1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()) {
94   MIRBuilder.setChangeObserver(Observer);
95 }
96 
97 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
98                                  GISelChangeObserver &Observer,
99                                  MachineIRBuilder &B)
100     : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI) {
101   MIRBuilder.setChangeObserver(Observer);
102 }
103 LegalizerHelper::LegalizeResult
104 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
105   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
106 
107   MIRBuilder.setInstrAndDebugLoc(MI);
108 
109   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
110       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
111     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
112   auto Step = LI.getAction(MI, MRI);
113   switch (Step.Action) {
114   case Legal:
115     LLVM_DEBUG(dbgs() << ".. Already legal\n");
116     return AlreadyLegal;
117   case Libcall:
118     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
119     return libcall(MI);
120   case NarrowScalar:
121     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
122     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
123   case WidenScalar:
124     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
125     return widenScalar(MI, Step.TypeIdx, Step.NewType);
126   case Bitcast:
127     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
128     return bitcast(MI, Step.TypeIdx, Step.NewType);
129   case Lower:
130     LLVM_DEBUG(dbgs() << ".. Lower\n");
131     return lower(MI, Step.TypeIdx, Step.NewType);
132   case FewerElements:
133     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
134     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
135   case MoreElements:
136     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
137     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
138   case Custom:
139     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
140     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
141   default:
142     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
143     return UnableToLegalize;
144   }
145 }
146 
147 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
148                                    SmallVectorImpl<Register> &VRegs) {
149   for (int i = 0; i < NumParts; ++i)
150     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
151   MIRBuilder.buildUnmerge(VRegs, Reg);
152 }
153 
154 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
155                                    LLT MainTy, LLT &LeftoverTy,
156                                    SmallVectorImpl<Register> &VRegs,
157                                    SmallVectorImpl<Register> &LeftoverRegs) {
158   assert(!LeftoverTy.isValid() && "this is an out argument");
159 
160   unsigned RegSize = RegTy.getSizeInBits();
161   unsigned MainSize = MainTy.getSizeInBits();
162   unsigned NumParts = RegSize / MainSize;
163   unsigned LeftoverSize = RegSize - NumParts * MainSize;
164 
165   // Use an unmerge when possible.
166   if (LeftoverSize == 0) {
167     for (unsigned I = 0; I < NumParts; ++I)
168       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
169     MIRBuilder.buildUnmerge(VRegs, Reg);
170     return true;
171   }
172 
173   if (MainTy.isVector()) {
174     unsigned EltSize = MainTy.getScalarSizeInBits();
175     if (LeftoverSize % EltSize != 0)
176       return false;
177     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
178   } else {
179     LeftoverTy = LLT::scalar(LeftoverSize);
180   }
181 
182   // For irregular sizes, extract the individual parts.
183   for (unsigned I = 0; I != NumParts; ++I) {
184     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
185     VRegs.push_back(NewReg);
186     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
187   }
188 
189   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
190        Offset += LeftoverSize) {
191     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
192     LeftoverRegs.push_back(NewReg);
193     MIRBuilder.buildExtract(NewReg, Reg, Offset);
194   }
195 
196   return true;
197 }
198 
199 void LegalizerHelper::insertParts(Register DstReg,
200                                   LLT ResultTy, LLT PartTy,
201                                   ArrayRef<Register> PartRegs,
202                                   LLT LeftoverTy,
203                                   ArrayRef<Register> LeftoverRegs) {
204   if (!LeftoverTy.isValid()) {
205     assert(LeftoverRegs.empty());
206 
207     if (!ResultTy.isVector()) {
208       MIRBuilder.buildMerge(DstReg, PartRegs);
209       return;
210     }
211 
212     if (PartTy.isVector())
213       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
214     else
215       MIRBuilder.buildBuildVector(DstReg, PartRegs);
216     return;
217   }
218 
219   unsigned PartSize = PartTy.getSizeInBits();
220   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
221 
222   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
223   MIRBuilder.buildUndef(CurResultReg);
224 
225   unsigned Offset = 0;
226   for (Register PartReg : PartRegs) {
227     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
228     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
229     CurResultReg = NewResultReg;
230     Offset += PartSize;
231   }
232 
233   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
234     // Use the original output register for the final insert to avoid a copy.
235     Register NewResultReg = (I + 1 == E) ?
236       DstReg : MRI.createGenericVirtualRegister(ResultTy);
237 
238     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
239     CurResultReg = NewResultReg;
240     Offset += LeftoverPartSize;
241   }
242 }
243 
244 /// Return the result registers of G_UNMERGE_VALUES \p MI in \p Regs
245 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
246                               const MachineInstr &MI) {
247   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
248 
249   const int NumResults = MI.getNumOperands() - 1;
250   Regs.resize(NumResults);
251   for (int I = 0; I != NumResults; ++I)
252     Regs[I] = MI.getOperand(I).getReg();
253 }
254 
255 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
256                                     LLT NarrowTy, Register SrcReg) {
257   LLT SrcTy = MRI.getType(SrcReg);
258 
259   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
260   if (SrcTy == GCDTy) {
261     // If the source already evenly divides the result type, we don't need to do
262     // anything.
263     Parts.push_back(SrcReg);
264   } else {
265     // Need to split into common type sized pieces.
266     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
267     getUnmergeResults(Parts, *Unmerge);
268   }
269 
270   return GCDTy;
271 }
272 
273 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
274                                          SmallVectorImpl<Register> &VRegs,
275                                          unsigned PadStrategy) {
276   LLT LCMTy = getLCMType(DstTy, NarrowTy);
277 
278   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
279   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
280   int NumOrigSrc = VRegs.size();
281 
282   Register PadReg;
283 
284   // Get a value we can use to pad the source value if the sources won't evenly
285   // cover the result type.
286   if (NumOrigSrc < NumParts * NumSubParts) {
287     if (PadStrategy == TargetOpcode::G_ZEXT)
288       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
289     else if (PadStrategy == TargetOpcode::G_ANYEXT)
290       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
291     else {
292       assert(PadStrategy == TargetOpcode::G_SEXT);
293 
294       // Shift the sign bit of the low register through the high register.
295       auto ShiftAmt =
296         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
297       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
298     }
299   }
300 
301   // Registers for the final merge to be produced.
302   SmallVector<Register, 4> Remerge(NumParts);
303 
304   // Registers needed for intermediate merges, which will be merged into a
305   // source for Remerge.
306   SmallVector<Register, 4> SubMerge(NumSubParts);
307 
308   // Once we've fully read off the end of the original source bits, we can reuse
309   // the same high bits for remaining padding elements.
310   Register AllPadReg;
311 
312   // Build merges to the LCM type to cover the original result type.
313   for (int I = 0; I != NumParts; ++I) {
314     bool AllMergePartsArePadding = true;
315 
316     // Build the requested merges to the requested type.
317     for (int J = 0; J != NumSubParts; ++J) {
318       int Idx = I * NumSubParts + J;
319       if (Idx >= NumOrigSrc) {
320         SubMerge[J] = PadReg;
321         continue;
322       }
323 
324       SubMerge[J] = VRegs[Idx];
325 
326       // There are meaningful bits here we can't reuse later.
327       AllMergePartsArePadding = false;
328     }
329 
330     // If we've filled up a complete piece with padding bits, we can directly
331     // emit the natural sized constant if applicable, rather than a merge of
332     // smaller constants.
333     if (AllMergePartsArePadding && !AllPadReg) {
334       if (PadStrategy == TargetOpcode::G_ANYEXT)
335         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
336       else if (PadStrategy == TargetOpcode::G_ZEXT)
337         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
338 
339       // If this is a sign extension, we can't materialize a trivial constant
340       // with the right type and have to produce a merge.
341     }
342 
343     if (AllPadReg) {
344       // Avoid creating additional instructions if we're just adding additional
345       // copies of padding bits.
346       Remerge[I] = AllPadReg;
347       continue;
348     }
349 
350     if (NumSubParts == 1)
351       Remerge[I] = SubMerge[0];
352     else
353       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
354 
355     // In the sign extend padding case, re-use the first all-signbit merge.
356     if (AllMergePartsArePadding && !AllPadReg)
357       AllPadReg = Remerge[I];
358   }
359 
360   VRegs = std::move(Remerge);
361   return LCMTy;
362 }
363 
364 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
365                                                ArrayRef<Register> RemergeRegs) {
366   LLT DstTy = MRI.getType(DstReg);
367 
368   // Create the merge to the widened source, and extract the relevant bits into
369   // the result.
370 
371   if (DstTy == LCMTy) {
372     MIRBuilder.buildMerge(DstReg, RemergeRegs);
373     return;
374   }
375 
376   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
377   if (DstTy.isScalar() && LCMTy.isScalar()) {
378     MIRBuilder.buildTrunc(DstReg, Remerge);
379     return;
380   }
381 
382   if (LCMTy.isVector()) {
383     MIRBuilder.buildExtract(DstReg, Remerge, 0);
384     return;
385   }
386 
387   llvm_unreachable("unhandled case");
388 }
389 
390 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
391 #define RTLIBCASE_INT(LibcallPrefix)                                           \
392   do {                                                                         \
393     switch (Size) {                                                            \
394     case 32:                                                                   \
395       return RTLIB::LibcallPrefix##32;                                         \
396     case 64:                                                                   \
397       return RTLIB::LibcallPrefix##64;                                         \
398     case 128:                                                                  \
399       return RTLIB::LibcallPrefix##128;                                        \
400     default:                                                                   \
401       llvm_unreachable("unexpected size");                                     \
402     }                                                                          \
403   } while (0)
404 
405 #define RTLIBCASE(LibcallPrefix)                                               \
406   do {                                                                         \
407     switch (Size) {                                                            \
408     case 32:                                                                   \
409       return RTLIB::LibcallPrefix##32;                                         \
410     case 64:                                                                   \
411       return RTLIB::LibcallPrefix##64;                                         \
412     case 80:                                                                   \
413       return RTLIB::LibcallPrefix##80;                                         \
414     case 128:                                                                  \
415       return RTLIB::LibcallPrefix##128;                                        \
416     default:                                                                   \
417       llvm_unreachable("unexpected size");                                     \
418     }                                                                          \
419   } while (0)
420 
421   switch (Opcode) {
422   case TargetOpcode::G_SDIV:
423     RTLIBCASE_INT(SDIV_I);
424   case TargetOpcode::G_UDIV:
425     RTLIBCASE_INT(UDIV_I);
426   case TargetOpcode::G_SREM:
427     RTLIBCASE_INT(SREM_I);
428   case TargetOpcode::G_UREM:
429     RTLIBCASE_INT(UREM_I);
430   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
431     RTLIBCASE_INT(CTLZ_I);
432   case TargetOpcode::G_FADD:
433     RTLIBCASE(ADD_F);
434   case TargetOpcode::G_FSUB:
435     RTLIBCASE(SUB_F);
436   case TargetOpcode::G_FMUL:
437     RTLIBCASE(MUL_F);
438   case TargetOpcode::G_FDIV:
439     RTLIBCASE(DIV_F);
440   case TargetOpcode::G_FEXP:
441     RTLIBCASE(EXP_F);
442   case TargetOpcode::G_FEXP2:
443     RTLIBCASE(EXP2_F);
444   case TargetOpcode::G_FREM:
445     RTLIBCASE(REM_F);
446   case TargetOpcode::G_FPOW:
447     RTLIBCASE(POW_F);
448   case TargetOpcode::G_FMA:
449     RTLIBCASE(FMA_F);
450   case TargetOpcode::G_FSIN:
451     RTLIBCASE(SIN_F);
452   case TargetOpcode::G_FCOS:
453     RTLIBCASE(COS_F);
454   case TargetOpcode::G_FLOG10:
455     RTLIBCASE(LOG10_F);
456   case TargetOpcode::G_FLOG:
457     RTLIBCASE(LOG_F);
458   case TargetOpcode::G_FLOG2:
459     RTLIBCASE(LOG2_F);
460   case TargetOpcode::G_FCEIL:
461     RTLIBCASE(CEIL_F);
462   case TargetOpcode::G_FFLOOR:
463     RTLIBCASE(FLOOR_F);
464   case TargetOpcode::G_FMINNUM:
465     RTLIBCASE(FMIN_F);
466   case TargetOpcode::G_FMAXNUM:
467     RTLIBCASE(FMAX_F);
468   case TargetOpcode::G_FSQRT:
469     RTLIBCASE(SQRT_F);
470   case TargetOpcode::G_FRINT:
471     RTLIBCASE(RINT_F);
472   case TargetOpcode::G_FNEARBYINT:
473     RTLIBCASE(NEARBYINT_F);
474   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
475     RTLIBCASE(ROUNDEVEN_F);
476   }
477   llvm_unreachable("Unknown libcall function");
478 }
479 
480 /// True if an instruction is in tail position in its caller. Intended for
481 /// legalizing libcalls as tail calls when possible.
482 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
483                                     MachineInstr &MI) {
484   MachineBasicBlock &MBB = *MI.getParent();
485   const Function &F = MBB.getParent()->getFunction();
486 
487   // Conservatively require the attributes of the call to match those of
488   // the return. Ignore NoAlias and NonNull because they don't affect the
489   // call sequence.
490   AttributeList CallerAttrs = F.getAttributes();
491   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
492           .removeAttribute(Attribute::NoAlias)
493           .removeAttribute(Attribute::NonNull)
494           .hasAttributes())
495     return false;
496 
497   // It's not safe to eliminate the sign / zero extension of the return value.
498   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
499       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
500     return false;
501 
502   // Only tail call if the following instruction is a standard return.
503   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
504   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
505     return false;
506 
507   return true;
508 }
509 
510 LegalizerHelper::LegalizeResult
511 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
512                     const CallLowering::ArgInfo &Result,
513                     ArrayRef<CallLowering::ArgInfo> Args,
514                     const CallingConv::ID CC) {
515   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
516 
517   CallLowering::CallLoweringInfo Info;
518   Info.CallConv = CC;
519   Info.Callee = MachineOperand::CreateES(Name);
520   Info.OrigRet = Result;
521   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
522   if (!CLI.lowerCall(MIRBuilder, Info))
523     return LegalizerHelper::UnableToLegalize;
524 
525   return LegalizerHelper::Legalized;
526 }
527 
528 LegalizerHelper::LegalizeResult
529 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
530                     const CallLowering::ArgInfo &Result,
531                     ArrayRef<CallLowering::ArgInfo> Args) {
532   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
533   const char *Name = TLI.getLibcallName(Libcall);
534   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
535   return createLibcall(MIRBuilder, Name, Result, Args, CC);
536 }
537 
538 // Useful for libcalls where all operands have the same type.
539 static LegalizerHelper::LegalizeResult
540 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
541               Type *OpType) {
542   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
543 
544   SmallVector<CallLowering::ArgInfo, 3> Args;
545   for (unsigned i = 1; i < MI.getNumOperands(); i++)
546     Args.push_back({MI.getOperand(i).getReg(), OpType});
547   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
548                        Args);
549 }
550 
551 LegalizerHelper::LegalizeResult
552 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
553                        MachineInstr &MI) {
554   assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
555   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
556 
557   SmallVector<CallLowering::ArgInfo, 3> Args;
558   // Add all the args, except for the last which is an imm denoting 'tail'.
559   for (unsigned i = 1; i < MI.getNumOperands() - 1; i++) {
560     Register Reg = MI.getOperand(i).getReg();
561 
562     // Need derive an IR type for call lowering.
563     LLT OpLLT = MRI.getType(Reg);
564     Type *OpTy = nullptr;
565     if (OpLLT.isPointer())
566       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
567     else
568       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
569     Args.push_back({Reg, OpTy});
570   }
571 
572   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
573   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
574   Intrinsic::ID ID = MI.getOperand(0).getIntrinsicID();
575   RTLIB::Libcall RTLibcall;
576   switch (ID) {
577   case Intrinsic::memcpy:
578     RTLibcall = RTLIB::MEMCPY;
579     break;
580   case Intrinsic::memset:
581     RTLibcall = RTLIB::MEMSET;
582     break;
583   case Intrinsic::memmove:
584     RTLibcall = RTLIB::MEMMOVE;
585     break;
586   default:
587     return LegalizerHelper::UnableToLegalize;
588   }
589   const char *Name = TLI.getLibcallName(RTLibcall);
590 
591   MIRBuilder.setInstrAndDebugLoc(MI);
592 
593   CallLowering::CallLoweringInfo Info;
594   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
595   Info.Callee = MachineOperand::CreateES(Name);
596   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
597   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() == 1 &&
598                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
599 
600   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
601   if (!CLI.lowerCall(MIRBuilder, Info))
602     return LegalizerHelper::UnableToLegalize;
603 
604   if (Info.LoweredTailCall) {
605     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
606     // We must have a return following the call (or debug insts) to get past
607     // isLibCallInTailPosition.
608     do {
609       MachineInstr *Next = MI.getNextNode();
610       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
611              "Expected instr following MI to be return or debug inst?");
612       // We lowered a tail call, so the call is now the return from the block.
613       // Delete the old return.
614       Next->eraseFromParent();
615     } while (MI.getNextNode());
616   }
617 
618   return LegalizerHelper::Legalized;
619 }
620 
621 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
622                                        Type *FromType) {
623   auto ToMVT = MVT::getVT(ToType);
624   auto FromMVT = MVT::getVT(FromType);
625 
626   switch (Opcode) {
627   case TargetOpcode::G_FPEXT:
628     return RTLIB::getFPEXT(FromMVT, ToMVT);
629   case TargetOpcode::G_FPTRUNC:
630     return RTLIB::getFPROUND(FromMVT, ToMVT);
631   case TargetOpcode::G_FPTOSI:
632     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
633   case TargetOpcode::G_FPTOUI:
634     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
635   case TargetOpcode::G_SITOFP:
636     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
637   case TargetOpcode::G_UITOFP:
638     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
639   }
640   llvm_unreachable("Unsupported libcall function");
641 }
642 
643 static LegalizerHelper::LegalizeResult
644 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
645                   Type *FromType) {
646   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
647   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
648                        {{MI.getOperand(1).getReg(), FromType}});
649 }
650 
651 LegalizerHelper::LegalizeResult
652 LegalizerHelper::libcall(MachineInstr &MI) {
653   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
654   unsigned Size = LLTy.getSizeInBits();
655   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
656 
657   switch (MI.getOpcode()) {
658   default:
659     return UnableToLegalize;
660   case TargetOpcode::G_SDIV:
661   case TargetOpcode::G_UDIV:
662   case TargetOpcode::G_SREM:
663   case TargetOpcode::G_UREM:
664   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
665     Type *HLTy = IntegerType::get(Ctx, Size);
666     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
667     if (Status != Legalized)
668       return Status;
669     break;
670   }
671   case TargetOpcode::G_FADD:
672   case TargetOpcode::G_FSUB:
673   case TargetOpcode::G_FMUL:
674   case TargetOpcode::G_FDIV:
675   case TargetOpcode::G_FMA:
676   case TargetOpcode::G_FPOW:
677   case TargetOpcode::G_FREM:
678   case TargetOpcode::G_FCOS:
679   case TargetOpcode::G_FSIN:
680   case TargetOpcode::G_FLOG10:
681   case TargetOpcode::G_FLOG:
682   case TargetOpcode::G_FLOG2:
683   case TargetOpcode::G_FEXP:
684   case TargetOpcode::G_FEXP2:
685   case TargetOpcode::G_FCEIL:
686   case TargetOpcode::G_FFLOOR:
687   case TargetOpcode::G_FMINNUM:
688   case TargetOpcode::G_FMAXNUM:
689   case TargetOpcode::G_FSQRT:
690   case TargetOpcode::G_FRINT:
691   case TargetOpcode::G_FNEARBYINT:
692   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
693     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
694     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
695       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
696       return UnableToLegalize;
697     }
698     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
699     if (Status != Legalized)
700       return Status;
701     break;
702   }
703   case TargetOpcode::G_FPEXT:
704   case TargetOpcode::G_FPTRUNC: {
705     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
706     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
707     if (!FromTy || !ToTy)
708       return UnableToLegalize;
709     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
710     if (Status != Legalized)
711       return Status;
712     break;
713   }
714   case TargetOpcode::G_FPTOSI:
715   case TargetOpcode::G_FPTOUI: {
716     // FIXME: Support other types
717     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
718     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
719     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
720       return UnableToLegalize;
721     LegalizeResult Status = conversionLibcall(
722         MI, MIRBuilder,
723         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
724         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
725     if (Status != Legalized)
726       return Status;
727     break;
728   }
729   case TargetOpcode::G_SITOFP:
730   case TargetOpcode::G_UITOFP: {
731     // FIXME: Support other types
732     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
733     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
734     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
735       return UnableToLegalize;
736     LegalizeResult Status = conversionLibcall(
737         MI, MIRBuilder,
738         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
739         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
740     if (Status != Legalized)
741       return Status;
742     break;
743   }
744   }
745 
746   MI.eraseFromParent();
747   return Legalized;
748 }
749 
750 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
751                                                               unsigned TypeIdx,
752                                                               LLT NarrowTy) {
753   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
754   uint64_t NarrowSize = NarrowTy.getSizeInBits();
755 
756   switch (MI.getOpcode()) {
757   default:
758     return UnableToLegalize;
759   case TargetOpcode::G_IMPLICIT_DEF: {
760     Register DstReg = MI.getOperand(0).getReg();
761     LLT DstTy = MRI.getType(DstReg);
762 
763     // If SizeOp0 is not an exact multiple of NarrowSize, emit
764     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
765     // FIXME: Although this would also be legal for the general case, it causes
766     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
767     //  combines not being hit). This seems to be a problem related to the
768     //  artifact combiner.
769     if (SizeOp0 % NarrowSize != 0) {
770       LLT ImplicitTy = NarrowTy;
771       if (DstTy.isVector())
772         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
773 
774       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
775       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
776 
777       MI.eraseFromParent();
778       return Legalized;
779     }
780 
781     int NumParts = SizeOp0 / NarrowSize;
782 
783     SmallVector<Register, 2> DstRegs;
784     for (int i = 0; i < NumParts; ++i)
785       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
786 
787     if (DstTy.isVector())
788       MIRBuilder.buildBuildVector(DstReg, DstRegs);
789     else
790       MIRBuilder.buildMerge(DstReg, DstRegs);
791     MI.eraseFromParent();
792     return Legalized;
793   }
794   case TargetOpcode::G_CONSTANT: {
795     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
796     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
797     unsigned TotalSize = Ty.getSizeInBits();
798     unsigned NarrowSize = NarrowTy.getSizeInBits();
799     int NumParts = TotalSize / NarrowSize;
800 
801     SmallVector<Register, 4> PartRegs;
802     for (int I = 0; I != NumParts; ++I) {
803       unsigned Offset = I * NarrowSize;
804       auto K = MIRBuilder.buildConstant(NarrowTy,
805                                         Val.lshr(Offset).trunc(NarrowSize));
806       PartRegs.push_back(K.getReg(0));
807     }
808 
809     LLT LeftoverTy;
810     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
811     SmallVector<Register, 1> LeftoverRegs;
812     if (LeftoverBits != 0) {
813       LeftoverTy = LLT::scalar(LeftoverBits);
814       auto K = MIRBuilder.buildConstant(
815         LeftoverTy,
816         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
817       LeftoverRegs.push_back(K.getReg(0));
818     }
819 
820     insertParts(MI.getOperand(0).getReg(),
821                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
822 
823     MI.eraseFromParent();
824     return Legalized;
825   }
826   case TargetOpcode::G_SEXT:
827   case TargetOpcode::G_ZEXT:
828   case TargetOpcode::G_ANYEXT:
829     return narrowScalarExt(MI, TypeIdx, NarrowTy);
830   case TargetOpcode::G_TRUNC: {
831     if (TypeIdx != 1)
832       return UnableToLegalize;
833 
834     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
835     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
836       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
837       return UnableToLegalize;
838     }
839 
840     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
841     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
842     MI.eraseFromParent();
843     return Legalized;
844   }
845 
846   case TargetOpcode::G_FREEZE:
847     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
848 
849   case TargetOpcode::G_ADD: {
850     // FIXME: add support for when SizeOp0 isn't an exact multiple of
851     // NarrowSize.
852     if (SizeOp0 % NarrowSize != 0)
853       return UnableToLegalize;
854     // Expand in terms of carry-setting/consuming G_ADDE instructions.
855     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
856 
857     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
858     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
859     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
860 
861     Register CarryIn;
862     for (int i = 0; i < NumParts; ++i) {
863       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
864       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
865 
866       if (i == 0)
867         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
868       else {
869         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
870                               Src2Regs[i], CarryIn);
871       }
872 
873       DstRegs.push_back(DstReg);
874       CarryIn = CarryOut;
875     }
876     Register DstReg = MI.getOperand(0).getReg();
877     if(MRI.getType(DstReg).isVector())
878       MIRBuilder.buildBuildVector(DstReg, DstRegs);
879     else
880       MIRBuilder.buildMerge(DstReg, DstRegs);
881     MI.eraseFromParent();
882     return Legalized;
883   }
884   case TargetOpcode::G_SUB: {
885     // FIXME: add support for when SizeOp0 isn't an exact multiple of
886     // NarrowSize.
887     if (SizeOp0 % NarrowSize != 0)
888       return UnableToLegalize;
889 
890     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
891 
892     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
893     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
894     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
895 
896     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
897     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
898     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
899                           {Src1Regs[0], Src2Regs[0]});
900     DstRegs.push_back(DstReg);
901     Register BorrowIn = BorrowOut;
902     for (int i = 1; i < NumParts; ++i) {
903       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
904       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
905 
906       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
907                             {Src1Regs[i], Src2Regs[i], BorrowIn});
908 
909       DstRegs.push_back(DstReg);
910       BorrowIn = BorrowOut;
911     }
912     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
913     MI.eraseFromParent();
914     return Legalized;
915   }
916   case TargetOpcode::G_MUL:
917   case TargetOpcode::G_UMULH:
918     return narrowScalarMul(MI, NarrowTy);
919   case TargetOpcode::G_EXTRACT:
920     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
921   case TargetOpcode::G_INSERT:
922     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
923   case TargetOpcode::G_LOAD: {
924     auto &MMO = **MI.memoperands_begin();
925     Register DstReg = MI.getOperand(0).getReg();
926     LLT DstTy = MRI.getType(DstReg);
927     if (DstTy.isVector())
928       return UnableToLegalize;
929 
930     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
931       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
932       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
933       MIRBuilder.buildAnyExt(DstReg, TmpReg);
934       MI.eraseFromParent();
935       return Legalized;
936     }
937 
938     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
939   }
940   case TargetOpcode::G_ZEXTLOAD:
941   case TargetOpcode::G_SEXTLOAD: {
942     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
943     Register DstReg = MI.getOperand(0).getReg();
944     Register PtrReg = MI.getOperand(1).getReg();
945 
946     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
947     auto &MMO = **MI.memoperands_begin();
948     if (MMO.getSizeInBits() == NarrowSize) {
949       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
950     } else {
951       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
952     }
953 
954     if (ZExt)
955       MIRBuilder.buildZExt(DstReg, TmpReg);
956     else
957       MIRBuilder.buildSExt(DstReg, TmpReg);
958 
959     MI.eraseFromParent();
960     return Legalized;
961   }
962   case TargetOpcode::G_STORE: {
963     const auto &MMO = **MI.memoperands_begin();
964 
965     Register SrcReg = MI.getOperand(0).getReg();
966     LLT SrcTy = MRI.getType(SrcReg);
967     if (SrcTy.isVector())
968       return UnableToLegalize;
969 
970     int NumParts = SizeOp0 / NarrowSize;
971     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
972     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
973     if (SrcTy.isVector() && LeftoverBits != 0)
974       return UnableToLegalize;
975 
976     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
977       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
978       auto &MMO = **MI.memoperands_begin();
979       MIRBuilder.buildTrunc(TmpReg, SrcReg);
980       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
981       MI.eraseFromParent();
982       return Legalized;
983     }
984 
985     return reduceLoadStoreWidth(MI, 0, NarrowTy);
986   }
987   case TargetOpcode::G_SELECT:
988     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
989   case TargetOpcode::G_AND:
990   case TargetOpcode::G_OR:
991   case TargetOpcode::G_XOR: {
992     // Legalize bitwise operation:
993     // A = BinOp<Ty> B, C
994     // into:
995     // B1, ..., BN = G_UNMERGE_VALUES B
996     // C1, ..., CN = G_UNMERGE_VALUES C
997     // A1 = BinOp<Ty/N> B1, C2
998     // ...
999     // AN = BinOp<Ty/N> BN, CN
1000     // A = G_MERGE_VALUES A1, ..., AN
1001     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1002   }
1003   case TargetOpcode::G_SHL:
1004   case TargetOpcode::G_LSHR:
1005   case TargetOpcode::G_ASHR:
1006     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1007   case TargetOpcode::G_CTLZ:
1008   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1009   case TargetOpcode::G_CTTZ:
1010   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1011   case TargetOpcode::G_CTPOP:
1012     if (TypeIdx == 1)
1013       switch (MI.getOpcode()) {
1014       case TargetOpcode::G_CTLZ:
1015       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1016         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1017       case TargetOpcode::G_CTTZ:
1018       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1019         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1020       case TargetOpcode::G_CTPOP:
1021         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1022       default:
1023         return UnableToLegalize;
1024       }
1025 
1026     Observer.changingInstr(MI);
1027     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1028     Observer.changedInstr(MI);
1029     return Legalized;
1030   case TargetOpcode::G_INTTOPTR:
1031     if (TypeIdx != 1)
1032       return UnableToLegalize;
1033 
1034     Observer.changingInstr(MI);
1035     narrowScalarSrc(MI, NarrowTy, 1);
1036     Observer.changedInstr(MI);
1037     return Legalized;
1038   case TargetOpcode::G_PTRTOINT:
1039     if (TypeIdx != 0)
1040       return UnableToLegalize;
1041 
1042     Observer.changingInstr(MI);
1043     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1044     Observer.changedInstr(MI);
1045     return Legalized;
1046   case TargetOpcode::G_PHI: {
1047     unsigned NumParts = SizeOp0 / NarrowSize;
1048     SmallVector<Register, 2> DstRegs(NumParts);
1049     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1050     Observer.changingInstr(MI);
1051     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1052       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1053       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1054       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1055                    SrcRegs[i / 2]);
1056     }
1057     MachineBasicBlock &MBB = *MI.getParent();
1058     MIRBuilder.setInsertPt(MBB, MI);
1059     for (unsigned i = 0; i < NumParts; ++i) {
1060       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1061       MachineInstrBuilder MIB =
1062           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1063       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1064         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1065     }
1066     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1067     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1068     Observer.changedInstr(MI);
1069     MI.eraseFromParent();
1070     return Legalized;
1071   }
1072   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1073   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1074     if (TypeIdx != 2)
1075       return UnableToLegalize;
1076 
1077     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1078     Observer.changingInstr(MI);
1079     narrowScalarSrc(MI, NarrowTy, OpIdx);
1080     Observer.changedInstr(MI);
1081     return Legalized;
1082   }
1083   case TargetOpcode::G_ICMP: {
1084     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1085     if (NarrowSize * 2 != SrcSize)
1086       return UnableToLegalize;
1087 
1088     Observer.changingInstr(MI);
1089     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1090     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1091     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1092 
1093     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1094     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1095     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1096 
1097     CmpInst::Predicate Pred =
1098         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1099     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1100 
1101     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1102       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1103       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1104       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1105       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1106       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1107     } else {
1108       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1109       MachineInstrBuilder CmpHEQ =
1110           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1111       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1112           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1113       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1114     }
1115     Observer.changedInstr(MI);
1116     MI.eraseFromParent();
1117     return Legalized;
1118   }
1119   case TargetOpcode::G_SEXT_INREG: {
1120     if (TypeIdx != 0)
1121       return UnableToLegalize;
1122 
1123     int64_t SizeInBits = MI.getOperand(2).getImm();
1124 
1125     // So long as the new type has more bits than the bits we're extending we
1126     // don't need to break it apart.
1127     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1128       Observer.changingInstr(MI);
1129       // We don't lose any non-extension bits by truncating the src and
1130       // sign-extending the dst.
1131       MachineOperand &MO1 = MI.getOperand(1);
1132       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1133       MO1.setReg(TruncMIB.getReg(0));
1134 
1135       MachineOperand &MO2 = MI.getOperand(0);
1136       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1137       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1138       MIRBuilder.buildSExt(MO2, DstExt);
1139       MO2.setReg(DstExt);
1140       Observer.changedInstr(MI);
1141       return Legalized;
1142     }
1143 
1144     // Break it apart. Components below the extension point are unmodified. The
1145     // component containing the extension point becomes a narrower SEXT_INREG.
1146     // Components above it are ashr'd from the component containing the
1147     // extension point.
1148     if (SizeOp0 % NarrowSize != 0)
1149       return UnableToLegalize;
1150     int NumParts = SizeOp0 / NarrowSize;
1151 
1152     // List the registers where the destination will be scattered.
1153     SmallVector<Register, 2> DstRegs;
1154     // List the registers where the source will be split.
1155     SmallVector<Register, 2> SrcRegs;
1156 
1157     // Create all the temporary registers.
1158     for (int i = 0; i < NumParts; ++i) {
1159       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1160 
1161       SrcRegs.push_back(SrcReg);
1162     }
1163 
1164     // Explode the big arguments into smaller chunks.
1165     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1166 
1167     Register AshrCstReg =
1168         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1169             .getReg(0);
1170     Register FullExtensionReg = 0;
1171     Register PartialExtensionReg = 0;
1172 
1173     // Do the operation on each small part.
1174     for (int i = 0; i < NumParts; ++i) {
1175       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1176         DstRegs.push_back(SrcRegs[i]);
1177       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1178         assert(PartialExtensionReg &&
1179                "Expected to visit partial extension before full");
1180         if (FullExtensionReg) {
1181           DstRegs.push_back(FullExtensionReg);
1182           continue;
1183         }
1184         DstRegs.push_back(
1185             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1186                 .getReg(0));
1187         FullExtensionReg = DstRegs.back();
1188       } else {
1189         DstRegs.push_back(
1190             MIRBuilder
1191                 .buildInstr(
1192                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1193                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1194                 .getReg(0));
1195         PartialExtensionReg = DstRegs.back();
1196       }
1197     }
1198 
1199     // Gather the destination registers into the final destination.
1200     Register DstReg = MI.getOperand(0).getReg();
1201     MIRBuilder.buildMerge(DstReg, DstRegs);
1202     MI.eraseFromParent();
1203     return Legalized;
1204   }
1205   case TargetOpcode::G_BSWAP:
1206   case TargetOpcode::G_BITREVERSE: {
1207     if (SizeOp0 % NarrowSize != 0)
1208       return UnableToLegalize;
1209 
1210     Observer.changingInstr(MI);
1211     SmallVector<Register, 2> SrcRegs, DstRegs;
1212     unsigned NumParts = SizeOp0 / NarrowSize;
1213     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1214 
1215     for (unsigned i = 0; i < NumParts; ++i) {
1216       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1217                                            {SrcRegs[NumParts - 1 - i]});
1218       DstRegs.push_back(DstPart.getReg(0));
1219     }
1220 
1221     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1222 
1223     Observer.changedInstr(MI);
1224     MI.eraseFromParent();
1225     return Legalized;
1226   }
1227   case TargetOpcode::G_PTR_ADD:
1228   case TargetOpcode::G_PTRMASK: {
1229     if (TypeIdx != 1)
1230       return UnableToLegalize;
1231     Observer.changingInstr(MI);
1232     narrowScalarSrc(MI, NarrowTy, 2);
1233     Observer.changedInstr(MI);
1234     return Legalized;
1235   }
1236   case TargetOpcode::G_FPTOUI: {
1237     if (TypeIdx != 0)
1238       return UnableToLegalize;
1239     Observer.changingInstr(MI);
1240     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1241     Observer.changedInstr(MI);
1242     return Legalized;
1243   }
1244   case TargetOpcode::G_FPTOSI: {
1245     if (TypeIdx != 0)
1246       return UnableToLegalize;
1247     Observer.changingInstr(MI);
1248     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1249     Observer.changedInstr(MI);
1250     return Legalized;
1251   }
1252   case TargetOpcode::G_FPEXT:
1253     if (TypeIdx != 0)
1254       return UnableToLegalize;
1255     Observer.changingInstr(MI);
1256     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1257     Observer.changedInstr(MI);
1258     return Legalized;
1259   }
1260 }
1261 
1262 Register LegalizerHelper::coerceToScalar(Register Val) {
1263   LLT Ty = MRI.getType(Val);
1264   if (Ty.isScalar())
1265     return Val;
1266 
1267   const DataLayout &DL = MIRBuilder.getDataLayout();
1268   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1269   if (Ty.isPointer()) {
1270     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1271       return Register();
1272     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1273   }
1274 
1275   Register NewVal = Val;
1276 
1277   assert(Ty.isVector());
1278   LLT EltTy = Ty.getElementType();
1279   if (EltTy.isPointer())
1280     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1281   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1282 }
1283 
1284 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1285                                      unsigned OpIdx, unsigned ExtOpcode) {
1286   MachineOperand &MO = MI.getOperand(OpIdx);
1287   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1288   MO.setReg(ExtB.getReg(0));
1289 }
1290 
1291 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1292                                       unsigned OpIdx) {
1293   MachineOperand &MO = MI.getOperand(OpIdx);
1294   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1295   MO.setReg(ExtB.getReg(0));
1296 }
1297 
1298 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1299                                      unsigned OpIdx, unsigned TruncOpcode) {
1300   MachineOperand &MO = MI.getOperand(OpIdx);
1301   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1302   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1303   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1304   MO.setReg(DstExt);
1305 }
1306 
1307 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1308                                       unsigned OpIdx, unsigned ExtOpcode) {
1309   MachineOperand &MO = MI.getOperand(OpIdx);
1310   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1311   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1312   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1313   MO.setReg(DstTrunc);
1314 }
1315 
1316 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1317                                             unsigned OpIdx) {
1318   MachineOperand &MO = MI.getOperand(OpIdx);
1319   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1320   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1321 }
1322 
1323 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1324                                             unsigned OpIdx) {
1325   MachineOperand &MO = MI.getOperand(OpIdx);
1326 
1327   LLT OldTy = MRI.getType(MO.getReg());
1328   unsigned OldElts = OldTy.getNumElements();
1329   unsigned NewElts = MoreTy.getNumElements();
1330 
1331   unsigned NumParts = NewElts / OldElts;
1332 
1333   // Use concat_vectors if the result is a multiple of the number of elements.
1334   if (NumParts * OldElts == NewElts) {
1335     SmallVector<Register, 8> Parts;
1336     Parts.push_back(MO.getReg());
1337 
1338     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1339     for (unsigned I = 1; I != NumParts; ++I)
1340       Parts.push_back(ImpDef);
1341 
1342     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1343     MO.setReg(Concat.getReg(0));
1344     return;
1345   }
1346 
1347   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1348   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1349   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1350   MO.setReg(MoreReg);
1351 }
1352 
1353 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1354   MachineOperand &Op = MI.getOperand(OpIdx);
1355   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1356 }
1357 
1358 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1359   MachineOperand &MO = MI.getOperand(OpIdx);
1360   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1361   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1362   MIRBuilder.buildBitcast(MO, CastDst);
1363   MO.setReg(CastDst);
1364 }
1365 
1366 LegalizerHelper::LegalizeResult
1367 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1368                                         LLT WideTy) {
1369   if (TypeIdx != 1)
1370     return UnableToLegalize;
1371 
1372   Register DstReg = MI.getOperand(0).getReg();
1373   LLT DstTy = MRI.getType(DstReg);
1374   if (DstTy.isVector())
1375     return UnableToLegalize;
1376 
1377   Register Src1 = MI.getOperand(1).getReg();
1378   LLT SrcTy = MRI.getType(Src1);
1379   const int DstSize = DstTy.getSizeInBits();
1380   const int SrcSize = SrcTy.getSizeInBits();
1381   const int WideSize = WideTy.getSizeInBits();
1382   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1383 
1384   unsigned NumOps = MI.getNumOperands();
1385   unsigned NumSrc = MI.getNumOperands() - 1;
1386   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1387 
1388   if (WideSize >= DstSize) {
1389     // Directly pack the bits in the target type.
1390     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1391 
1392     for (unsigned I = 2; I != NumOps; ++I) {
1393       const unsigned Offset = (I - 1) * PartSize;
1394 
1395       Register SrcReg = MI.getOperand(I).getReg();
1396       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1397 
1398       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1399 
1400       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1401         MRI.createGenericVirtualRegister(WideTy);
1402 
1403       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1404       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1405       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1406       ResultReg = NextResult;
1407     }
1408 
1409     if (WideSize > DstSize)
1410       MIRBuilder.buildTrunc(DstReg, ResultReg);
1411     else if (DstTy.isPointer())
1412       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1413 
1414     MI.eraseFromParent();
1415     return Legalized;
1416   }
1417 
1418   // Unmerge the original values to the GCD type, and recombine to the next
1419   // multiple greater than the original type.
1420   //
1421   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1422   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1423   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1424   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1425   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1426   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1427   // %12:_(s12) = G_MERGE_VALUES %10, %11
1428   //
1429   // Padding with undef if necessary:
1430   //
1431   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1432   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1433   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1434   // %7:_(s2) = G_IMPLICIT_DEF
1435   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1436   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1437   // %10:_(s12) = G_MERGE_VALUES %8, %9
1438 
1439   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1440   LLT GCDTy = LLT::scalar(GCD);
1441 
1442   SmallVector<Register, 8> Parts;
1443   SmallVector<Register, 8> NewMergeRegs;
1444   SmallVector<Register, 8> Unmerges;
1445   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1446 
1447   // Decompose the original operands if they don't evenly divide.
1448   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1449     Register SrcReg = MI.getOperand(I).getReg();
1450     if (GCD == SrcSize) {
1451       Unmerges.push_back(SrcReg);
1452     } else {
1453       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1454       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1455         Unmerges.push_back(Unmerge.getReg(J));
1456     }
1457   }
1458 
1459   // Pad with undef to the next size that is a multiple of the requested size.
1460   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1461     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1462     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1463       Unmerges.push_back(UndefReg);
1464   }
1465 
1466   const int PartsPerGCD = WideSize / GCD;
1467 
1468   // Build merges of each piece.
1469   ArrayRef<Register> Slicer(Unmerges);
1470   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1471     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1472     NewMergeRegs.push_back(Merge.getReg(0));
1473   }
1474 
1475   // A truncate may be necessary if the requested type doesn't evenly divide the
1476   // original result type.
1477   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1478     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1479   } else {
1480     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1481     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1482   }
1483 
1484   MI.eraseFromParent();
1485   return Legalized;
1486 }
1487 
1488 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1489   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1490   LLT OrigTy = MRI.getType(OrigReg);
1491   LLT LCMTy = getLCMType(WideTy, OrigTy);
1492 
1493   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1494   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1495 
1496   Register UnmergeSrc = WideReg;
1497 
1498   // Create a merge to the LCM type, padding with undef
1499   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1500   // =>
1501   // %1:_(<4 x s32>) = G_FOO
1502   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1503   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1504   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1505   if (NumMergeParts > 1) {
1506     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1507     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1508     MergeParts[0] = WideReg;
1509     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1510   }
1511 
1512   // Unmerge to the original register and pad with dead defs.
1513   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1514   UnmergeResults[0] = OrigReg;
1515   for (int I = 1; I != NumUnmergeParts; ++I)
1516     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1517 
1518   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1519   return WideReg;
1520 }
1521 
1522 LegalizerHelper::LegalizeResult
1523 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1524                                           LLT WideTy) {
1525   if (TypeIdx != 0)
1526     return UnableToLegalize;
1527 
1528   int NumDst = MI.getNumOperands() - 1;
1529   Register SrcReg = MI.getOperand(NumDst).getReg();
1530   LLT SrcTy = MRI.getType(SrcReg);
1531   if (SrcTy.isVector())
1532     return UnableToLegalize;
1533 
1534   Register Dst0Reg = MI.getOperand(0).getReg();
1535   LLT DstTy = MRI.getType(Dst0Reg);
1536   if (!DstTy.isScalar())
1537     return UnableToLegalize;
1538 
1539   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1540     if (SrcTy.isPointer()) {
1541       const DataLayout &DL = MIRBuilder.getDataLayout();
1542       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1543         LLVM_DEBUG(
1544             dbgs() << "Not casting non-integral address space integer\n");
1545         return UnableToLegalize;
1546       }
1547 
1548       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1549       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1550     }
1551 
1552     // Widen SrcTy to WideTy. This does not affect the result, but since the
1553     // user requested this size, it is probably better handled than SrcTy and
1554     // should reduce the total number of legalization artifacts
1555     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1556       SrcTy = WideTy;
1557       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1558     }
1559 
1560     // Theres no unmerge type to target. Directly extract the bits from the
1561     // source type
1562     unsigned DstSize = DstTy.getSizeInBits();
1563 
1564     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1565     for (int I = 1; I != NumDst; ++I) {
1566       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1567       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1568       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1569     }
1570 
1571     MI.eraseFromParent();
1572     return Legalized;
1573   }
1574 
1575   // Extend the source to a wider type.
1576   LLT LCMTy = getLCMType(SrcTy, WideTy);
1577 
1578   Register WideSrc = SrcReg;
1579   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1580     // TODO: If this is an integral address space, cast to integer and anyext.
1581     if (SrcTy.isPointer()) {
1582       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1583       return UnableToLegalize;
1584     }
1585 
1586     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1587   }
1588 
1589   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1590 
1591   // Create a sequence of unmerges to the original results. since we may have
1592   // widened the source, we will need to pad the results with dead defs to cover
1593   // the source register.
1594   // e.g. widen s16 to s32:
1595   // %1:_(s16), %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0:_(s48)
1596   //
1597   // =>
1598   //  %4:_(s64) = G_ANYEXT %0:_(s48)
1599   //  %5:_(s32), %6:_(s32) = G_UNMERGE_VALUES %4 ; Requested unmerge
1600   //  %1:_(s16), %2:_(s16) = G_UNMERGE_VALUES %5 ; unpack to original regs
1601   //  %3:_(s16), dead %7 = G_UNMERGE_VALUES %6 ; original reg + extra dead def
1602 
1603   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1604   const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1605 
1606   for (int I = 0; I != NumUnmerge; ++I) {
1607     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1608 
1609     for (int J = 0; J != PartsPerUnmerge; ++J) {
1610       int Idx = I * PartsPerUnmerge + J;
1611       if (Idx < NumDst)
1612         MIB.addDef(MI.getOperand(Idx).getReg());
1613       else {
1614         // Create dead def for excess components.
1615         MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1616       }
1617     }
1618 
1619     MIB.addUse(Unmerge.getReg(I));
1620   }
1621 
1622   MI.eraseFromParent();
1623   return Legalized;
1624 }
1625 
1626 LegalizerHelper::LegalizeResult
1627 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1628                                     LLT WideTy) {
1629   Register DstReg = MI.getOperand(0).getReg();
1630   Register SrcReg = MI.getOperand(1).getReg();
1631   LLT SrcTy = MRI.getType(SrcReg);
1632 
1633   LLT DstTy = MRI.getType(DstReg);
1634   unsigned Offset = MI.getOperand(2).getImm();
1635 
1636   if (TypeIdx == 0) {
1637     if (SrcTy.isVector() || DstTy.isVector())
1638       return UnableToLegalize;
1639 
1640     SrcOp Src(SrcReg);
1641     if (SrcTy.isPointer()) {
1642       // Extracts from pointers can be handled only if they are really just
1643       // simple integers.
1644       const DataLayout &DL = MIRBuilder.getDataLayout();
1645       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1646         return UnableToLegalize;
1647 
1648       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1649       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1650       SrcTy = SrcAsIntTy;
1651     }
1652 
1653     if (DstTy.isPointer())
1654       return UnableToLegalize;
1655 
1656     if (Offset == 0) {
1657       // Avoid a shift in the degenerate case.
1658       MIRBuilder.buildTrunc(DstReg,
1659                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1660       MI.eraseFromParent();
1661       return Legalized;
1662     }
1663 
1664     // Do a shift in the source type.
1665     LLT ShiftTy = SrcTy;
1666     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1667       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1668       ShiftTy = WideTy;
1669     }
1670 
1671     auto LShr = MIRBuilder.buildLShr(
1672       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1673     MIRBuilder.buildTrunc(DstReg, LShr);
1674     MI.eraseFromParent();
1675     return Legalized;
1676   }
1677 
1678   if (SrcTy.isScalar()) {
1679     Observer.changingInstr(MI);
1680     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1681     Observer.changedInstr(MI);
1682     return Legalized;
1683   }
1684 
1685   if (!SrcTy.isVector())
1686     return UnableToLegalize;
1687 
1688   if (DstTy != SrcTy.getElementType())
1689     return UnableToLegalize;
1690 
1691   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1692     return UnableToLegalize;
1693 
1694   Observer.changingInstr(MI);
1695   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1696 
1697   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1698                           Offset);
1699   widenScalarDst(MI, WideTy.getScalarType(), 0);
1700   Observer.changedInstr(MI);
1701   return Legalized;
1702 }
1703 
1704 LegalizerHelper::LegalizeResult
1705 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1706                                    LLT WideTy) {
1707   if (TypeIdx != 0 || WideTy.isVector())
1708     return UnableToLegalize;
1709   Observer.changingInstr(MI);
1710   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1711   widenScalarDst(MI, WideTy);
1712   Observer.changedInstr(MI);
1713   return Legalized;
1714 }
1715 
1716 LegalizerHelper::LegalizeResult
1717 LegalizerHelper::widenScalarAddSubSat(MachineInstr &MI, unsigned TypeIdx,
1718                                       LLT WideTy) {
1719   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1720                   MI.getOpcode() == TargetOpcode::G_SSUBSAT;
1721   // We can convert this to:
1722   //   1. Any extend iN to iM
1723   //   2. SHL by M-N
1724   //   3. [US][ADD|SUB]SAT
1725   //   4. L/ASHR by M-N
1726   //
1727   // It may be more efficient to lower this to a min and a max operation in
1728   // the higher precision arithmetic if the promoted operation isn't legal,
1729   // but this decision is up to the target's lowering request.
1730   Register DstReg = MI.getOperand(0).getReg();
1731 
1732   unsigned NewBits = WideTy.getScalarSizeInBits();
1733   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1734 
1735   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1736   auto RHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1737   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1738   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1739   auto ShiftR = MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1740 
1741   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1742                                         {ShiftL, ShiftR}, MI.getFlags());
1743 
1744   // Use a shift that will preserve the number of sign bits when the trunc is
1745   // folded away.
1746   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1747                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1748 
1749   MIRBuilder.buildTrunc(DstReg, Result);
1750   MI.eraseFromParent();
1751   return Legalized;
1752 }
1753 
1754 LegalizerHelper::LegalizeResult
1755 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1756   switch (MI.getOpcode()) {
1757   default:
1758     return UnableToLegalize;
1759   case TargetOpcode::G_EXTRACT:
1760     return widenScalarExtract(MI, TypeIdx, WideTy);
1761   case TargetOpcode::G_INSERT:
1762     return widenScalarInsert(MI, TypeIdx, WideTy);
1763   case TargetOpcode::G_MERGE_VALUES:
1764     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1765   case TargetOpcode::G_UNMERGE_VALUES:
1766     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1767   case TargetOpcode::G_UADDO:
1768   case TargetOpcode::G_USUBO: {
1769     if (TypeIdx == 1)
1770       return UnableToLegalize; // TODO
1771     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1772     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1773     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1774                           ? TargetOpcode::G_ADD
1775                           : TargetOpcode::G_SUB;
1776     // Do the arithmetic in the larger type.
1777     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1778     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1779     APInt Mask =
1780         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1781     auto AndOp = MIRBuilder.buildAnd(
1782         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1783     // There is no overflow if the AndOp is the same as NewOp.
1784     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1785     // Now trunc the NewOp to the original result.
1786     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1787     MI.eraseFromParent();
1788     return Legalized;
1789   }
1790   case TargetOpcode::G_SADDSAT:
1791   case TargetOpcode::G_SSUBSAT:
1792   case TargetOpcode::G_UADDSAT:
1793   case TargetOpcode::G_USUBSAT:
1794     return widenScalarAddSubSat(MI, TypeIdx, WideTy);
1795   case TargetOpcode::G_CTTZ:
1796   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1797   case TargetOpcode::G_CTLZ:
1798   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1799   case TargetOpcode::G_CTPOP: {
1800     if (TypeIdx == 0) {
1801       Observer.changingInstr(MI);
1802       widenScalarDst(MI, WideTy, 0);
1803       Observer.changedInstr(MI);
1804       return Legalized;
1805     }
1806 
1807     Register SrcReg = MI.getOperand(1).getReg();
1808 
1809     // First ZEXT the input.
1810     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1811     LLT CurTy = MRI.getType(SrcReg);
1812     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1813       // The count is the same in the larger type except if the original
1814       // value was zero.  This can be handled by setting the bit just off
1815       // the top of the original type.
1816       auto TopBit =
1817           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1818       MIBSrc = MIRBuilder.buildOr(
1819         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1820     }
1821 
1822     // Perform the operation at the larger size.
1823     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1824     // This is already the correct result for CTPOP and CTTZs
1825     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1826         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1827       // The correct result is NewOp - (Difference in widety and current ty).
1828       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1829       MIBNewOp = MIRBuilder.buildSub(
1830           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1831     }
1832 
1833     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1834     MI.eraseFromParent();
1835     return Legalized;
1836   }
1837   case TargetOpcode::G_BSWAP: {
1838     Observer.changingInstr(MI);
1839     Register DstReg = MI.getOperand(0).getReg();
1840 
1841     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1842     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1843     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1844     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1845 
1846     MI.getOperand(0).setReg(DstExt);
1847 
1848     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1849 
1850     LLT Ty = MRI.getType(DstReg);
1851     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1852     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1853     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1854 
1855     MIRBuilder.buildTrunc(DstReg, ShrReg);
1856     Observer.changedInstr(MI);
1857     return Legalized;
1858   }
1859   case TargetOpcode::G_BITREVERSE: {
1860     Observer.changingInstr(MI);
1861 
1862     Register DstReg = MI.getOperand(0).getReg();
1863     LLT Ty = MRI.getType(DstReg);
1864     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1865 
1866     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1867     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1868     MI.getOperand(0).setReg(DstExt);
1869     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1870 
1871     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1872     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1873     MIRBuilder.buildTrunc(DstReg, Shift);
1874     Observer.changedInstr(MI);
1875     return Legalized;
1876   }
1877   case TargetOpcode::G_FREEZE:
1878     Observer.changingInstr(MI);
1879     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1880     widenScalarDst(MI, WideTy);
1881     Observer.changedInstr(MI);
1882     return Legalized;
1883 
1884   case TargetOpcode::G_ADD:
1885   case TargetOpcode::G_AND:
1886   case TargetOpcode::G_MUL:
1887   case TargetOpcode::G_OR:
1888   case TargetOpcode::G_XOR:
1889   case TargetOpcode::G_SUB:
1890     // Perform operation at larger width (any extension is fines here, high bits
1891     // don't affect the result) and then truncate the result back to the
1892     // original type.
1893     Observer.changingInstr(MI);
1894     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1895     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1896     widenScalarDst(MI, WideTy);
1897     Observer.changedInstr(MI);
1898     return Legalized;
1899 
1900   case TargetOpcode::G_SHL:
1901     Observer.changingInstr(MI);
1902 
1903     if (TypeIdx == 0) {
1904       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1905       widenScalarDst(MI, WideTy);
1906     } else {
1907       assert(TypeIdx == 1);
1908       // The "number of bits to shift" operand must preserve its value as an
1909       // unsigned integer:
1910       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1911     }
1912 
1913     Observer.changedInstr(MI);
1914     return Legalized;
1915 
1916   case TargetOpcode::G_SDIV:
1917   case TargetOpcode::G_SREM:
1918   case TargetOpcode::G_SMIN:
1919   case TargetOpcode::G_SMAX:
1920     Observer.changingInstr(MI);
1921     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1922     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1923     widenScalarDst(MI, WideTy);
1924     Observer.changedInstr(MI);
1925     return Legalized;
1926 
1927   case TargetOpcode::G_ASHR:
1928   case TargetOpcode::G_LSHR:
1929     Observer.changingInstr(MI);
1930 
1931     if (TypeIdx == 0) {
1932       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1933         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1934 
1935       widenScalarSrc(MI, WideTy, 1, CvtOp);
1936       widenScalarDst(MI, WideTy);
1937     } else {
1938       assert(TypeIdx == 1);
1939       // The "number of bits to shift" operand must preserve its value as an
1940       // unsigned integer:
1941       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1942     }
1943 
1944     Observer.changedInstr(MI);
1945     return Legalized;
1946   case TargetOpcode::G_UDIV:
1947   case TargetOpcode::G_UREM:
1948   case TargetOpcode::G_UMIN:
1949   case TargetOpcode::G_UMAX:
1950     Observer.changingInstr(MI);
1951     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
1952     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1953     widenScalarDst(MI, WideTy);
1954     Observer.changedInstr(MI);
1955     return Legalized;
1956 
1957   case TargetOpcode::G_SELECT:
1958     Observer.changingInstr(MI);
1959     if (TypeIdx == 0) {
1960       // Perform operation at larger width (any extension is fine here, high
1961       // bits don't affect the result) and then truncate the result back to the
1962       // original type.
1963       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1964       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
1965       widenScalarDst(MI, WideTy);
1966     } else {
1967       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
1968       // Explicit extension is required here since high bits affect the result.
1969       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
1970     }
1971     Observer.changedInstr(MI);
1972     return Legalized;
1973 
1974   case TargetOpcode::G_FPTOSI:
1975   case TargetOpcode::G_FPTOUI:
1976     Observer.changingInstr(MI);
1977 
1978     if (TypeIdx == 0)
1979       widenScalarDst(MI, WideTy);
1980     else
1981       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
1982 
1983     Observer.changedInstr(MI);
1984     return Legalized;
1985   case TargetOpcode::G_SITOFP:
1986     Observer.changingInstr(MI);
1987 
1988     if (TypeIdx == 0)
1989       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
1990     else
1991       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1992 
1993     Observer.changedInstr(MI);
1994     return Legalized;
1995   case TargetOpcode::G_UITOFP:
1996     Observer.changingInstr(MI);
1997 
1998     if (TypeIdx == 0)
1999       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2000     else
2001       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2002 
2003     Observer.changedInstr(MI);
2004     return Legalized;
2005   case TargetOpcode::G_LOAD:
2006   case TargetOpcode::G_SEXTLOAD:
2007   case TargetOpcode::G_ZEXTLOAD:
2008     Observer.changingInstr(MI);
2009     widenScalarDst(MI, WideTy);
2010     Observer.changedInstr(MI);
2011     return Legalized;
2012 
2013   case TargetOpcode::G_STORE: {
2014     if (TypeIdx != 0)
2015       return UnableToLegalize;
2016 
2017     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2018     if (!isPowerOf2_32(Ty.getSizeInBits()))
2019       return UnableToLegalize;
2020 
2021     Observer.changingInstr(MI);
2022 
2023     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2024       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2025     widenScalarSrc(MI, WideTy, 0, ExtType);
2026 
2027     Observer.changedInstr(MI);
2028     return Legalized;
2029   }
2030   case TargetOpcode::G_CONSTANT: {
2031     MachineOperand &SrcMO = MI.getOperand(1);
2032     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2033     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2034         MRI.getType(MI.getOperand(0).getReg()));
2035     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2036             ExtOpc == TargetOpcode::G_ANYEXT) &&
2037            "Illegal Extend");
2038     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2039     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2040                            ? SrcVal.sext(WideTy.getSizeInBits())
2041                            : SrcVal.zext(WideTy.getSizeInBits());
2042     Observer.changingInstr(MI);
2043     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2044 
2045     widenScalarDst(MI, WideTy);
2046     Observer.changedInstr(MI);
2047     return Legalized;
2048   }
2049   case TargetOpcode::G_FCONSTANT: {
2050     MachineOperand &SrcMO = MI.getOperand(1);
2051     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2052     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2053     bool LosesInfo;
2054     switch (WideTy.getSizeInBits()) {
2055     case 32:
2056       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2057                   &LosesInfo);
2058       break;
2059     case 64:
2060       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2061                   &LosesInfo);
2062       break;
2063     default:
2064       return UnableToLegalize;
2065     }
2066 
2067     assert(!LosesInfo && "extend should always be lossless");
2068 
2069     Observer.changingInstr(MI);
2070     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2071 
2072     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2073     Observer.changedInstr(MI);
2074     return Legalized;
2075   }
2076   case TargetOpcode::G_IMPLICIT_DEF: {
2077     Observer.changingInstr(MI);
2078     widenScalarDst(MI, WideTy);
2079     Observer.changedInstr(MI);
2080     return Legalized;
2081   }
2082   case TargetOpcode::G_BRCOND:
2083     Observer.changingInstr(MI);
2084     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2085     Observer.changedInstr(MI);
2086     return Legalized;
2087 
2088   case TargetOpcode::G_FCMP:
2089     Observer.changingInstr(MI);
2090     if (TypeIdx == 0)
2091       widenScalarDst(MI, WideTy);
2092     else {
2093       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2094       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2095     }
2096     Observer.changedInstr(MI);
2097     return Legalized;
2098 
2099   case TargetOpcode::G_ICMP:
2100     Observer.changingInstr(MI);
2101     if (TypeIdx == 0)
2102       widenScalarDst(MI, WideTy);
2103     else {
2104       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2105                                MI.getOperand(1).getPredicate()))
2106                                ? TargetOpcode::G_SEXT
2107                                : TargetOpcode::G_ZEXT;
2108       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2109       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2110     }
2111     Observer.changedInstr(MI);
2112     return Legalized;
2113 
2114   case TargetOpcode::G_PTR_ADD:
2115     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2116     Observer.changingInstr(MI);
2117     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2118     Observer.changedInstr(MI);
2119     return Legalized;
2120 
2121   case TargetOpcode::G_PHI: {
2122     assert(TypeIdx == 0 && "Expecting only Idx 0");
2123 
2124     Observer.changingInstr(MI);
2125     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2126       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2127       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2128       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2129     }
2130 
2131     MachineBasicBlock &MBB = *MI.getParent();
2132     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2133     widenScalarDst(MI, WideTy);
2134     Observer.changedInstr(MI);
2135     return Legalized;
2136   }
2137   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2138     if (TypeIdx == 0) {
2139       Register VecReg = MI.getOperand(1).getReg();
2140       LLT VecTy = MRI.getType(VecReg);
2141       Observer.changingInstr(MI);
2142 
2143       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2144                                      WideTy.getSizeInBits()),
2145                      1, TargetOpcode::G_SEXT);
2146 
2147       widenScalarDst(MI, WideTy, 0);
2148       Observer.changedInstr(MI);
2149       return Legalized;
2150     }
2151 
2152     if (TypeIdx != 2)
2153       return UnableToLegalize;
2154     Observer.changingInstr(MI);
2155     // TODO: Probably should be zext
2156     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2157     Observer.changedInstr(MI);
2158     return Legalized;
2159   }
2160   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2161     if (TypeIdx == 1) {
2162       Observer.changingInstr(MI);
2163 
2164       Register VecReg = MI.getOperand(1).getReg();
2165       LLT VecTy = MRI.getType(VecReg);
2166       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2167 
2168       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2169       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2170       widenScalarDst(MI, WideVecTy, 0);
2171       Observer.changedInstr(MI);
2172       return Legalized;
2173     }
2174 
2175     if (TypeIdx == 2) {
2176       Observer.changingInstr(MI);
2177       // TODO: Probably should be zext
2178       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2179       Observer.changedInstr(MI);
2180       return Legalized;
2181     }
2182 
2183     return UnableToLegalize;
2184   }
2185   case TargetOpcode::G_FADD:
2186   case TargetOpcode::G_FMUL:
2187   case TargetOpcode::G_FSUB:
2188   case TargetOpcode::G_FMA:
2189   case TargetOpcode::G_FMAD:
2190   case TargetOpcode::G_FNEG:
2191   case TargetOpcode::G_FABS:
2192   case TargetOpcode::G_FCANONICALIZE:
2193   case TargetOpcode::G_FMINNUM:
2194   case TargetOpcode::G_FMAXNUM:
2195   case TargetOpcode::G_FMINNUM_IEEE:
2196   case TargetOpcode::G_FMAXNUM_IEEE:
2197   case TargetOpcode::G_FMINIMUM:
2198   case TargetOpcode::G_FMAXIMUM:
2199   case TargetOpcode::G_FDIV:
2200   case TargetOpcode::G_FREM:
2201   case TargetOpcode::G_FCEIL:
2202   case TargetOpcode::G_FFLOOR:
2203   case TargetOpcode::G_FCOS:
2204   case TargetOpcode::G_FSIN:
2205   case TargetOpcode::G_FLOG10:
2206   case TargetOpcode::G_FLOG:
2207   case TargetOpcode::G_FLOG2:
2208   case TargetOpcode::G_FRINT:
2209   case TargetOpcode::G_FNEARBYINT:
2210   case TargetOpcode::G_FSQRT:
2211   case TargetOpcode::G_FEXP:
2212   case TargetOpcode::G_FEXP2:
2213   case TargetOpcode::G_FPOW:
2214   case TargetOpcode::G_INTRINSIC_TRUNC:
2215   case TargetOpcode::G_INTRINSIC_ROUND:
2216   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2217     assert(TypeIdx == 0);
2218     Observer.changingInstr(MI);
2219 
2220     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2221       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2222 
2223     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2224     Observer.changedInstr(MI);
2225     return Legalized;
2226   case TargetOpcode::G_FPOWI: {
2227     if (TypeIdx != 0)
2228       return UnableToLegalize;
2229     Observer.changingInstr(MI);
2230     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2231     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2232     Observer.changedInstr(MI);
2233     return Legalized;
2234   }
2235   case TargetOpcode::G_INTTOPTR:
2236     if (TypeIdx != 1)
2237       return UnableToLegalize;
2238 
2239     Observer.changingInstr(MI);
2240     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2241     Observer.changedInstr(MI);
2242     return Legalized;
2243   case TargetOpcode::G_PTRTOINT:
2244     if (TypeIdx != 0)
2245       return UnableToLegalize;
2246 
2247     Observer.changingInstr(MI);
2248     widenScalarDst(MI, WideTy, 0);
2249     Observer.changedInstr(MI);
2250     return Legalized;
2251   case TargetOpcode::G_BUILD_VECTOR: {
2252     Observer.changingInstr(MI);
2253 
2254     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2255     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2256       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2257 
2258     // Avoid changing the result vector type if the source element type was
2259     // requested.
2260     if (TypeIdx == 1) {
2261       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2262     } else {
2263       widenScalarDst(MI, WideTy, 0);
2264     }
2265 
2266     Observer.changedInstr(MI);
2267     return Legalized;
2268   }
2269   case TargetOpcode::G_SEXT_INREG:
2270     if (TypeIdx != 0)
2271       return UnableToLegalize;
2272 
2273     Observer.changingInstr(MI);
2274     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2275     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2276     Observer.changedInstr(MI);
2277     return Legalized;
2278   case TargetOpcode::G_PTRMASK: {
2279     if (TypeIdx != 1)
2280       return UnableToLegalize;
2281     Observer.changingInstr(MI);
2282     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2283     Observer.changedInstr(MI);
2284     return Legalized;
2285   }
2286   }
2287 }
2288 
2289 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2290                              MachineIRBuilder &B, Register Src, LLT Ty) {
2291   auto Unmerge = B.buildUnmerge(Ty, Src);
2292   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2293     Pieces.push_back(Unmerge.getReg(I));
2294 }
2295 
2296 LegalizerHelper::LegalizeResult
2297 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2298   Register Dst = MI.getOperand(0).getReg();
2299   Register Src = MI.getOperand(1).getReg();
2300   LLT DstTy = MRI.getType(Dst);
2301   LLT SrcTy = MRI.getType(Src);
2302 
2303   if (SrcTy.isVector()) {
2304     LLT SrcEltTy = SrcTy.getElementType();
2305     SmallVector<Register, 8> SrcRegs;
2306 
2307     if (DstTy.isVector()) {
2308       int NumDstElt = DstTy.getNumElements();
2309       int NumSrcElt = SrcTy.getNumElements();
2310 
2311       LLT DstEltTy = DstTy.getElementType();
2312       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2313       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2314 
2315       // If there's an element size mismatch, insert intermediate casts to match
2316       // the result element type.
2317       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2318         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2319         //
2320         // =>
2321         //
2322         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2323         // %3:_(<2 x s8>) = G_BITCAST %2
2324         // %4:_(<2 x s8>) = G_BITCAST %3
2325         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2326         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2327         SrcPartTy = SrcEltTy;
2328       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2329         //
2330         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2331         //
2332         // =>
2333         //
2334         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2335         // %3:_(s16) = G_BITCAST %2
2336         // %4:_(s16) = G_BITCAST %3
2337         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2338         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2339         DstCastTy = DstEltTy;
2340       }
2341 
2342       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2343       for (Register &SrcReg : SrcRegs)
2344         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2345     } else
2346       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2347 
2348     MIRBuilder.buildMerge(Dst, SrcRegs);
2349     MI.eraseFromParent();
2350     return Legalized;
2351   }
2352 
2353   if (DstTy.isVector()) {
2354     SmallVector<Register, 8> SrcRegs;
2355     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2356     MIRBuilder.buildMerge(Dst, SrcRegs);
2357     MI.eraseFromParent();
2358     return Legalized;
2359   }
2360 
2361   return UnableToLegalize;
2362 }
2363 
2364 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2365 /// is casting to a vector with a smaller element size, perform multiple element
2366 /// extracts and merge the results. If this is coercing to a vector with larger
2367 /// elements, index the bitcasted vector and extract the target element with bit
2368 /// operations. This is intended to force the indexing in the native register
2369 /// size for architectures that can dynamically index the register file.
2370 LegalizerHelper::LegalizeResult
2371 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2372                                          LLT CastTy) {
2373   if (TypeIdx != 1)
2374     return UnableToLegalize;
2375 
2376   Register Dst = MI.getOperand(0).getReg();
2377   Register SrcVec = MI.getOperand(1).getReg();
2378   Register Idx = MI.getOperand(2).getReg();
2379   LLT SrcVecTy = MRI.getType(SrcVec);
2380   LLT IdxTy = MRI.getType(Idx);
2381 
2382   LLT SrcEltTy = SrcVecTy.getElementType();
2383   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2384   unsigned OldNumElts = SrcVecTy.getNumElements();
2385 
2386   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2387   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2388 
2389   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2390   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2391   if (NewNumElts > OldNumElts) {
2392     // Decreasing the vector element size
2393     //
2394     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2395     //  =>
2396     //  v4i32:castx = bitcast x:v2i64
2397     //
2398     // i64 = bitcast
2399     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2400     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2401     //
2402     if (NewNumElts % OldNumElts != 0)
2403       return UnableToLegalize;
2404 
2405     // Type of the intermediate result vector.
2406     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2407     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2408 
2409     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2410 
2411     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2412     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2413 
2414     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2415       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2416       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2417       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2418       NewOps[I] = Elt.getReg(0);
2419     }
2420 
2421     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2422     MIRBuilder.buildBitcast(Dst, NewVec);
2423     MI.eraseFromParent();
2424     return Legalized;
2425   }
2426 
2427   if (NewNumElts < OldNumElts) {
2428     if (NewEltSize % OldEltSize != 0)
2429       return UnableToLegalize;
2430 
2431     // This only depends on powers of 2 because we use bit tricks to figure out
2432     // the bit offset we need to shift to get the target element. A general
2433     // expansion could emit division/multiply.
2434     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2435       return UnableToLegalize;
2436 
2437     // Increasing the vector element size.
2438     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2439     //
2440     //   =>
2441     //
2442     // %cast = G_BITCAST %vec
2443     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2444     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2445     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2446     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2447     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2448     // %elt = G_TRUNC %elt_bits
2449 
2450     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2451     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2452 
2453     // Divide to get the index in the wider element type.
2454     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2455 
2456     Register WideElt = CastVec;
2457     if (CastTy.isVector()) {
2458       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2459                                                      ScaledIdx).getReg(0);
2460     }
2461 
2462     // Now figure out the amount we need to shift to get the target bits.
2463     auto OffsetMask = MIRBuilder.buildConstant(
2464       IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2465     auto OffsetIdx = MIRBuilder.buildAnd(IdxTy, Idx, OffsetMask);
2466     auto OffsetBits = MIRBuilder.buildShl(
2467       IdxTy, OffsetIdx,
2468       MIRBuilder.buildConstant(IdxTy, Log2_32(OldEltSize)));
2469 
2470     // Shift the wide element to get the target element.
2471     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2472     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2473     MI.eraseFromParent();
2474     return Legalized;
2475   }
2476 
2477   return UnableToLegalize;
2478 }
2479 
2480 LegalizerHelper::LegalizeResult
2481 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2482   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2483   Register DstReg = MI.getOperand(0).getReg();
2484   Register PtrReg = MI.getOperand(1).getReg();
2485   LLT DstTy = MRI.getType(DstReg);
2486   auto &MMO = **MI.memoperands_begin();
2487 
2488   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2489     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2490       // This load needs splitting into power of 2 sized loads.
2491       if (DstTy.isVector())
2492         return UnableToLegalize;
2493       if (isPowerOf2_32(DstTy.getSizeInBits()))
2494         return UnableToLegalize; // Don't know what we're being asked to do.
2495 
2496       // Our strategy here is to generate anyextending loads for the smaller
2497       // types up to next power-2 result type, and then combine the two larger
2498       // result values together, before truncating back down to the non-pow-2
2499       // type.
2500       // E.g. v1 = i24 load =>
2501       // v2 = i32 zextload (2 byte)
2502       // v3 = i32 load (1 byte)
2503       // v4 = i32 shl v3, 16
2504       // v5 = i32 or v4, v2
2505       // v1 = i24 trunc v5
2506       // By doing this we generate the correct truncate which should get
2507       // combined away as an artifact with a matching extend.
2508       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2509       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2510 
2511       MachineFunction &MF = MIRBuilder.getMF();
2512       MachineMemOperand *LargeMMO =
2513         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2514       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2515         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2516 
2517       LLT PtrTy = MRI.getType(PtrReg);
2518       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2519       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2520       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2521       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2522       auto LargeLoad = MIRBuilder.buildLoadInstr(
2523         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2524 
2525       auto OffsetCst = MIRBuilder.buildConstant(
2526         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2527       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2528       auto SmallPtr =
2529         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2530       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2531                                             *SmallMMO);
2532 
2533       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2534       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2535       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2536       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2537       MI.eraseFromParent();
2538       return Legalized;
2539     }
2540 
2541     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2542     MI.eraseFromParent();
2543     return Legalized;
2544   }
2545 
2546   if (DstTy.isScalar()) {
2547     Register TmpReg =
2548       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2549     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2550     switch (MI.getOpcode()) {
2551     default:
2552       llvm_unreachable("Unexpected opcode");
2553     case TargetOpcode::G_LOAD:
2554       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2555       break;
2556     case TargetOpcode::G_SEXTLOAD:
2557       MIRBuilder.buildSExt(DstReg, TmpReg);
2558       break;
2559     case TargetOpcode::G_ZEXTLOAD:
2560       MIRBuilder.buildZExt(DstReg, TmpReg);
2561       break;
2562     }
2563 
2564     MI.eraseFromParent();
2565     return Legalized;
2566   }
2567 
2568   return UnableToLegalize;
2569 }
2570 
2571 LegalizerHelper::LegalizeResult
2572 LegalizerHelper::lowerStore(MachineInstr &MI) {
2573   // Lower a non-power of 2 store into multiple pow-2 stores.
2574   // E.g. split an i24 store into an i16 store + i8 store.
2575   // We do this by first extending the stored value to the next largest power
2576   // of 2 type, and then using truncating stores to store the components.
2577   // By doing this, likewise with G_LOAD, generate an extend that can be
2578   // artifact-combined away instead of leaving behind extracts.
2579   Register SrcReg = MI.getOperand(0).getReg();
2580   Register PtrReg = MI.getOperand(1).getReg();
2581   LLT SrcTy = MRI.getType(SrcReg);
2582   MachineMemOperand &MMO = **MI.memoperands_begin();
2583   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2584     return UnableToLegalize;
2585   if (SrcTy.isVector())
2586     return UnableToLegalize;
2587   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2588     return UnableToLegalize; // Don't know what we're being asked to do.
2589 
2590   // Extend to the next pow-2.
2591   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2592   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2593 
2594   // Obtain the smaller value by shifting away the larger value.
2595   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2596   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2597   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2598   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2599 
2600   // Generate the PtrAdd and truncating stores.
2601   LLT PtrTy = MRI.getType(PtrReg);
2602   auto OffsetCst = MIRBuilder.buildConstant(
2603     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2604   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2605   auto SmallPtr =
2606     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2607 
2608   MachineFunction &MF = MIRBuilder.getMF();
2609   MachineMemOperand *LargeMMO =
2610     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2611   MachineMemOperand *SmallMMO =
2612     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2613   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2614   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2615   MI.eraseFromParent();
2616   return Legalized;
2617 }
2618 
2619 LegalizerHelper::LegalizeResult
2620 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2621   switch (MI.getOpcode()) {
2622   case TargetOpcode::G_LOAD: {
2623     if (TypeIdx != 0)
2624       return UnableToLegalize;
2625 
2626     Observer.changingInstr(MI);
2627     bitcastDst(MI, CastTy, 0);
2628     Observer.changedInstr(MI);
2629     return Legalized;
2630   }
2631   case TargetOpcode::G_STORE: {
2632     if (TypeIdx != 0)
2633       return UnableToLegalize;
2634 
2635     Observer.changingInstr(MI);
2636     bitcastSrc(MI, CastTy, 0);
2637     Observer.changedInstr(MI);
2638     return Legalized;
2639   }
2640   case TargetOpcode::G_SELECT: {
2641     if (TypeIdx != 0)
2642       return UnableToLegalize;
2643 
2644     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2645       LLVM_DEBUG(
2646           dbgs() << "bitcast action not implemented for vector select\n");
2647       return UnableToLegalize;
2648     }
2649 
2650     Observer.changingInstr(MI);
2651     bitcastSrc(MI, CastTy, 2);
2652     bitcastSrc(MI, CastTy, 3);
2653     bitcastDst(MI, CastTy, 0);
2654     Observer.changedInstr(MI);
2655     return Legalized;
2656   }
2657   case TargetOpcode::G_AND:
2658   case TargetOpcode::G_OR:
2659   case TargetOpcode::G_XOR: {
2660     Observer.changingInstr(MI);
2661     bitcastSrc(MI, CastTy, 1);
2662     bitcastSrc(MI, CastTy, 2);
2663     bitcastDst(MI, CastTy, 0);
2664     Observer.changedInstr(MI);
2665     return Legalized;
2666   }
2667   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2668     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2669   default:
2670     return UnableToLegalize;
2671   }
2672 }
2673 
2674 // Legalize an instruction by changing the opcode in place.
2675 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2676     Observer.changingInstr(MI);
2677     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2678     Observer.changedInstr(MI);
2679 }
2680 
2681 LegalizerHelper::LegalizeResult
2682 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
2683   using namespace TargetOpcode;
2684 
2685   switch(MI.getOpcode()) {
2686   default:
2687     return UnableToLegalize;
2688   case TargetOpcode::G_BITCAST:
2689     return lowerBitcast(MI);
2690   case TargetOpcode::G_SREM:
2691   case TargetOpcode::G_UREM: {
2692     auto Quot =
2693         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2694                               {MI.getOperand(1), MI.getOperand(2)});
2695 
2696     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2697     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2698     MI.eraseFromParent();
2699     return Legalized;
2700   }
2701   case TargetOpcode::G_SADDO:
2702   case TargetOpcode::G_SSUBO:
2703     return lowerSADDO_SSUBO(MI);
2704   case TargetOpcode::G_SMULO:
2705   case TargetOpcode::G_UMULO: {
2706     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2707     // result.
2708     Register Res = MI.getOperand(0).getReg();
2709     Register Overflow = MI.getOperand(1).getReg();
2710     Register LHS = MI.getOperand(2).getReg();
2711     Register RHS = MI.getOperand(3).getReg();
2712 
2713     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2714                           ? TargetOpcode::G_SMULH
2715                           : TargetOpcode::G_UMULH;
2716 
2717     Observer.changingInstr(MI);
2718     const auto &TII = MIRBuilder.getTII();
2719     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2720     MI.RemoveOperand(1);
2721     Observer.changedInstr(MI);
2722 
2723     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2724 
2725     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2726     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2727 
2728     // For *signed* multiply, overflow is detected by checking:
2729     // (hi != (lo >> bitwidth-1))
2730     if (Opcode == TargetOpcode::G_SMULH) {
2731       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2732       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2733       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2734     } else {
2735       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2736     }
2737     return Legalized;
2738   }
2739   case TargetOpcode::G_FNEG: {
2740     // TODO: Handle vector types once we are able to
2741     // represent them.
2742     if (Ty.isVector())
2743       return UnableToLegalize;
2744     Register Res = MI.getOperand(0).getReg();
2745     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2746     Type *ZeroTy = getFloatTypeForLLT(Ctx, Ty);
2747     if (!ZeroTy)
2748       return UnableToLegalize;
2749     ConstantFP &ZeroForNegation =
2750         *cast<ConstantFP>(ConstantFP::getZeroValueForNegation(ZeroTy));
2751     auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation);
2752     Register SubByReg = MI.getOperand(1).getReg();
2753     Register ZeroReg = Zero.getReg(0);
2754     MIRBuilder.buildFSub(Res, ZeroReg, SubByReg, MI.getFlags());
2755     MI.eraseFromParent();
2756     return Legalized;
2757   }
2758   case TargetOpcode::G_FSUB: {
2759     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2760     // First, check if G_FNEG is marked as Lower. If so, we may
2761     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2762     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2763       return UnableToLegalize;
2764     Register Res = MI.getOperand(0).getReg();
2765     Register LHS = MI.getOperand(1).getReg();
2766     Register RHS = MI.getOperand(2).getReg();
2767     Register Neg = MRI.createGenericVirtualRegister(Ty);
2768     MIRBuilder.buildFNeg(Neg, RHS);
2769     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2770     MI.eraseFromParent();
2771     return Legalized;
2772   }
2773   case TargetOpcode::G_FMAD:
2774     return lowerFMad(MI);
2775   case TargetOpcode::G_FFLOOR:
2776     return lowerFFloor(MI);
2777   case TargetOpcode::G_INTRINSIC_ROUND:
2778     return lowerIntrinsicRound(MI);
2779   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2780     // Since round even is the assumed rounding mode for unconstrained FP
2781     // operations, rint and roundeven are the same operation.
2782     changeOpcode(MI, TargetOpcode::G_FRINT);
2783     return Legalized;
2784   }
2785   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2786     Register OldValRes = MI.getOperand(0).getReg();
2787     Register SuccessRes = MI.getOperand(1).getReg();
2788     Register Addr = MI.getOperand(2).getReg();
2789     Register CmpVal = MI.getOperand(3).getReg();
2790     Register NewVal = MI.getOperand(4).getReg();
2791     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2792                                   **MI.memoperands_begin());
2793     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2794     MI.eraseFromParent();
2795     return Legalized;
2796   }
2797   case TargetOpcode::G_LOAD:
2798   case TargetOpcode::G_SEXTLOAD:
2799   case TargetOpcode::G_ZEXTLOAD:
2800     return lowerLoad(MI);
2801   case TargetOpcode::G_STORE:
2802     return lowerStore(MI);
2803   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2804   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2805   case TargetOpcode::G_CTLZ:
2806   case TargetOpcode::G_CTTZ:
2807   case TargetOpcode::G_CTPOP:
2808     return lowerBitCount(MI, TypeIdx, Ty);
2809   case G_UADDO: {
2810     Register Res = MI.getOperand(0).getReg();
2811     Register CarryOut = MI.getOperand(1).getReg();
2812     Register LHS = MI.getOperand(2).getReg();
2813     Register RHS = MI.getOperand(3).getReg();
2814 
2815     MIRBuilder.buildAdd(Res, LHS, RHS);
2816     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2817 
2818     MI.eraseFromParent();
2819     return Legalized;
2820   }
2821   case G_UADDE: {
2822     Register Res = MI.getOperand(0).getReg();
2823     Register CarryOut = MI.getOperand(1).getReg();
2824     Register LHS = MI.getOperand(2).getReg();
2825     Register RHS = MI.getOperand(3).getReg();
2826     Register CarryIn = MI.getOperand(4).getReg();
2827     LLT Ty = MRI.getType(Res);
2828 
2829     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
2830     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
2831     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
2832     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
2833 
2834     MI.eraseFromParent();
2835     return Legalized;
2836   }
2837   case G_USUBO: {
2838     Register Res = MI.getOperand(0).getReg();
2839     Register BorrowOut = MI.getOperand(1).getReg();
2840     Register LHS = MI.getOperand(2).getReg();
2841     Register RHS = MI.getOperand(3).getReg();
2842 
2843     MIRBuilder.buildSub(Res, LHS, RHS);
2844     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
2845 
2846     MI.eraseFromParent();
2847     return Legalized;
2848   }
2849   case G_USUBE: {
2850     Register Res = MI.getOperand(0).getReg();
2851     Register BorrowOut = MI.getOperand(1).getReg();
2852     Register LHS = MI.getOperand(2).getReg();
2853     Register RHS = MI.getOperand(3).getReg();
2854     Register BorrowIn = MI.getOperand(4).getReg();
2855     const LLT CondTy = MRI.getType(BorrowOut);
2856     const LLT Ty = MRI.getType(Res);
2857 
2858     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
2859     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
2860     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
2861 
2862     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
2863     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
2864     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
2865 
2866     MI.eraseFromParent();
2867     return Legalized;
2868   }
2869   case G_UITOFP:
2870     return lowerUITOFP(MI, TypeIdx, Ty);
2871   case G_SITOFP:
2872     return lowerSITOFP(MI, TypeIdx, Ty);
2873   case G_FPTOUI:
2874     return lowerFPTOUI(MI, TypeIdx, Ty);
2875   case G_FPTOSI:
2876     return lowerFPTOSI(MI);
2877   case G_FPTRUNC:
2878     return lowerFPTRUNC(MI, TypeIdx, Ty);
2879   case G_FPOWI:
2880     return lowerFPOWI(MI);
2881   case G_SMIN:
2882   case G_SMAX:
2883   case G_UMIN:
2884   case G_UMAX:
2885     return lowerMinMax(MI, TypeIdx, Ty);
2886   case G_FCOPYSIGN:
2887     return lowerFCopySign(MI, TypeIdx, Ty);
2888   case G_FMINNUM:
2889   case G_FMAXNUM:
2890     return lowerFMinNumMaxNum(MI);
2891   case G_MERGE_VALUES:
2892     return lowerMergeValues(MI);
2893   case G_UNMERGE_VALUES:
2894     return lowerUnmergeValues(MI);
2895   case TargetOpcode::G_SEXT_INREG: {
2896     assert(MI.getOperand(2).isImm() && "Expected immediate");
2897     int64_t SizeInBits = MI.getOperand(2).getImm();
2898 
2899     Register DstReg = MI.getOperand(0).getReg();
2900     Register SrcReg = MI.getOperand(1).getReg();
2901     LLT DstTy = MRI.getType(DstReg);
2902     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
2903 
2904     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
2905     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
2906     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
2907     MI.eraseFromParent();
2908     return Legalized;
2909   }
2910   case G_EXTRACT_VECTOR_ELT:
2911     return lowerExtractVectorElt(MI);
2912   case G_SHUFFLE_VECTOR:
2913     return lowerShuffleVector(MI);
2914   case G_DYN_STACKALLOC:
2915     return lowerDynStackAlloc(MI);
2916   case G_EXTRACT:
2917     return lowerExtract(MI);
2918   case G_INSERT:
2919     return lowerInsert(MI);
2920   case G_BSWAP:
2921     return lowerBswap(MI);
2922   case G_BITREVERSE:
2923     return lowerBitreverse(MI);
2924   case G_READ_REGISTER:
2925   case G_WRITE_REGISTER:
2926     return lowerReadWriteRegister(MI);
2927   case G_UADDSAT:
2928   case G_USUBSAT: {
2929     // Try to make a reasonable guess about which lowering strategy to use. The
2930     // target can override this with custom lowering and calling the
2931     // implementation functions.
2932     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2933     if (LI.isLegalOrCustom({G_UMIN, Ty}))
2934       return lowerAddSubSatToMinMax(MI);
2935     return lowerAddSubSatToAddoSubo(MI);
2936   }
2937   case G_SADDSAT:
2938   case G_SSUBSAT: {
2939     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2940 
2941     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
2942     // since it's a shorter expansion. However, we would need to figure out the
2943     // preferred boolean type for the carry out for the query.
2944     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
2945       return lowerAddSubSatToMinMax(MI);
2946     return lowerAddSubSatToAddoSubo(MI);
2947   }
2948   }
2949 }
2950 
2951 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
2952                                                   Align MinAlign) const {
2953   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
2954   // datalayout for the preferred alignment. Also there should be a target hook
2955   // for this to allow targets to reduce the alignment and ignore the
2956   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
2957   // the type.
2958   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
2959 }
2960 
2961 MachineInstrBuilder
2962 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
2963                                       MachinePointerInfo &PtrInfo) {
2964   MachineFunction &MF = MIRBuilder.getMF();
2965   const DataLayout &DL = MIRBuilder.getDataLayout();
2966   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
2967 
2968   unsigned AddrSpace = DL.getAllocaAddrSpace();
2969   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
2970 
2971   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
2972   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
2973 }
2974 
2975 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
2976                                         LLT VecTy) {
2977   int64_t IdxVal;
2978   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
2979     return IdxReg;
2980 
2981   LLT IdxTy = B.getMRI()->getType(IdxReg);
2982   unsigned NElts = VecTy.getNumElements();
2983   if (isPowerOf2_32(NElts)) {
2984     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
2985     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
2986   }
2987 
2988   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
2989       .getReg(0);
2990 }
2991 
2992 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
2993                                                   Register Index) {
2994   LLT EltTy = VecTy.getElementType();
2995 
2996   // Calculate the element offset and add it to the pointer.
2997   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
2998   assert(EltSize * 8 == EltTy.getSizeInBits() &&
2999          "Converting bits to bytes lost precision");
3000 
3001   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3002 
3003   LLT IdxTy = MRI.getType(Index);
3004   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3005                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3006 
3007   LLT PtrTy = MRI.getType(VecPtr);
3008   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3009 }
3010 
3011 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3012     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3013   Register DstReg = MI.getOperand(0).getReg();
3014   LLT DstTy = MRI.getType(DstReg);
3015   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3016 
3017   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3018 
3019   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3020   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3021 
3022   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3023   MI.eraseFromParent();
3024   return Legalized;
3025 }
3026 
3027 // Handle splitting vector operations which need to have the same number of
3028 // elements in each type index, but each type index may have a different element
3029 // type.
3030 //
3031 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3032 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3033 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3034 //
3035 // Also handles some irregular breakdown cases, e.g.
3036 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3037 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3038 //             s64 = G_SHL s64, s32
3039 LegalizerHelper::LegalizeResult
3040 LegalizerHelper::fewerElementsVectorMultiEltType(
3041   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3042   if (TypeIdx != 0)
3043     return UnableToLegalize;
3044 
3045   const LLT NarrowTy0 = NarrowTyArg;
3046   const unsigned NewNumElts =
3047       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3048 
3049   const Register DstReg = MI.getOperand(0).getReg();
3050   LLT DstTy = MRI.getType(DstReg);
3051   LLT LeftoverTy0;
3052 
3053   // All of the operands need to have the same number of elements, so if we can
3054   // determine a type breakdown for the result type, we can for all of the
3055   // source types.
3056   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3057   if (NumParts < 0)
3058     return UnableToLegalize;
3059 
3060   SmallVector<MachineInstrBuilder, 4> NewInsts;
3061 
3062   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3063   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3064 
3065   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3066     Register SrcReg = MI.getOperand(I).getReg();
3067     LLT SrcTyI = MRI.getType(SrcReg);
3068     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3069     LLT LeftoverTyI;
3070 
3071     // Split this operand into the requested typed registers, and any leftover
3072     // required to reproduce the original type.
3073     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3074                       LeftoverRegs))
3075       return UnableToLegalize;
3076 
3077     if (I == 1) {
3078       // For the first operand, create an instruction for each part and setup
3079       // the result.
3080       for (Register PartReg : PartRegs) {
3081         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3082         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3083                                .addDef(PartDstReg)
3084                                .addUse(PartReg));
3085         DstRegs.push_back(PartDstReg);
3086       }
3087 
3088       for (Register LeftoverReg : LeftoverRegs) {
3089         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3090         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3091                                .addDef(PartDstReg)
3092                                .addUse(LeftoverReg));
3093         LeftoverDstRegs.push_back(PartDstReg);
3094       }
3095     } else {
3096       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3097 
3098       // Add the newly created operand splits to the existing instructions. The
3099       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3100       // pieces.
3101       unsigned InstCount = 0;
3102       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3103         NewInsts[InstCount++].addUse(PartRegs[J]);
3104       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3105         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3106     }
3107 
3108     PartRegs.clear();
3109     LeftoverRegs.clear();
3110   }
3111 
3112   // Insert the newly built operations and rebuild the result register.
3113   for (auto &MIB : NewInsts)
3114     MIRBuilder.insertInstr(MIB);
3115 
3116   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3117 
3118   MI.eraseFromParent();
3119   return Legalized;
3120 }
3121 
3122 LegalizerHelper::LegalizeResult
3123 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3124                                           LLT NarrowTy) {
3125   if (TypeIdx != 0)
3126     return UnableToLegalize;
3127 
3128   Register DstReg = MI.getOperand(0).getReg();
3129   Register SrcReg = MI.getOperand(1).getReg();
3130   LLT DstTy = MRI.getType(DstReg);
3131   LLT SrcTy = MRI.getType(SrcReg);
3132 
3133   LLT NarrowTy0 = NarrowTy;
3134   LLT NarrowTy1;
3135   unsigned NumParts;
3136 
3137   if (NarrowTy.isVector()) {
3138     // Uneven breakdown not handled.
3139     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3140     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3141       return UnableToLegalize;
3142 
3143     NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits());
3144   } else {
3145     NumParts = DstTy.getNumElements();
3146     NarrowTy1 = SrcTy.getElementType();
3147   }
3148 
3149   SmallVector<Register, 4> SrcRegs, DstRegs;
3150   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3151 
3152   for (unsigned I = 0; I < NumParts; ++I) {
3153     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3154     MachineInstr *NewInst =
3155         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3156 
3157     NewInst->setFlags(MI.getFlags());
3158     DstRegs.push_back(DstReg);
3159   }
3160 
3161   if (NarrowTy.isVector())
3162     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3163   else
3164     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3165 
3166   MI.eraseFromParent();
3167   return Legalized;
3168 }
3169 
3170 LegalizerHelper::LegalizeResult
3171 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3172                                         LLT NarrowTy) {
3173   Register DstReg = MI.getOperand(0).getReg();
3174   Register Src0Reg = MI.getOperand(2).getReg();
3175   LLT DstTy = MRI.getType(DstReg);
3176   LLT SrcTy = MRI.getType(Src0Reg);
3177 
3178   unsigned NumParts;
3179   LLT NarrowTy0, NarrowTy1;
3180 
3181   if (TypeIdx == 0) {
3182     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3183     unsigned OldElts = DstTy.getNumElements();
3184 
3185     NarrowTy0 = NarrowTy;
3186     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3187     NarrowTy1 = NarrowTy.isVector() ?
3188       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3189       SrcTy.getElementType();
3190 
3191   } else {
3192     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3193     unsigned OldElts = SrcTy.getNumElements();
3194 
3195     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3196       NarrowTy.getNumElements();
3197     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3198                             DstTy.getScalarSizeInBits());
3199     NarrowTy1 = NarrowTy;
3200   }
3201 
3202   // FIXME: Don't know how to handle the situation where the small vectors
3203   // aren't all the same size yet.
3204   if (NarrowTy1.isVector() &&
3205       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3206     return UnableToLegalize;
3207 
3208   CmpInst::Predicate Pred
3209     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3210 
3211   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3212   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3213   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3214 
3215   for (unsigned I = 0; I < NumParts; ++I) {
3216     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3217     DstRegs.push_back(DstReg);
3218 
3219     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3220       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3221     else {
3222       MachineInstr *NewCmp
3223         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3224       NewCmp->setFlags(MI.getFlags());
3225     }
3226   }
3227 
3228   if (NarrowTy1.isVector())
3229     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3230   else
3231     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3232 
3233   MI.eraseFromParent();
3234   return Legalized;
3235 }
3236 
3237 LegalizerHelper::LegalizeResult
3238 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3239                                            LLT NarrowTy) {
3240   Register DstReg = MI.getOperand(0).getReg();
3241   Register CondReg = MI.getOperand(1).getReg();
3242 
3243   unsigned NumParts = 0;
3244   LLT NarrowTy0, NarrowTy1;
3245 
3246   LLT DstTy = MRI.getType(DstReg);
3247   LLT CondTy = MRI.getType(CondReg);
3248   unsigned Size = DstTy.getSizeInBits();
3249 
3250   assert(TypeIdx == 0 || CondTy.isVector());
3251 
3252   if (TypeIdx == 0) {
3253     NarrowTy0 = NarrowTy;
3254     NarrowTy1 = CondTy;
3255 
3256     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3257     // FIXME: Don't know how to handle the situation where the small vectors
3258     // aren't all the same size yet.
3259     if (Size % NarrowSize != 0)
3260       return UnableToLegalize;
3261 
3262     NumParts = Size / NarrowSize;
3263 
3264     // Need to break down the condition type
3265     if (CondTy.isVector()) {
3266       if (CondTy.getNumElements() == NumParts)
3267         NarrowTy1 = CondTy.getElementType();
3268       else
3269         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3270                                 CondTy.getScalarSizeInBits());
3271     }
3272   } else {
3273     NumParts = CondTy.getNumElements();
3274     if (NarrowTy.isVector()) {
3275       // TODO: Handle uneven breakdown.
3276       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3277         return UnableToLegalize;
3278 
3279       return UnableToLegalize;
3280     } else {
3281       NarrowTy0 = DstTy.getElementType();
3282       NarrowTy1 = NarrowTy;
3283     }
3284   }
3285 
3286   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3287   if (CondTy.isVector())
3288     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3289 
3290   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3291   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3292 
3293   for (unsigned i = 0; i < NumParts; ++i) {
3294     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3295     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3296                            Src1Regs[i], Src2Regs[i]);
3297     DstRegs.push_back(DstReg);
3298   }
3299 
3300   if (NarrowTy0.isVector())
3301     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3302   else
3303     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3304 
3305   MI.eraseFromParent();
3306   return Legalized;
3307 }
3308 
3309 LegalizerHelper::LegalizeResult
3310 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3311                                         LLT NarrowTy) {
3312   const Register DstReg = MI.getOperand(0).getReg();
3313   LLT PhiTy = MRI.getType(DstReg);
3314   LLT LeftoverTy;
3315 
3316   // All of the operands need to have the same number of elements, so if we can
3317   // determine a type breakdown for the result type, we can for all of the
3318   // source types.
3319   int NumParts, NumLeftover;
3320   std::tie(NumParts, NumLeftover)
3321     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3322   if (NumParts < 0)
3323     return UnableToLegalize;
3324 
3325   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3326   SmallVector<MachineInstrBuilder, 4> NewInsts;
3327 
3328   const int TotalNumParts = NumParts + NumLeftover;
3329 
3330   // Insert the new phis in the result block first.
3331   for (int I = 0; I != TotalNumParts; ++I) {
3332     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3333     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3334     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3335                        .addDef(PartDstReg));
3336     if (I < NumParts)
3337       DstRegs.push_back(PartDstReg);
3338     else
3339       LeftoverDstRegs.push_back(PartDstReg);
3340   }
3341 
3342   MachineBasicBlock *MBB = MI.getParent();
3343   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3344   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3345 
3346   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3347 
3348   // Insert code to extract the incoming values in each predecessor block.
3349   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3350     PartRegs.clear();
3351     LeftoverRegs.clear();
3352 
3353     Register SrcReg = MI.getOperand(I).getReg();
3354     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3355     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3356 
3357     LLT Unused;
3358     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3359                       LeftoverRegs))
3360       return UnableToLegalize;
3361 
3362     // Add the newly created operand splits to the existing instructions. The
3363     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3364     // pieces.
3365     for (int J = 0; J != TotalNumParts; ++J) {
3366       MachineInstrBuilder MIB = NewInsts[J];
3367       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3368       MIB.addMBB(&OpMBB);
3369     }
3370   }
3371 
3372   MI.eraseFromParent();
3373   return Legalized;
3374 }
3375 
3376 LegalizerHelper::LegalizeResult
3377 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3378                                                   unsigned TypeIdx,
3379                                                   LLT NarrowTy) {
3380   if (TypeIdx != 1)
3381     return UnableToLegalize;
3382 
3383   const int NumDst = MI.getNumOperands() - 1;
3384   const Register SrcReg = MI.getOperand(NumDst).getReg();
3385   LLT SrcTy = MRI.getType(SrcReg);
3386 
3387   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3388 
3389   // TODO: Create sequence of extracts.
3390   if (DstTy == NarrowTy)
3391     return UnableToLegalize;
3392 
3393   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3394   if (DstTy == GCDTy) {
3395     // This would just be a copy of the same unmerge.
3396     // TODO: Create extracts, pad with undef and create intermediate merges.
3397     return UnableToLegalize;
3398   }
3399 
3400   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3401   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3402   const int PartsPerUnmerge = NumDst / NumUnmerge;
3403 
3404   for (int I = 0; I != NumUnmerge; ++I) {
3405     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3406 
3407     for (int J = 0; J != PartsPerUnmerge; ++J)
3408       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3409     MIB.addUse(Unmerge.getReg(I));
3410   }
3411 
3412   MI.eraseFromParent();
3413   return Legalized;
3414 }
3415 
3416 LegalizerHelper::LegalizeResult
3417 LegalizerHelper::fewerElementsVectorBuildVector(MachineInstr &MI,
3418                                                 unsigned TypeIdx,
3419                                                 LLT NarrowTy) {
3420   assert(TypeIdx == 0 && "not a vector type index");
3421   Register DstReg = MI.getOperand(0).getReg();
3422   LLT DstTy = MRI.getType(DstReg);
3423   LLT SrcTy = DstTy.getElementType();
3424 
3425   int DstNumElts = DstTy.getNumElements();
3426   int NarrowNumElts = NarrowTy.getNumElements();
3427   int NumConcat = (DstNumElts + NarrowNumElts - 1) / NarrowNumElts;
3428   LLT WidenedDstTy = LLT::vector(NarrowNumElts * NumConcat, SrcTy);
3429 
3430   SmallVector<Register, 8> ConcatOps;
3431   SmallVector<Register, 8> SubBuildVector;
3432 
3433   Register UndefReg;
3434   if (WidenedDstTy != DstTy)
3435     UndefReg = MIRBuilder.buildUndef(SrcTy).getReg(0);
3436 
3437   // Create a G_CONCAT_VECTORS of NarrowTy pieces, padding with undef as
3438   // necessary.
3439   //
3440   // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3441   //   -> <2 x s16>
3442   //
3443   // %4:_(s16) = G_IMPLICIT_DEF
3444   // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3445   // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3446   // %7:_(<4 x s16>) = G_CONCAT_VECTORS %5, %6
3447   // %3:_(<3 x s16>) = G_EXTRACT %7, 0
3448   for (int I = 0; I != NumConcat; ++I) {
3449     for (int J = 0; J != NarrowNumElts; ++J) {
3450       int SrcIdx = NarrowNumElts * I + J;
3451 
3452       if (SrcIdx < DstNumElts) {
3453         Register SrcReg = MI.getOperand(SrcIdx + 1).getReg();
3454         SubBuildVector.push_back(SrcReg);
3455       } else
3456         SubBuildVector.push_back(UndefReg);
3457     }
3458 
3459     auto BuildVec = MIRBuilder.buildBuildVector(NarrowTy, SubBuildVector);
3460     ConcatOps.push_back(BuildVec.getReg(0));
3461     SubBuildVector.clear();
3462   }
3463 
3464   if (DstTy == WidenedDstTy)
3465     MIRBuilder.buildConcatVectors(DstReg, ConcatOps);
3466   else {
3467     auto Concat = MIRBuilder.buildConcatVectors(WidenedDstTy, ConcatOps);
3468     MIRBuilder.buildExtract(DstReg, Concat, 0);
3469   }
3470 
3471   MI.eraseFromParent();
3472   return Legalized;
3473 }
3474 
3475 LegalizerHelper::LegalizeResult
3476 LegalizerHelper::fewerElementsVectorExtractVectorElt(MachineInstr &MI,
3477                                                      unsigned TypeIdx,
3478                                                      LLT NarrowVecTy) {
3479   assert(TypeIdx == 1 && "not a vector type index");
3480 
3481   // TODO: Handle total scalarization case.
3482   if (!NarrowVecTy.isVector())
3483     return UnableToLegalize;
3484 
3485   Register DstReg = MI.getOperand(0).getReg();
3486   Register SrcVec = MI.getOperand(1).getReg();
3487   Register Idx = MI.getOperand(2).getReg();
3488   LLT VecTy = MRI.getType(SrcVec);
3489 
3490   // If the index is a constant, we can really break this down as you would
3491   // expect, and index into the target size pieces.
3492   int64_t IdxVal;
3493   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3494     // Avoid out of bounds indexing the pieces.
3495     if (IdxVal >= VecTy.getNumElements()) {
3496       MIRBuilder.buildUndef(DstReg);
3497       MI.eraseFromParent();
3498       return Legalized;
3499     }
3500 
3501     SmallVector<Register, 8> VecParts;
3502     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3503 
3504     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3505     buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3506                         TargetOpcode::G_ANYEXT);
3507 
3508     unsigned NewNumElts = NarrowVecTy.getNumElements();
3509 
3510     LLT IdxTy = MRI.getType(Idx);
3511     int64_t PartIdx = IdxVal / NewNumElts;
3512     auto NewIdx =
3513         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3514 
3515     MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3516     MI.eraseFromParent();
3517     return Legalized;
3518   }
3519 
3520   // With a variable index, we can't perform the extract in a smaller type, so
3521   // we're forced to expand this.
3522   //
3523   // TODO: We could emit a chain of compare/select to figure out which piece to
3524   // index.
3525   return lowerExtractVectorElt(MI);
3526 }
3527 
3528 LegalizerHelper::LegalizeResult
3529 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3530                                       LLT NarrowTy) {
3531   // FIXME: Don't know how to handle secondary types yet.
3532   if (TypeIdx != 0)
3533     return UnableToLegalize;
3534 
3535   MachineMemOperand *MMO = *MI.memoperands_begin();
3536 
3537   // This implementation doesn't work for atomics. Give up instead of doing
3538   // something invalid.
3539   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3540       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3541     return UnableToLegalize;
3542 
3543   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3544   Register ValReg = MI.getOperand(0).getReg();
3545   Register AddrReg = MI.getOperand(1).getReg();
3546   LLT ValTy = MRI.getType(ValReg);
3547 
3548   // FIXME: Do we need a distinct NarrowMemory legalize action?
3549   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3550     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3551     return UnableToLegalize;
3552   }
3553 
3554   int NumParts = -1;
3555   int NumLeftover = -1;
3556   LLT LeftoverTy;
3557   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3558   if (IsLoad) {
3559     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3560   } else {
3561     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3562                      NarrowLeftoverRegs)) {
3563       NumParts = NarrowRegs.size();
3564       NumLeftover = NarrowLeftoverRegs.size();
3565     }
3566   }
3567 
3568   if (NumParts == -1)
3569     return UnableToLegalize;
3570 
3571   LLT PtrTy = MRI.getType(AddrReg);
3572   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3573 
3574   unsigned TotalSize = ValTy.getSizeInBits();
3575 
3576   // Split the load/store into PartTy sized pieces starting at Offset. If this
3577   // is a load, return the new registers in ValRegs. For a store, each elements
3578   // of ValRegs should be PartTy. Returns the next offset that needs to be
3579   // handled.
3580   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3581                              unsigned Offset) -> unsigned {
3582     MachineFunction &MF = MIRBuilder.getMF();
3583     unsigned PartSize = PartTy.getSizeInBits();
3584     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3585          Offset += PartSize, ++Idx) {
3586       unsigned ByteSize = PartSize / 8;
3587       unsigned ByteOffset = Offset / 8;
3588       Register NewAddrReg;
3589 
3590       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3591 
3592       MachineMemOperand *NewMMO =
3593         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3594 
3595       if (IsLoad) {
3596         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3597         ValRegs.push_back(Dst);
3598         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3599       } else {
3600         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3601       }
3602     }
3603 
3604     return Offset;
3605   };
3606 
3607   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3608 
3609   // Handle the rest of the register if this isn't an even type breakdown.
3610   if (LeftoverTy.isValid())
3611     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3612 
3613   if (IsLoad) {
3614     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3615                 LeftoverTy, NarrowLeftoverRegs);
3616   }
3617 
3618   MI.eraseFromParent();
3619   return Legalized;
3620 }
3621 
3622 LegalizerHelper::LegalizeResult
3623 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3624                                       LLT NarrowTy) {
3625   assert(TypeIdx == 0 && "only one type index expected");
3626 
3627   const unsigned Opc = MI.getOpcode();
3628   const int NumOps = MI.getNumOperands() - 1;
3629   const Register DstReg = MI.getOperand(0).getReg();
3630   const unsigned Flags = MI.getFlags();
3631   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3632   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3633 
3634   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3635 
3636   // First of all check whether we are narrowing (changing the element type)
3637   // or reducing the vector elements
3638   const LLT DstTy = MRI.getType(DstReg);
3639   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3640 
3641   SmallVector<Register, 8> ExtractedRegs[3];
3642   SmallVector<Register, 8> Parts;
3643 
3644   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3645 
3646   // Break down all the sources into NarrowTy pieces we can operate on. This may
3647   // involve creating merges to a wider type, padded with undef.
3648   for (int I = 0; I != NumOps; ++I) {
3649     Register SrcReg = MI.getOperand(I + 1).getReg();
3650     LLT SrcTy = MRI.getType(SrcReg);
3651 
3652     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3653     // For fewerElements, this is a smaller vector with the same element type.
3654     LLT OpNarrowTy;
3655     if (IsNarrow) {
3656       OpNarrowTy = NarrowScalarTy;
3657 
3658       // In case of narrowing, we need to cast vectors to scalars for this to
3659       // work properly
3660       // FIXME: Can we do without the bitcast here if we're narrowing?
3661       if (SrcTy.isVector()) {
3662         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3663         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3664       }
3665     } else {
3666       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3667     }
3668 
3669     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3670 
3671     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3672     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3673                         TargetOpcode::G_ANYEXT);
3674   }
3675 
3676   SmallVector<Register, 8> ResultRegs;
3677 
3678   // Input operands for each sub-instruction.
3679   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3680 
3681   int NumParts = ExtractedRegs[0].size();
3682   const unsigned DstSize = DstTy.getSizeInBits();
3683   const LLT DstScalarTy = LLT::scalar(DstSize);
3684 
3685   // Narrowing needs to use scalar types
3686   LLT DstLCMTy, NarrowDstTy;
3687   if (IsNarrow) {
3688     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3689     NarrowDstTy = NarrowScalarTy;
3690   } else {
3691     DstLCMTy = getLCMType(DstTy, NarrowTy);
3692     NarrowDstTy = NarrowTy;
3693   }
3694 
3695   // We widened the source registers to satisfy merge/unmerge size
3696   // constraints. We'll have some extra fully undef parts.
3697   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3698 
3699   for (int I = 0; I != NumRealParts; ++I) {
3700     // Emit this instruction on each of the split pieces.
3701     for (int J = 0; J != NumOps; ++J)
3702       InputRegs[J] = ExtractedRegs[J][I];
3703 
3704     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3705     ResultRegs.push_back(Inst.getReg(0));
3706   }
3707 
3708   // Fill out the widened result with undef instead of creating instructions
3709   // with undef inputs.
3710   int NumUndefParts = NumParts - NumRealParts;
3711   if (NumUndefParts != 0)
3712     ResultRegs.append(NumUndefParts,
3713                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3714 
3715   // Extract the possibly padded result. Use a scratch register if we need to do
3716   // a final bitcast, otherwise use the original result register.
3717   Register MergeDstReg;
3718   if (IsNarrow && DstTy.isVector())
3719     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3720   else
3721     MergeDstReg = DstReg;
3722 
3723   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3724 
3725   // Recast to vector if we narrowed a vector
3726   if (IsNarrow && DstTy.isVector())
3727     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3728 
3729   MI.eraseFromParent();
3730   return Legalized;
3731 }
3732 
3733 LegalizerHelper::LegalizeResult
3734 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3735                                               LLT NarrowTy) {
3736   Register DstReg = MI.getOperand(0).getReg();
3737   Register SrcReg = MI.getOperand(1).getReg();
3738   int64_t Imm = MI.getOperand(2).getImm();
3739 
3740   LLT DstTy = MRI.getType(DstReg);
3741 
3742   SmallVector<Register, 8> Parts;
3743   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3744   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3745 
3746   for (Register &R : Parts)
3747     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3748 
3749   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3750 
3751   MI.eraseFromParent();
3752   return Legalized;
3753 }
3754 
3755 LegalizerHelper::LegalizeResult
3756 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3757                                      LLT NarrowTy) {
3758   using namespace TargetOpcode;
3759 
3760   switch (MI.getOpcode()) {
3761   case G_IMPLICIT_DEF:
3762     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3763   case G_TRUNC:
3764   case G_AND:
3765   case G_OR:
3766   case G_XOR:
3767   case G_ADD:
3768   case G_SUB:
3769   case G_MUL:
3770   case G_PTR_ADD:
3771   case G_SMULH:
3772   case G_UMULH:
3773   case G_FADD:
3774   case G_FMUL:
3775   case G_FSUB:
3776   case G_FNEG:
3777   case G_FABS:
3778   case G_FCANONICALIZE:
3779   case G_FDIV:
3780   case G_FREM:
3781   case G_FMA:
3782   case G_FMAD:
3783   case G_FPOW:
3784   case G_FEXP:
3785   case G_FEXP2:
3786   case G_FLOG:
3787   case G_FLOG2:
3788   case G_FLOG10:
3789   case G_FNEARBYINT:
3790   case G_FCEIL:
3791   case G_FFLOOR:
3792   case G_FRINT:
3793   case G_INTRINSIC_ROUND:
3794   case G_INTRINSIC_ROUNDEVEN:
3795   case G_INTRINSIC_TRUNC:
3796   case G_FCOS:
3797   case G_FSIN:
3798   case G_FSQRT:
3799   case G_BSWAP:
3800   case G_BITREVERSE:
3801   case G_SDIV:
3802   case G_UDIV:
3803   case G_SREM:
3804   case G_UREM:
3805   case G_SMIN:
3806   case G_SMAX:
3807   case G_UMIN:
3808   case G_UMAX:
3809   case G_FMINNUM:
3810   case G_FMAXNUM:
3811   case G_FMINNUM_IEEE:
3812   case G_FMAXNUM_IEEE:
3813   case G_FMINIMUM:
3814   case G_FMAXIMUM:
3815   case G_FSHL:
3816   case G_FSHR:
3817   case G_FREEZE:
3818   case G_SADDSAT:
3819   case G_SSUBSAT:
3820   case G_UADDSAT:
3821   case G_USUBSAT:
3822     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
3823   case G_SHL:
3824   case G_LSHR:
3825   case G_ASHR:
3826   case G_CTLZ:
3827   case G_CTLZ_ZERO_UNDEF:
3828   case G_CTTZ:
3829   case G_CTTZ_ZERO_UNDEF:
3830   case G_CTPOP:
3831   case G_FCOPYSIGN:
3832     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
3833   case G_ZEXT:
3834   case G_SEXT:
3835   case G_ANYEXT:
3836   case G_FPEXT:
3837   case G_FPTRUNC:
3838   case G_SITOFP:
3839   case G_UITOFP:
3840   case G_FPTOSI:
3841   case G_FPTOUI:
3842   case G_INTTOPTR:
3843   case G_PTRTOINT:
3844   case G_ADDRSPACE_CAST:
3845     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
3846   case G_ICMP:
3847   case G_FCMP:
3848     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
3849   case G_SELECT:
3850     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
3851   case G_PHI:
3852     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
3853   case G_UNMERGE_VALUES:
3854     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
3855   case G_BUILD_VECTOR:
3856     return fewerElementsVectorBuildVector(MI, TypeIdx, NarrowTy);
3857   case G_EXTRACT_VECTOR_ELT:
3858     return fewerElementsVectorExtractVectorElt(MI, TypeIdx, NarrowTy);
3859   case G_LOAD:
3860   case G_STORE:
3861     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
3862   case G_SEXT_INREG:
3863     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
3864   default:
3865     return UnableToLegalize;
3866   }
3867 }
3868 
3869 LegalizerHelper::LegalizeResult
3870 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
3871                                              const LLT HalfTy, const LLT AmtTy) {
3872 
3873   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3874   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3875   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
3876 
3877   if (Amt.isNullValue()) {
3878     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
3879     MI.eraseFromParent();
3880     return Legalized;
3881   }
3882 
3883   LLT NVT = HalfTy;
3884   unsigned NVTBits = HalfTy.getSizeInBits();
3885   unsigned VTBits = 2 * NVTBits;
3886 
3887   SrcOp Lo(Register(0)), Hi(Register(0));
3888   if (MI.getOpcode() == TargetOpcode::G_SHL) {
3889     if (Amt.ugt(VTBits)) {
3890       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3891     } else if (Amt.ugt(NVTBits)) {
3892       Lo = MIRBuilder.buildConstant(NVT, 0);
3893       Hi = MIRBuilder.buildShl(NVT, InL,
3894                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3895     } else if (Amt == NVTBits) {
3896       Lo = MIRBuilder.buildConstant(NVT, 0);
3897       Hi = InL;
3898     } else {
3899       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
3900       auto OrLHS =
3901           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
3902       auto OrRHS = MIRBuilder.buildLShr(
3903           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3904       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3905     }
3906   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
3907     if (Amt.ugt(VTBits)) {
3908       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
3909     } else if (Amt.ugt(NVTBits)) {
3910       Lo = MIRBuilder.buildLShr(NVT, InH,
3911                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3912       Hi = MIRBuilder.buildConstant(NVT, 0);
3913     } else if (Amt == NVTBits) {
3914       Lo = InH;
3915       Hi = MIRBuilder.buildConstant(NVT, 0);
3916     } else {
3917       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3918 
3919       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3920       auto OrRHS = MIRBuilder.buildShl(
3921           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3922 
3923       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3924       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
3925     }
3926   } else {
3927     if (Amt.ugt(VTBits)) {
3928       Hi = Lo = MIRBuilder.buildAShr(
3929           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3930     } else if (Amt.ugt(NVTBits)) {
3931       Lo = MIRBuilder.buildAShr(NVT, InH,
3932                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
3933       Hi = MIRBuilder.buildAShr(NVT, InH,
3934                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3935     } else if (Amt == NVTBits) {
3936       Lo = InH;
3937       Hi = MIRBuilder.buildAShr(NVT, InH,
3938                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
3939     } else {
3940       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
3941 
3942       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
3943       auto OrRHS = MIRBuilder.buildShl(
3944           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
3945 
3946       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
3947       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
3948     }
3949   }
3950 
3951   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
3952   MI.eraseFromParent();
3953 
3954   return Legalized;
3955 }
3956 
3957 // TODO: Optimize if constant shift amount.
3958 LegalizerHelper::LegalizeResult
3959 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
3960                                    LLT RequestedTy) {
3961   if (TypeIdx == 1) {
3962     Observer.changingInstr(MI);
3963     narrowScalarSrc(MI, RequestedTy, 2);
3964     Observer.changedInstr(MI);
3965     return Legalized;
3966   }
3967 
3968   Register DstReg = MI.getOperand(0).getReg();
3969   LLT DstTy = MRI.getType(DstReg);
3970   if (DstTy.isVector())
3971     return UnableToLegalize;
3972 
3973   Register Amt = MI.getOperand(2).getReg();
3974   LLT ShiftAmtTy = MRI.getType(Amt);
3975   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
3976   if (DstEltSize % 2 != 0)
3977     return UnableToLegalize;
3978 
3979   // Ignore the input type. We can only go to exactly half the size of the
3980   // input. If that isn't small enough, the resulting pieces will be further
3981   // legalized.
3982   const unsigned NewBitSize = DstEltSize / 2;
3983   const LLT HalfTy = LLT::scalar(NewBitSize);
3984   const LLT CondTy = LLT::scalar(1);
3985 
3986   if (const MachineInstr *KShiftAmt =
3987           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
3988     return narrowScalarShiftByConstant(
3989         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
3990   }
3991 
3992   // TODO: Expand with known bits.
3993 
3994   // Handle the fully general expansion by an unknown amount.
3995   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
3996 
3997   Register InL = MRI.createGenericVirtualRegister(HalfTy);
3998   Register InH = MRI.createGenericVirtualRegister(HalfTy);
3999   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4000 
4001   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4002   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4003 
4004   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4005   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4006   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4007 
4008   Register ResultRegs[2];
4009   switch (MI.getOpcode()) {
4010   case TargetOpcode::G_SHL: {
4011     // Short: ShAmt < NewBitSize
4012     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4013 
4014     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4015     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4016     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4017 
4018     // Long: ShAmt >= NewBitSize
4019     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4020     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4021 
4022     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4023     auto Hi = MIRBuilder.buildSelect(
4024         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4025 
4026     ResultRegs[0] = Lo.getReg(0);
4027     ResultRegs[1] = Hi.getReg(0);
4028     break;
4029   }
4030   case TargetOpcode::G_LSHR:
4031   case TargetOpcode::G_ASHR: {
4032     // Short: ShAmt < NewBitSize
4033     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4034 
4035     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4036     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4037     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4038 
4039     // Long: ShAmt >= NewBitSize
4040     MachineInstrBuilder HiL;
4041     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4042       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4043     } else {
4044       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4045       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4046     }
4047     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4048                                      {InH, AmtExcess});     // Lo from Hi part.
4049 
4050     auto Lo = MIRBuilder.buildSelect(
4051         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4052 
4053     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4054 
4055     ResultRegs[0] = Lo.getReg(0);
4056     ResultRegs[1] = Hi.getReg(0);
4057     break;
4058   }
4059   default:
4060     llvm_unreachable("not a shift");
4061   }
4062 
4063   MIRBuilder.buildMerge(DstReg, ResultRegs);
4064   MI.eraseFromParent();
4065   return Legalized;
4066 }
4067 
4068 LegalizerHelper::LegalizeResult
4069 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4070                                        LLT MoreTy) {
4071   assert(TypeIdx == 0 && "Expecting only Idx 0");
4072 
4073   Observer.changingInstr(MI);
4074   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4075     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4076     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4077     moreElementsVectorSrc(MI, MoreTy, I);
4078   }
4079 
4080   MachineBasicBlock &MBB = *MI.getParent();
4081   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4082   moreElementsVectorDst(MI, MoreTy, 0);
4083   Observer.changedInstr(MI);
4084   return Legalized;
4085 }
4086 
4087 LegalizerHelper::LegalizeResult
4088 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4089                                     LLT MoreTy) {
4090   unsigned Opc = MI.getOpcode();
4091   switch (Opc) {
4092   case TargetOpcode::G_IMPLICIT_DEF:
4093   case TargetOpcode::G_LOAD: {
4094     if (TypeIdx != 0)
4095       return UnableToLegalize;
4096     Observer.changingInstr(MI);
4097     moreElementsVectorDst(MI, MoreTy, 0);
4098     Observer.changedInstr(MI);
4099     return Legalized;
4100   }
4101   case TargetOpcode::G_STORE:
4102     if (TypeIdx != 0)
4103       return UnableToLegalize;
4104     Observer.changingInstr(MI);
4105     moreElementsVectorSrc(MI, MoreTy, 0);
4106     Observer.changedInstr(MI);
4107     return Legalized;
4108   case TargetOpcode::G_AND:
4109   case TargetOpcode::G_OR:
4110   case TargetOpcode::G_XOR:
4111   case TargetOpcode::G_SMIN:
4112   case TargetOpcode::G_SMAX:
4113   case TargetOpcode::G_UMIN:
4114   case TargetOpcode::G_UMAX:
4115   case TargetOpcode::G_FMINNUM:
4116   case TargetOpcode::G_FMAXNUM:
4117   case TargetOpcode::G_FMINNUM_IEEE:
4118   case TargetOpcode::G_FMAXNUM_IEEE:
4119   case TargetOpcode::G_FMINIMUM:
4120   case TargetOpcode::G_FMAXIMUM: {
4121     Observer.changingInstr(MI);
4122     moreElementsVectorSrc(MI, MoreTy, 1);
4123     moreElementsVectorSrc(MI, MoreTy, 2);
4124     moreElementsVectorDst(MI, MoreTy, 0);
4125     Observer.changedInstr(MI);
4126     return Legalized;
4127   }
4128   case TargetOpcode::G_EXTRACT:
4129     if (TypeIdx != 1)
4130       return UnableToLegalize;
4131     Observer.changingInstr(MI);
4132     moreElementsVectorSrc(MI, MoreTy, 1);
4133     Observer.changedInstr(MI);
4134     return Legalized;
4135   case TargetOpcode::G_INSERT:
4136   case TargetOpcode::G_FREEZE:
4137     if (TypeIdx != 0)
4138       return UnableToLegalize;
4139     Observer.changingInstr(MI);
4140     moreElementsVectorSrc(MI, MoreTy, 1);
4141     moreElementsVectorDst(MI, MoreTy, 0);
4142     Observer.changedInstr(MI);
4143     return Legalized;
4144   case TargetOpcode::G_SELECT:
4145     if (TypeIdx != 0)
4146       return UnableToLegalize;
4147     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4148       return UnableToLegalize;
4149 
4150     Observer.changingInstr(MI);
4151     moreElementsVectorSrc(MI, MoreTy, 2);
4152     moreElementsVectorSrc(MI, MoreTy, 3);
4153     moreElementsVectorDst(MI, MoreTy, 0);
4154     Observer.changedInstr(MI);
4155     return Legalized;
4156   case TargetOpcode::G_UNMERGE_VALUES: {
4157     if (TypeIdx != 1)
4158       return UnableToLegalize;
4159 
4160     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4161     int NumDst = MI.getNumOperands() - 1;
4162     moreElementsVectorSrc(MI, MoreTy, NumDst);
4163 
4164     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4165     for (int I = 0; I != NumDst; ++I)
4166       MIB.addDef(MI.getOperand(I).getReg());
4167 
4168     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4169     for (int I = NumDst; I != NewNumDst; ++I)
4170       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4171 
4172     MIB.addUse(MI.getOperand(NumDst).getReg());
4173     MI.eraseFromParent();
4174     return Legalized;
4175   }
4176   case TargetOpcode::G_PHI:
4177     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4178   default:
4179     return UnableToLegalize;
4180   }
4181 }
4182 
4183 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4184                                         ArrayRef<Register> Src1Regs,
4185                                         ArrayRef<Register> Src2Regs,
4186                                         LLT NarrowTy) {
4187   MachineIRBuilder &B = MIRBuilder;
4188   unsigned SrcParts = Src1Regs.size();
4189   unsigned DstParts = DstRegs.size();
4190 
4191   unsigned DstIdx = 0; // Low bits of the result.
4192   Register FactorSum =
4193       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4194   DstRegs[DstIdx] = FactorSum;
4195 
4196   unsigned CarrySumPrevDstIdx;
4197   SmallVector<Register, 4> Factors;
4198 
4199   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4200     // Collect low parts of muls for DstIdx.
4201     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4202          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4203       MachineInstrBuilder Mul =
4204           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4205       Factors.push_back(Mul.getReg(0));
4206     }
4207     // Collect high parts of muls from previous DstIdx.
4208     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4209          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4210       MachineInstrBuilder Umulh =
4211           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4212       Factors.push_back(Umulh.getReg(0));
4213     }
4214     // Add CarrySum from additions calculated for previous DstIdx.
4215     if (DstIdx != 1) {
4216       Factors.push_back(CarrySumPrevDstIdx);
4217     }
4218 
4219     Register CarrySum;
4220     // Add all factors and accumulate all carries into CarrySum.
4221     if (DstIdx != DstParts - 1) {
4222       MachineInstrBuilder Uaddo =
4223           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4224       FactorSum = Uaddo.getReg(0);
4225       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4226       for (unsigned i = 2; i < Factors.size(); ++i) {
4227         MachineInstrBuilder Uaddo =
4228             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4229         FactorSum = Uaddo.getReg(0);
4230         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4231         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4232       }
4233     } else {
4234       // Since value for the next index is not calculated, neither is CarrySum.
4235       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4236       for (unsigned i = 2; i < Factors.size(); ++i)
4237         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4238     }
4239 
4240     CarrySumPrevDstIdx = CarrySum;
4241     DstRegs[DstIdx] = FactorSum;
4242     Factors.clear();
4243   }
4244 }
4245 
4246 LegalizerHelper::LegalizeResult
4247 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4248   Register DstReg = MI.getOperand(0).getReg();
4249   Register Src1 = MI.getOperand(1).getReg();
4250   Register Src2 = MI.getOperand(2).getReg();
4251 
4252   LLT Ty = MRI.getType(DstReg);
4253   if (Ty.isVector())
4254     return UnableToLegalize;
4255 
4256   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4257   unsigned DstSize = Ty.getSizeInBits();
4258   unsigned NarrowSize = NarrowTy.getSizeInBits();
4259   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4260     return UnableToLegalize;
4261 
4262   unsigned NumDstParts = DstSize / NarrowSize;
4263   unsigned NumSrcParts = SrcSize / NarrowSize;
4264   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4265   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4266 
4267   SmallVector<Register, 2> Src1Parts, Src2Parts;
4268   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4269   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4270   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4271   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4272 
4273   // Take only high half of registers if this is high mul.
4274   ArrayRef<Register> DstRegs(
4275       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4276   MIRBuilder.buildMerge(DstReg, DstRegs);
4277   MI.eraseFromParent();
4278   return Legalized;
4279 }
4280 
4281 LegalizerHelper::LegalizeResult
4282 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4283                                      LLT NarrowTy) {
4284   if (TypeIdx != 1)
4285     return UnableToLegalize;
4286 
4287   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4288 
4289   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4290   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4291   // NarrowSize.
4292   if (SizeOp1 % NarrowSize != 0)
4293     return UnableToLegalize;
4294   int NumParts = SizeOp1 / NarrowSize;
4295 
4296   SmallVector<Register, 2> SrcRegs, DstRegs;
4297   SmallVector<uint64_t, 2> Indexes;
4298   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4299 
4300   Register OpReg = MI.getOperand(0).getReg();
4301   uint64_t OpStart = MI.getOperand(2).getImm();
4302   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4303   for (int i = 0; i < NumParts; ++i) {
4304     unsigned SrcStart = i * NarrowSize;
4305 
4306     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4307       // No part of the extract uses this subregister, ignore it.
4308       continue;
4309     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4310       // The entire subregister is extracted, forward the value.
4311       DstRegs.push_back(SrcRegs[i]);
4312       continue;
4313     }
4314 
4315     // OpSegStart is where this destination segment would start in OpReg if it
4316     // extended infinitely in both directions.
4317     int64_t ExtractOffset;
4318     uint64_t SegSize;
4319     if (OpStart < SrcStart) {
4320       ExtractOffset = 0;
4321       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4322     } else {
4323       ExtractOffset = OpStart - SrcStart;
4324       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4325     }
4326 
4327     Register SegReg = SrcRegs[i];
4328     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4329       // A genuine extract is needed.
4330       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4331       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4332     }
4333 
4334     DstRegs.push_back(SegReg);
4335   }
4336 
4337   Register DstReg = MI.getOperand(0).getReg();
4338   if (MRI.getType(DstReg).isVector())
4339     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4340   else if (DstRegs.size() > 1)
4341     MIRBuilder.buildMerge(DstReg, DstRegs);
4342   else
4343     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4344   MI.eraseFromParent();
4345   return Legalized;
4346 }
4347 
4348 LegalizerHelper::LegalizeResult
4349 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4350                                     LLT NarrowTy) {
4351   // FIXME: Don't know how to handle secondary types yet.
4352   if (TypeIdx != 0)
4353     return UnableToLegalize;
4354 
4355   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4356   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4357 
4358   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4359   // NarrowSize.
4360   if (SizeOp0 % NarrowSize != 0)
4361     return UnableToLegalize;
4362 
4363   int NumParts = SizeOp0 / NarrowSize;
4364 
4365   SmallVector<Register, 2> SrcRegs, DstRegs;
4366   SmallVector<uint64_t, 2> Indexes;
4367   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4368 
4369   Register OpReg = MI.getOperand(2).getReg();
4370   uint64_t OpStart = MI.getOperand(3).getImm();
4371   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4372   for (int i = 0; i < NumParts; ++i) {
4373     unsigned DstStart = i * NarrowSize;
4374 
4375     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4376       // No part of the insert affects this subregister, forward the original.
4377       DstRegs.push_back(SrcRegs[i]);
4378       continue;
4379     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4380       // The entire subregister is defined by this insert, forward the new
4381       // value.
4382       DstRegs.push_back(OpReg);
4383       continue;
4384     }
4385 
4386     // OpSegStart is where this destination segment would start in OpReg if it
4387     // extended infinitely in both directions.
4388     int64_t ExtractOffset, InsertOffset;
4389     uint64_t SegSize;
4390     if (OpStart < DstStart) {
4391       InsertOffset = 0;
4392       ExtractOffset = DstStart - OpStart;
4393       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4394     } else {
4395       InsertOffset = OpStart - DstStart;
4396       ExtractOffset = 0;
4397       SegSize =
4398         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4399     }
4400 
4401     Register SegReg = OpReg;
4402     if (ExtractOffset != 0 || SegSize != OpSize) {
4403       // A genuine extract is needed.
4404       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4405       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4406     }
4407 
4408     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4409     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4410     DstRegs.push_back(DstReg);
4411   }
4412 
4413   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4414   Register DstReg = MI.getOperand(0).getReg();
4415   if(MRI.getType(DstReg).isVector())
4416     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4417   else
4418     MIRBuilder.buildMerge(DstReg, DstRegs);
4419   MI.eraseFromParent();
4420   return Legalized;
4421 }
4422 
4423 LegalizerHelper::LegalizeResult
4424 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4425                                    LLT NarrowTy) {
4426   Register DstReg = MI.getOperand(0).getReg();
4427   LLT DstTy = MRI.getType(DstReg);
4428 
4429   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4430 
4431   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4432   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4433   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4434   LLT LeftoverTy;
4435   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4436                     Src0Regs, Src0LeftoverRegs))
4437     return UnableToLegalize;
4438 
4439   LLT Unused;
4440   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4441                     Src1Regs, Src1LeftoverRegs))
4442     llvm_unreachable("inconsistent extractParts result");
4443 
4444   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4445     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4446                                         {Src0Regs[I], Src1Regs[I]});
4447     DstRegs.push_back(Inst.getReg(0));
4448   }
4449 
4450   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4451     auto Inst = MIRBuilder.buildInstr(
4452       MI.getOpcode(),
4453       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4454     DstLeftoverRegs.push_back(Inst.getReg(0));
4455   }
4456 
4457   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4458               LeftoverTy, DstLeftoverRegs);
4459 
4460   MI.eraseFromParent();
4461   return Legalized;
4462 }
4463 
4464 LegalizerHelper::LegalizeResult
4465 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4466                                  LLT NarrowTy) {
4467   if (TypeIdx != 0)
4468     return UnableToLegalize;
4469 
4470   Register DstReg = MI.getOperand(0).getReg();
4471   Register SrcReg = MI.getOperand(1).getReg();
4472 
4473   LLT DstTy = MRI.getType(DstReg);
4474   if (DstTy.isVector())
4475     return UnableToLegalize;
4476 
4477   SmallVector<Register, 8> Parts;
4478   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4479   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4480   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4481 
4482   MI.eraseFromParent();
4483   return Legalized;
4484 }
4485 
4486 LegalizerHelper::LegalizeResult
4487 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4488                                     LLT NarrowTy) {
4489   if (TypeIdx != 0)
4490     return UnableToLegalize;
4491 
4492   Register CondReg = MI.getOperand(1).getReg();
4493   LLT CondTy = MRI.getType(CondReg);
4494   if (CondTy.isVector()) // TODO: Handle vselect
4495     return UnableToLegalize;
4496 
4497   Register DstReg = MI.getOperand(0).getReg();
4498   LLT DstTy = MRI.getType(DstReg);
4499 
4500   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4501   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4502   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4503   LLT LeftoverTy;
4504   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4505                     Src1Regs, Src1LeftoverRegs))
4506     return UnableToLegalize;
4507 
4508   LLT Unused;
4509   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4510                     Src2Regs, Src2LeftoverRegs))
4511     llvm_unreachable("inconsistent extractParts result");
4512 
4513   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4514     auto Select = MIRBuilder.buildSelect(NarrowTy,
4515                                          CondReg, Src1Regs[I], Src2Regs[I]);
4516     DstRegs.push_back(Select.getReg(0));
4517   }
4518 
4519   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4520     auto Select = MIRBuilder.buildSelect(
4521       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4522     DstLeftoverRegs.push_back(Select.getReg(0));
4523   }
4524 
4525   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4526               LeftoverTy, DstLeftoverRegs);
4527 
4528   MI.eraseFromParent();
4529   return Legalized;
4530 }
4531 
4532 LegalizerHelper::LegalizeResult
4533 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4534                                   LLT NarrowTy) {
4535   if (TypeIdx != 1)
4536     return UnableToLegalize;
4537 
4538   Register DstReg = MI.getOperand(0).getReg();
4539   Register SrcReg = MI.getOperand(1).getReg();
4540   LLT DstTy = MRI.getType(DstReg);
4541   LLT SrcTy = MRI.getType(SrcReg);
4542   unsigned NarrowSize = NarrowTy.getSizeInBits();
4543 
4544   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4545     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4546 
4547     MachineIRBuilder &B = MIRBuilder;
4548     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4549     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4550     auto C_0 = B.buildConstant(NarrowTy, 0);
4551     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4552                                 UnmergeSrc.getReg(1), C_0);
4553     auto LoCTLZ = IsUndef ?
4554       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4555       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4556     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4557     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4558     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4559     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4560 
4561     MI.eraseFromParent();
4562     return Legalized;
4563   }
4564 
4565   return UnableToLegalize;
4566 }
4567 
4568 LegalizerHelper::LegalizeResult
4569 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4570                                   LLT NarrowTy) {
4571   if (TypeIdx != 1)
4572     return UnableToLegalize;
4573 
4574   Register DstReg = MI.getOperand(0).getReg();
4575   Register SrcReg = MI.getOperand(1).getReg();
4576   LLT DstTy = MRI.getType(DstReg);
4577   LLT SrcTy = MRI.getType(SrcReg);
4578   unsigned NarrowSize = NarrowTy.getSizeInBits();
4579 
4580   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4581     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4582 
4583     MachineIRBuilder &B = MIRBuilder;
4584     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4585     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4586     auto C_0 = B.buildConstant(NarrowTy, 0);
4587     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4588                                 UnmergeSrc.getReg(0), C_0);
4589     auto HiCTTZ = IsUndef ?
4590       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4591       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4592     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4593     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4594     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4595     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4596 
4597     MI.eraseFromParent();
4598     return Legalized;
4599   }
4600 
4601   return UnableToLegalize;
4602 }
4603 
4604 LegalizerHelper::LegalizeResult
4605 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4606                                    LLT NarrowTy) {
4607   if (TypeIdx != 1)
4608     return UnableToLegalize;
4609 
4610   Register DstReg = MI.getOperand(0).getReg();
4611   LLT DstTy = MRI.getType(DstReg);
4612   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4613   unsigned NarrowSize = NarrowTy.getSizeInBits();
4614 
4615   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4616     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4617 
4618     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4619     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4620     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4621 
4622     MI.eraseFromParent();
4623     return Legalized;
4624   }
4625 
4626   return UnableToLegalize;
4627 }
4628 
4629 LegalizerHelper::LegalizeResult
4630 LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4631   unsigned Opc = MI.getOpcode();
4632   const auto &TII = MIRBuilder.getTII();
4633   auto isSupported = [this](const LegalityQuery &Q) {
4634     auto QAction = LI.getAction(Q).Action;
4635     return QAction == Legal || QAction == Libcall || QAction == Custom;
4636   };
4637   switch (Opc) {
4638   default:
4639     return UnableToLegalize;
4640   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4641     // This trivially expands to CTLZ.
4642     Observer.changingInstr(MI);
4643     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4644     Observer.changedInstr(MI);
4645     return Legalized;
4646   }
4647   case TargetOpcode::G_CTLZ: {
4648     Register DstReg = MI.getOperand(0).getReg();
4649     Register SrcReg = MI.getOperand(1).getReg();
4650     LLT DstTy = MRI.getType(DstReg);
4651     LLT SrcTy = MRI.getType(SrcReg);
4652     unsigned Len = SrcTy.getSizeInBits();
4653 
4654     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4655       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4656       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4657       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4658       auto ICmp = MIRBuilder.buildICmp(
4659           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4660       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4661       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4662       MI.eraseFromParent();
4663       return Legalized;
4664     }
4665     // for now, we do this:
4666     // NewLen = NextPowerOf2(Len);
4667     // x = x | (x >> 1);
4668     // x = x | (x >> 2);
4669     // ...
4670     // x = x | (x >>16);
4671     // x = x | (x >>32); // for 64-bit input
4672     // Upto NewLen/2
4673     // return Len - popcount(x);
4674     //
4675     // Ref: "Hacker's Delight" by Henry Warren
4676     Register Op = SrcReg;
4677     unsigned NewLen = PowerOf2Ceil(Len);
4678     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4679       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4680       auto MIBOp = MIRBuilder.buildOr(
4681           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4682       Op = MIBOp.getReg(0);
4683     }
4684     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4685     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4686                         MIBPop);
4687     MI.eraseFromParent();
4688     return Legalized;
4689   }
4690   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4691     // This trivially expands to CTTZ.
4692     Observer.changingInstr(MI);
4693     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4694     Observer.changedInstr(MI);
4695     return Legalized;
4696   }
4697   case TargetOpcode::G_CTTZ: {
4698     Register DstReg = MI.getOperand(0).getReg();
4699     Register SrcReg = MI.getOperand(1).getReg();
4700     LLT DstTy = MRI.getType(DstReg);
4701     LLT SrcTy = MRI.getType(SrcReg);
4702 
4703     unsigned Len = SrcTy.getSizeInBits();
4704     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4705       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4706       // zero.
4707       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4708       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4709       auto ICmp = MIRBuilder.buildICmp(
4710           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4711       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4712       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4713       MI.eraseFromParent();
4714       return Legalized;
4715     }
4716     // for now, we use: { return popcount(~x & (x - 1)); }
4717     // unless the target has ctlz but not ctpop, in which case we use:
4718     // { return 32 - nlz(~x & (x-1)); }
4719     // Ref: "Hacker's Delight" by Henry Warren
4720     auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1);
4721     auto MIBNot = MIRBuilder.buildXor(Ty, SrcReg, MIBCstNeg1);
4722     auto MIBTmp = MIRBuilder.buildAnd(
4723         Ty, MIBNot, MIRBuilder.buildAdd(Ty, SrcReg, MIBCstNeg1));
4724     if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) &&
4725         isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) {
4726       auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len);
4727       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4728                           MIRBuilder.buildCTLZ(Ty, MIBTmp));
4729       MI.eraseFromParent();
4730       return Legalized;
4731     }
4732     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4733     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4734     return Legalized;
4735   }
4736   case TargetOpcode::G_CTPOP: {
4737     unsigned Size = Ty.getSizeInBits();
4738     MachineIRBuilder &B = MIRBuilder;
4739 
4740     // Count set bits in blocks of 2 bits. Default approach would be
4741     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4742     // We use following formula instead:
4743     // B2Count = val - { (val >> 1) & 0x55555555 }
4744     // since it gives same result in blocks of 2 with one instruction less.
4745     auto C_1 = B.buildConstant(Ty, 1);
4746     auto B2Set1LoTo1Hi = B.buildLShr(Ty, MI.getOperand(1).getReg(), C_1);
4747     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4748     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4749     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4750     auto B2Count = B.buildSub(Ty, MI.getOperand(1).getReg(), B2Count1Hi);
4751 
4752     // In order to get count in blocks of 4 add values from adjacent block of 2.
4753     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4754     auto C_2 = B.buildConstant(Ty, 2);
4755     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4756     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4757     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4758     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4759     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4760     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4761 
4762     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4763     // addition since count value sits in range {0,...,8} and 4 bits are enough
4764     // to hold such binary values. After addition high 4 bits still hold count
4765     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4766     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4767     auto C_4 = B.buildConstant(Ty, 4);
4768     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4769     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4770     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4771     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4772     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4773 
4774     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4775     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4776     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4777     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4778     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4779 
4780     // Shift count result from 8 high bits to low bits.
4781     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4782     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4783 
4784     MI.eraseFromParent();
4785     return Legalized;
4786   }
4787   }
4788 }
4789 
4790 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4791 // representation.
4792 LegalizerHelper::LegalizeResult
4793 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4794   Register Dst = MI.getOperand(0).getReg();
4795   Register Src = MI.getOperand(1).getReg();
4796   const LLT S64 = LLT::scalar(64);
4797   const LLT S32 = LLT::scalar(32);
4798   const LLT S1 = LLT::scalar(1);
4799 
4800   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
4801 
4802   // unsigned cul2f(ulong u) {
4803   //   uint lz = clz(u);
4804   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
4805   //   u = (u << lz) & 0x7fffffffffffffffUL;
4806   //   ulong t = u & 0xffffffffffUL;
4807   //   uint v = (e << 23) | (uint)(u >> 40);
4808   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
4809   //   return as_float(v + r);
4810   // }
4811 
4812   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
4813   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
4814 
4815   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
4816 
4817   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
4818   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
4819 
4820   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
4821   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
4822 
4823   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
4824   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
4825 
4826   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
4827 
4828   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
4829   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
4830 
4831   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
4832   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
4833   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
4834 
4835   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
4836   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
4837   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
4838   auto One = MIRBuilder.buildConstant(S32, 1);
4839 
4840   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
4841   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
4842   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
4843   MIRBuilder.buildAdd(Dst, V, R);
4844 
4845   MI.eraseFromParent();
4846   return Legalized;
4847 }
4848 
4849 LegalizerHelper::LegalizeResult
4850 LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4851   Register Dst = MI.getOperand(0).getReg();
4852   Register Src = MI.getOperand(1).getReg();
4853   LLT DstTy = MRI.getType(Dst);
4854   LLT SrcTy = MRI.getType(Src);
4855 
4856   if (SrcTy == LLT::scalar(1)) {
4857     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
4858     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4859     MIRBuilder.buildSelect(Dst, Src, True, False);
4860     MI.eraseFromParent();
4861     return Legalized;
4862   }
4863 
4864   if (SrcTy != LLT::scalar(64))
4865     return UnableToLegalize;
4866 
4867   if (DstTy == LLT::scalar(32)) {
4868     // TODO: SelectionDAG has several alternative expansions to port which may
4869     // be more reasonble depending on the available instructions. If a target
4870     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
4871     // intermediate type, this is probably worse.
4872     return lowerU64ToF32BitOps(MI);
4873   }
4874 
4875   return UnableToLegalize;
4876 }
4877 
4878 LegalizerHelper::LegalizeResult
4879 LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4880   Register Dst = MI.getOperand(0).getReg();
4881   Register Src = MI.getOperand(1).getReg();
4882   LLT DstTy = MRI.getType(Dst);
4883   LLT SrcTy = MRI.getType(Src);
4884 
4885   const LLT S64 = LLT::scalar(64);
4886   const LLT S32 = LLT::scalar(32);
4887   const LLT S1 = LLT::scalar(1);
4888 
4889   if (SrcTy == S1) {
4890     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
4891     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
4892     MIRBuilder.buildSelect(Dst, Src, True, False);
4893     MI.eraseFromParent();
4894     return Legalized;
4895   }
4896 
4897   if (SrcTy != S64)
4898     return UnableToLegalize;
4899 
4900   if (DstTy == S32) {
4901     // signed cl2f(long l) {
4902     //   long s = l >> 63;
4903     //   float r = cul2f((l + s) ^ s);
4904     //   return s ? -r : r;
4905     // }
4906     Register L = Src;
4907     auto SignBit = MIRBuilder.buildConstant(S64, 63);
4908     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
4909 
4910     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
4911     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
4912     auto R = MIRBuilder.buildUITOFP(S32, Xor);
4913 
4914     auto RNeg = MIRBuilder.buildFNeg(S32, R);
4915     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
4916                                             MIRBuilder.buildConstant(S64, 0));
4917     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
4918     MI.eraseFromParent();
4919     return Legalized;
4920   }
4921 
4922   return UnableToLegalize;
4923 }
4924 
4925 LegalizerHelper::LegalizeResult
4926 LegalizerHelper::lowerFPTOUI(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
4927   Register Dst = MI.getOperand(0).getReg();
4928   Register Src = MI.getOperand(1).getReg();
4929   LLT DstTy = MRI.getType(Dst);
4930   LLT SrcTy = MRI.getType(Src);
4931   const LLT S64 = LLT::scalar(64);
4932   const LLT S32 = LLT::scalar(32);
4933 
4934   if (SrcTy != S64 && SrcTy != S32)
4935     return UnableToLegalize;
4936   if (DstTy != S32 && DstTy != S64)
4937     return UnableToLegalize;
4938 
4939   // FPTOSI gives same result as FPTOUI for positive signed integers.
4940   // FPTOUI needs to deal with fp values that convert to unsigned integers
4941   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
4942 
4943   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
4944   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
4945                                                 : APFloat::IEEEdouble(),
4946                     APInt::getNullValue(SrcTy.getSizeInBits()));
4947   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
4948 
4949   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
4950 
4951   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
4952   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
4953   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
4954   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
4955   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
4956   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
4957   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
4958 
4959   const LLT S1 = LLT::scalar(1);
4960 
4961   MachineInstrBuilder FCMP =
4962       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
4963   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
4964 
4965   MI.eraseFromParent();
4966   return Legalized;
4967 }
4968 
4969 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
4970   Register Dst = MI.getOperand(0).getReg();
4971   Register Src = MI.getOperand(1).getReg();
4972   LLT DstTy = MRI.getType(Dst);
4973   LLT SrcTy = MRI.getType(Src);
4974   const LLT S64 = LLT::scalar(64);
4975   const LLT S32 = LLT::scalar(32);
4976 
4977   // FIXME: Only f32 to i64 conversions are supported.
4978   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
4979     return UnableToLegalize;
4980 
4981   // Expand f32 -> i64 conversion
4982   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4983   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4984 
4985   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
4986 
4987   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
4988   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
4989 
4990   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
4991   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
4992 
4993   auto SignMask = MIRBuilder.buildConstant(SrcTy,
4994                                            APInt::getSignMask(SrcEltBits));
4995   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
4996   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
4997   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
4998   Sign = MIRBuilder.buildSExt(DstTy, Sign);
4999 
5000   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5001   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5002   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5003 
5004   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5005   R = MIRBuilder.buildZExt(DstTy, R);
5006 
5007   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5008   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5009   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5010   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5011 
5012   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5013   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5014 
5015   const LLT S1 = LLT::scalar(1);
5016   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5017                                     S1, Exponent, ExponentLoBit);
5018 
5019   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5020 
5021   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5022   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5023 
5024   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5025 
5026   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5027                                           S1, Exponent, ZeroSrcTy);
5028 
5029   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5030   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5031 
5032   MI.eraseFromParent();
5033   return Legalized;
5034 }
5035 
5036 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5037 LegalizerHelper::LegalizeResult
5038 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5039   Register Dst = MI.getOperand(0).getReg();
5040   Register Src = MI.getOperand(1).getReg();
5041 
5042   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5043     return UnableToLegalize;
5044 
5045   const unsigned ExpMask = 0x7ff;
5046   const unsigned ExpBiasf64 = 1023;
5047   const unsigned ExpBiasf16 = 15;
5048   const LLT S32 = LLT::scalar(32);
5049   const LLT S1 = LLT::scalar(1);
5050 
5051   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5052   Register U = Unmerge.getReg(0);
5053   Register UH = Unmerge.getReg(1);
5054 
5055   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5056   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5057 
5058   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5059   // add the f16 bias (15) to get the biased exponent for the f16 format.
5060   E = MIRBuilder.buildAdd(
5061     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5062 
5063   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5064   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5065 
5066   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5067                                        MIRBuilder.buildConstant(S32, 0x1ff));
5068   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5069 
5070   auto Zero = MIRBuilder.buildConstant(S32, 0);
5071   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5072   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5073   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5074 
5075   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5076   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5077   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5078   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5079 
5080   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5081   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5082 
5083   // N = M | (E << 12);
5084   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5085   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5086 
5087   // B = clamp(1-E, 0, 13);
5088   auto One = MIRBuilder.buildConstant(S32, 1);
5089   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5090   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5091   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5092 
5093   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5094                                        MIRBuilder.buildConstant(S32, 0x1000));
5095 
5096   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5097   auto D0 = MIRBuilder.buildShl(S32, D, B);
5098 
5099   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5100                                              D0, SigSetHigh);
5101   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5102   D = MIRBuilder.buildOr(S32, D, D1);
5103 
5104   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5105   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5106 
5107   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5108   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5109 
5110   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5111                                        MIRBuilder.buildConstant(S32, 3));
5112   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5113 
5114   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5115                                        MIRBuilder.buildConstant(S32, 5));
5116   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5117 
5118   V1 = MIRBuilder.buildOr(S32, V0, V1);
5119   V = MIRBuilder.buildAdd(S32, V, V1);
5120 
5121   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5122                                        E, MIRBuilder.buildConstant(S32, 30));
5123   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5124                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5125 
5126   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5127                                          E, MIRBuilder.buildConstant(S32, 1039));
5128   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5129 
5130   // Extract the sign bit.
5131   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5132   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5133 
5134   // Insert the sign bit
5135   V = MIRBuilder.buildOr(S32, Sign, V);
5136 
5137   MIRBuilder.buildTrunc(Dst, V);
5138   MI.eraseFromParent();
5139   return Legalized;
5140 }
5141 
5142 LegalizerHelper::LegalizeResult
5143 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
5144   Register Dst = MI.getOperand(0).getReg();
5145   Register Src = MI.getOperand(1).getReg();
5146 
5147   LLT DstTy = MRI.getType(Dst);
5148   LLT SrcTy = MRI.getType(Src);
5149   const LLT S64 = LLT::scalar(64);
5150   const LLT S16 = LLT::scalar(16);
5151 
5152   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5153     return lowerFPTRUNC_F64_TO_F16(MI);
5154 
5155   return UnableToLegalize;
5156 }
5157 
5158 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5159 // multiplication tree.
5160 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5161   Register Dst = MI.getOperand(0).getReg();
5162   Register Src0 = MI.getOperand(1).getReg();
5163   Register Src1 = MI.getOperand(2).getReg();
5164   LLT Ty = MRI.getType(Dst);
5165 
5166   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5167   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5168   MI.eraseFromParent();
5169   return Legalized;
5170 }
5171 
5172 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5173   switch (Opc) {
5174   case TargetOpcode::G_SMIN:
5175     return CmpInst::ICMP_SLT;
5176   case TargetOpcode::G_SMAX:
5177     return CmpInst::ICMP_SGT;
5178   case TargetOpcode::G_UMIN:
5179     return CmpInst::ICMP_ULT;
5180   case TargetOpcode::G_UMAX:
5181     return CmpInst::ICMP_UGT;
5182   default:
5183     llvm_unreachable("not in integer min/max");
5184   }
5185 }
5186 
5187 LegalizerHelper::LegalizeResult
5188 LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
5189   Register Dst = MI.getOperand(0).getReg();
5190   Register Src0 = MI.getOperand(1).getReg();
5191   Register Src1 = MI.getOperand(2).getReg();
5192 
5193   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5194   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5195 
5196   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5197   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5198 
5199   MI.eraseFromParent();
5200   return Legalized;
5201 }
5202 
5203 LegalizerHelper::LegalizeResult
5204 LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) {
5205   Register Dst = MI.getOperand(0).getReg();
5206   Register Src0 = MI.getOperand(1).getReg();
5207   Register Src1 = MI.getOperand(2).getReg();
5208 
5209   const LLT Src0Ty = MRI.getType(Src0);
5210   const LLT Src1Ty = MRI.getType(Src1);
5211 
5212   const int Src0Size = Src0Ty.getScalarSizeInBits();
5213   const int Src1Size = Src1Ty.getScalarSizeInBits();
5214 
5215   auto SignBitMask = MIRBuilder.buildConstant(
5216     Src0Ty, APInt::getSignMask(Src0Size));
5217 
5218   auto NotSignBitMask = MIRBuilder.buildConstant(
5219     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5220 
5221   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5222   MachineInstr *Or;
5223 
5224   if (Src0Ty == Src1Ty) {
5225     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5226     Or = MIRBuilder.buildOr(Dst, And0, And1);
5227   } else if (Src0Size > Src1Size) {
5228     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5229     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5230     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5231     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5232     Or = MIRBuilder.buildOr(Dst, And0, And1);
5233   } else {
5234     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5235     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5236     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5237     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5238     Or = MIRBuilder.buildOr(Dst, And0, And1);
5239   }
5240 
5241   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5242   // constants are a nan and -0.0, but the final result should preserve
5243   // everything.
5244   if (unsigned Flags = MI.getFlags())
5245     Or->setFlags(Flags);
5246 
5247   MI.eraseFromParent();
5248   return Legalized;
5249 }
5250 
5251 LegalizerHelper::LegalizeResult
5252 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5253   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5254     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5255 
5256   Register Dst = MI.getOperand(0).getReg();
5257   Register Src0 = MI.getOperand(1).getReg();
5258   Register Src1 = MI.getOperand(2).getReg();
5259   LLT Ty = MRI.getType(Dst);
5260 
5261   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5262     // Insert canonicalizes if it's possible we need to quiet to get correct
5263     // sNaN behavior.
5264 
5265     // Note this must be done here, and not as an optimization combine in the
5266     // absence of a dedicate quiet-snan instruction as we're using an
5267     // omni-purpose G_FCANONICALIZE.
5268     if (!isKnownNeverSNaN(Src0, MRI))
5269       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5270 
5271     if (!isKnownNeverSNaN(Src1, MRI))
5272       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5273   }
5274 
5275   // If there are no nans, it's safe to simply replace this with the non-IEEE
5276   // version.
5277   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5278   MI.eraseFromParent();
5279   return Legalized;
5280 }
5281 
5282 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5283   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5284   Register DstReg = MI.getOperand(0).getReg();
5285   LLT Ty = MRI.getType(DstReg);
5286   unsigned Flags = MI.getFlags();
5287 
5288   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5289                                   Flags);
5290   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5291   MI.eraseFromParent();
5292   return Legalized;
5293 }
5294 
5295 LegalizerHelper::LegalizeResult
5296 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5297   Register DstReg = MI.getOperand(0).getReg();
5298   Register X = MI.getOperand(1).getReg();
5299   const unsigned Flags = MI.getFlags();
5300   const LLT Ty = MRI.getType(DstReg);
5301   const LLT CondTy = Ty.changeElementSize(1);
5302 
5303   // round(x) =>
5304   //  t = trunc(x);
5305   //  d = fabs(x - t);
5306   //  o = copysign(1.0f, x);
5307   //  return t + (d >= 0.5 ? o : 0.0);
5308 
5309   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5310 
5311   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5312   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5313   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5314   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5315   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5316   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5317 
5318   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5319                                   Flags);
5320   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5321 
5322   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5323 
5324   MI.eraseFromParent();
5325   return Legalized;
5326 }
5327 
5328 LegalizerHelper::LegalizeResult
5329 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5330   Register DstReg = MI.getOperand(0).getReg();
5331   Register SrcReg = MI.getOperand(1).getReg();
5332   unsigned Flags = MI.getFlags();
5333   LLT Ty = MRI.getType(DstReg);
5334   const LLT CondTy = Ty.changeElementSize(1);
5335 
5336   // result = trunc(src);
5337   // if (src < 0.0 && src != result)
5338   //   result += -1.0.
5339 
5340   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5341   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5342 
5343   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5344                                   SrcReg, Zero, Flags);
5345   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5346                                       SrcReg, Trunc, Flags);
5347   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5348   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5349 
5350   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5351   MI.eraseFromParent();
5352   return Legalized;
5353 }
5354 
5355 LegalizerHelper::LegalizeResult
5356 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5357   const unsigned NumOps = MI.getNumOperands();
5358   Register DstReg = MI.getOperand(0).getReg();
5359   Register Src0Reg = MI.getOperand(1).getReg();
5360   LLT DstTy = MRI.getType(DstReg);
5361   LLT SrcTy = MRI.getType(Src0Reg);
5362   unsigned PartSize = SrcTy.getSizeInBits();
5363 
5364   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5365   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5366 
5367   for (unsigned I = 2; I != NumOps; ++I) {
5368     const unsigned Offset = (I - 1) * PartSize;
5369 
5370     Register SrcReg = MI.getOperand(I).getReg();
5371     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5372 
5373     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5374       MRI.createGenericVirtualRegister(WideTy);
5375 
5376     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5377     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5378     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5379     ResultReg = NextResult;
5380   }
5381 
5382   if (DstTy.isPointer()) {
5383     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5384           DstTy.getAddressSpace())) {
5385       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5386       return UnableToLegalize;
5387     }
5388 
5389     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5390   }
5391 
5392   MI.eraseFromParent();
5393   return Legalized;
5394 }
5395 
5396 LegalizerHelper::LegalizeResult
5397 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5398   const unsigned NumDst = MI.getNumOperands() - 1;
5399   Register SrcReg = MI.getOperand(NumDst).getReg();
5400   Register Dst0Reg = MI.getOperand(0).getReg();
5401   LLT DstTy = MRI.getType(Dst0Reg);
5402   if (DstTy.isPointer())
5403     return UnableToLegalize; // TODO
5404 
5405   SrcReg = coerceToScalar(SrcReg);
5406   if (!SrcReg)
5407     return UnableToLegalize;
5408 
5409   // Expand scalarizing unmerge as bitcast to integer and shift.
5410   LLT IntTy = MRI.getType(SrcReg);
5411 
5412   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5413 
5414   const unsigned DstSize = DstTy.getSizeInBits();
5415   unsigned Offset = DstSize;
5416   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5417     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5418     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5419     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5420   }
5421 
5422   MI.eraseFromParent();
5423   return Legalized;
5424 }
5425 
5426 /// Lower a vector extract by writing the vector to a stack temporary and
5427 /// reloading the element.
5428 ///
5429 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5430 ///  =>
5431 ///  %stack_temp = G_FRAME_INDEX
5432 ///  G_STORE %vec, %stack_temp
5433 ///  %idx = clamp(%idx, %vec.getNumElements())
5434 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5435 ///  %dst = G_LOAD %element_ptr
5436 LegalizerHelper::LegalizeResult
5437 LegalizerHelper::lowerExtractVectorElt(MachineInstr &MI) {
5438   Register DstReg = MI.getOperand(0).getReg();
5439   Register SrcVec = MI.getOperand(1).getReg();
5440   Register Idx = MI.getOperand(2).getReg();
5441   LLT VecTy = MRI.getType(SrcVec);
5442   LLT EltTy = VecTy.getElementType();
5443   if (!EltTy.isByteSized()) { // Not implemented.
5444     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5445     return UnableToLegalize;
5446   }
5447 
5448   unsigned EltBytes = EltTy.getSizeInBytes();
5449   Align StoreAlign = getStackTemporaryAlignment(VecTy);
5450   Align LoadAlign;
5451 
5452   MachinePointerInfo PtrInfo;
5453   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5454                                         StoreAlign, PtrInfo);
5455   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, StoreAlign);
5456 
5457   // Get the pointer to the element, and be sure not to hit undefined behavior
5458   // if the index is out of bounds.
5459   Register LoadPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5460 
5461   int64_t IdxVal;
5462   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5463     int64_t Offset = IdxVal * EltBytes;
5464     PtrInfo = PtrInfo.getWithOffset(Offset);
5465     LoadAlign = commonAlignment(StoreAlign, Offset);
5466   } else {
5467     // We lose information with a variable offset.
5468     LoadAlign = getStackTemporaryAlignment(EltTy);
5469     PtrInfo = MachinePointerInfo(MRI.getType(LoadPtr).getAddressSpace());
5470   }
5471 
5472   MIRBuilder.buildLoad(DstReg, LoadPtr, PtrInfo, LoadAlign);
5473   MI.eraseFromParent();
5474   return Legalized;
5475 }
5476 
5477 LegalizerHelper::LegalizeResult
5478 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5479   Register DstReg = MI.getOperand(0).getReg();
5480   Register Src0Reg = MI.getOperand(1).getReg();
5481   Register Src1Reg = MI.getOperand(2).getReg();
5482   LLT Src0Ty = MRI.getType(Src0Reg);
5483   LLT DstTy = MRI.getType(DstReg);
5484   LLT IdxTy = LLT::scalar(32);
5485 
5486   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5487 
5488   if (DstTy.isScalar()) {
5489     if (Src0Ty.isVector())
5490       return UnableToLegalize;
5491 
5492     // This is just a SELECT.
5493     assert(Mask.size() == 1 && "Expected a single mask element");
5494     Register Val;
5495     if (Mask[0] < 0 || Mask[0] > 1)
5496       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5497     else
5498       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5499     MIRBuilder.buildCopy(DstReg, Val);
5500     MI.eraseFromParent();
5501     return Legalized;
5502   }
5503 
5504   Register Undef;
5505   SmallVector<Register, 32> BuildVec;
5506   LLT EltTy = DstTy.getElementType();
5507 
5508   for (int Idx : Mask) {
5509     if (Idx < 0) {
5510       if (!Undef.isValid())
5511         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5512       BuildVec.push_back(Undef);
5513       continue;
5514     }
5515 
5516     if (Src0Ty.isScalar()) {
5517       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5518     } else {
5519       int NumElts = Src0Ty.getNumElements();
5520       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5521       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5522       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5523       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5524       BuildVec.push_back(Extract.getReg(0));
5525     }
5526   }
5527 
5528   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5529   MI.eraseFromParent();
5530   return Legalized;
5531 }
5532 
5533 LegalizerHelper::LegalizeResult
5534 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5535   const auto &MF = *MI.getMF();
5536   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5537   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5538     return UnableToLegalize;
5539 
5540   Register Dst = MI.getOperand(0).getReg();
5541   Register AllocSize = MI.getOperand(1).getReg();
5542   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5543 
5544   LLT PtrTy = MRI.getType(Dst);
5545   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5546 
5547   const auto &TLI = *MF.getSubtarget().getTargetLowering();
5548   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5549   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5550   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5551 
5552   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5553   // have to generate an extra instruction to negate the alloc and then use
5554   // G_PTR_ADD to add the negative offset.
5555   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5556   if (Alignment > Align(1)) {
5557     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5558     AlignMask.negate();
5559     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5560     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5561   }
5562 
5563   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5564   MIRBuilder.buildCopy(SPReg, SPTmp);
5565   MIRBuilder.buildCopy(Dst, SPTmp);
5566 
5567   MI.eraseFromParent();
5568   return Legalized;
5569 }
5570 
5571 LegalizerHelper::LegalizeResult
5572 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5573   Register Dst = MI.getOperand(0).getReg();
5574   Register Src = MI.getOperand(1).getReg();
5575   unsigned Offset = MI.getOperand(2).getImm();
5576 
5577   LLT DstTy = MRI.getType(Dst);
5578   LLT SrcTy = MRI.getType(Src);
5579 
5580   if (DstTy.isScalar() &&
5581       (SrcTy.isScalar() ||
5582        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5583     LLT SrcIntTy = SrcTy;
5584     if (!SrcTy.isScalar()) {
5585       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5586       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5587     }
5588 
5589     if (Offset == 0)
5590       MIRBuilder.buildTrunc(Dst, Src);
5591     else {
5592       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5593       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5594       MIRBuilder.buildTrunc(Dst, Shr);
5595     }
5596 
5597     MI.eraseFromParent();
5598     return Legalized;
5599   }
5600 
5601   return UnableToLegalize;
5602 }
5603 
5604 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5605   Register Dst = MI.getOperand(0).getReg();
5606   Register Src = MI.getOperand(1).getReg();
5607   Register InsertSrc = MI.getOperand(2).getReg();
5608   uint64_t Offset = MI.getOperand(3).getImm();
5609 
5610   LLT DstTy = MRI.getType(Src);
5611   LLT InsertTy = MRI.getType(InsertSrc);
5612 
5613   if (InsertTy.isVector() ||
5614       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5615     return UnableToLegalize;
5616 
5617   const DataLayout &DL = MIRBuilder.getDataLayout();
5618   if ((DstTy.isPointer() &&
5619        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5620       (InsertTy.isPointer() &&
5621        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5622     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5623     return UnableToLegalize;
5624   }
5625 
5626   LLT IntDstTy = DstTy;
5627 
5628   if (!DstTy.isScalar()) {
5629     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5630     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5631   }
5632 
5633   if (!InsertTy.isScalar()) {
5634     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5635     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5636   }
5637 
5638   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5639   if (Offset != 0) {
5640     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5641     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5642   }
5643 
5644   APInt MaskVal = APInt::getBitsSetWithWrap(
5645       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5646 
5647   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5648   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5649   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5650 
5651   MIRBuilder.buildCast(Dst, Or);
5652   MI.eraseFromParent();
5653   return Legalized;
5654 }
5655 
5656 LegalizerHelper::LegalizeResult
5657 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5658   Register Dst0 = MI.getOperand(0).getReg();
5659   Register Dst1 = MI.getOperand(1).getReg();
5660   Register LHS = MI.getOperand(2).getReg();
5661   Register RHS = MI.getOperand(3).getReg();
5662   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5663 
5664   LLT Ty = MRI.getType(Dst0);
5665   LLT BoolTy = MRI.getType(Dst1);
5666 
5667   if (IsAdd)
5668     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5669   else
5670     MIRBuilder.buildSub(Dst0, LHS, RHS);
5671 
5672   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5673 
5674   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5675 
5676   // For an addition, the result should be less than one of the operands (LHS)
5677   // if and only if the other operand (RHS) is negative, otherwise there will
5678   // be overflow.
5679   // For a subtraction, the result should be less than one of the operands
5680   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5681   // otherwise there will be overflow.
5682   auto ResultLowerThanLHS =
5683       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5684   auto ConditionRHS = MIRBuilder.buildICmp(
5685       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5686 
5687   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5688   MI.eraseFromParent();
5689   return Legalized;
5690 }
5691 
5692 LegalizerHelper::LegalizeResult
5693 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5694   Register Res = MI.getOperand(0).getReg();
5695   Register LHS = MI.getOperand(1).getReg();
5696   Register RHS = MI.getOperand(2).getReg();
5697   LLT Ty = MRI.getType(Res);
5698   bool IsSigned;
5699   bool IsAdd;
5700   unsigned BaseOp;
5701   switch (MI.getOpcode()) {
5702   default:
5703     llvm_unreachable("unexpected addsat/subsat opcode");
5704   case TargetOpcode::G_UADDSAT:
5705     IsSigned = false;
5706     IsAdd = true;
5707     BaseOp = TargetOpcode::G_ADD;
5708     break;
5709   case TargetOpcode::G_SADDSAT:
5710     IsSigned = true;
5711     IsAdd = true;
5712     BaseOp = TargetOpcode::G_ADD;
5713     break;
5714   case TargetOpcode::G_USUBSAT:
5715     IsSigned = false;
5716     IsAdd = false;
5717     BaseOp = TargetOpcode::G_SUB;
5718     break;
5719   case TargetOpcode::G_SSUBSAT:
5720     IsSigned = true;
5721     IsAdd = false;
5722     BaseOp = TargetOpcode::G_SUB;
5723     break;
5724   }
5725 
5726   if (IsSigned) {
5727     // sadd.sat(a, b) ->
5728     //   hi = 0x7fffffff - smax(a, 0)
5729     //   lo = 0x80000000 - smin(a, 0)
5730     //   a + smin(smax(lo, b), hi)
5731     // ssub.sat(a, b) ->
5732     //   lo = smax(a, -1) - 0x7fffffff
5733     //   hi = smin(a, -1) - 0x80000000
5734     //   a - smin(smax(lo, b), hi)
5735     // TODO: AMDGPU can use a "median of 3" instruction here:
5736     //   a +/- med3(lo, b, hi)
5737     uint64_t NumBits = Ty.getScalarSizeInBits();
5738     auto MaxVal =
5739         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5740     auto MinVal =
5741         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5742     MachineInstrBuilder Hi, Lo;
5743     if (IsAdd) {
5744       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5745       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5746       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5747     } else {
5748       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5749       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5750                                MaxVal);
5751       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5752                                MinVal);
5753     }
5754     auto RHSClamped =
5755         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5756     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5757   } else {
5758     // uadd.sat(a, b) -> a + umin(~a, b)
5759     // usub.sat(a, b) -> a - umin(a, b)
5760     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
5761     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
5762     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
5763   }
5764 
5765   MI.eraseFromParent();
5766   return Legalized;
5767 }
5768 
5769 LegalizerHelper::LegalizeResult
5770 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
5771   Register Res = MI.getOperand(0).getReg();
5772   Register LHS = MI.getOperand(1).getReg();
5773   Register RHS = MI.getOperand(2).getReg();
5774   LLT Ty = MRI.getType(Res);
5775   LLT BoolTy = Ty.changeElementSize(1);
5776   bool IsSigned;
5777   bool IsAdd;
5778   unsigned OverflowOp;
5779   switch (MI.getOpcode()) {
5780   default:
5781     llvm_unreachable("unexpected addsat/subsat opcode");
5782   case TargetOpcode::G_UADDSAT:
5783     IsSigned = false;
5784     IsAdd = true;
5785     OverflowOp = TargetOpcode::G_UADDO;
5786     break;
5787   case TargetOpcode::G_SADDSAT:
5788     IsSigned = true;
5789     IsAdd = true;
5790     OverflowOp = TargetOpcode::G_SADDO;
5791     break;
5792   case TargetOpcode::G_USUBSAT:
5793     IsSigned = false;
5794     IsAdd = false;
5795     OverflowOp = TargetOpcode::G_USUBO;
5796     break;
5797   case TargetOpcode::G_SSUBSAT:
5798     IsSigned = true;
5799     IsAdd = false;
5800     OverflowOp = TargetOpcode::G_SSUBO;
5801     break;
5802   }
5803 
5804   auto OverflowRes =
5805       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
5806   Register Tmp = OverflowRes.getReg(0);
5807   Register Ov = OverflowRes.getReg(1);
5808   MachineInstrBuilder Clamp;
5809   if (IsSigned) {
5810     // sadd.sat(a, b) ->
5811     //   {tmp, ov} = saddo(a, b)
5812     //   ov ? (tmp >>s 31) + 0x80000000 : r
5813     // ssub.sat(a, b) ->
5814     //   {tmp, ov} = ssubo(a, b)
5815     //   ov ? (tmp >>s 31) + 0x80000000 : r
5816     uint64_t NumBits = Ty.getScalarSizeInBits();
5817     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
5818     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
5819     auto MinVal =
5820         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5821     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
5822   } else {
5823     // uadd.sat(a, b) ->
5824     //   {tmp, ov} = uaddo(a, b)
5825     //   ov ? 0xffffffff : tmp
5826     // usub.sat(a, b) ->
5827     //   {tmp, ov} = usubo(a, b)
5828     //   ov ? 0 : tmp
5829     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
5830   }
5831   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
5832 
5833   MI.eraseFromParent();
5834   return Legalized;
5835 }
5836 
5837 LegalizerHelper::LegalizeResult
5838 LegalizerHelper::lowerBswap(MachineInstr &MI) {
5839   Register Dst = MI.getOperand(0).getReg();
5840   Register Src = MI.getOperand(1).getReg();
5841   const LLT Ty = MRI.getType(Src);
5842   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
5843   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
5844 
5845   // Swap most and least significant byte, set remaining bytes in Res to zero.
5846   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
5847   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
5848   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5849   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
5850 
5851   // Set i-th high/low byte in Res to i-th low/high byte from Src.
5852   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
5853     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
5854     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
5855     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
5856     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
5857     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
5858     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
5859     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
5860     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
5861     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
5862     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
5863     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
5864     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
5865   }
5866   Res.getInstr()->getOperand(0).setReg(Dst);
5867 
5868   MI.eraseFromParent();
5869   return Legalized;
5870 }
5871 
5872 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
5873 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
5874                                  MachineInstrBuilder Src, APInt Mask) {
5875   const LLT Ty = Dst.getLLTTy(*B.getMRI());
5876   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
5877   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
5878   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
5879   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
5880   return B.buildOr(Dst, LHS, RHS);
5881 }
5882 
5883 LegalizerHelper::LegalizeResult
5884 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
5885   Register Dst = MI.getOperand(0).getReg();
5886   Register Src = MI.getOperand(1).getReg();
5887   const LLT Ty = MRI.getType(Src);
5888   unsigned Size = Ty.getSizeInBits();
5889 
5890   MachineInstrBuilder BSWAP =
5891       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
5892 
5893   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
5894   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
5895   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
5896   MachineInstrBuilder Swap4 =
5897       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
5898 
5899   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
5900   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
5901   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
5902   MachineInstrBuilder Swap2 =
5903       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
5904 
5905   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
5906   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
5907   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
5908   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
5909 
5910   MI.eraseFromParent();
5911   return Legalized;
5912 }
5913 
5914 LegalizerHelper::LegalizeResult
5915 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
5916   MachineFunction &MF = MIRBuilder.getMF();
5917   const TargetSubtargetInfo &STI = MF.getSubtarget();
5918   const TargetLowering *TLI = STI.getTargetLowering();
5919 
5920   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
5921   int NameOpIdx = IsRead ? 1 : 0;
5922   int ValRegIndex = IsRead ? 0 : 1;
5923 
5924   Register ValReg = MI.getOperand(ValRegIndex).getReg();
5925   const LLT Ty = MRI.getType(ValReg);
5926   const MDString *RegStr = cast<MDString>(
5927     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
5928 
5929   Register PhysReg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
5930   if (!PhysReg.isValid())
5931     return UnableToLegalize;
5932 
5933   if (IsRead)
5934     MIRBuilder.buildCopy(ValReg, PhysReg);
5935   else
5936     MIRBuilder.buildCopy(PhysReg, ValReg);
5937 
5938   MI.eraseFromParent();
5939   return Legalized;
5940 }
5941