1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 22 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 23 #include "llvm/CodeGen/LowLevelType.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/StackProtector.h" 32 #include "llvm/CodeGen/TargetFrameLowering.h" 33 #include "llvm/CodeGen/TargetLowering.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/LowLevelTypeImpl.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetIntrinsicInfo.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <iterator> 71 #include <string> 72 #include <utility> 73 #include <vector> 74 75 #define DEBUG_TYPE "irtranslator" 76 77 using namespace llvm; 78 79 static cl::opt<bool> 80 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 81 cl::desc("Should enable CSE in irtranslator"), 82 cl::Optional, cl::init(false)); 83 char IRTranslator::ID = 0; 84 85 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 86 false, false) 87 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 88 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 89 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 90 false, false) 91 92 static void reportTranslationError(MachineFunction &MF, 93 const TargetPassConfig &TPC, 94 OptimizationRemarkEmitter &ORE, 95 OptimizationRemarkMissed &R) { 96 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 97 98 // Print the function name explicitly if we don't have a debug location (which 99 // makes the diagnostic less useful) or if we're going to emit a raw error. 100 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 101 R << (" (in function: " + MF.getName() + ")").str(); 102 103 if (TPC.isGlobalISelAbortEnabled()) 104 report_fatal_error(R.getMsg()); 105 else 106 ORE.emit(R); 107 } 108 109 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { 110 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 111 } 112 113 #ifndef NDEBUG 114 namespace { 115 /// Verify that every instruction created has the same DILocation as the 116 /// instruction being translated. 117 class DILocationVerifier : public GISelChangeObserver { 118 const Instruction *CurrInst = nullptr; 119 120 public: 121 DILocationVerifier() = default; 122 ~DILocationVerifier() = default; 123 124 const Instruction *getCurrentInst() const { return CurrInst; } 125 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 126 127 void erasingInstr(MachineInstr &MI) override {} 128 void changingInstr(MachineInstr &MI) override {} 129 void changedInstr(MachineInstr &MI) override {} 130 131 void createdInstr(MachineInstr &MI) override { 132 assert(getCurrentInst() && "Inserted instruction without a current MI"); 133 134 // Only print the check message if we're actually checking it. 135 #ifndef NDEBUG 136 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 137 << " was copied to " << MI); 138 #endif 139 assert(CurrInst->getDebugLoc() == MI.getDebugLoc() && 140 "Line info was not transferred to all instructions"); 141 } 142 }; 143 } // namespace 144 #endif // ifndef NDEBUG 145 146 147 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 148 AU.addRequired<StackProtector>(); 149 AU.addRequired<TargetPassConfig>(); 150 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 151 getSelectionDAGFallbackAnalysisUsage(AU); 152 MachineFunctionPass::getAnalysisUsage(AU); 153 } 154 155 static void computeValueLLTs(const DataLayout &DL, Type &Ty, 156 SmallVectorImpl<LLT> &ValueTys, 157 SmallVectorImpl<uint64_t> *Offsets = nullptr, 158 uint64_t StartingOffset = 0) { 159 // Given a struct type, recursively traverse the elements. 160 if (StructType *STy = dyn_cast<StructType>(&Ty)) { 161 const StructLayout *SL = DL.getStructLayout(STy); 162 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) 163 computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, 164 StartingOffset + SL->getElementOffset(I)); 165 return; 166 } 167 // Given an array type, recursively traverse the elements. 168 if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { 169 Type *EltTy = ATy->getElementType(); 170 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 171 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 172 computeValueLLTs(DL, *EltTy, ValueTys, Offsets, 173 StartingOffset + i * EltSize); 174 return; 175 } 176 // Interpret void as zero return values. 177 if (Ty.isVoidTy()) 178 return; 179 // Base case: we can get an LLT for this LLVM IR type. 180 ValueTys.push_back(getLLTForType(Ty, DL)); 181 if (Offsets != nullptr) 182 Offsets->push_back(StartingOffset * 8); 183 } 184 185 IRTranslator::ValueToVRegInfo::VRegListT & 186 IRTranslator::allocateVRegs(const Value &Val) { 187 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 188 auto *Regs = VMap.getVRegs(Val); 189 auto *Offsets = VMap.getOffsets(Val); 190 SmallVector<LLT, 4> SplitTys; 191 computeValueLLTs(*DL, *Val.getType(), SplitTys, 192 Offsets->empty() ? Offsets : nullptr); 193 for (unsigned i = 0; i < SplitTys.size(); ++i) 194 Regs->push_back(0); 195 return *Regs; 196 } 197 198 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) { 199 auto VRegsIt = VMap.findVRegs(Val); 200 if (VRegsIt != VMap.vregs_end()) 201 return *VRegsIt->second; 202 203 if (Val.getType()->isVoidTy()) 204 return *VMap.getVRegs(Val); 205 206 // Create entry for this type. 207 auto *VRegs = VMap.getVRegs(Val); 208 auto *Offsets = VMap.getOffsets(Val); 209 210 assert(Val.getType()->isSized() && 211 "Don't know how to create an empty vreg"); 212 213 SmallVector<LLT, 4> SplitTys; 214 computeValueLLTs(*DL, *Val.getType(), SplitTys, 215 Offsets->empty() ? Offsets : nullptr); 216 217 if (!isa<Constant>(Val)) { 218 for (auto Ty : SplitTys) 219 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 220 return *VRegs; 221 } 222 223 if (Val.getType()->isAggregateType()) { 224 // UndefValue, ConstantAggregateZero 225 auto &C = cast<Constant>(Val); 226 unsigned Idx = 0; 227 while (auto Elt = C.getAggregateElement(Idx++)) { 228 auto EltRegs = getOrCreateVRegs(*Elt); 229 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 230 } 231 } else { 232 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 233 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 234 bool Success = translate(cast<Constant>(Val), VRegs->front()); 235 if (!Success) { 236 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 237 MF->getFunction().getSubprogram(), 238 &MF->getFunction().getEntryBlock()); 239 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 240 reportTranslationError(*MF, *TPC, *ORE, R); 241 return *VRegs; 242 } 243 } 244 245 return *VRegs; 246 } 247 248 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 249 if (FrameIndices.find(&AI) != FrameIndices.end()) 250 return FrameIndices[&AI]; 251 252 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 253 unsigned Size = 254 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 255 256 // Always allocate at least one byte. 257 Size = std::max(Size, 1u); 258 259 unsigned Alignment = AI.getAlignment(); 260 if (!Alignment) 261 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 262 263 int &FI = FrameIndices[&AI]; 264 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 265 return FI; 266 } 267 268 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 269 unsigned Alignment = 0; 270 Type *ValTy = nullptr; 271 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 272 Alignment = SI->getAlignment(); 273 ValTy = SI->getValueOperand()->getType(); 274 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 275 Alignment = LI->getAlignment(); 276 ValTy = LI->getType(); 277 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 278 // TODO(PR27168): This instruction has no alignment attribute, but unlike 279 // the default alignment for load/store, the default here is to assume 280 // it has NATURAL alignment, not DataLayout-specified alignment. 281 const DataLayout &DL = AI->getModule()->getDataLayout(); 282 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 283 ValTy = AI->getCompareOperand()->getType(); 284 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 285 // TODO(PR27168): This instruction has no alignment attribute, but unlike 286 // the default alignment for load/store, the default here is to assume 287 // it has NATURAL alignment, not DataLayout-specified alignment. 288 const DataLayout &DL = AI->getModule()->getDataLayout(); 289 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 290 ValTy = AI->getType(); 291 } else { 292 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 293 R << "unable to translate memop: " << ore::NV("Opcode", &I); 294 reportTranslationError(*MF, *TPC, *ORE, R); 295 return 1; 296 } 297 298 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 299 } 300 301 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 302 MachineBasicBlock *&MBB = BBToMBB[&BB]; 303 assert(MBB && "BasicBlock was not encountered before"); 304 return *MBB; 305 } 306 307 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 308 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 309 MachinePreds[Edge].push_back(NewPred); 310 } 311 312 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 313 MachineIRBuilder &MIRBuilder) { 314 // FIXME: handle signed/unsigned wrapping flags. 315 316 // Get or create a virtual register for each value. 317 // Unless the value is a Constant => loadimm cst? 318 // or inline constant each time? 319 // Creation of a virtual register needs to have a size. 320 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 321 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 322 unsigned Res = getOrCreateVReg(U); 323 uint16_t Flags = 0; 324 if (isa<Instruction>(U)) { 325 const Instruction &I = cast<Instruction>(U); 326 Flags = MachineInstr::copyFlagsFromInstruction(I); 327 } 328 329 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 330 return true; 331 } 332 333 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 334 // -0.0 - X --> G_FNEG 335 if (isa<Constant>(U.getOperand(0)) && 336 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 337 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 338 .addDef(getOrCreateVReg(U)) 339 .addUse(getOrCreateVReg(*U.getOperand(1))); 340 return true; 341 } 342 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 343 } 344 345 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 346 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 347 .addDef(getOrCreateVReg(U)) 348 .addUse(getOrCreateVReg(*U.getOperand(0))); 349 return true; 350 } 351 352 bool IRTranslator::translateCompare(const User &U, 353 MachineIRBuilder &MIRBuilder) { 354 const CmpInst *CI = dyn_cast<CmpInst>(&U); 355 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 356 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 357 unsigned Res = getOrCreateVReg(U); 358 CmpInst::Predicate Pred = 359 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 360 cast<ConstantExpr>(U).getPredicate()); 361 if (CmpInst::isIntPredicate(Pred)) 362 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 363 else if (Pred == CmpInst::FCMP_FALSE) 364 MIRBuilder.buildCopy( 365 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 366 else if (Pred == CmpInst::FCMP_TRUE) 367 MIRBuilder.buildCopy( 368 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 369 else { 370 MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1}, 371 MachineInstr::copyFlagsFromInstruction(*CI)); 372 } 373 374 return true; 375 } 376 377 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 378 const ReturnInst &RI = cast<ReturnInst>(U); 379 const Value *Ret = RI.getReturnValue(); 380 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 381 Ret = nullptr; 382 383 ArrayRef<unsigned> VRegs; 384 if (Ret) 385 VRegs = getOrCreateVRegs(*Ret); 386 387 // The target may mess up with the insertion point, but 388 // this is not important as a return is the last instruction 389 // of the block anyway. 390 391 return CLI->lowerReturn(MIRBuilder, Ret, VRegs); 392 } 393 394 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 395 const BranchInst &BrInst = cast<BranchInst>(U); 396 unsigned Succ = 0; 397 if (!BrInst.isUnconditional()) { 398 // We want a G_BRCOND to the true BB followed by an unconditional branch. 399 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 400 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 401 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 402 MIRBuilder.buildBrCond(Tst, TrueBB); 403 } 404 405 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 406 MachineBasicBlock &TgtBB = getMBB(BrTgt); 407 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 408 409 // If the unconditional target is the layout successor, fallthrough. 410 if (!CurBB.isLayoutSuccessor(&TgtBB)) 411 MIRBuilder.buildBr(TgtBB); 412 413 // Link successors. 414 for (const BasicBlock *Succ : successors(&BrInst)) 415 CurBB.addSuccessor(&getMBB(*Succ)); 416 return true; 417 } 418 419 bool IRTranslator::translateSwitch(const User &U, 420 MachineIRBuilder &MIRBuilder) { 421 // For now, just translate as a chain of conditional branches. 422 // FIXME: could we share most of the logic/code in 423 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 424 // At first sight, it seems most of the logic in there is independent of 425 // SelectionDAG-specifics and a lot of work went in to optimize switch 426 // lowering in there. 427 428 const SwitchInst &SwInst = cast<SwitchInst>(U); 429 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 430 const BasicBlock *OrigBB = SwInst.getParent(); 431 432 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 433 for (auto &CaseIt : SwInst.cases()) { 434 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 435 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 436 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 437 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 438 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 439 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 440 441 MIRBuilder.buildBrCond(Tst, TrueMBB); 442 CurMBB.addSuccessor(&TrueMBB); 443 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 444 445 MachineBasicBlock *FalseMBB = 446 MF->CreateMachineBasicBlock(SwInst.getParent()); 447 // Insert the comparison blocks one after the other. 448 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 449 MIRBuilder.buildBr(*FalseMBB); 450 CurMBB.addSuccessor(FalseMBB); 451 452 MIRBuilder.setMBB(*FalseMBB); 453 } 454 // handle default case 455 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 456 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 457 MIRBuilder.buildBr(DefaultMBB); 458 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 459 CurMBB.addSuccessor(&DefaultMBB); 460 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 461 462 return true; 463 } 464 465 bool IRTranslator::translateIndirectBr(const User &U, 466 MachineIRBuilder &MIRBuilder) { 467 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 468 469 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 470 MIRBuilder.buildBrIndirect(Tgt); 471 472 // Link successors. 473 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 474 for (const BasicBlock *Succ : successors(&BrInst)) 475 CurBB.addSuccessor(&getMBB(*Succ)); 476 477 return true; 478 } 479 480 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 481 const LoadInst &LI = cast<LoadInst>(U); 482 483 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 484 : MachineMemOperand::MONone; 485 Flags |= MachineMemOperand::MOLoad; 486 487 if (DL->getTypeStoreSize(LI.getType()) == 0) 488 return true; 489 490 ArrayRef<unsigned> Regs = getOrCreateVRegs(LI); 491 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 492 unsigned Base = getOrCreateVReg(*LI.getPointerOperand()); 493 494 for (unsigned i = 0; i < Regs.size(); ++i) { 495 unsigned Addr = 0; 496 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); 497 498 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 499 unsigned BaseAlign = getMemOpAlignment(LI); 500 auto MMO = MF->getMachineMemOperand( 501 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 502 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 503 LI.getSyncScopeID(), LI.getOrdering()); 504 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 505 } 506 507 return true; 508 } 509 510 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 511 const StoreInst &SI = cast<StoreInst>(U); 512 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 513 : MachineMemOperand::MONone; 514 Flags |= MachineMemOperand::MOStore; 515 516 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 517 return true; 518 519 ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand()); 520 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 521 unsigned Base = getOrCreateVReg(*SI.getPointerOperand()); 522 523 for (unsigned i = 0; i < Vals.size(); ++i) { 524 unsigned Addr = 0; 525 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); 526 527 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 528 unsigned BaseAlign = getMemOpAlignment(SI); 529 auto MMO = MF->getMachineMemOperand( 530 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 531 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 532 SI.getSyncScopeID(), SI.getOrdering()); 533 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 534 } 535 return true; 536 } 537 538 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 539 const Value *Src = U.getOperand(0); 540 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 541 542 // getIndexedOffsetInType is designed for GEPs, so the first index is the 543 // usual array element rather than looking into the actual aggregate. 544 SmallVector<Value *, 1> Indices; 545 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 546 547 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 548 for (auto Idx : EVI->indices()) 549 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 550 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 551 for (auto Idx : IVI->indices()) 552 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 553 } else { 554 for (unsigned i = 1; i < U.getNumOperands(); ++i) 555 Indices.push_back(U.getOperand(i)); 556 } 557 558 return 8 * static_cast<uint64_t>( 559 DL.getIndexedOffsetInType(Src->getType(), Indices)); 560 } 561 562 bool IRTranslator::translateExtractValue(const User &U, 563 MachineIRBuilder &MIRBuilder) { 564 const Value *Src = U.getOperand(0); 565 uint64_t Offset = getOffsetFromIndices(U, *DL); 566 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 567 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 568 unsigned Idx = std::lower_bound(Offsets.begin(), Offsets.end(), Offset) - 569 Offsets.begin(); 570 auto &DstRegs = allocateVRegs(U); 571 572 for (unsigned i = 0; i < DstRegs.size(); ++i) 573 DstRegs[i] = SrcRegs[Idx++]; 574 575 return true; 576 } 577 578 bool IRTranslator::translateInsertValue(const User &U, 579 MachineIRBuilder &MIRBuilder) { 580 const Value *Src = U.getOperand(0); 581 uint64_t Offset = getOffsetFromIndices(U, *DL); 582 auto &DstRegs = allocateVRegs(U); 583 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 584 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 585 ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 586 auto InsertedIt = InsertedRegs.begin(); 587 588 for (unsigned i = 0; i < DstRegs.size(); ++i) { 589 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 590 DstRegs[i] = *InsertedIt++; 591 else 592 DstRegs[i] = SrcRegs[i]; 593 } 594 595 return true; 596 } 597 598 bool IRTranslator::translateSelect(const User &U, 599 MachineIRBuilder &MIRBuilder) { 600 unsigned Tst = getOrCreateVReg(*U.getOperand(0)); 601 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U); 602 ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 603 ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 604 605 const SelectInst &SI = cast<SelectInst>(U); 606 uint16_t Flags = 0; 607 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 608 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 609 610 for (unsigned i = 0; i < ResRegs.size(); ++i) { 611 MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]}, 612 {Tst, Op0Regs[i], Op1Regs[i]}, Flags); 613 } 614 615 return true; 616 } 617 618 bool IRTranslator::translateBitCast(const User &U, 619 MachineIRBuilder &MIRBuilder) { 620 // If we're bitcasting to the source type, we can reuse the source vreg. 621 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 622 getLLTForType(*U.getType(), *DL)) { 623 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 624 auto &Regs = *VMap.getVRegs(U); 625 // If we already assigned a vreg for this bitcast, we can't change that. 626 // Emit a copy to satisfy the users we already emitted. 627 if (!Regs.empty()) 628 MIRBuilder.buildCopy(Regs[0], SrcReg); 629 else { 630 Regs.push_back(SrcReg); 631 VMap.getOffsets(U)->push_back(0); 632 } 633 return true; 634 } 635 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 636 } 637 638 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 639 MachineIRBuilder &MIRBuilder) { 640 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 641 unsigned Res = getOrCreateVReg(U); 642 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 643 return true; 644 } 645 646 bool IRTranslator::translateGetElementPtr(const User &U, 647 MachineIRBuilder &MIRBuilder) { 648 // FIXME: support vector GEPs. 649 if (U.getType()->isVectorTy()) 650 return false; 651 652 Value &Op0 = *U.getOperand(0); 653 unsigned BaseReg = getOrCreateVReg(Op0); 654 Type *PtrIRTy = Op0.getType(); 655 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 656 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 657 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 658 659 int64_t Offset = 0; 660 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 661 GTI != E; ++GTI) { 662 const Value *Idx = GTI.getOperand(); 663 if (StructType *StTy = GTI.getStructTypeOrNull()) { 664 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 665 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 666 continue; 667 } else { 668 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 669 670 // If this is a scalar constant or a splat vector of constants, 671 // handle it quickly. 672 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 673 Offset += ElementSize * CI->getSExtValue(); 674 continue; 675 } 676 677 if (Offset != 0) { 678 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 679 unsigned OffsetReg = 680 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 681 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 682 683 BaseReg = NewBaseReg; 684 Offset = 0; 685 } 686 687 unsigned IdxReg = getOrCreateVReg(*Idx); 688 if (MRI->getType(IdxReg) != OffsetTy) { 689 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 690 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 691 IdxReg = NewIdxReg; 692 } 693 694 // N = N + Idx * ElementSize; 695 // Avoid doing it for ElementSize of 1. 696 unsigned GepOffsetReg; 697 if (ElementSize != 1) { 698 unsigned ElementSizeReg = 699 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize)); 700 701 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 702 MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg); 703 } else 704 GepOffsetReg = IdxReg; 705 706 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 707 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); 708 BaseReg = NewBaseReg; 709 } 710 } 711 712 if (Offset != 0) { 713 unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 714 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 715 return true; 716 } 717 718 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 719 return true; 720 } 721 722 bool IRTranslator::translateMemfunc(const CallInst &CI, 723 MachineIRBuilder &MIRBuilder, 724 unsigned ID) { 725 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 726 Type *DstTy = CI.getArgOperand(0)->getType(); 727 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 728 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 729 return false; 730 731 SmallVector<CallLowering::ArgInfo, 8> Args; 732 for (int i = 0; i < 3; ++i) { 733 const auto &Arg = CI.getArgOperand(i); 734 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 735 } 736 737 const char *Callee; 738 switch (ID) { 739 case Intrinsic::memmove: 740 case Intrinsic::memcpy: { 741 Type *SrcTy = CI.getArgOperand(1)->getType(); 742 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 743 return false; 744 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 745 break; 746 } 747 case Intrinsic::memset: 748 Callee = "memset"; 749 break; 750 default: 751 return false; 752 } 753 754 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 755 MachineOperand::CreateES(Callee), 756 CallLowering::ArgInfo(0, CI.getType()), Args); 757 } 758 759 void IRTranslator::getStackGuard(unsigned DstReg, 760 MachineIRBuilder &MIRBuilder) { 761 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 762 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 763 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 764 MIB.addDef(DstReg); 765 766 auto &TLI = *MF->getSubtarget().getTargetLowering(); 767 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 768 if (!Global) 769 return; 770 771 MachinePointerInfo MPInfo(Global); 772 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 773 MachineMemOperand::MODereferenceable; 774 MachineMemOperand *MemRef = 775 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 776 DL->getPointerABIAlignment(0)); 777 MIB.setMemRefs({MemRef}); 778 } 779 780 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 781 MachineIRBuilder &MIRBuilder) { 782 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI); 783 MIRBuilder.buildInstr(Op) 784 .addDef(ResRegs[0]) 785 .addDef(ResRegs[1]) 786 .addUse(getOrCreateVReg(*CI.getOperand(0))) 787 .addUse(getOrCreateVReg(*CI.getOperand(1))); 788 789 return true; 790 } 791 792 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 793 switch (ID) { 794 default: 795 break; 796 case Intrinsic::bswap: 797 return TargetOpcode::G_BSWAP; 798 case Intrinsic::ceil: 799 return TargetOpcode::G_FCEIL; 800 case Intrinsic::cos: 801 return TargetOpcode::G_FCOS; 802 case Intrinsic::ctpop: 803 return TargetOpcode::G_CTPOP; 804 case Intrinsic::exp: 805 return TargetOpcode::G_FEXP; 806 case Intrinsic::exp2: 807 return TargetOpcode::G_FEXP2; 808 case Intrinsic::fabs: 809 return TargetOpcode::G_FABS; 810 case Intrinsic::canonicalize: 811 return TargetOpcode::G_FCANONICALIZE; 812 case Intrinsic::floor: 813 return TargetOpcode::G_FFLOOR; 814 case Intrinsic::fma: 815 return TargetOpcode::G_FMA; 816 case Intrinsic::log: 817 return TargetOpcode::G_FLOG; 818 case Intrinsic::log2: 819 return TargetOpcode::G_FLOG2; 820 case Intrinsic::log10: 821 return TargetOpcode::G_FLOG10; 822 case Intrinsic::pow: 823 return TargetOpcode::G_FPOW; 824 case Intrinsic::round: 825 return TargetOpcode::G_INTRINSIC_ROUND; 826 case Intrinsic::sin: 827 return TargetOpcode::G_FSIN; 828 case Intrinsic::sqrt: 829 return TargetOpcode::G_FSQRT; 830 case Intrinsic::trunc: 831 return TargetOpcode::G_INTRINSIC_TRUNC; 832 } 833 return Intrinsic::not_intrinsic; 834 } 835 836 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 837 Intrinsic::ID ID, 838 MachineIRBuilder &MIRBuilder) { 839 840 unsigned Op = getSimpleIntrinsicOpcode(ID); 841 842 // Is this a simple intrinsic? 843 if (Op == Intrinsic::not_intrinsic) 844 return false; 845 846 // Yes. Let's translate it. 847 SmallVector<llvm::SrcOp, 4> VRegs; 848 for (auto &Arg : CI.arg_operands()) 849 VRegs.push_back(getOrCreateVReg(*Arg)); 850 851 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 852 MachineInstr::copyFlagsFromInstruction(CI)); 853 return true; 854 } 855 856 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 857 MachineIRBuilder &MIRBuilder) { 858 859 // If this is a simple intrinsic (that is, we just need to add a def of 860 // a vreg, and uses for each arg operand, then translate it. 861 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 862 return true; 863 864 switch (ID) { 865 default: 866 break; 867 case Intrinsic::lifetime_start: 868 case Intrinsic::lifetime_end: { 869 // No stack colouring in O0, discard region information. 870 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 871 return true; 872 873 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 874 : TargetOpcode::LIFETIME_END; 875 876 // Get the underlying objects for the location passed on the lifetime 877 // marker. 878 SmallVector<Value *, 4> Allocas; 879 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 880 881 // Iterate over each underlying object, creating lifetime markers for each 882 // static alloca. Quit if we find a non-static alloca. 883 for (Value *V : Allocas) { 884 AllocaInst *AI = dyn_cast<AllocaInst>(V); 885 if (!AI) 886 continue; 887 888 if (!AI->isStaticAlloca()) 889 return true; 890 891 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 892 } 893 return true; 894 } 895 case Intrinsic::dbg_declare: { 896 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 897 assert(DI.getVariable() && "Missing variable"); 898 899 const Value *Address = DI.getAddress(); 900 if (!Address || isa<UndefValue>(Address)) { 901 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 902 return true; 903 } 904 905 assert(DI.getVariable()->isValidLocationForIntrinsic( 906 MIRBuilder.getDebugLoc()) && 907 "Expected inlined-at fields to agree"); 908 auto AI = dyn_cast<AllocaInst>(Address); 909 if (AI && AI->isStaticAlloca()) { 910 // Static allocas are tracked at the MF level, no need for DBG_VALUE 911 // instructions (in fact, they get ignored if they *do* exist). 912 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 913 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 914 } else { 915 // A dbg.declare describes the address of a source variable, so lower it 916 // into an indirect DBG_VALUE. 917 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 918 DI.getVariable(), DI.getExpression()); 919 } 920 return true; 921 } 922 case Intrinsic::dbg_label: { 923 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 924 assert(DI.getLabel() && "Missing label"); 925 926 assert(DI.getLabel()->isValidLocationForIntrinsic( 927 MIRBuilder.getDebugLoc()) && 928 "Expected inlined-at fields to agree"); 929 930 MIRBuilder.buildDbgLabel(DI.getLabel()); 931 return true; 932 } 933 case Intrinsic::vaend: 934 // No target I know of cares about va_end. Certainly no in-tree target 935 // does. Simplest intrinsic ever! 936 return true; 937 case Intrinsic::vastart: { 938 auto &TLI = *MF->getSubtarget().getTargetLowering(); 939 Value *Ptr = CI.getArgOperand(0); 940 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 941 942 // FIXME: Get alignment 943 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 944 .addUse(getOrCreateVReg(*Ptr)) 945 .addMemOperand(MF->getMachineMemOperand( 946 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); 947 return true; 948 } 949 case Intrinsic::dbg_value: { 950 // This form of DBG_VALUE is target-independent. 951 const DbgValueInst &DI = cast<DbgValueInst>(CI); 952 const Value *V = DI.getValue(); 953 assert(DI.getVariable()->isValidLocationForIntrinsic( 954 MIRBuilder.getDebugLoc()) && 955 "Expected inlined-at fields to agree"); 956 if (!V) { 957 // Currently the optimizer can produce this; insert an undef to 958 // help debugging. Probably the optimizer should not do this. 959 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 960 } else if (const auto *CI = dyn_cast<Constant>(V)) { 961 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 962 } else { 963 unsigned Reg = getOrCreateVReg(*V); 964 // FIXME: This does not handle register-indirect values at offset 0. The 965 // direct/indirect thing shouldn't really be handled by something as 966 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 967 // pretty baked in right now. 968 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 969 } 970 return true; 971 } 972 case Intrinsic::uadd_with_overflow: 973 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 974 case Intrinsic::sadd_with_overflow: 975 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 976 case Intrinsic::usub_with_overflow: 977 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 978 case Intrinsic::ssub_with_overflow: 979 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 980 case Intrinsic::umul_with_overflow: 981 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 982 case Intrinsic::smul_with_overflow: 983 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 984 case Intrinsic::fmuladd: { 985 const TargetMachine &TM = MF->getTarget(); 986 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 987 unsigned Dst = getOrCreateVReg(CI); 988 unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 989 unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 990 unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 991 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 992 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 993 // TODO: Revisit this to see if we should move this part of the 994 // lowering to the combiner. 995 MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2}, 996 MachineInstr::copyFlagsFromInstruction(CI)); 997 } else { 998 LLT Ty = getLLTForType(*CI.getType(), *DL); 999 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1}, 1000 MachineInstr::copyFlagsFromInstruction(CI)); 1001 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2}, 1002 MachineInstr::copyFlagsFromInstruction(CI)); 1003 } 1004 return true; 1005 } 1006 case Intrinsic::memcpy: 1007 case Intrinsic::memmove: 1008 case Intrinsic::memset: 1009 return translateMemfunc(CI, MIRBuilder, ID); 1010 case Intrinsic::eh_typeid_for: { 1011 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1012 unsigned Reg = getOrCreateVReg(CI); 1013 unsigned TypeID = MF->getTypeIDFor(GV); 1014 MIRBuilder.buildConstant(Reg, TypeID); 1015 return true; 1016 } 1017 case Intrinsic::objectsize: { 1018 // If we don't know by now, we're never going to know. 1019 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 1020 1021 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 1022 return true; 1023 } 1024 case Intrinsic::is_constant: 1025 // If this wasn't constant-folded away by now, then it's not a 1026 // constant. 1027 MIRBuilder.buildConstant(getOrCreateVReg(CI), 0); 1028 return true; 1029 case Intrinsic::stackguard: 1030 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1031 return true; 1032 case Intrinsic::stackprotector: { 1033 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1034 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1035 getStackGuard(GuardVal, MIRBuilder); 1036 1037 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1038 int FI = getOrCreateFrameIndex(*Slot); 1039 MF->getFrameInfo().setStackProtectorIndex(FI); 1040 1041 MIRBuilder.buildStore( 1042 GuardVal, getOrCreateVReg(*Slot), 1043 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1044 MachineMemOperand::MOStore | 1045 MachineMemOperand::MOVolatile, 1046 PtrTy.getSizeInBits() / 8, 8)); 1047 return true; 1048 } 1049 case Intrinsic::cttz: 1050 case Intrinsic::ctlz: { 1051 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1052 bool isTrailing = ID == Intrinsic::cttz; 1053 unsigned Opcode = isTrailing 1054 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1055 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1056 : Cst->isZero() ? TargetOpcode::G_CTLZ 1057 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1058 MIRBuilder.buildInstr(Opcode) 1059 .addDef(getOrCreateVReg(CI)) 1060 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 1061 return true; 1062 } 1063 case Intrinsic::invariant_start: { 1064 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1065 unsigned Undef = MRI->createGenericVirtualRegister(PtrTy); 1066 MIRBuilder.buildUndef(Undef); 1067 return true; 1068 } 1069 case Intrinsic::invariant_end: 1070 return true; 1071 } 1072 return false; 1073 } 1074 1075 bool IRTranslator::translateInlineAsm(const CallInst &CI, 1076 MachineIRBuilder &MIRBuilder) { 1077 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 1078 if (!IA.getConstraintString().empty()) 1079 return false; 1080 1081 unsigned ExtraInfo = 0; 1082 if (IA.hasSideEffects()) 1083 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1084 if (IA.getDialect() == InlineAsm::AD_Intel) 1085 ExtraInfo |= InlineAsm::Extra_AsmDialect; 1086 1087 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 1088 .addExternalSymbol(IA.getAsmString().c_str()) 1089 .addImm(ExtraInfo); 1090 1091 return true; 1092 } 1093 1094 unsigned IRTranslator::packRegs(const Value &V, 1095 MachineIRBuilder &MIRBuilder) { 1096 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1097 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1098 LLT BigTy = getLLTForType(*V.getType(), *DL); 1099 1100 if (Regs.size() == 1) 1101 return Regs[0]; 1102 1103 unsigned Dst = MRI->createGenericVirtualRegister(BigTy); 1104 MIRBuilder.buildUndef(Dst); 1105 for (unsigned i = 0; i < Regs.size(); ++i) { 1106 unsigned NewDst = MRI->createGenericVirtualRegister(BigTy); 1107 MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]); 1108 Dst = NewDst; 1109 } 1110 return Dst; 1111 } 1112 1113 void IRTranslator::unpackRegs(const Value &V, unsigned Src, 1114 MachineIRBuilder &MIRBuilder) { 1115 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1116 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1117 1118 for (unsigned i = 0; i < Regs.size(); ++i) 1119 MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]); 1120 } 1121 1122 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1123 const CallInst &CI = cast<CallInst>(U); 1124 auto TII = MF->getTarget().getIntrinsicInfo(); 1125 const Function *F = CI.getCalledFunction(); 1126 1127 // FIXME: support Windows dllimport function calls. 1128 if (F && F->hasDLLImportStorageClass()) 1129 return false; 1130 1131 if (CI.isInlineAsm()) 1132 return translateInlineAsm(CI, MIRBuilder); 1133 1134 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1135 if (F && F->isIntrinsic()) { 1136 ID = F->getIntrinsicID(); 1137 if (TII && ID == Intrinsic::not_intrinsic) 1138 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1139 } 1140 1141 bool IsSplitType = valueIsSplit(CI); 1142 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { 1143 unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister( 1144 getLLTForType(*CI.getType(), *DL)) 1145 : getOrCreateVReg(CI); 1146 1147 SmallVector<unsigned, 8> Args; 1148 for (auto &Arg: CI.arg_operands()) 1149 Args.push_back(packRegs(*Arg, MIRBuilder)); 1150 1151 MF->getFrameInfo().setHasCalls(true); 1152 bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() { 1153 return getOrCreateVReg(*CI.getCalledValue()); 1154 }); 1155 1156 if (IsSplitType) 1157 unpackRegs(CI, Res, MIRBuilder); 1158 return Success; 1159 } 1160 1161 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1162 1163 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1164 return true; 1165 1166 unsigned Res = 0; 1167 if (!CI.getType()->isVoidTy()) { 1168 if (IsSplitType) 1169 Res = 1170 MRI->createGenericVirtualRegister(getLLTForType(*CI.getType(), *DL)); 1171 else 1172 Res = getOrCreateVReg(CI); 1173 } 1174 MachineInstrBuilder MIB = 1175 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 1176 1177 for (auto &Arg : CI.arg_operands()) { 1178 // Some intrinsics take metadata parameters. Reject them. 1179 if (isa<MetadataAsValue>(Arg)) 1180 return false; 1181 MIB.addUse(packRegs(*Arg, MIRBuilder)); 1182 } 1183 1184 if (IsSplitType) 1185 unpackRegs(CI, Res, MIRBuilder); 1186 1187 // Add a MachineMemOperand if it is a target mem intrinsic. 1188 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1189 TargetLowering::IntrinsicInfo Info; 1190 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1191 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1192 unsigned Align = Info.align; 1193 if (Align == 0) 1194 Align = DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext())); 1195 1196 uint64_t Size = Info.memVT.getStoreSize(); 1197 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1198 Info.flags, Size, Align)); 1199 } 1200 1201 return true; 1202 } 1203 1204 bool IRTranslator::translateInvoke(const User &U, 1205 MachineIRBuilder &MIRBuilder) { 1206 const InvokeInst &I = cast<InvokeInst>(U); 1207 MCContext &Context = MF->getContext(); 1208 1209 const BasicBlock *ReturnBB = I.getSuccessor(0); 1210 const BasicBlock *EHPadBB = I.getSuccessor(1); 1211 1212 const Value *Callee = I.getCalledValue(); 1213 const Function *Fn = dyn_cast<Function>(Callee); 1214 if (isa<InlineAsm>(Callee)) 1215 return false; 1216 1217 // FIXME: support invoking patchpoint and statepoint intrinsics. 1218 if (Fn && Fn->isIntrinsic()) 1219 return false; 1220 1221 // FIXME: support whatever these are. 1222 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1223 return false; 1224 1225 // FIXME: support Windows exception handling. 1226 if (!isa<LandingPadInst>(EHPadBB->front())) 1227 return false; 1228 1229 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1230 // the region covered by the try. 1231 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1232 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1233 1234 unsigned Res = 1235 MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL)); 1236 SmallVector<unsigned, 8> Args; 1237 for (auto &Arg: I.arg_operands()) 1238 Args.push_back(packRegs(*Arg, MIRBuilder)); 1239 1240 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, 1241 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 1242 return false; 1243 1244 unpackRegs(I, Res, MIRBuilder); 1245 1246 MCSymbol *EndSymbol = Context.createTempSymbol(); 1247 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1248 1249 // FIXME: track probabilities. 1250 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1251 &ReturnMBB = getMBB(*ReturnBB); 1252 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1253 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1254 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1255 MIRBuilder.buildBr(ReturnMBB); 1256 1257 return true; 1258 } 1259 1260 bool IRTranslator::translateCallBr(const User &U, 1261 MachineIRBuilder &MIRBuilder) { 1262 // FIXME: Implement this. 1263 return false; 1264 } 1265 1266 bool IRTranslator::translateLandingPad(const User &U, 1267 MachineIRBuilder &MIRBuilder) { 1268 const LandingPadInst &LP = cast<LandingPadInst>(U); 1269 1270 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1271 1272 MBB.setIsEHPad(); 1273 1274 // If there aren't registers to copy the values into (e.g., during SjLj 1275 // exceptions), then don't bother. 1276 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1277 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1278 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1279 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1280 return true; 1281 1282 // If landingpad's return type is token type, we don't create DAG nodes 1283 // for its exception pointer and selector value. The extraction of exception 1284 // pointer or selector value from token type landingpads is not currently 1285 // supported. 1286 if (LP.getType()->isTokenTy()) 1287 return true; 1288 1289 // Add a label to mark the beginning of the landing pad. Deletion of the 1290 // landing pad can thus be detected via the MachineModuleInfo. 1291 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1292 .addSym(MF->addLandingPad(&MBB)); 1293 1294 LLT Ty = getLLTForType(*LP.getType(), *DL); 1295 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 1296 MIRBuilder.buildUndef(Undef); 1297 1298 SmallVector<LLT, 2> Tys; 1299 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1300 Tys.push_back(getLLTForType(*Ty, *DL)); 1301 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1302 1303 // Mark exception register as live in. 1304 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1305 if (!ExceptionReg) 1306 return false; 1307 1308 MBB.addLiveIn(ExceptionReg); 1309 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP); 1310 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1311 1312 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1313 if (!SelectorReg) 1314 return false; 1315 1316 MBB.addLiveIn(SelectorReg); 1317 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1318 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1319 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1320 1321 return true; 1322 } 1323 1324 bool IRTranslator::translateAlloca(const User &U, 1325 MachineIRBuilder &MIRBuilder) { 1326 auto &AI = cast<AllocaInst>(U); 1327 1328 if (AI.isSwiftError()) 1329 return false; 1330 1331 if (AI.isStaticAlloca()) { 1332 unsigned Res = getOrCreateVReg(AI); 1333 int FI = getOrCreateFrameIndex(AI); 1334 MIRBuilder.buildFrameIndex(Res, FI); 1335 return true; 1336 } 1337 1338 // FIXME: support stack probing for Windows. 1339 if (MF->getTarget().getTargetTriple().isOSWindows()) 1340 return false; 1341 1342 // Now we're in the harder dynamic case. 1343 Type *Ty = AI.getAllocatedType(); 1344 unsigned Align = 1345 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1346 1347 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 1348 1349 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1350 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1351 if (MRI->getType(NumElts) != IntPtrTy) { 1352 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1353 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1354 NumElts = ExtElts; 1355 } 1356 1357 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1358 unsigned TySize = 1359 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1360 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1361 1362 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1363 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1364 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1365 1366 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1367 MIRBuilder.buildCopy(SPTmp, SPReg); 1368 1369 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1370 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1371 1372 // Handle alignment. We have to realign if the allocation granule was smaller 1373 // than stack alignment, or the specific alloca requires more than stack 1374 // alignment. 1375 unsigned StackAlign = 1376 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1377 Align = std::max(Align, StackAlign); 1378 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1379 // Round the size of the allocation up to the stack alignment size 1380 // by add SA-1 to the size. This doesn't overflow because we're computing 1381 // an address inside an alloca. 1382 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1383 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1384 AllocTmp = AlignedAlloc; 1385 } 1386 1387 MIRBuilder.buildCopy(SPReg, AllocTmp); 1388 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1389 1390 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1391 assert(MF->getFrameInfo().hasVarSizedObjects()); 1392 return true; 1393 } 1394 1395 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1396 // FIXME: We may need more info about the type. Because of how LLT works, 1397 // we're completely discarding the i64/double distinction here (amongst 1398 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1399 // anyway but that's not guaranteed. 1400 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1401 .addDef(getOrCreateVReg(U)) 1402 .addUse(getOrCreateVReg(*U.getOperand(0))) 1403 .addImm(DL->getABITypeAlignment(U.getType())); 1404 return true; 1405 } 1406 1407 bool IRTranslator::translateInsertElement(const User &U, 1408 MachineIRBuilder &MIRBuilder) { 1409 // If it is a <1 x Ty> vector, use the scalar as it is 1410 // not a legal vector type in LLT. 1411 if (U.getType()->getVectorNumElements() == 1) { 1412 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1413 auto &Regs = *VMap.getVRegs(U); 1414 if (Regs.empty()) { 1415 Regs.push_back(Elt); 1416 VMap.getOffsets(U)->push_back(0); 1417 } else { 1418 MIRBuilder.buildCopy(Regs[0], Elt); 1419 } 1420 return true; 1421 } 1422 1423 unsigned Res = getOrCreateVReg(U); 1424 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1425 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1426 unsigned Idx = getOrCreateVReg(*U.getOperand(2)); 1427 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1428 return true; 1429 } 1430 1431 bool IRTranslator::translateExtractElement(const User &U, 1432 MachineIRBuilder &MIRBuilder) { 1433 // If it is a <1 x Ty> vector, use the scalar as it is 1434 // not a legal vector type in LLT. 1435 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1436 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1437 auto &Regs = *VMap.getVRegs(U); 1438 if (Regs.empty()) { 1439 Regs.push_back(Elt); 1440 VMap.getOffsets(U)->push_back(0); 1441 } else { 1442 MIRBuilder.buildCopy(Regs[0], Elt); 1443 } 1444 return true; 1445 } 1446 unsigned Res = getOrCreateVReg(U); 1447 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1448 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1449 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1450 unsigned Idx = 0; 1451 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1452 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1453 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1454 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1455 Idx = getOrCreateVReg(*NewIdxCI); 1456 } 1457 } 1458 if (!Idx) 1459 Idx = getOrCreateVReg(*U.getOperand(1)); 1460 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1461 const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1462 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); 1463 } 1464 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1465 return true; 1466 } 1467 1468 bool IRTranslator::translateShuffleVector(const User &U, 1469 MachineIRBuilder &MIRBuilder) { 1470 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1471 .addDef(getOrCreateVReg(U)) 1472 .addUse(getOrCreateVReg(*U.getOperand(0))) 1473 .addUse(getOrCreateVReg(*U.getOperand(1))) 1474 .addUse(getOrCreateVReg(*U.getOperand(2))); 1475 return true; 1476 } 1477 1478 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1479 const PHINode &PI = cast<PHINode>(U); 1480 1481 SmallVector<MachineInstr *, 4> Insts; 1482 for (auto Reg : getOrCreateVRegs(PI)) { 1483 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1484 Insts.push_back(MIB.getInstr()); 1485 } 1486 1487 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1488 return true; 1489 } 1490 1491 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1492 MachineIRBuilder &MIRBuilder) { 1493 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1494 1495 if (I.isWeak()) 1496 return false; 1497 1498 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1499 : MachineMemOperand::MONone; 1500 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1501 1502 Type *ResType = I.getType(); 1503 Type *ValType = ResType->Type::getStructElementType(0); 1504 1505 auto Res = getOrCreateVRegs(I); 1506 unsigned OldValRes = Res[0]; 1507 unsigned SuccessRes = Res[1]; 1508 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1509 unsigned Cmp = getOrCreateVReg(*I.getCompareOperand()); 1510 unsigned NewVal = getOrCreateVReg(*I.getNewValOperand()); 1511 1512 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1513 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1514 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1515 Flags, DL->getTypeStoreSize(ValType), 1516 getMemOpAlignment(I), AAMDNodes(), nullptr, 1517 I.getSyncScopeID(), I.getSuccessOrdering(), 1518 I.getFailureOrdering())); 1519 return true; 1520 } 1521 1522 bool IRTranslator::translateAtomicRMW(const User &U, 1523 MachineIRBuilder &MIRBuilder) { 1524 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1525 1526 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1527 : MachineMemOperand::MONone; 1528 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1529 1530 Type *ResType = I.getType(); 1531 1532 unsigned Res = getOrCreateVReg(I); 1533 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1534 unsigned Val = getOrCreateVReg(*I.getValOperand()); 1535 1536 unsigned Opcode = 0; 1537 switch (I.getOperation()) { 1538 default: 1539 llvm_unreachable("Unknown atomicrmw op"); 1540 return false; 1541 case AtomicRMWInst::Xchg: 1542 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 1543 break; 1544 case AtomicRMWInst::Add: 1545 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 1546 break; 1547 case AtomicRMWInst::Sub: 1548 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 1549 break; 1550 case AtomicRMWInst::And: 1551 Opcode = TargetOpcode::G_ATOMICRMW_AND; 1552 break; 1553 case AtomicRMWInst::Nand: 1554 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 1555 break; 1556 case AtomicRMWInst::Or: 1557 Opcode = TargetOpcode::G_ATOMICRMW_OR; 1558 break; 1559 case AtomicRMWInst::Xor: 1560 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 1561 break; 1562 case AtomicRMWInst::Max: 1563 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 1564 break; 1565 case AtomicRMWInst::Min: 1566 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 1567 break; 1568 case AtomicRMWInst::UMax: 1569 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 1570 break; 1571 case AtomicRMWInst::UMin: 1572 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 1573 break; 1574 } 1575 1576 MIRBuilder.buildAtomicRMW( 1577 Opcode, Res, Addr, Val, 1578 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1579 Flags, DL->getTypeStoreSize(ResType), 1580 getMemOpAlignment(I), AAMDNodes(), nullptr, 1581 I.getSyncScopeID(), I.getOrdering())); 1582 return true; 1583 } 1584 1585 void IRTranslator::finishPendingPhis() { 1586 #ifndef NDEBUG 1587 DILocationVerifier Verifier; 1588 GISelObserverWrapper WrapperObserver(&Verifier); 1589 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 1590 #endif // ifndef NDEBUG 1591 for (auto &Phi : PendingPHIs) { 1592 const PHINode *PI = Phi.first; 1593 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 1594 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 1595 #ifndef NDEBUG 1596 Verifier.setCurrentInst(PI); 1597 #endif // ifndef NDEBUG 1598 1599 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1600 // won't create extra control flow here, otherwise we need to find the 1601 // dominating predecessor here (or perhaps force the weirder IRTranslators 1602 // to provide a simple boundary). 1603 SmallSet<const BasicBlock *, 4> HandledPreds; 1604 1605 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1606 auto IRPred = PI->getIncomingBlock(i); 1607 if (HandledPreds.count(IRPred)) 1608 continue; 1609 1610 HandledPreds.insert(IRPred); 1611 ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 1612 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1613 assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) && 1614 "incorrect CFG at MachineBasicBlock level"); 1615 for (unsigned j = 0; j < ValRegs.size(); ++j) { 1616 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 1617 MIB.addUse(ValRegs[j]); 1618 MIB.addMBB(Pred); 1619 } 1620 } 1621 } 1622 } 1623 } 1624 1625 bool IRTranslator::valueIsSplit(const Value &V, 1626 SmallVectorImpl<uint64_t> *Offsets) { 1627 SmallVector<LLT, 4> SplitTys; 1628 if (Offsets && !Offsets->empty()) 1629 Offsets->clear(); 1630 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 1631 return SplitTys.size() > 1; 1632 } 1633 1634 bool IRTranslator::translate(const Instruction &Inst) { 1635 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 1636 EntryBuilder->setDebugLoc(Inst.getDebugLoc()); 1637 switch(Inst.getOpcode()) { 1638 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1639 case Instruction::OPCODE: \ 1640 return translate##OPCODE(Inst, *CurBuilder.get()); 1641 #include "llvm/IR/Instruction.def" 1642 default: 1643 return false; 1644 } 1645 } 1646 1647 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1648 if (auto CI = dyn_cast<ConstantInt>(&C)) 1649 EntryBuilder->buildConstant(Reg, *CI); 1650 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1651 EntryBuilder->buildFConstant(Reg, *CF); 1652 else if (isa<UndefValue>(C)) 1653 EntryBuilder->buildUndef(Reg); 1654 else if (isa<ConstantPointerNull>(C)) { 1655 // As we are trying to build a constant val of 0 into a pointer, 1656 // insert a cast to make them correct with respect to types. 1657 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 1658 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 1659 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 1660 unsigned ZeroReg = getOrCreateVReg(*ZeroVal); 1661 EntryBuilder->buildCast(Reg, ZeroReg); 1662 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 1663 EntryBuilder->buildGlobalValue(Reg, GV); 1664 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1665 if (!CAZ->getType()->isVectorTy()) 1666 return false; 1667 // Return the scalar if it is a <1 x Ty> vector. 1668 if (CAZ->getNumElements() == 1) 1669 return translate(*CAZ->getElementValue(0u), Reg); 1670 SmallVector<unsigned, 4> Ops; 1671 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1672 Constant &Elt = *CAZ->getElementValue(i); 1673 Ops.push_back(getOrCreateVReg(Elt)); 1674 } 1675 EntryBuilder->buildBuildVector(Reg, Ops); 1676 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1677 // Return the scalar if it is a <1 x Ty> vector. 1678 if (CV->getNumElements() == 1) 1679 return translate(*CV->getElementAsConstant(0), Reg); 1680 SmallVector<unsigned, 4> Ops; 1681 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1682 Constant &Elt = *CV->getElementAsConstant(i); 1683 Ops.push_back(getOrCreateVReg(Elt)); 1684 } 1685 EntryBuilder->buildBuildVector(Reg, Ops); 1686 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1687 switch(CE->getOpcode()) { 1688 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1689 case Instruction::OPCODE: \ 1690 return translate##OPCODE(*CE, *EntryBuilder.get()); 1691 #include "llvm/IR/Instruction.def" 1692 default: 1693 return false; 1694 } 1695 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 1696 if (CV->getNumOperands() == 1) 1697 return translate(*CV->getOperand(0), Reg); 1698 SmallVector<unsigned, 4> Ops; 1699 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 1700 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 1701 } 1702 EntryBuilder->buildBuildVector(Reg, Ops); 1703 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 1704 EntryBuilder->buildBlockAddress(Reg, BA); 1705 } else 1706 return false; 1707 1708 return true; 1709 } 1710 1711 void IRTranslator::finalizeFunction() { 1712 // Release the memory used by the different maps we 1713 // needed during the translation. 1714 PendingPHIs.clear(); 1715 VMap.reset(); 1716 FrameIndices.clear(); 1717 MachinePreds.clear(); 1718 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 1719 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 1720 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 1721 EntryBuilder.reset(); 1722 CurBuilder.reset(); 1723 } 1724 1725 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1726 MF = &CurMF; 1727 const Function &F = MF->getFunction(); 1728 if (F.empty()) 1729 return false; 1730 GISelCSEAnalysisWrapper &Wrapper = 1731 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 1732 // Set the CSEConfig and run the analysis. 1733 GISelCSEInfo *CSEInfo = nullptr; 1734 TPC = &getAnalysis<TargetPassConfig>(); 1735 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 1736 ? EnableCSEInIRTranslator 1737 : TPC->isGISelCSEEnabled(); 1738 1739 if (EnableCSE) { 1740 EntryBuilder = make_unique<CSEMIRBuilder>(CurMF); 1741 std::unique_ptr<CSEConfig> Config = make_unique<CSEConfig>(); 1742 CSEInfo = &Wrapper.get(std::move(Config)); 1743 EntryBuilder->setCSEInfo(CSEInfo); 1744 CurBuilder = make_unique<CSEMIRBuilder>(CurMF); 1745 CurBuilder->setCSEInfo(CSEInfo); 1746 } else { 1747 EntryBuilder = make_unique<MachineIRBuilder>(); 1748 CurBuilder = make_unique<MachineIRBuilder>(); 1749 } 1750 CLI = MF->getSubtarget().getCallLowering(); 1751 CurBuilder->setMF(*MF); 1752 EntryBuilder->setMF(*MF); 1753 MRI = &MF->getRegInfo(); 1754 DL = &F.getParent()->getDataLayout(); 1755 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 1756 1757 assert(PendingPHIs.empty() && "stale PHIs"); 1758 1759 if (!DL->isLittleEndian()) { 1760 // Currently we don't properly handle big endian code. 1761 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1762 F.getSubprogram(), &F.getEntryBlock()); 1763 R << "unable to translate in big endian mode"; 1764 reportTranslationError(*MF, *TPC, *ORE, R); 1765 } 1766 1767 // Release the per-function state when we return, whether we succeeded or not. 1768 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1769 1770 // Setup a separate basic-block for the arguments and constants 1771 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1772 MF->push_back(EntryBB); 1773 EntryBuilder->setMBB(*EntryBB); 1774 1775 // Create all blocks, in IR order, to preserve the layout. 1776 for (const BasicBlock &BB: F) { 1777 auto *&MBB = BBToMBB[&BB]; 1778 1779 MBB = MF->CreateMachineBasicBlock(&BB); 1780 MF->push_back(MBB); 1781 1782 if (BB.hasAddressTaken()) 1783 MBB->setHasAddressTaken(); 1784 } 1785 1786 // Make our arguments/constants entry block fallthrough to the IR entry block. 1787 EntryBB->addSuccessor(&getMBB(F.front())); 1788 1789 // Lower the actual args into this basic block. 1790 SmallVector<unsigned, 8> VRegArgs; 1791 for (const Argument &Arg: F.args()) { 1792 if (DL->getTypeStoreSize(Arg.getType()) == 0) 1793 continue; // Don't handle zero sized types. 1794 VRegArgs.push_back( 1795 MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL))); 1796 } 1797 1798 // We don't currently support translating swifterror or swiftself functions. 1799 for (auto &Arg : F.args()) { 1800 if (Arg.hasSwiftErrorAttr() || Arg.hasSwiftSelfAttr()) { 1801 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1802 F.getSubprogram(), &F.getEntryBlock()); 1803 R << "unable to lower arguments due to swifterror/swiftself: " 1804 << ore::NV("Prototype", F.getType()); 1805 reportTranslationError(*MF, *TPC, *ORE, R); 1806 return false; 1807 } 1808 } 1809 1810 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 1811 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1812 F.getSubprogram(), &F.getEntryBlock()); 1813 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1814 reportTranslationError(*MF, *TPC, *ORE, R); 1815 return false; 1816 } 1817 1818 auto ArgIt = F.arg_begin(); 1819 for (auto &VArg : VRegArgs) { 1820 // If the argument is an unsplit scalar then don't use unpackRegs to avoid 1821 // creating redundant copies. 1822 if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) { 1823 auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt)); 1824 assert(VRegs.empty() && "VRegs already populated?"); 1825 VRegs.push_back(VArg); 1826 } else { 1827 unpackRegs(*ArgIt, VArg, *EntryBuilder.get()); 1828 } 1829 ArgIt++; 1830 } 1831 1832 // Need to visit defs before uses when translating instructions. 1833 GISelObserverWrapper WrapperObserver; 1834 if (EnableCSE && CSEInfo) 1835 WrapperObserver.addObserver(CSEInfo); 1836 { 1837 ReversePostOrderTraversal<const Function *> RPOT(&F); 1838 #ifndef NDEBUG 1839 DILocationVerifier Verifier; 1840 WrapperObserver.addObserver(&Verifier); 1841 #endif // ifndef NDEBUG 1842 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 1843 for (const BasicBlock *BB : RPOT) { 1844 MachineBasicBlock &MBB = getMBB(*BB); 1845 // Set the insertion point of all the following translations to 1846 // the end of this basic block. 1847 CurBuilder->setMBB(MBB); 1848 1849 for (const Instruction &Inst : *BB) { 1850 #ifndef NDEBUG 1851 Verifier.setCurrentInst(&Inst); 1852 #endif // ifndef NDEBUG 1853 if (translate(Inst)) 1854 continue; 1855 1856 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1857 Inst.getDebugLoc(), BB); 1858 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 1859 1860 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 1861 std::string InstStrStorage; 1862 raw_string_ostream InstStr(InstStrStorage); 1863 InstStr << Inst; 1864 1865 R << ": '" << InstStr.str() << "'"; 1866 } 1867 1868 reportTranslationError(*MF, *TPC, *ORE, R); 1869 return false; 1870 } 1871 } 1872 #ifndef NDEBUG 1873 WrapperObserver.removeObserver(&Verifier); 1874 #endif 1875 } 1876 1877 finishPendingPhis(); 1878 1879 // Merge the argument lowering and constants block with its single 1880 // successor, the LLVM-IR entry block. We want the basic block to 1881 // be maximal. 1882 assert(EntryBB->succ_size() == 1 && 1883 "Custom BB used for lowering should have only one successor"); 1884 // Get the successor of the current entry block. 1885 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1886 assert(NewEntryBB.pred_size() == 1 && 1887 "LLVM-IR entry block has a predecessor!?"); 1888 // Move all the instruction from the current entry block to the 1889 // new entry block. 1890 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1891 EntryBB->end()); 1892 1893 // Update the live-in information for the new entry block. 1894 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1895 NewEntryBB.addLiveIn(LiveIn); 1896 NewEntryBB.sortUniqueLiveIns(); 1897 1898 // Get rid of the now empty basic block. 1899 EntryBB->removeSuccessor(&NewEntryBB); 1900 MF->remove(EntryBB); 1901 MF->DeleteMachineBasicBlock(EntryBB); 1902 1903 assert(&MF->front() == &NewEntryBB && 1904 "New entry wasn't next in the list of basic block!"); 1905 1906 // Initialize stack protector information. 1907 StackProtector &SP = getAnalysis<StackProtector>(); 1908 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1909 1910 return false; 1911 } 1912