return Legalized;
1918 
1919   case TargetOpcode::G_PHI: {
1920     assert(TypeIdx == 0 && "Expecting only Idx 0");
1921 
1922     Observer.changingInstr(MI);
1923     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
1924       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
1925       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1926       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
1927     }
1928 
1929     MachineBasicBlock &MBB = *MI.getParent();
1930     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
1931     widenScalarDst(MI, WideTy);
1932     Observer.changedInstr(MI);
1933     return Legalized;
1934   }
1935   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1936     if (TypeIdx == 0) {
1937       Register VecReg = MI.getOperand(1).getReg();
1938       LLT VecTy = MRI.getType(VecReg);
1939       Observer.changingInstr(MI);
1940 
1941       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
1942                                      WideTy.getSizeInBits()),
1943                      1, TargetOpcode::G_SEXT);
1944 
1945       widenScalarDst(MI, WideTy, 0);
1946       Observer.changedInstr(MI);
1947       return Legalized;
1948     }
1949 
1950     if (TypeIdx != 2)
1951       return UnableToLegalize;
1952     Observer.changingInstr(MI);
1953     // TODO: Probably should be zext
1954     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1955     Observer.changedInstr(MI);
1956     return Legalized;
1957   }
1958   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1959     if (TypeIdx == 1) {
1960       Observer.changingInstr(MI);
1961 
1962       Register VecReg = MI.getOperand(1).getReg();
1963       LLT VecTy = MRI.getType(VecReg);
1964       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
1965 
1966       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
1967       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1968       widenScalarDst(MI, WideVecTy, 0);
1969       Observer.changedInstr(MI);
1970       return Legalized;
1971     }
1972 
1973     if (TypeIdx == 2) {
1974       Observer.changingInstr(MI);
1975       // TODO: Probably should be zext
1976       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
1977       Observer.changedInstr(MI);
1978     }
1979 
1980     return Legalized;
1981   }
1982   case TargetOpcode::G_FADD:
1983   case TargetOpcode::G_FMUL:
1984   case TargetOpcode::G_FSUB:
1985   case TargetOpcode::G_FMA:
1986   case TargetOpcode::G_FMAD:
1987   case TargetOpcode::G_FNEG:
1988   case TargetOpcode::G_FABS:
1989   case TargetOpcode::G_FCANONICALIZE:
1990   case TargetOpcode::G_FMINNUM:
1991   case TargetOpcode::G_FMAXNUM:
1992   case TargetOpcode::G_FMINNUM_IEEE:
1993   case TargetOpcode::G_FMAXNUM_IEEE:
1994   case TargetOpcode::G_FMINIMUM:
1995   case TargetOpcode::G_FMAXIMUM:
1996   case TargetOpcode::G_FDIV:
1997   case TargetOpcode::G_FREM:
1998   case TargetOpcode::G_FCEIL:
1999   case TargetOpcode::G_FFLOOR:
2000   case TargetOpcode::G_FCOS:
2001   case TargetOpcode::G_FSIN:
2002   case TargetOpcode::G_FLOG10:
2003   case TargetOpcode::G_FLOG:
2004   case TargetOpcode::G_FLOG2:
2005   case TargetOpcode::G_FRINT:
2006   case TargetOpcode::G_FNEARBYINT:
2007   case TargetOpcode::G_FSQRT:
2008   case TargetOpcode::G_FEXP:
2009   case TargetOpcode::G_FEXP2:
2010   case TargetOpcode::G_FPOW:
2011   case TargetOpcode::G_INTRINSIC_TRUNC:
2012   case TargetOpcode::G_INTRINSIC_ROUND:
2013     assert(TypeIdx == 0);
2014     Observer.changingInstr(MI);
2015 
2016     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2017       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2018 
2019     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2020     Observer.changedInstr(MI);
2021     return Legalized;
2022   case TargetOpcode::G_INTTOPTR:
2023     if (TypeIdx != 1)
2024       return UnableToLegalize;
2025 
2026     Observer.changingInstr(MI);
2027     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2028     Observer.changedInstr(MI);
2029     return Legalized;
2030   case TargetOpcode::G_PTRTOINT:
2031     if (TypeIdx != 0)
2032       return UnableToLegalize;
2033 
2034     Observer.changingInstr(MI);
2035     widenScalarDst(MI, WideTy, 0);
2036     Observer.changedInstr(MI);
2037     return Legalized;
2038   case TargetOpcode::G_BUILD_VECTOR: {
2039     Observer.changingInstr(MI);
2040 
2041     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2042     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2043       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2044 
2045     // Avoid changing the result vector type if the source element type was
2046     // requested.
2047     if (TypeIdx == 1) {
2048       auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
2049       MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2050     } else {
2051       widenScalarDst(MI, WideTy, 0);
2052     }
2053 
2054     Observer.changedInstr(MI);
2055     return Legalized;
2056   }
2057   case TargetOpcode::G_SEXT_INREG:
2058     if (TypeIdx != 0)
2059       return UnableToLegalize;
2060 
2061     Observer.changingInstr(MI);
2062     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2063     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2064     Observer.changedInstr(MI);
2065     return Legalized;
2066   }
2067 }
2068 
2069 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2070                              MachineIRBuilder &B, Register Src, LLT Ty) {
2071   auto Unmerge = B.buildUnmerge(Ty, Src);
2072   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2073     Pieces.push_back(Unmerge.getReg(I));
2074 }
2075 
2076 LegalizerHelper::LegalizeResult
2077 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2078   Register Dst = MI.getOperand(0).getReg();
2079   Register Src = MI.getOperand(1).getReg();
2080   LLT DstTy = MRI.getType(Dst);
2081   LLT SrcTy = MRI.getType(Src);
2082 
2083   if (SrcTy.isVector() && !DstTy.isVector()) {
2084     SmallVector<Register, 8> SrcRegs;
2085     getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcTy.getElementType());
2086     MIRBuilder.buildMerge(Dst, SrcRegs);
2087     MI.eraseFromParent();
2088     return Legalized;
2089   }
2090 
2091   if (DstTy.isVector() && !SrcTy.isVector()) {
2092     SmallVector<Register, 8> SrcRegs;
2093     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2094     MIRBuilder.buildMerge(Dst, SrcRegs);
2095     MI.eraseFromParent();
2096     return Legalized;
2097   }
2098 
2099   return UnableToLegalize;
2100 }
2101 
2102 LegalizerHelper::LegalizeResult
2103 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2104   using namespace TargetOpcode;
2105   MIRBuilder.setInstr(MI);
2106 
2107   switch(MI.getOpcode()) {
2108   default:
2109     return UnableToLegalize;
2110   case TargetOpcode::G_BITCAST:
2111     return lowerBitcast(MI);
2112   case TargetOpcode::G_SREM:
2113   case TargetOpcode::G_UREM: {
2114     auto Quot =
2115         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2116                               {MI.getOperand(1), MI.getOperand(2)});
2117 
2118     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2119     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2120     MI.eraseFromParent();
2121     return Legalized;
2122   }
2123   case TargetOpcode::G_SADDO:
2124   case TargetOpcode::G_SSUBO:
2125     return lowerSADDO_SSUBO(MI);
2126   case TargetOpcode::G_SMULO:
2127   case TargetOpcode::G_UMULO: {
2128     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2129     // result.
2130     Register Res = MI.getOperand(0).getReg();
2131     Register Overflow = MI.getOperand(1).getReg();
2132     Register LHS = MI.getOperand(2).getReg();
2133     Register RHS = MI.getOperand(3).getReg();
2134 
2135     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2136                           ? TargetOpcode::G_SMULH
2137                           : TargetOpcode::G_UMULH;
2138 
2139     Observer.changingInstr(MI);
2140     const auto &TII = MIRBuilder.getTII();
2141     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2142     MI.RemoveOperand(1);
2143     Observer.changedInstr(MI);
2144 
2145     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2146 
2147     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2148     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2149 
2150     // For *signed* multiply, overflow is detected by checking:
2151     // (hi != (lo >> bitwidth-1))
2152     if (Opcode == TargetOpcode::G_SMULH) {
2153       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2154       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2155       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2156     } else {
2157       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2158     }
2159     return Legalized;
2160   }
2161   case TargetOpcode::G_FNEG: {
2162     // TODO: Handle vector types once we are able to
2163     // represent them.
2164     if (Ty.isVector())
2165       return UnableToLegalize;
2166     Register Res = MI.getOperand(0).getReg();
2167     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2168     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2169     if (!ZeroTy)
2170       return UnableToLegalize;
2171     ConstantFP &ZeroForNegation =
2172         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2173     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2174     Register SubByReg = MI.getOperand(1).getReg();
2175     Register ZeroReg = Zero.getReg(0);
2176     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2177     MI.eraseFromParent();
2178     return Legalized;
2179   }
2180   case TargetOpcode::G_FSUB: {
2181     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2182     // First, check if G_FNEG is marked as Lower. If so, we may
2183     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2184     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2185       return UnableToLegalize;
2186     Register Res = MI.getOperand(0).getReg();
2187     Register LHS = MI.getOperand(1).getReg();
2188     Register RHS = MI.getOperand(2).getReg();
2189     Register Neg = MRI.createGenericVirtualRegister(Ty);
2190     MIRBuilder.buildFNeg(Neg, RHS);
2191     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2192     MI.eraseFromParent();
2193     return Legalized;
2194   }
2195   case TargetOpcode::G_FMAD:
2196     return lowerFMad(MI);
2197   case TargetOpcode::G_INTRINSIC_ROUND:
2198     return lowerIntrinsicRound(MI);
2199   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2200     Register OldValRes = MI.getOperand(0).getReg();
2201     Register SuccessRes = MI.getOperand(1).getReg();
2202     Register Addr = MI.getOperand(2).getReg();
2203     Register CmpVal = MI.getOperand(3).getReg();
2204     Register NewVal = MI.getOperand(4).getReg();
2205     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2206                                   **MI.memoperands_begin());
2207     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2208     MI.eraseFromParent();
2209     return Legalized;
2210   }
2211   case TargetOpcode::G_LOAD:
2212   case TargetOpcode::G_SEXTLOAD:
2213   case TargetOpcode::G_ZEXTLOAD: {
2214     // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2215     Register DstReg = MI.getOperand(0).getReg();
2216     Register PtrReg = MI.getOperand(1).getReg();
2217     LLT DstTy = MRI.getType(DstReg);
2218     auto &MMO = **MI.memoperands_begin();
2219 
2220     if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2221       if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2222         // This load needs splitting into power of 2 sized loads.
2223         if (DstTy.isVector())
2224           return UnableToLegalize;
2225         if (isPowerOf2_32(DstTy.getSizeInBits()))
2226           return UnableToLegalize; // Don't know what we're being asked to do.
2227 
2228         // Our strategy here is to generate anyextending loads for the smaller
2229         // types up to next power-2 result type, and then combine the two larger
2230         // result values together, before truncating back down to the non-pow-2
2231         // type.
2232         // E.g. v1 = i24 load =>
2233         // v2 = i32 zextload (2 byte)
2234         // v3 = i32 load (1 byte)
2235         // v4 = i32 shl v3, 16
2236         // v5 = i32 or v4, v2
2237         // v1 = i24 trunc v5
2238         // By doing this we generate the correct truncate which should get
2239         // combined away as an artifact with a matching extend.
2240         uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2241         uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2242 
2243         MachineFunction &MF = MIRBuilder.getMF();
2244         MachineMemOperand *LargeMMO =
2245             MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2246         MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2247             &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2248 
2249         LLT PtrTy = MRI.getType(PtrReg);
2250         unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2251         LLT AnyExtTy = LLT::scalar(AnyExtSize);
2252         Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2253         Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2254         auto LargeLoad = MIRBuilder.buildLoadInstr(
2255             TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2256 
2257         auto OffsetCst = MIRBuilder.buildConstant(
2258             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2259         Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2260         auto SmallPtr =
2261             MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2262         auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2263                                               *SmallMMO);
2264 
2265         auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2266         auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2267         auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2268         MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2269         MI.eraseFromParent();
2270         return Legalized;
2271       }
2272       MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2273       MI.eraseFromParent();
2274       return Legalized;
2275     }
2276 
2277     if (DstTy.isScalar()) {
2278       Register TmpReg =
2279           MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2280       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2281       switch (MI.getOpcode()) {
2282       default:
2283         llvm_unreachable("Unexpected opcode");
2284       case TargetOpcode::G_LOAD:
2285         MIRBuilder.buildExtOrTrunc(TargetOpcode::G_ANYEXT, DstReg, TmpReg);
2286         break;
2287       case TargetOpcode::G_SEXTLOAD:
2288         MIRBuilder.buildSExt(DstReg, TmpReg);
2289         break;
2290       case TargetOpcode::G_ZEXTLOAD:
2291         MIRBuilder.buildZExt(DstReg, TmpReg);
2292         break;
2293       }
2294       MI.eraseFromParent();
2295       return Legalized;
2296     }
2297 
2298     return UnableToLegalize;
2299   }
2300   case TargetOpcode::G_STORE: {
2301     // Lower a non-power of 2 store into multiple pow-2 stores.
2302     // E.g. split an i24 store into an i16 store + i8 store.
2303     // We do this by first extending the stored value to the next largest power
2304     // of 2 type, and then using truncating stores to store the components.
2305     // By doing this, likewise with G_LOAD, generate an extend that can be
2306     // artifact-combined away instead of leaving behind extracts.
2307     Register SrcReg = MI.getOperand(0).getReg();
2308     Register PtrReg = MI.getOperand(1).getReg();
2309     LLT SrcTy = MRI.getType(SrcReg);
2310     MachineMemOperand &MMO = **MI.memoperands_begin();
2311     if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2312       return UnableToLegalize;
2313     if (SrcTy.isVector())
2314       return UnableToLegalize;
2315     if (isPowerOf2_32(SrcTy.getSizeInBits()))
2316       return UnableToLegalize; // Don't know what we're being asked to do.
2317 
2318     // Extend to the next pow-2.
2319     const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2320     auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2321 
2322     // Obtain the smaller value by shifting away the larger value.
2323     uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2324     uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2325     auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2326     auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2327 
2328     // Generate the PtrAdd and truncating stores.
2329     LLT PtrTy = MRI.getType(PtrReg);
2330     auto OffsetCst = MIRBuilder.buildConstant(
2331             LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2332     Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2333     auto SmallPtr =
2334         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2335 
2336     MachineFunction &MF = MIRBuilder.getMF();
2337     MachineMemOperand *LargeMMO =
2338         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2339     MachineMemOperand *SmallMMO =
2340         MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2341     MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2342     MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2343     MI.eraseFromParent();
2344     return Legalized;
2345   }
2346   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2347   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2348   case TargetOpcode::G_CTLZ:
2349   case TargetOpcode::G_CTTZ:
2350   case TargetOpcode::G_CTPOP:
2351     return lowerBitCount(MI, TypeIdx, Ty);
2352   case G_UADDO: {
2353     Register Res = MI.getOperand(0).getReg();
2354     Register CarryOut = MI.getOperand(1).getReg();
2355     Register LHS = MI.getOperand(2).getReg();
2356     Register RHS = MI.getOperand(3).getReg();
2357 
2358     MIRBuilder.buildAdd(Res, LHS, RHS);
2359     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2360 
2361     MI.eraseFromParent();
2362     return Legalized;
2363   }
2364   case G_UADDE: {
2365     Register Res = MI.getOperand(0).getReg();
2366     Register CarryOut = MI.getOperand(1).getReg();
2367     Register LHS = MI.getOperand(2).getReg();
2368     Register RHS = MI.getOperand(3).getReg();
2369     Register CarryIn = MI.getOperand(4).getReg();
2370     LLT Ty = MRI.getType(Res);
2371 
2372     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2373     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2374     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2375     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2376 
2377     MI.eraseFromParent();
2378     return Legalized;
2379   }
2380   case G_USUBO: {
2381     Register Res = MI.getOperand(0).getReg();
2382     Register BorrowOut = MI.getOperand(1).getReg();
2383     Register LHS = MI.getOperand(2).getReg();
2384     Register RHS = MI.getOperand(3).getReg();
2385 
2386     MIRBuilder.buildSub(Res, LHS, RHS);
2387     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2388 
2389     MI.eraseFromParent();
2390     return Legalized;
2391   }
2392   case G_USUBE: {
2393     Register Res = MI.getOperand(0).getReg();
2394     Register BorrowOut = MI.getOperand(1).getReg();
2395     Register LHS = MI.getOperand(2).getReg();
2396     Register RHS = MI.getOperand(3).getReg();
2397     Register BorrowIn = MI.getOperand(4).getReg();
2398     const LLT CondTy = MRI.getType(BorrowOut);
2399     const LLT Ty = MRI.getType(Res);
2400 
2401     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2402     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2403     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2404 
2405     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2406     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2407     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2408 
2409     MI.eraseFromParent();
2410     return Legalized;
2411   }
2412   case G_UITOFP:
2413     return lowerUITOFP(MI, TypeIdx, Ty);
2414   case G_SITOFP:
2415     return lowerSITOFP(MI, TypeIdx, Ty);
2416   case G_FPTOUI:
2417     return lowerFPTOUI(MI, TypeIdx, Ty);
2418   case G_FPTOSI:
2419     return lowerFPTOSI(MI);
2420   case G_FPTRUNC:
2421     return lowerFPTRUNC(MI, TypeIdx, Ty);
2422   case G_SMIN:
2423   case G_SMAX:
2424   case G_UMIN:
2425   case G_UMAX:
2426     return lowerMinMax(MI, TypeIdx, Ty);
2427   case G_FCOPYSIGN:
2428     return lowerFCopySign(MI, TypeIdx, Ty);
2429   case G_FMINNUM:
2430   case G_FMAXNUM:
2431     return lowerFMinNumMaxNum(MI);
2432   case G_UNMERGE_VALUES:
2433     return lowerUnmergeValues(MI);
2434   case TargetOpcode::G_SEXT_INREG: {
2435     assert(MI.getOperand(2).isImm() && "Expected immediate");
2436     int64_t SizeInBits = MI.getOperand(2).getImm();
2437 
2438     Register DstReg = MI.getOperand(0).getReg();
2439     Register SrcReg = MI.getOperand(1).getReg();
2440     LLT DstTy = MRI.getType(DstReg);
2441     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2442 
2443     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2444     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2445     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2446     MI.eraseFromParent();
2447     return Legalized;
2448   }
2449   case G_SHUFFLE_VECTOR:
2450     return lowerShuffleVector(MI);
2451   case G_DYN_STACKALLOC:
2452     return lowerDynStackAlloc(MI);
2453   case G_EXTRACT:
2454     return lowerExtract(MI);
2455   case G_INSERT:
2456     return lowerInsert(MI);
2457   case G_BSWAP:
2458     return lowerBswap(MI);
2459   case G_BITREVERSE:
2460     return lowerBitreverse(MI);
2461   case G_READ_REGISTER:
2462   case G_WRITE_REGISTER:
2463     return lowerReadWriteRegister(MI);
2464   }
2465 }
2466 
2467 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
2468     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
2469   SmallVector<Register, 2> DstRegs;
2470 
2471   unsigned NarrowSize = NarrowTy.getSizeInBits();
2472   Register DstReg = MI.getOperand(0).getReg();
2473   unsigned Size = MRI.getType(DstReg).getSizeInBits();
2474   int NumParts = Size / NarrowSize;
2475   // FIXME: Don't know how to handle the situation where the small vectors
2476   // aren't all the same size yet.
2477   if (Size % NarrowSize != 0)
2478     return UnableToLegalize;
2479 
2480   for (int i = 0; i < NumParts; ++i) {
2481     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
2482     MIRBuilder.buildUndef(TmpReg);
2483     DstRegs.push_back(TmpReg);
2484   }
2485 
2486   if (NarrowTy.isVector())
2487     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2488   else
2489     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2490 
2491   MI.eraseFromParent();
2492   return Legalized;
2493 }
2494 
2495 // Handles operands with different types, but all must have the same number of
2496 // elements. There will be multiple type indexes. NarrowTy is expected to have
2497 // the result element type.
2498 LegalizerHelper::LegalizeResult
2499 LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx,
2500                                           LLT NarrowTy) {
2501   assert(TypeIdx == 0 && "only one type index expected");
2502 
2503   const unsigned Opc = MI.getOpcode();
2504   const int NumOps = MI.getNumOperands() - 1;
2505   const Register DstReg = MI.getOperand(0).getReg();
2506   const unsigned Flags = MI.getFlags();
2507 
2508   assert(NumOps <= 3 && "expected instrution with 1 result and 1-3 sources");
2509 
2510   SmallVector<Register, 8> ExtractedRegs[3];
2511   SmallVector<Register, 8> Parts;
2512 
2513   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2514 
2515   // Break down all the sources into NarrowTy pieces we can operate on. This may
2516   // involve creating merges to a wider type, padded with undef.
2517   for (int I = 0; I != NumOps; ++I) {
2518     Register SrcReg =  MI.getOperand(I + 1).getReg();
2519     LLT SrcTy = MRI.getType(SrcReg);
2520 
2521     // Each operand may have its own type, but only the number of elements
2522     // matters.
2523     LLT OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
2524     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
2525 
2526     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
2527     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy,
2528                         ExtractedRegs[I], TargetOpcode::G_ANYEXT);
2529   }
2530 
2531   SmallVector<Register, 8> ResultRegs;
2532 
2533   // Input operands for each sub-instruction.
2534   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
2535 
2536   int NumParts = ExtractedRegs[0].size();
2537   const LLT DstTy = MRI.getType(DstReg);
2538   const unsigned DstSize = DstTy.getSizeInBits();
2539   LLT DstLCMTy = getLCMType(DstTy, NarrowTy);
2540 
2541   const unsigned NarrowSize = NarrowTy.getSizeInBits();
2542 
2543   // We widened the source registers to satisfy merge/unmerge size
2544   // constraints. We'll have some extra fully undef parts.
2545   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
2546 
2547   for (int I = 0; I != NumRealParts; ++I) {
2548     // Emit this instruction on each of the split pieces.
2549     for (int J = 0; J != NumOps; ++J)
2550       InputRegs[J] = ExtractedRegs[J][I];
2551 
2552     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowTy}, InputRegs, Flags);
2553     ResultRegs.push_back(Inst.getReg(0));
2554   }
2555 
2556   // Fill out the widened result with undef instead of creating instructions
2557   // with undef inputs.
2558   int NumUndefParts = NumParts - NumRealParts;
2559   if (NumUndefParts != 0)
2560     ResultRegs.append(NumUndefParts, MIRBuilder.buildUndef(NarrowTy).getReg(0));
2561 
2562   // Extract the possibly padded result to the original result register.
2563   buildWidenedRemergeToDst(DstReg, DstLCMTy, ResultRegs);
2564 
2565   MI.eraseFromParent();
2566   return Legalized;
2567 }
2568 
2569 // Handle splitting vector operations which need to have the same number of
2570 // elements in each type index, but each type index may have a different element
2571 // type.
2572 //
2573 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
2574 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2575 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2576 //
2577 // Also handles some irregular breakdown cases, e.g.
2578 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
2579 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
2580 //             s64 = G_SHL s64, s32
2581 LegalizerHelper::LegalizeResult
2582 LegalizerHelper::fewerElementsVectorMultiEltType(
2583   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
2584   if (TypeIdx != 0)
2585     return UnableToLegalize;
2586 
2587   const LLT NarrowTy0 = NarrowTyArg;
2588   const unsigned NewNumElts =
2589       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
2590 
2591   const Register DstReg = MI.getOperand(0).getReg();
2592   LLT DstTy = MRI.getType(DstReg);
2593   LLT LeftoverTy0;
2594 
2595   // All of the operands need to have the same number of elements, so if we can
2596   // determine a type breakdown for the result type, we can for all of the
2597   // source types.
2598   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
2599   if (NumParts < 0)
2600     return UnableToLegalize;
2601 
2602   SmallVector<MachineInstrBuilder, 4> NewInsts;
2603 
2604   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2605   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2606 
2607   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
2608     LLT LeftoverTy;
2609     Register SrcReg = MI.getOperand(I).getReg();
2610     LLT SrcTyI = MRI.getType(SrcReg);
2611     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
2612     LLT LeftoverTyI;
2613 
2614     // Split this operand into the requested typed registers, and any leftover
2615     // required to reproduce the original type.
2616     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
2617                       LeftoverRegs))
2618       return UnableToLegalize;
2619 
2620     if (I == 1) {
2621       // For the first operand, create an instruction for each part and setup
2622       // the result.
2623       for (Register PartReg : PartRegs) {
2624         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2625         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2626                                .addDef(PartDstReg)
2627                                .addUse(PartReg));
2628         DstRegs.push_back(PartDstReg);
2629       }
2630 
2631       for (Register LeftoverReg : LeftoverRegs) {
2632         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
2633         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
2634                                .addDef(PartDstReg)
2635                                .addUse(LeftoverReg));
2636         LeftoverDstRegs.push_back(PartDstReg);
2637       }
2638     } else {
2639       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
2640 
2641       // Add the newly created operand splits to the existing instructions. The
2642       // odd-sized pieces are ordered after the requested NarrowTyArg sized
2643       // pieces.
2644       unsigned InstCount = 0;
2645       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
2646         NewInsts[InstCount++].addUse(PartRegs[J]);
2647       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
2648         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
2649     }
2650 
2651     PartRegs.clear();
2652     LeftoverRegs.clear();
2653   }
2654 
2655   // Insert the newly built operations and rebuild the result register.
2656   for (auto &MIB : NewInsts)
2657     MIRBuilder.insertInstr(MIB);
2658 
2659   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
2660 
2661   MI.eraseFromParent();
2662   return Legalized;
2663 }
2664 
2665 LegalizerHelper::LegalizeResult
2666 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
2667                                           LLT NarrowTy) {
2668   if (TypeIdx != 0)
2669     return UnableToLegalize;
2670 
2671   Register DstReg = MI.getOperand(0).getReg();
2672   Register SrcReg = MI.getOperand(1).getReg();
2673   LLT DstTy = MRI.getType(DstReg);
2674   LLT SrcTy = MRI.getType(SrcReg);
2675 
2676   LLT NarrowTy0 = NarrowTy;
2677   LLT NarrowTy1;
2678   unsigned NumParts;
2679 
2680   if (NarrowTy.isVector()) {
2681     // Uneven breakdown not handled.
2682     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
2683     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
2684       return UnableToLegalize;
2685 
2686     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
2687   } else {
2688     NumParts = DstTy.getNumElements();
2689     NarrowTy1 = SrcTy.getElementType();
2690   }
2691 
2692   SmallVector<Register, 4> SrcRegs, DstRegs;
2693   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
2694 
2695   for (unsigned I = 0; I < NumParts; ++I) {
2696     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2697     MachineInstr *NewInst =
2698         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
2699 
2700     NewInst->setFlags(MI.getFlags());
2701     DstRegs.push_back(DstReg);
2702   }
2703 
2704   if (NarrowTy.isVector())
2705     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2706   else
2707     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2708 
2709   MI.eraseFromParent();
2710   return Legalized;
2711 }
2712 
2713 LegalizerHelper::LegalizeResult
2714 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
2715                                         LLT NarrowTy) {
2716   Register DstReg = MI.getOperand(0).getReg();
2717   Register Src0Reg = MI.getOperand(2).getReg();
2718   LLT DstTy = MRI.getType(DstReg);
2719   LLT SrcTy = MRI.getType(Src0Reg);
2720 
2721   unsigned NumParts;
2722   LLT NarrowTy0, NarrowTy1;
2723 
2724   if (TypeIdx == 0) {
2725     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2726     unsigned OldElts = DstTy.getNumElements();
2727 
2728     NarrowTy0 = NarrowTy;
2729     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
2730     NarrowTy1 = NarrowTy.isVector() ?
2731       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
2732       SrcTy.getElementType();
2733 
2734   } else {
2735     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
2736     unsigned OldElts = SrcTy.getNumElements();
2737 
2738     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
2739       NarrowTy.getNumElements();
2740     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
2741                             DstTy.getScalarSizeInBits());
2742     NarrowTy1 = NarrowTy;
2743   }
2744 
2745   // FIXME: Don't know how to handle the situation where the small vectors
2746   // aren't all the same size yet.
2747   if (NarrowTy1.isVector() &&
2748       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
2749     return UnableToLegalize;
2750 
2751   CmpInst::Predicate Pred
2752     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
2753 
2754   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
2755   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
2756   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
2757 
2758   for (unsigned I = 0; I < NumParts; ++I) {
2759     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2760     DstRegs.push_back(DstReg);
2761 
2762     if (MI.getOpcode() == TargetOpcode::G_ICMP)
2763       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2764     else {
2765       MachineInstr *NewCmp
2766         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
2767       NewCmp->setFlags(MI.getFlags());
2768     }
2769   }
2770 
2771   if (NarrowTy1.isVector())
2772     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2773   else
2774     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2775 
2776   MI.eraseFromParent();
2777   return Legalized;
2778 }
2779 
2780 LegalizerHelper::LegalizeResult
2781 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
2782                                            LLT NarrowTy) {
2783   Register DstReg = MI.getOperand(0).getReg();
2784   Register CondReg = MI.getOperand(1).getReg();
2785 
2786   unsigned NumParts = 0;
2787   LLT NarrowTy0, NarrowTy1;
2788 
2789   LLT DstTy = MRI.getType(DstReg);
2790   LLT CondTy = MRI.getType(CondReg);
2791   unsigned Size = DstTy.getSizeInBits();
2792 
2793   assert(TypeIdx == 0 || CondTy.isVector());
2794 
2795   if (TypeIdx == 0) {
2796     NarrowTy0 = NarrowTy;
2797     NarrowTy1 = CondTy;
2798 
2799     unsigned NarrowSize = NarrowTy0.getSizeInBits();
2800     // FIXME: Don't know how to handle the situation where the small vectors
2801     // aren't all the same size yet.
2802     if (Size % NarrowSize != 0)
2803       return UnableToLegalize;
2804 
2805     NumParts = Size / NarrowSize;
2806 
2807     // Need to break down the condition type
2808     if (CondTy.isVector()) {
2809       if (CondTy.getNumElements() == NumParts)
2810         NarrowTy1 = CondTy.getElementType();
2811       else
2812         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
2813                                 CondTy.getScalarSizeInBits());
2814     }
2815   } else {
2816     NumParts = CondTy.getNumElements();
2817     if (NarrowTy.isVector()) {
2818       // TODO: Handle uneven breakdown.
2819       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
2820         return UnableToLegalize;
2821 
2822       return UnableToLegalize;
2823     } else {
2824       NarrowTy0 = DstTy.getElementType();
2825       NarrowTy1 = NarrowTy;
2826     }
2827   }
2828 
2829   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
2830   if (CondTy.isVector())
2831     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
2832 
2833   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
2834   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
2835 
2836   for (unsigned i = 0; i < NumParts; ++i) {
2837     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
2838     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
2839                            Src1Regs[i], Src2Regs[i]);
2840     DstRegs.push_back(DstReg);
2841   }
2842 
2843   if (NarrowTy0.isVector())
2844     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
2845   else
2846     MIRBuilder.buildBuildVector(DstReg, DstRegs);
2847 
2848   MI.eraseFromParent();
2849   return Legalized;
2850 }
2851 
2852 LegalizerHelper::LegalizeResult
2853 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
2854                                         LLT NarrowTy) {
2855   const Register DstReg = MI.getOperand(0).getReg();
2856   LLT PhiTy = MRI.getType(DstReg);
2857   LLT LeftoverTy;
2858 
2859   // All of the operands need to have the same number of elements, so if we can
2860   // determine a type breakdown for the result type, we can for all of the
2861   // source types.
2862   int NumParts, NumLeftover;
2863   std::tie(NumParts, NumLeftover)
2864     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
2865   if (NumParts < 0)
2866     return UnableToLegalize;
2867 
2868   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
2869   SmallVector<MachineInstrBuilder, 4> NewInsts;
2870 
2871   const int TotalNumParts = NumParts + NumLeftover;
2872 
2873   // Insert the new phis in the result block first.
2874   for (int I = 0; I != TotalNumParts; ++I) {
2875     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
2876     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
2877     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
2878                        .addDef(PartDstReg));
2879     if (I < NumParts)
2880       DstRegs.push_back(PartDstReg);
2881     else
2882       LeftoverDstRegs.push_back(PartDstReg);
2883   }
2884 
2885   MachineBasicBlock *MBB = MI.getParent();
2886   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
2887   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
2888 
2889   SmallVector<Register, 4> PartRegs, LeftoverRegs;
2890 
2891   // Insert code to extract the incoming values in each predecessor block.
2892   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
2893     PartRegs.clear();
2894     LeftoverRegs.clear();
2895 
2896     Register SrcReg = MI.getOperand(I).getReg();
2897     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2898     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2899 
2900     LLT Unused;
2901     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
2902                       LeftoverRegs))
2903       return UnableToLegalize;
2904 
2905     // Add the newly created operand splits to the existing instructions. The
2906     // odd-sized pieces are ordered after the requested NarrowTyArg sized
2907     // pieces.
2908     for (int J = 0; J != TotalNumParts; ++J) {
2909       MachineInstrBuilder MIB = NewInsts[J];
2910       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
2911       MIB.addMBB(&OpMBB);
2912     }
2913   }
2914 
2915   MI.eraseFromParent();
2916   return Legalized;
2917 }
2918 
2919 LegalizerHelper::LegalizeResult
2920 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
2921                                                   unsigned TypeIdx,
2922                                                   LLT NarrowTy) {
2923   if (TypeIdx != 1)
2924     return UnableToLegalize;
2925 
2926   const int NumDst = MI.getNumOperands() - 1;
2927   const Register SrcReg = MI.getOperand(NumDst).getReg();
2928   LLT SrcTy = MRI.getType(SrcReg);
2929 
2930   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2931 
2932   // TODO: Create sequence of extracts.
2933   if (DstTy == NarrowTy)
2934     return UnableToLegalize;
2935 
2936   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
2937   if (DstTy == GCDTy) {
2938     // This would just be a copy of the same unmerge.
2939     // TODO: Create extracts, pad with undef and create intermediate merges.
2940     return UnableToLegalize;
2941   }
2942 
2943   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
2944   const int NumUnmerge = Unmerge->getNumOperands() - 1;
2945   const int PartsPerUnmerge = NumDst / NumUnmerge;
2946 
2947   for (int I = 0; I != NumUnmerge; ++I) {
2948     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
2949 
2950     for (int J = 0; J != PartsPerUnmerge; ++J)
2951       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
2952     MIB.addUse(Unmerge.getReg(I));
2953   }
2954 
2955   MI.eraseFromParent();
2956   return Legalized;
2957 }
2958 
2959 LegalizerHelper::LegalizeResult
2960 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
2961                                                 unsigned TypeIdx,
2962                                                 LLT NarrowTy) {
2963   assert(TypeIdx == 0 && "not a vector type index");
2964   Register DstReg = MI.getOperand(0).getReg();
2965   LLT DstTy = MRI.getType(DstReg);
2966   LLT SrcTy = DstTy.getElementType();
2967 
2968   int DstNumElts = DstTy.getNumElements();
2969   int NarrowNumElts = NarrowTy.getNumElements();
2970   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
2971   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
2972 
2973   SmallVector<Register, 8> ConcatOps;
2974   SmallVector<Register, 8> SubBuildVector;
2975 
2976   Register UndefReg;
2977   if (WidenedDstTy != DstTy)
2978     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
2979 
2980   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
2981   // necessary.
2982   //
2983   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
2984   //   -> <2 x s16>
2985   //
2986   // %4:_(s16) = G_IMPLICIT_DEF
2987   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
2988   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
2989   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
2990   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
2991   for (int I = 0; I != NumConcat; ++I) {
2992     for (int J = 0; J != NarrowNumElts; ++J) {
2993       int SrcIdx = NarrowNumElts * I + J;
2994 
2995       if (SrcIdx < DstNumElts) {
2996         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
2997         SubBuildVector.push_back(SrcReg);
2998       } else
2999         SubBuildVector.push_back(UndefReg);
3000     }
3001 
3002     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3003     ConcatOps.push_back(BuildVec.getReg(0));
3004     SubBuildVector.clear();
3005   }
3006 
3007   if (DstTy == WidenedDstTy)
3008     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3009   else {
3010     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3011     MIRBuilder.buildExtract(DstReg, Concat, 0);
3012   }
3013 
3014   MI.eraseFromParent();
3015   return Legalized;
3016 }
3017 
3018 LegalizerHelper::LegalizeResult
3019 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3020                                       LLT NarrowTy) {
3021   // FIXME: Don't know how to handle secondary types yet.
3022   if (TypeIdx != 0)
3023     return UnableToLegalize;
3024 
3025   MachineMemOperand *MMO = *MI.memoperands_begin();
3026 
3027   // This implementation doesn't work for atomics. Give up instead of doing
3028   // something invalid.
3029   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3030       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3031     return UnableToLegalize;
3032 
3033   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3034   Register ValReg = MI.getOperand(0).getReg();
3035   Register AddrReg = MI.getOperand(1).getReg();
3036   LLT ValTy = MRI.getType(ValReg);
3037 
3038   // FIXME: Do we need a distinct NarrowMemory legalize action?
3039   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3040     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3041     return UnableToLegalize;
3042   }
3043 
3044   int NumParts = -1;
3045   int NumLeftover = -1;
3046   LLT LeftoverTy;
3047   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3048   if (IsLoad) {
3049     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3050   } else {
3051     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3052                      NarrowLeftoverRegs)) {
3053       NumParts = NarrowRegs.size();
3054       NumLeftover = NarrowLeftoverRegs.size();
3055     }
3056   }
3057 
3058   if (NumParts == -1)
3059     return UnableToLegalize;
3060 
3061   const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits());
3062 
3063   unsigned TotalSize = ValTy.getSizeInBits();
3064 
3065   // Split the load/store into PartTy sized pieces starting at Offset. If this
3066   // is a load, return the new registers in ValRegs. For a store, each elements
3067   // of ValRegs should be PartTy. Returns the next offset that needs to be
3068   // handled.
3069   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3070                              unsigned Offset) -> unsigned {
3071     MachineFunction &MF = MIRBuilder.getMF();
3072     unsigned PartSize = PartTy.getSizeInBits();
3073     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3074          Offset += PartSize, ++Idx) {
3075       unsigned ByteSize = PartSize / 8;
3076       unsigned ByteOffset = Offset / 8;
3077       Register NewAddrReg;
3078 
3079       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3080 
3081       MachineMemOperand *NewMMO =
3082         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3083 
3084       if (IsLoad) {
3085         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3086         ValRegs.push_back(Dst);
3087         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3088       } else {
3089         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3090       }
3091     }
3092 
3093     return Offset;
3094   };
3095 
3096   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3097 
3098   // Handle the rest of the register if this isn't an even type breakdown.
3099   if (LeftoverTy.isValid())
3100     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3101 
3102   if (IsLoad) {
3103     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3104                 LeftoverTy, NarrowLeftoverRegs);
3105   }
3106 
3107   MI.eraseFromParent();
3108   return Legalized;
3109 }
3110 
3111 LegalizerHelper::LegalizeResult
3112 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3113                                               LLT NarrowTy) {
3114   Register DstReg = MI.getOperand(0).getReg();
3115   Register SrcReg = MI.getOperand(1).getReg();
3116   int64_t Imm = MI.getOperand(2).getImm();
3117 
3118   LLT DstTy = MRI.getType(DstReg);
3119 
3120   SmallVector<Register, 8> Parts;
3121   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3122   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3123 
3124   for (Register &R : Parts)
3125     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3126 
3127   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3128 
3129   MI.eraseFromParent();
3130   return Legalized;
3131 }
3132 
3133 LegalizerHelper::LegalizeResult
3134 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3135                                      LLT NarrowTy) {
3136   using namespace TargetOpcode;
3137 
3138   MIRBuilder.setInstr(MI);
3139   switch (MI.getOpcode()) {
3140   case G_IMPLICIT_DEF:
3141     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3142   case G_TRUNC:
3143   case G_AND:
3144   case G_OR:
3145   case G_XOR:
3146   case G_ADD:
3147   case G_SUB:
3148   case G_MUL:
3149   case G_SMULH:
3150   case G_UMULH:
3151   case G_FADD:
3152   case G_FMUL:
3153   case G_FSUB:
3154   case G_FNEG:
3155   case G_FABS:
3156   case G_FCANONICALIZE:
3157   case G_FDIV:
3158   case G_FREM:
3159   case G_FMA:
3160   case G_FMAD:
3161   case G_FPOW:
3162   case G_FEXP:
3163   case G_FEXP2:
3164   case G_FLOG:
3165   case G_FLOG2:
3166   case G_FLOG10:
3167   case G_FNEARBYINT:
3168   case G_FCEIL:
3169   case G_FFLOOR:
3170   case G_FRINT:
3171   case G_INTRINSIC_ROUND:
3172   case G_INTRINSIC_TRUNC:
3173   case G_FCOS:
3174   case G_FSIN:
3175   case G_FSQRT:
3176   case G_BSWAP:
3177   case G_BITREVERSE:
3178   case G_SDIV:
3179   case G_UDIV:
3180   case G_SREM:
3181   case G_UREM:
3182   case G_SMIN:
3183   case G_SMAX:
3184   case G_UMIN:
3185   case G_UMAX:
3186   case G_FMINNUM:
3187   case G_FMAXNUM:
3188   case G_FMINNUM_IEEE:
3189   case G_FMAXNUM_IEEE:
3190   case G_FMINIMUM:
3191   case G_FMAXIMUM:
3192     return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy);
3193   case G_SHL:
3194   case G_LSHR:
3195   case G_ASHR:
3196   case G_CTLZ:
3197   case G_CTLZ_ZERO_UNDEF:
3198   case G_CTTZ:
3199   case G_CTTZ_ZERO_UNDEF:
3200   case G_CTPOP:
3201   case G_FCOPYSIGN:
3202     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3203   case G_ZEXT:
3204   case G_SEXT:
3205   case G_ANYEXT:
3206   case G_FPEXT:
3207   case G_FPTRUNC:
3208   case G_SITOFP:
3209   case G_UITOFP:
3210   case G_FPTOSI:
3211   case G_FPTOUI:
3212   case G_INTTOPTR:
3213   case G_PTRTOINT:
3214   case G_ADDRSPACE_CAST:
3215     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3216   case G_ICMP:
3217   case G_FCMP:
3218     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3219   case G_SELECT:
3220     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3221   case G_PHI:
3222     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3223   case G_UNMERGE_VALUES:
3224     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3225   case G_BUILD_VECTOR:
3226     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3227   case G_LOAD:
3228   case G_STORE:
3229     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3230   case G_SEXT_INREG:
3231     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3232   default:
3233     return UnableToLegalize;
3234   }
3235 }
3236 
3237 LegalizerHelper::LegalizeResult
3238 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3239                                              const LLT HalfTy, const LLT AmtTy) {
3240 
3241   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3242   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3243   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3244 
3245   if (Amt.isNullValue()) {
3246     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3247     MI.eraseFromParent();
3248     return Legalized;
3249   }
3250 
3251   LLT NVT = HalfTy;
3252   unsigned NVTBits = HalfTy.getSizeInBits();
3253   unsigned VTBits = 2 * NVTBits;
3254 
3255   SrcOp Lo(Register(0)), Hi(Register(0));
3256   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3257     if (Amt.ugt(VTBits)) {
3258       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3259     } else if (Amt.ugt(NVTBits)) {
3260       Lo = MIRBuilder.buildConstant(NVT, 0);
3261       Hi = MIRBuilder.buildShl(NVT, InL,
3262                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3263     } else if (Amt == NVTBits) {
3264       Lo = MIRBuilder.buildConstant(NVT, 0);
3265       Hi = InL;
3266     } else {
3267       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3268       auto OrLHS =
3269           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3270       auto OrRHS = MIRBuilder.buildLShr(
3271           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3272       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3273     }
3274   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3275     if (Amt.ugt(VTBits)) {
3276       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3277     } else if (Amt.ugt(NVTBits)) {
3278       Lo = MIRBuilder.buildLShr(NVT, InH,
3279                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3280       Hi = MIRBuilder.buildConstant(NVT, 0);
3281     } else if (Amt == NVTBits) {
3282       Lo = InH;
3283       Hi = MIRBuilder.buildConstant(NVT, 0);
3284     } else {
3285       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3286 
3287       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3288       auto OrRHS = MIRBuilder.buildShl(
3289           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3290 
3291       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3292       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3293     }
3294   } else {
3295     if (Amt.ugt(VTBits)) {
3296       Hi = Lo = MIRBuilder.buildAShr(
3297           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3298     } else if (Amt.ugt(NVTBits)) {
3299       Lo = MIRBuilder.buildAShr(NVT, InH,
3300                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3301       Hi = MIRBuilder.buildAShr(NVT, InH,
3302                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3303     } else if (Amt == NVTBits) {
3304       Lo = InH;
3305       Hi = MIRBuilder.buildAShr(NVT, InH,
3306                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3307     } else {
3308       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3309 
3310       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3311       auto OrRHS = MIRBuilder.buildShl(
3312           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3313 
3314       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3315       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3316     }
3317   }
3318 
3319   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3320   MI.eraseFromParent();
3321 
3322   return Legalized;
3323 }
3324 
3325 // TODO: Optimize if constant shift amount.
3326 LegalizerHelper::LegalizeResult
3327 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3328                                    LLT RequestedTy) {
3329   if (TypeIdx == 1) {
3330     Observer.changingInstr(MI);
3331     narrowScalarSrc(MI, RequestedTy, 2);
3332     Observer.changedInstr(MI);
3333     return Legalized;
3334   }
3335 
3336   Register DstReg = MI.getOperand(0).getReg();
3337   LLT DstTy = MRI.getType(DstReg);
3338   if (DstTy.isVector())
3339     return UnableToLegalize;
3340 
3341   Register Amt = MI.getOperand(2).getReg();
3342   LLT ShiftAmtTy = MRI.getType(Amt);
3343   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3344   if (DstEltSize % 2 != 0)
3345     return UnableToLegalize;
3346 
3347   // Ignore the input type. We can only go to exactly half the size of the
3348   // input. If that isn't small enough, the resulting pieces will be further
3349   // legalized.
3350   const unsigned NewBitSize = DstEltSize / 2;
3351   const LLT HalfTy = LLT::scalar(NewBitSize);
3352   const LLT CondTy = LLT::scalar(1);
3353 
3354   if (const MachineInstr *KShiftAmt =
3355           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3356     return narrowScalarShiftByConstant(
3357         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3358   }
3359 
3360   // TODO: Expand with known bits.
3361 
3362   // Handle the fully general expansion by an unknown amount.
3363   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3364 
3365   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3366   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3367   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3368 
3369   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
3370   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
3371 
3372   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
3373   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
3374   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
3375 
3376   Register ResultRegs[2];
3377   switch (MI.getOpcode()) {
3378   case TargetOpcode::G_SHL: {
3379     // Short: ShAmt < NewBitSize
3380     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
3381 
3382     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
3383     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
3384     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3385 
3386     // Long: ShAmt >= NewBitSize
3387     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
3388     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
3389 
3390     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
3391     auto Hi = MIRBuilder.buildSelect(
3392         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
3393 
3394     ResultRegs[0] = Lo.getReg(0);
3395     ResultRegs[1] = Hi.getReg(0);
3396     break;
3397   }
3398   case TargetOpcode::G_LSHR:
3399   case TargetOpcode::G_ASHR: {
3400     // Short: ShAmt < NewBitSize
3401     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
3402 
3403     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
3404     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
3405     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
3406 
3407     // Long: ShAmt >= NewBitSize
3408     MachineInstrBuilder HiL;
3409     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3410       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
3411     } else {
3412       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
3413       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
3414     }
3415     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
3416                                      {InH, AmtExcess});     // Lo from Hi part.
3417 
3418     auto Lo = MIRBuilder.buildSelect(
3419         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
3420 
3421     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
3422 
3423     ResultRegs[0] = Lo.getReg(0);
3424     ResultRegs[1] = Hi.getReg(0);
3425     break;
3426   }
3427   default:
3428     llvm_unreachable("not a shift");
3429   }
3430 
3431   MIRBuilder.buildMerge(DstReg, ResultRegs);
3432   MI.eraseFromParent();
3433   return Legalized;
3434 }
3435 
3436 LegalizerHelper::LegalizeResult
3437 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3438                                        LLT MoreTy) {
3439   assert(TypeIdx == 0 && "Expecting only Idx 0");
3440 
3441   Observer.changingInstr(MI);
3442   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3443     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3444     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3445     moreElementsVectorSrc(MI, MoreTy, I);
3446   }
3447 
3448   MachineBasicBlock &MBB = *MI.getParent();
3449   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
3450   moreElementsVectorDst(MI, MoreTy, 0);
3451   Observer.changedInstr(MI);
3452   return Legalized;
3453 }
3454 
3455 LegalizerHelper::LegalizeResult
3456 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
3457                                     LLT MoreTy) {
3458   MIRBuilder.setInstr(MI);
3459   unsigned Opc = MI.getOpcode();
3460   switch (Opc) {
3461   case TargetOpcode::G_IMPLICIT_DEF:
3462   case TargetOpcode::G_LOAD: {
3463     if (TypeIdx != 0)
3464       return UnableToLegalize;
3465     Observer.changingInstr(MI);
3466     moreElementsVectorDst(MI, MoreTy, 0);
3467     Observer.changedInstr(MI);
3468     return Legalized;
3469   }
3470   case TargetOpcode::G_STORE:
3471     if (TypeIdx != 0)
3472       return UnableToLegalize;
3473     Observer.changingInstr(MI);
3474     moreElementsVectorSrc(MI, MoreTy, 0);
3475     Observer.changedInstr(MI);
3476     return Legalized;
3477   case TargetOpcode::G_AND:
3478   case TargetOpcode::G_OR:
3479   case TargetOpcode::G_XOR:
3480   case TargetOpcode::G_SMIN:
3481   case TargetOpcode::G_SMAX:
3482   case TargetOpcode::G_UMIN:
3483   case TargetOpcode::G_UMAX:
3484   case TargetOpcode::G_FMINNUM:
3485   case TargetOpcode::G_FMAXNUM:
3486   case TargetOpcode::G_FMINNUM_IEEE:
3487   case TargetOpcode::G_FMAXNUM_IEEE:
3488   case TargetOpcode::G_FMINIMUM:
3489   case TargetOpcode::G_FMAXIMUM: {
3490     Observer.changingInstr(MI);
3491     moreElementsVectorSrc(MI, MoreTy, 1);
3492     moreElementsVectorSrc(MI, MoreTy, 2);
3493     moreElementsVectorDst(MI, MoreTy, 0);
3494     Observer.changedInstr(MI);
3495     return Legalized;
3496   }
3497   case TargetOpcode::G_EXTRACT:
3498     if (TypeIdx != 1)
3499       return UnableToLegalize;
3500     Observer.changingInstr(MI);
3501     moreElementsVectorSrc(MI, MoreTy, 1);
3502     Observer.changedInstr(MI);
3503     return Legalized;
3504   case TargetOpcode::G_INSERT:
3505     if (TypeIdx != 0)
3506       return UnableToLegalize;
3507     Observer.changingInstr(MI);
3508     moreElementsVectorSrc(MI, MoreTy, 1);
3509     moreElementsVectorDst(MI, MoreTy, 0);
3510     Observer.changedInstr(MI);
3511     return Legalized;
3512   case TargetOpcode::G_SELECT:
3513     if (TypeIdx != 0)
3514       return UnableToLegalize;
3515     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
3516       return UnableToLegalize;
3517 
3518     Observer.changingInstr(MI);
3519     moreElementsVectorSrc(MI, MoreTy, 2);
3520     moreElementsVectorSrc(MI, MoreTy, 3);
3521     moreElementsVectorDst(MI, MoreTy, 0);
3522     Observer.changedInstr(MI);
3523     return Legalized;
3524   case TargetOpcode::G_UNMERGE_VALUES: {
3525     if (TypeIdx != 1)
3526       return UnableToLegalize;
3527 
3528     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3529     int NumDst = MI.getNumOperands() - 1;
3530     moreElementsVectorSrc(MI, MoreTy, NumDst);
3531 
3532     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3533     for (int I = 0; I != NumDst; ++I)
3534       MIB.addDef(MI.getOperand(I).getReg());
3535 
3536     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
3537     for (int I = NumDst; I != NewNumDst; ++I)
3538       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
3539 
3540     MIB.addUse(MI.getOperand(NumDst).getReg());
3541     MI.eraseFromParent();
3542     return Legalized;
3543   }
3544   case TargetOpcode::G_PHI:
3545     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
3546   default:
3547     return UnableToLegalize;
3548   }
3549 }
3550 
3551 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
3552                                         ArrayRef<Register> Src1Regs,
3553                                         ArrayRef<Register> Src2Regs,
3554                                         LLT NarrowTy) {
3555   MachineIRBuilder &B = MIRBuilder;
3556   unsigned SrcParts = Src1Regs.size();
3557   unsigned DstParts = DstRegs.size();
3558 
3559   unsigned DstIdx = 0; // Low bits of the result.
3560   Register FactorSum =
3561       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
3562   DstRegs[DstIdx] = FactorSum;
3563 
3564   unsigned CarrySumPrevDstIdx;
3565   SmallVector<Register, 4> Factors;
3566 
3567   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
3568     // Collect low parts of muls for DstIdx.
3569     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
3570          i <= std::min(DstIdx, SrcParts - 1); ++i) {
3571       MachineInstrBuilder Mul =
3572           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
3573       Factors.push_back(Mul.getReg(0));
3574     }
3575     // Collect high parts of muls from previous DstIdx.
3576     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
3577          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
3578       MachineInstrBuilder Umulh =
3579           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
3580       Factors.push_back(Umulh.getReg(0));
3581     }
3582     // Add CarrySum from additions calculated for previous DstIdx.
3583     if (DstIdx != 1) {
3584       Factors.push_back(CarrySumPrevDstIdx);
3585     }
3586 
3587     Register CarrySum;
3588     // Add all factors and accumulate all carries into CarrySum.
3589     if (DstIdx != DstParts - 1) {
3590       MachineInstrBuilder Uaddo =
3591           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
3592       FactorSum = Uaddo.getReg(0);
3593       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
3594       for (unsigned i = 2; i < Factors.size(); ++i) {
3595         MachineInstrBuilder Uaddo =
3596             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
3597         FactorSum = Uaddo.getReg(0);
3598         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
3599         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
3600       }
3601     } else {
3602       // Since value for the next index is not calculated, neither is CarrySum.
3603       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
3604       for (unsigned i = 2; i < Factors.size(); ++i)
3605         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
3606     }
3607 
3608     CarrySumPrevDstIdx = CarrySum;
3609     DstRegs[DstIdx] = FactorSum;
3610     Factors.clear();
3611   }
3612 }
3613 
3614 LegalizerHelper::LegalizeResult
3615 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
3616   Register DstReg = MI.getOperand(0).getReg();
3617   Register Src1 = MI.getOperand(1).getReg();
3618   Register Src2 = MI.getOperand(2).getReg();
3619 
3620   LLT Ty = MRI.getType(DstReg);
3621   if (Ty.isVector())
3622     return UnableToLegalize;
3623 
3624   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
3625   unsigned DstSize = Ty.getSizeInBits();
3626   unsigned NarrowSize = NarrowTy.getSizeInBits();
3627   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
3628     return UnableToLegalize;
3629 
3630   unsigned NumDstParts = DstSize / NarrowSize;
3631   unsigned NumSrcParts = SrcSize / NarrowSize;
3632   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
3633   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
3634 
3635   SmallVector<Register, 2> Src1Parts, Src2Parts;
3636   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
3637   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
3638   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
3639   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
3640 
3641   // Take only high half of registers if this is high mul.
3642   ArrayRef<Register> DstRegs(
3643       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
3644   MIRBuilder.buildMerge(DstReg, DstRegs);
3645   MI.eraseFromParent();
3646   return Legalized;
3647 }
3648 
3649 LegalizerHelper::LegalizeResult
3650 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
3651                                      LLT NarrowTy) {
3652   if (TypeIdx != 1)
3653     return UnableToLegalize;
3654 
3655   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3656 
3657   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
3658   // FIXME: add support for when SizeOp1 isn't an exact multiple of
3659   // NarrowSize.
3660   if (SizeOp1 % NarrowSize != 0)
3661     return UnableToLegalize;
3662   int NumParts = SizeOp1 / NarrowSize;
3663 
3664   SmallVector<Register, 2> SrcRegs, DstRegs;
3665   SmallVector<uint64_t, 2> Indexes;
3666   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3667 
3668   Register OpReg = MI.getOperand(0).getReg();
3669   uint64_t OpStart = MI.getOperand(2).getImm();
3670   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3671   for (int i = 0; i < NumParts; ++i) {
3672     unsigned SrcStart = i * NarrowSize;
3673 
3674     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
3675       // No part of the extract uses this subregister, ignore it.
3676       continue;
3677     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3678       // The entire subregister is extracted, forward the value.
3679       DstRegs.push_back(SrcRegs[i]);
3680       continue;
3681     }
3682 
3683     // OpSegStart is where this destination segment would start in OpReg if it
3684     // extended infinitely in both directions.
3685     int64_t ExtractOffset;
3686     uint64_t SegSize;
3687     if (OpStart < SrcStart) {
3688       ExtractOffset = 0;
3689       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
3690     } else {
3691       ExtractOffset = OpStart - SrcStart;
3692       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
3693     }
3694 
3695     Register SegReg = SrcRegs[i];
3696     if (ExtractOffset != 0 || SegSize != NarrowSize) {
3697       // A genuine extract is needed.
3698       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3699       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
3700     }
3701 
3702     DstRegs.push_back(SegReg);
3703   }
3704 
3705   Register DstReg = MI.getOperand(0).getReg();
3706   if (MRI.getType(DstReg).isVector())
3707     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3708   else if (DstRegs.size() > 1)
3709     MIRBuilder.buildMerge(DstReg, DstRegs);
3710   else
3711     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
3712   MI.eraseFromParent();
3713   return Legalized;
3714 }
3715 
3716 LegalizerHelper::LegalizeResult
3717 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
3718                                     LLT NarrowTy) {
3719   // FIXME: Don't know how to handle secondary types yet.
3720   if (TypeIdx != 0)
3721     return UnableToLegalize;
3722 
3723   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
3724   uint64_t NarrowSize = NarrowTy.getSizeInBits();
3725 
3726   // FIXME: add support for when SizeOp0 isn't an exact multiple of
3727   // NarrowSize.
3728   if (SizeOp0 % NarrowSize != 0)
3729     return UnableToLegalize;
3730 
3731   int NumParts = SizeOp0 / NarrowSize;
3732 
3733   SmallVector<Register, 2> SrcRegs, DstRegs;
3734   SmallVector<uint64_t, 2> Indexes;
3735   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
3736 
3737   Register OpReg = MI.getOperand(2).getReg();
3738   uint64_t OpStart = MI.getOperand(3).getImm();
3739   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
3740   for (int i = 0; i < NumParts; ++i) {
3741     unsigned DstStart = i * NarrowSize;
3742 
3743     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
3744       // No part of the insert affects this subregister, forward the original.
3745       DstRegs.push_back(SrcRegs[i]);
3746       continue;
3747     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
3748       // The entire subregister is defined by this insert, forward the new
3749       // value.
3750       DstRegs.push_back(OpReg);
3751       continue;
3752     }
3753 
3754     // OpSegStart is where this destination segment would start in OpReg if it
3755     // extended infinitely in both directions.
3756     int64_t ExtractOffset, InsertOffset;
3757     uint64_t SegSize;
3758     if (OpStart < DstStart) {
3759       InsertOffset = 0;
3760       ExtractOffset = DstStart - OpStart;
3761       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
3762     } else {
3763       InsertOffset = OpStart - DstStart;
3764       ExtractOffset = 0;
3765       SegSize =
3766         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
3767     }
3768 
3769     Register SegReg = OpReg;
3770     if (ExtractOffset != 0 || SegSize != OpSize) {
3771       // A genuine extract is needed.
3772       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
3773       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
3774     }
3775 
3776     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
3777     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
3778     DstRegs.push_back(DstReg);
3779   }
3780 
3781   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
3782   Register DstReg = MI.getOperand(0).getReg();
3783   if(MRI.getType(DstReg).isVector())
3784     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3785   else
3786     MIRBuilder.buildMerge(DstReg, DstRegs);
3787   MI.eraseFromParent();
3788   return Legalized;
3789 }
3790 
3791 LegalizerHelper::LegalizeResult
3792 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
3793                                    LLT NarrowTy) {
3794   Register DstReg = MI.getOperand(0).getReg();
3795   LLT DstTy = MRI.getType(DstReg);
3796 
3797   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
3798 
3799   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3800   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
3801   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3802   LLT LeftoverTy;
3803   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
3804                     Src0Regs, Src0LeftoverRegs))
3805     return UnableToLegalize;
3806 
3807   LLT Unused;
3808   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
3809                     Src1Regs, Src1LeftoverRegs))
3810     llvm_unreachable("inconsistent extractParts result");
3811 
3812   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3813     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
3814                                         {Src0Regs[I], Src1Regs[I]});
3815     DstRegs.push_back(Inst.getReg(0));
3816   }
3817 
3818   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3819     auto Inst = MIRBuilder.buildInstr(
3820       MI.getOpcode(),
3821       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
3822     DstLeftoverRegs.push_back(Inst.getReg(0));
3823   }
3824 
3825   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3826               LeftoverTy, DstLeftoverRegs);
3827 
3828   MI.eraseFromParent();
3829   return Legalized;
3830 }
3831 
3832 LegalizerHelper::LegalizeResult
3833 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
3834                                  LLT NarrowTy) {
3835   if (TypeIdx != 0)
3836     return UnableToLegalize;
3837 
3838   Register DstReg = MI.getOperand(0).getReg();
3839   Register SrcReg = MI.getOperand(1).getReg();
3840 
3841   LLT DstTy = MRI.getType(DstReg);
3842   if (DstTy.isVector())
3843     return UnableToLegalize;
3844 
3845   SmallVector<Register, 8> Parts;
3846   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3847   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
3848   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3849 
3850   MI.eraseFromParent();
3851   return Legalized;
3852 }
3853 
3854 LegalizerHelper::LegalizeResult
3855 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
3856                                     LLT NarrowTy) {
3857   if (TypeIdx != 0)
3858     return UnableToLegalize;
3859 
3860   Register CondReg = MI.getOperand(1).getReg();
3861   LLT CondTy = MRI.getType(CondReg);
3862   if (CondTy.isVector()) // TODO: Handle vselect
3863     return UnableToLegalize;
3864 
3865   Register DstReg = MI.getOperand(0).getReg();
3866   LLT DstTy = MRI.getType(DstReg);
3867 
3868   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
3869   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
3870   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
3871   LLT LeftoverTy;
3872   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
3873                     Src1Regs, Src1LeftoverRegs))
3874     return UnableToLegalize;
3875 
3876   LLT Unused;
3877   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
3878                     Src2Regs, Src2LeftoverRegs))
3879     llvm_unreachable("inconsistent extractParts result");
3880 
3881   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
3882     auto Select = MIRBuilder.buildSelect(NarrowTy,
3883                                          CondReg, Src1Regs[I], Src2Regs[I]);
3884     DstRegs.push_back(Select.getReg(0));
3885   }
3886 
3887   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
3888     auto Select = MIRBuilder.buildSelect(
3889       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
3890     DstLeftoverRegs.push_back(Select.getReg(0));
3891   }
3892 
3893   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
3894               LeftoverTy, DstLeftoverRegs);
3895 
3896   MI.eraseFromParent();
3897   return Legalized;
3898 }
3899 
3900 LegalizerHelper::LegalizeResult
3901 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
3902                                   LLT NarrowTy) {
3903   if (TypeIdx != 1)
3904     return UnableToLegalize;
3905 
3906   Register DstReg = MI.getOperand(0).getReg();
3907   Register SrcReg = MI.getOperand(1).getReg();
3908   LLT DstTy = MRI.getType(DstReg);
3909   LLT SrcTy = MRI.getType(SrcReg);
3910   unsigned NarrowSize = NarrowTy.getSizeInBits();
3911 
3912   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
3913     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
3914 
3915     MachineIRBuilder &B = MIRBuilder;
3916     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
3917     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
3918     auto C_0 = B.buildConstant(NarrowTy, 0);
3919     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
3920                                 UnmergeSrc.getReg(1), C_0);
3921     auto LoCTLZ = IsUndef ?
3922       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
3923       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
3924     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
3925     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
3926     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
3927     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
3928 
3929     MI.eraseFromParent();
3930     return Legalized;
3931   }
3932 
3933   return UnableToLegalize;
3934 }
3935 
3936 LegalizerHelper::LegalizeResult
3937 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
3938                                   LLT NarrowTy) {
3939   if (TypeIdx != 1)
3940     return UnableToLegalize;
3941 
3942   Register DstReg = MI.getOperand(0).getReg();
3943   Register SrcReg = MI.getOperand(1).getReg();
3944   LLT DstTy = MRI.getType(DstReg);
3945   LLT SrcTy = MRI.getType(SrcReg);
3946   unsigned NarrowSize = NarrowTy.getSizeInBits();
3947 
3948   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
3949     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
3950 
3951     MachineIRBuilder &B = MIRBuilder;
3952     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
3953     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
3954     auto C_0 = B.buildConstant(NarrowTy, 0);
3955     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
3956                                 UnmergeSrc.getReg(0), C_0);
3957     auto HiCTTZ = IsUndef ?
3958       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
3959       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
3960     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
3961     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
3962     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
3963     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
3964 
3965     MI.eraseFromParent();
3966     return Legalized;
3967   }
3968 
3969   return UnableToLegalize;
3970 }
3971 
3972 LegalizerHelper::LegalizeResult
3973 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
3974                                    LLT NarrowTy) {
3975   if (TypeIdx != 1)
3976     return UnableToLegalize;
3977 
3978   Register DstReg = MI.getOperand(0).getReg();
3979   LLT DstTy = MRI.getType(DstReg);
3980   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3981   unsigned NarrowSize = NarrowTy.getSizeInBits();
3982 
3983   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
3984     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
3985 
3986     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
3987     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
3988     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
3989 
3990     MI.eraseFromParent();
3991     return Legalized;
3992   }
3993 
3994   return UnableToLegalize;
3995 }
3996 
3997 LegalizerHelper::LegalizeResult
3998 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
3999   unsigned Opc = MI.getOpcode();
4000   auto &TII = *MI.getMF()->getSubtarget().getInstrInfo();
4001   auto isSupported = [this](const LegalityQuery &Q) {
4002     auto QAction = LI.getAction(Q).Action;
4003     return QAction == Legal || QAction == Libcall || QAction == Custom;
4004   };
4005   switch (Opc) {
4006   default:
4007     return UnableToLegalize;
4008   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4009     // This trivially expands to CTLZ.
4010     Observer.changingInstr(MI);
4011     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4012     Observer.changedInstr(MI);
4013     return Legalized;
4014   }
4015   case TargetOpcode::G_CTLZ: {
4016     Register DstReg = MI.getOperand(0).getReg();
4017     Register SrcReg = MI.getOperand(1).getReg();
4018     LLT DstTy = MRI.getType(DstReg);
4019     LLT SrcTy = MRI.getType(SrcReg);
4020     unsigned Len = SrcTy.getSizeInBits();
4021 
4022     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4023       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4024       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4025       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4026       auto ICmp = MIRBuilder.buildICmp(
4027           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4028       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4029       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4030       MI.eraseFromParent();
4031       return Legalized;
4032     }
4033     // for now, we do this:
4034     // NewLen = NextPowerOf2(Len);
4035     // x = x | (x >> 1);
4036     // x = x | (x >> 2);
4037     // ...
4038     // x = x | (x >>16);
4039     // x = x | (x >>32); // for 64-bit input
4040     // Upto NewLen/2
4041     // return Len - popcount(x);
4042     //
4043     // Ref: "Hacker's Delight" by Henry Warren
4044     Register Op = SrcReg;
4045     unsigned NewLen = PowerOf2Ceil(Len);
4046     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4047       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4048       auto MIBOp = MIRBuilder.buildOr(
4049           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4050       Op = MIBOp.getReg(0);
4051     }
4052     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4053     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4054                         MIBPop);
4055     MI.eraseFromParent();
4056     return Legalized;
4057   }
4058   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4059     // This trivially expands to CTTZ.
4060     Observer.changingInstr(MI);
4061     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4062     Observer.changedInstr(MI);
4063     return Legalized;
4064   }
4065   case TargetOpcode::G_CTTZ: {
4066     Register DstReg = MI.getOperand(0).getReg();
4067     Register SrcReg = MI.getOperand(1).getReg();
4068     LLT DstTy = MRI.getType(DstReg);
4069     LLT SrcTy = MRI.getType(SrcReg);
4070 
4071     unsigned Len = SrcTy.getSizeInBits();
4072     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4073       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4074       // zero.
4075       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4076       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4077       auto ICmp = MIRBuilder.buildICmp(
4078           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4079       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4080       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4081       MI.eraseFromParent();
4082       return Legalized;
4083     }
4084     // for now, we use: { return popcount(~x & (x - 1)); }
4085     // unless the target has ctlz but not ctpop, in which case we use:
4086     // { return 32 - nlz(~x & (x-1)); }
4087     // Ref: "Hacker's Delight" by Henry Warren
4088     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4089     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4090     auto MIBTmp = MIRBuilder.buildAnd(
4091         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4092     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4093         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4094       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4095       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4096                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4097       MI.eraseFromParent();
4098       return Legalized;
4099     }
4100     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4101     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4102     return Legalized;
4103   }
4104   case TargetOpcode::G_CTPOP: {
4105     unsigned Size = Ty.getSizeInBits();
4106     MachineIRBuilder &B = MIRBuilder;
4107 
4108     // Count set bits in blocks of 2 bits. Default approach would be
4109     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4110     // We use following formula instead:
4111     // B2Count = val - { (val >> 1) & 0x55555555 }
4112     // since it gives same result in blocks of 2 with one instruction less.
4113     auto C_1 = B.buildConstant(Ty, 1);
4114     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4115     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4116     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4117     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4118     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4119 
4120     // In order to get count in blocks of 4 add values from adjacent block of 2.
4121     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4122     auto C_2 = B.buildConstant(Ty, 2);
4123     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4124     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4125     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4126     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4127     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4128     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4129 
4130     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4131     // addition since count value sits in range {0,...,8} and 4 bits are enough
4132     // to hold such binary values. After addition high 4 bits still hold count
4133     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4134     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4135     auto C_4 = B.buildConstant(Ty, 4);
4136     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4137     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4138     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4139     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4140     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4141 
4142     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4143     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4144     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4145     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4146     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4147 
4148     // Shift count result from 8 high bits to low bits.
4149     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4150     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4151 
4152     MI.eraseFromParent();
4153     return Legalized;
4154   }
4155   }
4156 }
4157 
4158 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4159 // representation.
4160 LegalizerHelper::LegalizeResult
4161 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4162   Register Dst = MI.getOperand(0).getReg();
4163   Register Src = MI.getOperand(1).getReg();
4164   const LLT S64 = LLT::scalar(64);
4165   const LLT S32 = LLT::scalar(32);
4166   const LLT S1 = LLT::scalar(1);
4167 
4168   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4169 
4170   // unsigned cul2f(ulong u) {
4171   //   uint lz = clz(u);
4172   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4173   //   u = (u << lz) & 0x7fffffffffffffffUL;
4174   //   ulong t = u & 0xffffffffffUL;
4175   //   uint v = (e << 23) | (uint)(u >> 40);
4176   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4177   //   return as_float(v + r);
4178   // }
4179 
4180   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4181   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4182 
4183   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4184 
4185   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4186   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4187 
4188   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4189   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4190 
4191   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4192   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4193 
4194   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4195 
4196   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4197   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4198 
4199   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4200   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4201   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4202 
4203   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4204   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4205   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4206   auto One = MIRBuilder.buildConstant(S32, 1);
4207 
4208   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4209   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4210   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4211   MIRBuilder.buildAdd(Dst, V, R);
4212 
4213   return Legalized;
4214 }
4215 
4216 LegalizerHelper::LegalizeResult
4217 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4218   Register Dst = MI.getOperand(0).getReg();
4219   Register Src = MI.getOperand(1).getReg();
4220   LLT DstTy = MRI.getType(Dst);
4221   LLT SrcTy = MRI.getType(Src);
4222 
4223   if (SrcTy == LLT::scalar(1)) {
4224     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4225     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4226     MIRBuilder.buildSelect(Dst, Src, True, False);
4227     MI.eraseFromParent();
4228     return Legalized;
4229   }
4230 
4231   if (SrcTy != LLT::scalar(64))
4232     return UnableToLegalize;
4233 
4234   if (DstTy == LLT::scalar(32)) {
4235     // TODO: SelectionDAG has several alternative expansions to port which may
4236     // be more reasonble depending on the available instructions. If a target
4237     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4238     // intermediate type, this is probably worse.
4239     return lowerU64ToF32BitOps(MI);
4240   }
4241 
4242   return UnableToLegalize;
4243 }
4244 
4245 LegalizerHelper::LegalizeResult
4246 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4247   Register Dst = MI.getOperand(0).getReg();
4248   Register Src = MI.getOperand(1).getReg();
4249   LLT DstTy = MRI.getType(Dst);
4250   LLT SrcTy = MRI.getType(Src);
4251 
4252   const LLT S64 = LLT::scalar(64);
4253   const LLT S32 = LLT::scalar(32);
4254   const LLT S1 = LLT::scalar(1);
4255 
4256   if (SrcTy == S1) {
4257     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4258     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4259     MIRBuilder.buildSelect(Dst, Src, True, False);
4260     MI.eraseFromParent();
4261     return Legalized;
4262   }
4263 
4264   if (SrcTy != S64)
4265     return UnableToLegalize;
4266 
4267   if (DstTy == S32) {
4268     // signed cl2f(long l) {
4269     //   long s = l >> 63;
4270     //   float r = cul2f((l + s) ^ s);
4271     //   return s ? -r : r;
4272     // }
4273     Register L = Src;
4274     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4275     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4276 
4277     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4278     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4279     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4280 
4281     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4282     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4283                                             MIRBuilder.buildConstant(S64, 0));
4284     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4285     return Legalized;
4286   }
4287 
4288   return UnableToLegalize;
4289 }
4290 
4291 LegalizerHelper::LegalizeResult
4292 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4293   Register Dst = MI.getOperand(0).getReg();
4294   Register Src = MI.getOperand(1).getReg();
4295   LLT DstTy = MRI.getType(Dst);
4296   LLT SrcTy = MRI.getType(Src);
4297   const LLT S64 = LLT::scalar(64);
4298   const LLT S32 = LLT::scalar(32);
4299 
4300   if (SrcTy != S64 && SrcTy != S32)
4301     return UnableToLegalize;
4302   if (DstTy != S32 && DstTy != S64)
4303     return UnableToLegalize;
4304 
4305   // FPTOSI gives same result as FPTOUI for positive signed integers.
4306   // FPTOUI needs to deal with fp values that convert to unsigned integers
4307   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4308 
4309   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4310   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4311                                                 : APFloat::IEEEdouble(),
4312                     APInt::getNullValue(SrcTy.getSizeInBits()));
4313   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4314 
4315   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4316 
4317   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4318   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4319   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4320   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4321   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4322   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4323   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4324 
4325   const LLT S1 = LLT::scalar(1);
4326 
4327   MachineInstrBuilder FCMP =
4328       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4329   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4330 
4331   MI.eraseFromParent();
4332   return Legalized;
4333 }
4334 
4335 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4336   Register Dst = MI.getOperand(0).getReg();
4337   Register Src = MI.getOperand(1).getReg();
4338   LLT DstTy = MRI.getType(Dst);
4339   LLT SrcTy = MRI.getType(Src);
4340   const LLT S64 = LLT::scalar(64);
4341   const LLT S32 = LLT::scalar(32);
4342 
4343   // FIXME: Only f32 to i64 conversions are supported.
4344   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4345     return UnableToLegalize;
4346 
4347   // Expand f32 -> i64 conversion
4348   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4349   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4350 
4351   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4352 
4353   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4354   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4355 
4356   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4357   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4358 
4359   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4360                                            APInt::getSignMask(SrcEltBits));
4361   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4362   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4363   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4364   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4365 
4366   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
4367   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
4368   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
4369 
4370   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
4371   R = MIRBuilder.buildZExt(DstTy, R);
4372 
4373   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
4374   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
4375   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
4376   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
4377 
4378   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
4379   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
4380 
4381   const LLT S1 = LLT::scalar(1);
4382   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
4383                                     S1, Exponent, ExponentLoBit);
4384 
4385   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
4386 
4387   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
4388   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
4389 
4390   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
4391 
4392   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
4393                                           S1, Exponent, ZeroSrcTy);
4394 
4395   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
4396   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
4397 
4398   MI.eraseFromParent();
4399   return Legalized;
4400 }
4401 
4402 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
4403 LegalizerHelper::LegalizeResult
4404 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
4405   Register Dst = MI.getOperand(0).getReg();
4406   Register Src = MI.getOperand(1).getReg();
4407 
4408   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
4409     return UnableToLegalize;
4410 
4411   const unsigned ExpMask = 0x7ff;
4412   const unsigned ExpBiasf64 = 1023;
4413   const unsigned ExpBiasf16 = 15;
4414   const LLT S32 = LLT::scalar(32);
4415   const LLT S1 = LLT::scalar(1);
4416 
4417   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
4418   Register U = Unmerge.getReg(0);
4419   Register UH = Unmerge.getReg(1);
4420 
4421   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
4422 
4423   // Subtract the fp64 exponent bias (1023) to get the real exponent and
4424   // add the f16 bias (15) to get the biased exponent for the f16 format.
4425   E = MIRBuilder.buildAdd(
4426     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
4427   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
4428 
4429   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
4430   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
4431 
4432   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
4433                                        MIRBuilder.buildConstant(S32, 0x1ff));
4434   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
4435 
4436   auto Zero = MIRBuilder.buildConstant(S32, 0);
4437   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
4438   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
4439   M = MIRBuilder.buildOr(S32, M, Lo40Set);
4440 
4441   // (M != 0 ? 0x0200 : 0) | 0x7c00;
4442   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
4443   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
4444   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
4445 
4446   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
4447   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
4448 
4449   // N = M | (E << 12);
4450   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
4451   auto N = MIRBuilder.buildOr(S32, M, EShl12);
4452 
4453   // B = clamp(1-E, 0, 13);
4454   auto One = MIRBuilder.buildConstant(S32, 1);
4455   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
4456   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
4457   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
4458 
4459   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
4460                                        MIRBuilder.buildConstant(S32, 0x1000));
4461 
4462   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
4463   auto D0 = MIRBuilder.buildShl(S32, D, B);
4464 
4465   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
4466                                              D0, SigSetHigh);
4467   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
4468   D = MIRBuilder.buildOr(S32, D, D1);
4469 
4470   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
4471   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
4472 
4473   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
4474   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
4475 
4476   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
4477                                        MIRBuilder.buildConstant(S32, 3));
4478   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
4479 
4480   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
4481                                        MIRBuilder.buildConstant(S32, 5));
4482   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
4483 
4484   V1 = MIRBuilder.buildOr(S32, V0, V1);
4485   V = MIRBuilder.buildAdd(S32, V, V1);
4486 
4487   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
4488                                        E, MIRBuilder.buildConstant(S32, 30));
4489   V = MIRBuilder.buildSelect(S32, CmpEGt30,
4490                              MIRBuilder.buildConstant(S32, 0x7c00), V);
4491 
4492   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
4493                                          E, MIRBuilder.buildConstant(S32, 1039));
4494   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
4495 
4496   // Extract the sign bit.
4497   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
4498   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
4499 
4500   // Insert the sign bit
4501   V = MIRBuilder.buildOr(S32, Sign, V);
4502 
4503   MIRBuilder.buildTrunc(Dst, V);
4504   MI.eraseFromParent();
4505   return Legalized;
4506 }
4507 
4508 LegalizerHelper::LegalizeResult
4509 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4510   Register Dst = MI.getOperand(0).getReg();
4511   Register Src = MI.getOperand(1).getReg();
4512 
4513   LLT DstTy = MRI.getType(Dst);
4514   LLT SrcTy = MRI.getType(Src);
4515   const LLT S64 = LLT::scalar(64);
4516   const LLT S16 = LLT::scalar(16);
4517 
4518   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
4519     return lowerFPTRUNC_F64_TO_F16(MI);
4520 
4521   return UnableToLegalize;
4522 }
4523 
4524 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
4525   switch (Opc) {
4526   case TargetOpcode::G_SMIN:
4527     return CmpInst::ICMP_SLT;
4528   case TargetOpcode::G_SMAX:
4529     return CmpInst::ICMP_SGT;
4530   case TargetOpcode::G_UMIN:
4531     return CmpInst::ICMP_ULT;
4532   case TargetOpcode::G_UMAX:
4533     return CmpInst::ICMP_UGT;
4534   default:
4535     llvm_unreachable("not in integer min/max");
4536   }
4537 }
4538 
4539 LegalizerHelper::LegalizeResult
4540 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4541   Register Dst = MI.getOperand(0).getReg();
4542   Register Src0 = MI.getOperand(1).getReg();
4543   Register Src1 = MI.getOperand(2).getReg();
4544 
4545   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
4546   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
4547 
4548   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
4549   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
4550 
4551   MI.eraseFromParent();
4552   return Legalized;
4553 }
4554 
4555 LegalizerHelper::LegalizeResult
4556 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4557   Register Dst = MI.getOperand(0).getReg();
4558   Register Src0 = MI.getOperand(1).getReg();
4559   Register Src1 = MI.getOperand(2).getReg();
4560 
4561   const LLT Src0Ty = MRI.getType(Src0);
4562   const LLT Src1Ty = MRI.getType(Src1);
4563 
4564   const int Src0Size = Src0Ty.getScalarSizeInBits();
4565   const int Src1Size = Src1Ty.getScalarSizeInBits();
4566 
4567   auto SignBitMask = MIRBuilder.buildConstant(
4568     Src0Ty, APInt::getSignMask(Src0Size));
4569 
4570   auto NotSignBitMask = MIRBuilder.buildConstant(
4571     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
4572 
4573   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
4574   MachineInstr *Or;
4575 
4576   if (Src0Ty == Src1Ty) {
4577     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask);
4578     Or = MIRBuilder.buildOr(Dst, And0, And1);
4579   } else if (Src0Size > Src1Size) {
4580     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
4581     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
4582     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
4583     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
4584     Or = MIRBuilder.buildOr(Dst, And0, And1);
4585   } else {
4586     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
4587     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
4588     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
4589     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
4590     Or = MIRBuilder.buildOr(Dst, And0, And1);
4591   }
4592 
4593   // Be careful about setting nsz/nnan/ninf on every instruction, since the
4594   // constants are a nan and -0.0, but the final result should preserve
4595   // everything.
4596   if (unsigned Flags = MI.getFlags())
4597     Or->setFlags(Flags);
4598 
4599   MI.eraseFromParent();
4600   return Legalized;
4601 }
4602 
4603 LegalizerHelper::LegalizeResult
4604 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
4605   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
4606     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
4607 
4608   Register Dst = MI.getOperand(0).getReg();
4609   Register Src0 = MI.getOperand(1).getReg();
4610   Register Src1 = MI.getOperand(2).getReg();
4611   LLT Ty = MRI.getType(Dst);
4612 
4613   if (!MI.getFlag(MachineInstr::FmNoNans)) {
4614     // Insert canonicalizes if it's possible we need to quiet to get correct
4615     // sNaN behavior.
4616 
4617     // Note this must be done here, and not as an optimization combine in the
4618     // absence of a dedicate quiet-snan instruction as we're using an
4619     // omni-purpose G_FCANONICALIZE.
4620     if (!isKnownNeverSNaN(Src0, MRI))
4621       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
4622 
4623     if (!isKnownNeverSNaN(Src1, MRI))
4624       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
4625   }
4626 
4627   // If there are no nans, it's safe to simply replace this with the non-IEEE
4628   // version.
4629   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
4630   MI.eraseFromParent();
4631   return Legalized;
4632 }
4633 
4634 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
4635   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
4636   Register DstReg = MI.getOperand(0).getReg();
4637   LLT Ty = MRI.getType(DstReg);
4638   unsigned Flags = MI.getFlags();
4639 
4640   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
4641                                   Flags);
4642   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
4643   MI.eraseFromParent();
4644   return Legalized;
4645 }
4646 
4647 LegalizerHelper::LegalizeResult
4648 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
4649   Register DstReg = MI.getOperand(0).getReg();
4650   Register SrcReg = MI.getOperand(1).getReg();
4651   unsigned Flags = MI.getFlags();
4652   LLT Ty = MRI.getType(DstReg);
4653   const LLT CondTy = Ty.changeElementSize(1);
4654 
4655   // result = trunc(src);
4656   // if (src < 0.0 && src != result)
4657   //   result += -1.0.
4658 
4659   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
4660   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
4661 
4662   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
4663                                   SrcReg, Zero, Flags);
4664   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
4665                                       SrcReg, Trunc, Flags);
4666   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
4667   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
4668 
4669   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal);
4670   MI.eraseFromParent();
4671   return Legalized;
4672 }
4673 
4674 LegalizerHelper::LegalizeResult
4675 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
4676   const unsigned NumDst = MI.getNumOperands() - 1;
4677   const Register SrcReg = MI.getOperand(NumDst).getReg();
4678   LLT SrcTy = MRI.getType(SrcReg);
4679 
4680   Register Dst0Reg = MI.getOperand(0).getReg();
4681   LLT DstTy = MRI.getType(Dst0Reg);
4682 
4683 
4684   // Expand scalarizing unmerge as bitcast to integer and shift.
4685   if (!DstTy.isVector() && SrcTy.isVector() &&
4686       SrcTy.getElementType() == DstTy) {
4687     LLT IntTy = LLT::scalar(SrcTy.getSizeInBits());
4688     Register Cast = MIRBuilder.buildBitcast(IntTy, SrcReg).getReg(0);
4689 
4690     MIRBuilder.buildTrunc(Dst0Reg, Cast);
4691 
4692     const unsigned DstSize = DstTy.getSizeInBits();
4693     unsigned Offset = DstSize;
4694     for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
4695       auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
4696       auto Shift = MIRBuilder.buildLShr(IntTy, Cast, ShiftAmt);
4697       MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
4698     }
4699 
4700     MI.eraseFromParent();
4701     return Legalized;
4702   }
4703 
4704   return UnableToLegalize;
4705 }
4706 
4707 LegalizerHelper::LegalizeResult
4708 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
4709   Register DstReg = MI.getOperand(0).getReg();
4710   Register Src0Reg = MI.getOperand(1).getReg();
4711   Register Src1Reg = MI.getOperand(2).getReg();
4712   LLT Src0Ty = MRI.getType(Src0Reg);
4713   LLT DstTy = MRI.getType(DstReg);
4714   LLT IdxTy = LLT::scalar(32);
4715 
4716   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4717 
4718   if (DstTy.isScalar()) {
4719     if (Src0Ty.isVector())
4720       return UnableToLegalize;
4721 
4722     // This is just a SELECT.
4723     assert(Mask.size() == 1 && "Expected a single mask element");
4724     Register Val;
4725     if (Mask[0] < 0 || Mask[0] > 1)
4726       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
4727     else
4728       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
4729     MIRBuilder.buildCopy(DstReg, Val);
4730     MI.eraseFromParent();
4731     return Legalized;
4732   }
4733 
4734   Register Undef;
4735   SmallVector<Register, 32> BuildVec;
4736   LLT EltTy = DstTy.getElementType();
4737 
4738   for (int Idx : Mask) {
4739     if (Idx < 0) {
4740       if (!Undef.isValid())
4741         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
4742       BuildVec.push_back(Undef);
4743       continue;
4744     }
4745 
4746     if (Src0Ty.isScalar()) {
4747       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
4748     } else {
4749       int NumElts = Src0Ty.getNumElements();
4750       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
4751       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
4752       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
4753       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
4754       BuildVec.push_back(Extract.getReg(0));
4755     }
4756   }
4757 
4758   MIRBuilder.buildBuildVector(DstReg, BuildVec);
4759   MI.eraseFromParent();
4760   return Legalized;
4761 }
4762 
4763 LegalizerHelper::LegalizeResult
4764 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
4765   Register Dst = MI.getOperand(0).getReg();
4766   Register AllocSize = MI.getOperand(1).getReg();
4767   unsigned Align = MI.getOperand(2).getImm();
4768 
4769   const auto &MF = *MI.getMF();
4770   const auto &TLI = *MF.getSubtarget().getTargetLowering();
4771 
4772   LLT PtrTy = MRI.getType(Dst);
4773   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
4774 
4775   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
4776   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
4777   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
4778 
4779   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
4780   // have to generate an extra instruction to negate the alloc and then use
4781   // G_PTR_ADD to add the negative offset.
4782   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
4783   if (Align) {
4784     APInt AlignMask(IntPtrTy.getSizeInBits(), Align, true);
4785     AlignMask.negate();
4786     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
4787     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
4788   }
4789 
4790   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
4791   MIRBuilder.buildCopy(SPReg, SPTmp);
4792   MIRBuilder.buildCopy(Dst, SPTmp);
4793 
4794   MI.eraseFromParent();
4795   return Legalized;
4796 }
4797 
4798 LegalizerHelper::LegalizeResult
4799 LegalizerHelper::lowerExtract(MachineInstr &MI) {
4800   Register Dst = MI.getOperand(0).getReg();
4801   Register Src = MI.getOperand(1).getReg();
4802   unsigned Offset = MI.getOperand(2).getImm();
4803 
4804   LLT DstTy = MRI.getType(Dst);
4805   LLT SrcTy = MRI.getType(Src);
4806 
4807   if (DstTy.isScalar() &&
4808       (SrcTy.isScalar() ||
4809        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
4810     LLT SrcIntTy = SrcTy;
4811     if (!SrcTy.isScalar()) {
4812       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
4813       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
4814     }
4815 
4816     if (Offset == 0)
4817       MIRBuilder.buildTrunc(Dst, Src);
4818     else {
4819       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
4820       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
4821       MIRBuilder.buildTrunc(Dst, Shr);
4822     }
4823 
4824     MI.eraseFromParent();
4825     return Legalized;
4826   }
4827 
4828   return UnableToLegalize;
4829 }
4830 
4831 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
4832   Register Dst = MI.getOperand(0).getReg();
4833   Register Src = MI.getOperand(1).getReg();
4834   Register InsertSrc = MI.getOperand(2).getReg();
4835   uint64_t Offset = MI.getOperand(3).getImm();
4836 
4837   LLT DstTy = MRI.getType(Src);
4838   LLT InsertTy = MRI.getType(InsertSrc);
4839 
4840   if (InsertTy.isScalar() &&
4841       (DstTy.isScalar() ||
4842        (DstTy.isVector() && DstTy.getElementType() == InsertTy))) {
4843     LLT IntDstTy = DstTy;
4844     if (!DstTy.isScalar()) {
4845       IntDstTy = LLT::scalar(DstTy.getSizeInBits());
4846       Src = MIRBuilder.buildBitcast(IntDstTy, Src).getReg(0);
4847     }
4848 
4849     Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
4850     if (Offset != 0) {
4851       auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
4852       ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
4853     }
4854 
4855     APInt MaskVal = APInt::getBitsSetWithWrap(DstTy.getSizeInBits(),
4856                                               Offset + InsertTy.getSizeInBits(),
4857                                               Offset);
4858 
4859     auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
4860     auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
4861     auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
4862 
4863     MIRBuilder.buildBitcast(Dst, Or);
4864     MI.eraseFromParent();
4865     return Legalized;
4866   }
4867 
4868   return UnableToLegalize;
4869 }
4870 
4871 LegalizerHelper::LegalizeResult
4872 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
4873   Register Dst0 = MI.getOperand(0).getReg();
4874   Register Dst1 = MI.getOperand(1).getReg();
4875   Register LHS = MI.getOperand(2).getReg();
4876   Register RHS = MI.getOperand(3).getReg();
4877   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
4878 
4879   LLT Ty = MRI.getType(Dst0);
4880   LLT BoolTy = MRI.getType(Dst1);
4881 
4882   if (IsAdd)
4883     MIRBuilder.buildAdd(Dst0, LHS, RHS);
4884   else
4885     MIRBuilder.buildSub(Dst0, LHS, RHS);
4886 
4887   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
4888 
4889   auto Zero = MIRBuilder.buildConstant(Ty, 0);
4890 
4891   // For an addition, the result should be less than one of the operands (LHS)
4892   // if and only if the other operand (RHS) is negative, otherwise there will
4893   // be overflow.
4894   // For a subtraction, the result should be less than one of the operands
4895   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
4896   // otherwise there will be overflow.
4897   auto ResultLowerThanLHS =
4898       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
4899   auto ConditionRHS = MIRBuilder.buildICmp(
4900       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
4901 
4902   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
4903   MI.eraseFromParent();
4904   return Legalized;
4905 }
4906 
4907 LegalizerHelper::LegalizeResult
4908 LegalizerHelper::lowerBswap(MachineInstr &MI) {
4909   Register Dst = MI.getOperand(0).getReg();
4910   Register Src = MI.getOperand(1).getReg();
4911   const LLT Ty = MRI.getType(Src);
4912   unsigned SizeInBytes = Ty.getSizeInBytes();
4913   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
4914 
4915   // Swap most and least significant byte, set remaining bytes in Res to zero.
4916   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
4917   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
4918   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
4919   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
4920 
4921   // Set i-th high/low byte in Res to i-th low/high byte from Src.
4922   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
4923     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
4924     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
4925     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
4926     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
4927     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
4928     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
4929     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
4930     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
4931     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
4932     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
4933     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
4934     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
4935   }
4936   Res.getInstr()->getOperand(0).setReg(Dst);
4937 
4938   MI.eraseFromParent();
4939   return Legalized;
4940 }
4941 
4942 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
4943 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
4944                                  MachineInstrBuilder Src, APInt Mask) {
4945   const LLT Ty = Dst.getLLTTy(*B.getMRI());
4946   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
4947   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
4948   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
4949   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
4950   return B.buildOr(Dst, LHS, RHS);
4951 }
4952 
4953 LegalizerHelper::LegalizeResult
4954 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
4955   Register Dst = MI.getOperand(0).getReg();
4956   Register Src = MI.getOperand(1).getReg();
4957   const LLT Ty = MRI.getType(Src);
4958   unsigned Size = Ty.getSizeInBits();
4959 
4960   MachineInstrBuilder BSWAP =
4961       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
4962 
4963   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
4964   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
4965   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
4966   MachineInstrBuilder Swap4 =
4967       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
4968 
4969   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
4970   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
4971   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
4972   MachineInstrBuilder Swap2 =
4973       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
4974 
4975   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
4976   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
4977   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
4978   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
4979 
4980   MI.eraseFromParent();
4981   return Legalized;
4982 }
4983 
4984 LegalizerHelper::LegalizeResult
4985 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
4986   MachineFunction &MF = MIRBuilder.getMF();
4987   const TargetSubtargetInfo &STI = MF.getSubtarget();
4988   const TargetLowering *TLI = STI.getTargetLowering();
4989 
4990   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
4991   int NameOpIdx = IsRead ? 1 : 0;
4992   int ValRegIndex = IsRead ? 0 : 1;
4993 
4994   Register ValReg = MI.getOperand(ValRegIndex).getReg();
4995   const LLT Ty = MRI.getType(ValReg);
4996   const MDString *RegStr = cast<MDString>(
4997     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
4998 
4999   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5000   if (!PhysReg.isValid())
5001     return UnableToLegalize;
5002 
5003   if (IsRead)
5004     MIRBuilder.buildCopy(ValReg, PhysReg);
5005   else
5006     MIRBuilder.buildCopy(PhysReg, ValReg);
5007 
5008   MI.eraseFromParent();
5009   return Legalized;
5010 }
5011