1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 26 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 27 #include "llvm/CodeGen/LowLevelType.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/RuntimeLibcalls.h" 37 #include "llvm/CodeGen/StackProtector.h" 38 #include "llvm/CodeGen/SwitchLoweringUtils.h" 39 #include "llvm/CodeGen/TargetFrameLowering.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetLowering.h" 42 #include "llvm/CodeGen/TargetPassConfig.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CFG.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfo.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/DiagnosticInfo.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/InlineAsm.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/Metadata.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/InitializePasses.h" 67 #include "llvm/MC/MCContext.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CodeGen.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/ErrorHandling.h" 73 #include "llvm/Support/LowLevelTypeImpl.h" 74 #include "llvm/Support/MathExtras.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Target/TargetIntrinsicInfo.h" 77 #include "llvm/Target/TargetMachine.h" 78 #include "llvm/Transforms/Utils/MemoryOpRemark.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <string> 85 #include <utility> 86 #include <vector> 87 88 #define DEBUG_TYPE "irtranslator" 89 90 using namespace llvm; 91 92 static cl::opt<bool> 93 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 94 cl::desc("Should enable CSE in irtranslator"), 95 cl::Optional, cl::init(false)); 96 char IRTranslator::ID = 0; 97 98 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 99 false, false) 100 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 101 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 102 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 103 INITIALIZE_PASS_DEPENDENCY(StackProtector) 104 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 105 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 106 false, false) 107 108 static void reportTranslationError(MachineFunction &MF, 109 const TargetPassConfig &TPC, 110 OptimizationRemarkEmitter &ORE, 111 OptimizationRemarkMissed &R) { 112 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 113 114 // Print the function name explicitly if we don't have a debug location (which 115 // makes the diagnostic less useful) or if we're going to emit a raw error. 116 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 117 R << (" (in function: " + MF.getName() + ")").str(); 118 119 if (TPC.isGlobalISelAbortEnabled()) 120 report_fatal_error(Twine(R.getMsg())); 121 else 122 ORE.emit(R); 123 } 124 125 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel) 126 : MachineFunctionPass(ID), OptLevel(optlevel) {} 127 128 #ifndef NDEBUG 129 namespace { 130 /// Verify that every instruction created has the same DILocation as the 131 /// instruction being translated. 132 class DILocationVerifier : public GISelChangeObserver { 133 const Instruction *CurrInst = nullptr; 134 135 public: 136 DILocationVerifier() = default; 137 ~DILocationVerifier() = default; 138 139 const Instruction *getCurrentInst() const { return CurrInst; } 140 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 141 142 void erasingInstr(MachineInstr &MI) override {} 143 void changingInstr(MachineInstr &MI) override {} 144 void changedInstr(MachineInstr &MI) override {} 145 146 void createdInstr(MachineInstr &MI) override { 147 assert(getCurrentInst() && "Inserted instruction without a current MI"); 148 149 // Only print the check message if we're actually checking it. 150 #ifndef NDEBUG 151 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 152 << " was copied to " << MI); 153 #endif 154 // We allow insts in the entry block to have a debug loc line of 0 because 155 // they could have originated from constants, and we don't want a jumpy 156 // debug experience. 157 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 158 MI.getDebugLoc().getLine() == 0) && 159 "Line info was not transferred to all instructions"); 160 } 161 }; 162 } // namespace 163 #endif // ifndef NDEBUG 164 165 166 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.addRequired<StackProtector>(); 168 AU.addRequired<TargetPassConfig>(); 169 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 170 if (OptLevel != CodeGenOpt::None) 171 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 172 AU.addRequired<TargetLibraryInfoWrapperPass>(); 173 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 174 getSelectionDAGFallbackAnalysisUsage(AU); 175 MachineFunctionPass::getAnalysisUsage(AU); 176 } 177 178 IRTranslator::ValueToVRegInfo::VRegListT & 179 IRTranslator::allocateVRegs(const Value &Val) { 180 auto VRegsIt = VMap.findVRegs(Val); 181 if (VRegsIt != VMap.vregs_end()) 182 return *VRegsIt->second; 183 auto *Regs = VMap.getVRegs(Val); 184 auto *Offsets = VMap.getOffsets(Val); 185 SmallVector<LLT, 4> SplitTys; 186 computeValueLLTs(*DL, *Val.getType(), SplitTys, 187 Offsets->empty() ? Offsets : nullptr); 188 for (unsigned i = 0; i < SplitTys.size(); ++i) 189 Regs->push_back(0); 190 return *Regs; 191 } 192 193 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 194 auto VRegsIt = VMap.findVRegs(Val); 195 if (VRegsIt != VMap.vregs_end()) 196 return *VRegsIt->second; 197 198 if (Val.getType()->isVoidTy()) 199 return *VMap.getVRegs(Val); 200 201 // Create entry for this type. 202 auto *VRegs = VMap.getVRegs(Val); 203 auto *Offsets = VMap.getOffsets(Val); 204 205 assert(Val.getType()->isSized() && 206 "Don't know how to create an empty vreg"); 207 208 SmallVector<LLT, 4> SplitTys; 209 computeValueLLTs(*DL, *Val.getType(), SplitTys, 210 Offsets->empty() ? Offsets : nullptr); 211 212 if (!isa<Constant>(Val)) { 213 for (auto Ty : SplitTys) 214 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 215 return *VRegs; 216 } 217 218 if (Val.getType()->isAggregateType()) { 219 // UndefValue, ConstantAggregateZero 220 auto &C = cast<Constant>(Val); 221 unsigned Idx = 0; 222 while (auto Elt = C.getAggregateElement(Idx++)) { 223 auto EltRegs = getOrCreateVRegs(*Elt); 224 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 225 } 226 } else { 227 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 228 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 229 bool Success = translate(cast<Constant>(Val), VRegs->front()); 230 if (!Success) { 231 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 232 MF->getFunction().getSubprogram(), 233 &MF->getFunction().getEntryBlock()); 234 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 235 reportTranslationError(*MF, *TPC, *ORE, R); 236 return *VRegs; 237 } 238 } 239 240 return *VRegs; 241 } 242 243 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 244 auto MapEntry = FrameIndices.find(&AI); 245 if (MapEntry != FrameIndices.end()) 246 return MapEntry->second; 247 248 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 249 uint64_t Size = 250 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 251 252 // Always allocate at least one byte. 253 Size = std::max<uint64_t>(Size, 1u); 254 255 int &FI = FrameIndices[&AI]; 256 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 257 return FI; 258 } 259 260 Align IRTranslator::getMemOpAlign(const Instruction &I) { 261 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 262 return SI->getAlign(); 263 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) 264 return LI->getAlign(); 265 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 266 return AI->getAlign(); 267 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) 268 return AI->getAlign(); 269 270 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 271 R << "unable to translate memop: " << ore::NV("Opcode", &I); 272 reportTranslationError(*MF, *TPC, *ORE, R); 273 return Align(1); 274 } 275 276 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 277 MachineBasicBlock *&MBB = BBToMBB[&BB]; 278 assert(MBB && "BasicBlock was not encountered before"); 279 return *MBB; 280 } 281 282 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 283 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 284 MachinePreds[Edge].push_back(NewPred); 285 } 286 287 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 288 MachineIRBuilder &MIRBuilder) { 289 // Get or create a virtual register for each value. 290 // Unless the value is a Constant => loadimm cst? 291 // or inline constant each time? 292 // Creation of a virtual register needs to have a size. 293 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 294 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 295 Register Res = getOrCreateVReg(U); 296 uint16_t Flags = 0; 297 if (isa<Instruction>(U)) { 298 const Instruction &I = cast<Instruction>(U); 299 Flags = MachineInstr::copyFlagsFromInstruction(I); 300 } 301 302 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 303 return true; 304 } 305 306 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U, 307 MachineIRBuilder &MIRBuilder) { 308 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 309 Register Res = getOrCreateVReg(U); 310 uint16_t Flags = 0; 311 if (isa<Instruction>(U)) { 312 const Instruction &I = cast<Instruction>(U); 313 Flags = MachineInstr::copyFlagsFromInstruction(I); 314 } 315 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags); 316 return true; 317 } 318 319 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 320 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder); 321 } 322 323 bool IRTranslator::translateCompare(const User &U, 324 MachineIRBuilder &MIRBuilder) { 325 auto *CI = dyn_cast<CmpInst>(&U); 326 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 327 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 328 Register Res = getOrCreateVReg(U); 329 CmpInst::Predicate Pred = 330 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 331 cast<ConstantExpr>(U).getPredicate()); 332 if (CmpInst::isIntPredicate(Pred)) 333 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 334 else if (Pred == CmpInst::FCMP_FALSE) 335 MIRBuilder.buildCopy( 336 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 337 else if (Pred == CmpInst::FCMP_TRUE) 338 MIRBuilder.buildCopy( 339 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 340 else { 341 uint16_t Flags = 0; 342 if (CI) 343 Flags = MachineInstr::copyFlagsFromInstruction(*CI); 344 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags); 345 } 346 347 return true; 348 } 349 350 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 351 const ReturnInst &RI = cast<ReturnInst>(U); 352 const Value *Ret = RI.getReturnValue(); 353 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 354 Ret = nullptr; 355 356 ArrayRef<Register> VRegs; 357 if (Ret) 358 VRegs = getOrCreateVRegs(*Ret); 359 360 Register SwiftErrorVReg = 0; 361 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 362 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 363 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 364 } 365 366 // The target may mess up with the insertion point, but 367 // this is not important as a return is the last instruction 368 // of the block anyway. 369 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg); 370 } 371 372 void IRTranslator::emitBranchForMergedCondition( 373 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 374 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 375 BranchProbability TProb, BranchProbability FProb, bool InvertCond) { 376 // If the leaf of the tree is a comparison, merge the condition into 377 // the caseblock. 378 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 379 CmpInst::Predicate Condition; 380 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 381 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 382 } else { 383 const FCmpInst *FC = cast<FCmpInst>(Cond); 384 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 385 } 386 387 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0), 388 BOp->getOperand(1), nullptr, TBB, FBB, CurBB, 389 CurBuilder->getDebugLoc(), TProb, FProb); 390 SL->SwitchCases.push_back(CB); 391 return; 392 } 393 394 // Create a CaseBlock record representing this branch. 395 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 396 SwitchCG::CaseBlock CB( 397 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()), 398 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb); 399 SL->SwitchCases.push_back(CB); 400 } 401 402 static bool isValInBlock(const Value *V, const BasicBlock *BB) { 403 if (const Instruction *I = dyn_cast<Instruction>(V)) 404 return I->getParent() == BB; 405 return true; 406 } 407 408 void IRTranslator::findMergedConditions( 409 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 410 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 411 Instruction::BinaryOps Opc, BranchProbability TProb, 412 BranchProbability FProb, bool InvertCond) { 413 using namespace PatternMatch; 414 assert((Opc == Instruction::And || Opc == Instruction::Or) && 415 "Expected Opc to be AND/OR"); 416 // Skip over not part of the tree and remember to invert op and operands at 417 // next level. 418 Value *NotCond; 419 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 420 isValInBlock(NotCond, CurBB->getBasicBlock())) { 421 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 422 !InvertCond); 423 return; 424 } 425 426 const Instruction *BOp = dyn_cast<Instruction>(Cond); 427 const Value *BOpOp0, *BOpOp1; 428 // Compute the effective opcode for Cond, taking into account whether it needs 429 // to be inverted, e.g. 430 // and (not (or A, B)), C 431 // gets lowered as 432 // and (and (not A, not B), C) 433 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 434 if (BOp) { 435 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 436 ? Instruction::And 437 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 438 ? Instruction::Or 439 : (Instruction::BinaryOps)0); 440 if (InvertCond) { 441 if (BOpc == Instruction::And) 442 BOpc = Instruction::Or; 443 else if (BOpc == Instruction::Or) 444 BOpc = Instruction::And; 445 } 446 } 447 448 // If this node is not part of the or/and tree, emit it as a branch. 449 // Note that all nodes in the tree should have same opcode. 450 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 451 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 452 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) || 453 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) { 454 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb, 455 InvertCond); 456 return; 457 } 458 459 // Create TmpBB after CurBB. 460 MachineFunction::iterator BBI(CurBB); 461 MachineBasicBlock *TmpBB = 462 MF->CreateMachineBasicBlock(CurBB->getBasicBlock()); 463 CurBB->getParent()->insert(++BBI, TmpBB); 464 465 if (Opc == Instruction::Or) { 466 // Codegen X | Y as: 467 // BB1: 468 // jmp_if_X TBB 469 // jmp TmpBB 470 // TmpBB: 471 // jmp_if_Y TBB 472 // jmp FBB 473 // 474 475 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 476 // The requirement is that 477 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 478 // = TrueProb for original BB. 479 // Assuming the original probabilities are A and B, one choice is to set 480 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 481 // A/(1+B) and 2B/(1+B). This choice assumes that 482 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 483 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 484 // TmpBB, but the math is more complicated. 485 486 auto NewTrueProb = TProb / 2; 487 auto NewFalseProb = TProb / 2 + FProb; 488 // Emit the LHS condition. 489 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 490 NewFalseProb, InvertCond); 491 492 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 493 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 494 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 495 // Emit the RHS condition into TmpBB. 496 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 497 Probs[1], InvertCond); 498 } else { 499 assert(Opc == Instruction::And && "Unknown merge op!"); 500 // Codegen X & Y as: 501 // BB1: 502 // jmp_if_X TmpBB 503 // jmp FBB 504 // TmpBB: 505 // jmp_if_Y TBB 506 // jmp FBB 507 // 508 // This requires creation of TmpBB after CurBB. 509 510 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 511 // The requirement is that 512 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 513 // = FalseProb for original BB. 514 // Assuming the original probabilities are A and B, one choice is to set 515 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 516 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 517 // TrueProb for BB1 * FalseProb for TmpBB. 518 519 auto NewTrueProb = TProb + FProb / 2; 520 auto NewFalseProb = FProb / 2; 521 // Emit the LHS condition. 522 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 523 NewFalseProb, InvertCond); 524 525 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 526 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 527 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 528 // Emit the RHS condition into TmpBB. 529 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 530 Probs[1], InvertCond); 531 } 532 } 533 534 bool IRTranslator::shouldEmitAsBranches( 535 const std::vector<SwitchCG::CaseBlock> &Cases) { 536 // For multiple cases, it's better to emit as branches. 537 if (Cases.size() != 2) 538 return true; 539 540 // If this is two comparisons of the same values or'd or and'd together, they 541 // will get folded into a single comparison, so don't emit two blocks. 542 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 543 Cases[0].CmpRHS == Cases[1].CmpRHS) || 544 (Cases[0].CmpRHS == Cases[1].CmpLHS && 545 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 546 return false; 547 } 548 549 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 550 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 551 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 552 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred && 553 isa<Constant>(Cases[0].CmpRHS) && 554 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 555 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ && 556 Cases[0].TrueBB == Cases[1].ThisBB) 557 return false; 558 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE && 559 Cases[0].FalseBB == Cases[1].ThisBB) 560 return false; 561 } 562 563 return true; 564 } 565 566 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 567 const BranchInst &BrInst = cast<BranchInst>(U); 568 auto &CurMBB = MIRBuilder.getMBB(); 569 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0)); 570 571 if (BrInst.isUnconditional()) { 572 // If the unconditional target is the layout successor, fallthrough. 573 if (OptLevel == CodeGenOpt::None || !CurMBB.isLayoutSuccessor(Succ0MBB)) 574 MIRBuilder.buildBr(*Succ0MBB); 575 576 // Link successors. 577 for (const BasicBlock *Succ : successors(&BrInst)) 578 CurMBB.addSuccessor(&getMBB(*Succ)); 579 return true; 580 } 581 582 // If this condition is one of the special cases we handle, do special stuff 583 // now. 584 const Value *CondVal = BrInst.getCondition(); 585 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1)); 586 587 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 588 589 // If this is a series of conditions that are or'd or and'd together, emit 590 // this as a sequence of branches instead of setcc's with and/or operations. 591 // As long as jumps are not expensive (exceptions for multi-use logic ops, 592 // unpredictable branches, and vector extracts because those jumps are likely 593 // expensive for any target), this should improve performance. 594 // For example, instead of something like: 595 // cmp A, B 596 // C = seteq 597 // cmp D, E 598 // F = setle 599 // or C, F 600 // jnz foo 601 // Emit: 602 // cmp A, B 603 // je foo 604 // cmp D, E 605 // jle foo 606 using namespace PatternMatch; 607 const Instruction *CondI = dyn_cast<Instruction>(CondVal); 608 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() && 609 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) { 610 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 611 Value *Vec; 612 const Value *BOp0, *BOp1; 613 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 614 Opcode = Instruction::And; 615 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 616 Opcode = Instruction::Or; 617 618 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 619 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 620 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode, 621 getEdgeProbability(&CurMBB, Succ0MBB), 622 getEdgeProbability(&CurMBB, Succ1MBB), 623 /*InvertCond=*/false); 624 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!"); 625 626 // Allow some cases to be rejected. 627 if (shouldEmitAsBranches(SL->SwitchCases)) { 628 // Emit the branch for this block. 629 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder); 630 SL->SwitchCases.erase(SL->SwitchCases.begin()); 631 return true; 632 } 633 634 // Okay, we decided not to do this, remove any inserted MBB's and clear 635 // SwitchCases. 636 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I) 637 MF->erase(SL->SwitchCases[I].ThisBB); 638 639 SL->SwitchCases.clear(); 640 } 641 } 642 643 // Create a CaseBlock record representing this branch. 644 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal, 645 ConstantInt::getTrue(MF->getFunction().getContext()), 646 nullptr, Succ0MBB, Succ1MBB, &CurMBB, 647 CurBuilder->getDebugLoc()); 648 649 // Use emitSwitchCase to actually insert the fast branch sequence for this 650 // cond branch. 651 emitSwitchCase(CB, &CurMBB, *CurBuilder); 652 return true; 653 } 654 655 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 656 MachineBasicBlock *Dst, 657 BranchProbability Prob) { 658 if (!FuncInfo.BPI) { 659 Src->addSuccessorWithoutProb(Dst); 660 return; 661 } 662 if (Prob.isUnknown()) 663 Prob = getEdgeProbability(Src, Dst); 664 Src->addSuccessor(Dst, Prob); 665 } 666 667 BranchProbability 668 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 669 const MachineBasicBlock *Dst) const { 670 const BasicBlock *SrcBB = Src->getBasicBlock(); 671 const BasicBlock *DstBB = Dst->getBasicBlock(); 672 if (!FuncInfo.BPI) { 673 // If BPI is not available, set the default probability as 1 / N, where N is 674 // the number of successors. 675 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 676 return BranchProbability(1, SuccSize); 677 } 678 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 679 } 680 681 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 682 using namespace SwitchCG; 683 // Extract cases from the switch. 684 const SwitchInst &SI = cast<SwitchInst>(U); 685 BranchProbabilityInfo *BPI = FuncInfo.BPI; 686 CaseClusterVector Clusters; 687 Clusters.reserve(SI.getNumCases()); 688 for (auto &I : SI.cases()) { 689 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 690 assert(Succ && "Could not find successor mbb in mapping"); 691 const ConstantInt *CaseVal = I.getCaseValue(); 692 BranchProbability Prob = 693 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 694 : BranchProbability(1, SI.getNumCases() + 1); 695 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 696 } 697 698 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 699 700 // Cluster adjacent cases with the same destination. We do this at all 701 // optimization levels because it's cheap to do and will make codegen faster 702 // if there are many clusters. 703 sortAndRangeify(Clusters); 704 705 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 706 707 // If there is only the default destination, jump there directly. 708 if (Clusters.empty()) { 709 SwitchMBB->addSuccessor(DefaultMBB); 710 if (DefaultMBB != SwitchMBB->getNextNode()) 711 MIB.buildBr(*DefaultMBB); 712 return true; 713 } 714 715 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 716 SL->findBitTestClusters(Clusters, &SI); 717 718 LLVM_DEBUG({ 719 dbgs() << "Case clusters: "; 720 for (const CaseCluster &C : Clusters) { 721 if (C.Kind == CC_JumpTable) 722 dbgs() << "JT:"; 723 if (C.Kind == CC_BitTests) 724 dbgs() << "BT:"; 725 726 C.Low->getValue().print(dbgs(), true); 727 if (C.Low != C.High) { 728 dbgs() << '-'; 729 C.High->getValue().print(dbgs(), true); 730 } 731 dbgs() << ' '; 732 } 733 dbgs() << '\n'; 734 }); 735 736 assert(!Clusters.empty()); 737 SwitchWorkList WorkList; 738 CaseClusterIt First = Clusters.begin(); 739 CaseClusterIt Last = Clusters.end() - 1; 740 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 741 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 742 743 // FIXME: At the moment we don't do any splitting optimizations here like 744 // SelectionDAG does, so this worklist only has one entry. 745 while (!WorkList.empty()) { 746 SwitchWorkListItem W = WorkList.pop_back_val(); 747 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 748 return false; 749 } 750 return true; 751 } 752 753 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 754 MachineBasicBlock *MBB) { 755 // Emit the code for the jump table 756 assert(JT.Reg != -1U && "Should lower JT Header first!"); 757 MachineIRBuilder MIB(*MBB->getParent()); 758 MIB.setMBB(*MBB); 759 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 760 761 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 762 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 763 764 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 765 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 766 } 767 768 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 769 SwitchCG::JumpTableHeader &JTH, 770 MachineBasicBlock *HeaderBB) { 771 MachineIRBuilder MIB(*HeaderBB->getParent()); 772 MIB.setMBB(*HeaderBB); 773 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 774 775 const Value &SValue = *JTH.SValue; 776 // Subtract the lowest switch case value from the value being switched on. 777 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 778 Register SwitchOpReg = getOrCreateVReg(SValue); 779 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 780 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 781 782 // This value may be smaller or larger than the target's pointer type, and 783 // therefore require extension or truncating. 784 Type *PtrIRTy = SValue.getType()->getPointerTo(); 785 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 786 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 787 788 JT.Reg = Sub.getReg(0); 789 790 if (JTH.FallthroughUnreachable) { 791 if (JT.MBB != HeaderBB->getNextNode()) 792 MIB.buildBr(*JT.MBB); 793 return true; 794 } 795 796 // Emit the range check for the jump table, and branch to the default block 797 // for the switch statement if the value being switched on exceeds the 798 // largest case in the switch. 799 auto Cst = getOrCreateVReg( 800 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 801 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 802 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 803 804 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 805 806 // Avoid emitting unnecessary branches to the next block. 807 if (JT.MBB != HeaderBB->getNextNode()) 808 BrCond = MIB.buildBr(*JT.MBB); 809 return true; 810 } 811 812 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 813 MachineBasicBlock *SwitchBB, 814 MachineIRBuilder &MIB) { 815 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 816 Register Cond; 817 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 818 MIB.setDebugLoc(CB.DbgLoc); 819 MIB.setMBB(*CB.ThisBB); 820 821 if (CB.PredInfo.NoCmp) { 822 // Branch or fall through to TrueBB. 823 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 824 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 825 CB.ThisBB); 826 CB.ThisBB->normalizeSuccProbs(); 827 if (CB.TrueBB != CB.ThisBB->getNextNode()) 828 MIB.buildBr(*CB.TrueBB); 829 MIB.setDebugLoc(OldDbgLoc); 830 return; 831 } 832 833 const LLT i1Ty = LLT::scalar(1); 834 // Build the compare. 835 if (!CB.CmpMHS) { 836 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS); 837 // For conditional branch lowering, we might try to do something silly like 838 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so, 839 // just re-use the existing condition vreg. 840 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && 841 CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) { 842 Cond = CondLHS; 843 } else { 844 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 845 if (CmpInst::isFPPredicate(CB.PredInfo.Pred)) 846 Cond = 847 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 848 else 849 Cond = 850 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 851 } 852 } else { 853 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 854 "Can only handle SLE ranges"); 855 856 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 857 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 858 859 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 860 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 861 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 862 Cond = 863 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 864 } else { 865 const LLT CmpTy = MRI->getType(CmpOpReg); 866 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 867 auto Diff = MIB.buildConstant(CmpTy, High - Low); 868 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 869 } 870 } 871 872 // Update successor info 873 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 874 875 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 876 CB.ThisBB); 877 878 // TrueBB and FalseBB are always different unless the incoming IR is 879 // degenerate. This only happens when running llc on weird IR. 880 if (CB.TrueBB != CB.FalseBB) 881 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 882 CB.ThisBB->normalizeSuccProbs(); 883 884 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 885 CB.ThisBB); 886 887 MIB.buildBrCond(Cond, *CB.TrueBB); 888 MIB.buildBr(*CB.FalseBB); 889 MIB.setDebugLoc(OldDbgLoc); 890 } 891 892 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 893 MachineBasicBlock *SwitchMBB, 894 MachineBasicBlock *CurMBB, 895 MachineBasicBlock *DefaultMBB, 896 MachineIRBuilder &MIB, 897 MachineFunction::iterator BBI, 898 BranchProbability UnhandledProbs, 899 SwitchCG::CaseClusterIt I, 900 MachineBasicBlock *Fallthrough, 901 bool FallthroughUnreachable) { 902 using namespace SwitchCG; 903 MachineFunction *CurMF = SwitchMBB->getParent(); 904 // FIXME: Optimize away range check based on pivot comparisons. 905 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 906 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 907 BranchProbability DefaultProb = W.DefaultProb; 908 909 // The jump block hasn't been inserted yet; insert it here. 910 MachineBasicBlock *JumpMBB = JT->MBB; 911 CurMF->insert(BBI, JumpMBB); 912 913 // Since the jump table block is separate from the switch block, we need 914 // to keep track of it as a machine predecessor to the default block, 915 // otherwise we lose the phi edges. 916 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 917 CurMBB); 918 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 919 JumpMBB); 920 921 auto JumpProb = I->Prob; 922 auto FallthroughProb = UnhandledProbs; 923 924 // If the default statement is a target of the jump table, we evenly 925 // distribute the default probability to successors of CurMBB. Also 926 // update the probability on the edge from JumpMBB to Fallthrough. 927 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 928 SE = JumpMBB->succ_end(); 929 SI != SE; ++SI) { 930 if (*SI == DefaultMBB) { 931 JumpProb += DefaultProb / 2; 932 FallthroughProb -= DefaultProb / 2; 933 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 934 JumpMBB->normalizeSuccProbs(); 935 } else { 936 // Also record edges from the jump table block to it's successors. 937 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 938 JumpMBB); 939 } 940 } 941 942 if (FallthroughUnreachable) 943 JTH->FallthroughUnreachable = true; 944 945 if (!JTH->FallthroughUnreachable) 946 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 947 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 948 CurMBB->normalizeSuccProbs(); 949 950 // The jump table header will be inserted in our current block, do the 951 // range check, and fall through to our fallthrough block. 952 JTH->HeaderBB = CurMBB; 953 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 954 955 // If we're in the right place, emit the jump table header right now. 956 if (CurMBB == SwitchMBB) { 957 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 958 return false; 959 JTH->Emitted = true; 960 } 961 return true; 962 } 963 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 964 Value *Cond, 965 MachineBasicBlock *Fallthrough, 966 bool FallthroughUnreachable, 967 BranchProbability UnhandledProbs, 968 MachineBasicBlock *CurMBB, 969 MachineIRBuilder &MIB, 970 MachineBasicBlock *SwitchMBB) { 971 using namespace SwitchCG; 972 const Value *RHS, *LHS, *MHS; 973 CmpInst::Predicate Pred; 974 if (I->Low == I->High) { 975 // Check Cond == I->Low. 976 Pred = CmpInst::ICMP_EQ; 977 LHS = Cond; 978 RHS = I->Low; 979 MHS = nullptr; 980 } else { 981 // Check I->Low <= Cond <= I->High. 982 Pred = CmpInst::ICMP_SLE; 983 LHS = I->Low; 984 MHS = Cond; 985 RHS = I->High; 986 } 987 988 // If Fallthrough is unreachable, fold away the comparison. 989 // The false probability is the sum of all unhandled cases. 990 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 991 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 992 993 emitSwitchCase(CB, SwitchMBB, MIB); 994 return true; 995 } 996 997 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B, 998 MachineBasicBlock *SwitchBB) { 999 MachineIRBuilder &MIB = *CurBuilder; 1000 MIB.setMBB(*SwitchBB); 1001 1002 // Subtract the minimum value. 1003 Register SwitchOpReg = getOrCreateVReg(*B.SValue); 1004 1005 LLT SwitchOpTy = MRI->getType(SwitchOpReg); 1006 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0); 1007 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg); 1008 1009 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 1010 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1011 1012 LLT MaskTy = SwitchOpTy; 1013 if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() || 1014 !isPowerOf2_32(MaskTy.getSizeInBits())) 1015 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1016 else { 1017 // Ensure that the type will fit the mask value. 1018 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) { 1019 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) { 1020 // Switch table case range are encoded into series of masks. 1021 // Just use pointer type, it's guaranteed to fit. 1022 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1023 break; 1024 } 1025 } 1026 } 1027 Register SubReg = RangeSub.getReg(0); 1028 if (SwitchOpTy != MaskTy) 1029 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0); 1030 1031 B.RegVT = getMVTForLLT(MaskTy); 1032 B.Reg = SubReg; 1033 1034 MachineBasicBlock *MBB = B.Cases[0].ThisBB; 1035 1036 if (!B.FallthroughUnreachable) 1037 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 1038 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 1039 1040 SwitchBB->normalizeSuccProbs(); 1041 1042 if (!B.FallthroughUnreachable) { 1043 // Conditional branch to the default block. 1044 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range); 1045 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1), 1046 RangeSub, RangeCst); 1047 MIB.buildBrCond(RangeCmp, *B.Default); 1048 } 1049 1050 // Avoid emitting unnecessary branches to the next block. 1051 if (MBB != SwitchBB->getNextNode()) 1052 MIB.buildBr(*MBB); 1053 } 1054 1055 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB, 1056 MachineBasicBlock *NextMBB, 1057 BranchProbability BranchProbToNext, 1058 Register Reg, SwitchCG::BitTestCase &B, 1059 MachineBasicBlock *SwitchBB) { 1060 MachineIRBuilder &MIB = *CurBuilder; 1061 MIB.setMBB(*SwitchBB); 1062 1063 LLT SwitchTy = getLLTForMVT(BB.RegVT); 1064 Register Cmp; 1065 unsigned PopCount = countPopulation(B.Mask); 1066 if (PopCount == 1) { 1067 // Testing for a single bit; just compare the shift count with what it 1068 // would need to be to shift a 1 bit in that position. 1069 auto MaskTrailingZeros = 1070 MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask)); 1071 Cmp = 1072 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros) 1073 .getReg(0); 1074 } else if (PopCount == BB.Range) { 1075 // There is only one zero bit in the range, test for it directly. 1076 auto MaskTrailingOnes = 1077 MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask)); 1078 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes) 1079 .getReg(0); 1080 } else { 1081 // Make desired shift. 1082 auto CstOne = MIB.buildConstant(SwitchTy, 1); 1083 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg); 1084 1085 // Emit bit tests and jumps. 1086 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask); 1087 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask); 1088 auto CstZero = MIB.buildConstant(SwitchTy, 0); 1089 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero) 1090 .getReg(0); 1091 } 1092 1093 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 1094 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 1095 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 1096 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 1097 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 1098 // one as they are relative probabilities (and thus work more like weights), 1099 // and hence we need to normalize them to let the sum of them become one. 1100 SwitchBB->normalizeSuccProbs(); 1101 1102 // Record the fact that the IR edge from the header to the bit test target 1103 // will go through our new block. Neeeded for PHIs to have nodes added. 1104 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()}, 1105 SwitchBB); 1106 1107 MIB.buildBrCond(Cmp, *B.TargetBB); 1108 1109 // Avoid emitting unnecessary branches to the next block. 1110 if (NextMBB != SwitchBB->getNextNode()) 1111 MIB.buildBr(*NextMBB); 1112 } 1113 1114 bool IRTranslator::lowerBitTestWorkItem( 1115 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB, 1116 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB, 1117 MachineIRBuilder &MIB, MachineFunction::iterator BBI, 1118 BranchProbability DefaultProb, BranchProbability UnhandledProbs, 1119 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough, 1120 bool FallthroughUnreachable) { 1121 using namespace SwitchCG; 1122 MachineFunction *CurMF = SwitchMBB->getParent(); 1123 // FIXME: Optimize away range check based on pivot comparisons. 1124 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 1125 // The bit test blocks haven't been inserted yet; insert them here. 1126 for (BitTestCase &BTC : BTB->Cases) 1127 CurMF->insert(BBI, BTC.ThisBB); 1128 1129 // Fill in fields of the BitTestBlock. 1130 BTB->Parent = CurMBB; 1131 BTB->Default = Fallthrough; 1132 1133 BTB->DefaultProb = UnhandledProbs; 1134 // If the cases in bit test don't form a contiguous range, we evenly 1135 // distribute the probability on the edge to Fallthrough to two 1136 // successors of CurMBB. 1137 if (!BTB->ContiguousRange) { 1138 BTB->Prob += DefaultProb / 2; 1139 BTB->DefaultProb -= DefaultProb / 2; 1140 } 1141 1142 if (FallthroughUnreachable) 1143 BTB->FallthroughUnreachable = true; 1144 1145 // If we're in the right place, emit the bit test header right now. 1146 if (CurMBB == SwitchMBB) { 1147 emitBitTestHeader(*BTB, SwitchMBB); 1148 BTB->Emitted = true; 1149 } 1150 return true; 1151 } 1152 1153 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 1154 Value *Cond, 1155 MachineBasicBlock *SwitchMBB, 1156 MachineBasicBlock *DefaultMBB, 1157 MachineIRBuilder &MIB) { 1158 using namespace SwitchCG; 1159 MachineFunction *CurMF = FuncInfo.MF; 1160 MachineBasicBlock *NextMBB = nullptr; 1161 MachineFunction::iterator BBI(W.MBB); 1162 if (++BBI != FuncInfo.MF->end()) 1163 NextMBB = &*BBI; 1164 1165 if (EnableOpts) { 1166 // Here, we order cases by probability so the most likely case will be 1167 // checked first. However, two clusters can have the same probability in 1168 // which case their relative ordering is non-deterministic. So we use Low 1169 // as a tie-breaker as clusters are guaranteed to never overlap. 1170 llvm::sort(W.FirstCluster, W.LastCluster + 1, 1171 [](const CaseCluster &a, const CaseCluster &b) { 1172 return a.Prob != b.Prob 1173 ? a.Prob > b.Prob 1174 : a.Low->getValue().slt(b.Low->getValue()); 1175 }); 1176 1177 // Rearrange the case blocks so that the last one falls through if possible 1178 // without changing the order of probabilities. 1179 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 1180 --I; 1181 if (I->Prob > W.LastCluster->Prob) 1182 break; 1183 if (I->Kind == CC_Range && I->MBB == NextMBB) { 1184 std::swap(*I, *W.LastCluster); 1185 break; 1186 } 1187 } 1188 } 1189 1190 // Compute total probability. 1191 BranchProbability DefaultProb = W.DefaultProb; 1192 BranchProbability UnhandledProbs = DefaultProb; 1193 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 1194 UnhandledProbs += I->Prob; 1195 1196 MachineBasicBlock *CurMBB = W.MBB; 1197 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 1198 bool FallthroughUnreachable = false; 1199 MachineBasicBlock *Fallthrough; 1200 if (I == W.LastCluster) { 1201 // For the last cluster, fall through to the default destination. 1202 Fallthrough = DefaultMBB; 1203 FallthroughUnreachable = isa<UnreachableInst>( 1204 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 1205 } else { 1206 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 1207 CurMF->insert(BBI, Fallthrough); 1208 } 1209 UnhandledProbs -= I->Prob; 1210 1211 switch (I->Kind) { 1212 case CC_BitTests: { 1213 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1214 DefaultProb, UnhandledProbs, I, Fallthrough, 1215 FallthroughUnreachable)) { 1216 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch"); 1217 return false; 1218 } 1219 break; 1220 } 1221 1222 case CC_JumpTable: { 1223 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1224 UnhandledProbs, I, Fallthrough, 1225 FallthroughUnreachable)) { 1226 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 1227 return false; 1228 } 1229 break; 1230 } 1231 case CC_Range: { 1232 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 1233 FallthroughUnreachable, UnhandledProbs, 1234 CurMBB, MIB, SwitchMBB)) { 1235 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 1236 return false; 1237 } 1238 break; 1239 } 1240 } 1241 CurMBB = Fallthrough; 1242 } 1243 1244 return true; 1245 } 1246 1247 bool IRTranslator::translateIndirectBr(const User &U, 1248 MachineIRBuilder &MIRBuilder) { 1249 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 1250 1251 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 1252 MIRBuilder.buildBrIndirect(Tgt); 1253 1254 // Link successors. 1255 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 1256 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 1257 for (const BasicBlock *Succ : successors(&BrInst)) { 1258 // It's legal for indirectbr instructions to have duplicate blocks in the 1259 // destination list. We don't allow this in MIR. Skip anything that's 1260 // already a successor. 1261 if (!AddedSuccessors.insert(Succ).second) 1262 continue; 1263 CurBB.addSuccessor(&getMBB(*Succ)); 1264 } 1265 1266 return true; 1267 } 1268 1269 static bool isSwiftError(const Value *V) { 1270 if (auto Arg = dyn_cast<Argument>(V)) 1271 return Arg->hasSwiftErrorAttr(); 1272 if (auto AI = dyn_cast<AllocaInst>(V)) 1273 return AI->isSwiftError(); 1274 return false; 1275 } 1276 1277 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 1278 const LoadInst &LI = cast<LoadInst>(U); 1279 if (DL->getTypeStoreSize(LI.getType()) == 0) 1280 return true; 1281 1282 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 1283 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 1284 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 1285 1286 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 1287 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1288 1289 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 1290 assert(Regs.size() == 1 && "swifterror should be single pointer"); 1291 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 1292 LI.getPointerOperand()); 1293 MIRBuilder.buildCopy(Regs[0], VReg); 1294 return true; 1295 } 1296 1297 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1298 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 1299 1300 const MDNode *Ranges = 1301 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 1302 for (unsigned i = 0; i < Regs.size(); ++i) { 1303 Register Addr; 1304 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1305 1306 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 1307 Align BaseAlign = getMemOpAlign(LI); 1308 auto MMO = MF->getMachineMemOperand( 1309 Ptr, Flags, MRI->getType(Regs[i]), 1310 commonAlignment(BaseAlign, Offsets[i] / 8), LI.getAAMetadata(), Ranges, 1311 LI.getSyncScopeID(), LI.getOrdering()); 1312 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 1313 } 1314 1315 return true; 1316 } 1317 1318 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 1319 const StoreInst &SI = cast<StoreInst>(U); 1320 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 1321 return true; 1322 1323 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 1324 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 1325 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 1326 1327 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 1328 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1329 1330 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 1331 assert(Vals.size() == 1 && "swifterror should be single pointer"); 1332 1333 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 1334 SI.getPointerOperand()); 1335 MIRBuilder.buildCopy(VReg, Vals[0]); 1336 return true; 1337 } 1338 1339 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1340 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 1341 1342 for (unsigned i = 0; i < Vals.size(); ++i) { 1343 Register Addr; 1344 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1345 1346 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 1347 Align BaseAlign = getMemOpAlign(SI); 1348 auto MMO = MF->getMachineMemOperand( 1349 Ptr, Flags, MRI->getType(Vals[i]), 1350 commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr, 1351 SI.getSyncScopeID(), SI.getOrdering()); 1352 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 1353 } 1354 return true; 1355 } 1356 1357 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 1358 const Value *Src = U.getOperand(0); 1359 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 1360 1361 // getIndexedOffsetInType is designed for GEPs, so the first index is the 1362 // usual array element rather than looking into the actual aggregate. 1363 SmallVector<Value *, 1> Indices; 1364 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 1365 1366 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 1367 for (auto Idx : EVI->indices()) 1368 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1369 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 1370 for (auto Idx : IVI->indices()) 1371 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1372 } else { 1373 for (unsigned i = 1; i < U.getNumOperands(); ++i) 1374 Indices.push_back(U.getOperand(i)); 1375 } 1376 1377 return 8 * static_cast<uint64_t>( 1378 DL.getIndexedOffsetInType(Src->getType(), Indices)); 1379 } 1380 1381 bool IRTranslator::translateExtractValue(const User &U, 1382 MachineIRBuilder &MIRBuilder) { 1383 const Value *Src = U.getOperand(0); 1384 uint64_t Offset = getOffsetFromIndices(U, *DL); 1385 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1386 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 1387 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 1388 auto &DstRegs = allocateVRegs(U); 1389 1390 for (unsigned i = 0; i < DstRegs.size(); ++i) 1391 DstRegs[i] = SrcRegs[Idx++]; 1392 1393 return true; 1394 } 1395 1396 bool IRTranslator::translateInsertValue(const User &U, 1397 MachineIRBuilder &MIRBuilder) { 1398 const Value *Src = U.getOperand(0); 1399 uint64_t Offset = getOffsetFromIndices(U, *DL); 1400 auto &DstRegs = allocateVRegs(U); 1401 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 1402 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1403 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 1404 auto InsertedIt = InsertedRegs.begin(); 1405 1406 for (unsigned i = 0; i < DstRegs.size(); ++i) { 1407 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 1408 DstRegs[i] = *InsertedIt++; 1409 else 1410 DstRegs[i] = SrcRegs[i]; 1411 } 1412 1413 return true; 1414 } 1415 1416 bool IRTranslator::translateSelect(const User &U, 1417 MachineIRBuilder &MIRBuilder) { 1418 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1419 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1420 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1421 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1422 1423 uint16_t Flags = 0; 1424 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 1425 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 1426 1427 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1428 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1429 } 1430 1431 return true; 1432 } 1433 1434 bool IRTranslator::translateCopy(const User &U, const Value &V, 1435 MachineIRBuilder &MIRBuilder) { 1436 Register Src = getOrCreateVReg(V); 1437 auto &Regs = *VMap.getVRegs(U); 1438 if (Regs.empty()) { 1439 Regs.push_back(Src); 1440 VMap.getOffsets(U)->push_back(0); 1441 } else { 1442 // If we already assigned a vreg for this instruction, we can't change that. 1443 // Emit a copy to satisfy the users we already emitted. 1444 MIRBuilder.buildCopy(Regs[0], Src); 1445 } 1446 return true; 1447 } 1448 1449 bool IRTranslator::translateBitCast(const User &U, 1450 MachineIRBuilder &MIRBuilder) { 1451 // If we're bitcasting to the source type, we can reuse the source vreg. 1452 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1453 getLLTForType(*U.getType(), *DL)) 1454 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1455 1456 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1457 } 1458 1459 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1460 MachineIRBuilder &MIRBuilder) { 1461 Register Op = getOrCreateVReg(*U.getOperand(0)); 1462 Register Res = getOrCreateVReg(U); 1463 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1464 return true; 1465 } 1466 1467 bool IRTranslator::translateGetElementPtr(const User &U, 1468 MachineIRBuilder &MIRBuilder) { 1469 Value &Op0 = *U.getOperand(0); 1470 Register BaseReg = getOrCreateVReg(Op0); 1471 Type *PtrIRTy = Op0.getType(); 1472 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1473 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1474 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1475 1476 // Normalize Vector GEP - all scalar operands should be converted to the 1477 // splat vector. 1478 unsigned VectorWidth = 0; 1479 1480 // True if we should use a splat vector; using VectorWidth alone is not 1481 // sufficient. 1482 bool WantSplatVector = false; 1483 if (auto *VT = dyn_cast<VectorType>(U.getType())) { 1484 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1485 // We don't produce 1 x N vectors; those are treated as scalars. 1486 WantSplatVector = VectorWidth > 1; 1487 } 1488 1489 // We might need to splat the base pointer into a vector if the offsets 1490 // are vectors. 1491 if (WantSplatVector && !PtrTy.isVector()) { 1492 BaseReg = 1493 MIRBuilder 1494 .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg) 1495 .getReg(0); 1496 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1497 PtrTy = getLLTForType(*PtrIRTy, *DL); 1498 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1499 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1500 } 1501 1502 int64_t Offset = 0; 1503 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1504 GTI != E; ++GTI) { 1505 const Value *Idx = GTI.getOperand(); 1506 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1507 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1508 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1509 continue; 1510 } else { 1511 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1512 1513 // If this is a scalar constant or a splat vector of constants, 1514 // handle it quickly. 1515 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1516 Offset += ElementSize * CI->getSExtValue(); 1517 continue; 1518 } 1519 1520 if (Offset != 0) { 1521 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1522 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1523 .getReg(0); 1524 Offset = 0; 1525 } 1526 1527 Register IdxReg = getOrCreateVReg(*Idx); 1528 LLT IdxTy = MRI->getType(IdxReg); 1529 if (IdxTy != OffsetTy) { 1530 if (!IdxTy.isVector() && WantSplatVector) { 1531 IdxReg = MIRBuilder.buildSplatVector( 1532 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1533 } 1534 1535 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1536 } 1537 1538 // N = N + Idx * ElementSize; 1539 // Avoid doing it for ElementSize of 1. 1540 Register GepOffsetReg; 1541 if (ElementSize != 1) { 1542 auto ElementSizeMIB = MIRBuilder.buildConstant( 1543 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1544 GepOffsetReg = 1545 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1546 } else 1547 GepOffsetReg = IdxReg; 1548 1549 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1550 } 1551 } 1552 1553 if (Offset != 0) { 1554 auto OffsetMIB = 1555 MIRBuilder.buildConstant(OffsetTy, Offset); 1556 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1557 return true; 1558 } 1559 1560 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1561 return true; 1562 } 1563 1564 bool IRTranslator::translateMemFunc(const CallInst &CI, 1565 MachineIRBuilder &MIRBuilder, 1566 unsigned Opcode) { 1567 1568 // If the source is undef, then just emit a nop. 1569 if (isa<UndefValue>(CI.getArgOperand(1))) 1570 return true; 1571 1572 SmallVector<Register, 3> SrcRegs; 1573 1574 unsigned MinPtrSize = UINT_MAX; 1575 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) { 1576 Register SrcReg = getOrCreateVReg(**AI); 1577 LLT SrcTy = MRI->getType(SrcReg); 1578 if (SrcTy.isPointer()) 1579 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize); 1580 SrcRegs.push_back(SrcReg); 1581 } 1582 1583 LLT SizeTy = LLT::scalar(MinPtrSize); 1584 1585 // The size operand should be the minimum of the pointer sizes. 1586 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1]; 1587 if (MRI->getType(SizeOpReg) != SizeTy) 1588 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0); 1589 1590 auto ICall = MIRBuilder.buildInstr(Opcode); 1591 for (Register SrcReg : SrcRegs) 1592 ICall.addUse(SrcReg); 1593 1594 Align DstAlign; 1595 Align SrcAlign; 1596 unsigned IsVol = 1597 cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue(); 1598 1599 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1600 DstAlign = MCI->getDestAlign().valueOrOne(); 1601 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1602 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) { 1603 DstAlign = MCI->getDestAlign().valueOrOne(); 1604 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1605 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1606 DstAlign = MMI->getDestAlign().valueOrOne(); 1607 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1608 } else { 1609 auto *MSI = cast<MemSetInst>(&CI); 1610 DstAlign = MSI->getDestAlign().valueOrOne(); 1611 } 1612 1613 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) { 1614 // We need to propagate the tail call flag from the IR inst as an argument. 1615 // Otherwise, we have to pessimize and assume later that we cannot tail call 1616 // any memory intrinsics. 1617 ICall.addImm(CI.isTailCall() ? 1 : 0); 1618 } 1619 1620 // Create mem operands to store the alignment and volatile info. 1621 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1622 ICall.addMemOperand(MF->getMachineMemOperand( 1623 MachinePointerInfo(CI.getArgOperand(0)), 1624 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1625 if (Opcode != TargetOpcode::G_MEMSET) 1626 ICall.addMemOperand(MF->getMachineMemOperand( 1627 MachinePointerInfo(CI.getArgOperand(1)), 1628 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1629 1630 return true; 1631 } 1632 1633 void IRTranslator::getStackGuard(Register DstReg, 1634 MachineIRBuilder &MIRBuilder) { 1635 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1636 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1637 auto MIB = 1638 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1639 1640 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1641 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1642 if (!Global) 1643 return; 1644 1645 unsigned AddrSpace = Global->getType()->getPointerAddressSpace(); 1646 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace)); 1647 1648 MachinePointerInfo MPInfo(Global); 1649 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1650 MachineMemOperand::MODereferenceable; 1651 MachineMemOperand *MemRef = MF->getMachineMemOperand( 1652 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace)); 1653 MIB.setMemRefs({MemRef}); 1654 } 1655 1656 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1657 MachineIRBuilder &MIRBuilder) { 1658 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1659 MIRBuilder.buildInstr( 1660 Op, {ResRegs[0], ResRegs[1]}, 1661 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1662 1663 return true; 1664 } 1665 1666 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI, 1667 MachineIRBuilder &MIRBuilder) { 1668 Register Dst = getOrCreateVReg(CI); 1669 Register Src0 = getOrCreateVReg(*CI.getOperand(0)); 1670 Register Src1 = getOrCreateVReg(*CI.getOperand(1)); 1671 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 1672 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale }); 1673 return true; 1674 } 1675 1676 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1677 switch (ID) { 1678 default: 1679 break; 1680 case Intrinsic::bswap: 1681 return TargetOpcode::G_BSWAP; 1682 case Intrinsic::bitreverse: 1683 return TargetOpcode::G_BITREVERSE; 1684 case Intrinsic::fshl: 1685 return TargetOpcode::G_FSHL; 1686 case Intrinsic::fshr: 1687 return TargetOpcode::G_FSHR; 1688 case Intrinsic::ceil: 1689 return TargetOpcode::G_FCEIL; 1690 case Intrinsic::cos: 1691 return TargetOpcode::G_FCOS; 1692 case Intrinsic::ctpop: 1693 return TargetOpcode::G_CTPOP; 1694 case Intrinsic::exp: 1695 return TargetOpcode::G_FEXP; 1696 case Intrinsic::exp2: 1697 return TargetOpcode::G_FEXP2; 1698 case Intrinsic::fabs: 1699 return TargetOpcode::G_FABS; 1700 case Intrinsic::copysign: 1701 return TargetOpcode::G_FCOPYSIGN; 1702 case Intrinsic::minnum: 1703 return TargetOpcode::G_FMINNUM; 1704 case Intrinsic::maxnum: 1705 return TargetOpcode::G_FMAXNUM; 1706 case Intrinsic::minimum: 1707 return TargetOpcode::G_FMINIMUM; 1708 case Intrinsic::maximum: 1709 return TargetOpcode::G_FMAXIMUM; 1710 case Intrinsic::canonicalize: 1711 return TargetOpcode::G_FCANONICALIZE; 1712 case Intrinsic::floor: 1713 return TargetOpcode::G_FFLOOR; 1714 case Intrinsic::fma: 1715 return TargetOpcode::G_FMA; 1716 case Intrinsic::log: 1717 return TargetOpcode::G_FLOG; 1718 case Intrinsic::log2: 1719 return TargetOpcode::G_FLOG2; 1720 case Intrinsic::log10: 1721 return TargetOpcode::G_FLOG10; 1722 case Intrinsic::nearbyint: 1723 return TargetOpcode::G_FNEARBYINT; 1724 case Intrinsic::pow: 1725 return TargetOpcode::G_FPOW; 1726 case Intrinsic::powi: 1727 return TargetOpcode::G_FPOWI; 1728 case Intrinsic::rint: 1729 return TargetOpcode::G_FRINT; 1730 case Intrinsic::round: 1731 return TargetOpcode::G_INTRINSIC_ROUND; 1732 case Intrinsic::roundeven: 1733 return TargetOpcode::G_INTRINSIC_ROUNDEVEN; 1734 case Intrinsic::sin: 1735 return TargetOpcode::G_FSIN; 1736 case Intrinsic::sqrt: 1737 return TargetOpcode::G_FSQRT; 1738 case Intrinsic::trunc: 1739 return TargetOpcode::G_INTRINSIC_TRUNC; 1740 case Intrinsic::readcyclecounter: 1741 return TargetOpcode::G_READCYCLECOUNTER; 1742 case Intrinsic::ptrmask: 1743 return TargetOpcode::G_PTRMASK; 1744 case Intrinsic::lrint: 1745 return TargetOpcode::G_INTRINSIC_LRINT; 1746 // FADD/FMUL require checking the FMF, so are handled elsewhere. 1747 case Intrinsic::vector_reduce_fmin: 1748 return TargetOpcode::G_VECREDUCE_FMIN; 1749 case Intrinsic::vector_reduce_fmax: 1750 return TargetOpcode::G_VECREDUCE_FMAX; 1751 case Intrinsic::vector_reduce_add: 1752 return TargetOpcode::G_VECREDUCE_ADD; 1753 case Intrinsic::vector_reduce_mul: 1754 return TargetOpcode::G_VECREDUCE_MUL; 1755 case Intrinsic::vector_reduce_and: 1756 return TargetOpcode::G_VECREDUCE_AND; 1757 case Intrinsic::vector_reduce_or: 1758 return TargetOpcode::G_VECREDUCE_OR; 1759 case Intrinsic::vector_reduce_xor: 1760 return TargetOpcode::G_VECREDUCE_XOR; 1761 case Intrinsic::vector_reduce_smax: 1762 return TargetOpcode::G_VECREDUCE_SMAX; 1763 case Intrinsic::vector_reduce_smin: 1764 return TargetOpcode::G_VECREDUCE_SMIN; 1765 case Intrinsic::vector_reduce_umax: 1766 return TargetOpcode::G_VECREDUCE_UMAX; 1767 case Intrinsic::vector_reduce_umin: 1768 return TargetOpcode::G_VECREDUCE_UMIN; 1769 case Intrinsic::lround: 1770 return TargetOpcode::G_LROUND; 1771 case Intrinsic::llround: 1772 return TargetOpcode::G_LLROUND; 1773 } 1774 return Intrinsic::not_intrinsic; 1775 } 1776 1777 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1778 Intrinsic::ID ID, 1779 MachineIRBuilder &MIRBuilder) { 1780 1781 unsigned Op = getSimpleIntrinsicOpcode(ID); 1782 1783 // Is this a simple intrinsic? 1784 if (Op == Intrinsic::not_intrinsic) 1785 return false; 1786 1787 // Yes. Let's translate it. 1788 SmallVector<llvm::SrcOp, 4> VRegs; 1789 for (auto &Arg : CI.args()) 1790 VRegs.push_back(getOrCreateVReg(*Arg)); 1791 1792 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1793 MachineInstr::copyFlagsFromInstruction(CI)); 1794 return true; 1795 } 1796 1797 // TODO: Include ConstainedOps.def when all strict instructions are defined. 1798 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 1799 switch (ID) { 1800 case Intrinsic::experimental_constrained_fadd: 1801 return TargetOpcode::G_STRICT_FADD; 1802 case Intrinsic::experimental_constrained_fsub: 1803 return TargetOpcode::G_STRICT_FSUB; 1804 case Intrinsic::experimental_constrained_fmul: 1805 return TargetOpcode::G_STRICT_FMUL; 1806 case Intrinsic::experimental_constrained_fdiv: 1807 return TargetOpcode::G_STRICT_FDIV; 1808 case Intrinsic::experimental_constrained_frem: 1809 return TargetOpcode::G_STRICT_FREM; 1810 case Intrinsic::experimental_constrained_fma: 1811 return TargetOpcode::G_STRICT_FMA; 1812 case Intrinsic::experimental_constrained_sqrt: 1813 return TargetOpcode::G_STRICT_FSQRT; 1814 default: 1815 return 0; 1816 } 1817 } 1818 1819 bool IRTranslator::translateConstrainedFPIntrinsic( 1820 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 1821 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 1822 1823 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 1824 if (!Opcode) 1825 return false; 1826 1827 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI); 1828 if (EB == fp::ExceptionBehavior::ebIgnore) 1829 Flags |= MachineInstr::NoFPExcept; 1830 1831 SmallVector<llvm::SrcOp, 4> VRegs; 1832 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0))); 1833 if (!FPI.isUnaryOp()) 1834 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1))); 1835 if (FPI.isTernaryOp()) 1836 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2))); 1837 1838 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 1839 return true; 1840 } 1841 1842 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1843 MachineIRBuilder &MIRBuilder) { 1844 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) { 1845 if (ORE->enabled()) { 1846 const Function &F = *MI->getParent()->getParent(); 1847 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1848 if (MemoryOpRemark::canHandle(MI, TLI)) { 1849 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI); 1850 R.visit(MI); 1851 } 1852 } 1853 } 1854 1855 // If this is a simple intrinsic (that is, we just need to add a def of 1856 // a vreg, and uses for each arg operand, then translate it. 1857 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1858 return true; 1859 1860 switch (ID) { 1861 default: 1862 break; 1863 case Intrinsic::lifetime_start: 1864 case Intrinsic::lifetime_end: { 1865 // No stack colouring in O0, discard region information. 1866 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1867 return true; 1868 1869 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1870 : TargetOpcode::LIFETIME_END; 1871 1872 // Get the underlying objects for the location passed on the lifetime 1873 // marker. 1874 SmallVector<const Value *, 4> Allocas; 1875 getUnderlyingObjects(CI.getArgOperand(1), Allocas); 1876 1877 // Iterate over each underlying object, creating lifetime markers for each 1878 // static alloca. Quit if we find a non-static alloca. 1879 for (const Value *V : Allocas) { 1880 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1881 if (!AI) 1882 continue; 1883 1884 if (!AI->isStaticAlloca()) 1885 return true; 1886 1887 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1888 } 1889 return true; 1890 } 1891 case Intrinsic::dbg_declare: { 1892 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1893 assert(DI.getVariable() && "Missing variable"); 1894 1895 const Value *Address = DI.getAddress(); 1896 if (!Address || isa<UndefValue>(Address)) { 1897 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1898 return true; 1899 } 1900 1901 assert(DI.getVariable()->isValidLocationForIntrinsic( 1902 MIRBuilder.getDebugLoc()) && 1903 "Expected inlined-at fields to agree"); 1904 auto AI = dyn_cast<AllocaInst>(Address); 1905 if (AI && AI->isStaticAlloca()) { 1906 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1907 // instructions (in fact, they get ignored if they *do* exist). 1908 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1909 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1910 } else { 1911 // A dbg.declare describes the address of a source variable, so lower it 1912 // into an indirect DBG_VALUE. 1913 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1914 DI.getVariable(), DI.getExpression()); 1915 } 1916 return true; 1917 } 1918 case Intrinsic::dbg_label: { 1919 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1920 assert(DI.getLabel() && "Missing label"); 1921 1922 assert(DI.getLabel()->isValidLocationForIntrinsic( 1923 MIRBuilder.getDebugLoc()) && 1924 "Expected inlined-at fields to agree"); 1925 1926 MIRBuilder.buildDbgLabel(DI.getLabel()); 1927 return true; 1928 } 1929 case Intrinsic::vaend: 1930 // No target I know of cares about va_end. Certainly no in-tree target 1931 // does. Simplest intrinsic ever! 1932 return true; 1933 case Intrinsic::vastart: { 1934 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1935 Value *Ptr = CI.getArgOperand(0); 1936 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1937 1938 // FIXME: Get alignment 1939 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1940 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 1941 MachineMemOperand::MOStore, 1942 ListSize, Align(1))); 1943 return true; 1944 } 1945 case Intrinsic::dbg_value: { 1946 // This form of DBG_VALUE is target-independent. 1947 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1948 const Value *V = DI.getValue(); 1949 assert(DI.getVariable()->isValidLocationForIntrinsic( 1950 MIRBuilder.getDebugLoc()) && 1951 "Expected inlined-at fields to agree"); 1952 if (!V || DI.hasArgList()) { 1953 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to 1954 // terminate any prior location. 1955 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1956 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1957 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1958 } else { 1959 for (Register Reg : getOrCreateVRegs(*V)) { 1960 // FIXME: This does not handle register-indirect values at offset 0. The 1961 // direct/indirect thing shouldn't really be handled by something as 1962 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1963 // pretty baked in right now. 1964 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1965 } 1966 } 1967 return true; 1968 } 1969 case Intrinsic::uadd_with_overflow: 1970 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1971 case Intrinsic::sadd_with_overflow: 1972 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1973 case Intrinsic::usub_with_overflow: 1974 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1975 case Intrinsic::ssub_with_overflow: 1976 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1977 case Intrinsic::umul_with_overflow: 1978 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1979 case Intrinsic::smul_with_overflow: 1980 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1981 case Intrinsic::uadd_sat: 1982 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 1983 case Intrinsic::sadd_sat: 1984 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 1985 case Intrinsic::usub_sat: 1986 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 1987 case Intrinsic::ssub_sat: 1988 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 1989 case Intrinsic::ushl_sat: 1990 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder); 1991 case Intrinsic::sshl_sat: 1992 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder); 1993 case Intrinsic::umin: 1994 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder); 1995 case Intrinsic::umax: 1996 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder); 1997 case Intrinsic::smin: 1998 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder); 1999 case Intrinsic::smax: 2000 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder); 2001 case Intrinsic::abs: 2002 // TODO: Preserve "int min is poison" arg in GMIR? 2003 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder); 2004 case Intrinsic::smul_fix: 2005 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder); 2006 case Intrinsic::umul_fix: 2007 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder); 2008 case Intrinsic::smul_fix_sat: 2009 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder); 2010 case Intrinsic::umul_fix_sat: 2011 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder); 2012 case Intrinsic::sdiv_fix: 2013 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder); 2014 case Intrinsic::udiv_fix: 2015 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder); 2016 case Intrinsic::sdiv_fix_sat: 2017 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder); 2018 case Intrinsic::udiv_fix_sat: 2019 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder); 2020 case Intrinsic::fmuladd: { 2021 const TargetMachine &TM = MF->getTarget(); 2022 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2023 Register Dst = getOrCreateVReg(CI); 2024 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 2025 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 2026 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 2027 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 2028 TLI.isFMAFasterThanFMulAndFAdd(*MF, 2029 TLI.getValueType(*DL, CI.getType()))) { 2030 // TODO: Revisit this to see if we should move this part of the 2031 // lowering to the combiner. 2032 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 2033 MachineInstr::copyFlagsFromInstruction(CI)); 2034 } else { 2035 LLT Ty = getLLTForType(*CI.getType(), *DL); 2036 auto FMul = MIRBuilder.buildFMul( 2037 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 2038 MIRBuilder.buildFAdd(Dst, FMul, Op2, 2039 MachineInstr::copyFlagsFromInstruction(CI)); 2040 } 2041 return true; 2042 } 2043 case Intrinsic::convert_from_fp16: 2044 // FIXME: This intrinsic should probably be removed from the IR. 2045 MIRBuilder.buildFPExt(getOrCreateVReg(CI), 2046 getOrCreateVReg(*CI.getArgOperand(0)), 2047 MachineInstr::copyFlagsFromInstruction(CI)); 2048 return true; 2049 case Intrinsic::convert_to_fp16: 2050 // FIXME: This intrinsic should probably be removed from the IR. 2051 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI), 2052 getOrCreateVReg(*CI.getArgOperand(0)), 2053 MachineInstr::copyFlagsFromInstruction(CI)); 2054 return true; 2055 case Intrinsic::memcpy_inline: 2056 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE); 2057 case Intrinsic::memcpy: 2058 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY); 2059 case Intrinsic::memmove: 2060 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE); 2061 case Intrinsic::memset: 2062 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET); 2063 case Intrinsic::eh_typeid_for: { 2064 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 2065 Register Reg = getOrCreateVReg(CI); 2066 unsigned TypeID = MF->getTypeIDFor(GV); 2067 MIRBuilder.buildConstant(Reg, TypeID); 2068 return true; 2069 } 2070 case Intrinsic::objectsize: 2071 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2072 2073 case Intrinsic::is_constant: 2074 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2075 2076 case Intrinsic::stackguard: 2077 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 2078 return true; 2079 case Intrinsic::stackprotector: { 2080 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2081 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 2082 getStackGuard(GuardVal, MIRBuilder); 2083 2084 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 2085 int FI = getOrCreateFrameIndex(*Slot); 2086 MF->getFrameInfo().setStackProtectorIndex(FI); 2087 2088 MIRBuilder.buildStore( 2089 GuardVal, getOrCreateVReg(*Slot), 2090 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 2091 MachineMemOperand::MOStore | 2092 MachineMemOperand::MOVolatile, 2093 PtrTy, Align(8))); 2094 return true; 2095 } 2096 case Intrinsic::stacksave: { 2097 // Save the stack pointer to the location provided by the intrinsic. 2098 Register Reg = getOrCreateVReg(CI); 2099 Register StackPtr = MF->getSubtarget() 2100 .getTargetLowering() 2101 ->getStackPointerRegisterToSaveRestore(); 2102 2103 // If the target doesn't specify a stack pointer, then fall back. 2104 if (!StackPtr) 2105 return false; 2106 2107 MIRBuilder.buildCopy(Reg, StackPtr); 2108 return true; 2109 } 2110 case Intrinsic::stackrestore: { 2111 // Restore the stack pointer from the location provided by the intrinsic. 2112 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 2113 Register StackPtr = MF->getSubtarget() 2114 .getTargetLowering() 2115 ->getStackPointerRegisterToSaveRestore(); 2116 2117 // If the target doesn't specify a stack pointer, then fall back. 2118 if (!StackPtr) 2119 return false; 2120 2121 MIRBuilder.buildCopy(StackPtr, Reg); 2122 return true; 2123 } 2124 case Intrinsic::cttz: 2125 case Intrinsic::ctlz: { 2126 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 2127 bool isTrailing = ID == Intrinsic::cttz; 2128 unsigned Opcode = isTrailing 2129 ? Cst->isZero() ? TargetOpcode::G_CTTZ 2130 : TargetOpcode::G_CTTZ_ZERO_UNDEF 2131 : Cst->isZero() ? TargetOpcode::G_CTLZ 2132 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 2133 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 2134 {getOrCreateVReg(*CI.getArgOperand(0))}); 2135 return true; 2136 } 2137 case Intrinsic::invariant_start: { 2138 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2139 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 2140 MIRBuilder.buildUndef(Undef); 2141 return true; 2142 } 2143 case Intrinsic::invariant_end: 2144 return true; 2145 case Intrinsic::expect: 2146 case Intrinsic::annotation: 2147 case Intrinsic::ptr_annotation: 2148 case Intrinsic::launder_invariant_group: 2149 case Intrinsic::strip_invariant_group: { 2150 // Drop the intrinsic, but forward the value. 2151 MIRBuilder.buildCopy(getOrCreateVReg(CI), 2152 getOrCreateVReg(*CI.getArgOperand(0))); 2153 return true; 2154 } 2155 case Intrinsic::assume: 2156 case Intrinsic::experimental_noalias_scope_decl: 2157 case Intrinsic::var_annotation: 2158 case Intrinsic::sideeffect: 2159 // Discard annotate attributes, assumptions, and artificial side-effects. 2160 return true; 2161 case Intrinsic::read_volatile_register: 2162 case Intrinsic::read_register: { 2163 Value *Arg = CI.getArgOperand(0); 2164 MIRBuilder 2165 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 2166 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 2167 return true; 2168 } 2169 case Intrinsic::write_register: { 2170 Value *Arg = CI.getArgOperand(0); 2171 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 2172 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 2173 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 2174 return true; 2175 } 2176 case Intrinsic::localescape: { 2177 MachineBasicBlock &EntryMBB = MF->front(); 2178 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName()); 2179 2180 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 2181 // is the same on all targets. 2182 for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) { 2183 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts(); 2184 if (isa<ConstantPointerNull>(Arg)) 2185 continue; // Skip null pointers. They represent a hole in index space. 2186 2187 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg)); 2188 MCSymbol *FrameAllocSym = 2189 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName, 2190 Idx); 2191 2192 // This should be inserted at the start of the entry block. 2193 auto LocalEscape = 2194 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE) 2195 .addSym(FrameAllocSym) 2196 .addFrameIndex(FI); 2197 2198 EntryMBB.insert(EntryMBB.begin(), LocalEscape); 2199 } 2200 2201 return true; 2202 } 2203 case Intrinsic::vector_reduce_fadd: 2204 case Intrinsic::vector_reduce_fmul: { 2205 // Need to check for the reassoc flag to decide whether we want a 2206 // sequential reduction opcode or not. 2207 Register Dst = getOrCreateVReg(CI); 2208 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0)); 2209 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1)); 2210 unsigned Opc = 0; 2211 if (!CI.hasAllowReassoc()) { 2212 // The sequential ordering case. 2213 Opc = ID == Intrinsic::vector_reduce_fadd 2214 ? TargetOpcode::G_VECREDUCE_SEQ_FADD 2215 : TargetOpcode::G_VECREDUCE_SEQ_FMUL; 2216 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc}, 2217 MachineInstr::copyFlagsFromInstruction(CI)); 2218 return true; 2219 } 2220 // We split the operation into a separate G_FADD/G_FMUL + the reduce, 2221 // since the associativity doesn't matter. 2222 unsigned ScalarOpc; 2223 if (ID == Intrinsic::vector_reduce_fadd) { 2224 Opc = TargetOpcode::G_VECREDUCE_FADD; 2225 ScalarOpc = TargetOpcode::G_FADD; 2226 } else { 2227 Opc = TargetOpcode::G_VECREDUCE_FMUL; 2228 ScalarOpc = TargetOpcode::G_FMUL; 2229 } 2230 LLT DstTy = MRI->getType(Dst); 2231 auto Rdx = MIRBuilder.buildInstr( 2232 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI)); 2233 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx}, 2234 MachineInstr::copyFlagsFromInstruction(CI)); 2235 2236 return true; 2237 } 2238 case Intrinsic::trap: 2239 case Intrinsic::debugtrap: 2240 case Intrinsic::ubsantrap: { 2241 StringRef TrapFuncName = 2242 CI.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 2243 if (TrapFuncName.empty()) 2244 break; // Use the default handling. 2245 CallLowering::CallLoweringInfo Info; 2246 if (ID == Intrinsic::ubsantrap) { 2247 Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)), 2248 CI.getArgOperand(0)->getType(), 0}); 2249 } 2250 Info.Callee = MachineOperand::CreateES(TrapFuncName.data()); 2251 Info.CB = &CI; 2252 Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0}; 2253 return CLI->lowerCall(MIRBuilder, Info); 2254 } 2255 case Intrinsic::fptrunc_round: { 2256 unsigned Flags = MachineInstr::copyFlagsFromInstruction(CI); 2257 2258 // Convert the metadata argument to a constant integer 2259 Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata(); 2260 Optional<RoundingMode> RoundMode = 2261 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 2262 2263 // Add the Rounding mode as an integer 2264 MIRBuilder 2265 .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND, 2266 {getOrCreateVReg(CI)}, 2267 {getOrCreateVReg(*CI.getArgOperand(0))}, Flags) 2268 .addImm((int)RoundMode.getValue()); 2269 2270 return true; 2271 } 2272 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 2273 case Intrinsic::INTRINSIC: 2274 #include "llvm/IR/ConstrainedOps.def" 2275 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 2276 MIRBuilder); 2277 2278 } 2279 return false; 2280 } 2281 2282 bool IRTranslator::translateInlineAsm(const CallBase &CB, 2283 MachineIRBuilder &MIRBuilder) { 2284 2285 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 2286 2287 if (!ALI) { 2288 LLVM_DEBUG( 2289 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 2290 return false; 2291 } 2292 2293 return ALI->lowerInlineAsm( 2294 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 2295 } 2296 2297 bool IRTranslator::translateCallBase(const CallBase &CB, 2298 MachineIRBuilder &MIRBuilder) { 2299 ArrayRef<Register> Res = getOrCreateVRegs(CB); 2300 2301 SmallVector<ArrayRef<Register>, 8> Args; 2302 Register SwiftInVReg = 0; 2303 Register SwiftErrorVReg = 0; 2304 for (auto &Arg : CB.args()) { 2305 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 2306 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 2307 LLT Ty = getLLTForType(*Arg->getType(), *DL); 2308 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 2309 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 2310 &CB, &MIRBuilder.getMBB(), Arg)); 2311 Args.emplace_back(makeArrayRef(SwiftInVReg)); 2312 SwiftErrorVReg = 2313 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 2314 continue; 2315 } 2316 Args.push_back(getOrCreateVRegs(*Arg)); 2317 } 2318 2319 if (auto *CI = dyn_cast<CallInst>(&CB)) { 2320 if (ORE->enabled()) { 2321 const Function &F = *CI->getParent()->getParent(); 2322 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2323 if (MemoryOpRemark::canHandle(CI, TLI)) { 2324 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI); 2325 R.visit(CI); 2326 } 2327 } 2328 } 2329 2330 // We don't set HasCalls on MFI here yet because call lowering may decide to 2331 // optimize into tail calls. Instead, we defer that to selection where a final 2332 // scan is done to check if any instructions are calls. 2333 bool Success = 2334 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 2335 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 2336 2337 // Check if we just inserted a tail call. 2338 if (Success) { 2339 assert(!HasTailCall && "Can't tail call return twice from block?"); 2340 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2341 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 2342 } 2343 2344 return Success; 2345 } 2346 2347 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 2348 const CallInst &CI = cast<CallInst>(U); 2349 auto TII = MF->getTarget().getIntrinsicInfo(); 2350 const Function *F = CI.getCalledFunction(); 2351 2352 // FIXME: support Windows dllimport function calls. 2353 if (F && (F->hasDLLImportStorageClass() || 2354 (MF->getTarget().getTargetTriple().isOSWindows() && 2355 F->hasExternalWeakLinkage()))) 2356 return false; 2357 2358 // FIXME: support control flow guard targets. 2359 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2360 return false; 2361 2362 if (CI.isInlineAsm()) 2363 return translateInlineAsm(CI, MIRBuilder); 2364 2365 diagnoseDontCall(CI); 2366 2367 Intrinsic::ID ID = Intrinsic::not_intrinsic; 2368 if (F && F->isIntrinsic()) { 2369 ID = F->getIntrinsicID(); 2370 if (TII && ID == Intrinsic::not_intrinsic) 2371 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 2372 } 2373 2374 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 2375 return translateCallBase(CI, MIRBuilder); 2376 2377 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 2378 2379 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 2380 return true; 2381 2382 ArrayRef<Register> ResultRegs; 2383 if (!CI.getType()->isVoidTy()) 2384 ResultRegs = getOrCreateVRegs(CI); 2385 2386 // Ignore the callsite attributes. Backend code is most likely not expecting 2387 // an intrinsic to sometimes have side effects and sometimes not. 2388 MachineInstrBuilder MIB = 2389 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 2390 if (isa<FPMathOperator>(CI)) 2391 MIB->copyIRFlags(CI); 2392 2393 for (auto &Arg : enumerate(CI.args())) { 2394 // If this is required to be an immediate, don't materialize it in a 2395 // register. 2396 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 2397 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 2398 // imm arguments are more convenient than cimm (and realistically 2399 // probably sufficient), so use them. 2400 assert(CI->getBitWidth() <= 64 && 2401 "large intrinsic immediates not handled"); 2402 MIB.addImm(CI->getSExtValue()); 2403 } else { 2404 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 2405 } 2406 } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) { 2407 auto *MD = MDVal->getMetadata(); 2408 auto *MDN = dyn_cast<MDNode>(MD); 2409 if (!MDN) { 2410 if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD)) 2411 MDN = MDNode::get(MF->getFunction().getContext(), ConstMD); 2412 else // This was probably an MDString. 2413 return false; 2414 } 2415 MIB.addMetadata(MDN); 2416 } else { 2417 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 2418 if (VRegs.size() > 1) 2419 return false; 2420 MIB.addUse(VRegs[0]); 2421 } 2422 } 2423 2424 // Add a MachineMemOperand if it is a target mem intrinsic. 2425 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2426 TargetLowering::IntrinsicInfo Info; 2427 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 2428 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 2429 Align Alignment = Info.align.getValueOr( 2430 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 2431 LLT MemTy = Info.memVT.isSimple() 2432 ? getLLTForMVT(Info.memVT.getSimpleVT()) 2433 : LLT::scalar(Info.memVT.getStoreSizeInBits()); 2434 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 2435 Info.flags, MemTy, Alignment)); 2436 } 2437 2438 return true; 2439 } 2440 2441 bool IRTranslator::findUnwindDestinations( 2442 const BasicBlock *EHPadBB, 2443 BranchProbability Prob, 2444 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2445 &UnwindDests) { 2446 EHPersonality Personality = classifyEHPersonality( 2447 EHPadBB->getParent()->getFunction().getPersonalityFn()); 2448 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2449 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2450 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2451 bool IsSEH = isAsynchronousEHPersonality(Personality); 2452 2453 if (IsWasmCXX) { 2454 // Ignore this for now. 2455 return false; 2456 } 2457 2458 while (EHPadBB) { 2459 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2460 BasicBlock *NewEHPadBB = nullptr; 2461 if (isa<LandingPadInst>(Pad)) { 2462 // Stop on landingpads. They are not funclets. 2463 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2464 break; 2465 } 2466 if (isa<CleanupPadInst>(Pad)) { 2467 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2468 // personalities. 2469 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2470 UnwindDests.back().first->setIsEHScopeEntry(); 2471 UnwindDests.back().first->setIsEHFuncletEntry(); 2472 break; 2473 } 2474 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2475 // Add the catchpad handlers to the possible destinations. 2476 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2477 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob); 2478 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2479 if (IsMSVCCXX || IsCoreCLR) 2480 UnwindDests.back().first->setIsEHFuncletEntry(); 2481 if (!IsSEH) 2482 UnwindDests.back().first->setIsEHScopeEntry(); 2483 } 2484 NewEHPadBB = CatchSwitch->getUnwindDest(); 2485 } else { 2486 continue; 2487 } 2488 2489 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2490 if (BPI && NewEHPadBB) 2491 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2492 EHPadBB = NewEHPadBB; 2493 } 2494 return true; 2495 } 2496 2497 bool IRTranslator::translateInvoke(const User &U, 2498 MachineIRBuilder &MIRBuilder) { 2499 const InvokeInst &I = cast<InvokeInst>(U); 2500 MCContext &Context = MF->getContext(); 2501 2502 const BasicBlock *ReturnBB = I.getSuccessor(0); 2503 const BasicBlock *EHPadBB = I.getSuccessor(1); 2504 2505 const Function *Fn = I.getCalledFunction(); 2506 2507 // FIXME: support invoking patchpoint and statepoint intrinsics. 2508 if (Fn && Fn->isIntrinsic()) 2509 return false; 2510 2511 // FIXME: support whatever these are. 2512 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 2513 return false; 2514 2515 // FIXME: support control flow guard targets. 2516 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2517 return false; 2518 2519 // FIXME: support Windows exception handling. 2520 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI())) 2521 return false; 2522 2523 bool LowerInlineAsm = I.isInlineAsm(); 2524 bool NeedEHLabel = true; 2525 // If it can't throw then use a fast-path without emitting EH labels. 2526 if (LowerInlineAsm) 2527 NeedEHLabel = (cast<InlineAsm>(I.getCalledOperand()))->canThrow(); 2528 2529 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 2530 // the region covered by the try. 2531 MCSymbol *BeginSymbol = nullptr; 2532 if (NeedEHLabel) { 2533 BeginSymbol = Context.createTempSymbol(); 2534 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 2535 } 2536 2537 if (LowerInlineAsm) { 2538 if (!translateInlineAsm(I, MIRBuilder)) 2539 return false; 2540 } else if (!translateCallBase(I, MIRBuilder)) 2541 return false; 2542 2543 MCSymbol *EndSymbol = nullptr; 2544 if (NeedEHLabel) { 2545 EndSymbol = Context.createTempSymbol(); 2546 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 2547 } 2548 2549 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2550 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2551 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(); 2552 BranchProbability EHPadBBProb = 2553 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2554 : BranchProbability::getZero(); 2555 2556 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests)) 2557 return false; 2558 2559 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 2560 &ReturnMBB = getMBB(*ReturnBB); 2561 // Update successor info. 2562 addSuccessorWithProb(InvokeMBB, &ReturnMBB); 2563 for (auto &UnwindDest : UnwindDests) { 2564 UnwindDest.first->setIsEHPad(); 2565 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2566 } 2567 InvokeMBB->normalizeSuccProbs(); 2568 2569 if (NeedEHLabel) { 2570 assert(BeginSymbol && "Expected a begin symbol!"); 2571 assert(EndSymbol && "Expected an end symbol!"); 2572 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 2573 } 2574 2575 MIRBuilder.buildBr(ReturnMBB); 2576 return true; 2577 } 2578 2579 bool IRTranslator::translateCallBr(const User &U, 2580 MachineIRBuilder &MIRBuilder) { 2581 // FIXME: Implement this. 2582 return false; 2583 } 2584 2585 bool IRTranslator::translateLandingPad(const User &U, 2586 MachineIRBuilder &MIRBuilder) { 2587 const LandingPadInst &LP = cast<LandingPadInst>(U); 2588 2589 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 2590 2591 MBB.setIsEHPad(); 2592 2593 // If there aren't registers to copy the values into (e.g., during SjLj 2594 // exceptions), then don't bother. 2595 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2596 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 2597 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2598 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2599 return true; 2600 2601 // If landingpad's return type is token type, we don't create DAG nodes 2602 // for its exception pointer and selector value. The extraction of exception 2603 // pointer or selector value from token type landingpads is not currently 2604 // supported. 2605 if (LP.getType()->isTokenTy()) 2606 return true; 2607 2608 // Add a label to mark the beginning of the landing pad. Deletion of the 2609 // landing pad can thus be detected via the MachineModuleInfo. 2610 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 2611 .addSym(MF->addLandingPad(&MBB)); 2612 2613 // If the unwinder does not preserve all registers, ensure that the 2614 // function marks the clobbered registers as used. 2615 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 2616 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 2617 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 2618 2619 LLT Ty = getLLTForType(*LP.getType(), *DL); 2620 Register Undef = MRI->createGenericVirtualRegister(Ty); 2621 MIRBuilder.buildUndef(Undef); 2622 2623 SmallVector<LLT, 2> Tys; 2624 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 2625 Tys.push_back(getLLTForType(*Ty, *DL)); 2626 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 2627 2628 // Mark exception register as live in. 2629 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 2630 if (!ExceptionReg) 2631 return false; 2632 2633 MBB.addLiveIn(ExceptionReg); 2634 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 2635 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 2636 2637 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 2638 if (!SelectorReg) 2639 return false; 2640 2641 MBB.addLiveIn(SelectorReg); 2642 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 2643 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 2644 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 2645 2646 return true; 2647 } 2648 2649 bool IRTranslator::translateAlloca(const User &U, 2650 MachineIRBuilder &MIRBuilder) { 2651 auto &AI = cast<AllocaInst>(U); 2652 2653 if (AI.isSwiftError()) 2654 return true; 2655 2656 if (AI.isStaticAlloca()) { 2657 Register Res = getOrCreateVReg(AI); 2658 int FI = getOrCreateFrameIndex(AI); 2659 MIRBuilder.buildFrameIndex(Res, FI); 2660 return true; 2661 } 2662 2663 // FIXME: support stack probing for Windows. 2664 if (MF->getTarget().getTargetTriple().isOSWindows()) 2665 return false; 2666 2667 // Now we're in the harder dynamic case. 2668 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 2669 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 2670 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 2671 if (MRI->getType(NumElts) != IntPtrTy) { 2672 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 2673 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 2674 NumElts = ExtElts; 2675 } 2676 2677 Type *Ty = AI.getAllocatedType(); 2678 2679 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 2680 Register TySize = 2681 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 2682 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 2683 2684 // Round the size of the allocation up to the stack alignment size 2685 // by add SA-1 to the size. This doesn't overflow because we're computing 2686 // an address inside an alloca. 2687 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 2688 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 2689 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 2690 MachineInstr::NoUWrap); 2691 auto AlignCst = 2692 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 2693 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 2694 2695 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 2696 if (Alignment <= StackAlign) 2697 Alignment = Align(1); 2698 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 2699 2700 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 2701 assert(MF->getFrameInfo().hasVarSizedObjects()); 2702 return true; 2703 } 2704 2705 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 2706 // FIXME: We may need more info about the type. Because of how LLT works, 2707 // we're completely discarding the i64/double distinction here (amongst 2708 // others). Fortunately the ABIs I know of where that matters don't use va_arg 2709 // anyway but that's not guaranteed. 2710 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 2711 {getOrCreateVReg(*U.getOperand(0)), 2712 DL->getABITypeAlign(U.getType()).value()}); 2713 return true; 2714 } 2715 2716 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) { 2717 if (!MF->getTarget().Options.TrapUnreachable) 2718 return true; 2719 2720 auto &UI = cast<UnreachableInst>(U); 2721 // We may be able to ignore unreachable behind a noreturn call. 2722 if (MF->getTarget().Options.NoTrapAfterNoreturn) { 2723 const BasicBlock &BB = *UI.getParent(); 2724 if (&UI != &BB.front()) { 2725 BasicBlock::const_iterator PredI = 2726 std::prev(BasicBlock::const_iterator(UI)); 2727 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2728 if (Call->doesNotReturn()) 2729 return true; 2730 } 2731 } 2732 } 2733 2734 MIRBuilder.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true); 2735 return true; 2736 } 2737 2738 bool IRTranslator::translateInsertElement(const User &U, 2739 MachineIRBuilder &MIRBuilder) { 2740 // If it is a <1 x Ty> vector, use the scalar as it is 2741 // not a legal vector type in LLT. 2742 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1) 2743 return translateCopy(U, *U.getOperand(1), MIRBuilder); 2744 2745 Register Res = getOrCreateVReg(U); 2746 Register Val = getOrCreateVReg(*U.getOperand(0)); 2747 Register Elt = getOrCreateVReg(*U.getOperand(1)); 2748 Register Idx = getOrCreateVReg(*U.getOperand(2)); 2749 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 2750 return true; 2751 } 2752 2753 bool IRTranslator::translateExtractElement(const User &U, 2754 MachineIRBuilder &MIRBuilder) { 2755 // If it is a <1 x Ty> vector, use the scalar as it is 2756 // not a legal vector type in LLT. 2757 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 2758 return translateCopy(U, *U.getOperand(0), MIRBuilder); 2759 2760 Register Res = getOrCreateVReg(U); 2761 Register Val = getOrCreateVReg(*U.getOperand(0)); 2762 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2763 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 2764 Register Idx; 2765 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 2766 if (CI->getBitWidth() != PreferredVecIdxWidth) { 2767 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 2768 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 2769 Idx = getOrCreateVReg(*NewIdxCI); 2770 } 2771 } 2772 if (!Idx) 2773 Idx = getOrCreateVReg(*U.getOperand(1)); 2774 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 2775 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 2776 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0); 2777 } 2778 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 2779 return true; 2780 } 2781 2782 bool IRTranslator::translateShuffleVector(const User &U, 2783 MachineIRBuilder &MIRBuilder) { 2784 ArrayRef<int> Mask; 2785 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 2786 Mask = SVI->getShuffleMask(); 2787 else 2788 Mask = cast<ConstantExpr>(U).getShuffleMask(); 2789 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 2790 MIRBuilder 2791 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 2792 {getOrCreateVReg(*U.getOperand(0)), 2793 getOrCreateVReg(*U.getOperand(1))}) 2794 .addShuffleMask(MaskAlloc); 2795 return true; 2796 } 2797 2798 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 2799 const PHINode &PI = cast<PHINode>(U); 2800 2801 SmallVector<MachineInstr *, 4> Insts; 2802 for (auto Reg : getOrCreateVRegs(PI)) { 2803 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 2804 Insts.push_back(MIB.getInstr()); 2805 } 2806 2807 PendingPHIs.emplace_back(&PI, std::move(Insts)); 2808 return true; 2809 } 2810 2811 bool IRTranslator::translateAtomicCmpXchg(const User &U, 2812 MachineIRBuilder &MIRBuilder) { 2813 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 2814 2815 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2816 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2817 2818 auto Res = getOrCreateVRegs(I); 2819 Register OldValRes = Res[0]; 2820 Register SuccessRes = Res[1]; 2821 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2822 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 2823 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 2824 2825 MIRBuilder.buildAtomicCmpXchgWithSuccess( 2826 OldValRes, SuccessRes, Addr, Cmp, NewVal, 2827 *MF->getMachineMemOperand( 2828 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp), 2829 getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(), 2830 I.getSuccessOrdering(), I.getFailureOrdering())); 2831 return true; 2832 } 2833 2834 bool IRTranslator::translateAtomicRMW(const User &U, 2835 MachineIRBuilder &MIRBuilder) { 2836 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2837 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2838 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2839 2840 Register Res = getOrCreateVReg(I); 2841 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2842 Register Val = getOrCreateVReg(*I.getValOperand()); 2843 2844 unsigned Opcode = 0; 2845 switch (I.getOperation()) { 2846 default: 2847 return false; 2848 case AtomicRMWInst::Xchg: 2849 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2850 break; 2851 case AtomicRMWInst::Add: 2852 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2853 break; 2854 case AtomicRMWInst::Sub: 2855 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2856 break; 2857 case AtomicRMWInst::And: 2858 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2859 break; 2860 case AtomicRMWInst::Nand: 2861 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2862 break; 2863 case AtomicRMWInst::Or: 2864 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2865 break; 2866 case AtomicRMWInst::Xor: 2867 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2868 break; 2869 case AtomicRMWInst::Max: 2870 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2871 break; 2872 case AtomicRMWInst::Min: 2873 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2874 break; 2875 case AtomicRMWInst::UMax: 2876 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2877 break; 2878 case AtomicRMWInst::UMin: 2879 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2880 break; 2881 case AtomicRMWInst::FAdd: 2882 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2883 break; 2884 case AtomicRMWInst::FSub: 2885 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2886 break; 2887 } 2888 2889 MIRBuilder.buildAtomicRMW( 2890 Opcode, Res, Addr, Val, 2891 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2892 Flags, MRI->getType(Val), getMemOpAlign(I), 2893 I.getAAMetadata(), nullptr, I.getSyncScopeID(), 2894 I.getOrdering())); 2895 return true; 2896 } 2897 2898 bool IRTranslator::translateFence(const User &U, 2899 MachineIRBuilder &MIRBuilder) { 2900 const FenceInst &Fence = cast<FenceInst>(U); 2901 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2902 Fence.getSyncScopeID()); 2903 return true; 2904 } 2905 2906 bool IRTranslator::translateFreeze(const User &U, 2907 MachineIRBuilder &MIRBuilder) { 2908 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 2909 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 2910 2911 assert(DstRegs.size() == SrcRegs.size() && 2912 "Freeze with different source and destination type?"); 2913 2914 for (unsigned I = 0; I < DstRegs.size(); ++I) { 2915 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 2916 } 2917 2918 return true; 2919 } 2920 2921 void IRTranslator::finishPendingPhis() { 2922 #ifndef NDEBUG 2923 DILocationVerifier Verifier; 2924 GISelObserverWrapper WrapperObserver(&Verifier); 2925 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2926 #endif // ifndef NDEBUG 2927 for (auto &Phi : PendingPHIs) { 2928 const PHINode *PI = Phi.first; 2929 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2930 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2931 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2932 #ifndef NDEBUG 2933 Verifier.setCurrentInst(PI); 2934 #endif // ifndef NDEBUG 2935 2936 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2937 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2938 auto IRPred = PI->getIncomingBlock(i); 2939 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2940 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2941 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2942 continue; 2943 SeenPreds.insert(Pred); 2944 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2945 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2946 MIB.addUse(ValRegs[j]); 2947 MIB.addMBB(Pred); 2948 } 2949 } 2950 } 2951 } 2952 } 2953 2954 bool IRTranslator::valueIsSplit(const Value &V, 2955 SmallVectorImpl<uint64_t> *Offsets) { 2956 SmallVector<LLT, 4> SplitTys; 2957 if (Offsets && !Offsets->empty()) 2958 Offsets->clear(); 2959 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2960 return SplitTys.size() > 1; 2961 } 2962 2963 bool IRTranslator::translate(const Instruction &Inst) { 2964 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2965 2966 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2967 if (TLI.fallBackToDAGISel(Inst)) 2968 return false; 2969 2970 switch (Inst.getOpcode()) { 2971 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2972 case Instruction::OPCODE: \ 2973 return translate##OPCODE(Inst, *CurBuilder.get()); 2974 #include "llvm/IR/Instruction.def" 2975 default: 2976 return false; 2977 } 2978 } 2979 2980 bool IRTranslator::translate(const Constant &C, Register Reg) { 2981 // We only emit constants into the entry block from here. To prevent jumpy 2982 // debug behaviour set the line to 0. 2983 if (auto CurrInstDL = CurBuilder->getDL()) 2984 EntryBuilder->setDebugLoc(DILocation::get(C.getContext(), 0, 0, 2985 CurrInstDL.getScope(), 2986 CurrInstDL.getInlinedAt())); 2987 2988 if (auto CI = dyn_cast<ConstantInt>(&C)) 2989 EntryBuilder->buildConstant(Reg, *CI); 2990 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2991 EntryBuilder->buildFConstant(Reg, *CF); 2992 else if (isa<UndefValue>(C)) 2993 EntryBuilder->buildUndef(Reg); 2994 else if (isa<ConstantPointerNull>(C)) 2995 EntryBuilder->buildConstant(Reg, 0); 2996 else if (auto GV = dyn_cast<GlobalValue>(&C)) 2997 EntryBuilder->buildGlobalValue(Reg, GV); 2998 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2999 if (!isa<FixedVectorType>(CAZ->getType())) 3000 return false; 3001 // Return the scalar if it is a <1 x Ty> vector. 3002 unsigned NumElts = CAZ->getElementCount().getFixedValue(); 3003 if (NumElts == 1) 3004 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get()); 3005 SmallVector<Register, 4> Ops; 3006 for (unsigned I = 0; I < NumElts; ++I) { 3007 Constant &Elt = *CAZ->getElementValue(I); 3008 Ops.push_back(getOrCreateVReg(Elt)); 3009 } 3010 EntryBuilder->buildBuildVector(Reg, Ops); 3011 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 3012 // Return the scalar if it is a <1 x Ty> vector. 3013 if (CV->getNumElements() == 1) 3014 return translateCopy(C, *CV->getElementAsConstant(0), 3015 *EntryBuilder.get()); 3016 SmallVector<Register, 4> Ops; 3017 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 3018 Constant &Elt = *CV->getElementAsConstant(i); 3019 Ops.push_back(getOrCreateVReg(Elt)); 3020 } 3021 EntryBuilder->buildBuildVector(Reg, Ops); 3022 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 3023 switch(CE->getOpcode()) { 3024 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 3025 case Instruction::OPCODE: \ 3026 return translate##OPCODE(*CE, *EntryBuilder.get()); 3027 #include "llvm/IR/Instruction.def" 3028 default: 3029 return false; 3030 } 3031 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 3032 if (CV->getNumOperands() == 1) 3033 return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get()); 3034 SmallVector<Register, 4> Ops; 3035 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 3036 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 3037 } 3038 EntryBuilder->buildBuildVector(Reg, Ops); 3039 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 3040 EntryBuilder->buildBlockAddress(Reg, BA); 3041 } else 3042 return false; 3043 3044 return true; 3045 } 3046 3047 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB, 3048 MachineBasicBlock &MBB) { 3049 for (auto &BTB : SL->BitTestCases) { 3050 // Emit header first, if it wasn't already emitted. 3051 if (!BTB.Emitted) 3052 emitBitTestHeader(BTB, BTB.Parent); 3053 3054 BranchProbability UnhandledProb = BTB.Prob; 3055 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 3056 UnhandledProb -= BTB.Cases[j].ExtraProb; 3057 // Set the current basic block to the mbb we wish to insert the code into 3058 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB; 3059 // If all cases cover a contiguous range, it is not necessary to jump to 3060 // the default block after the last bit test fails. This is because the 3061 // range check during bit test header creation has guaranteed that every 3062 // case here doesn't go outside the range. In this case, there is no need 3063 // to perform the last bit test, as it will always be true. Instead, make 3064 // the second-to-last bit-test fall through to the target of the last bit 3065 // test, and delete the last bit test. 3066 3067 MachineBasicBlock *NextMBB; 3068 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3069 // Second-to-last bit-test with contiguous range: fall through to the 3070 // target of the final bit test. 3071 NextMBB = BTB.Cases[j + 1].TargetBB; 3072 } else if (j + 1 == ej) { 3073 // For the last bit test, fall through to Default. 3074 NextMBB = BTB.Default; 3075 } else { 3076 // Otherwise, fall through to the next bit test. 3077 NextMBB = BTB.Cases[j + 1].ThisBB; 3078 } 3079 3080 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB); 3081 3082 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3083 // We need to record the replacement phi edge here that normally 3084 // happens in emitBitTestCase before we delete the case, otherwise the 3085 // phi edge will be lost. 3086 addMachineCFGPred({BTB.Parent->getBasicBlock(), 3087 BTB.Cases[ej - 1].TargetBB->getBasicBlock()}, 3088 MBB); 3089 // Since we're not going to use the final bit test, remove it. 3090 BTB.Cases.pop_back(); 3091 break; 3092 } 3093 } 3094 // This is "default" BB. We have two jumps to it. From "header" BB and from 3095 // last "case" BB, unless the latter was skipped. 3096 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(), 3097 BTB.Default->getBasicBlock()}; 3098 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent); 3099 if (!BTB.ContiguousRange) { 3100 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB); 3101 } 3102 } 3103 SL->BitTestCases.clear(); 3104 3105 for (auto &JTCase : SL->JTCases) { 3106 // Emit header first, if it wasn't already emitted. 3107 if (!JTCase.first.Emitted) 3108 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 3109 3110 emitJumpTable(JTCase.second, JTCase.second.MBB); 3111 } 3112 SL->JTCases.clear(); 3113 3114 for (auto &SwCase : SL->SwitchCases) 3115 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder); 3116 SL->SwitchCases.clear(); 3117 3118 // Check if we need to generate stack-protector guard checks. 3119 StackProtector &SP = getAnalysis<StackProtector>(); 3120 if (SP.shouldEmitSDCheck(BB)) { 3121 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3122 bool FunctionBasedInstrumentation = 3123 TLI.getSSPStackGuardCheck(*MF->getFunction().getParent()); 3124 SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation); 3125 } 3126 // Handle stack protector. 3127 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 3128 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n"); 3129 return false; 3130 } else if (SPDescriptor.shouldEmitStackProtector()) { 3131 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB(); 3132 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB(); 3133 3134 // Find the split point to split the parent mbb. At the same time copy all 3135 // physical registers used in the tail of parent mbb into virtual registers 3136 // before the split point and back into physical registers after the split 3137 // point. This prevents us needing to deal with Live-ins and many other 3138 // register allocation issues caused by us splitting the parent mbb. The 3139 // register allocator will clean up said virtual copies later on. 3140 MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector( 3141 ParentMBB, *MF->getSubtarget().getInstrInfo()); 3142 3143 // Splice the terminator of ParentMBB into SuccessMBB. 3144 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint, 3145 ParentMBB->end()); 3146 3147 // Add compare/jump on neq/jump to the parent BB. 3148 if (!emitSPDescriptorParent(SPDescriptor, ParentMBB)) 3149 return false; 3150 3151 // CodeGen Failure MBB if we have not codegened it yet. 3152 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB(); 3153 if (FailureMBB->empty()) { 3154 if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB)) 3155 return false; 3156 } 3157 3158 // Clear the Per-BB State. 3159 SPDescriptor.resetPerBBState(); 3160 } 3161 return true; 3162 } 3163 3164 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD, 3165 MachineBasicBlock *ParentBB) { 3166 CurBuilder->setInsertPt(*ParentBB, ParentBB->end()); 3167 // First create the loads to the guard/stack slot for the comparison. 3168 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3169 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 3170 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 3171 LLT PtrMemTy = getLLTForMVT(TLI.getPointerMemTy(*DL)); 3172 3173 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3174 int FI = MFI.getStackProtectorIndex(); 3175 3176 Register Guard; 3177 Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0); 3178 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3179 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 3180 3181 // Generate code to load the content of the guard slot. 3182 Register GuardVal = 3183 CurBuilder 3184 ->buildLoad(PtrMemTy, StackSlotPtr, 3185 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3186 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile) 3187 .getReg(0); 3188 3189 if (TLI.useStackGuardXorFP()) { 3190 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented"); 3191 return false; 3192 } 3193 3194 // Retrieve guard check function, nullptr if instrumentation is inlined. 3195 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3196 // This path is currently untestable on GlobalISel, since the only platform 3197 // that needs this seems to be Windows, and we fall back on that currently. 3198 // The code still lives here in case that changes. 3199 // Silence warning about unused variable until the code below that uses 3200 // 'GuardCheckFn' is enabled. 3201 (void)GuardCheckFn; 3202 return false; 3203 #if 0 3204 // The target provides a guard check function to validate the guard value. 3205 // Generate a call to that function with the content of the guard slot as 3206 // argument. 3207 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3208 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3209 ISD::ArgFlagsTy Flags; 3210 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 3211 Flags.setInReg(); 3212 CallLowering::ArgInfo GuardArgInfo( 3213 {GuardVal, FnTy->getParamType(0), {Flags}}); 3214 3215 CallLowering::CallLoweringInfo Info; 3216 Info.OrigArgs.push_back(GuardArgInfo); 3217 Info.CallConv = GuardCheckFn->getCallingConv(); 3218 Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0); 3219 Info.OrigRet = {Register(), FnTy->getReturnType()}; 3220 if (!CLI->lowerCall(MIRBuilder, Info)) { 3221 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n"); 3222 return false; 3223 } 3224 return true; 3225 #endif 3226 } 3227 3228 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3229 // Otherwise, emit a volatile load to retrieve the stack guard value. 3230 if (TLI.useLoadStackGuardNode()) { 3231 Guard = 3232 MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits())); 3233 getStackGuard(Guard, *CurBuilder); 3234 } else { 3235 // TODO: test using android subtarget when we support @llvm.thread.pointer. 3236 const Value *IRGuard = TLI.getSDagStackGuard(M); 3237 Register GuardPtr = getOrCreateVReg(*IRGuard); 3238 3239 Guard = CurBuilder 3240 ->buildLoad(PtrMemTy, GuardPtr, 3241 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3242 MachineMemOperand::MOLoad | 3243 MachineMemOperand::MOVolatile) 3244 .getReg(0); 3245 } 3246 3247 // Perform the comparison. 3248 auto Cmp = 3249 CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal); 3250 // If the guard/stackslot do not equal, branch to failure MBB. 3251 CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB()); 3252 // Otherwise branch to success MBB. 3253 CurBuilder->buildBr(*SPD.getSuccessMBB()); 3254 return true; 3255 } 3256 3257 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD, 3258 MachineBasicBlock *FailureBB) { 3259 CurBuilder->setInsertPt(*FailureBB, FailureBB->end()); 3260 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3261 3262 const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL; 3263 const char *Name = TLI.getLibcallName(Libcall); 3264 3265 CallLowering::CallLoweringInfo Info; 3266 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 3267 Info.Callee = MachineOperand::CreateES(Name); 3268 Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()), 3269 0}; 3270 if (!CLI->lowerCall(*CurBuilder, Info)) { 3271 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n"); 3272 return false; 3273 } 3274 3275 // On PS4, the "return address" must still be within the calling function, 3276 // even if it's at the very end, so emit an explicit TRAP here. 3277 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3278 // WebAssembly needs an unreachable instruction after a non-returning call, 3279 // because the function return type can be different from __stack_chk_fail's 3280 // return type (void). 3281 const TargetMachine &TM = MF->getTarget(); 3282 if (TM.getTargetTriple().isPS4CPU() || TM.getTargetTriple().isWasm()) { 3283 LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n"); 3284 return false; 3285 } 3286 return true; 3287 } 3288 3289 void IRTranslator::finalizeFunction() { 3290 // Release the memory used by the different maps we 3291 // needed during the translation. 3292 PendingPHIs.clear(); 3293 VMap.reset(); 3294 FrameIndices.clear(); 3295 MachinePreds.clear(); 3296 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 3297 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 3298 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 3299 EntryBuilder.reset(); 3300 CurBuilder.reset(); 3301 FuncInfo.clear(); 3302 SPDescriptor.resetPerFunctionState(); 3303 } 3304 3305 /// Returns true if a BasicBlock \p BB within a variadic function contains a 3306 /// variadic musttail call. 3307 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 3308 if (!IsVarArg) 3309 return false; 3310 3311 // Walk the block backwards, because tail calls usually only appear at the end 3312 // of a block. 3313 return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) { 3314 const auto *CI = dyn_cast<CallInst>(&I); 3315 return CI && CI->isMustTailCall(); 3316 }); 3317 } 3318 3319 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 3320 MF = &CurMF; 3321 const Function &F = MF->getFunction(); 3322 GISelCSEAnalysisWrapper &Wrapper = 3323 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 3324 // Set the CSEConfig and run the analysis. 3325 GISelCSEInfo *CSEInfo = nullptr; 3326 TPC = &getAnalysis<TargetPassConfig>(); 3327 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 3328 ? EnableCSEInIRTranslator 3329 : TPC->isGISelCSEEnabled(); 3330 3331 if (EnableCSE) { 3332 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3333 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 3334 EntryBuilder->setCSEInfo(CSEInfo); 3335 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3336 CurBuilder->setCSEInfo(CSEInfo); 3337 } else { 3338 EntryBuilder = std::make_unique<MachineIRBuilder>(); 3339 CurBuilder = std::make_unique<MachineIRBuilder>(); 3340 } 3341 CLI = MF->getSubtarget().getCallLowering(); 3342 CurBuilder->setMF(*MF); 3343 EntryBuilder->setMF(*MF); 3344 MRI = &MF->getRegInfo(); 3345 DL = &F.getParent()->getDataLayout(); 3346 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 3347 const TargetMachine &TM = MF->getTarget(); 3348 TM.resetTargetOptions(F); 3349 EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F); 3350 FuncInfo.MF = MF; 3351 if (EnableOpts) 3352 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 3353 else 3354 FuncInfo.BPI = nullptr; 3355 3356 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF); 3357 3358 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 3359 3360 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 3361 SL->init(TLI, TM, *DL); 3362 3363 3364 3365 assert(PendingPHIs.empty() && "stale PHIs"); 3366 3367 // Targets which want to use big endian can enable it using 3368 // enableBigEndian() 3369 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) { 3370 // Currently we don't properly handle big endian code. 3371 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3372 F.getSubprogram(), &F.getEntryBlock()); 3373 R << "unable to translate in big endian mode"; 3374 reportTranslationError(*MF, *TPC, *ORE, R); 3375 } 3376 3377 // Release the per-function state when we return, whether we succeeded or not. 3378 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 3379 3380 // Setup a separate basic-block for the arguments and constants 3381 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 3382 MF->push_back(EntryBB); 3383 EntryBuilder->setMBB(*EntryBB); 3384 3385 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 3386 SwiftError.setFunction(CurMF); 3387 SwiftError.createEntriesInEntryBlock(DbgLoc); 3388 3389 bool IsVarArg = F.isVarArg(); 3390 bool HasMustTailInVarArgFn = false; 3391 3392 // Create all blocks, in IR order, to preserve the layout. 3393 for (const BasicBlock &BB: F) { 3394 auto *&MBB = BBToMBB[&BB]; 3395 3396 MBB = MF->CreateMachineBasicBlock(&BB); 3397 MF->push_back(MBB); 3398 3399 if (BB.hasAddressTaken()) 3400 MBB->setHasAddressTaken(); 3401 3402 if (!HasMustTailInVarArgFn) 3403 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 3404 } 3405 3406 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 3407 3408 // Make our arguments/constants entry block fallthrough to the IR entry block. 3409 EntryBB->addSuccessor(&getMBB(F.front())); 3410 3411 if (CLI->fallBackToDAGISel(*MF)) { 3412 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3413 F.getSubprogram(), &F.getEntryBlock()); 3414 R << "unable to lower function: " << ore::NV("Prototype", F.getType()); 3415 reportTranslationError(*MF, *TPC, *ORE, R); 3416 return false; 3417 } 3418 3419 // Lower the actual args into this basic block. 3420 SmallVector<ArrayRef<Register>, 8> VRegArgs; 3421 for (const Argument &Arg: F.args()) { 3422 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 3423 continue; // Don't handle zero sized types. 3424 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 3425 VRegArgs.push_back(VRegs); 3426 3427 if (Arg.hasSwiftErrorAttr()) { 3428 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 3429 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 3430 } 3431 } 3432 3433 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs, FuncInfo)) { 3434 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3435 F.getSubprogram(), &F.getEntryBlock()); 3436 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 3437 reportTranslationError(*MF, *TPC, *ORE, R); 3438 return false; 3439 } 3440 3441 // Need to visit defs before uses when translating instructions. 3442 GISelObserverWrapper WrapperObserver; 3443 if (EnableCSE && CSEInfo) 3444 WrapperObserver.addObserver(CSEInfo); 3445 { 3446 ReversePostOrderTraversal<const Function *> RPOT(&F); 3447 #ifndef NDEBUG 3448 DILocationVerifier Verifier; 3449 WrapperObserver.addObserver(&Verifier); 3450 #endif // ifndef NDEBUG 3451 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 3452 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 3453 for (const BasicBlock *BB : RPOT) { 3454 MachineBasicBlock &MBB = getMBB(*BB); 3455 // Set the insertion point of all the following translations to 3456 // the end of this basic block. 3457 CurBuilder->setMBB(MBB); 3458 HasTailCall = false; 3459 for (const Instruction &Inst : *BB) { 3460 // If we translated a tail call in the last step, then we know 3461 // everything after the call is either a return, or something that is 3462 // handled by the call itself. (E.g. a lifetime marker or assume 3463 // intrinsic.) In this case, we should stop translating the block and 3464 // move on. 3465 if (HasTailCall) 3466 break; 3467 #ifndef NDEBUG 3468 Verifier.setCurrentInst(&Inst); 3469 #endif // ifndef NDEBUG 3470 if (translate(Inst)) 3471 continue; 3472 3473 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3474 Inst.getDebugLoc(), BB); 3475 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 3476 3477 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 3478 std::string InstStrStorage; 3479 raw_string_ostream InstStr(InstStrStorage); 3480 InstStr << Inst; 3481 3482 R << ": '" << InstStr.str() << "'"; 3483 } 3484 3485 reportTranslationError(*MF, *TPC, *ORE, R); 3486 return false; 3487 } 3488 3489 if (!finalizeBasicBlock(*BB, MBB)) 3490 return false; 3491 } 3492 #ifndef NDEBUG 3493 WrapperObserver.removeObserver(&Verifier); 3494 #endif 3495 } 3496 3497 finishPendingPhis(); 3498 3499 SwiftError.propagateVRegs(); 3500 3501 // Merge the argument lowering and constants block with its single 3502 // successor, the LLVM-IR entry block. We want the basic block to 3503 // be maximal. 3504 assert(EntryBB->succ_size() == 1 && 3505 "Custom BB used for lowering should have only one successor"); 3506 // Get the successor of the current entry block. 3507 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 3508 assert(NewEntryBB.pred_size() == 1 && 3509 "LLVM-IR entry block has a predecessor!?"); 3510 // Move all the instruction from the current entry block to the 3511 // new entry block. 3512 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 3513 EntryBB->end()); 3514 3515 // Update the live-in information for the new entry block. 3516 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 3517 NewEntryBB.addLiveIn(LiveIn); 3518 NewEntryBB.sortUniqueLiveIns(); 3519 3520 // Get rid of the now empty basic block. 3521 EntryBB->removeSuccessor(&NewEntryBB); 3522 MF->remove(EntryBB); 3523 MF->deleteMachineBasicBlock(EntryBB); 3524 3525 assert(&MF->front() == &NewEntryBB && 3526 "New entry wasn't next in the list of basic block!"); 3527 3528 // Initialize stack protector information. 3529 StackProtector &SP = getAnalysis<StackProtector>(); 3530 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 3531 3532 return false; 3533 } 3534