1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 22 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 23 #include "llvm/CodeGen/LowLevelType.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/StackProtector.h" 32 #include "llvm/CodeGen/TargetFrameLowering.h" 33 #include "llvm/CodeGen/TargetLowering.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/LowLevelTypeImpl.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetIntrinsicInfo.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <iterator> 71 #include <string> 72 #include <utility> 73 #include <vector> 74 75 #define DEBUG_TYPE "irtranslator" 76 77 using namespace llvm; 78 79 static cl::opt<bool> 80 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 81 cl::desc("Should enable CSE in irtranslator"), 82 cl::Optional, cl::init(false)); 83 char IRTranslator::ID = 0; 84 85 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 86 false, false) 87 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 88 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 89 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 90 false, false) 91 92 static void reportTranslationError(MachineFunction &MF, 93 const TargetPassConfig &TPC, 94 OptimizationRemarkEmitter &ORE, 95 OptimizationRemarkMissed &R) { 96 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 97 98 // Print the function name explicitly if we don't have a debug location (which 99 // makes the diagnostic less useful) or if we're going to emit a raw error. 100 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 101 R << (" (in function: " + MF.getName() + ")").str(); 102 103 if (TPC.isGlobalISelAbortEnabled()) 104 report_fatal_error(R.getMsg()); 105 else 106 ORE.emit(R); 107 } 108 109 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { 110 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 111 } 112 113 #ifndef NDEBUG 114 namespace { 115 /// Verify that every instruction created has the same DILocation as the 116 /// instruction being translated. 117 class DILocationVerifier : public GISelChangeObserver { 118 const Instruction *CurrInst = nullptr; 119 120 public: 121 DILocationVerifier() = default; 122 ~DILocationVerifier() = default; 123 124 const Instruction *getCurrentInst() const { return CurrInst; } 125 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 126 127 void erasingInstr(MachineInstr &MI) override {} 128 void changingInstr(MachineInstr &MI) override {} 129 void changedInstr(MachineInstr &MI) override {} 130 131 void createdInstr(MachineInstr &MI) override { 132 assert(getCurrentInst() && "Inserted instruction without a current MI"); 133 134 // Only print the check message if we're actually checking it. 135 #ifndef NDEBUG 136 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 137 << " was copied to " << MI); 138 #endif 139 assert(CurrInst->getDebugLoc() == MI.getDebugLoc() && 140 "Line info was not transferred to all instructions"); 141 } 142 }; 143 } // namespace 144 #endif // ifndef NDEBUG 145 146 147 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 148 AU.addRequired<StackProtector>(); 149 AU.addRequired<TargetPassConfig>(); 150 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 151 getSelectionDAGFallbackAnalysisUsage(AU); 152 MachineFunctionPass::getAnalysisUsage(AU); 153 } 154 155 IRTranslator::ValueToVRegInfo::VRegListT & 156 IRTranslator::allocateVRegs(const Value &Val) { 157 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 158 auto *Regs = VMap.getVRegs(Val); 159 auto *Offsets = VMap.getOffsets(Val); 160 SmallVector<LLT, 4> SplitTys; 161 computeValueLLTs(*DL, *Val.getType(), SplitTys, 162 Offsets->empty() ? Offsets : nullptr); 163 for (unsigned i = 0; i < SplitTys.size(); ++i) 164 Regs->push_back(0); 165 return *Regs; 166 } 167 168 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) { 169 auto VRegsIt = VMap.findVRegs(Val); 170 if (VRegsIt != VMap.vregs_end()) 171 return *VRegsIt->second; 172 173 if (Val.getType()->isVoidTy()) 174 return *VMap.getVRegs(Val); 175 176 // Create entry for this type. 177 auto *VRegs = VMap.getVRegs(Val); 178 auto *Offsets = VMap.getOffsets(Val); 179 180 assert(Val.getType()->isSized() && 181 "Don't know how to create an empty vreg"); 182 183 SmallVector<LLT, 4> SplitTys; 184 computeValueLLTs(*DL, *Val.getType(), SplitTys, 185 Offsets->empty() ? Offsets : nullptr); 186 187 if (!isa<Constant>(Val)) { 188 for (auto Ty : SplitTys) 189 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 190 return *VRegs; 191 } 192 193 if (Val.getType()->isAggregateType()) { 194 // UndefValue, ConstantAggregateZero 195 auto &C = cast<Constant>(Val); 196 unsigned Idx = 0; 197 while (auto Elt = C.getAggregateElement(Idx++)) { 198 auto EltRegs = getOrCreateVRegs(*Elt); 199 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 200 } 201 } else { 202 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 203 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 204 bool Success = translate(cast<Constant>(Val), VRegs->front()); 205 if (!Success) { 206 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 207 MF->getFunction().getSubprogram(), 208 &MF->getFunction().getEntryBlock()); 209 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 210 reportTranslationError(*MF, *TPC, *ORE, R); 211 return *VRegs; 212 } 213 } 214 215 return *VRegs; 216 } 217 218 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 219 if (FrameIndices.find(&AI) != FrameIndices.end()) 220 return FrameIndices[&AI]; 221 222 unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 223 unsigned Size = 224 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 225 226 // Always allocate at least one byte. 227 Size = std::max(Size, 1u); 228 229 unsigned Alignment = AI.getAlignment(); 230 if (!Alignment) 231 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 232 233 int &FI = FrameIndices[&AI]; 234 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 235 return FI; 236 } 237 238 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 239 unsigned Alignment = 0; 240 Type *ValTy = nullptr; 241 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 242 Alignment = SI->getAlignment(); 243 ValTy = SI->getValueOperand()->getType(); 244 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 245 Alignment = LI->getAlignment(); 246 ValTy = LI->getType(); 247 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 248 // TODO(PR27168): This instruction has no alignment attribute, but unlike 249 // the default alignment for load/store, the default here is to assume 250 // it has NATURAL alignment, not DataLayout-specified alignment. 251 const DataLayout &DL = AI->getModule()->getDataLayout(); 252 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 253 ValTy = AI->getCompareOperand()->getType(); 254 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 255 // TODO(PR27168): This instruction has no alignment attribute, but unlike 256 // the default alignment for load/store, the default here is to assume 257 // it has NATURAL alignment, not DataLayout-specified alignment. 258 const DataLayout &DL = AI->getModule()->getDataLayout(); 259 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 260 ValTy = AI->getType(); 261 } else { 262 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 263 R << "unable to translate memop: " << ore::NV("Opcode", &I); 264 reportTranslationError(*MF, *TPC, *ORE, R); 265 return 1; 266 } 267 268 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 269 } 270 271 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 272 MachineBasicBlock *&MBB = BBToMBB[&BB]; 273 assert(MBB && "BasicBlock was not encountered before"); 274 return *MBB; 275 } 276 277 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 278 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 279 MachinePreds[Edge].push_back(NewPred); 280 } 281 282 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 283 MachineIRBuilder &MIRBuilder) { 284 // FIXME: handle signed/unsigned wrapping flags. 285 286 // Get or create a virtual register for each value. 287 // Unless the value is a Constant => loadimm cst? 288 // or inline constant each time? 289 // Creation of a virtual register needs to have a size. 290 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 291 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 292 unsigned Res = getOrCreateVReg(U); 293 uint16_t Flags = 0; 294 if (isa<Instruction>(U)) { 295 const Instruction &I = cast<Instruction>(U); 296 Flags = MachineInstr::copyFlagsFromInstruction(I); 297 } 298 299 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 300 return true; 301 } 302 303 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 304 // -0.0 - X --> G_FNEG 305 if (isa<Constant>(U.getOperand(0)) && 306 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 307 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 308 .addDef(getOrCreateVReg(U)) 309 .addUse(getOrCreateVReg(*U.getOperand(1))); 310 return true; 311 } 312 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 313 } 314 315 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 316 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 317 .addDef(getOrCreateVReg(U)) 318 .addUse(getOrCreateVReg(*U.getOperand(0))); 319 return true; 320 } 321 322 bool IRTranslator::translateCompare(const User &U, 323 MachineIRBuilder &MIRBuilder) { 324 const CmpInst *CI = dyn_cast<CmpInst>(&U); 325 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 326 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 327 unsigned Res = getOrCreateVReg(U); 328 CmpInst::Predicate Pred = 329 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 330 cast<ConstantExpr>(U).getPredicate()); 331 if (CmpInst::isIntPredicate(Pred)) 332 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 333 else if (Pred == CmpInst::FCMP_FALSE) 334 MIRBuilder.buildCopy( 335 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 336 else if (Pred == CmpInst::FCMP_TRUE) 337 MIRBuilder.buildCopy( 338 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 339 else { 340 MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1}, 341 MachineInstr::copyFlagsFromInstruction(*CI)); 342 } 343 344 return true; 345 } 346 347 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 348 const ReturnInst &RI = cast<ReturnInst>(U); 349 const Value *Ret = RI.getReturnValue(); 350 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 351 Ret = nullptr; 352 353 ArrayRef<unsigned> VRegs; 354 if (Ret) 355 VRegs = getOrCreateVRegs(*Ret); 356 357 unsigned SwiftErrorVReg = 0; 358 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 359 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 360 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 361 } 362 363 // The target may mess up with the insertion point, but 364 // this is not important as a return is the last instruction 365 // of the block anyway. 366 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 367 } 368 369 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 370 const BranchInst &BrInst = cast<BranchInst>(U); 371 unsigned Succ = 0; 372 if (!BrInst.isUnconditional()) { 373 // We want a G_BRCOND to the true BB followed by an unconditional branch. 374 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 375 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 376 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 377 MIRBuilder.buildBrCond(Tst, TrueBB); 378 } 379 380 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 381 MachineBasicBlock &TgtBB = getMBB(BrTgt); 382 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 383 384 // If the unconditional target is the layout successor, fallthrough. 385 if (!CurBB.isLayoutSuccessor(&TgtBB)) 386 MIRBuilder.buildBr(TgtBB); 387 388 // Link successors. 389 for (const BasicBlock *Succ : successors(&BrInst)) 390 CurBB.addSuccessor(&getMBB(*Succ)); 391 return true; 392 } 393 394 bool IRTranslator::translateSwitch(const User &U, 395 MachineIRBuilder &MIRBuilder) { 396 // For now, just translate as a chain of conditional branches. 397 // FIXME: could we share most of the logic/code in 398 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 399 // At first sight, it seems most of the logic in there is independent of 400 // SelectionDAG-specifics and a lot of work went in to optimize switch 401 // lowering in there. 402 403 const SwitchInst &SwInst = cast<SwitchInst>(U); 404 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 405 const BasicBlock *OrigBB = SwInst.getParent(); 406 407 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 408 for (auto &CaseIt : SwInst.cases()) { 409 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 410 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 411 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 412 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 413 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 414 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 415 416 MIRBuilder.buildBrCond(Tst, TrueMBB); 417 CurMBB.addSuccessor(&TrueMBB); 418 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 419 420 MachineBasicBlock *FalseMBB = 421 MF->CreateMachineBasicBlock(SwInst.getParent()); 422 // Insert the comparison blocks one after the other. 423 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 424 MIRBuilder.buildBr(*FalseMBB); 425 CurMBB.addSuccessor(FalseMBB); 426 427 MIRBuilder.setMBB(*FalseMBB); 428 } 429 // handle default case 430 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 431 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 432 MIRBuilder.buildBr(DefaultMBB); 433 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 434 CurMBB.addSuccessor(&DefaultMBB); 435 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 436 437 return true; 438 } 439 440 bool IRTranslator::translateIndirectBr(const User &U, 441 MachineIRBuilder &MIRBuilder) { 442 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 443 444 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 445 MIRBuilder.buildBrIndirect(Tgt); 446 447 // Link successors. 448 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 449 for (const BasicBlock *Succ : successors(&BrInst)) 450 CurBB.addSuccessor(&getMBB(*Succ)); 451 452 return true; 453 } 454 455 static bool isSwiftError(const Value *V) { 456 if (auto Arg = dyn_cast<Argument>(V)) 457 return Arg->hasSwiftErrorAttr(); 458 if (auto AI = dyn_cast<AllocaInst>(V)) 459 return AI->isSwiftError(); 460 return false; 461 } 462 463 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 464 const LoadInst &LI = cast<LoadInst>(U); 465 466 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 467 : MachineMemOperand::MONone; 468 Flags |= MachineMemOperand::MOLoad; 469 470 if (DL->getTypeStoreSize(LI.getType()) == 0) 471 return true; 472 473 ArrayRef<unsigned> Regs = getOrCreateVRegs(LI); 474 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 475 unsigned Base = getOrCreateVReg(*LI.getPointerOperand()); 476 477 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 478 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 479 480 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 481 assert(Regs.size() == 1 && "swifterror should be single pointer"); 482 unsigned VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 483 LI.getPointerOperand()); 484 MIRBuilder.buildCopy(Regs[0], VReg); 485 return true; 486 } 487 488 489 for (unsigned i = 0; i < Regs.size(); ++i) { 490 unsigned Addr = 0; 491 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 492 493 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 494 unsigned BaseAlign = getMemOpAlignment(LI); 495 auto MMO = MF->getMachineMemOperand( 496 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 497 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 498 LI.getSyncScopeID(), LI.getOrdering()); 499 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 500 } 501 502 return true; 503 } 504 505 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 506 const StoreInst &SI = cast<StoreInst>(U); 507 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 508 : MachineMemOperand::MONone; 509 Flags |= MachineMemOperand::MOStore; 510 511 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 512 return true; 513 514 ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand()); 515 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 516 unsigned Base = getOrCreateVReg(*SI.getPointerOperand()); 517 518 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 519 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 520 521 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 522 assert(Vals.size() == 1 && "swifterror should be single pointer"); 523 524 unsigned VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 525 SI.getPointerOperand()); 526 MIRBuilder.buildCopy(VReg, Vals[0]); 527 return true; 528 } 529 530 for (unsigned i = 0; i < Vals.size(); ++i) { 531 unsigned Addr = 0; 532 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 533 534 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 535 unsigned BaseAlign = getMemOpAlignment(SI); 536 auto MMO = MF->getMachineMemOperand( 537 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 538 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 539 SI.getSyncScopeID(), SI.getOrdering()); 540 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 541 } 542 return true; 543 } 544 545 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 546 const Value *Src = U.getOperand(0); 547 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 548 549 // getIndexedOffsetInType is designed for GEPs, so the first index is the 550 // usual array element rather than looking into the actual aggregate. 551 SmallVector<Value *, 1> Indices; 552 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 553 554 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 555 for (auto Idx : EVI->indices()) 556 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 557 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 558 for (auto Idx : IVI->indices()) 559 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 560 } else { 561 for (unsigned i = 1; i < U.getNumOperands(); ++i) 562 Indices.push_back(U.getOperand(i)); 563 } 564 565 return 8 * static_cast<uint64_t>( 566 DL.getIndexedOffsetInType(Src->getType(), Indices)); 567 } 568 569 bool IRTranslator::translateExtractValue(const User &U, 570 MachineIRBuilder &MIRBuilder) { 571 const Value *Src = U.getOperand(0); 572 uint64_t Offset = getOffsetFromIndices(U, *DL); 573 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 574 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 575 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 576 auto &DstRegs = allocateVRegs(U); 577 578 for (unsigned i = 0; i < DstRegs.size(); ++i) 579 DstRegs[i] = SrcRegs[Idx++]; 580 581 return true; 582 } 583 584 bool IRTranslator::translateInsertValue(const User &U, 585 MachineIRBuilder &MIRBuilder) { 586 const Value *Src = U.getOperand(0); 587 uint64_t Offset = getOffsetFromIndices(U, *DL); 588 auto &DstRegs = allocateVRegs(U); 589 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 590 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 591 ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 592 auto InsertedIt = InsertedRegs.begin(); 593 594 for (unsigned i = 0; i < DstRegs.size(); ++i) { 595 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 596 DstRegs[i] = *InsertedIt++; 597 else 598 DstRegs[i] = SrcRegs[i]; 599 } 600 601 return true; 602 } 603 604 bool IRTranslator::translateSelect(const User &U, 605 MachineIRBuilder &MIRBuilder) { 606 unsigned Tst = getOrCreateVReg(*U.getOperand(0)); 607 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U); 608 ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 609 ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 610 611 const SelectInst &SI = cast<SelectInst>(U); 612 uint16_t Flags = 0; 613 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 614 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 615 616 for (unsigned i = 0; i < ResRegs.size(); ++i) { 617 MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]}, 618 {Tst, Op0Regs[i], Op1Regs[i]}, Flags); 619 } 620 621 return true; 622 } 623 624 bool IRTranslator::translateBitCast(const User &U, 625 MachineIRBuilder &MIRBuilder) { 626 // If we're bitcasting to the source type, we can reuse the source vreg. 627 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 628 getLLTForType(*U.getType(), *DL)) { 629 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 630 auto &Regs = *VMap.getVRegs(U); 631 // If we already assigned a vreg for this bitcast, we can't change that. 632 // Emit a copy to satisfy the users we already emitted. 633 if (!Regs.empty()) 634 MIRBuilder.buildCopy(Regs[0], SrcReg); 635 else { 636 Regs.push_back(SrcReg); 637 VMap.getOffsets(U)->push_back(0); 638 } 639 return true; 640 } 641 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 642 } 643 644 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 645 MachineIRBuilder &MIRBuilder) { 646 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 647 unsigned Res = getOrCreateVReg(U); 648 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 649 return true; 650 } 651 652 bool IRTranslator::translateGetElementPtr(const User &U, 653 MachineIRBuilder &MIRBuilder) { 654 // FIXME: support vector GEPs. 655 if (U.getType()->isVectorTy()) 656 return false; 657 658 Value &Op0 = *U.getOperand(0); 659 unsigned BaseReg = getOrCreateVReg(Op0); 660 Type *PtrIRTy = Op0.getType(); 661 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 662 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 663 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 664 665 int64_t Offset = 0; 666 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 667 GTI != E; ++GTI) { 668 const Value *Idx = GTI.getOperand(); 669 if (StructType *StTy = GTI.getStructTypeOrNull()) { 670 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 671 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 672 continue; 673 } else { 674 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 675 676 // If this is a scalar constant or a splat vector of constants, 677 // handle it quickly. 678 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 679 Offset += ElementSize * CI->getSExtValue(); 680 continue; 681 } 682 683 if (Offset != 0) { 684 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 685 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 686 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 687 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetMIB.getReg(0)); 688 689 BaseReg = NewBaseReg; 690 Offset = 0; 691 } 692 693 unsigned IdxReg = getOrCreateVReg(*Idx); 694 if (MRI->getType(IdxReg) != OffsetTy) { 695 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 696 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 697 IdxReg = NewIdxReg; 698 } 699 700 // N = N + Idx * ElementSize; 701 // Avoid doing it for ElementSize of 1. 702 unsigned GepOffsetReg; 703 if (ElementSize != 1) { 704 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 705 auto ElementSizeMIB = MIRBuilder.buildConstant( 706 getLLTForType(*OffsetIRTy, *DL), ElementSize); 707 MIRBuilder.buildMul(GepOffsetReg, ElementSizeMIB.getReg(0), IdxReg); 708 } else 709 GepOffsetReg = IdxReg; 710 711 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 712 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); 713 BaseReg = NewBaseReg; 714 } 715 } 716 717 if (Offset != 0) { 718 auto OffsetMIB = 719 MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset); 720 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 721 return true; 722 } 723 724 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 725 return true; 726 } 727 728 bool IRTranslator::translateMemfunc(const CallInst &CI, 729 MachineIRBuilder &MIRBuilder, 730 unsigned ID) { 731 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 732 Type *DstTy = CI.getArgOperand(0)->getType(); 733 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 734 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 735 return false; 736 737 SmallVector<CallLowering::ArgInfo, 8> Args; 738 for (int i = 0; i < 3; ++i) { 739 const auto &Arg = CI.getArgOperand(i); 740 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 741 } 742 743 const char *Callee; 744 switch (ID) { 745 case Intrinsic::memmove: 746 case Intrinsic::memcpy: { 747 Type *SrcTy = CI.getArgOperand(1)->getType(); 748 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 749 return false; 750 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 751 break; 752 } 753 case Intrinsic::memset: 754 Callee = "memset"; 755 break; 756 default: 757 return false; 758 } 759 760 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 761 MachineOperand::CreateES(Callee), 762 CallLowering::ArgInfo(0, CI.getType()), Args); 763 } 764 765 void IRTranslator::getStackGuard(unsigned DstReg, 766 MachineIRBuilder &MIRBuilder) { 767 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 768 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 769 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 770 MIB.addDef(DstReg); 771 772 auto &TLI = *MF->getSubtarget().getTargetLowering(); 773 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 774 if (!Global) 775 return; 776 777 MachinePointerInfo MPInfo(Global); 778 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 779 MachineMemOperand::MODereferenceable; 780 MachineMemOperand *MemRef = 781 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 782 DL->getPointerABIAlignment(0)); 783 MIB.setMemRefs({MemRef}); 784 } 785 786 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 787 MachineIRBuilder &MIRBuilder) { 788 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI); 789 MIRBuilder.buildInstr(Op) 790 .addDef(ResRegs[0]) 791 .addDef(ResRegs[1]) 792 .addUse(getOrCreateVReg(*CI.getOperand(0))) 793 .addUse(getOrCreateVReg(*CI.getOperand(1))); 794 795 return true; 796 } 797 798 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 799 switch (ID) { 800 default: 801 break; 802 case Intrinsic::bswap: 803 return TargetOpcode::G_BSWAP; 804 case Intrinsic::ceil: 805 return TargetOpcode::G_FCEIL; 806 case Intrinsic::cos: 807 return TargetOpcode::G_FCOS; 808 case Intrinsic::ctpop: 809 return TargetOpcode::G_CTPOP; 810 case Intrinsic::exp: 811 return TargetOpcode::G_FEXP; 812 case Intrinsic::exp2: 813 return TargetOpcode::G_FEXP2; 814 case Intrinsic::fabs: 815 return TargetOpcode::G_FABS; 816 case Intrinsic::copysign: 817 return TargetOpcode::G_FCOPYSIGN; 818 case Intrinsic::canonicalize: 819 return TargetOpcode::G_FCANONICALIZE; 820 case Intrinsic::floor: 821 return TargetOpcode::G_FFLOOR; 822 case Intrinsic::fma: 823 return TargetOpcode::G_FMA; 824 case Intrinsic::log: 825 return TargetOpcode::G_FLOG; 826 case Intrinsic::log2: 827 return TargetOpcode::G_FLOG2; 828 case Intrinsic::log10: 829 return TargetOpcode::G_FLOG10; 830 case Intrinsic::nearbyint: 831 return TargetOpcode::G_FNEARBYINT; 832 case Intrinsic::pow: 833 return TargetOpcode::G_FPOW; 834 case Intrinsic::rint: 835 return TargetOpcode::G_FRINT; 836 case Intrinsic::round: 837 return TargetOpcode::G_INTRINSIC_ROUND; 838 case Intrinsic::sin: 839 return TargetOpcode::G_FSIN; 840 case Intrinsic::sqrt: 841 return TargetOpcode::G_FSQRT; 842 case Intrinsic::trunc: 843 return TargetOpcode::G_INTRINSIC_TRUNC; 844 } 845 return Intrinsic::not_intrinsic; 846 } 847 848 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 849 Intrinsic::ID ID, 850 MachineIRBuilder &MIRBuilder) { 851 852 unsigned Op = getSimpleIntrinsicOpcode(ID); 853 854 // Is this a simple intrinsic? 855 if (Op == Intrinsic::not_intrinsic) 856 return false; 857 858 // Yes. Let's translate it. 859 SmallVector<llvm::SrcOp, 4> VRegs; 860 for (auto &Arg : CI.arg_operands()) 861 VRegs.push_back(getOrCreateVReg(*Arg)); 862 863 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 864 MachineInstr::copyFlagsFromInstruction(CI)); 865 return true; 866 } 867 868 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 869 MachineIRBuilder &MIRBuilder) { 870 871 // If this is a simple intrinsic (that is, we just need to add a def of 872 // a vreg, and uses for each arg operand, then translate it. 873 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 874 return true; 875 876 switch (ID) { 877 default: 878 break; 879 case Intrinsic::lifetime_start: 880 case Intrinsic::lifetime_end: { 881 // No stack colouring in O0, discard region information. 882 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 883 return true; 884 885 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 886 : TargetOpcode::LIFETIME_END; 887 888 // Get the underlying objects for the location passed on the lifetime 889 // marker. 890 SmallVector<const Value *, 4> Allocas; 891 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 892 893 // Iterate over each underlying object, creating lifetime markers for each 894 // static alloca. Quit if we find a non-static alloca. 895 for (const Value *V : Allocas) { 896 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 897 if (!AI) 898 continue; 899 900 if (!AI->isStaticAlloca()) 901 return true; 902 903 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 904 } 905 return true; 906 } 907 case Intrinsic::dbg_declare: { 908 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 909 assert(DI.getVariable() && "Missing variable"); 910 911 const Value *Address = DI.getAddress(); 912 if (!Address || isa<UndefValue>(Address)) { 913 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 914 return true; 915 } 916 917 assert(DI.getVariable()->isValidLocationForIntrinsic( 918 MIRBuilder.getDebugLoc()) && 919 "Expected inlined-at fields to agree"); 920 auto AI = dyn_cast<AllocaInst>(Address); 921 if (AI && AI->isStaticAlloca()) { 922 // Static allocas are tracked at the MF level, no need for DBG_VALUE 923 // instructions (in fact, they get ignored if they *do* exist). 924 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 925 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 926 } else { 927 // A dbg.declare describes the address of a source variable, so lower it 928 // into an indirect DBG_VALUE. 929 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 930 DI.getVariable(), DI.getExpression()); 931 } 932 return true; 933 } 934 case Intrinsic::dbg_label: { 935 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 936 assert(DI.getLabel() && "Missing label"); 937 938 assert(DI.getLabel()->isValidLocationForIntrinsic( 939 MIRBuilder.getDebugLoc()) && 940 "Expected inlined-at fields to agree"); 941 942 MIRBuilder.buildDbgLabel(DI.getLabel()); 943 return true; 944 } 945 case Intrinsic::vaend: 946 // No target I know of cares about va_end. Certainly no in-tree target 947 // does. Simplest intrinsic ever! 948 return true; 949 case Intrinsic::vastart: { 950 auto &TLI = *MF->getSubtarget().getTargetLowering(); 951 Value *Ptr = CI.getArgOperand(0); 952 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 953 954 // FIXME: Get alignment 955 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 956 .addUse(getOrCreateVReg(*Ptr)) 957 .addMemOperand(MF->getMachineMemOperand( 958 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); 959 return true; 960 } 961 case Intrinsic::dbg_value: { 962 // This form of DBG_VALUE is target-independent. 963 const DbgValueInst &DI = cast<DbgValueInst>(CI); 964 const Value *V = DI.getValue(); 965 assert(DI.getVariable()->isValidLocationForIntrinsic( 966 MIRBuilder.getDebugLoc()) && 967 "Expected inlined-at fields to agree"); 968 if (!V) { 969 // Currently the optimizer can produce this; insert an undef to 970 // help debugging. Probably the optimizer should not do this. 971 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 972 } else if (const auto *CI = dyn_cast<Constant>(V)) { 973 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 974 } else { 975 unsigned Reg = getOrCreateVReg(*V); 976 // FIXME: This does not handle register-indirect values at offset 0. The 977 // direct/indirect thing shouldn't really be handled by something as 978 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 979 // pretty baked in right now. 980 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 981 } 982 return true; 983 } 984 case Intrinsic::uadd_with_overflow: 985 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 986 case Intrinsic::sadd_with_overflow: 987 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 988 case Intrinsic::usub_with_overflow: 989 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 990 case Intrinsic::ssub_with_overflow: 991 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 992 case Intrinsic::umul_with_overflow: 993 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 994 case Intrinsic::smul_with_overflow: 995 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 996 case Intrinsic::fmuladd: { 997 const TargetMachine &TM = MF->getTarget(); 998 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 999 unsigned Dst = getOrCreateVReg(CI); 1000 unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1001 unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1002 unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1003 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1004 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 1005 // TODO: Revisit this to see if we should move this part of the 1006 // lowering to the combiner. 1007 MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2}, 1008 MachineInstr::copyFlagsFromInstruction(CI)); 1009 } else { 1010 LLT Ty = getLLTForType(*CI.getType(), *DL); 1011 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1}, 1012 MachineInstr::copyFlagsFromInstruction(CI)); 1013 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2}, 1014 MachineInstr::copyFlagsFromInstruction(CI)); 1015 } 1016 return true; 1017 } 1018 case Intrinsic::memcpy: 1019 case Intrinsic::memmove: 1020 case Intrinsic::memset: 1021 return translateMemfunc(CI, MIRBuilder, ID); 1022 case Intrinsic::eh_typeid_for: { 1023 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1024 unsigned Reg = getOrCreateVReg(CI); 1025 unsigned TypeID = MF->getTypeIDFor(GV); 1026 MIRBuilder.buildConstant(Reg, TypeID); 1027 return true; 1028 } 1029 case Intrinsic::objectsize: { 1030 // If we don't know by now, we're never going to know. 1031 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 1032 1033 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 1034 return true; 1035 } 1036 case Intrinsic::is_constant: 1037 // If this wasn't constant-folded away by now, then it's not a 1038 // constant. 1039 MIRBuilder.buildConstant(getOrCreateVReg(CI), 0); 1040 return true; 1041 case Intrinsic::stackguard: 1042 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1043 return true; 1044 case Intrinsic::stackprotector: { 1045 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1046 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1047 getStackGuard(GuardVal, MIRBuilder); 1048 1049 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1050 int FI = getOrCreateFrameIndex(*Slot); 1051 MF->getFrameInfo().setStackProtectorIndex(FI); 1052 1053 MIRBuilder.buildStore( 1054 GuardVal, getOrCreateVReg(*Slot), 1055 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1056 MachineMemOperand::MOStore | 1057 MachineMemOperand::MOVolatile, 1058 PtrTy.getSizeInBits() / 8, 8)); 1059 return true; 1060 } 1061 case Intrinsic::stacksave: { 1062 // Save the stack pointer to the location provided by the intrinsic. 1063 unsigned Reg = getOrCreateVReg(CI); 1064 unsigned StackPtr = MF->getSubtarget() 1065 .getTargetLowering() 1066 ->getStackPointerRegisterToSaveRestore(); 1067 1068 // If the target doesn't specify a stack pointer, then fall back. 1069 if (!StackPtr) 1070 return false; 1071 1072 MIRBuilder.buildCopy(Reg, StackPtr); 1073 return true; 1074 } 1075 case Intrinsic::stackrestore: { 1076 // Restore the stack pointer from the location provided by the intrinsic. 1077 unsigned Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1078 unsigned StackPtr = MF->getSubtarget() 1079 .getTargetLowering() 1080 ->getStackPointerRegisterToSaveRestore(); 1081 1082 // If the target doesn't specify a stack pointer, then fall back. 1083 if (!StackPtr) 1084 return false; 1085 1086 MIRBuilder.buildCopy(StackPtr, Reg); 1087 return true; 1088 } 1089 case Intrinsic::cttz: 1090 case Intrinsic::ctlz: { 1091 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1092 bool isTrailing = ID == Intrinsic::cttz; 1093 unsigned Opcode = isTrailing 1094 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1095 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1096 : Cst->isZero() ? TargetOpcode::G_CTLZ 1097 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1098 MIRBuilder.buildInstr(Opcode) 1099 .addDef(getOrCreateVReg(CI)) 1100 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 1101 return true; 1102 } 1103 case Intrinsic::invariant_start: { 1104 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1105 unsigned Undef = MRI->createGenericVirtualRegister(PtrTy); 1106 MIRBuilder.buildUndef(Undef); 1107 return true; 1108 } 1109 case Intrinsic::invariant_end: 1110 return true; 1111 } 1112 return false; 1113 } 1114 1115 bool IRTranslator::translateInlineAsm(const CallInst &CI, 1116 MachineIRBuilder &MIRBuilder) { 1117 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 1118 if (!IA.getConstraintString().empty()) 1119 return false; 1120 1121 unsigned ExtraInfo = 0; 1122 if (IA.hasSideEffects()) 1123 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1124 if (IA.getDialect() == InlineAsm::AD_Intel) 1125 ExtraInfo |= InlineAsm::Extra_AsmDialect; 1126 1127 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 1128 .addExternalSymbol(IA.getAsmString().c_str()) 1129 .addImm(ExtraInfo); 1130 1131 return true; 1132 } 1133 1134 unsigned IRTranslator::packRegs(const Value &V, 1135 MachineIRBuilder &MIRBuilder) { 1136 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1137 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1138 LLT BigTy = getLLTForType(*V.getType(), *DL); 1139 1140 if (Regs.size() == 1) 1141 return Regs[0]; 1142 1143 unsigned Dst = MRI->createGenericVirtualRegister(BigTy); 1144 MIRBuilder.buildUndef(Dst); 1145 for (unsigned i = 0; i < Regs.size(); ++i) { 1146 unsigned NewDst = MRI->createGenericVirtualRegister(BigTy); 1147 MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]); 1148 Dst = NewDst; 1149 } 1150 return Dst; 1151 } 1152 1153 void IRTranslator::unpackRegs(const Value &V, unsigned Src, 1154 MachineIRBuilder &MIRBuilder) { 1155 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1156 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1157 1158 for (unsigned i = 0; i < Regs.size(); ++i) 1159 MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]); 1160 } 1161 1162 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1163 const CallInst &CI = cast<CallInst>(U); 1164 auto TII = MF->getTarget().getIntrinsicInfo(); 1165 const Function *F = CI.getCalledFunction(); 1166 1167 // FIXME: support Windows dllimport function calls. 1168 if (F && F->hasDLLImportStorageClass()) 1169 return false; 1170 1171 if (CI.isInlineAsm()) 1172 return translateInlineAsm(CI, MIRBuilder); 1173 1174 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1175 if (F && F->isIntrinsic()) { 1176 ID = F->getIntrinsicID(); 1177 if (TII && ID == Intrinsic::not_intrinsic) 1178 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1179 } 1180 1181 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { 1182 bool IsSplitType = valueIsSplit(CI); 1183 unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister( 1184 getLLTForType(*CI.getType(), *DL)) 1185 : getOrCreateVReg(CI); 1186 1187 SmallVector<unsigned, 8> Args; 1188 unsigned SwiftErrorVReg = 0; 1189 for (auto &Arg: CI.arg_operands()) { 1190 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1191 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1192 unsigned InVReg = MRI->createGenericVirtualRegister(Ty); 1193 MIRBuilder.buildCopy(InVReg, SwiftError.getOrCreateVRegUseAt( 1194 &CI, &MIRBuilder.getMBB(), Arg)); 1195 Args.push_back(InVReg); 1196 SwiftErrorVReg = 1197 SwiftError.getOrCreateVRegDefAt(&CI, &MIRBuilder.getMBB(), Arg); 1198 continue; 1199 } 1200 Args.push_back(packRegs(*Arg, MIRBuilder)); 1201 } 1202 1203 MF->getFrameInfo().setHasCalls(true); 1204 bool Success = 1205 CLI->lowerCall(MIRBuilder, &CI, Res, Args, SwiftErrorVReg, 1206 [&]() { return getOrCreateVReg(*CI.getCalledValue()); }); 1207 1208 if (IsSplitType) 1209 unpackRegs(CI, Res, MIRBuilder); 1210 1211 return Success; 1212 } 1213 1214 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1215 1216 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1217 return true; 1218 1219 ArrayRef<unsigned> ResultRegs; 1220 if (!CI.getType()->isVoidTy()) 1221 ResultRegs = getOrCreateVRegs(CI); 1222 1223 MachineInstrBuilder MIB = 1224 MIRBuilder.buildIntrinsic(ID, ResultRegs, !CI.doesNotAccessMemory()); 1225 if (isa<FPMathOperator>(CI)) 1226 MIB->copyIRFlags(CI); 1227 1228 for (auto &Arg : CI.arg_operands()) { 1229 // Some intrinsics take metadata parameters. Reject them. 1230 if (isa<MetadataAsValue>(Arg)) 1231 return false; 1232 MIB.addUse(packRegs(*Arg, MIRBuilder)); 1233 } 1234 1235 // Add a MachineMemOperand if it is a target mem intrinsic. 1236 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1237 TargetLowering::IntrinsicInfo Info; 1238 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1239 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1240 unsigned Align = Info.align; 1241 if (Align == 0) 1242 Align = DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext())); 1243 1244 uint64_t Size = Info.memVT.getStoreSize(); 1245 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1246 Info.flags, Size, Align)); 1247 } 1248 1249 return true; 1250 } 1251 1252 bool IRTranslator::translateInvoke(const User &U, 1253 MachineIRBuilder &MIRBuilder) { 1254 const InvokeInst &I = cast<InvokeInst>(U); 1255 MCContext &Context = MF->getContext(); 1256 1257 const BasicBlock *ReturnBB = I.getSuccessor(0); 1258 const BasicBlock *EHPadBB = I.getSuccessor(1); 1259 1260 const Value *Callee = I.getCalledValue(); 1261 const Function *Fn = dyn_cast<Function>(Callee); 1262 if (isa<InlineAsm>(Callee)) 1263 return false; 1264 1265 // FIXME: support invoking patchpoint and statepoint intrinsics. 1266 if (Fn && Fn->isIntrinsic()) 1267 return false; 1268 1269 // FIXME: support whatever these are. 1270 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1271 return false; 1272 1273 // FIXME: support Windows exception handling. 1274 if (!isa<LandingPadInst>(EHPadBB->front())) 1275 return false; 1276 1277 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1278 // the region covered by the try. 1279 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1280 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1281 1282 unsigned Res = 0; 1283 if (!I.getType()->isVoidTy()) 1284 Res = MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL)); 1285 SmallVector<unsigned, 8> Args; 1286 unsigned SwiftErrorVReg = 0; 1287 for (auto &Arg : I.arg_operands()) { 1288 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1289 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1290 unsigned InVReg = MRI->createGenericVirtualRegister(Ty); 1291 MIRBuilder.buildCopy(InVReg, SwiftError.getOrCreateVRegUseAt( 1292 &I, &MIRBuilder.getMBB(), Arg)); 1293 Args.push_back(InVReg); 1294 SwiftErrorVReg = 1295 SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg); 1296 continue; 1297 } 1298 1299 Args.push_back(packRegs(*Arg, MIRBuilder)); 1300 } 1301 1302 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, SwiftErrorVReg, 1303 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 1304 return false; 1305 1306 unpackRegs(I, Res, MIRBuilder); 1307 1308 MCSymbol *EndSymbol = Context.createTempSymbol(); 1309 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1310 1311 // FIXME: track probabilities. 1312 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1313 &ReturnMBB = getMBB(*ReturnBB); 1314 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1315 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1316 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1317 MIRBuilder.buildBr(ReturnMBB); 1318 1319 return true; 1320 } 1321 1322 bool IRTranslator::translateCallBr(const User &U, 1323 MachineIRBuilder &MIRBuilder) { 1324 // FIXME: Implement this. 1325 return false; 1326 } 1327 1328 bool IRTranslator::translateLandingPad(const User &U, 1329 MachineIRBuilder &MIRBuilder) { 1330 const LandingPadInst &LP = cast<LandingPadInst>(U); 1331 1332 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1333 1334 MBB.setIsEHPad(); 1335 1336 // If there aren't registers to copy the values into (e.g., during SjLj 1337 // exceptions), then don't bother. 1338 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1339 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1340 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1341 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1342 return true; 1343 1344 // If landingpad's return type is token type, we don't create DAG nodes 1345 // for its exception pointer and selector value. The extraction of exception 1346 // pointer or selector value from token type landingpads is not currently 1347 // supported. 1348 if (LP.getType()->isTokenTy()) 1349 return true; 1350 1351 // Add a label to mark the beginning of the landing pad. Deletion of the 1352 // landing pad can thus be detected via the MachineModuleInfo. 1353 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1354 .addSym(MF->addLandingPad(&MBB)); 1355 1356 LLT Ty = getLLTForType(*LP.getType(), *DL); 1357 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 1358 MIRBuilder.buildUndef(Undef); 1359 1360 SmallVector<LLT, 2> Tys; 1361 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1362 Tys.push_back(getLLTForType(*Ty, *DL)); 1363 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1364 1365 // Mark exception register as live in. 1366 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1367 if (!ExceptionReg) 1368 return false; 1369 1370 MBB.addLiveIn(ExceptionReg); 1371 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP); 1372 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1373 1374 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1375 if (!SelectorReg) 1376 return false; 1377 1378 MBB.addLiveIn(SelectorReg); 1379 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1380 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1381 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1382 1383 return true; 1384 } 1385 1386 bool IRTranslator::translateAlloca(const User &U, 1387 MachineIRBuilder &MIRBuilder) { 1388 auto &AI = cast<AllocaInst>(U); 1389 1390 if (AI.isSwiftError()) 1391 return true; 1392 1393 if (AI.isStaticAlloca()) { 1394 unsigned Res = getOrCreateVReg(AI); 1395 int FI = getOrCreateFrameIndex(AI); 1396 MIRBuilder.buildFrameIndex(Res, FI); 1397 return true; 1398 } 1399 1400 // FIXME: support stack probing for Windows. 1401 if (MF->getTarget().getTargetTriple().isOSWindows()) 1402 return false; 1403 1404 // Now we're in the harder dynamic case. 1405 Type *Ty = AI.getAllocatedType(); 1406 unsigned Align = 1407 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1408 1409 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 1410 1411 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1412 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1413 if (MRI->getType(NumElts) != IntPtrTy) { 1414 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1415 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1416 NumElts = ExtElts; 1417 } 1418 1419 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1420 unsigned TySize = 1421 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1422 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1423 1424 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1425 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1426 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1427 1428 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1429 MIRBuilder.buildCopy(SPTmp, SPReg); 1430 1431 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1432 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1433 1434 // Handle alignment. We have to realign if the allocation granule was smaller 1435 // than stack alignment, or the specific alloca requires more than stack 1436 // alignment. 1437 unsigned StackAlign = 1438 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1439 Align = std::max(Align, StackAlign); 1440 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1441 // Round the size of the allocation up to the stack alignment size 1442 // by add SA-1 to the size. This doesn't overflow because we're computing 1443 // an address inside an alloca. 1444 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1445 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1446 AllocTmp = AlignedAlloc; 1447 } 1448 1449 MIRBuilder.buildCopy(SPReg, AllocTmp); 1450 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1451 1452 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1453 assert(MF->getFrameInfo().hasVarSizedObjects()); 1454 return true; 1455 } 1456 1457 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1458 // FIXME: We may need more info about the type. Because of how LLT works, 1459 // we're completely discarding the i64/double distinction here (amongst 1460 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1461 // anyway but that's not guaranteed. 1462 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1463 .addDef(getOrCreateVReg(U)) 1464 .addUse(getOrCreateVReg(*U.getOperand(0))) 1465 .addImm(DL->getABITypeAlignment(U.getType())); 1466 return true; 1467 } 1468 1469 bool IRTranslator::translateInsertElement(const User &U, 1470 MachineIRBuilder &MIRBuilder) { 1471 // If it is a <1 x Ty> vector, use the scalar as it is 1472 // not a legal vector type in LLT. 1473 if (U.getType()->getVectorNumElements() == 1) { 1474 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1475 auto &Regs = *VMap.getVRegs(U); 1476 if (Regs.empty()) { 1477 Regs.push_back(Elt); 1478 VMap.getOffsets(U)->push_back(0); 1479 } else { 1480 MIRBuilder.buildCopy(Regs[0], Elt); 1481 } 1482 return true; 1483 } 1484 1485 unsigned Res = getOrCreateVReg(U); 1486 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1487 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1488 unsigned Idx = getOrCreateVReg(*U.getOperand(2)); 1489 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1490 return true; 1491 } 1492 1493 bool IRTranslator::translateExtractElement(const User &U, 1494 MachineIRBuilder &MIRBuilder) { 1495 // If it is a <1 x Ty> vector, use the scalar as it is 1496 // not a legal vector type in LLT. 1497 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1498 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1499 auto &Regs = *VMap.getVRegs(U); 1500 if (Regs.empty()) { 1501 Regs.push_back(Elt); 1502 VMap.getOffsets(U)->push_back(0); 1503 } else { 1504 MIRBuilder.buildCopy(Regs[0], Elt); 1505 } 1506 return true; 1507 } 1508 unsigned Res = getOrCreateVReg(U); 1509 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1510 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1511 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1512 unsigned Idx = 0; 1513 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1514 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1515 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1516 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1517 Idx = getOrCreateVReg(*NewIdxCI); 1518 } 1519 } 1520 if (!Idx) 1521 Idx = getOrCreateVReg(*U.getOperand(1)); 1522 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1523 const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1524 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); 1525 } 1526 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1527 return true; 1528 } 1529 1530 bool IRTranslator::translateShuffleVector(const User &U, 1531 MachineIRBuilder &MIRBuilder) { 1532 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1533 .addDef(getOrCreateVReg(U)) 1534 .addUse(getOrCreateVReg(*U.getOperand(0))) 1535 .addUse(getOrCreateVReg(*U.getOperand(1))) 1536 .addUse(getOrCreateVReg(*U.getOperand(2))); 1537 return true; 1538 } 1539 1540 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1541 const PHINode &PI = cast<PHINode>(U); 1542 1543 SmallVector<MachineInstr *, 4> Insts; 1544 for (auto Reg : getOrCreateVRegs(PI)) { 1545 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1546 Insts.push_back(MIB.getInstr()); 1547 } 1548 1549 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1550 return true; 1551 } 1552 1553 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1554 MachineIRBuilder &MIRBuilder) { 1555 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1556 1557 if (I.isWeak()) 1558 return false; 1559 1560 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1561 : MachineMemOperand::MONone; 1562 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1563 1564 Type *ResType = I.getType(); 1565 Type *ValType = ResType->Type::getStructElementType(0); 1566 1567 auto Res = getOrCreateVRegs(I); 1568 unsigned OldValRes = Res[0]; 1569 unsigned SuccessRes = Res[1]; 1570 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1571 unsigned Cmp = getOrCreateVReg(*I.getCompareOperand()); 1572 unsigned NewVal = getOrCreateVReg(*I.getNewValOperand()); 1573 1574 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1575 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1576 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1577 Flags, DL->getTypeStoreSize(ValType), 1578 getMemOpAlignment(I), AAMDNodes(), nullptr, 1579 I.getSyncScopeID(), I.getSuccessOrdering(), 1580 I.getFailureOrdering())); 1581 return true; 1582 } 1583 1584 bool IRTranslator::translateAtomicRMW(const User &U, 1585 MachineIRBuilder &MIRBuilder) { 1586 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1587 1588 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1589 : MachineMemOperand::MONone; 1590 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1591 1592 Type *ResType = I.getType(); 1593 1594 unsigned Res = getOrCreateVReg(I); 1595 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1596 unsigned Val = getOrCreateVReg(*I.getValOperand()); 1597 1598 unsigned Opcode = 0; 1599 switch (I.getOperation()) { 1600 default: 1601 llvm_unreachable("Unknown atomicrmw op"); 1602 return false; 1603 case AtomicRMWInst::Xchg: 1604 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 1605 break; 1606 case AtomicRMWInst::Add: 1607 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 1608 break; 1609 case AtomicRMWInst::Sub: 1610 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 1611 break; 1612 case AtomicRMWInst::And: 1613 Opcode = TargetOpcode::G_ATOMICRMW_AND; 1614 break; 1615 case AtomicRMWInst::Nand: 1616 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 1617 break; 1618 case AtomicRMWInst::Or: 1619 Opcode = TargetOpcode::G_ATOMICRMW_OR; 1620 break; 1621 case AtomicRMWInst::Xor: 1622 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 1623 break; 1624 case AtomicRMWInst::Max: 1625 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 1626 break; 1627 case AtomicRMWInst::Min: 1628 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 1629 break; 1630 case AtomicRMWInst::UMax: 1631 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 1632 break; 1633 case AtomicRMWInst::UMin: 1634 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 1635 break; 1636 } 1637 1638 MIRBuilder.buildAtomicRMW( 1639 Opcode, Res, Addr, Val, 1640 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1641 Flags, DL->getTypeStoreSize(ResType), 1642 getMemOpAlignment(I), AAMDNodes(), nullptr, 1643 I.getSyncScopeID(), I.getOrdering())); 1644 return true; 1645 } 1646 1647 void IRTranslator::finishPendingPhis() { 1648 #ifndef NDEBUG 1649 DILocationVerifier Verifier; 1650 GISelObserverWrapper WrapperObserver(&Verifier); 1651 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 1652 #endif // ifndef NDEBUG 1653 for (auto &Phi : PendingPHIs) { 1654 const PHINode *PI = Phi.first; 1655 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 1656 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 1657 #ifndef NDEBUG 1658 Verifier.setCurrentInst(PI); 1659 #endif // ifndef NDEBUG 1660 1661 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1662 // won't create extra control flow here, otherwise we need to find the 1663 // dominating predecessor here (or perhaps force the weirder IRTranslators 1664 // to provide a simple boundary). 1665 SmallSet<const BasicBlock *, 4> HandledPreds; 1666 1667 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1668 auto IRPred = PI->getIncomingBlock(i); 1669 if (HandledPreds.count(IRPred)) 1670 continue; 1671 1672 HandledPreds.insert(IRPred); 1673 ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 1674 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1675 assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) && 1676 "incorrect CFG at MachineBasicBlock level"); 1677 for (unsigned j = 0; j < ValRegs.size(); ++j) { 1678 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 1679 MIB.addUse(ValRegs[j]); 1680 MIB.addMBB(Pred); 1681 } 1682 } 1683 } 1684 } 1685 } 1686 1687 bool IRTranslator::valueIsSplit(const Value &V, 1688 SmallVectorImpl<uint64_t> *Offsets) { 1689 SmallVector<LLT, 4> SplitTys; 1690 if (Offsets && !Offsets->empty()) 1691 Offsets->clear(); 1692 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 1693 return SplitTys.size() > 1; 1694 } 1695 1696 bool IRTranslator::translate(const Instruction &Inst) { 1697 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 1698 EntryBuilder->setDebugLoc(Inst.getDebugLoc()); 1699 switch(Inst.getOpcode()) { 1700 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1701 case Instruction::OPCODE: \ 1702 return translate##OPCODE(Inst, *CurBuilder.get()); 1703 #include "llvm/IR/Instruction.def" 1704 default: 1705 return false; 1706 } 1707 } 1708 1709 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1710 if (auto CI = dyn_cast<ConstantInt>(&C)) 1711 EntryBuilder->buildConstant(Reg, *CI); 1712 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1713 EntryBuilder->buildFConstant(Reg, *CF); 1714 else if (isa<UndefValue>(C)) 1715 EntryBuilder->buildUndef(Reg); 1716 else if (isa<ConstantPointerNull>(C)) { 1717 // As we are trying to build a constant val of 0 into a pointer, 1718 // insert a cast to make them correct with respect to types. 1719 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 1720 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 1721 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 1722 unsigned ZeroReg = getOrCreateVReg(*ZeroVal); 1723 EntryBuilder->buildCast(Reg, ZeroReg); 1724 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 1725 EntryBuilder->buildGlobalValue(Reg, GV); 1726 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1727 if (!CAZ->getType()->isVectorTy()) 1728 return false; 1729 // Return the scalar if it is a <1 x Ty> vector. 1730 if (CAZ->getNumElements() == 1) 1731 return translate(*CAZ->getElementValue(0u), Reg); 1732 SmallVector<unsigned, 4> Ops; 1733 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1734 Constant &Elt = *CAZ->getElementValue(i); 1735 Ops.push_back(getOrCreateVReg(Elt)); 1736 } 1737 EntryBuilder->buildBuildVector(Reg, Ops); 1738 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1739 // Return the scalar if it is a <1 x Ty> vector. 1740 if (CV->getNumElements() == 1) 1741 return translate(*CV->getElementAsConstant(0), Reg); 1742 SmallVector<unsigned, 4> Ops; 1743 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1744 Constant &Elt = *CV->getElementAsConstant(i); 1745 Ops.push_back(getOrCreateVReg(Elt)); 1746 } 1747 EntryBuilder->buildBuildVector(Reg, Ops); 1748 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1749 switch(CE->getOpcode()) { 1750 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1751 case Instruction::OPCODE: \ 1752 return translate##OPCODE(*CE, *EntryBuilder.get()); 1753 #include "llvm/IR/Instruction.def" 1754 default: 1755 return false; 1756 } 1757 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 1758 if (CV->getNumOperands() == 1) 1759 return translate(*CV->getOperand(0), Reg); 1760 SmallVector<unsigned, 4> Ops; 1761 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 1762 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 1763 } 1764 EntryBuilder->buildBuildVector(Reg, Ops); 1765 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 1766 EntryBuilder->buildBlockAddress(Reg, BA); 1767 } else 1768 return false; 1769 1770 return true; 1771 } 1772 1773 void IRTranslator::finalizeFunction() { 1774 // Release the memory used by the different maps we 1775 // needed during the translation. 1776 PendingPHIs.clear(); 1777 VMap.reset(); 1778 FrameIndices.clear(); 1779 MachinePreds.clear(); 1780 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 1781 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 1782 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 1783 EntryBuilder.reset(); 1784 CurBuilder.reset(); 1785 } 1786 1787 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1788 MF = &CurMF; 1789 const Function &F = MF->getFunction(); 1790 if (F.empty()) 1791 return false; 1792 GISelCSEAnalysisWrapper &Wrapper = 1793 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 1794 // Set the CSEConfig and run the analysis. 1795 GISelCSEInfo *CSEInfo = nullptr; 1796 TPC = &getAnalysis<TargetPassConfig>(); 1797 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 1798 ? EnableCSEInIRTranslator 1799 : TPC->isGISelCSEEnabled(); 1800 1801 if (EnableCSE) { 1802 EntryBuilder = make_unique<CSEMIRBuilder>(CurMF); 1803 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 1804 EntryBuilder->setCSEInfo(CSEInfo); 1805 CurBuilder = make_unique<CSEMIRBuilder>(CurMF); 1806 CurBuilder->setCSEInfo(CSEInfo); 1807 } else { 1808 EntryBuilder = make_unique<MachineIRBuilder>(); 1809 CurBuilder = make_unique<MachineIRBuilder>(); 1810 } 1811 CLI = MF->getSubtarget().getCallLowering(); 1812 CurBuilder->setMF(*MF); 1813 EntryBuilder->setMF(*MF); 1814 MRI = &MF->getRegInfo(); 1815 DL = &F.getParent()->getDataLayout(); 1816 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 1817 1818 assert(PendingPHIs.empty() && "stale PHIs"); 1819 1820 if (!DL->isLittleEndian()) { 1821 // Currently we don't properly handle big endian code. 1822 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1823 F.getSubprogram(), &F.getEntryBlock()); 1824 R << "unable to translate in big endian mode"; 1825 reportTranslationError(*MF, *TPC, *ORE, R); 1826 } 1827 1828 // Release the per-function state when we return, whether we succeeded or not. 1829 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1830 1831 // Setup a separate basic-block for the arguments and constants 1832 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1833 MF->push_back(EntryBB); 1834 EntryBuilder->setMBB(*EntryBB); 1835 1836 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 1837 SwiftError.setFunction(CurMF); 1838 SwiftError.createEntriesInEntryBlock(DbgLoc); 1839 1840 // Create all blocks, in IR order, to preserve the layout. 1841 for (const BasicBlock &BB: F) { 1842 auto *&MBB = BBToMBB[&BB]; 1843 1844 MBB = MF->CreateMachineBasicBlock(&BB); 1845 MF->push_back(MBB); 1846 1847 if (BB.hasAddressTaken()) 1848 MBB->setHasAddressTaken(); 1849 } 1850 1851 // Make our arguments/constants entry block fallthrough to the IR entry block. 1852 EntryBB->addSuccessor(&getMBB(F.front())); 1853 1854 // Lower the actual args into this basic block. 1855 SmallVector<unsigned, 8> VRegArgs; 1856 for (const Argument &Arg: F.args()) { 1857 if (DL->getTypeStoreSize(Arg.getType()) == 0) 1858 continue; // Don't handle zero sized types. 1859 VRegArgs.push_back( 1860 MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL))); 1861 1862 if (Arg.hasSwiftErrorAttr()) 1863 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), 1864 VRegArgs.back()); 1865 } 1866 1867 // We don't currently support translating swifterror or swiftself functions. 1868 for (auto &Arg : F.args()) { 1869 if (Arg.hasSwiftSelfAttr()) { 1870 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1871 F.getSubprogram(), &F.getEntryBlock()); 1872 R << "unable to lower arguments due to swiftself: " 1873 << ore::NV("Prototype", F.getType()); 1874 reportTranslationError(*MF, *TPC, *ORE, R); 1875 return false; 1876 } 1877 } 1878 1879 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 1880 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1881 F.getSubprogram(), &F.getEntryBlock()); 1882 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1883 reportTranslationError(*MF, *TPC, *ORE, R); 1884 return false; 1885 } 1886 1887 auto ArgIt = F.arg_begin(); 1888 for (auto &VArg : VRegArgs) { 1889 // If the argument is an unsplit scalar then don't use unpackRegs to avoid 1890 // creating redundant copies. 1891 if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) { 1892 auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt)); 1893 assert(VRegs.empty() && "VRegs already populated?"); 1894 VRegs.push_back(VArg); 1895 } else { 1896 unpackRegs(*ArgIt, VArg, *EntryBuilder.get()); 1897 } 1898 ArgIt++; 1899 } 1900 1901 // Need to visit defs before uses when translating instructions. 1902 GISelObserverWrapper WrapperObserver; 1903 if (EnableCSE && CSEInfo) 1904 WrapperObserver.addObserver(CSEInfo); 1905 { 1906 ReversePostOrderTraversal<const Function *> RPOT(&F); 1907 #ifndef NDEBUG 1908 DILocationVerifier Verifier; 1909 WrapperObserver.addObserver(&Verifier); 1910 #endif // ifndef NDEBUG 1911 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 1912 for (const BasicBlock *BB : RPOT) { 1913 MachineBasicBlock &MBB = getMBB(*BB); 1914 // Set the insertion point of all the following translations to 1915 // the end of this basic block. 1916 CurBuilder->setMBB(MBB); 1917 1918 for (const Instruction &Inst : *BB) { 1919 #ifndef NDEBUG 1920 Verifier.setCurrentInst(&Inst); 1921 #endif // ifndef NDEBUG 1922 if (translate(Inst)) 1923 continue; 1924 1925 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1926 Inst.getDebugLoc(), BB); 1927 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 1928 1929 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 1930 std::string InstStrStorage; 1931 raw_string_ostream InstStr(InstStrStorage); 1932 InstStr << Inst; 1933 1934 R << ": '" << InstStr.str() << "'"; 1935 } 1936 1937 reportTranslationError(*MF, *TPC, *ORE, R); 1938 return false; 1939 } 1940 } 1941 #ifndef NDEBUG 1942 WrapperObserver.removeObserver(&Verifier); 1943 #endif 1944 } 1945 1946 finishPendingPhis(); 1947 1948 SwiftError.propagateVRegs(); 1949 1950 // Merge the argument lowering and constants block with its single 1951 // successor, the LLVM-IR entry block. We want the basic block to 1952 // be maximal. 1953 assert(EntryBB->succ_size() == 1 && 1954 "Custom BB used for lowering should have only one successor"); 1955 // Get the successor of the current entry block. 1956 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1957 assert(NewEntryBB.pred_size() == 1 && 1958 "LLVM-IR entry block has a predecessor!?"); 1959 // Move all the instruction from the current entry block to the 1960 // new entry block. 1961 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1962 EntryBB->end()); 1963 1964 // Update the live-in information for the new entry block. 1965 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1966 NewEntryBB.addLiveIn(LiveIn); 1967 NewEntryBB.sortUniqueLiveIns(); 1968 1969 // Get rid of the now empty basic block. 1970 EntryBB->removeSuccessor(&NewEntryBB); 1971 MF->remove(EntryBB); 1972 MF->DeleteMachineBasicBlock(EntryBB); 1973 1974 assert(&MF->front() == &NewEntryBB && 1975 "New entry wasn't next in the list of basic block!"); 1976 1977 // Initialize stack protector information. 1978 StackProtector &SP = getAnalysis<StackProtector>(); 1979 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1980 1981 return false; 1982 } 1983