1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 26 #include "llvm/CodeGen/LowLevelType.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/StackProtector.h" 36 #include "llvm/CodeGen/SwitchLoweringUtils.h" 37 #include "llvm/CodeGen/TargetFrameLowering.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSubtargetInfo.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/CFG.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfo.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/DiagnosticInfo.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/InlineAsm.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/Intrinsics.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/InitializePasses.h" 65 #include "llvm/MC/MCContext.h" 66 #include "llvm/Pass.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CodeGen.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/LowLevelTypeImpl.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Target/TargetIntrinsicInfo.h" 75 #include "llvm/Target/TargetMachine.h" 76 #include "llvm/Transforms/Utils/MemoryOpRemark.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <string> 83 #include <utility> 84 #include <vector> 85 86 #define DEBUG_TYPE "irtranslator" 87 88 using namespace llvm; 89 90 static cl::opt<bool> 91 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 92 cl::desc("Should enable CSE in irtranslator"), 93 cl::Optional, cl::init(false)); 94 char IRTranslator::ID = 0; 95 96 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 97 false, false) 98 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 99 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 100 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 101 INITIALIZE_PASS_DEPENDENCY(StackProtector) 102 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 103 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 104 false, false) 105 106 static void reportTranslationError(MachineFunction &MF, 107 const TargetPassConfig &TPC, 108 OptimizationRemarkEmitter &ORE, 109 OptimizationRemarkMissed &R) { 110 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 111 112 // Print the function name explicitly if we don't have a debug location (which 113 // makes the diagnostic less useful) or if we're going to emit a raw error. 114 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 115 R << (" (in function: " + MF.getName() + ")").str(); 116 117 if (TPC.isGlobalISelAbortEnabled()) 118 report_fatal_error(R.getMsg()); 119 else 120 ORE.emit(R); 121 } 122 123 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel) 124 : MachineFunctionPass(ID), OptLevel(optlevel) {} 125 126 #ifndef NDEBUG 127 namespace { 128 /// Verify that every instruction created has the same DILocation as the 129 /// instruction being translated. 130 class DILocationVerifier : public GISelChangeObserver { 131 const Instruction *CurrInst = nullptr; 132 133 public: 134 DILocationVerifier() = default; 135 ~DILocationVerifier() = default; 136 137 const Instruction *getCurrentInst() const { return CurrInst; } 138 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 139 140 void erasingInstr(MachineInstr &MI) override {} 141 void changingInstr(MachineInstr &MI) override {} 142 void changedInstr(MachineInstr &MI) override {} 143 144 void createdInstr(MachineInstr &MI) override { 145 assert(getCurrentInst() && "Inserted instruction without a current MI"); 146 147 // Only print the check message if we're actually checking it. 148 #ifndef NDEBUG 149 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 150 << " was copied to " << MI); 151 #endif 152 // We allow insts in the entry block to have a debug loc line of 0 because 153 // they could have originated from constants, and we don't want a jumpy 154 // debug experience. 155 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 156 MI.getDebugLoc().getLine() == 0) && 157 "Line info was not transferred to all instructions"); 158 } 159 }; 160 } // namespace 161 #endif // ifndef NDEBUG 162 163 164 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 165 AU.addRequired<StackProtector>(); 166 AU.addRequired<TargetPassConfig>(); 167 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 168 if (OptLevel != CodeGenOpt::None) 169 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 170 AU.addRequired<TargetLibraryInfoWrapperPass>(); 171 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 172 getSelectionDAGFallbackAnalysisUsage(AU); 173 MachineFunctionPass::getAnalysisUsage(AU); 174 } 175 176 IRTranslator::ValueToVRegInfo::VRegListT & 177 IRTranslator::allocateVRegs(const Value &Val) { 178 auto VRegsIt = VMap.findVRegs(Val); 179 if (VRegsIt != VMap.vregs_end()) 180 return *VRegsIt->second; 181 auto *Regs = VMap.getVRegs(Val); 182 auto *Offsets = VMap.getOffsets(Val); 183 SmallVector<LLT, 4> SplitTys; 184 computeValueLLTs(*DL, *Val.getType(), SplitTys, 185 Offsets->empty() ? Offsets : nullptr); 186 for (unsigned i = 0; i < SplitTys.size(); ++i) 187 Regs->push_back(0); 188 return *Regs; 189 } 190 191 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 192 auto VRegsIt = VMap.findVRegs(Val); 193 if (VRegsIt != VMap.vregs_end()) 194 return *VRegsIt->second; 195 196 if (Val.getType()->isVoidTy()) 197 return *VMap.getVRegs(Val); 198 199 // Create entry for this type. 200 auto *VRegs = VMap.getVRegs(Val); 201 auto *Offsets = VMap.getOffsets(Val); 202 203 assert(Val.getType()->isSized() && 204 "Don't know how to create an empty vreg"); 205 206 SmallVector<LLT, 4> SplitTys; 207 computeValueLLTs(*DL, *Val.getType(), SplitTys, 208 Offsets->empty() ? Offsets : nullptr); 209 210 if (!isa<Constant>(Val)) { 211 for (auto Ty : SplitTys) 212 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 213 return *VRegs; 214 } 215 216 if (Val.getType()->isAggregateType()) { 217 // UndefValue, ConstantAggregateZero 218 auto &C = cast<Constant>(Val); 219 unsigned Idx = 0; 220 while (auto Elt = C.getAggregateElement(Idx++)) { 221 auto EltRegs = getOrCreateVRegs(*Elt); 222 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 223 } 224 } else { 225 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 226 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 227 bool Success = translate(cast<Constant>(Val), VRegs->front()); 228 if (!Success) { 229 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 230 MF->getFunction().getSubprogram(), 231 &MF->getFunction().getEntryBlock()); 232 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 233 reportTranslationError(*MF, *TPC, *ORE, R); 234 return *VRegs; 235 } 236 } 237 238 return *VRegs; 239 } 240 241 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 242 auto MapEntry = FrameIndices.find(&AI); 243 if (MapEntry != FrameIndices.end()) 244 return MapEntry->second; 245 246 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 247 uint64_t Size = 248 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 249 250 // Always allocate at least one byte. 251 Size = std::max<uint64_t>(Size, 1u); 252 253 int &FI = FrameIndices[&AI]; 254 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 255 return FI; 256 } 257 258 Align IRTranslator::getMemOpAlign(const Instruction &I) { 259 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 260 return SI->getAlign(); 261 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) 262 return LI->getAlign(); 263 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 264 return AI->getAlign(); 265 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) 266 return AI->getAlign(); 267 268 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 269 R << "unable to translate memop: " << ore::NV("Opcode", &I); 270 reportTranslationError(*MF, *TPC, *ORE, R); 271 return Align(1); 272 } 273 274 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 275 MachineBasicBlock *&MBB = BBToMBB[&BB]; 276 assert(MBB && "BasicBlock was not encountered before"); 277 return *MBB; 278 } 279 280 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 281 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 282 MachinePreds[Edge].push_back(NewPred); 283 } 284 285 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 286 MachineIRBuilder &MIRBuilder) { 287 // Get or create a virtual register for each value. 288 // Unless the value is a Constant => loadimm cst? 289 // or inline constant each time? 290 // Creation of a virtual register needs to have a size. 291 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 292 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 293 Register Res = getOrCreateVReg(U); 294 uint16_t Flags = 0; 295 if (isa<Instruction>(U)) { 296 const Instruction &I = cast<Instruction>(U); 297 Flags = MachineInstr::copyFlagsFromInstruction(I); 298 } 299 300 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 301 return true; 302 } 303 304 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U, 305 MachineIRBuilder &MIRBuilder) { 306 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 307 Register Res = getOrCreateVReg(U); 308 uint16_t Flags = 0; 309 if (isa<Instruction>(U)) { 310 const Instruction &I = cast<Instruction>(U); 311 Flags = MachineInstr::copyFlagsFromInstruction(I); 312 } 313 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags); 314 return true; 315 } 316 317 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 318 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder); 319 } 320 321 bool IRTranslator::translateCompare(const User &U, 322 MachineIRBuilder &MIRBuilder) { 323 auto *CI = dyn_cast<CmpInst>(&U); 324 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 325 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 326 Register Res = getOrCreateVReg(U); 327 CmpInst::Predicate Pred = 328 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 329 cast<ConstantExpr>(U).getPredicate()); 330 if (CmpInst::isIntPredicate(Pred)) 331 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 332 else if (Pred == CmpInst::FCMP_FALSE) 333 MIRBuilder.buildCopy( 334 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 335 else if (Pred == CmpInst::FCMP_TRUE) 336 MIRBuilder.buildCopy( 337 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 338 else { 339 assert(CI && "Instruction should be CmpInst"); 340 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, 341 MachineInstr::copyFlagsFromInstruction(*CI)); 342 } 343 344 return true; 345 } 346 347 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 348 const ReturnInst &RI = cast<ReturnInst>(U); 349 const Value *Ret = RI.getReturnValue(); 350 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 351 Ret = nullptr; 352 353 ArrayRef<Register> VRegs; 354 if (Ret) 355 VRegs = getOrCreateVRegs(*Ret); 356 357 Register SwiftErrorVReg = 0; 358 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 359 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 360 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 361 } 362 363 // The target may mess up with the insertion point, but 364 // this is not important as a return is the last instruction 365 // of the block anyway. 366 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg); 367 } 368 369 void IRTranslator::emitBranchForMergedCondition( 370 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 371 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 372 BranchProbability TProb, BranchProbability FProb, bool InvertCond) { 373 // If the leaf of the tree is a comparison, merge the condition into 374 // the caseblock. 375 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 376 CmpInst::Predicate Condition; 377 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 378 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 379 } else { 380 const FCmpInst *FC = cast<FCmpInst>(Cond); 381 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 382 } 383 384 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0), 385 BOp->getOperand(1), nullptr, TBB, FBB, CurBB, 386 CurBuilder->getDebugLoc(), TProb, FProb); 387 SL->SwitchCases.push_back(CB); 388 return; 389 } 390 391 // Create a CaseBlock record representing this branch. 392 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 393 SwitchCG::CaseBlock CB( 394 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()), 395 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb); 396 SL->SwitchCases.push_back(CB); 397 } 398 399 static bool isValInBlock(const Value *V, const BasicBlock *BB) { 400 if (const Instruction *I = dyn_cast<Instruction>(V)) 401 return I->getParent() == BB; 402 return true; 403 } 404 405 void IRTranslator::findMergedConditions( 406 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 407 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 408 Instruction::BinaryOps Opc, BranchProbability TProb, 409 BranchProbability FProb, bool InvertCond) { 410 using namespace PatternMatch; 411 assert((Opc == Instruction::And || Opc == Instruction::Or) && 412 "Expected Opc to be AND/OR"); 413 // Skip over not part of the tree and remember to invert op and operands at 414 // next level. 415 Value *NotCond; 416 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 417 isValInBlock(NotCond, CurBB->getBasicBlock())) { 418 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 419 !InvertCond); 420 return; 421 } 422 423 const Instruction *BOp = dyn_cast<Instruction>(Cond); 424 const Value *BOpOp0, *BOpOp1; 425 // Compute the effective opcode for Cond, taking into account whether it needs 426 // to be inverted, e.g. 427 // and (not (or A, B)), C 428 // gets lowered as 429 // and (and (not A, not B), C) 430 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 431 if (BOp) { 432 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 433 ? Instruction::And 434 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 435 ? Instruction::Or 436 : (Instruction::BinaryOps)0); 437 if (InvertCond) { 438 if (BOpc == Instruction::And) 439 BOpc = Instruction::Or; 440 else if (BOpc == Instruction::Or) 441 BOpc = Instruction::And; 442 } 443 } 444 445 // If this node is not part of the or/and tree, emit it as a branch. 446 // Note that all nodes in the tree should have same opcode. 447 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 448 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 449 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) || 450 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) { 451 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb, 452 InvertCond); 453 return; 454 } 455 456 // Create TmpBB after CurBB. 457 MachineFunction::iterator BBI(CurBB); 458 MachineBasicBlock *TmpBB = 459 MF->CreateMachineBasicBlock(CurBB->getBasicBlock()); 460 CurBB->getParent()->insert(++BBI, TmpBB); 461 462 if (Opc == Instruction::Or) { 463 // Codegen X | Y as: 464 // BB1: 465 // jmp_if_X TBB 466 // jmp TmpBB 467 // TmpBB: 468 // jmp_if_Y TBB 469 // jmp FBB 470 // 471 472 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 473 // The requirement is that 474 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 475 // = TrueProb for original BB. 476 // Assuming the original probabilities are A and B, one choice is to set 477 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 478 // A/(1+B) and 2B/(1+B). This choice assumes that 479 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 480 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 481 // TmpBB, but the math is more complicated. 482 483 auto NewTrueProb = TProb / 2; 484 auto NewFalseProb = TProb / 2 + FProb; 485 // Emit the LHS condition. 486 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 487 NewFalseProb, InvertCond); 488 489 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 490 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 491 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 492 // Emit the RHS condition into TmpBB. 493 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 494 Probs[1], InvertCond); 495 } else { 496 assert(Opc == Instruction::And && "Unknown merge op!"); 497 // Codegen X & Y as: 498 // BB1: 499 // jmp_if_X TmpBB 500 // jmp FBB 501 // TmpBB: 502 // jmp_if_Y TBB 503 // jmp FBB 504 // 505 // This requires creation of TmpBB after CurBB. 506 507 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 508 // The requirement is that 509 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 510 // = FalseProb for original BB. 511 // Assuming the original probabilities are A and B, one choice is to set 512 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 513 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 514 // TrueProb for BB1 * FalseProb for TmpBB. 515 516 auto NewTrueProb = TProb + FProb / 2; 517 auto NewFalseProb = FProb / 2; 518 // Emit the LHS condition. 519 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 520 NewFalseProb, InvertCond); 521 522 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 523 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 524 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 525 // Emit the RHS condition into TmpBB. 526 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 527 Probs[1], InvertCond); 528 } 529 } 530 531 bool IRTranslator::shouldEmitAsBranches( 532 const std::vector<SwitchCG::CaseBlock> &Cases) { 533 // For multiple cases, it's better to emit as branches. 534 if (Cases.size() != 2) 535 return true; 536 537 // If this is two comparisons of the same values or'd or and'd together, they 538 // will get folded into a single comparison, so don't emit two blocks. 539 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 540 Cases[0].CmpRHS == Cases[1].CmpRHS) || 541 (Cases[0].CmpRHS == Cases[1].CmpLHS && 542 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 543 return false; 544 } 545 546 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 547 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 548 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 549 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred && 550 isa<Constant>(Cases[0].CmpRHS) && 551 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 552 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ && 553 Cases[0].TrueBB == Cases[1].ThisBB) 554 return false; 555 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE && 556 Cases[0].FalseBB == Cases[1].ThisBB) 557 return false; 558 } 559 560 return true; 561 } 562 563 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 564 const BranchInst &BrInst = cast<BranchInst>(U); 565 auto &CurMBB = MIRBuilder.getMBB(); 566 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0)); 567 568 if (BrInst.isUnconditional()) { 569 // If the unconditional target is the layout successor, fallthrough. 570 if (OptLevel == CodeGenOpt::None || !CurMBB.isLayoutSuccessor(Succ0MBB)) 571 MIRBuilder.buildBr(*Succ0MBB); 572 573 // Link successors. 574 for (const BasicBlock *Succ : successors(&BrInst)) 575 CurMBB.addSuccessor(&getMBB(*Succ)); 576 return true; 577 } 578 579 // If this condition is one of the special cases we handle, do special stuff 580 // now. 581 const Value *CondVal = BrInst.getCondition(); 582 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1)); 583 584 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 585 586 // If this is a series of conditions that are or'd or and'd together, emit 587 // this as a sequence of branches instead of setcc's with and/or operations. 588 // As long as jumps are not expensive (exceptions for multi-use logic ops, 589 // unpredictable branches, and vector extracts because those jumps are likely 590 // expensive for any target), this should improve performance. 591 // For example, instead of something like: 592 // cmp A, B 593 // C = seteq 594 // cmp D, E 595 // F = setle 596 // or C, F 597 // jnz foo 598 // Emit: 599 // cmp A, B 600 // je foo 601 // cmp D, E 602 // jle foo 603 using namespace PatternMatch; 604 const Instruction *CondI = dyn_cast<Instruction>(CondVal); 605 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() && 606 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) { 607 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 608 Value *Vec; 609 const Value *BOp0, *BOp1; 610 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 611 Opcode = Instruction::And; 612 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 613 Opcode = Instruction::Or; 614 615 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 616 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 617 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode, 618 getEdgeProbability(&CurMBB, Succ0MBB), 619 getEdgeProbability(&CurMBB, Succ1MBB), 620 /*InvertCond=*/false); 621 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!"); 622 623 // Allow some cases to be rejected. 624 if (shouldEmitAsBranches(SL->SwitchCases)) { 625 // Emit the branch for this block. 626 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder); 627 SL->SwitchCases.erase(SL->SwitchCases.begin()); 628 return true; 629 } 630 631 // Okay, we decided not to do this, remove any inserted MBB's and clear 632 // SwitchCases. 633 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I) 634 MF->erase(SL->SwitchCases[I].ThisBB); 635 636 SL->SwitchCases.clear(); 637 } 638 } 639 640 // Create a CaseBlock record representing this branch. 641 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal, 642 ConstantInt::getTrue(MF->getFunction().getContext()), 643 nullptr, Succ0MBB, Succ1MBB, &CurMBB, 644 CurBuilder->getDebugLoc()); 645 646 // Use emitSwitchCase to actually insert the fast branch sequence for this 647 // cond branch. 648 emitSwitchCase(CB, &CurMBB, *CurBuilder); 649 return true; 650 } 651 652 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 653 MachineBasicBlock *Dst, 654 BranchProbability Prob) { 655 if (!FuncInfo.BPI) { 656 Src->addSuccessorWithoutProb(Dst); 657 return; 658 } 659 if (Prob.isUnknown()) 660 Prob = getEdgeProbability(Src, Dst); 661 Src->addSuccessor(Dst, Prob); 662 } 663 664 BranchProbability 665 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 666 const MachineBasicBlock *Dst) const { 667 const BasicBlock *SrcBB = Src->getBasicBlock(); 668 const BasicBlock *DstBB = Dst->getBasicBlock(); 669 if (!FuncInfo.BPI) { 670 // If BPI is not available, set the default probability as 1 / N, where N is 671 // the number of successors. 672 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 673 return BranchProbability(1, SuccSize); 674 } 675 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 676 } 677 678 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 679 using namespace SwitchCG; 680 // Extract cases from the switch. 681 const SwitchInst &SI = cast<SwitchInst>(U); 682 BranchProbabilityInfo *BPI = FuncInfo.BPI; 683 CaseClusterVector Clusters; 684 Clusters.reserve(SI.getNumCases()); 685 for (auto &I : SI.cases()) { 686 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 687 assert(Succ && "Could not find successor mbb in mapping"); 688 const ConstantInt *CaseVal = I.getCaseValue(); 689 BranchProbability Prob = 690 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 691 : BranchProbability(1, SI.getNumCases() + 1); 692 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 693 } 694 695 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 696 697 // Cluster adjacent cases with the same destination. We do this at all 698 // optimization levels because it's cheap to do and will make codegen faster 699 // if there are many clusters. 700 sortAndRangeify(Clusters); 701 702 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 703 704 // If there is only the default destination, jump there directly. 705 if (Clusters.empty()) { 706 SwitchMBB->addSuccessor(DefaultMBB); 707 if (DefaultMBB != SwitchMBB->getNextNode()) 708 MIB.buildBr(*DefaultMBB); 709 return true; 710 } 711 712 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 713 SL->findBitTestClusters(Clusters, &SI); 714 715 LLVM_DEBUG({ 716 dbgs() << "Case clusters: "; 717 for (const CaseCluster &C : Clusters) { 718 if (C.Kind == CC_JumpTable) 719 dbgs() << "JT:"; 720 if (C.Kind == CC_BitTests) 721 dbgs() << "BT:"; 722 723 C.Low->getValue().print(dbgs(), true); 724 if (C.Low != C.High) { 725 dbgs() << '-'; 726 C.High->getValue().print(dbgs(), true); 727 } 728 dbgs() << ' '; 729 } 730 dbgs() << '\n'; 731 }); 732 733 assert(!Clusters.empty()); 734 SwitchWorkList WorkList; 735 CaseClusterIt First = Clusters.begin(); 736 CaseClusterIt Last = Clusters.end() - 1; 737 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 738 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 739 740 // FIXME: At the moment we don't do any splitting optimizations here like 741 // SelectionDAG does, so this worklist only has one entry. 742 while (!WorkList.empty()) { 743 SwitchWorkListItem W = WorkList.back(); 744 WorkList.pop_back(); 745 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 746 return false; 747 } 748 return true; 749 } 750 751 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 752 MachineBasicBlock *MBB) { 753 // Emit the code for the jump table 754 assert(JT.Reg != -1U && "Should lower JT Header first!"); 755 MachineIRBuilder MIB(*MBB->getParent()); 756 MIB.setMBB(*MBB); 757 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 758 759 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 760 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 761 762 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 763 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 764 } 765 766 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 767 SwitchCG::JumpTableHeader &JTH, 768 MachineBasicBlock *HeaderBB) { 769 MachineIRBuilder MIB(*HeaderBB->getParent()); 770 MIB.setMBB(*HeaderBB); 771 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 772 773 const Value &SValue = *JTH.SValue; 774 // Subtract the lowest switch case value from the value being switched on. 775 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 776 Register SwitchOpReg = getOrCreateVReg(SValue); 777 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 778 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 779 780 // This value may be smaller or larger than the target's pointer type, and 781 // therefore require extension or truncating. 782 Type *PtrIRTy = SValue.getType()->getPointerTo(); 783 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 784 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 785 786 JT.Reg = Sub.getReg(0); 787 788 if (JTH.FallthroughUnreachable) { 789 if (JT.MBB != HeaderBB->getNextNode()) 790 MIB.buildBr(*JT.MBB); 791 return true; 792 } 793 794 // Emit the range check for the jump table, and branch to the default block 795 // for the switch statement if the value being switched on exceeds the 796 // largest case in the switch. 797 auto Cst = getOrCreateVReg( 798 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 799 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 800 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 801 802 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 803 804 // Avoid emitting unnecessary branches to the next block. 805 if (JT.MBB != HeaderBB->getNextNode()) 806 BrCond = MIB.buildBr(*JT.MBB); 807 return true; 808 } 809 810 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 811 MachineBasicBlock *SwitchBB, 812 MachineIRBuilder &MIB) { 813 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 814 Register Cond; 815 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 816 MIB.setDebugLoc(CB.DbgLoc); 817 MIB.setMBB(*CB.ThisBB); 818 819 if (CB.PredInfo.NoCmp) { 820 // Branch or fall through to TrueBB. 821 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 822 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 823 CB.ThisBB); 824 CB.ThisBB->normalizeSuccProbs(); 825 if (CB.TrueBB != CB.ThisBB->getNextNode()) 826 MIB.buildBr(*CB.TrueBB); 827 MIB.setDebugLoc(OldDbgLoc); 828 return; 829 } 830 831 const LLT i1Ty = LLT::scalar(1); 832 // Build the compare. 833 if (!CB.CmpMHS) { 834 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS); 835 // For conditional branch lowering, we might try to do something silly like 836 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so, 837 // just re-use the existing condition vreg. 838 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && 839 CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) { 840 Cond = CondLHS; 841 } else { 842 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 843 if (CmpInst::isFPPredicate(CB.PredInfo.Pred)) 844 Cond = 845 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 846 else 847 Cond = 848 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 849 } 850 } else { 851 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 852 "Can only handle SLE ranges"); 853 854 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 855 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 856 857 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 858 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 859 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 860 Cond = 861 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 862 } else { 863 const LLT CmpTy = MRI->getType(CmpOpReg); 864 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 865 auto Diff = MIB.buildConstant(CmpTy, High - Low); 866 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 867 } 868 } 869 870 // Update successor info 871 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 872 873 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 874 CB.ThisBB); 875 876 // TrueBB and FalseBB are always different unless the incoming IR is 877 // degenerate. This only happens when running llc on weird IR. 878 if (CB.TrueBB != CB.FalseBB) 879 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 880 CB.ThisBB->normalizeSuccProbs(); 881 882 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 883 CB.ThisBB); 884 885 MIB.buildBrCond(Cond, *CB.TrueBB); 886 MIB.buildBr(*CB.FalseBB); 887 MIB.setDebugLoc(OldDbgLoc); 888 } 889 890 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 891 MachineBasicBlock *SwitchMBB, 892 MachineBasicBlock *CurMBB, 893 MachineBasicBlock *DefaultMBB, 894 MachineIRBuilder &MIB, 895 MachineFunction::iterator BBI, 896 BranchProbability UnhandledProbs, 897 SwitchCG::CaseClusterIt I, 898 MachineBasicBlock *Fallthrough, 899 bool FallthroughUnreachable) { 900 using namespace SwitchCG; 901 MachineFunction *CurMF = SwitchMBB->getParent(); 902 // FIXME: Optimize away range check based on pivot comparisons. 903 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 904 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 905 BranchProbability DefaultProb = W.DefaultProb; 906 907 // The jump block hasn't been inserted yet; insert it here. 908 MachineBasicBlock *JumpMBB = JT->MBB; 909 CurMF->insert(BBI, JumpMBB); 910 911 // Since the jump table block is separate from the switch block, we need 912 // to keep track of it as a machine predecessor to the default block, 913 // otherwise we lose the phi edges. 914 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 915 CurMBB); 916 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 917 JumpMBB); 918 919 auto JumpProb = I->Prob; 920 auto FallthroughProb = UnhandledProbs; 921 922 // If the default statement is a target of the jump table, we evenly 923 // distribute the default probability to successors of CurMBB. Also 924 // update the probability on the edge from JumpMBB to Fallthrough. 925 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 926 SE = JumpMBB->succ_end(); 927 SI != SE; ++SI) { 928 if (*SI == DefaultMBB) { 929 JumpProb += DefaultProb / 2; 930 FallthroughProb -= DefaultProb / 2; 931 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 932 JumpMBB->normalizeSuccProbs(); 933 } else { 934 // Also record edges from the jump table block to it's successors. 935 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 936 JumpMBB); 937 } 938 } 939 940 if (FallthroughUnreachable) 941 JTH->FallthroughUnreachable = true; 942 943 if (!JTH->FallthroughUnreachable) 944 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 945 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 946 CurMBB->normalizeSuccProbs(); 947 948 // The jump table header will be inserted in our current block, do the 949 // range check, and fall through to our fallthrough block. 950 JTH->HeaderBB = CurMBB; 951 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 952 953 // If we're in the right place, emit the jump table header right now. 954 if (CurMBB == SwitchMBB) { 955 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 956 return false; 957 JTH->Emitted = true; 958 } 959 return true; 960 } 961 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 962 Value *Cond, 963 MachineBasicBlock *Fallthrough, 964 bool FallthroughUnreachable, 965 BranchProbability UnhandledProbs, 966 MachineBasicBlock *CurMBB, 967 MachineIRBuilder &MIB, 968 MachineBasicBlock *SwitchMBB) { 969 using namespace SwitchCG; 970 const Value *RHS, *LHS, *MHS; 971 CmpInst::Predicate Pred; 972 if (I->Low == I->High) { 973 // Check Cond == I->Low. 974 Pred = CmpInst::ICMP_EQ; 975 LHS = Cond; 976 RHS = I->Low; 977 MHS = nullptr; 978 } else { 979 // Check I->Low <= Cond <= I->High. 980 Pred = CmpInst::ICMP_SLE; 981 LHS = I->Low; 982 MHS = Cond; 983 RHS = I->High; 984 } 985 986 // If Fallthrough is unreachable, fold away the comparison. 987 // The false probability is the sum of all unhandled cases. 988 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 989 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 990 991 emitSwitchCase(CB, SwitchMBB, MIB); 992 return true; 993 } 994 995 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B, 996 MachineBasicBlock *SwitchBB) { 997 MachineIRBuilder &MIB = *CurBuilder; 998 MIB.setMBB(*SwitchBB); 999 1000 // Subtract the minimum value. 1001 Register SwitchOpReg = getOrCreateVReg(*B.SValue); 1002 1003 LLT SwitchOpTy = MRI->getType(SwitchOpReg); 1004 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0); 1005 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg); 1006 1007 // Ensure that the type will fit the mask value. 1008 LLT MaskTy = SwitchOpTy; 1009 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) { 1010 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) { 1011 // Switch table case range are encoded into series of masks. 1012 // Just use pointer type, it's guaranteed to fit. 1013 MaskTy = LLT::scalar(64); 1014 break; 1015 } 1016 } 1017 Register SubReg = RangeSub.getReg(0); 1018 if (SwitchOpTy != MaskTy) 1019 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0); 1020 1021 B.RegVT = getMVTForLLT(MaskTy); 1022 B.Reg = SubReg; 1023 1024 MachineBasicBlock *MBB = B.Cases[0].ThisBB; 1025 1026 if (!B.FallthroughUnreachable) 1027 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 1028 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 1029 1030 SwitchBB->normalizeSuccProbs(); 1031 1032 if (!B.FallthroughUnreachable) { 1033 // Conditional branch to the default block. 1034 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range); 1035 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1), 1036 RangeSub, RangeCst); 1037 MIB.buildBrCond(RangeCmp, *B.Default); 1038 } 1039 1040 // Avoid emitting unnecessary branches to the next block. 1041 if (MBB != SwitchBB->getNextNode()) 1042 MIB.buildBr(*MBB); 1043 } 1044 1045 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB, 1046 MachineBasicBlock *NextMBB, 1047 BranchProbability BranchProbToNext, 1048 Register Reg, SwitchCG::BitTestCase &B, 1049 MachineBasicBlock *SwitchBB) { 1050 MachineIRBuilder &MIB = *CurBuilder; 1051 MIB.setMBB(*SwitchBB); 1052 1053 LLT SwitchTy = getLLTForMVT(BB.RegVT); 1054 Register Cmp; 1055 unsigned PopCount = countPopulation(B.Mask); 1056 if (PopCount == 1) { 1057 // Testing for a single bit; just compare the shift count with what it 1058 // would need to be to shift a 1 bit in that position. 1059 auto MaskTrailingZeros = 1060 MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask)); 1061 Cmp = 1062 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros) 1063 .getReg(0); 1064 } else if (PopCount == BB.Range) { 1065 // There is only one zero bit in the range, test for it directly. 1066 auto MaskTrailingOnes = 1067 MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask)); 1068 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes) 1069 .getReg(0); 1070 } else { 1071 // Make desired shift. 1072 auto CstOne = MIB.buildConstant(SwitchTy, 1); 1073 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg); 1074 1075 // Emit bit tests and jumps. 1076 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask); 1077 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask); 1078 auto CstZero = MIB.buildConstant(SwitchTy, 0); 1079 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero) 1080 .getReg(0); 1081 } 1082 1083 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 1084 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 1085 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 1086 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 1087 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 1088 // one as they are relative probabilities (and thus work more like weights), 1089 // and hence we need to normalize them to let the sum of them become one. 1090 SwitchBB->normalizeSuccProbs(); 1091 1092 // Record the fact that the IR edge from the header to the bit test target 1093 // will go through our new block. Neeeded for PHIs to have nodes added. 1094 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()}, 1095 SwitchBB); 1096 1097 MIB.buildBrCond(Cmp, *B.TargetBB); 1098 1099 // Avoid emitting unnecessary branches to the next block. 1100 if (NextMBB != SwitchBB->getNextNode()) 1101 MIB.buildBr(*NextMBB); 1102 } 1103 1104 bool IRTranslator::lowerBitTestWorkItem( 1105 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB, 1106 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB, 1107 MachineIRBuilder &MIB, MachineFunction::iterator BBI, 1108 BranchProbability DefaultProb, BranchProbability UnhandledProbs, 1109 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough, 1110 bool FallthroughUnreachable) { 1111 using namespace SwitchCG; 1112 MachineFunction *CurMF = SwitchMBB->getParent(); 1113 // FIXME: Optimize away range check based on pivot comparisons. 1114 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 1115 // The bit test blocks haven't been inserted yet; insert them here. 1116 for (BitTestCase &BTC : BTB->Cases) 1117 CurMF->insert(BBI, BTC.ThisBB); 1118 1119 // Fill in fields of the BitTestBlock. 1120 BTB->Parent = CurMBB; 1121 BTB->Default = Fallthrough; 1122 1123 BTB->DefaultProb = UnhandledProbs; 1124 // If the cases in bit test don't form a contiguous range, we evenly 1125 // distribute the probability on the edge to Fallthrough to two 1126 // successors of CurMBB. 1127 if (!BTB->ContiguousRange) { 1128 BTB->Prob += DefaultProb / 2; 1129 BTB->DefaultProb -= DefaultProb / 2; 1130 } 1131 1132 if (FallthroughUnreachable) 1133 BTB->FallthroughUnreachable = true; 1134 1135 // If we're in the right place, emit the bit test header right now. 1136 if (CurMBB == SwitchMBB) { 1137 emitBitTestHeader(*BTB, SwitchMBB); 1138 BTB->Emitted = true; 1139 } 1140 return true; 1141 } 1142 1143 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 1144 Value *Cond, 1145 MachineBasicBlock *SwitchMBB, 1146 MachineBasicBlock *DefaultMBB, 1147 MachineIRBuilder &MIB) { 1148 using namespace SwitchCG; 1149 MachineFunction *CurMF = FuncInfo.MF; 1150 MachineBasicBlock *NextMBB = nullptr; 1151 MachineFunction::iterator BBI(W.MBB); 1152 if (++BBI != FuncInfo.MF->end()) 1153 NextMBB = &*BBI; 1154 1155 if (EnableOpts) { 1156 // Here, we order cases by probability so the most likely case will be 1157 // checked first. However, two clusters can have the same probability in 1158 // which case their relative ordering is non-deterministic. So we use Low 1159 // as a tie-breaker as clusters are guaranteed to never overlap. 1160 llvm::sort(W.FirstCluster, W.LastCluster + 1, 1161 [](const CaseCluster &a, const CaseCluster &b) { 1162 return a.Prob != b.Prob 1163 ? a.Prob > b.Prob 1164 : a.Low->getValue().slt(b.Low->getValue()); 1165 }); 1166 1167 // Rearrange the case blocks so that the last one falls through if possible 1168 // without changing the order of probabilities. 1169 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 1170 --I; 1171 if (I->Prob > W.LastCluster->Prob) 1172 break; 1173 if (I->Kind == CC_Range && I->MBB == NextMBB) { 1174 std::swap(*I, *W.LastCluster); 1175 break; 1176 } 1177 } 1178 } 1179 1180 // Compute total probability. 1181 BranchProbability DefaultProb = W.DefaultProb; 1182 BranchProbability UnhandledProbs = DefaultProb; 1183 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 1184 UnhandledProbs += I->Prob; 1185 1186 MachineBasicBlock *CurMBB = W.MBB; 1187 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 1188 bool FallthroughUnreachable = false; 1189 MachineBasicBlock *Fallthrough; 1190 if (I == W.LastCluster) { 1191 // For the last cluster, fall through to the default destination. 1192 Fallthrough = DefaultMBB; 1193 FallthroughUnreachable = isa<UnreachableInst>( 1194 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 1195 } else { 1196 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 1197 CurMF->insert(BBI, Fallthrough); 1198 } 1199 UnhandledProbs -= I->Prob; 1200 1201 switch (I->Kind) { 1202 case CC_BitTests: { 1203 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1204 DefaultProb, UnhandledProbs, I, Fallthrough, 1205 FallthroughUnreachable)) { 1206 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch"); 1207 return false; 1208 } 1209 break; 1210 } 1211 1212 case CC_JumpTable: { 1213 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1214 UnhandledProbs, I, Fallthrough, 1215 FallthroughUnreachable)) { 1216 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 1217 return false; 1218 } 1219 break; 1220 } 1221 case CC_Range: { 1222 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 1223 FallthroughUnreachable, UnhandledProbs, 1224 CurMBB, MIB, SwitchMBB)) { 1225 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 1226 return false; 1227 } 1228 break; 1229 } 1230 } 1231 CurMBB = Fallthrough; 1232 } 1233 1234 return true; 1235 } 1236 1237 bool IRTranslator::translateIndirectBr(const User &U, 1238 MachineIRBuilder &MIRBuilder) { 1239 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 1240 1241 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 1242 MIRBuilder.buildBrIndirect(Tgt); 1243 1244 // Link successors. 1245 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 1246 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 1247 for (const BasicBlock *Succ : successors(&BrInst)) { 1248 // It's legal for indirectbr instructions to have duplicate blocks in the 1249 // destination list. We don't allow this in MIR. Skip anything that's 1250 // already a successor. 1251 if (!AddedSuccessors.insert(Succ).second) 1252 continue; 1253 CurBB.addSuccessor(&getMBB(*Succ)); 1254 } 1255 1256 return true; 1257 } 1258 1259 static bool isSwiftError(const Value *V) { 1260 if (auto Arg = dyn_cast<Argument>(V)) 1261 return Arg->hasSwiftErrorAttr(); 1262 if (auto AI = dyn_cast<AllocaInst>(V)) 1263 return AI->isSwiftError(); 1264 return false; 1265 } 1266 1267 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 1268 const LoadInst &LI = cast<LoadInst>(U); 1269 if (DL->getTypeStoreSize(LI.getType()) == 0) 1270 return true; 1271 1272 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 1273 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 1274 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 1275 1276 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 1277 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1278 1279 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 1280 assert(Regs.size() == 1 && "swifterror should be single pointer"); 1281 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 1282 LI.getPointerOperand()); 1283 MIRBuilder.buildCopy(Regs[0], VReg); 1284 return true; 1285 } 1286 1287 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1288 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 1289 1290 const MDNode *Ranges = 1291 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 1292 for (unsigned i = 0; i < Regs.size(); ++i) { 1293 Register Addr; 1294 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1295 1296 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 1297 Align BaseAlign = getMemOpAlign(LI); 1298 AAMDNodes AAMetadata; 1299 LI.getAAMetadata(AAMetadata); 1300 auto MMO = MF->getMachineMemOperand( 1301 Ptr, Flags, MRI->getType(Regs[i]), 1302 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges, 1303 LI.getSyncScopeID(), LI.getOrdering()); 1304 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 1305 } 1306 1307 return true; 1308 } 1309 1310 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 1311 const StoreInst &SI = cast<StoreInst>(U); 1312 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 1313 return true; 1314 1315 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 1316 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 1317 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 1318 1319 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 1320 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1321 1322 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 1323 assert(Vals.size() == 1 && "swifterror should be single pointer"); 1324 1325 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 1326 SI.getPointerOperand()); 1327 MIRBuilder.buildCopy(VReg, Vals[0]); 1328 return true; 1329 } 1330 1331 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1332 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 1333 1334 for (unsigned i = 0; i < Vals.size(); ++i) { 1335 Register Addr; 1336 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1337 1338 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 1339 Align BaseAlign = getMemOpAlign(SI); 1340 AAMDNodes AAMetadata; 1341 SI.getAAMetadata(AAMetadata); 1342 auto MMO = MF->getMachineMemOperand( 1343 Ptr, Flags, MRI->getType(Vals[i]), 1344 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr, 1345 SI.getSyncScopeID(), SI.getOrdering()); 1346 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 1347 } 1348 return true; 1349 } 1350 1351 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 1352 const Value *Src = U.getOperand(0); 1353 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 1354 1355 // getIndexedOffsetInType is designed for GEPs, so the first index is the 1356 // usual array element rather than looking into the actual aggregate. 1357 SmallVector<Value *, 1> Indices; 1358 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 1359 1360 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 1361 for (auto Idx : EVI->indices()) 1362 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1363 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 1364 for (auto Idx : IVI->indices()) 1365 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1366 } else { 1367 for (unsigned i = 1; i < U.getNumOperands(); ++i) 1368 Indices.push_back(U.getOperand(i)); 1369 } 1370 1371 return 8 * static_cast<uint64_t>( 1372 DL.getIndexedOffsetInType(Src->getType(), Indices)); 1373 } 1374 1375 bool IRTranslator::translateExtractValue(const User &U, 1376 MachineIRBuilder &MIRBuilder) { 1377 const Value *Src = U.getOperand(0); 1378 uint64_t Offset = getOffsetFromIndices(U, *DL); 1379 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1380 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 1381 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 1382 auto &DstRegs = allocateVRegs(U); 1383 1384 for (unsigned i = 0; i < DstRegs.size(); ++i) 1385 DstRegs[i] = SrcRegs[Idx++]; 1386 1387 return true; 1388 } 1389 1390 bool IRTranslator::translateInsertValue(const User &U, 1391 MachineIRBuilder &MIRBuilder) { 1392 const Value *Src = U.getOperand(0); 1393 uint64_t Offset = getOffsetFromIndices(U, *DL); 1394 auto &DstRegs = allocateVRegs(U); 1395 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 1396 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1397 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 1398 auto InsertedIt = InsertedRegs.begin(); 1399 1400 for (unsigned i = 0; i < DstRegs.size(); ++i) { 1401 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 1402 DstRegs[i] = *InsertedIt++; 1403 else 1404 DstRegs[i] = SrcRegs[i]; 1405 } 1406 1407 return true; 1408 } 1409 1410 bool IRTranslator::translateSelect(const User &U, 1411 MachineIRBuilder &MIRBuilder) { 1412 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1413 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1414 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1415 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1416 1417 uint16_t Flags = 0; 1418 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 1419 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 1420 1421 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1422 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1423 } 1424 1425 return true; 1426 } 1427 1428 bool IRTranslator::translateCopy(const User &U, const Value &V, 1429 MachineIRBuilder &MIRBuilder) { 1430 Register Src = getOrCreateVReg(V); 1431 auto &Regs = *VMap.getVRegs(U); 1432 if (Regs.empty()) { 1433 Regs.push_back(Src); 1434 VMap.getOffsets(U)->push_back(0); 1435 } else { 1436 // If we already assigned a vreg for this instruction, we can't change that. 1437 // Emit a copy to satisfy the users we already emitted. 1438 MIRBuilder.buildCopy(Regs[0], Src); 1439 } 1440 return true; 1441 } 1442 1443 bool IRTranslator::translateBitCast(const User &U, 1444 MachineIRBuilder &MIRBuilder) { 1445 // If we're bitcasting to the source type, we can reuse the source vreg. 1446 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1447 getLLTForType(*U.getType(), *DL)) 1448 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1449 1450 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1451 } 1452 1453 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1454 MachineIRBuilder &MIRBuilder) { 1455 Register Op = getOrCreateVReg(*U.getOperand(0)); 1456 Register Res = getOrCreateVReg(U); 1457 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1458 return true; 1459 } 1460 1461 bool IRTranslator::translateGetElementPtr(const User &U, 1462 MachineIRBuilder &MIRBuilder) { 1463 Value &Op0 = *U.getOperand(0); 1464 Register BaseReg = getOrCreateVReg(Op0); 1465 Type *PtrIRTy = Op0.getType(); 1466 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1467 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1468 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1469 1470 // Normalize Vector GEP - all scalar operands should be converted to the 1471 // splat vector. 1472 unsigned VectorWidth = 0; 1473 1474 // True if we should use a splat vector; using VectorWidth alone is not 1475 // sufficient. 1476 bool WantSplatVector = false; 1477 if (auto *VT = dyn_cast<VectorType>(U.getType())) { 1478 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1479 // We don't produce 1 x N vectors; those are treated as scalars. 1480 WantSplatVector = VectorWidth > 1; 1481 } 1482 1483 // We might need to splat the base pointer into a vector if the offsets 1484 // are vectors. 1485 if (WantSplatVector && !PtrTy.isVector()) { 1486 BaseReg = 1487 MIRBuilder 1488 .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg) 1489 .getReg(0); 1490 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1491 PtrTy = getLLTForType(*PtrIRTy, *DL); 1492 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1493 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1494 } 1495 1496 int64_t Offset = 0; 1497 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1498 GTI != E; ++GTI) { 1499 const Value *Idx = GTI.getOperand(); 1500 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1501 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1502 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1503 continue; 1504 } else { 1505 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1506 1507 // If this is a scalar constant or a splat vector of constants, 1508 // handle it quickly. 1509 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1510 Offset += ElementSize * CI->getSExtValue(); 1511 continue; 1512 } 1513 1514 if (Offset != 0) { 1515 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1516 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1517 .getReg(0); 1518 Offset = 0; 1519 } 1520 1521 Register IdxReg = getOrCreateVReg(*Idx); 1522 LLT IdxTy = MRI->getType(IdxReg); 1523 if (IdxTy != OffsetTy) { 1524 if (!IdxTy.isVector() && WantSplatVector) { 1525 IdxReg = MIRBuilder.buildSplatVector( 1526 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1527 } 1528 1529 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1530 } 1531 1532 // N = N + Idx * ElementSize; 1533 // Avoid doing it for ElementSize of 1. 1534 Register GepOffsetReg; 1535 if (ElementSize != 1) { 1536 auto ElementSizeMIB = MIRBuilder.buildConstant( 1537 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1538 GepOffsetReg = 1539 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1540 } else 1541 GepOffsetReg = IdxReg; 1542 1543 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1544 } 1545 } 1546 1547 if (Offset != 0) { 1548 auto OffsetMIB = 1549 MIRBuilder.buildConstant(OffsetTy, Offset); 1550 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1551 return true; 1552 } 1553 1554 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1555 return true; 1556 } 1557 1558 bool IRTranslator::translateMemFunc(const CallInst &CI, 1559 MachineIRBuilder &MIRBuilder, 1560 unsigned Opcode) { 1561 1562 // If the source is undef, then just emit a nop. 1563 if (isa<UndefValue>(CI.getArgOperand(1))) 1564 return true; 1565 1566 SmallVector<Register, 3> SrcRegs; 1567 1568 unsigned MinPtrSize = UINT_MAX; 1569 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) { 1570 Register SrcReg = getOrCreateVReg(**AI); 1571 LLT SrcTy = MRI->getType(SrcReg); 1572 if (SrcTy.isPointer()) 1573 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize); 1574 SrcRegs.push_back(SrcReg); 1575 } 1576 1577 LLT SizeTy = LLT::scalar(MinPtrSize); 1578 1579 // The size operand should be the minimum of the pointer sizes. 1580 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1]; 1581 if (MRI->getType(SizeOpReg) != SizeTy) 1582 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0); 1583 1584 auto ICall = MIRBuilder.buildInstr(Opcode); 1585 for (Register SrcReg : SrcRegs) 1586 ICall.addUse(SrcReg); 1587 1588 Align DstAlign; 1589 Align SrcAlign; 1590 unsigned IsVol = 1591 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1592 ->getZExtValue(); 1593 1594 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1595 DstAlign = MCI->getDestAlign().valueOrOne(); 1596 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1597 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) { 1598 DstAlign = MCI->getDestAlign().valueOrOne(); 1599 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1600 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1601 DstAlign = MMI->getDestAlign().valueOrOne(); 1602 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1603 } else { 1604 auto *MSI = cast<MemSetInst>(&CI); 1605 DstAlign = MSI->getDestAlign().valueOrOne(); 1606 } 1607 1608 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) { 1609 // We need to propagate the tail call flag from the IR inst as an argument. 1610 // Otherwise, we have to pessimize and assume later that we cannot tail call 1611 // any memory intrinsics. 1612 ICall.addImm(CI.isTailCall() ? 1 : 0); 1613 } 1614 1615 // Create mem operands to store the alignment and volatile info. 1616 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1617 ICall.addMemOperand(MF->getMachineMemOperand( 1618 MachinePointerInfo(CI.getArgOperand(0)), 1619 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1620 if (Opcode != TargetOpcode::G_MEMSET) 1621 ICall.addMemOperand(MF->getMachineMemOperand( 1622 MachinePointerInfo(CI.getArgOperand(1)), 1623 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1624 1625 return true; 1626 } 1627 1628 void IRTranslator::getStackGuard(Register DstReg, 1629 MachineIRBuilder &MIRBuilder) { 1630 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1631 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1632 auto MIB = 1633 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1634 1635 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1636 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1637 if (!Global) 1638 return; 1639 1640 unsigned AddrSpace = Global->getType()->getPointerAddressSpace(); 1641 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace)); 1642 1643 MachinePointerInfo MPInfo(Global); 1644 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1645 MachineMemOperand::MODereferenceable; 1646 MachineMemOperand *MemRef = MF->getMachineMemOperand( 1647 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace)); 1648 MIB.setMemRefs({MemRef}); 1649 } 1650 1651 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1652 MachineIRBuilder &MIRBuilder) { 1653 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1654 MIRBuilder.buildInstr( 1655 Op, {ResRegs[0], ResRegs[1]}, 1656 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1657 1658 return true; 1659 } 1660 1661 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI, 1662 MachineIRBuilder &MIRBuilder) { 1663 Register Dst = getOrCreateVReg(CI); 1664 Register Src0 = getOrCreateVReg(*CI.getOperand(0)); 1665 Register Src1 = getOrCreateVReg(*CI.getOperand(1)); 1666 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 1667 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale }); 1668 return true; 1669 } 1670 1671 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1672 switch (ID) { 1673 default: 1674 break; 1675 case Intrinsic::bswap: 1676 return TargetOpcode::G_BSWAP; 1677 case Intrinsic::bitreverse: 1678 return TargetOpcode::G_BITREVERSE; 1679 case Intrinsic::fshl: 1680 return TargetOpcode::G_FSHL; 1681 case Intrinsic::fshr: 1682 return TargetOpcode::G_FSHR; 1683 case Intrinsic::ceil: 1684 return TargetOpcode::G_FCEIL; 1685 case Intrinsic::cos: 1686 return TargetOpcode::G_FCOS; 1687 case Intrinsic::ctpop: 1688 return TargetOpcode::G_CTPOP; 1689 case Intrinsic::exp: 1690 return TargetOpcode::G_FEXP; 1691 case Intrinsic::exp2: 1692 return TargetOpcode::G_FEXP2; 1693 case Intrinsic::fabs: 1694 return TargetOpcode::G_FABS; 1695 case Intrinsic::copysign: 1696 return TargetOpcode::G_FCOPYSIGN; 1697 case Intrinsic::minnum: 1698 return TargetOpcode::G_FMINNUM; 1699 case Intrinsic::maxnum: 1700 return TargetOpcode::G_FMAXNUM; 1701 case Intrinsic::minimum: 1702 return TargetOpcode::G_FMINIMUM; 1703 case Intrinsic::maximum: 1704 return TargetOpcode::G_FMAXIMUM; 1705 case Intrinsic::canonicalize: 1706 return TargetOpcode::G_FCANONICALIZE; 1707 case Intrinsic::floor: 1708 return TargetOpcode::G_FFLOOR; 1709 case Intrinsic::fma: 1710 return TargetOpcode::G_FMA; 1711 case Intrinsic::log: 1712 return TargetOpcode::G_FLOG; 1713 case Intrinsic::log2: 1714 return TargetOpcode::G_FLOG2; 1715 case Intrinsic::log10: 1716 return TargetOpcode::G_FLOG10; 1717 case Intrinsic::nearbyint: 1718 return TargetOpcode::G_FNEARBYINT; 1719 case Intrinsic::pow: 1720 return TargetOpcode::G_FPOW; 1721 case Intrinsic::powi: 1722 return TargetOpcode::G_FPOWI; 1723 case Intrinsic::rint: 1724 return TargetOpcode::G_FRINT; 1725 case Intrinsic::round: 1726 return TargetOpcode::G_INTRINSIC_ROUND; 1727 case Intrinsic::roundeven: 1728 return TargetOpcode::G_INTRINSIC_ROUNDEVEN; 1729 case Intrinsic::sin: 1730 return TargetOpcode::G_FSIN; 1731 case Intrinsic::sqrt: 1732 return TargetOpcode::G_FSQRT; 1733 case Intrinsic::trunc: 1734 return TargetOpcode::G_INTRINSIC_TRUNC; 1735 case Intrinsic::readcyclecounter: 1736 return TargetOpcode::G_READCYCLECOUNTER; 1737 case Intrinsic::ptrmask: 1738 return TargetOpcode::G_PTRMASK; 1739 case Intrinsic::lrint: 1740 return TargetOpcode::G_INTRINSIC_LRINT; 1741 // FADD/FMUL require checking the FMF, so are handled elsewhere. 1742 case Intrinsic::vector_reduce_fmin: 1743 return TargetOpcode::G_VECREDUCE_FMIN; 1744 case Intrinsic::vector_reduce_fmax: 1745 return TargetOpcode::G_VECREDUCE_FMAX; 1746 case Intrinsic::vector_reduce_add: 1747 return TargetOpcode::G_VECREDUCE_ADD; 1748 case Intrinsic::vector_reduce_mul: 1749 return TargetOpcode::G_VECREDUCE_MUL; 1750 case Intrinsic::vector_reduce_and: 1751 return TargetOpcode::G_VECREDUCE_AND; 1752 case Intrinsic::vector_reduce_or: 1753 return TargetOpcode::G_VECREDUCE_OR; 1754 case Intrinsic::vector_reduce_xor: 1755 return TargetOpcode::G_VECREDUCE_XOR; 1756 case Intrinsic::vector_reduce_smax: 1757 return TargetOpcode::G_VECREDUCE_SMAX; 1758 case Intrinsic::vector_reduce_smin: 1759 return TargetOpcode::G_VECREDUCE_SMIN; 1760 case Intrinsic::vector_reduce_umax: 1761 return TargetOpcode::G_VECREDUCE_UMAX; 1762 case Intrinsic::vector_reduce_umin: 1763 return TargetOpcode::G_VECREDUCE_UMIN; 1764 case Intrinsic::lround: 1765 return TargetOpcode::G_LROUND; 1766 case Intrinsic::llround: 1767 return TargetOpcode::G_LLROUND; 1768 } 1769 return Intrinsic::not_intrinsic; 1770 } 1771 1772 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1773 Intrinsic::ID ID, 1774 MachineIRBuilder &MIRBuilder) { 1775 1776 unsigned Op = getSimpleIntrinsicOpcode(ID); 1777 1778 // Is this a simple intrinsic? 1779 if (Op == Intrinsic::not_intrinsic) 1780 return false; 1781 1782 // Yes. Let's translate it. 1783 SmallVector<llvm::SrcOp, 4> VRegs; 1784 for (auto &Arg : CI.arg_operands()) 1785 VRegs.push_back(getOrCreateVReg(*Arg)); 1786 1787 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1788 MachineInstr::copyFlagsFromInstruction(CI)); 1789 return true; 1790 } 1791 1792 // TODO: Include ConstainedOps.def when all strict instructions are defined. 1793 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 1794 switch (ID) { 1795 case Intrinsic::experimental_constrained_fadd: 1796 return TargetOpcode::G_STRICT_FADD; 1797 case Intrinsic::experimental_constrained_fsub: 1798 return TargetOpcode::G_STRICT_FSUB; 1799 case Intrinsic::experimental_constrained_fmul: 1800 return TargetOpcode::G_STRICT_FMUL; 1801 case Intrinsic::experimental_constrained_fdiv: 1802 return TargetOpcode::G_STRICT_FDIV; 1803 case Intrinsic::experimental_constrained_frem: 1804 return TargetOpcode::G_STRICT_FREM; 1805 case Intrinsic::experimental_constrained_fma: 1806 return TargetOpcode::G_STRICT_FMA; 1807 case Intrinsic::experimental_constrained_sqrt: 1808 return TargetOpcode::G_STRICT_FSQRT; 1809 default: 1810 return 0; 1811 } 1812 } 1813 1814 bool IRTranslator::translateConstrainedFPIntrinsic( 1815 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 1816 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 1817 1818 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 1819 if (!Opcode) 1820 return false; 1821 1822 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI); 1823 if (EB == fp::ExceptionBehavior::ebIgnore) 1824 Flags |= MachineInstr::NoFPExcept; 1825 1826 SmallVector<llvm::SrcOp, 4> VRegs; 1827 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0))); 1828 if (!FPI.isUnaryOp()) 1829 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1))); 1830 if (FPI.isTernaryOp()) 1831 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2))); 1832 1833 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 1834 return true; 1835 } 1836 1837 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1838 MachineIRBuilder &MIRBuilder) { 1839 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) { 1840 if (ORE->enabled()) { 1841 const Function &F = *MI->getParent()->getParent(); 1842 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1843 if (MemoryOpRemark::canHandle(MI, TLI)) { 1844 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI); 1845 R.visit(MI); 1846 } 1847 } 1848 } 1849 1850 // If this is a simple intrinsic (that is, we just need to add a def of 1851 // a vreg, and uses for each arg operand, then translate it. 1852 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1853 return true; 1854 1855 switch (ID) { 1856 default: 1857 break; 1858 case Intrinsic::lifetime_start: 1859 case Intrinsic::lifetime_end: { 1860 // No stack colouring in O0, discard region information. 1861 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1862 return true; 1863 1864 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1865 : TargetOpcode::LIFETIME_END; 1866 1867 // Get the underlying objects for the location passed on the lifetime 1868 // marker. 1869 SmallVector<const Value *, 4> Allocas; 1870 getUnderlyingObjects(CI.getArgOperand(1), Allocas); 1871 1872 // Iterate over each underlying object, creating lifetime markers for each 1873 // static alloca. Quit if we find a non-static alloca. 1874 for (const Value *V : Allocas) { 1875 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1876 if (!AI) 1877 continue; 1878 1879 if (!AI->isStaticAlloca()) 1880 return true; 1881 1882 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1883 } 1884 return true; 1885 } 1886 case Intrinsic::dbg_declare: { 1887 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1888 assert(DI.getVariable() && "Missing variable"); 1889 1890 const Value *Address = DI.getAddress(); 1891 if (!Address || isa<UndefValue>(Address)) { 1892 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1893 return true; 1894 } 1895 1896 assert(DI.getVariable()->isValidLocationForIntrinsic( 1897 MIRBuilder.getDebugLoc()) && 1898 "Expected inlined-at fields to agree"); 1899 auto AI = dyn_cast<AllocaInst>(Address); 1900 if (AI && AI->isStaticAlloca()) { 1901 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1902 // instructions (in fact, they get ignored if they *do* exist). 1903 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1904 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1905 } else { 1906 // A dbg.declare describes the address of a source variable, so lower it 1907 // into an indirect DBG_VALUE. 1908 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1909 DI.getVariable(), DI.getExpression()); 1910 } 1911 return true; 1912 } 1913 case Intrinsic::dbg_label: { 1914 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1915 assert(DI.getLabel() && "Missing label"); 1916 1917 assert(DI.getLabel()->isValidLocationForIntrinsic( 1918 MIRBuilder.getDebugLoc()) && 1919 "Expected inlined-at fields to agree"); 1920 1921 MIRBuilder.buildDbgLabel(DI.getLabel()); 1922 return true; 1923 } 1924 case Intrinsic::vaend: 1925 // No target I know of cares about va_end. Certainly no in-tree target 1926 // does. Simplest intrinsic ever! 1927 return true; 1928 case Intrinsic::vastart: { 1929 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1930 Value *Ptr = CI.getArgOperand(0); 1931 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1932 1933 // FIXME: Get alignment 1934 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1935 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 1936 MachineMemOperand::MOStore, 1937 ListSize, Align(1))); 1938 return true; 1939 } 1940 case Intrinsic::dbg_value: { 1941 // This form of DBG_VALUE is target-independent. 1942 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1943 const Value *V = DI.getValue(); 1944 assert(DI.getVariable()->isValidLocationForIntrinsic( 1945 MIRBuilder.getDebugLoc()) && 1946 "Expected inlined-at fields to agree"); 1947 if (!V || DI.hasArgList()) { 1948 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to 1949 // terminate any prior location. 1950 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1951 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1952 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1953 } else { 1954 for (Register Reg : getOrCreateVRegs(*V)) { 1955 // FIXME: This does not handle register-indirect values at offset 0. The 1956 // direct/indirect thing shouldn't really be handled by something as 1957 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1958 // pretty baked in right now. 1959 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1960 } 1961 } 1962 return true; 1963 } 1964 case Intrinsic::uadd_with_overflow: 1965 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1966 case Intrinsic::sadd_with_overflow: 1967 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1968 case Intrinsic::usub_with_overflow: 1969 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1970 case Intrinsic::ssub_with_overflow: 1971 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1972 case Intrinsic::umul_with_overflow: 1973 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1974 case Intrinsic::smul_with_overflow: 1975 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1976 case Intrinsic::uadd_sat: 1977 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 1978 case Intrinsic::sadd_sat: 1979 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 1980 case Intrinsic::usub_sat: 1981 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 1982 case Intrinsic::ssub_sat: 1983 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 1984 case Intrinsic::ushl_sat: 1985 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder); 1986 case Intrinsic::sshl_sat: 1987 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder); 1988 case Intrinsic::umin: 1989 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder); 1990 case Intrinsic::umax: 1991 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder); 1992 case Intrinsic::smin: 1993 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder); 1994 case Intrinsic::smax: 1995 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder); 1996 case Intrinsic::abs: 1997 // TODO: Preserve "int min is poison" arg in GMIR? 1998 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder); 1999 case Intrinsic::smul_fix: 2000 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder); 2001 case Intrinsic::umul_fix: 2002 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder); 2003 case Intrinsic::smul_fix_sat: 2004 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder); 2005 case Intrinsic::umul_fix_sat: 2006 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder); 2007 case Intrinsic::sdiv_fix: 2008 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder); 2009 case Intrinsic::udiv_fix: 2010 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder); 2011 case Intrinsic::sdiv_fix_sat: 2012 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder); 2013 case Intrinsic::udiv_fix_sat: 2014 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder); 2015 case Intrinsic::fmuladd: { 2016 const TargetMachine &TM = MF->getTarget(); 2017 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2018 Register Dst = getOrCreateVReg(CI); 2019 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 2020 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 2021 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 2022 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 2023 TLI.isFMAFasterThanFMulAndFAdd(*MF, 2024 TLI.getValueType(*DL, CI.getType()))) { 2025 // TODO: Revisit this to see if we should move this part of the 2026 // lowering to the combiner. 2027 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 2028 MachineInstr::copyFlagsFromInstruction(CI)); 2029 } else { 2030 LLT Ty = getLLTForType(*CI.getType(), *DL); 2031 auto FMul = MIRBuilder.buildFMul( 2032 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 2033 MIRBuilder.buildFAdd(Dst, FMul, Op2, 2034 MachineInstr::copyFlagsFromInstruction(CI)); 2035 } 2036 return true; 2037 } 2038 case Intrinsic::convert_from_fp16: 2039 // FIXME: This intrinsic should probably be removed from the IR. 2040 MIRBuilder.buildFPExt(getOrCreateVReg(CI), 2041 getOrCreateVReg(*CI.getArgOperand(0)), 2042 MachineInstr::copyFlagsFromInstruction(CI)); 2043 return true; 2044 case Intrinsic::convert_to_fp16: 2045 // FIXME: This intrinsic should probably be removed from the IR. 2046 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI), 2047 getOrCreateVReg(*CI.getArgOperand(0)), 2048 MachineInstr::copyFlagsFromInstruction(CI)); 2049 return true; 2050 case Intrinsic::memcpy_inline: 2051 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE); 2052 case Intrinsic::memcpy: 2053 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY); 2054 case Intrinsic::memmove: 2055 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE); 2056 case Intrinsic::memset: 2057 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET); 2058 case Intrinsic::eh_typeid_for: { 2059 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 2060 Register Reg = getOrCreateVReg(CI); 2061 unsigned TypeID = MF->getTypeIDFor(GV); 2062 MIRBuilder.buildConstant(Reg, TypeID); 2063 return true; 2064 } 2065 case Intrinsic::objectsize: 2066 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2067 2068 case Intrinsic::is_constant: 2069 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2070 2071 case Intrinsic::stackguard: 2072 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 2073 return true; 2074 case Intrinsic::stackprotector: { 2075 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2076 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 2077 getStackGuard(GuardVal, MIRBuilder); 2078 2079 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 2080 int FI = getOrCreateFrameIndex(*Slot); 2081 MF->getFrameInfo().setStackProtectorIndex(FI); 2082 2083 MIRBuilder.buildStore( 2084 GuardVal, getOrCreateVReg(*Slot), 2085 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 2086 MachineMemOperand::MOStore | 2087 MachineMemOperand::MOVolatile, 2088 PtrTy, Align(8))); 2089 return true; 2090 } 2091 case Intrinsic::stacksave: { 2092 // Save the stack pointer to the location provided by the intrinsic. 2093 Register Reg = getOrCreateVReg(CI); 2094 Register StackPtr = MF->getSubtarget() 2095 .getTargetLowering() 2096 ->getStackPointerRegisterToSaveRestore(); 2097 2098 // If the target doesn't specify a stack pointer, then fall back. 2099 if (!StackPtr) 2100 return false; 2101 2102 MIRBuilder.buildCopy(Reg, StackPtr); 2103 return true; 2104 } 2105 case Intrinsic::stackrestore: { 2106 // Restore the stack pointer from the location provided by the intrinsic. 2107 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 2108 Register StackPtr = MF->getSubtarget() 2109 .getTargetLowering() 2110 ->getStackPointerRegisterToSaveRestore(); 2111 2112 // If the target doesn't specify a stack pointer, then fall back. 2113 if (!StackPtr) 2114 return false; 2115 2116 MIRBuilder.buildCopy(StackPtr, Reg); 2117 return true; 2118 } 2119 case Intrinsic::cttz: 2120 case Intrinsic::ctlz: { 2121 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 2122 bool isTrailing = ID == Intrinsic::cttz; 2123 unsigned Opcode = isTrailing 2124 ? Cst->isZero() ? TargetOpcode::G_CTTZ 2125 : TargetOpcode::G_CTTZ_ZERO_UNDEF 2126 : Cst->isZero() ? TargetOpcode::G_CTLZ 2127 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 2128 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 2129 {getOrCreateVReg(*CI.getArgOperand(0))}); 2130 return true; 2131 } 2132 case Intrinsic::invariant_start: { 2133 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2134 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 2135 MIRBuilder.buildUndef(Undef); 2136 return true; 2137 } 2138 case Intrinsic::invariant_end: 2139 return true; 2140 case Intrinsic::expect: 2141 case Intrinsic::annotation: 2142 case Intrinsic::ptr_annotation: 2143 case Intrinsic::launder_invariant_group: 2144 case Intrinsic::strip_invariant_group: { 2145 // Drop the intrinsic, but forward the value. 2146 MIRBuilder.buildCopy(getOrCreateVReg(CI), 2147 getOrCreateVReg(*CI.getArgOperand(0))); 2148 return true; 2149 } 2150 case Intrinsic::assume: 2151 case Intrinsic::experimental_noalias_scope_decl: 2152 case Intrinsic::var_annotation: 2153 case Intrinsic::sideeffect: 2154 // Discard annotate attributes, assumptions, and artificial side-effects. 2155 return true; 2156 case Intrinsic::read_volatile_register: 2157 case Intrinsic::read_register: { 2158 Value *Arg = CI.getArgOperand(0); 2159 MIRBuilder 2160 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 2161 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 2162 return true; 2163 } 2164 case Intrinsic::write_register: { 2165 Value *Arg = CI.getArgOperand(0); 2166 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 2167 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 2168 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 2169 return true; 2170 } 2171 case Intrinsic::localescape: { 2172 MachineBasicBlock &EntryMBB = MF->front(); 2173 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName()); 2174 2175 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 2176 // is the same on all targets. 2177 for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) { 2178 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts(); 2179 if (isa<ConstantPointerNull>(Arg)) 2180 continue; // Skip null pointers. They represent a hole in index space. 2181 2182 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg)); 2183 MCSymbol *FrameAllocSym = 2184 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName, 2185 Idx); 2186 2187 // This should be inserted at the start of the entry block. 2188 auto LocalEscape = 2189 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE) 2190 .addSym(FrameAllocSym) 2191 .addFrameIndex(FI); 2192 2193 EntryMBB.insert(EntryMBB.begin(), LocalEscape); 2194 } 2195 2196 return true; 2197 } 2198 case Intrinsic::vector_reduce_fadd: 2199 case Intrinsic::vector_reduce_fmul: { 2200 // Need to check for the reassoc flag to decide whether we want a 2201 // sequential reduction opcode or not. 2202 Register Dst = getOrCreateVReg(CI); 2203 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0)); 2204 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1)); 2205 unsigned Opc = 0; 2206 if (!CI.hasAllowReassoc()) { 2207 // The sequential ordering case. 2208 Opc = ID == Intrinsic::vector_reduce_fadd 2209 ? TargetOpcode::G_VECREDUCE_SEQ_FADD 2210 : TargetOpcode::G_VECREDUCE_SEQ_FMUL; 2211 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc}, 2212 MachineInstr::copyFlagsFromInstruction(CI)); 2213 return true; 2214 } 2215 // We split the operation into a separate G_FADD/G_FMUL + the reduce, 2216 // since the associativity doesn't matter. 2217 unsigned ScalarOpc; 2218 if (ID == Intrinsic::vector_reduce_fadd) { 2219 Opc = TargetOpcode::G_VECREDUCE_FADD; 2220 ScalarOpc = TargetOpcode::G_FADD; 2221 } else { 2222 Opc = TargetOpcode::G_VECREDUCE_FMUL; 2223 ScalarOpc = TargetOpcode::G_FMUL; 2224 } 2225 LLT DstTy = MRI->getType(Dst); 2226 auto Rdx = MIRBuilder.buildInstr( 2227 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI)); 2228 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx}, 2229 MachineInstr::copyFlagsFromInstruction(CI)); 2230 2231 return true; 2232 } 2233 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 2234 case Intrinsic::INTRINSIC: 2235 #include "llvm/IR/ConstrainedOps.def" 2236 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 2237 MIRBuilder); 2238 2239 } 2240 return false; 2241 } 2242 2243 bool IRTranslator::translateInlineAsm(const CallBase &CB, 2244 MachineIRBuilder &MIRBuilder) { 2245 2246 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 2247 2248 if (!ALI) { 2249 LLVM_DEBUG( 2250 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 2251 return false; 2252 } 2253 2254 return ALI->lowerInlineAsm( 2255 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 2256 } 2257 2258 bool IRTranslator::translateCallBase(const CallBase &CB, 2259 MachineIRBuilder &MIRBuilder) { 2260 ArrayRef<Register> Res = getOrCreateVRegs(CB); 2261 2262 SmallVector<ArrayRef<Register>, 8> Args; 2263 Register SwiftInVReg = 0; 2264 Register SwiftErrorVReg = 0; 2265 for (auto &Arg : CB.args()) { 2266 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 2267 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 2268 LLT Ty = getLLTForType(*Arg->getType(), *DL); 2269 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 2270 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 2271 &CB, &MIRBuilder.getMBB(), Arg)); 2272 Args.emplace_back(makeArrayRef(SwiftInVReg)); 2273 SwiftErrorVReg = 2274 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 2275 continue; 2276 } 2277 Args.push_back(getOrCreateVRegs(*Arg)); 2278 } 2279 2280 if (auto *CI = dyn_cast<CallInst>(&CB)) { 2281 if (ORE->enabled()) { 2282 const Function &F = *CI->getParent()->getParent(); 2283 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2284 if (MemoryOpRemark::canHandle(CI, TLI)) { 2285 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI); 2286 R.visit(CI); 2287 } 2288 } 2289 } 2290 2291 // We don't set HasCalls on MFI here yet because call lowering may decide to 2292 // optimize into tail calls. Instead, we defer that to selection where a final 2293 // scan is done to check if any instructions are calls. 2294 bool Success = 2295 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 2296 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 2297 2298 // Check if we just inserted a tail call. 2299 if (Success) { 2300 assert(!HasTailCall && "Can't tail call return twice from block?"); 2301 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2302 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 2303 } 2304 2305 return Success; 2306 } 2307 2308 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 2309 const CallInst &CI = cast<CallInst>(U); 2310 auto TII = MF->getTarget().getIntrinsicInfo(); 2311 const Function *F = CI.getCalledFunction(); 2312 2313 // FIXME: support Windows dllimport function calls. 2314 if (F && (F->hasDLLImportStorageClass() || 2315 (MF->getTarget().getTargetTriple().isOSWindows() && 2316 F->hasExternalWeakLinkage()))) 2317 return false; 2318 2319 // FIXME: support control flow guard targets. 2320 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2321 return false; 2322 2323 if (CI.isInlineAsm()) 2324 return translateInlineAsm(CI, MIRBuilder); 2325 2326 if (F && F->hasFnAttribute("dontcall")) { 2327 unsigned LocCookie = 0; 2328 if (MDNode *MD = CI.getMetadata("srcloc")) 2329 LocCookie = 2330 mdconst::extract<ConstantInt>(MD->getOperand(0))->getZExtValue(); 2331 DiagnosticInfoDontCall D(F->getName(), LocCookie); 2332 F->getContext().diagnose(D); 2333 } 2334 2335 Intrinsic::ID ID = Intrinsic::not_intrinsic; 2336 if (F && F->isIntrinsic()) { 2337 ID = F->getIntrinsicID(); 2338 if (TII && ID == Intrinsic::not_intrinsic) 2339 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 2340 } 2341 2342 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 2343 return translateCallBase(CI, MIRBuilder); 2344 2345 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 2346 2347 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 2348 return true; 2349 2350 ArrayRef<Register> ResultRegs; 2351 if (!CI.getType()->isVoidTy()) 2352 ResultRegs = getOrCreateVRegs(CI); 2353 2354 // Ignore the callsite attributes. Backend code is most likely not expecting 2355 // an intrinsic to sometimes have side effects and sometimes not. 2356 MachineInstrBuilder MIB = 2357 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 2358 if (isa<FPMathOperator>(CI)) 2359 MIB->copyIRFlags(CI); 2360 2361 for (auto &Arg : enumerate(CI.arg_operands())) { 2362 // If this is required to be an immediate, don't materialize it in a 2363 // register. 2364 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 2365 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 2366 // imm arguments are more convenient than cimm (and realistically 2367 // probably sufficient), so use them. 2368 assert(CI->getBitWidth() <= 64 && 2369 "large intrinsic immediates not handled"); 2370 MIB.addImm(CI->getSExtValue()); 2371 } else { 2372 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 2373 } 2374 } else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) { 2375 auto *MDN = dyn_cast<MDNode>(MD->getMetadata()); 2376 if (!MDN) // This was probably an MDString. 2377 return false; 2378 MIB.addMetadata(MDN); 2379 } else { 2380 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 2381 if (VRegs.size() > 1) 2382 return false; 2383 MIB.addUse(VRegs[0]); 2384 } 2385 } 2386 2387 // Add a MachineMemOperand if it is a target mem intrinsic. 2388 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2389 TargetLowering::IntrinsicInfo Info; 2390 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 2391 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 2392 Align Alignment = Info.align.getValueOr( 2393 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 2394 LLT MemTy = Info.memVT.isSimple() 2395 ? getLLTForMVT(Info.memVT.getSimpleVT()) 2396 : LLT::scalar(Info.memVT.getStoreSizeInBits()); 2397 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 2398 Info.flags, MemTy, Alignment)); 2399 } 2400 2401 return true; 2402 } 2403 2404 bool IRTranslator::findUnwindDestinations( 2405 const BasicBlock *EHPadBB, 2406 BranchProbability Prob, 2407 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2408 &UnwindDests) { 2409 EHPersonality Personality = classifyEHPersonality( 2410 EHPadBB->getParent()->getFunction().getPersonalityFn()); 2411 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2412 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2413 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2414 bool IsSEH = isAsynchronousEHPersonality(Personality); 2415 2416 if (IsWasmCXX) { 2417 // Ignore this for now. 2418 return false; 2419 } 2420 2421 while (EHPadBB) { 2422 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2423 BasicBlock *NewEHPadBB = nullptr; 2424 if (isa<LandingPadInst>(Pad)) { 2425 // Stop on landingpads. They are not funclets. 2426 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2427 break; 2428 } 2429 if (isa<CleanupPadInst>(Pad)) { 2430 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2431 // personalities. 2432 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2433 UnwindDests.back().first->setIsEHScopeEntry(); 2434 UnwindDests.back().first->setIsEHFuncletEntry(); 2435 break; 2436 } 2437 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2438 // Add the catchpad handlers to the possible destinations. 2439 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2440 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob); 2441 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2442 if (IsMSVCCXX || IsCoreCLR) 2443 UnwindDests.back().first->setIsEHFuncletEntry(); 2444 if (!IsSEH) 2445 UnwindDests.back().first->setIsEHScopeEntry(); 2446 } 2447 NewEHPadBB = CatchSwitch->getUnwindDest(); 2448 } else { 2449 continue; 2450 } 2451 2452 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2453 if (BPI && NewEHPadBB) 2454 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2455 EHPadBB = NewEHPadBB; 2456 } 2457 return true; 2458 } 2459 2460 bool IRTranslator::translateInvoke(const User &U, 2461 MachineIRBuilder &MIRBuilder) { 2462 const InvokeInst &I = cast<InvokeInst>(U); 2463 MCContext &Context = MF->getContext(); 2464 2465 const BasicBlock *ReturnBB = I.getSuccessor(0); 2466 const BasicBlock *EHPadBB = I.getSuccessor(1); 2467 2468 const Function *Fn = I.getCalledFunction(); 2469 2470 // FIXME: support invoking patchpoint and statepoint intrinsics. 2471 if (Fn && Fn->isIntrinsic()) 2472 return false; 2473 2474 // FIXME: support whatever these are. 2475 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 2476 return false; 2477 2478 // FIXME: support control flow guard targets. 2479 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2480 return false; 2481 2482 // FIXME: support Windows exception handling. 2483 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI())) 2484 return false; 2485 2486 bool LowerInlineAsm = false; 2487 if (I.isInlineAsm()) { 2488 const InlineAsm *IA = cast<InlineAsm>(I.getCalledOperand()); 2489 if (!IA->canThrow()) { 2490 // Fast path without emitting EH_LABELs. 2491 2492 if (!translateInlineAsm(I, MIRBuilder)) 2493 return false; 2494 2495 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(), 2496 *ReturnMBB = &getMBB(*ReturnBB); 2497 2498 // Update successor info. 2499 addSuccessorWithProb(InvokeMBB, ReturnMBB, BranchProbability::getOne()); 2500 2501 MIRBuilder.buildBr(*ReturnMBB); 2502 return true; 2503 } else { 2504 LowerInlineAsm = true; 2505 } 2506 } 2507 2508 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 2509 // the region covered by the try. 2510 MCSymbol *BeginSymbol = Context.createTempSymbol(); 2511 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 2512 2513 if (LowerInlineAsm) { 2514 if (!translateInlineAsm(I, MIRBuilder)) 2515 return false; 2516 } else if (!translateCallBase(I, MIRBuilder)) 2517 return false; 2518 2519 MCSymbol *EndSymbol = Context.createTempSymbol(); 2520 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 2521 2522 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2523 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2524 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(); 2525 BranchProbability EHPadBBProb = 2526 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2527 : BranchProbability::getZero(); 2528 2529 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests)) 2530 return false; 2531 2532 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 2533 &ReturnMBB = getMBB(*ReturnBB); 2534 // Update successor info. 2535 addSuccessorWithProb(InvokeMBB, &ReturnMBB); 2536 for (auto &UnwindDest : UnwindDests) { 2537 UnwindDest.first->setIsEHPad(); 2538 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2539 } 2540 InvokeMBB->normalizeSuccProbs(); 2541 2542 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 2543 MIRBuilder.buildBr(ReturnMBB); 2544 return true; 2545 } 2546 2547 bool IRTranslator::translateCallBr(const User &U, 2548 MachineIRBuilder &MIRBuilder) { 2549 // FIXME: Implement this. 2550 return false; 2551 } 2552 2553 bool IRTranslator::translateLandingPad(const User &U, 2554 MachineIRBuilder &MIRBuilder) { 2555 const LandingPadInst &LP = cast<LandingPadInst>(U); 2556 2557 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 2558 2559 MBB.setIsEHPad(); 2560 2561 // If there aren't registers to copy the values into (e.g., during SjLj 2562 // exceptions), then don't bother. 2563 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2564 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 2565 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2566 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2567 return true; 2568 2569 // If landingpad's return type is token type, we don't create DAG nodes 2570 // for its exception pointer and selector value. The extraction of exception 2571 // pointer or selector value from token type landingpads is not currently 2572 // supported. 2573 if (LP.getType()->isTokenTy()) 2574 return true; 2575 2576 // Add a label to mark the beginning of the landing pad. Deletion of the 2577 // landing pad can thus be detected via the MachineModuleInfo. 2578 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 2579 .addSym(MF->addLandingPad(&MBB)); 2580 2581 // If the unwinder does not preserve all registers, ensure that the 2582 // function marks the clobbered registers as used. 2583 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 2584 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 2585 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 2586 2587 LLT Ty = getLLTForType(*LP.getType(), *DL); 2588 Register Undef = MRI->createGenericVirtualRegister(Ty); 2589 MIRBuilder.buildUndef(Undef); 2590 2591 SmallVector<LLT, 2> Tys; 2592 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 2593 Tys.push_back(getLLTForType(*Ty, *DL)); 2594 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 2595 2596 // Mark exception register as live in. 2597 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 2598 if (!ExceptionReg) 2599 return false; 2600 2601 MBB.addLiveIn(ExceptionReg); 2602 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 2603 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 2604 2605 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 2606 if (!SelectorReg) 2607 return false; 2608 2609 MBB.addLiveIn(SelectorReg); 2610 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 2611 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 2612 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 2613 2614 return true; 2615 } 2616 2617 bool IRTranslator::translateAlloca(const User &U, 2618 MachineIRBuilder &MIRBuilder) { 2619 auto &AI = cast<AllocaInst>(U); 2620 2621 if (AI.isSwiftError()) 2622 return true; 2623 2624 if (AI.isStaticAlloca()) { 2625 Register Res = getOrCreateVReg(AI); 2626 int FI = getOrCreateFrameIndex(AI); 2627 MIRBuilder.buildFrameIndex(Res, FI); 2628 return true; 2629 } 2630 2631 // FIXME: support stack probing for Windows. 2632 if (MF->getTarget().getTargetTriple().isOSWindows()) 2633 return false; 2634 2635 // Now we're in the harder dynamic case. 2636 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 2637 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 2638 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 2639 if (MRI->getType(NumElts) != IntPtrTy) { 2640 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 2641 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 2642 NumElts = ExtElts; 2643 } 2644 2645 Type *Ty = AI.getAllocatedType(); 2646 2647 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 2648 Register TySize = 2649 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 2650 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 2651 2652 // Round the size of the allocation up to the stack alignment size 2653 // by add SA-1 to the size. This doesn't overflow because we're computing 2654 // an address inside an alloca. 2655 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 2656 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 2657 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 2658 MachineInstr::NoUWrap); 2659 auto AlignCst = 2660 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 2661 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 2662 2663 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 2664 if (Alignment <= StackAlign) 2665 Alignment = Align(1); 2666 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 2667 2668 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 2669 assert(MF->getFrameInfo().hasVarSizedObjects()); 2670 return true; 2671 } 2672 2673 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 2674 // FIXME: We may need more info about the type. Because of how LLT works, 2675 // we're completely discarding the i64/double distinction here (amongst 2676 // others). Fortunately the ABIs I know of where that matters don't use va_arg 2677 // anyway but that's not guaranteed. 2678 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 2679 {getOrCreateVReg(*U.getOperand(0)), 2680 DL->getABITypeAlign(U.getType()).value()}); 2681 return true; 2682 } 2683 2684 bool IRTranslator::translateInsertElement(const User &U, 2685 MachineIRBuilder &MIRBuilder) { 2686 // If it is a <1 x Ty> vector, use the scalar as it is 2687 // not a legal vector type in LLT. 2688 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1) 2689 return translateCopy(U, *U.getOperand(1), MIRBuilder); 2690 2691 Register Res = getOrCreateVReg(U); 2692 Register Val = getOrCreateVReg(*U.getOperand(0)); 2693 Register Elt = getOrCreateVReg(*U.getOperand(1)); 2694 Register Idx = getOrCreateVReg(*U.getOperand(2)); 2695 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 2696 return true; 2697 } 2698 2699 bool IRTranslator::translateExtractElement(const User &U, 2700 MachineIRBuilder &MIRBuilder) { 2701 // If it is a <1 x Ty> vector, use the scalar as it is 2702 // not a legal vector type in LLT. 2703 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 2704 return translateCopy(U, *U.getOperand(0), MIRBuilder); 2705 2706 Register Res = getOrCreateVReg(U); 2707 Register Val = getOrCreateVReg(*U.getOperand(0)); 2708 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2709 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 2710 Register Idx; 2711 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 2712 if (CI->getBitWidth() != PreferredVecIdxWidth) { 2713 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 2714 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 2715 Idx = getOrCreateVReg(*NewIdxCI); 2716 } 2717 } 2718 if (!Idx) 2719 Idx = getOrCreateVReg(*U.getOperand(1)); 2720 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 2721 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 2722 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0); 2723 } 2724 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 2725 return true; 2726 } 2727 2728 bool IRTranslator::translateShuffleVector(const User &U, 2729 MachineIRBuilder &MIRBuilder) { 2730 ArrayRef<int> Mask; 2731 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 2732 Mask = SVI->getShuffleMask(); 2733 else 2734 Mask = cast<ConstantExpr>(U).getShuffleMask(); 2735 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 2736 MIRBuilder 2737 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 2738 {getOrCreateVReg(*U.getOperand(0)), 2739 getOrCreateVReg(*U.getOperand(1))}) 2740 .addShuffleMask(MaskAlloc); 2741 return true; 2742 } 2743 2744 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 2745 const PHINode &PI = cast<PHINode>(U); 2746 2747 SmallVector<MachineInstr *, 4> Insts; 2748 for (auto Reg : getOrCreateVRegs(PI)) { 2749 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 2750 Insts.push_back(MIB.getInstr()); 2751 } 2752 2753 PendingPHIs.emplace_back(&PI, std::move(Insts)); 2754 return true; 2755 } 2756 2757 bool IRTranslator::translateAtomicCmpXchg(const User &U, 2758 MachineIRBuilder &MIRBuilder) { 2759 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 2760 2761 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2762 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2763 2764 auto Res = getOrCreateVRegs(I); 2765 Register OldValRes = Res[0]; 2766 Register SuccessRes = Res[1]; 2767 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2768 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 2769 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 2770 2771 AAMDNodes AAMetadata; 2772 I.getAAMetadata(AAMetadata); 2773 2774 MIRBuilder.buildAtomicCmpXchgWithSuccess( 2775 OldValRes, SuccessRes, Addr, Cmp, NewVal, 2776 *MF->getMachineMemOperand( 2777 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp), 2778 getMemOpAlign(I), AAMetadata, nullptr, I.getSyncScopeID(), 2779 I.getSuccessOrdering(), I.getFailureOrdering())); 2780 return true; 2781 } 2782 2783 bool IRTranslator::translateAtomicRMW(const User &U, 2784 MachineIRBuilder &MIRBuilder) { 2785 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2786 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2787 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2788 2789 Register Res = getOrCreateVReg(I); 2790 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2791 Register Val = getOrCreateVReg(*I.getValOperand()); 2792 2793 unsigned Opcode = 0; 2794 switch (I.getOperation()) { 2795 default: 2796 return false; 2797 case AtomicRMWInst::Xchg: 2798 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2799 break; 2800 case AtomicRMWInst::Add: 2801 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2802 break; 2803 case AtomicRMWInst::Sub: 2804 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2805 break; 2806 case AtomicRMWInst::And: 2807 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2808 break; 2809 case AtomicRMWInst::Nand: 2810 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2811 break; 2812 case AtomicRMWInst::Or: 2813 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2814 break; 2815 case AtomicRMWInst::Xor: 2816 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2817 break; 2818 case AtomicRMWInst::Max: 2819 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2820 break; 2821 case AtomicRMWInst::Min: 2822 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2823 break; 2824 case AtomicRMWInst::UMax: 2825 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2826 break; 2827 case AtomicRMWInst::UMin: 2828 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2829 break; 2830 case AtomicRMWInst::FAdd: 2831 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2832 break; 2833 case AtomicRMWInst::FSub: 2834 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2835 break; 2836 } 2837 2838 AAMDNodes AAMetadata; 2839 I.getAAMetadata(AAMetadata); 2840 2841 MIRBuilder.buildAtomicRMW( 2842 Opcode, Res, Addr, Val, 2843 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2844 Flags, MRI->getType(Val), getMemOpAlign(I), 2845 AAMetadata, nullptr, I.getSyncScopeID(), 2846 I.getOrdering())); 2847 return true; 2848 } 2849 2850 bool IRTranslator::translateFence(const User &U, 2851 MachineIRBuilder &MIRBuilder) { 2852 const FenceInst &Fence = cast<FenceInst>(U); 2853 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2854 Fence.getSyncScopeID()); 2855 return true; 2856 } 2857 2858 bool IRTranslator::translateFreeze(const User &U, 2859 MachineIRBuilder &MIRBuilder) { 2860 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 2861 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 2862 2863 assert(DstRegs.size() == SrcRegs.size() && 2864 "Freeze with different source and destination type?"); 2865 2866 for (unsigned I = 0; I < DstRegs.size(); ++I) { 2867 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 2868 } 2869 2870 return true; 2871 } 2872 2873 void IRTranslator::finishPendingPhis() { 2874 #ifndef NDEBUG 2875 DILocationVerifier Verifier; 2876 GISelObserverWrapper WrapperObserver(&Verifier); 2877 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2878 #endif // ifndef NDEBUG 2879 for (auto &Phi : PendingPHIs) { 2880 const PHINode *PI = Phi.first; 2881 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2882 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2883 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2884 #ifndef NDEBUG 2885 Verifier.setCurrentInst(PI); 2886 #endif // ifndef NDEBUG 2887 2888 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2889 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2890 auto IRPred = PI->getIncomingBlock(i); 2891 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2892 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2893 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2894 continue; 2895 SeenPreds.insert(Pred); 2896 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2897 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2898 MIB.addUse(ValRegs[j]); 2899 MIB.addMBB(Pred); 2900 } 2901 } 2902 } 2903 } 2904 } 2905 2906 bool IRTranslator::valueIsSplit(const Value &V, 2907 SmallVectorImpl<uint64_t> *Offsets) { 2908 SmallVector<LLT, 4> SplitTys; 2909 if (Offsets && !Offsets->empty()) 2910 Offsets->clear(); 2911 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2912 return SplitTys.size() > 1; 2913 } 2914 2915 bool IRTranslator::translate(const Instruction &Inst) { 2916 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2917 2918 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2919 if (TLI.fallBackToDAGISel(Inst)) 2920 return false; 2921 2922 switch (Inst.getOpcode()) { 2923 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2924 case Instruction::OPCODE: \ 2925 return translate##OPCODE(Inst, *CurBuilder.get()); 2926 #include "llvm/IR/Instruction.def" 2927 default: 2928 return false; 2929 } 2930 } 2931 2932 bool IRTranslator::translate(const Constant &C, Register Reg) { 2933 // We only emit constants into the entry block from here. To prevent jumpy 2934 // debug behaviour set the line to 0. 2935 if (auto CurrInstDL = CurBuilder->getDL()) 2936 EntryBuilder->setDebugLoc(DILocation::get(C.getContext(), 0, 0, 2937 CurrInstDL.getScope(), 2938 CurrInstDL.getInlinedAt())); 2939 2940 if (auto CI = dyn_cast<ConstantInt>(&C)) 2941 EntryBuilder->buildConstant(Reg, *CI); 2942 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2943 EntryBuilder->buildFConstant(Reg, *CF); 2944 else if (isa<UndefValue>(C)) 2945 EntryBuilder->buildUndef(Reg); 2946 else if (isa<ConstantPointerNull>(C)) 2947 EntryBuilder->buildConstant(Reg, 0); 2948 else if (auto GV = dyn_cast<GlobalValue>(&C)) 2949 EntryBuilder->buildGlobalValue(Reg, GV); 2950 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2951 if (!isa<FixedVectorType>(CAZ->getType())) 2952 return false; 2953 // Return the scalar if it is a <1 x Ty> vector. 2954 unsigned NumElts = CAZ->getElementCount().getFixedValue(); 2955 if (NumElts == 1) 2956 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get()); 2957 SmallVector<Register, 4> Ops; 2958 for (unsigned I = 0; I < NumElts; ++I) { 2959 Constant &Elt = *CAZ->getElementValue(I); 2960 Ops.push_back(getOrCreateVReg(Elt)); 2961 } 2962 EntryBuilder->buildBuildVector(Reg, Ops); 2963 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2964 // Return the scalar if it is a <1 x Ty> vector. 2965 if (CV->getNumElements() == 1) 2966 return translateCopy(C, *CV->getElementAsConstant(0), 2967 *EntryBuilder.get()); 2968 SmallVector<Register, 4> Ops; 2969 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2970 Constant &Elt = *CV->getElementAsConstant(i); 2971 Ops.push_back(getOrCreateVReg(Elt)); 2972 } 2973 EntryBuilder->buildBuildVector(Reg, Ops); 2974 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2975 switch(CE->getOpcode()) { 2976 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2977 case Instruction::OPCODE: \ 2978 return translate##OPCODE(*CE, *EntryBuilder.get()); 2979 #include "llvm/IR/Instruction.def" 2980 default: 2981 return false; 2982 } 2983 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2984 if (CV->getNumOperands() == 1) 2985 return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get()); 2986 SmallVector<Register, 4> Ops; 2987 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2988 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2989 } 2990 EntryBuilder->buildBuildVector(Reg, Ops); 2991 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2992 EntryBuilder->buildBlockAddress(Reg, BA); 2993 } else 2994 return false; 2995 2996 return true; 2997 } 2998 2999 void IRTranslator::finalizeBasicBlock() { 3000 for (auto &BTB : SL->BitTestCases) { 3001 // Emit header first, if it wasn't already emitted. 3002 if (!BTB.Emitted) 3003 emitBitTestHeader(BTB, BTB.Parent); 3004 3005 BranchProbability UnhandledProb = BTB.Prob; 3006 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 3007 UnhandledProb -= BTB.Cases[j].ExtraProb; 3008 // Set the current basic block to the mbb we wish to insert the code into 3009 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB; 3010 // If all cases cover a contiguous range, it is not necessary to jump to 3011 // the default block after the last bit test fails. This is because the 3012 // range check during bit test header creation has guaranteed that every 3013 // case here doesn't go outside the range. In this case, there is no need 3014 // to perform the last bit test, as it will always be true. Instead, make 3015 // the second-to-last bit-test fall through to the target of the last bit 3016 // test, and delete the last bit test. 3017 3018 MachineBasicBlock *NextMBB; 3019 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3020 // Second-to-last bit-test with contiguous range: fall through to the 3021 // target of the final bit test. 3022 NextMBB = BTB.Cases[j + 1].TargetBB; 3023 } else if (j + 1 == ej) { 3024 // For the last bit test, fall through to Default. 3025 NextMBB = BTB.Default; 3026 } else { 3027 // Otherwise, fall through to the next bit test. 3028 NextMBB = BTB.Cases[j + 1].ThisBB; 3029 } 3030 3031 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB); 3032 3033 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3034 // We need to record the replacement phi edge here that normally 3035 // happens in emitBitTestCase before we delete the case, otherwise the 3036 // phi edge will be lost. 3037 addMachineCFGPred({BTB.Parent->getBasicBlock(), 3038 BTB.Cases[ej - 1].TargetBB->getBasicBlock()}, 3039 MBB); 3040 // Since we're not going to use the final bit test, remove it. 3041 BTB.Cases.pop_back(); 3042 break; 3043 } 3044 } 3045 // This is "default" BB. We have two jumps to it. From "header" BB and from 3046 // last "case" BB, unless the latter was skipped. 3047 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(), 3048 BTB.Default->getBasicBlock()}; 3049 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent); 3050 if (!BTB.ContiguousRange) { 3051 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB); 3052 } 3053 } 3054 SL->BitTestCases.clear(); 3055 3056 for (auto &JTCase : SL->JTCases) { 3057 // Emit header first, if it wasn't already emitted. 3058 if (!JTCase.first.Emitted) 3059 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 3060 3061 emitJumpTable(JTCase.second, JTCase.second.MBB); 3062 } 3063 SL->JTCases.clear(); 3064 3065 for (auto &SwCase : SL->SwitchCases) 3066 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder); 3067 SL->SwitchCases.clear(); 3068 } 3069 3070 void IRTranslator::finalizeFunction() { 3071 // Release the memory used by the different maps we 3072 // needed during the translation. 3073 PendingPHIs.clear(); 3074 VMap.reset(); 3075 FrameIndices.clear(); 3076 MachinePreds.clear(); 3077 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 3078 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 3079 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 3080 EntryBuilder.reset(); 3081 CurBuilder.reset(); 3082 FuncInfo.clear(); 3083 } 3084 3085 /// Returns true if a BasicBlock \p BB within a variadic function contains a 3086 /// variadic musttail call. 3087 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 3088 if (!IsVarArg) 3089 return false; 3090 3091 // Walk the block backwards, because tail calls usually only appear at the end 3092 // of a block. 3093 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 3094 const auto *CI = dyn_cast<CallInst>(&I); 3095 return CI && CI->isMustTailCall(); 3096 }); 3097 } 3098 3099 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 3100 MF = &CurMF; 3101 const Function &F = MF->getFunction(); 3102 GISelCSEAnalysisWrapper &Wrapper = 3103 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 3104 // Set the CSEConfig and run the analysis. 3105 GISelCSEInfo *CSEInfo = nullptr; 3106 TPC = &getAnalysis<TargetPassConfig>(); 3107 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 3108 ? EnableCSEInIRTranslator 3109 : TPC->isGISelCSEEnabled(); 3110 3111 if (EnableCSE) { 3112 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3113 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 3114 EntryBuilder->setCSEInfo(CSEInfo); 3115 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3116 CurBuilder->setCSEInfo(CSEInfo); 3117 } else { 3118 EntryBuilder = std::make_unique<MachineIRBuilder>(); 3119 CurBuilder = std::make_unique<MachineIRBuilder>(); 3120 } 3121 CLI = MF->getSubtarget().getCallLowering(); 3122 CurBuilder->setMF(*MF); 3123 EntryBuilder->setMF(*MF); 3124 MRI = &MF->getRegInfo(); 3125 DL = &F.getParent()->getDataLayout(); 3126 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 3127 const TargetMachine &TM = MF->getTarget(); 3128 TM.resetTargetOptions(F); 3129 EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F); 3130 FuncInfo.MF = MF; 3131 if (EnableOpts) 3132 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 3133 else 3134 FuncInfo.BPI = nullptr; 3135 3136 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF); 3137 3138 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 3139 3140 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 3141 SL->init(TLI, TM, *DL); 3142 3143 3144 3145 assert(PendingPHIs.empty() && "stale PHIs"); 3146 3147 // Targets which want to use big endian can enable it using 3148 // enableBigEndian() 3149 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) { 3150 // Currently we don't properly handle big endian code. 3151 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3152 F.getSubprogram(), &F.getEntryBlock()); 3153 R << "unable to translate in big endian mode"; 3154 reportTranslationError(*MF, *TPC, *ORE, R); 3155 } 3156 3157 // Release the per-function state when we return, whether we succeeded or not. 3158 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 3159 3160 // Setup a separate basic-block for the arguments and constants 3161 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 3162 MF->push_back(EntryBB); 3163 EntryBuilder->setMBB(*EntryBB); 3164 3165 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 3166 SwiftError.setFunction(CurMF); 3167 SwiftError.createEntriesInEntryBlock(DbgLoc); 3168 3169 bool IsVarArg = F.isVarArg(); 3170 bool HasMustTailInVarArgFn = false; 3171 3172 // Create all blocks, in IR order, to preserve the layout. 3173 for (const BasicBlock &BB: F) { 3174 auto *&MBB = BBToMBB[&BB]; 3175 3176 MBB = MF->CreateMachineBasicBlock(&BB); 3177 MF->push_back(MBB); 3178 3179 if (BB.hasAddressTaken()) 3180 MBB->setHasAddressTaken(); 3181 3182 if (!HasMustTailInVarArgFn) 3183 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 3184 } 3185 3186 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 3187 3188 // Make our arguments/constants entry block fallthrough to the IR entry block. 3189 EntryBB->addSuccessor(&getMBB(F.front())); 3190 3191 if (CLI->fallBackToDAGISel(*MF)) { 3192 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3193 F.getSubprogram(), &F.getEntryBlock()); 3194 R << "unable to lower function: " << ore::NV("Prototype", F.getType()); 3195 reportTranslationError(*MF, *TPC, *ORE, R); 3196 return false; 3197 } 3198 3199 // Lower the actual args into this basic block. 3200 SmallVector<ArrayRef<Register>, 8> VRegArgs; 3201 for (const Argument &Arg: F.args()) { 3202 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 3203 continue; // Don't handle zero sized types. 3204 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 3205 VRegArgs.push_back(VRegs); 3206 3207 if (Arg.hasSwiftErrorAttr()) { 3208 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 3209 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 3210 } 3211 } 3212 3213 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs, FuncInfo)) { 3214 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3215 F.getSubprogram(), &F.getEntryBlock()); 3216 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 3217 reportTranslationError(*MF, *TPC, *ORE, R); 3218 return false; 3219 } 3220 3221 // Need to visit defs before uses when translating instructions. 3222 GISelObserverWrapper WrapperObserver; 3223 if (EnableCSE && CSEInfo) 3224 WrapperObserver.addObserver(CSEInfo); 3225 { 3226 ReversePostOrderTraversal<const Function *> RPOT(&F); 3227 #ifndef NDEBUG 3228 DILocationVerifier Verifier; 3229 WrapperObserver.addObserver(&Verifier); 3230 #endif // ifndef NDEBUG 3231 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 3232 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 3233 for (const BasicBlock *BB : RPOT) { 3234 MachineBasicBlock &MBB = getMBB(*BB); 3235 // Set the insertion point of all the following translations to 3236 // the end of this basic block. 3237 CurBuilder->setMBB(MBB); 3238 HasTailCall = false; 3239 for (const Instruction &Inst : *BB) { 3240 // If we translated a tail call in the last step, then we know 3241 // everything after the call is either a return, or something that is 3242 // handled by the call itself. (E.g. a lifetime marker or assume 3243 // intrinsic.) In this case, we should stop translating the block and 3244 // move on. 3245 if (HasTailCall) 3246 break; 3247 #ifndef NDEBUG 3248 Verifier.setCurrentInst(&Inst); 3249 #endif // ifndef NDEBUG 3250 if (translate(Inst)) 3251 continue; 3252 3253 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3254 Inst.getDebugLoc(), BB); 3255 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 3256 3257 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 3258 std::string InstStrStorage; 3259 raw_string_ostream InstStr(InstStrStorage); 3260 InstStr << Inst; 3261 3262 R << ": '" << InstStr.str() << "'"; 3263 } 3264 3265 reportTranslationError(*MF, *TPC, *ORE, R); 3266 return false; 3267 } 3268 3269 finalizeBasicBlock(); 3270 } 3271 #ifndef NDEBUG 3272 WrapperObserver.removeObserver(&Verifier); 3273 #endif 3274 } 3275 3276 finishPendingPhis(); 3277 3278 SwiftError.propagateVRegs(); 3279 3280 // Merge the argument lowering and constants block with its single 3281 // successor, the LLVM-IR entry block. We want the basic block to 3282 // be maximal. 3283 assert(EntryBB->succ_size() == 1 && 3284 "Custom BB used for lowering should have only one successor"); 3285 // Get the successor of the current entry block. 3286 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 3287 assert(NewEntryBB.pred_size() == 1 && 3288 "LLVM-IR entry block has a predecessor!?"); 3289 // Move all the instruction from the current entry block to the 3290 // new entry block. 3291 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 3292 EntryBB->end()); 3293 3294 // Update the live-in information for the new entry block. 3295 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 3296 NewEntryBB.addLiveIn(LiveIn); 3297 NewEntryBB.sortUniqueLiveIns(); 3298 3299 // Get rid of the now empty basic block. 3300 EntryBB->removeSuccessor(&NewEntryBB); 3301 MF->remove(EntryBB); 3302 MF->DeleteMachineBasicBlock(EntryBB); 3303 3304 assert(&MF->front() == &NewEntryBB && 3305 "New entry wasn't next in the list of basic block!"); 3306 3307 // Initialize stack protector information. 3308 StackProtector &SP = getAnalysis<StackProtector>(); 3309 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 3310 3311 return false; 3312 } 3313