1 //===-- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator --*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 19 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineFrameInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/DebugInfo.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Target/TargetFrameLowering.h" 34 #include "llvm/Target/TargetIntrinsicInfo.h" 35 #include "llvm/Target/TargetLowering.h" 36 37 #define DEBUG_TYPE "irtranslator" 38 39 using namespace llvm; 40 41 char IRTranslator::ID = 0; 42 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 43 false, false) 44 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 45 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 46 false, false) 47 48 static void reportTranslationError(MachineFunction &MF, 49 const TargetPassConfig &TPC, 50 OptimizationRemarkEmitter &ORE, 51 OptimizationRemarkMissed &R) { 52 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 53 54 // Print the function name explicitly if we don't have a debug location (which 55 // makes the diagnostic less useful) or if we're going to emit a raw error. 56 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 57 R << (" (in function: " + MF.getName() + ")").str(); 58 59 if (TPC.isGlobalISelAbortEnabled()) 60 report_fatal_error(R.getMsg()); 61 else 62 ORE.emit(R); 63 } 64 65 IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) { 66 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 67 } 68 69 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 70 AU.addRequired<TargetPassConfig>(); 71 MachineFunctionPass::getAnalysisUsage(AU); 72 } 73 74 75 unsigned IRTranslator::getOrCreateVReg(const Value &Val) { 76 unsigned &ValReg = ValToVReg[&Val]; 77 78 if (ValReg) 79 return ValReg; 80 81 // Fill ValRegsSequence with the sequence of registers 82 // we need to concat together to produce the value. 83 assert(Val.getType()->isSized() && 84 "Don't know how to create an empty vreg"); 85 unsigned VReg = 86 MRI->createGenericVirtualRegister(getLLTForType(*Val.getType(), *DL)); 87 ValReg = VReg; 88 89 if (auto CV = dyn_cast<Constant>(&Val)) { 90 bool Success = translate(*CV, VReg); 91 if (!Success) { 92 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 93 MF->getFunction()->getSubprogram(), 94 &MF->getFunction()->getEntryBlock()); 95 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 96 reportTranslationError(*MF, *TPC, *ORE, R); 97 return VReg; 98 } 99 } 100 101 return VReg; 102 } 103 104 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 105 if (FrameIndices.find(&AI) != FrameIndices.end()) 106 return FrameIndices[&AI]; 107 108 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 109 unsigned Size = 110 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 111 112 // Always allocate at least one byte. 113 Size = std::max(Size, 1u); 114 115 unsigned Alignment = AI.getAlignment(); 116 if (!Alignment) 117 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 118 119 int &FI = FrameIndices[&AI]; 120 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 121 return FI; 122 } 123 124 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 125 unsigned Alignment = 0; 126 Type *ValTy = nullptr; 127 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 128 Alignment = SI->getAlignment(); 129 ValTy = SI->getValueOperand()->getType(); 130 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 131 Alignment = LI->getAlignment(); 132 ValTy = LI->getType(); 133 } else { 134 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 135 R << "unable to translate memop: " << ore::NV("Opcode", &I); 136 reportTranslationError(*MF, *TPC, *ORE, R); 137 return 1; 138 } 139 140 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 141 } 142 143 MachineBasicBlock &IRTranslator::getOrCreateBB(const BasicBlock &BB) { 144 MachineBasicBlock *&MBB = BBToMBB[&BB]; 145 if (!MBB) { 146 MBB = MF->CreateMachineBasicBlock(&BB); 147 MF->push_back(MBB); 148 149 if (BB.hasAddressTaken()) 150 MBB->setHasAddressTaken(); 151 } 152 return *MBB; 153 } 154 155 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 156 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 157 MachinePreds[Edge].push_back(NewPred); 158 } 159 160 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 161 MachineIRBuilder &MIRBuilder) { 162 // FIXME: handle signed/unsigned wrapping flags. 163 164 // Get or create a virtual register for each value. 165 // Unless the value is a Constant => loadimm cst? 166 // or inline constant each time? 167 // Creation of a virtual register needs to have a size. 168 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 169 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 170 unsigned Res = getOrCreateVReg(U); 171 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); 172 return true; 173 } 174 175 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 176 // -0.0 - X --> G_FNEG 177 if (isa<Constant>(U.getOperand(0)) && 178 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 179 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 180 .addDef(getOrCreateVReg(U)) 181 .addUse(getOrCreateVReg(*U.getOperand(1))); 182 return true; 183 } 184 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 185 } 186 187 bool IRTranslator::translateCompare(const User &U, 188 MachineIRBuilder &MIRBuilder) { 189 const CmpInst *CI = dyn_cast<CmpInst>(&U); 190 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 191 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 192 unsigned Res = getOrCreateVReg(U); 193 CmpInst::Predicate Pred = 194 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 195 cast<ConstantExpr>(U).getPredicate()); 196 if (CmpInst::isIntPredicate(Pred)) 197 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 198 else if (Pred == CmpInst::FCMP_FALSE) 199 MIRBuilder.buildConstant(Res, 0); 200 else if (Pred == CmpInst::FCMP_TRUE) 201 MIRBuilder.buildConstant(Res, 1); 202 else 203 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); 204 205 return true; 206 } 207 208 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 209 const ReturnInst &RI = cast<ReturnInst>(U); 210 const Value *Ret = RI.getReturnValue(); 211 // The target may mess up with the insertion point, but 212 // this is not important as a return is the last instruction 213 // of the block anyway. 214 return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret)); 215 } 216 217 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 218 const BranchInst &BrInst = cast<BranchInst>(U); 219 unsigned Succ = 0; 220 if (!BrInst.isUnconditional()) { 221 // We want a G_BRCOND to the true BB followed by an unconditional branch. 222 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 223 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 224 MachineBasicBlock &TrueBB = getOrCreateBB(TrueTgt); 225 MIRBuilder.buildBrCond(Tst, TrueBB); 226 } 227 228 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 229 MachineBasicBlock &TgtBB = getOrCreateBB(BrTgt); 230 MIRBuilder.buildBr(TgtBB); 231 232 // Link successors. 233 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 234 for (const BasicBlock *Succ : BrInst.successors()) 235 CurBB.addSuccessor(&getOrCreateBB(*Succ)); 236 return true; 237 } 238 239 bool IRTranslator::translateSwitch(const User &U, 240 MachineIRBuilder &MIRBuilder) { 241 // For now, just translate as a chain of conditional branches. 242 // FIXME: could we share most of the logic/code in 243 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 244 // At first sight, it seems most of the logic in there is independent of 245 // SelectionDAG-specifics and a lot of work went in to optimize switch 246 // lowering in there. 247 248 const SwitchInst &SwInst = cast<SwitchInst>(U); 249 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 250 const BasicBlock *OrigBB = SwInst.getParent(); 251 252 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 253 for (auto &CaseIt : SwInst.cases()) { 254 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 255 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 256 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 257 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 258 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 259 MachineBasicBlock &TrueMBB = getOrCreateBB(*TrueBB); 260 261 MIRBuilder.buildBrCond(Tst, TrueMBB); 262 CurMBB.addSuccessor(&TrueMBB); 263 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 264 265 MachineBasicBlock *FalseMBB = 266 MF->CreateMachineBasicBlock(SwInst.getParent()); 267 MF->push_back(FalseMBB); 268 MIRBuilder.buildBr(*FalseMBB); 269 CurMBB.addSuccessor(FalseMBB); 270 271 MIRBuilder.setMBB(*FalseMBB); 272 } 273 // handle default case 274 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 275 MachineBasicBlock &DefaultMBB = getOrCreateBB(*DefaultBB); 276 MIRBuilder.buildBr(DefaultMBB); 277 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 278 CurMBB.addSuccessor(&DefaultMBB); 279 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 280 281 return true; 282 } 283 284 bool IRTranslator::translateIndirectBr(const User &U, 285 MachineIRBuilder &MIRBuilder) { 286 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 287 288 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 289 MIRBuilder.buildBrIndirect(Tgt); 290 291 // Link successors. 292 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 293 for (const BasicBlock *Succ : BrInst.successors()) 294 CurBB.addSuccessor(&getOrCreateBB(*Succ)); 295 296 return true; 297 } 298 299 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 300 const LoadInst &LI = cast<LoadInst>(U); 301 302 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 303 : MachineMemOperand::MONone; 304 Flags |= MachineMemOperand::MOLoad; 305 306 unsigned Res = getOrCreateVReg(LI); 307 unsigned Addr = getOrCreateVReg(*LI.getPointerOperand()); 308 309 MIRBuilder.buildLoad( 310 Res, Addr, 311 *MF->getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()), 312 Flags, DL->getTypeStoreSize(LI.getType()), 313 getMemOpAlignment(LI), AAMDNodes(), nullptr, 314 LI.getSynchScope(), LI.getOrdering())); 315 return true; 316 } 317 318 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 319 const StoreInst &SI = cast<StoreInst>(U); 320 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 321 : MachineMemOperand::MONone; 322 Flags |= MachineMemOperand::MOStore; 323 324 unsigned Val = getOrCreateVReg(*SI.getValueOperand()); 325 unsigned Addr = getOrCreateVReg(*SI.getPointerOperand()); 326 327 MIRBuilder.buildStore( 328 Val, Addr, 329 *MF->getMachineMemOperand( 330 MachinePointerInfo(SI.getPointerOperand()), Flags, 331 DL->getTypeStoreSize(SI.getValueOperand()->getType()), 332 getMemOpAlignment(SI), AAMDNodes(), nullptr, SI.getSynchScope(), 333 SI.getOrdering())); 334 return true; 335 } 336 337 bool IRTranslator::translateExtractValue(const User &U, 338 MachineIRBuilder &MIRBuilder) { 339 const Value *Src = U.getOperand(0); 340 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 341 SmallVector<Value *, 1> Indices; 342 343 // getIndexedOffsetInType is designed for GEPs, so the first index is the 344 // usual array element rather than looking into the actual aggregate. 345 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 346 347 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 348 for (auto Idx : EVI->indices()) 349 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 350 } else { 351 for (unsigned i = 1; i < U.getNumOperands(); ++i) 352 Indices.push_back(U.getOperand(i)); 353 } 354 355 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 356 357 unsigned Res = getOrCreateVReg(U); 358 MIRBuilder.buildExtract(Res, getOrCreateVReg(*Src), Offset); 359 360 return true; 361 } 362 363 bool IRTranslator::translateInsertValue(const User &U, 364 MachineIRBuilder &MIRBuilder) { 365 const Value *Src = U.getOperand(0); 366 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 367 SmallVector<Value *, 1> Indices; 368 369 // getIndexedOffsetInType is designed for GEPs, so the first index is the 370 // usual array element rather than looking into the actual aggregate. 371 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 372 373 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 374 for (auto Idx : IVI->indices()) 375 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 376 } else { 377 for (unsigned i = 2; i < U.getNumOperands(); ++i) 378 Indices.push_back(U.getOperand(i)); 379 } 380 381 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 382 383 unsigned Res = getOrCreateVReg(U); 384 const Value &Inserted = *U.getOperand(1); 385 MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), getOrCreateVReg(Inserted), 386 Offset); 387 388 return true; 389 } 390 391 bool IRTranslator::translateSelect(const User &U, 392 MachineIRBuilder &MIRBuilder) { 393 MIRBuilder.buildSelect(getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)), 394 getOrCreateVReg(*U.getOperand(1)), 395 getOrCreateVReg(*U.getOperand(2))); 396 return true; 397 } 398 399 bool IRTranslator::translateBitCast(const User &U, 400 MachineIRBuilder &MIRBuilder) { 401 // If we're bitcasting to the source type, we can reuse the source vreg. 402 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 403 getLLTForType(*U.getType(), *DL)) { 404 // Get the source vreg now, to avoid invalidating ValToVReg. 405 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 406 unsigned &Reg = ValToVReg[&U]; 407 // If we already assigned a vreg for this bitcast, we can't change that. 408 // Emit a copy to satisfy the users we already emitted. 409 if (Reg) 410 MIRBuilder.buildCopy(Reg, SrcReg); 411 else 412 Reg = SrcReg; 413 return true; 414 } 415 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 416 } 417 418 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 419 MachineIRBuilder &MIRBuilder) { 420 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 421 unsigned Res = getOrCreateVReg(U); 422 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 423 return true; 424 } 425 426 bool IRTranslator::translateGetElementPtr(const User &U, 427 MachineIRBuilder &MIRBuilder) { 428 // FIXME: support vector GEPs. 429 if (U.getType()->isVectorTy()) 430 return false; 431 432 Value &Op0 = *U.getOperand(0); 433 unsigned BaseReg = getOrCreateVReg(Op0); 434 LLT PtrTy = getLLTForType(*Op0.getType(), *DL); 435 unsigned PtrSize = DL->getPointerSizeInBits(PtrTy.getAddressSpace()); 436 LLT OffsetTy = LLT::scalar(PtrSize); 437 438 int64_t Offset = 0; 439 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 440 GTI != E; ++GTI) { 441 const Value *Idx = GTI.getOperand(); 442 if (StructType *StTy = GTI.getStructTypeOrNull()) { 443 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 444 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 445 continue; 446 } else { 447 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 448 449 // If this is a scalar constant or a splat vector of constants, 450 // handle it quickly. 451 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 452 Offset += ElementSize * CI->getSExtValue(); 453 continue; 454 } 455 456 if (Offset != 0) { 457 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 458 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 459 MIRBuilder.buildConstant(OffsetReg, Offset); 460 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 461 462 BaseReg = NewBaseReg; 463 Offset = 0; 464 } 465 466 // N = N + Idx * ElementSize; 467 unsigned ElementSizeReg = MRI->createGenericVirtualRegister(OffsetTy); 468 MIRBuilder.buildConstant(ElementSizeReg, ElementSize); 469 470 unsigned IdxReg = getOrCreateVReg(*Idx); 471 if (MRI->getType(IdxReg) != OffsetTy) { 472 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 473 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 474 IdxReg = NewIdxReg; 475 } 476 477 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 478 MIRBuilder.buildMul(OffsetReg, ElementSizeReg, IdxReg); 479 480 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 481 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 482 BaseReg = NewBaseReg; 483 } 484 } 485 486 if (Offset != 0) { 487 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 488 MIRBuilder.buildConstant(OffsetReg, Offset); 489 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 490 return true; 491 } 492 493 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 494 return true; 495 } 496 497 bool IRTranslator::translateMemfunc(const CallInst &CI, 498 MachineIRBuilder &MIRBuilder, 499 unsigned ID) { 500 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 501 Type *DstTy = CI.getArgOperand(0)->getType(); 502 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 503 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 504 return false; 505 506 SmallVector<CallLowering::ArgInfo, 8> Args; 507 for (int i = 0; i < 3; ++i) { 508 const auto &Arg = CI.getArgOperand(i); 509 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 510 } 511 512 const char *Callee; 513 switch (ID) { 514 case Intrinsic::memmove: 515 case Intrinsic::memcpy: { 516 Type *SrcTy = CI.getArgOperand(1)->getType(); 517 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 518 return false; 519 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 520 break; 521 } 522 case Intrinsic::memset: 523 Callee = "memset"; 524 break; 525 default: 526 return false; 527 } 528 529 return CLI->lowerCall(MIRBuilder, MachineOperand::CreateES(Callee), 530 CallLowering::ArgInfo(0, CI.getType()), Args); 531 } 532 533 void IRTranslator::getStackGuard(unsigned DstReg, 534 MachineIRBuilder &MIRBuilder) { 535 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 536 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 537 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 538 MIB.addDef(DstReg); 539 540 auto &TLI = *MF->getSubtarget().getTargetLowering(); 541 Value *Global = TLI.getSDagStackGuard(*MF->getFunction()->getParent()); 542 if (!Global) 543 return; 544 545 MachinePointerInfo MPInfo(Global); 546 MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1); 547 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 548 MachineMemOperand::MODereferenceable; 549 *MemRefs = 550 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 551 DL->getPointerABIAlignment()); 552 MIB.setMemRefs(MemRefs, MemRefs + 1); 553 } 554 555 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 556 MachineIRBuilder &MIRBuilder) { 557 LLT Ty = getLLTForType(*CI.getOperand(0)->getType(), *DL); 558 LLT s1 = LLT::scalar(1); 559 unsigned Width = Ty.getSizeInBits(); 560 unsigned Res = MRI->createGenericVirtualRegister(Ty); 561 unsigned Overflow = MRI->createGenericVirtualRegister(s1); 562 auto MIB = MIRBuilder.buildInstr(Op) 563 .addDef(Res) 564 .addDef(Overflow) 565 .addUse(getOrCreateVReg(*CI.getOperand(0))) 566 .addUse(getOrCreateVReg(*CI.getOperand(1))); 567 568 if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) { 569 unsigned Zero = MRI->createGenericVirtualRegister(s1); 570 EntryBuilder.buildConstant(Zero, 0); 571 MIB.addUse(Zero); 572 } 573 574 MIRBuilder.buildSequence(getOrCreateVReg(CI), Res, 0, Overflow, Width); 575 return true; 576 } 577 578 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 579 MachineIRBuilder &MIRBuilder) { 580 switch (ID) { 581 default: 582 break; 583 case Intrinsic::lifetime_start: 584 case Intrinsic::lifetime_end: 585 // Stack coloring is not enabled in O0 (which we care about now) so we can 586 // drop these. Make sure someone notices when we start compiling at higher 587 // opts though. 588 if (MF->getTarget().getOptLevel() != CodeGenOpt::None) 589 return false; 590 return true; 591 case Intrinsic::dbg_declare: { 592 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 593 assert(DI.getVariable() && "Missing variable"); 594 595 const Value *Address = DI.getAddress(); 596 if (!Address || isa<UndefValue>(Address)) { 597 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 598 return true; 599 } 600 601 assert(DI.getVariable()->isValidLocationForIntrinsic( 602 MIRBuilder.getDebugLoc()) && 603 "Expected inlined-at fields to agree"); 604 auto AI = dyn_cast<AllocaInst>(Address); 605 if (AI && AI->isStaticAlloca()) { 606 // Static allocas are tracked at the MF level, no need for DBG_VALUE 607 // instructions (in fact, they get ignored if they *do* exist). 608 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 609 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 610 } else 611 MIRBuilder.buildDirectDbgValue(getOrCreateVReg(*Address), 612 DI.getVariable(), DI.getExpression()); 613 return true; 614 } 615 case Intrinsic::vaend: 616 // No target I know of cares about va_end. Certainly no in-tree target 617 // does. Simplest intrinsic ever! 618 return true; 619 case Intrinsic::vastart: { 620 auto &TLI = *MF->getSubtarget().getTargetLowering(); 621 Value *Ptr = CI.getArgOperand(0); 622 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 623 624 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 625 .addUse(getOrCreateVReg(*Ptr)) 626 .addMemOperand(MF->getMachineMemOperand( 627 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0)); 628 return true; 629 } 630 case Intrinsic::dbg_value: { 631 // This form of DBG_VALUE is target-independent. 632 const DbgValueInst &DI = cast<DbgValueInst>(CI); 633 const Value *V = DI.getValue(); 634 assert(DI.getVariable()->isValidLocationForIntrinsic( 635 MIRBuilder.getDebugLoc()) && 636 "Expected inlined-at fields to agree"); 637 if (!V) { 638 // Currently the optimizer can produce this; insert an undef to 639 // help debugging. Probably the optimizer should not do this. 640 MIRBuilder.buildIndirectDbgValue(0, DI.getOffset(), DI.getVariable(), 641 DI.getExpression()); 642 } else if (const auto *CI = dyn_cast<Constant>(V)) { 643 MIRBuilder.buildConstDbgValue(*CI, DI.getOffset(), DI.getVariable(), 644 DI.getExpression()); 645 } else { 646 unsigned Reg = getOrCreateVReg(*V); 647 // FIXME: This does not handle register-indirect values at offset 0. The 648 // direct/indirect thing shouldn't really be handled by something as 649 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 650 // pretty baked in right now. 651 if (DI.getOffset() != 0) 652 MIRBuilder.buildIndirectDbgValue(Reg, DI.getOffset(), DI.getVariable(), 653 DI.getExpression()); 654 else 655 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), 656 DI.getExpression()); 657 } 658 return true; 659 } 660 case Intrinsic::uadd_with_overflow: 661 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder); 662 case Intrinsic::sadd_with_overflow: 663 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 664 case Intrinsic::usub_with_overflow: 665 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder); 666 case Intrinsic::ssub_with_overflow: 667 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 668 case Intrinsic::umul_with_overflow: 669 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 670 case Intrinsic::smul_with_overflow: 671 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 672 case Intrinsic::pow: 673 MIRBuilder.buildInstr(TargetOpcode::G_FPOW) 674 .addDef(getOrCreateVReg(CI)) 675 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 676 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 677 return true; 678 case Intrinsic::memcpy: 679 case Intrinsic::memmove: 680 case Intrinsic::memset: 681 return translateMemfunc(CI, MIRBuilder, ID); 682 case Intrinsic::eh_typeid_for: { 683 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 684 unsigned Reg = getOrCreateVReg(CI); 685 unsigned TypeID = MF->getTypeIDFor(GV); 686 MIRBuilder.buildConstant(Reg, TypeID); 687 return true; 688 } 689 case Intrinsic::objectsize: { 690 // If we don't know by now, we're never going to know. 691 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 692 693 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 694 return true; 695 } 696 case Intrinsic::stackguard: 697 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 698 return true; 699 case Intrinsic::stackprotector: { 700 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 701 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 702 getStackGuard(GuardVal, MIRBuilder); 703 704 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 705 MIRBuilder.buildStore( 706 GuardVal, getOrCreateVReg(*Slot), 707 *MF->getMachineMemOperand( 708 MachinePointerInfo::getFixedStack(*MF, 709 getOrCreateFrameIndex(*Slot)), 710 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 711 PtrTy.getSizeInBits() / 8, 8)); 712 return true; 713 } 714 } 715 return false; 716 } 717 718 bool IRTranslator::translateInlineAsm(const CallInst &CI, 719 MachineIRBuilder &MIRBuilder) { 720 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 721 if (!IA.getConstraintString().empty()) 722 return false; 723 724 unsigned ExtraInfo = 0; 725 if (IA.hasSideEffects()) 726 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 727 if (IA.getDialect() == InlineAsm::AD_Intel) 728 ExtraInfo |= InlineAsm::Extra_AsmDialect; 729 730 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 731 .addExternalSymbol(IA.getAsmString().c_str()) 732 .addImm(ExtraInfo); 733 734 return true; 735 } 736 737 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 738 const CallInst &CI = cast<CallInst>(U); 739 auto TII = MF->getTarget().getIntrinsicInfo(); 740 const Function *F = CI.getCalledFunction(); 741 742 if (CI.isInlineAsm()) 743 return translateInlineAsm(CI, MIRBuilder); 744 745 if (!F || !F->isIntrinsic()) { 746 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 747 SmallVector<unsigned, 8> Args; 748 for (auto &Arg: CI.arg_operands()) 749 Args.push_back(getOrCreateVReg(*Arg)); 750 751 MF->getFrameInfo().setHasCalls(true); 752 return CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() { 753 return getOrCreateVReg(*CI.getCalledValue()); 754 }); 755 } 756 757 Intrinsic::ID ID = F->getIntrinsicID(); 758 if (TII && ID == Intrinsic::not_intrinsic) 759 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 760 761 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 762 763 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 764 return true; 765 766 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 767 MachineInstrBuilder MIB = 768 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 769 770 for (auto &Arg : CI.arg_operands()) { 771 // Some intrinsics take metadata parameters. Reject them. 772 if (isa<MetadataAsValue>(Arg)) 773 return false; 774 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) 775 MIB.addImm(CI->getSExtValue()); 776 else 777 MIB.addUse(getOrCreateVReg(*Arg)); 778 } 779 return true; 780 } 781 782 bool IRTranslator::translateInvoke(const User &U, 783 MachineIRBuilder &MIRBuilder) { 784 const InvokeInst &I = cast<InvokeInst>(U); 785 MCContext &Context = MF->getContext(); 786 787 const BasicBlock *ReturnBB = I.getSuccessor(0); 788 const BasicBlock *EHPadBB = I.getSuccessor(1); 789 790 const Value *Callee = I.getCalledValue(); 791 const Function *Fn = dyn_cast<Function>(Callee); 792 if (isa<InlineAsm>(Callee)) 793 return false; 794 795 // FIXME: support invoking patchpoint and statepoint intrinsics. 796 if (Fn && Fn->isIntrinsic()) 797 return false; 798 799 // FIXME: support whatever these are. 800 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 801 return false; 802 803 // FIXME: support Windows exception handling. 804 if (!isa<LandingPadInst>(EHPadBB->front())) 805 return false; 806 807 808 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 809 // the region covered by the try. 810 MCSymbol *BeginSymbol = Context.createTempSymbol(); 811 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 812 813 unsigned Res = I.getType()->isVoidTy() ? 0 : getOrCreateVReg(I); 814 SmallVector<unsigned, 8> Args; 815 for (auto &Arg: I.arg_operands()) 816 Args.push_back(getOrCreateVReg(*Arg)); 817 818 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, 819 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 820 return false; 821 822 MCSymbol *EndSymbol = Context.createTempSymbol(); 823 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 824 825 // FIXME: track probabilities. 826 MachineBasicBlock &EHPadMBB = getOrCreateBB(*EHPadBB), 827 &ReturnMBB = getOrCreateBB(*ReturnBB); 828 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 829 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 830 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 831 MIRBuilder.buildBr(ReturnMBB); 832 833 return true; 834 } 835 836 bool IRTranslator::translateLandingPad(const User &U, 837 MachineIRBuilder &MIRBuilder) { 838 const LandingPadInst &LP = cast<LandingPadInst>(U); 839 840 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 841 addLandingPadInfo(LP, MBB); 842 843 MBB.setIsEHPad(); 844 845 // If there aren't registers to copy the values into (e.g., during SjLj 846 // exceptions), then don't bother. 847 auto &TLI = *MF->getSubtarget().getTargetLowering(); 848 const Constant *PersonalityFn = MF->getFunction()->getPersonalityFn(); 849 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 850 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 851 return true; 852 853 // If landingpad's return type is token type, we don't create DAG nodes 854 // for its exception pointer and selector value. The extraction of exception 855 // pointer or selector value from token type landingpads is not currently 856 // supported. 857 if (LP.getType()->isTokenTy()) 858 return true; 859 860 // Add a label to mark the beginning of the landing pad. Deletion of the 861 // landing pad can thus be detected via the MachineModuleInfo. 862 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 863 .addSym(MF->addLandingPad(&MBB)); 864 865 LLT Ty = getLLTForType(*LP.getType(), *DL); 866 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 867 MIRBuilder.buildUndef(Undef); 868 869 SmallVector<LLT, 2> Tys; 870 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 871 Tys.push_back(getLLTForType(*Ty, *DL)); 872 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 873 874 // Mark exception register as live in. 875 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 876 if (!ExceptionReg) 877 return false; 878 879 MBB.addLiveIn(ExceptionReg); 880 unsigned VReg = MRI->createGenericVirtualRegister(Tys[0]), 881 Tmp = MRI->createGenericVirtualRegister(Ty); 882 MIRBuilder.buildCopy(VReg, ExceptionReg); 883 MIRBuilder.buildInsert(Tmp, Undef, VReg, 0); 884 885 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 886 if (!SelectorReg) 887 return false; 888 889 MBB.addLiveIn(SelectorReg); 890 891 // N.b. the exception selector register always has pointer type and may not 892 // match the actual IR-level type in the landingpad so an extra cast is 893 // needed. 894 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 895 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 896 897 VReg = MRI->createGenericVirtualRegister(Tys[1]); 898 MIRBuilder.buildInstr(TargetOpcode::G_PTRTOINT).addDef(VReg).addUse(PtrVReg); 899 MIRBuilder.buildInsert(getOrCreateVReg(LP), Tmp, VReg, 900 Tys[0].getSizeInBits()); 901 return true; 902 } 903 904 bool IRTranslator::translateAlloca(const User &U, 905 MachineIRBuilder &MIRBuilder) { 906 auto &AI = cast<AllocaInst>(U); 907 908 if (AI.isStaticAlloca()) { 909 unsigned Res = getOrCreateVReg(AI); 910 int FI = getOrCreateFrameIndex(AI); 911 MIRBuilder.buildFrameIndex(Res, FI); 912 return true; 913 } 914 915 // Now we're in the harder dynamic case. 916 Type *Ty = AI.getAllocatedType(); 917 unsigned Align = 918 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 919 920 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 921 922 LLT IntPtrTy = LLT::scalar(DL->getPointerSizeInBits()); 923 if (MRI->getType(NumElts) != IntPtrTy) { 924 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 925 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 926 NumElts = ExtElts; 927 } 928 929 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 930 unsigned TySize = MRI->createGenericVirtualRegister(IntPtrTy); 931 MIRBuilder.buildConstant(TySize, -DL->getTypeAllocSize(Ty)); 932 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 933 934 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 935 auto &TLI = *MF->getSubtarget().getTargetLowering(); 936 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 937 938 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 939 MIRBuilder.buildCopy(SPTmp, SPReg); 940 941 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 942 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 943 944 // Handle alignment. We have to realign if the allocation granule was smaller 945 // than stack alignment, or the specific alloca requires more than stack 946 // alignment. 947 unsigned StackAlign = 948 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 949 Align = std::max(Align, StackAlign); 950 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 951 // Round the size of the allocation up to the stack alignment size 952 // by add SA-1 to the size. This doesn't overflow because we're computing 953 // an address inside an alloca. 954 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 955 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 956 AllocTmp = AlignedAlloc; 957 } 958 959 MIRBuilder.buildCopy(SPReg, AllocTmp); 960 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 961 962 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 963 assert(MF->getFrameInfo().hasVarSizedObjects()); 964 return true; 965 } 966 967 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 968 // FIXME: We may need more info about the type. Because of how LLT works, 969 // we're completely discarding the i64/double distinction here (amongst 970 // others). Fortunately the ABIs I know of where that matters don't use va_arg 971 // anyway but that's not guaranteed. 972 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 973 .addDef(getOrCreateVReg(U)) 974 .addUse(getOrCreateVReg(*U.getOperand(0))) 975 .addImm(DL->getABITypeAlignment(U.getType())); 976 return true; 977 } 978 979 bool IRTranslator::translateInsertElement(const User &U, 980 MachineIRBuilder &MIRBuilder) { 981 // If it is a <1 x Ty> vector, use the scalar as it is 982 // not a legal vector type in LLT. 983 if (U.getType()->getVectorNumElements() == 1) { 984 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 985 ValToVReg[&U] = Elt; 986 return true; 987 } 988 MIRBuilder.buildInsertVectorElement( 989 getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)), 990 getOrCreateVReg(*U.getOperand(1)), getOrCreateVReg(*U.getOperand(2))); 991 return true; 992 } 993 994 bool IRTranslator::translateExtractElement(const User &U, 995 MachineIRBuilder &MIRBuilder) { 996 // If it is a <1 x Ty> vector, use the scalar as it is 997 // not a legal vector type in LLT. 998 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 999 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1000 ValToVReg[&U] = Elt; 1001 return true; 1002 } 1003 MIRBuilder.buildExtractVectorElement(getOrCreateVReg(U), 1004 getOrCreateVReg(*U.getOperand(0)), 1005 getOrCreateVReg(*U.getOperand(1))); 1006 return true; 1007 } 1008 1009 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1010 const PHINode &PI = cast<PHINode>(U); 1011 auto MIB = MIRBuilder.buildInstr(TargetOpcode::PHI); 1012 MIB.addDef(getOrCreateVReg(PI)); 1013 1014 PendingPHIs.emplace_back(&PI, MIB.getInstr()); 1015 return true; 1016 } 1017 1018 void IRTranslator::finishPendingPhis() { 1019 for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) { 1020 const PHINode *PI = Phi.first; 1021 MachineInstrBuilder MIB(*MF, Phi.second); 1022 1023 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1024 // won't create extra control flow here, otherwise we need to find the 1025 // dominating predecessor here (or perhaps force the weirder IRTranslators 1026 // to provide a simple boundary). 1027 SmallSet<const BasicBlock *, 4> HandledPreds; 1028 1029 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1030 auto IRPred = PI->getIncomingBlock(i); 1031 if (HandledPreds.count(IRPred)) 1032 continue; 1033 1034 HandledPreds.insert(IRPred); 1035 unsigned ValReg = getOrCreateVReg(*PI->getIncomingValue(i)); 1036 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1037 assert(Pred->isSuccessor(MIB->getParent()) && 1038 "incorrect CFG at MachineBasicBlock level"); 1039 MIB.addUse(ValReg); 1040 MIB.addMBB(Pred); 1041 } 1042 } 1043 } 1044 } 1045 1046 bool IRTranslator::translate(const Instruction &Inst) { 1047 CurBuilder.setDebugLoc(Inst.getDebugLoc()); 1048 switch(Inst.getOpcode()) { 1049 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1050 case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder); 1051 #include "llvm/IR/Instruction.def" 1052 default: 1053 return false; 1054 } 1055 } 1056 1057 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1058 if (auto CI = dyn_cast<ConstantInt>(&C)) 1059 EntryBuilder.buildConstant(Reg, *CI); 1060 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1061 EntryBuilder.buildFConstant(Reg, *CF); 1062 else if (isa<UndefValue>(C)) 1063 EntryBuilder.buildUndef(Reg); 1064 else if (isa<ConstantPointerNull>(C)) 1065 EntryBuilder.buildConstant(Reg, 0); 1066 else if (auto GV = dyn_cast<GlobalValue>(&C)) 1067 EntryBuilder.buildGlobalValue(Reg, GV); 1068 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1069 if (!CAZ->getType()->isVectorTy()) 1070 return false; 1071 // Return the scalar if it is a <1 x Ty> vector. 1072 if (CAZ->getNumElements() == 1) 1073 return translate(*CAZ->getElementValue(0u), Reg); 1074 std::vector<unsigned> Ops; 1075 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1076 Constant &Elt = *CAZ->getElementValue(i); 1077 Ops.push_back(getOrCreateVReg(Elt)); 1078 } 1079 EntryBuilder.buildMerge(Reg, Ops); 1080 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1081 // Return the scalar if it is a <1 x Ty> vector. 1082 if (CV->getNumElements() == 1) 1083 return translate(*CV->getElementAsConstant(0), Reg); 1084 std::vector<unsigned> Ops; 1085 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1086 Constant &Elt = *CV->getElementAsConstant(i); 1087 Ops.push_back(getOrCreateVReg(Elt)); 1088 } 1089 EntryBuilder.buildMerge(Reg, Ops); 1090 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1091 switch(CE->getOpcode()) { 1092 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1093 case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder); 1094 #include "llvm/IR/Instruction.def" 1095 default: 1096 return false; 1097 } 1098 } else 1099 return false; 1100 1101 return true; 1102 } 1103 1104 void IRTranslator::finalizeFunction() { 1105 // Release the memory used by the different maps we 1106 // needed during the translation. 1107 PendingPHIs.clear(); 1108 ValToVReg.clear(); 1109 FrameIndices.clear(); 1110 Constants.clear(); 1111 MachinePreds.clear(); 1112 } 1113 1114 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1115 MF = &CurMF; 1116 const Function &F = *MF->getFunction(); 1117 if (F.empty()) 1118 return false; 1119 CLI = MF->getSubtarget().getCallLowering(); 1120 CurBuilder.setMF(*MF); 1121 EntryBuilder.setMF(*MF); 1122 MRI = &MF->getRegInfo(); 1123 DL = &F.getParent()->getDataLayout(); 1124 TPC = &getAnalysis<TargetPassConfig>(); 1125 ORE = make_unique<OptimizationRemarkEmitter>(&F); 1126 1127 assert(PendingPHIs.empty() && "stale PHIs"); 1128 1129 // Release the per-function state when we return, whether we succeeded or not. 1130 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1131 1132 // Setup a separate basic-block for the arguments and constants, falling 1133 // through to the IR-level Function's entry block. 1134 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1135 MF->push_back(EntryBB); 1136 EntryBB->addSuccessor(&getOrCreateBB(F.front())); 1137 EntryBuilder.setMBB(*EntryBB); 1138 1139 // Lower the actual args into this basic block. 1140 SmallVector<unsigned, 8> VRegArgs; 1141 for (const Argument &Arg: F.args()) 1142 VRegArgs.push_back(getOrCreateVReg(Arg)); 1143 if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) { 1144 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1145 MF->getFunction()->getSubprogram(), 1146 &MF->getFunction()->getEntryBlock()); 1147 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1148 reportTranslationError(*MF, *TPC, *ORE, R); 1149 return false; 1150 } 1151 1152 // And translate the function! 1153 for (const BasicBlock &BB: F) { 1154 MachineBasicBlock &MBB = getOrCreateBB(BB); 1155 // Set the insertion point of all the following translations to 1156 // the end of this basic block. 1157 CurBuilder.setMBB(MBB); 1158 1159 for (const Instruction &Inst: BB) { 1160 if (translate(Inst)) 1161 continue; 1162 1163 std::string InstStrStorage; 1164 raw_string_ostream InstStr(InstStrStorage); 1165 InstStr << Inst; 1166 1167 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1168 Inst.getDebugLoc(), &BB); 1169 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst) 1170 << ": '" << InstStr.str() << "'"; 1171 reportTranslationError(*MF, *TPC, *ORE, R); 1172 return false; 1173 } 1174 } 1175 1176 finishPendingPhis(); 1177 1178 // Now that the MachineFrameInfo has been configured, no further changes to 1179 // the reserved registers are possible. 1180 MRI->freezeReservedRegs(*MF); 1181 1182 // Merge the argument lowering and constants block with its single 1183 // successor, the LLVM-IR entry block. We want the basic block to 1184 // be maximal. 1185 assert(EntryBB->succ_size() == 1 && 1186 "Custom BB used for lowering should have only one successor"); 1187 // Get the successor of the current entry block. 1188 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1189 assert(NewEntryBB.pred_size() == 1 && 1190 "LLVM-IR entry block has a predecessor!?"); 1191 // Move all the instruction from the current entry block to the 1192 // new entry block. 1193 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1194 EntryBB->end()); 1195 1196 // Update the live-in information for the new entry block. 1197 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1198 NewEntryBB.addLiveIn(LiveIn); 1199 NewEntryBB.sortUniqueLiveIns(); 1200 1201 // Get rid of the now empty basic block. 1202 EntryBB->removeSuccessor(&NewEntryBB); 1203 MF->remove(EntryBB); 1204 MF->DeleteMachineBasicBlock(EntryBB); 1205 1206 assert(&MF->front() == &NewEntryBB && 1207 "New entry wasn't next in the list of basic block!"); 1208 1209 return false; 1210 } 1211