1 //===-- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator --*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetPassConfig.h" 21 #include "llvm/IR/Constant.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/Type.h" 26 #include "llvm/IR/Value.h" 27 #include "llvm/Target/TargetIntrinsicInfo.h" 28 #include "llvm/Target/TargetLowering.h" 29 30 #define DEBUG_TYPE "irtranslator" 31 32 using namespace llvm; 33 34 char IRTranslator::ID = 0; 35 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 36 false, false) 37 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 38 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 39 false, false) 40 41 IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) { 42 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 43 } 44 45 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 46 AU.addRequired<TargetPassConfig>(); 47 MachineFunctionPass::getAnalysisUsage(AU); 48 } 49 50 51 unsigned IRTranslator::getOrCreateVReg(const Value &Val) { 52 unsigned &ValReg = ValToVReg[&Val]; 53 // Check if this is the first time we see Val. 54 if (!ValReg) { 55 // Fill ValRegsSequence with the sequence of registers 56 // we need to concat together to produce the value. 57 assert(Val.getType()->isSized() && 58 "Don't know how to create an empty vreg"); 59 unsigned VReg = MRI->createGenericVirtualRegister(LLT{*Val.getType(), DL}); 60 ValReg = VReg; 61 62 if (auto CV = dyn_cast<Constant>(&Val)) { 63 bool Success = translate(*CV, VReg); 64 if (!Success) { 65 if (!TPC->isGlobalISelAbortEnabled()) { 66 MIRBuilder.getMF().getProperties().set( 67 MachineFunctionProperties::Property::FailedISel); 68 return 0; 69 } 70 report_fatal_error("unable to translate constant"); 71 } 72 } 73 } 74 return ValReg; 75 } 76 77 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 78 unsigned Alignment = 0; 79 Type *ValTy = nullptr; 80 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 81 Alignment = SI->getAlignment(); 82 ValTy = SI->getValueOperand()->getType(); 83 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 84 Alignment = LI->getAlignment(); 85 ValTy = LI->getType(); 86 } else if (!TPC->isGlobalISelAbortEnabled()) { 87 MIRBuilder.getMF().getProperties().set( 88 MachineFunctionProperties::Property::FailedISel); 89 return 1; 90 } else 91 llvm_unreachable("unhandled memory instruction"); 92 93 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 94 } 95 96 MachineBasicBlock &IRTranslator::getOrCreateBB(const BasicBlock &BB) { 97 MachineBasicBlock *&MBB = BBToMBB[&BB]; 98 if (!MBB) { 99 MachineFunction &MF = MIRBuilder.getMF(); 100 MBB = MF.CreateMachineBasicBlock(); 101 MF.push_back(MBB); 102 } 103 return *MBB; 104 } 105 106 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U) { 107 // FIXME: handle signed/unsigned wrapping flags. 108 109 // Get or create a virtual register for each value. 110 // Unless the value is a Constant => loadimm cst? 111 // or inline constant each time? 112 // Creation of a virtual register needs to have a size. 113 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 114 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 115 unsigned Res = getOrCreateVReg(U); 116 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); 117 return true; 118 } 119 120 bool IRTranslator::translateCompare(const User &U) { 121 const CmpInst *CI = dyn_cast<CmpInst>(&U); 122 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 123 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 124 unsigned Res = getOrCreateVReg(U); 125 CmpInst::Predicate Pred = 126 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 127 cast<ConstantExpr>(U).getPredicate()); 128 129 if (CmpInst::isIntPredicate(Pred)) 130 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 131 else 132 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); 133 134 return true; 135 } 136 137 bool IRTranslator::translateRet(const User &U) { 138 const ReturnInst &RI = cast<ReturnInst>(U); 139 const Value *Ret = RI.getReturnValue(); 140 // The target may mess up with the insertion point, but 141 // this is not important as a return is the last instruction 142 // of the block anyway. 143 return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret)); 144 } 145 146 bool IRTranslator::translateBr(const User &U) { 147 const BranchInst &BrInst = cast<BranchInst>(U); 148 unsigned Succ = 0; 149 if (!BrInst.isUnconditional()) { 150 // We want a G_BRCOND to the true BB followed by an unconditional branch. 151 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 152 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 153 MachineBasicBlock &TrueBB = getOrCreateBB(TrueTgt); 154 MIRBuilder.buildBrCond(Tst, TrueBB); 155 } 156 157 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 158 MachineBasicBlock &TgtBB = getOrCreateBB(BrTgt); 159 MIRBuilder.buildBr(TgtBB); 160 161 // Link successors. 162 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 163 for (const BasicBlock *Succ : BrInst.successors()) 164 CurBB.addSuccessor(&getOrCreateBB(*Succ)); 165 return true; 166 } 167 168 bool IRTranslator::translateLoad(const User &U) { 169 const LoadInst &LI = cast<LoadInst>(U); 170 171 if (!TPC->isGlobalISelAbortEnabled() && !LI.isSimple()) 172 return false; 173 174 assert(LI.isSimple() && "only simple loads are supported at the moment"); 175 176 MachineFunction &MF = MIRBuilder.getMF(); 177 unsigned Res = getOrCreateVReg(LI); 178 unsigned Addr = getOrCreateVReg(*LI.getPointerOperand()); 179 LLT VTy{*LI.getType(), DL}, PTy{*LI.getPointerOperand()->getType()}; 180 181 MIRBuilder.buildLoad( 182 Res, Addr, 183 *MF.getMachineMemOperand( 184 MachinePointerInfo(LI.getPointerOperand()), MachineMemOperand::MOLoad, 185 DL->getTypeStoreSize(LI.getType()), getMemOpAlignment(LI))); 186 return true; 187 } 188 189 bool IRTranslator::translateStore(const User &U) { 190 const StoreInst &SI = cast<StoreInst>(U); 191 192 if (!TPC->isGlobalISelAbortEnabled() && !SI.isSimple()) 193 return false; 194 195 assert(SI.isSimple() && "only simple loads are supported at the moment"); 196 197 MachineFunction &MF = MIRBuilder.getMF(); 198 unsigned Val = getOrCreateVReg(*SI.getValueOperand()); 199 unsigned Addr = getOrCreateVReg(*SI.getPointerOperand()); 200 LLT VTy{*SI.getValueOperand()->getType(), DL}, 201 PTy{*SI.getPointerOperand()->getType()}; 202 203 MIRBuilder.buildStore( 204 Val, Addr, 205 *MF.getMachineMemOperand( 206 MachinePointerInfo(SI.getPointerOperand()), 207 MachineMemOperand::MOStore, 208 DL->getTypeStoreSize(SI.getValueOperand()->getType()), 209 getMemOpAlignment(SI))); 210 return true; 211 } 212 213 bool IRTranslator::translateExtractValue(const User &U) { 214 const Value *Src = U.getOperand(0); 215 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 216 SmallVector<Value *, 1> Indices; 217 218 // getIndexedOffsetInType is designed for GEPs, so the first index is the 219 // usual array element rather than looking into the actual aggregate. 220 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 221 222 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 223 for (auto Idx : EVI->indices()) 224 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 225 } else { 226 for (unsigned i = 1; i < U.getNumOperands(); ++i) 227 Indices.push_back(U.getOperand(i)); 228 } 229 230 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 231 232 unsigned Res = getOrCreateVReg(U); 233 MIRBuilder.buildExtract(Res, Offset, getOrCreateVReg(*Src)); 234 235 return true; 236 } 237 238 bool IRTranslator::translateInsertValue(const User &U) { 239 const Value *Src = U.getOperand(0); 240 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 241 SmallVector<Value *, 1> Indices; 242 243 // getIndexedOffsetInType is designed for GEPs, so the first index is the 244 // usual array element rather than looking into the actual aggregate. 245 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 246 247 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 248 for (auto Idx : IVI->indices()) 249 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 250 } else { 251 for (unsigned i = 2; i < U.getNumOperands(); ++i) 252 Indices.push_back(U.getOperand(i)); 253 } 254 255 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 256 257 unsigned Res = getOrCreateVReg(U); 258 const Value &Inserted = *U.getOperand(1); 259 MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), getOrCreateVReg(Inserted), 260 Offset); 261 262 return true; 263 } 264 265 bool IRTranslator::translateSelect(const User &U) { 266 MIRBuilder.buildSelect(getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)), 267 getOrCreateVReg(*U.getOperand(1)), 268 getOrCreateVReg(*U.getOperand(2))); 269 return true; 270 } 271 272 bool IRTranslator::translateBitCast(const User &U) { 273 if (LLT{*U.getOperand(0)->getType()} == LLT{*U.getType()}) { 274 unsigned &Reg = ValToVReg[&U]; 275 if (Reg) 276 MIRBuilder.buildCopy(Reg, getOrCreateVReg(*U.getOperand(0))); 277 else 278 Reg = getOrCreateVReg(*U.getOperand(0)); 279 return true; 280 } 281 return translateCast(TargetOpcode::G_BITCAST, U); 282 } 283 284 bool IRTranslator::translateCast(unsigned Opcode, const User &U) { 285 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 286 unsigned Res = getOrCreateVReg(U); 287 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 288 return true; 289 } 290 291 bool IRTranslator::translateGetElementPtr(const User &U) { 292 // FIXME: support vector GEPs. 293 if (U.getType()->isVectorTy()) 294 return false; 295 296 Value &Op0 = *U.getOperand(0); 297 unsigned BaseReg = getOrCreateVReg(Op0); 298 LLT PtrTy(*Op0.getType()); 299 unsigned PtrSize = DL->getPointerSizeInBits(PtrTy.getAddressSpace()); 300 LLT OffsetTy = LLT::scalar(PtrSize); 301 302 int64_t Offset = 0; 303 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 304 GTI != E; ++GTI) { 305 const Value *Idx = GTI.getOperand(); 306 if (StructType *StTy = dyn_cast<StructType>(*GTI)) { 307 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 308 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 309 continue; 310 } else { 311 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 312 313 // If this is a scalar constant or a splat vector of constants, 314 // handle it quickly. 315 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 316 Offset += ElementSize * CI->getSExtValue(); 317 continue; 318 } 319 320 if (Offset != 0) { 321 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 322 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 323 MIRBuilder.buildConstant(OffsetReg, Offset); 324 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 325 326 BaseReg = NewBaseReg; 327 Offset = 0; 328 } 329 330 // N = N + Idx * ElementSize; 331 unsigned ElementSizeReg = MRI->createGenericVirtualRegister(OffsetTy); 332 MIRBuilder.buildConstant(ElementSizeReg, ElementSize); 333 334 unsigned IdxReg = getOrCreateVReg(*Idx); 335 if (MRI->getType(IdxReg) != OffsetTy) { 336 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 337 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 338 IdxReg = NewIdxReg; 339 } 340 341 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 342 MIRBuilder.buildMul(OffsetReg, ElementSizeReg, IdxReg); 343 344 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 345 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 346 BaseReg = NewBaseReg; 347 } 348 } 349 350 if (Offset != 0) { 351 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 352 MIRBuilder.buildConstant(OffsetReg, Offset); 353 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 354 return true; 355 } 356 357 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 358 return true; 359 } 360 361 362 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, 363 Intrinsic::ID ID) { 364 unsigned Op = 0; 365 switch (ID) { 366 default: return false; 367 case Intrinsic::uadd_with_overflow: Op = TargetOpcode::G_UADDE; break; 368 case Intrinsic::sadd_with_overflow: Op = TargetOpcode::G_SADDO; break; 369 case Intrinsic::usub_with_overflow: Op = TargetOpcode::G_USUBE; break; 370 case Intrinsic::ssub_with_overflow: Op = TargetOpcode::G_SSUBO; break; 371 case Intrinsic::umul_with_overflow: Op = TargetOpcode::G_UMULO; break; 372 case Intrinsic::smul_with_overflow: Op = TargetOpcode::G_SMULO; break; 373 } 374 375 LLT Ty{*CI.getOperand(0)->getType()}; 376 LLT s1 = LLT::scalar(1); 377 unsigned Width = Ty.getSizeInBits(); 378 unsigned Res = MRI->createGenericVirtualRegister(Ty); 379 unsigned Overflow = MRI->createGenericVirtualRegister(s1); 380 auto MIB = MIRBuilder.buildInstr(Op) 381 .addDef(Res) 382 .addDef(Overflow) 383 .addUse(getOrCreateVReg(*CI.getOperand(0))) 384 .addUse(getOrCreateVReg(*CI.getOperand(1))); 385 386 if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) { 387 unsigned Zero = MRI->createGenericVirtualRegister(s1); 388 EntryBuilder.buildConstant(Zero, 0); 389 MIB.addUse(Zero); 390 } 391 392 MIRBuilder.buildSequence(getOrCreateVReg(CI), Res, 0, Overflow, Width); 393 return true; 394 } 395 396 bool IRTranslator::translateCall(const User &U) { 397 const CallInst &CI = cast<CallInst>(U); 398 auto TII = MIRBuilder.getMF().getTarget().getIntrinsicInfo(); 399 const Function *F = CI.getCalledFunction(); 400 401 if (!F || !F->isIntrinsic()) { 402 // FIXME: handle multiple return values. 403 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 404 SmallVector<unsigned, 8> Args; 405 for (auto &Arg: CI.arg_operands()) 406 Args.push_back(getOrCreateVReg(*Arg)); 407 408 return CLI->lowerCall(MIRBuilder, CI, Res, Args, [&]() { 409 return getOrCreateVReg(*CI.getCalledValue()); 410 }); 411 } 412 413 Intrinsic::ID ID = F->getIntrinsicID(); 414 if (TII && ID == Intrinsic::not_intrinsic) 415 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 416 417 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 418 419 if (translateKnownIntrinsic(CI, ID)) 420 return true; 421 422 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 423 MachineInstrBuilder MIB = 424 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 425 426 for (auto &Arg : CI.arg_operands()) { 427 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) 428 MIB.addImm(CI->getSExtValue()); 429 else 430 MIB.addUse(getOrCreateVReg(*Arg)); 431 } 432 return true; 433 } 434 435 bool IRTranslator::translateStaticAlloca(const AllocaInst &AI) { 436 if (!TPC->isGlobalISelAbortEnabled() && !AI.isStaticAlloca()) 437 return false; 438 439 assert(AI.isStaticAlloca() && "only handle static allocas now"); 440 MachineFunction &MF = MIRBuilder.getMF(); 441 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 442 unsigned Size = 443 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 444 445 // Always allocate at least one byte. 446 Size = std::max(Size, 1u); 447 448 unsigned Alignment = AI.getAlignment(); 449 if (!Alignment) 450 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 451 452 unsigned Res = getOrCreateVReg(AI); 453 int FI = MF.getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 454 MIRBuilder.buildFrameIndex(Res, FI); 455 return true; 456 } 457 458 bool IRTranslator::translatePHI(const User &U) { 459 const PHINode &PI = cast<PHINode>(U); 460 auto MIB = MIRBuilder.buildInstr(TargetOpcode::PHI); 461 MIB.addDef(getOrCreateVReg(PI)); 462 463 PendingPHIs.emplace_back(&PI, MIB.getInstr()); 464 return true; 465 } 466 467 void IRTranslator::finishPendingPhis() { 468 for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) { 469 const PHINode *PI = Phi.first; 470 MachineInstrBuilder MIB(MIRBuilder.getMF(), Phi.second); 471 472 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 473 // won't create extra control flow here, otherwise we need to find the 474 // dominating predecessor here (or perhaps force the weirder IRTranslators 475 // to provide a simple boundary). 476 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 477 assert(BBToMBB[PI->getIncomingBlock(i)]->isSuccessor(MIB->getParent()) && 478 "I appear to have misunderstood Machine PHIs"); 479 MIB.addUse(getOrCreateVReg(*PI->getIncomingValue(i))); 480 MIB.addMBB(BBToMBB[PI->getIncomingBlock(i)]); 481 } 482 } 483 484 PendingPHIs.clear(); 485 } 486 487 bool IRTranslator::translate(const Instruction &Inst) { 488 MIRBuilder.setDebugLoc(Inst.getDebugLoc()); 489 switch(Inst.getOpcode()) { 490 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 491 case Instruction::OPCODE: return translate##OPCODE(Inst); 492 #include "llvm/IR/Instruction.def" 493 default: 494 if (!TPC->isGlobalISelAbortEnabled()) 495 return false; 496 llvm_unreachable("unknown opcode"); 497 } 498 } 499 500 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 501 if (auto CI = dyn_cast<ConstantInt>(&C)) 502 EntryBuilder.buildConstant(Reg, CI->getZExtValue()); 503 else if (auto CF = dyn_cast<ConstantFP>(&C)) 504 EntryBuilder.buildFConstant(Reg, *CF); 505 else if (isa<UndefValue>(C)) 506 EntryBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF).addDef(Reg); 507 else if (isa<ConstantPointerNull>(C)) 508 EntryBuilder.buildInstr(TargetOpcode::G_CONSTANT) 509 .addDef(Reg) 510 .addImm(0); 511 else if (auto GV = dyn_cast<GlobalValue>(&C)) 512 EntryBuilder.buildGlobalValue(Reg, GV); 513 else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 514 switch(CE->getOpcode()) { 515 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 516 case Instruction::OPCODE: return translate##OPCODE(*CE); 517 #include "llvm/IR/Instruction.def" 518 default: 519 if (!TPC->isGlobalISelAbortEnabled()) 520 return false; 521 llvm_unreachable("unknown opcode"); 522 } 523 } else if (!TPC->isGlobalISelAbortEnabled()) 524 return false; 525 else 526 llvm_unreachable("unhandled constant kind"); 527 528 return true; 529 } 530 531 532 void IRTranslator::finalizeFunction() { 533 finishPendingPhis(); 534 535 // Release the memory used by the different maps we 536 // needed during the translation. 537 ValToVReg.clear(); 538 Constants.clear(); 539 } 540 541 bool IRTranslator::runOnMachineFunction(MachineFunction &MF) { 542 const Function &F = *MF.getFunction(); 543 if (F.empty()) 544 return false; 545 CLI = MF.getSubtarget().getCallLowering(); 546 MIRBuilder.setMF(MF); 547 EntryBuilder.setMF(MF); 548 MRI = &MF.getRegInfo(); 549 DL = &F.getParent()->getDataLayout(); 550 TPC = &getAnalysis<TargetPassConfig>(); 551 552 assert(PendingPHIs.empty() && "stale PHIs"); 553 554 // Setup the arguments. 555 MachineBasicBlock &MBB = getOrCreateBB(F.front()); 556 MIRBuilder.setMBB(MBB); 557 SmallVector<unsigned, 8> VRegArgs; 558 for (const Argument &Arg: F.args()) 559 VRegArgs.push_back(getOrCreateVReg(Arg)); 560 bool Succeeded = 561 CLI->lowerFormalArguments(MIRBuilder, F.getArgumentList(), VRegArgs); 562 if (!Succeeded) { 563 if (!TPC->isGlobalISelAbortEnabled()) { 564 MIRBuilder.getMF().getProperties().set( 565 MachineFunctionProperties::Property::FailedISel); 566 return false; 567 } 568 report_fatal_error("Unable to lower arguments"); 569 } 570 571 // Now that we've got the ABI handling code, it's safe to set a location for 572 // any Constants we find in the IR. 573 if (MBB.empty()) 574 EntryBuilder.setMBB(MBB); 575 else 576 EntryBuilder.setInstr(MBB.back(), /* Before */ false); 577 578 for (const BasicBlock &BB: F) { 579 MachineBasicBlock &MBB = getOrCreateBB(BB); 580 // Set the insertion point of all the following translations to 581 // the end of this basic block. 582 MIRBuilder.setMBB(MBB); 583 for (const Instruction &Inst: BB) { 584 bool Succeeded = translate(Inst); 585 if (!Succeeded) { 586 DEBUG(dbgs() << "Cannot translate: " << Inst << '\n'); 587 if (TPC->isGlobalISelAbortEnabled()) 588 report_fatal_error("Unable to translate instruction"); 589 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 590 break; 591 } 592 } 593 } 594 595 finalizeFunction(); 596 597 // Now that the MachineFrameInfo has been configured, no further changes to 598 // the reserved registers are possible. 599 MRI->freezeReservedRegs(MF); 600 601 return false; 602 } 603