1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
26 #include "llvm/CodeGen/LowLevelType.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/StackProtector.h"
36 #include "llvm/CodeGen/SwitchLoweringUtils.h"
37 #include "llvm/CodeGen/TargetFrameLowering.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/CFG.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DebugInfo.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/DiagnosticInfo.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/InlineAsm.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/MC/MCContext.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/LowLevelTypeImpl.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Target/TargetIntrinsicInfo.h"
75 #include "llvm/Target/TargetMachine.h"
76 #include "llvm/Transforms/Utils/MemoryOpRemark.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <string>
83 #include <utility>
84 #include <vector>
85 
86 #define DEBUG_TYPE "irtranslator"
87 
88 using namespace llvm;
89 
90 static cl::opt<bool>
91     EnableCSEInIRTranslator("enable-cse-in-irtranslator",
92                             cl::desc("Should enable CSE in irtranslator"),
93                             cl::Optional, cl::init(false));
94 char IRTranslator::ID = 0;
95 
96 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
97                 false, false)
98 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
99 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
100 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
101 INITIALIZE_PASS_DEPENDENCY(StackProtector)
102 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
103 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
104                 false, false)
105 
106 static void reportTranslationError(MachineFunction &MF,
107                                    const TargetPassConfig &TPC,
108                                    OptimizationRemarkEmitter &ORE,
109                                    OptimizationRemarkMissed &R) {
110   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
111 
112   // Print the function name explicitly if we don't have a debug location (which
113   // makes the diagnostic less useful) or if we're going to emit a raw error.
114   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
115     R << (" (in function: " + MF.getName() + ")").str();
116 
117   if (TPC.isGlobalISelAbortEnabled())
118     report_fatal_error(R.getMsg());
119   else
120     ORE.emit(R);
121 }
122 
123 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel)
124     : MachineFunctionPass(ID), OptLevel(optlevel) {}
125 
126 #ifndef NDEBUG
127 namespace {
128 /// Verify that every instruction created has the same DILocation as the
129 /// instruction being translated.
130 class DILocationVerifier : public GISelChangeObserver {
131   const Instruction *CurrInst = nullptr;
132 
133 public:
134   DILocationVerifier() = default;
135   ~DILocationVerifier() = default;
136 
137   const Instruction *getCurrentInst() const { return CurrInst; }
138   void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
139 
140   void erasingInstr(MachineInstr &MI) override {}
141   void changingInstr(MachineInstr &MI) override {}
142   void changedInstr(MachineInstr &MI) override {}
143 
144   void createdInstr(MachineInstr &MI) override {
145     assert(getCurrentInst() && "Inserted instruction without a current MI");
146 
147     // Only print the check message if we're actually checking it.
148 #ifndef NDEBUG
149     LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
150                       << " was copied to " << MI);
151 #endif
152     // We allow insts in the entry block to have a debug loc line of 0 because
153     // they could have originated from constants, and we don't want a jumpy
154     // debug experience.
155     assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
156             MI.getDebugLoc().getLine() == 0) &&
157            "Line info was not transferred to all instructions");
158   }
159 };
160 } // namespace
161 #endif // ifndef NDEBUG
162 
163 
164 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
165   AU.addRequired<StackProtector>();
166   AU.addRequired<TargetPassConfig>();
167   AU.addRequired<GISelCSEAnalysisWrapperPass>();
168   if (OptLevel != CodeGenOpt::None)
169     AU.addRequired<BranchProbabilityInfoWrapperPass>();
170   AU.addRequired<TargetLibraryInfoWrapperPass>();
171   AU.addPreserved<TargetLibraryInfoWrapperPass>();
172   getSelectionDAGFallbackAnalysisUsage(AU);
173   MachineFunctionPass::getAnalysisUsage(AU);
174 }
175 
176 IRTranslator::ValueToVRegInfo::VRegListT &
177 IRTranslator::allocateVRegs(const Value &Val) {
178   auto VRegsIt = VMap.findVRegs(Val);
179   if (VRegsIt != VMap.vregs_end())
180     return *VRegsIt->second;
181   auto *Regs = VMap.getVRegs(Val);
182   auto *Offsets = VMap.getOffsets(Val);
183   SmallVector<LLT, 4> SplitTys;
184   computeValueLLTs(*DL, *Val.getType(), SplitTys,
185                    Offsets->empty() ? Offsets : nullptr);
186   for (unsigned i = 0; i < SplitTys.size(); ++i)
187     Regs->push_back(0);
188   return *Regs;
189 }
190 
191 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
192   auto VRegsIt = VMap.findVRegs(Val);
193   if (VRegsIt != VMap.vregs_end())
194     return *VRegsIt->second;
195 
196   if (Val.getType()->isVoidTy())
197     return *VMap.getVRegs(Val);
198 
199   // Create entry for this type.
200   auto *VRegs = VMap.getVRegs(Val);
201   auto *Offsets = VMap.getOffsets(Val);
202 
203   assert(Val.getType()->isSized() &&
204          "Don't know how to create an empty vreg");
205 
206   SmallVector<LLT, 4> SplitTys;
207   computeValueLLTs(*DL, *Val.getType(), SplitTys,
208                    Offsets->empty() ? Offsets : nullptr);
209 
210   if (!isa<Constant>(Val)) {
211     for (auto Ty : SplitTys)
212       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
213     return *VRegs;
214   }
215 
216   if (Val.getType()->isAggregateType()) {
217     // UndefValue, ConstantAggregateZero
218     auto &C = cast<Constant>(Val);
219     unsigned Idx = 0;
220     while (auto Elt = C.getAggregateElement(Idx++)) {
221       auto EltRegs = getOrCreateVRegs(*Elt);
222       llvm::copy(EltRegs, std::back_inserter(*VRegs));
223     }
224   } else {
225     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
226     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
227     bool Success = translate(cast<Constant>(Val), VRegs->front());
228     if (!Success) {
229       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
230                                  MF->getFunction().getSubprogram(),
231                                  &MF->getFunction().getEntryBlock());
232       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
233       reportTranslationError(*MF, *TPC, *ORE, R);
234       return *VRegs;
235     }
236   }
237 
238   return *VRegs;
239 }
240 
241 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
242   auto MapEntry = FrameIndices.find(&AI);
243   if (MapEntry != FrameIndices.end())
244     return MapEntry->second;
245 
246   uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
247   uint64_t Size =
248       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
249 
250   // Always allocate at least one byte.
251   Size = std::max<uint64_t>(Size, 1u);
252 
253   int &FI = FrameIndices[&AI];
254   FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
255   return FI;
256 }
257 
258 Align IRTranslator::getMemOpAlign(const Instruction &I) {
259   if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
260     return SI->getAlign();
261   if (const LoadInst *LI = dyn_cast<LoadInst>(&I))
262     return LI->getAlign();
263   if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I))
264     return AI->getAlign();
265   if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I))
266     return AI->getAlign();
267 
268   OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
269   R << "unable to translate memop: " << ore::NV("Opcode", &I);
270   reportTranslationError(*MF, *TPC, *ORE, R);
271   return Align(1);
272 }
273 
274 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
275   MachineBasicBlock *&MBB = BBToMBB[&BB];
276   assert(MBB && "BasicBlock was not encountered before");
277   return *MBB;
278 }
279 
280 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
281   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
282   MachinePreds[Edge].push_back(NewPred);
283 }
284 
285 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
286                                      MachineIRBuilder &MIRBuilder) {
287   // Get or create a virtual register for each value.
288   // Unless the value is a Constant => loadimm cst?
289   // or inline constant each time?
290   // Creation of a virtual register needs to have a size.
291   Register Op0 = getOrCreateVReg(*U.getOperand(0));
292   Register Op1 = getOrCreateVReg(*U.getOperand(1));
293   Register Res = getOrCreateVReg(U);
294   uint16_t Flags = 0;
295   if (isa<Instruction>(U)) {
296     const Instruction &I = cast<Instruction>(U);
297     Flags = MachineInstr::copyFlagsFromInstruction(I);
298   }
299 
300   MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
301   return true;
302 }
303 
304 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
305                                     MachineIRBuilder &MIRBuilder) {
306   Register Op0 = getOrCreateVReg(*U.getOperand(0));
307   Register Res = getOrCreateVReg(U);
308   uint16_t Flags = 0;
309   if (isa<Instruction>(U)) {
310     const Instruction &I = cast<Instruction>(U);
311     Flags = MachineInstr::copyFlagsFromInstruction(I);
312   }
313   MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
314   return true;
315 }
316 
317 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
318   return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
319 }
320 
321 bool IRTranslator::translateCompare(const User &U,
322                                     MachineIRBuilder &MIRBuilder) {
323   auto *CI = dyn_cast<CmpInst>(&U);
324   Register Op0 = getOrCreateVReg(*U.getOperand(0));
325   Register Op1 = getOrCreateVReg(*U.getOperand(1));
326   Register Res = getOrCreateVReg(U);
327   CmpInst::Predicate Pred =
328       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
329                                     cast<ConstantExpr>(U).getPredicate());
330   if (CmpInst::isIntPredicate(Pred))
331     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
332   else if (Pred == CmpInst::FCMP_FALSE)
333     MIRBuilder.buildCopy(
334         Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
335   else if (Pred == CmpInst::FCMP_TRUE)
336     MIRBuilder.buildCopy(
337         Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
338   else {
339     assert(CI && "Instruction should be CmpInst");
340     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1,
341                          MachineInstr::copyFlagsFromInstruction(*CI));
342   }
343 
344   return true;
345 }
346 
347 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
348   const ReturnInst &RI = cast<ReturnInst>(U);
349   const Value *Ret = RI.getReturnValue();
350   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
351     Ret = nullptr;
352 
353   ArrayRef<Register> VRegs;
354   if (Ret)
355     VRegs = getOrCreateVRegs(*Ret);
356 
357   Register SwiftErrorVReg = 0;
358   if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
359     SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
360         &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
361   }
362 
363   // The target may mess up with the insertion point, but
364   // this is not important as a return is the last instruction
365   // of the block anyway.
366   return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
367 }
368 
369 void IRTranslator::emitBranchForMergedCondition(
370     const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
371     MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
372     BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
373   // If the leaf of the tree is a comparison, merge the condition into
374   // the caseblock.
375   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
376     CmpInst::Predicate Condition;
377     if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
378       Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
379     } else {
380       const FCmpInst *FC = cast<FCmpInst>(Cond);
381       Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
382     }
383 
384     SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
385                            BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
386                            CurBuilder->getDebugLoc(), TProb, FProb);
387     SL->SwitchCases.push_back(CB);
388     return;
389   }
390 
391   // Create a CaseBlock record representing this branch.
392   CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
393   SwitchCG::CaseBlock CB(
394       Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
395       nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
396   SL->SwitchCases.push_back(CB);
397 }
398 
399 static bool isValInBlock(const Value *V, const BasicBlock *BB) {
400   if (const Instruction *I = dyn_cast<Instruction>(V))
401     return I->getParent() == BB;
402   return true;
403 }
404 
405 void IRTranslator::findMergedConditions(
406     const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
407     MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
408     Instruction::BinaryOps Opc, BranchProbability TProb,
409     BranchProbability FProb, bool InvertCond) {
410   using namespace PatternMatch;
411   assert((Opc == Instruction::And || Opc == Instruction::Or) &&
412          "Expected Opc to be AND/OR");
413   // Skip over not part of the tree and remember to invert op and operands at
414   // next level.
415   Value *NotCond;
416   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
417       isValInBlock(NotCond, CurBB->getBasicBlock())) {
418     findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
419                          !InvertCond);
420     return;
421   }
422 
423   const Instruction *BOp = dyn_cast<Instruction>(Cond);
424   const Value *BOpOp0, *BOpOp1;
425   // Compute the effective opcode for Cond, taking into account whether it needs
426   // to be inverted, e.g.
427   //   and (not (or A, B)), C
428   // gets lowered as
429   //   and (and (not A, not B), C)
430   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
431   if (BOp) {
432     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
433                ? Instruction::And
434                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
435                       ? Instruction::Or
436                       : (Instruction::BinaryOps)0);
437     if (InvertCond) {
438       if (BOpc == Instruction::And)
439         BOpc = Instruction::Or;
440       else if (BOpc == Instruction::Or)
441         BOpc = Instruction::And;
442     }
443   }
444 
445   // If this node is not part of the or/and tree, emit it as a branch.
446   // Note that all nodes in the tree should have same opcode.
447   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
448   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
449       !isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
450       !isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
451     emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
452                                  InvertCond);
453     return;
454   }
455 
456   //  Create TmpBB after CurBB.
457   MachineFunction::iterator BBI(CurBB);
458   MachineBasicBlock *TmpBB =
459       MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
460   CurBB->getParent()->insert(++BBI, TmpBB);
461 
462   if (Opc == Instruction::Or) {
463     // Codegen X | Y as:
464     // BB1:
465     //   jmp_if_X TBB
466     //   jmp TmpBB
467     // TmpBB:
468     //   jmp_if_Y TBB
469     //   jmp FBB
470     //
471 
472     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
473     // The requirement is that
474     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
475     //     = TrueProb for original BB.
476     // Assuming the original probabilities are A and B, one choice is to set
477     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
478     // A/(1+B) and 2B/(1+B). This choice assumes that
479     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
480     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
481     // TmpBB, but the math is more complicated.
482 
483     auto NewTrueProb = TProb / 2;
484     auto NewFalseProb = TProb / 2 + FProb;
485     // Emit the LHS condition.
486     findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
487                          NewFalseProb, InvertCond);
488 
489     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
490     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
491     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
492     // Emit the RHS condition into TmpBB.
493     findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
494                          Probs[1], InvertCond);
495   } else {
496     assert(Opc == Instruction::And && "Unknown merge op!");
497     // Codegen X & Y as:
498     // BB1:
499     //   jmp_if_X TmpBB
500     //   jmp FBB
501     // TmpBB:
502     //   jmp_if_Y TBB
503     //   jmp FBB
504     //
505     //  This requires creation of TmpBB after CurBB.
506 
507     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
508     // The requirement is that
509     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
510     //     = FalseProb for original BB.
511     // Assuming the original probabilities are A and B, one choice is to set
512     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
513     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
514     // TrueProb for BB1 * FalseProb for TmpBB.
515 
516     auto NewTrueProb = TProb + FProb / 2;
517     auto NewFalseProb = FProb / 2;
518     // Emit the LHS condition.
519     findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
520                          NewFalseProb, InvertCond);
521 
522     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
523     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
524     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
525     // Emit the RHS condition into TmpBB.
526     findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
527                          Probs[1], InvertCond);
528   }
529 }
530 
531 bool IRTranslator::shouldEmitAsBranches(
532     const std::vector<SwitchCG::CaseBlock> &Cases) {
533   // For multiple cases, it's better to emit as branches.
534   if (Cases.size() != 2)
535     return true;
536 
537   // If this is two comparisons of the same values or'd or and'd together, they
538   // will get folded into a single comparison, so don't emit two blocks.
539   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
540        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
541       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
542        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
543     return false;
544   }
545 
546   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
547   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
548   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
549       Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
550       isa<Constant>(Cases[0].CmpRHS) &&
551       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
552     if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
553         Cases[0].TrueBB == Cases[1].ThisBB)
554       return false;
555     if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
556         Cases[0].FalseBB == Cases[1].ThisBB)
557       return false;
558   }
559 
560   return true;
561 }
562 
563 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
564   const BranchInst &BrInst = cast<BranchInst>(U);
565   auto &CurMBB = MIRBuilder.getMBB();
566   auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
567 
568   if (BrInst.isUnconditional()) {
569     // If the unconditional target is the layout successor, fallthrough.
570     if (OptLevel == CodeGenOpt::None || !CurMBB.isLayoutSuccessor(Succ0MBB))
571       MIRBuilder.buildBr(*Succ0MBB);
572 
573     // Link successors.
574     for (const BasicBlock *Succ : successors(&BrInst))
575       CurMBB.addSuccessor(&getMBB(*Succ));
576     return true;
577   }
578 
579   // If this condition is one of the special cases we handle, do special stuff
580   // now.
581   const Value *CondVal = BrInst.getCondition();
582   MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
583 
584   const auto &TLI = *MF->getSubtarget().getTargetLowering();
585 
586   // If this is a series of conditions that are or'd or and'd together, emit
587   // this as a sequence of branches instead of setcc's with and/or operations.
588   // As long as jumps are not expensive (exceptions for multi-use logic ops,
589   // unpredictable branches, and vector extracts because those jumps are likely
590   // expensive for any target), this should improve performance.
591   // For example, instead of something like:
592   //     cmp A, B
593   //     C = seteq
594   //     cmp D, E
595   //     F = setle
596   //     or C, F
597   //     jnz foo
598   // Emit:
599   //     cmp A, B
600   //     je foo
601   //     cmp D, E
602   //     jle foo
603   using namespace PatternMatch;
604   const Instruction *CondI = dyn_cast<Instruction>(CondVal);
605   if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() &&
606       !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
607     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
608     Value *Vec;
609     const Value *BOp0, *BOp1;
610     if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
611       Opcode = Instruction::And;
612     else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
613       Opcode = Instruction::Or;
614 
615     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
616                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
617       findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
618                            getEdgeProbability(&CurMBB, Succ0MBB),
619                            getEdgeProbability(&CurMBB, Succ1MBB),
620                            /*InvertCond=*/false);
621       assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
622 
623       // Allow some cases to be rejected.
624       if (shouldEmitAsBranches(SL->SwitchCases)) {
625         // Emit the branch for this block.
626         emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
627         SL->SwitchCases.erase(SL->SwitchCases.begin());
628         return true;
629       }
630 
631       // Okay, we decided not to do this, remove any inserted MBB's and clear
632       // SwitchCases.
633       for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
634         MF->erase(SL->SwitchCases[I].ThisBB);
635 
636       SL->SwitchCases.clear();
637     }
638   }
639 
640   // Create a CaseBlock record representing this branch.
641   SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
642                          ConstantInt::getTrue(MF->getFunction().getContext()),
643                          nullptr, Succ0MBB, Succ1MBB, &CurMBB,
644                          CurBuilder->getDebugLoc());
645 
646   // Use emitSwitchCase to actually insert the fast branch sequence for this
647   // cond branch.
648   emitSwitchCase(CB, &CurMBB, *CurBuilder);
649   return true;
650 }
651 
652 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
653                                         MachineBasicBlock *Dst,
654                                         BranchProbability Prob) {
655   if (!FuncInfo.BPI) {
656     Src->addSuccessorWithoutProb(Dst);
657     return;
658   }
659   if (Prob.isUnknown())
660     Prob = getEdgeProbability(Src, Dst);
661   Src->addSuccessor(Dst, Prob);
662 }
663 
664 BranchProbability
665 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
666                                  const MachineBasicBlock *Dst) const {
667   const BasicBlock *SrcBB = Src->getBasicBlock();
668   const BasicBlock *DstBB = Dst->getBasicBlock();
669   if (!FuncInfo.BPI) {
670     // If BPI is not available, set the default probability as 1 / N, where N is
671     // the number of successors.
672     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
673     return BranchProbability(1, SuccSize);
674   }
675   return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
676 }
677 
678 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
679   using namespace SwitchCG;
680   // Extract cases from the switch.
681   const SwitchInst &SI = cast<SwitchInst>(U);
682   BranchProbabilityInfo *BPI = FuncInfo.BPI;
683   CaseClusterVector Clusters;
684   Clusters.reserve(SI.getNumCases());
685   for (auto &I : SI.cases()) {
686     MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
687     assert(Succ && "Could not find successor mbb in mapping");
688     const ConstantInt *CaseVal = I.getCaseValue();
689     BranchProbability Prob =
690         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
691             : BranchProbability(1, SI.getNumCases() + 1);
692     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
693   }
694 
695   MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
696 
697   // Cluster adjacent cases with the same destination. We do this at all
698   // optimization levels because it's cheap to do and will make codegen faster
699   // if there are many clusters.
700   sortAndRangeify(Clusters);
701 
702   MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
703 
704   // If there is only the default destination, jump there directly.
705   if (Clusters.empty()) {
706     SwitchMBB->addSuccessor(DefaultMBB);
707     if (DefaultMBB != SwitchMBB->getNextNode())
708       MIB.buildBr(*DefaultMBB);
709     return true;
710   }
711 
712   SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
713   SL->findBitTestClusters(Clusters, &SI);
714 
715   LLVM_DEBUG({
716     dbgs() << "Case clusters: ";
717     for (const CaseCluster &C : Clusters) {
718       if (C.Kind == CC_JumpTable)
719         dbgs() << "JT:";
720       if (C.Kind == CC_BitTests)
721         dbgs() << "BT:";
722 
723       C.Low->getValue().print(dbgs(), true);
724       if (C.Low != C.High) {
725         dbgs() << '-';
726         C.High->getValue().print(dbgs(), true);
727       }
728       dbgs() << ' ';
729     }
730     dbgs() << '\n';
731   });
732 
733   assert(!Clusters.empty());
734   SwitchWorkList WorkList;
735   CaseClusterIt First = Clusters.begin();
736   CaseClusterIt Last = Clusters.end() - 1;
737   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
738   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
739 
740   // FIXME: At the moment we don't do any splitting optimizations here like
741   // SelectionDAG does, so this worklist only has one entry.
742   while (!WorkList.empty()) {
743     SwitchWorkListItem W = WorkList.back();
744     WorkList.pop_back();
745     if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
746       return false;
747   }
748   return true;
749 }
750 
751 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
752                                  MachineBasicBlock *MBB) {
753   // Emit the code for the jump table
754   assert(JT.Reg != -1U && "Should lower JT Header first!");
755   MachineIRBuilder MIB(*MBB->getParent());
756   MIB.setMBB(*MBB);
757   MIB.setDebugLoc(CurBuilder->getDebugLoc());
758 
759   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
760   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
761 
762   auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
763   MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
764 }
765 
766 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
767                                        SwitchCG::JumpTableHeader &JTH,
768                                        MachineBasicBlock *HeaderBB) {
769   MachineIRBuilder MIB(*HeaderBB->getParent());
770   MIB.setMBB(*HeaderBB);
771   MIB.setDebugLoc(CurBuilder->getDebugLoc());
772 
773   const Value &SValue = *JTH.SValue;
774   // Subtract the lowest switch case value from the value being switched on.
775   const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
776   Register SwitchOpReg = getOrCreateVReg(SValue);
777   auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
778   auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
779 
780   // This value may be smaller or larger than the target's pointer type, and
781   // therefore require extension or truncating.
782   Type *PtrIRTy = SValue.getType()->getPointerTo();
783   const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
784   Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
785 
786   JT.Reg = Sub.getReg(0);
787 
788   if (JTH.OmitRangeCheck) {
789     if (JT.MBB != HeaderBB->getNextNode())
790       MIB.buildBr(*JT.MBB);
791     return true;
792   }
793 
794   // Emit the range check for the jump table, and branch to the default block
795   // for the switch statement if the value being switched on exceeds the
796   // largest case in the switch.
797   auto Cst = getOrCreateVReg(
798       *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
799   Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
800   auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
801 
802   auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
803 
804   // Avoid emitting unnecessary branches to the next block.
805   if (JT.MBB != HeaderBB->getNextNode())
806     BrCond = MIB.buildBr(*JT.MBB);
807   return true;
808 }
809 
810 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
811                                   MachineBasicBlock *SwitchBB,
812                                   MachineIRBuilder &MIB) {
813   Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
814   Register Cond;
815   DebugLoc OldDbgLoc = MIB.getDebugLoc();
816   MIB.setDebugLoc(CB.DbgLoc);
817   MIB.setMBB(*CB.ThisBB);
818 
819   if (CB.PredInfo.NoCmp) {
820     // Branch or fall through to TrueBB.
821     addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
822     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
823                       CB.ThisBB);
824     CB.ThisBB->normalizeSuccProbs();
825     if (CB.TrueBB != CB.ThisBB->getNextNode())
826       MIB.buildBr(*CB.TrueBB);
827     MIB.setDebugLoc(OldDbgLoc);
828     return;
829   }
830 
831   const LLT i1Ty = LLT::scalar(1);
832   // Build the compare.
833   if (!CB.CmpMHS) {
834     const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
835     // For conditional branch lowering, we might try to do something silly like
836     // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
837     // just re-use the existing condition vreg.
838     if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI &&
839         CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
840       Cond = CondLHS;
841     } else {
842       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
843       if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
844         Cond =
845             MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
846       else
847         Cond =
848             MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
849     }
850   } else {
851     assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
852            "Can only handle SLE ranges");
853 
854     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
855     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
856 
857     Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
858     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
859       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
860       Cond =
861           MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
862     } else {
863       const LLT CmpTy = MRI->getType(CmpOpReg);
864       auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
865       auto Diff = MIB.buildConstant(CmpTy, High - Low);
866       Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
867     }
868   }
869 
870   // Update successor info
871   addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
872 
873   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
874                     CB.ThisBB);
875 
876   // TrueBB and FalseBB are always different unless the incoming IR is
877   // degenerate. This only happens when running llc on weird IR.
878   if (CB.TrueBB != CB.FalseBB)
879     addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
880   CB.ThisBB->normalizeSuccProbs();
881 
882   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
883                     CB.ThisBB);
884 
885   MIB.buildBrCond(Cond, *CB.TrueBB);
886   MIB.buildBr(*CB.FalseBB);
887   MIB.setDebugLoc(OldDbgLoc);
888 }
889 
890 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
891                                           MachineBasicBlock *SwitchMBB,
892                                           MachineBasicBlock *CurMBB,
893                                           MachineBasicBlock *DefaultMBB,
894                                           MachineIRBuilder &MIB,
895                                           MachineFunction::iterator BBI,
896                                           BranchProbability UnhandledProbs,
897                                           SwitchCG::CaseClusterIt I,
898                                           MachineBasicBlock *Fallthrough,
899                                           bool FallthroughUnreachable) {
900   using namespace SwitchCG;
901   MachineFunction *CurMF = SwitchMBB->getParent();
902   // FIXME: Optimize away range check based on pivot comparisons.
903   JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
904   SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
905   BranchProbability DefaultProb = W.DefaultProb;
906 
907   // The jump block hasn't been inserted yet; insert it here.
908   MachineBasicBlock *JumpMBB = JT->MBB;
909   CurMF->insert(BBI, JumpMBB);
910 
911   // Since the jump table block is separate from the switch block, we need
912   // to keep track of it as a machine predecessor to the default block,
913   // otherwise we lose the phi edges.
914   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
915                     CurMBB);
916   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
917                     JumpMBB);
918 
919   auto JumpProb = I->Prob;
920   auto FallthroughProb = UnhandledProbs;
921 
922   // If the default statement is a target of the jump table, we evenly
923   // distribute the default probability to successors of CurMBB. Also
924   // update the probability on the edge from JumpMBB to Fallthrough.
925   for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
926                                         SE = JumpMBB->succ_end();
927        SI != SE; ++SI) {
928     if (*SI == DefaultMBB) {
929       JumpProb += DefaultProb / 2;
930       FallthroughProb -= DefaultProb / 2;
931       JumpMBB->setSuccProbability(SI, DefaultProb / 2);
932       JumpMBB->normalizeSuccProbs();
933     } else {
934       // Also record edges from the jump table block to it's successors.
935       addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
936                         JumpMBB);
937     }
938   }
939 
940   // Skip the range check if the fallthrough block is unreachable.
941   if (FallthroughUnreachable)
942     JTH->OmitRangeCheck = true;
943 
944   if (!JTH->OmitRangeCheck)
945     addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
946   addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
947   CurMBB->normalizeSuccProbs();
948 
949   // The jump table header will be inserted in our current block, do the
950   // range check, and fall through to our fallthrough block.
951   JTH->HeaderBB = CurMBB;
952   JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
953 
954   // If we're in the right place, emit the jump table header right now.
955   if (CurMBB == SwitchMBB) {
956     if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
957       return false;
958     JTH->Emitted = true;
959   }
960   return true;
961 }
962 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
963                                             Value *Cond,
964                                             MachineBasicBlock *Fallthrough,
965                                             bool FallthroughUnreachable,
966                                             BranchProbability UnhandledProbs,
967                                             MachineBasicBlock *CurMBB,
968                                             MachineIRBuilder &MIB,
969                                             MachineBasicBlock *SwitchMBB) {
970   using namespace SwitchCG;
971   const Value *RHS, *LHS, *MHS;
972   CmpInst::Predicate Pred;
973   if (I->Low == I->High) {
974     // Check Cond == I->Low.
975     Pred = CmpInst::ICMP_EQ;
976     LHS = Cond;
977     RHS = I->Low;
978     MHS = nullptr;
979   } else {
980     // Check I->Low <= Cond <= I->High.
981     Pred = CmpInst::ICMP_SLE;
982     LHS = I->Low;
983     MHS = Cond;
984     RHS = I->High;
985   }
986 
987   // If Fallthrough is unreachable, fold away the comparison.
988   // The false probability is the sum of all unhandled cases.
989   CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
990                CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
991 
992   emitSwitchCase(CB, SwitchMBB, MIB);
993   return true;
994 }
995 
996 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
997                                      MachineBasicBlock *SwitchBB) {
998   MachineIRBuilder &MIB = *CurBuilder;
999   MIB.setMBB(*SwitchBB);
1000 
1001   // Subtract the minimum value.
1002   Register SwitchOpReg = getOrCreateVReg(*B.SValue);
1003 
1004   LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1005   Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
1006   auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1007 
1008   // Ensure that the type will fit the mask value.
1009   LLT MaskTy = SwitchOpTy;
1010   for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1011     if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
1012       // Switch table case range are encoded into series of masks.
1013       // Just use pointer type, it's guaranteed to fit.
1014       MaskTy = LLT::scalar(64);
1015       break;
1016     }
1017   }
1018   Register SubReg = RangeSub.getReg(0);
1019   if (SwitchOpTy != MaskTy)
1020     SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
1021 
1022   B.RegVT = getMVTForLLT(MaskTy);
1023   B.Reg = SubReg;
1024 
1025   MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1026 
1027   if (!B.OmitRangeCheck)
1028     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
1029   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
1030 
1031   SwitchBB->normalizeSuccProbs();
1032 
1033   if (!B.OmitRangeCheck) {
1034     // Conditional branch to the default block.
1035     auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
1036     auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
1037                                   RangeSub, RangeCst);
1038     MIB.buildBrCond(RangeCmp, *B.Default);
1039   }
1040 
1041   // Avoid emitting unnecessary branches to the next block.
1042   if (MBB != SwitchBB->getNextNode())
1043     MIB.buildBr(*MBB);
1044 }
1045 
1046 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1047                                    MachineBasicBlock *NextMBB,
1048                                    BranchProbability BranchProbToNext,
1049                                    Register Reg, SwitchCG::BitTestCase &B,
1050                                    MachineBasicBlock *SwitchBB) {
1051   MachineIRBuilder &MIB = *CurBuilder;
1052   MIB.setMBB(*SwitchBB);
1053 
1054   LLT SwitchTy = getLLTForMVT(BB.RegVT);
1055   Register Cmp;
1056   unsigned PopCount = countPopulation(B.Mask);
1057   if (PopCount == 1) {
1058     // Testing for a single bit; just compare the shift count with what it
1059     // would need to be to shift a 1 bit in that position.
1060     auto MaskTrailingZeros =
1061         MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask));
1062     Cmp =
1063         MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
1064             .getReg(0);
1065   } else if (PopCount == BB.Range) {
1066     // There is only one zero bit in the range, test for it directly.
1067     auto MaskTrailingOnes =
1068         MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask));
1069     Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
1070               .getReg(0);
1071   } else {
1072     // Make desired shift.
1073     auto CstOne = MIB.buildConstant(SwitchTy, 1);
1074     auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
1075 
1076     // Emit bit tests and jumps.
1077     auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
1078     auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
1079     auto CstZero = MIB.buildConstant(SwitchTy, 0);
1080     Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
1081               .getReg(0);
1082   }
1083 
1084   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1085   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
1086   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1087   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1088   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1089   // one as they are relative probabilities (and thus work more like weights),
1090   // and hence we need to normalize them to let the sum of them become one.
1091   SwitchBB->normalizeSuccProbs();
1092 
1093   // Record the fact that the IR edge from the header to the bit test target
1094   // will go through our new block. Neeeded for PHIs to have nodes added.
1095   addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1096                     SwitchBB);
1097 
1098   MIB.buildBrCond(Cmp, *B.TargetBB);
1099 
1100   // Avoid emitting unnecessary branches to the next block.
1101   if (NextMBB != SwitchBB->getNextNode())
1102     MIB.buildBr(*NextMBB);
1103 }
1104 
1105 bool IRTranslator::lowerBitTestWorkItem(
1106     SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1107     MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1108     MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1109     BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1110     SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1111     bool FallthroughUnreachable) {
1112   using namespace SwitchCG;
1113   MachineFunction *CurMF = SwitchMBB->getParent();
1114   // FIXME: Optimize away range check based on pivot comparisons.
1115   BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1116   // The bit test blocks haven't been inserted yet; insert them here.
1117   for (BitTestCase &BTC : BTB->Cases)
1118     CurMF->insert(BBI, BTC.ThisBB);
1119 
1120   // Fill in fields of the BitTestBlock.
1121   BTB->Parent = CurMBB;
1122   BTB->Default = Fallthrough;
1123 
1124   BTB->DefaultProb = UnhandledProbs;
1125   // If the cases in bit test don't form a contiguous range, we evenly
1126   // distribute the probability on the edge to Fallthrough to two
1127   // successors of CurMBB.
1128   if (!BTB->ContiguousRange) {
1129     BTB->Prob += DefaultProb / 2;
1130     BTB->DefaultProb -= DefaultProb / 2;
1131   }
1132 
1133   if (FallthroughUnreachable) {
1134     // Skip the range check if the fallthrough block is unreachable.
1135     BTB->OmitRangeCheck = true;
1136   }
1137 
1138   // If we're in the right place, emit the bit test header right now.
1139   if (CurMBB == SwitchMBB) {
1140     emitBitTestHeader(*BTB, SwitchMBB);
1141     BTB->Emitted = true;
1142   }
1143   return true;
1144 }
1145 
1146 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1147                                        Value *Cond,
1148                                        MachineBasicBlock *SwitchMBB,
1149                                        MachineBasicBlock *DefaultMBB,
1150                                        MachineIRBuilder &MIB) {
1151   using namespace SwitchCG;
1152   MachineFunction *CurMF = FuncInfo.MF;
1153   MachineBasicBlock *NextMBB = nullptr;
1154   MachineFunction::iterator BBI(W.MBB);
1155   if (++BBI != FuncInfo.MF->end())
1156     NextMBB = &*BBI;
1157 
1158   if (EnableOpts) {
1159     // Here, we order cases by probability so the most likely case will be
1160     // checked first. However, two clusters can have the same probability in
1161     // which case their relative ordering is non-deterministic. So we use Low
1162     // as a tie-breaker as clusters are guaranteed to never overlap.
1163     llvm::sort(W.FirstCluster, W.LastCluster + 1,
1164                [](const CaseCluster &a, const CaseCluster &b) {
1165                  return a.Prob != b.Prob
1166                             ? a.Prob > b.Prob
1167                             : a.Low->getValue().slt(b.Low->getValue());
1168                });
1169 
1170     // Rearrange the case blocks so that the last one falls through if possible
1171     // without changing the order of probabilities.
1172     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1173       --I;
1174       if (I->Prob > W.LastCluster->Prob)
1175         break;
1176       if (I->Kind == CC_Range && I->MBB == NextMBB) {
1177         std::swap(*I, *W.LastCluster);
1178         break;
1179       }
1180     }
1181   }
1182 
1183   // Compute total probability.
1184   BranchProbability DefaultProb = W.DefaultProb;
1185   BranchProbability UnhandledProbs = DefaultProb;
1186   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1187     UnhandledProbs += I->Prob;
1188 
1189   MachineBasicBlock *CurMBB = W.MBB;
1190   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1191     bool FallthroughUnreachable = false;
1192     MachineBasicBlock *Fallthrough;
1193     if (I == W.LastCluster) {
1194       // For the last cluster, fall through to the default destination.
1195       Fallthrough = DefaultMBB;
1196       FallthroughUnreachable = isa<UnreachableInst>(
1197           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1198     } else {
1199       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
1200       CurMF->insert(BBI, Fallthrough);
1201     }
1202     UnhandledProbs -= I->Prob;
1203 
1204     switch (I->Kind) {
1205     case CC_BitTests: {
1206       if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1207                                 DefaultProb, UnhandledProbs, I, Fallthrough,
1208                                 FallthroughUnreachable)) {
1209         LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1210         return false;
1211       }
1212       break;
1213     }
1214 
1215     case CC_JumpTable: {
1216       if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1217                                   UnhandledProbs, I, Fallthrough,
1218                                   FallthroughUnreachable)) {
1219         LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1220         return false;
1221       }
1222       break;
1223     }
1224     case CC_Range: {
1225       if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1226                                     FallthroughUnreachable, UnhandledProbs,
1227                                     CurMBB, MIB, SwitchMBB)) {
1228         LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1229         return false;
1230       }
1231       break;
1232     }
1233     }
1234     CurMBB = Fallthrough;
1235   }
1236 
1237   return true;
1238 }
1239 
1240 bool IRTranslator::translateIndirectBr(const User &U,
1241                                        MachineIRBuilder &MIRBuilder) {
1242   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
1243 
1244   const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
1245   MIRBuilder.buildBrIndirect(Tgt);
1246 
1247   // Link successors.
1248   SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1249   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1250   for (const BasicBlock *Succ : successors(&BrInst)) {
1251     // It's legal for indirectbr instructions to have duplicate blocks in the
1252     // destination list. We don't allow this in MIR. Skip anything that's
1253     // already a successor.
1254     if (!AddedSuccessors.insert(Succ).second)
1255       continue;
1256     CurBB.addSuccessor(&getMBB(*Succ));
1257   }
1258 
1259   return true;
1260 }
1261 
1262 static bool isSwiftError(const Value *V) {
1263   if (auto Arg = dyn_cast<Argument>(V))
1264     return Arg->hasSwiftErrorAttr();
1265   if (auto AI = dyn_cast<AllocaInst>(V))
1266     return AI->isSwiftError();
1267   return false;
1268 }
1269 
1270 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1271   const LoadInst &LI = cast<LoadInst>(U);
1272   if (DL->getTypeStoreSize(LI.getType()) == 0)
1273     return true;
1274 
1275   ArrayRef<Register> Regs = getOrCreateVRegs(LI);
1276   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
1277   Register Base = getOrCreateVReg(*LI.getPointerOperand());
1278 
1279   Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
1280   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1281 
1282   if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
1283     assert(Regs.size() == 1 && "swifterror should be single pointer");
1284     Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
1285                                                     LI.getPointerOperand());
1286     MIRBuilder.buildCopy(Regs[0], VReg);
1287     return true;
1288   }
1289 
1290   auto &TLI = *MF->getSubtarget().getTargetLowering();
1291   MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
1292 
1293   const MDNode *Ranges =
1294       Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
1295   for (unsigned i = 0; i < Regs.size(); ++i) {
1296     Register Addr;
1297     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1298 
1299     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1300     Align BaseAlign = getMemOpAlign(LI);
1301     AAMDNodes AAMetadata;
1302     LI.getAAMetadata(AAMetadata);
1303     auto MMO = MF->getMachineMemOperand(
1304         Ptr, Flags, MRI->getType(Regs[i]),
1305         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges,
1306         LI.getSyncScopeID(), LI.getOrdering());
1307     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
1308   }
1309 
1310   return true;
1311 }
1312 
1313 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1314   const StoreInst &SI = cast<StoreInst>(U);
1315   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
1316     return true;
1317 
1318   ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
1319   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
1320   Register Base = getOrCreateVReg(*SI.getPointerOperand());
1321 
1322   Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
1323   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1324 
1325   if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
1326     assert(Vals.size() == 1 && "swifterror should be single pointer");
1327 
1328     Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1329                                                     SI.getPointerOperand());
1330     MIRBuilder.buildCopy(VReg, Vals[0]);
1331     return true;
1332   }
1333 
1334   auto &TLI = *MF->getSubtarget().getTargetLowering();
1335   MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
1336 
1337   for (unsigned i = 0; i < Vals.size(); ++i) {
1338     Register Addr;
1339     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1340 
1341     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1342     Align BaseAlign = getMemOpAlign(SI);
1343     AAMDNodes AAMetadata;
1344     SI.getAAMetadata(AAMetadata);
1345     auto MMO = MF->getMachineMemOperand(
1346         Ptr, Flags, MRI->getType(Vals[i]),
1347         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr,
1348         SI.getSyncScopeID(), SI.getOrdering());
1349     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
1350   }
1351   return true;
1352 }
1353 
1354 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1355   const Value *Src = U.getOperand(0);
1356   Type *Int32Ty = Type::getInt32Ty(U.getContext());
1357 
1358   // getIndexedOffsetInType is designed for GEPs, so the first index is the
1359   // usual array element rather than looking into the actual aggregate.
1360   SmallVector<Value *, 1> Indices;
1361   Indices.push_back(ConstantInt::get(Int32Ty, 0));
1362 
1363   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
1364     for (auto Idx : EVI->indices())
1365       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1366   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
1367     for (auto Idx : IVI->indices())
1368       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1369   } else {
1370     for (unsigned i = 1; i < U.getNumOperands(); ++i)
1371       Indices.push_back(U.getOperand(i));
1372   }
1373 
1374   return 8 * static_cast<uint64_t>(
1375                  DL.getIndexedOffsetInType(Src->getType(), Indices));
1376 }
1377 
1378 bool IRTranslator::translateExtractValue(const User &U,
1379                                          MachineIRBuilder &MIRBuilder) {
1380   const Value *Src = U.getOperand(0);
1381   uint64_t Offset = getOffsetFromIndices(U, *DL);
1382   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1383   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
1384   unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
1385   auto &DstRegs = allocateVRegs(U);
1386 
1387   for (unsigned i = 0; i < DstRegs.size(); ++i)
1388     DstRegs[i] = SrcRegs[Idx++];
1389 
1390   return true;
1391 }
1392 
1393 bool IRTranslator::translateInsertValue(const User &U,
1394                                         MachineIRBuilder &MIRBuilder) {
1395   const Value *Src = U.getOperand(0);
1396   uint64_t Offset = getOffsetFromIndices(U, *DL);
1397   auto &DstRegs = allocateVRegs(U);
1398   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1399   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1400   ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
1401   auto InsertedIt = InsertedRegs.begin();
1402 
1403   for (unsigned i = 0; i < DstRegs.size(); ++i) {
1404     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1405       DstRegs[i] = *InsertedIt++;
1406     else
1407       DstRegs[i] = SrcRegs[i];
1408   }
1409 
1410   return true;
1411 }
1412 
1413 bool IRTranslator::translateSelect(const User &U,
1414                                    MachineIRBuilder &MIRBuilder) {
1415   Register Tst = getOrCreateVReg(*U.getOperand(0));
1416   ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1417   ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1418   ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1419 
1420   uint16_t Flags = 0;
1421   if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1422     Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1423 
1424   for (unsigned i = 0; i < ResRegs.size(); ++i) {
1425     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1426   }
1427 
1428   return true;
1429 }
1430 
1431 bool IRTranslator::translateCopy(const User &U, const Value &V,
1432                                  MachineIRBuilder &MIRBuilder) {
1433   Register Src = getOrCreateVReg(V);
1434   auto &Regs = *VMap.getVRegs(U);
1435   if (Regs.empty()) {
1436     Regs.push_back(Src);
1437     VMap.getOffsets(U)->push_back(0);
1438   } else {
1439     // If we already assigned a vreg for this instruction, we can't change that.
1440     // Emit a copy to satisfy the users we already emitted.
1441     MIRBuilder.buildCopy(Regs[0], Src);
1442   }
1443   return true;
1444 }
1445 
1446 bool IRTranslator::translateBitCast(const User &U,
1447                                     MachineIRBuilder &MIRBuilder) {
1448   // If we're bitcasting to the source type, we can reuse the source vreg.
1449   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1450       getLLTForType(*U.getType(), *DL))
1451     return translateCopy(U, *U.getOperand(0), MIRBuilder);
1452 
1453   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1454 }
1455 
1456 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1457                                  MachineIRBuilder &MIRBuilder) {
1458   Register Op = getOrCreateVReg(*U.getOperand(0));
1459   Register Res = getOrCreateVReg(U);
1460   MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1461   return true;
1462 }
1463 
1464 bool IRTranslator::translateGetElementPtr(const User &U,
1465                                           MachineIRBuilder &MIRBuilder) {
1466   Value &Op0 = *U.getOperand(0);
1467   Register BaseReg = getOrCreateVReg(Op0);
1468   Type *PtrIRTy = Op0.getType();
1469   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1470   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1471   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1472 
1473   // Normalize Vector GEP - all scalar operands should be converted to the
1474   // splat vector.
1475   unsigned VectorWidth = 0;
1476 
1477   // True if we should use a splat vector; using VectorWidth alone is not
1478   // sufficient.
1479   bool WantSplatVector = false;
1480   if (auto *VT = dyn_cast<VectorType>(U.getType())) {
1481     VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1482     // We don't produce 1 x N vectors; those are treated as scalars.
1483     WantSplatVector = VectorWidth > 1;
1484   }
1485 
1486   // We might need to splat the base pointer into a vector if the offsets
1487   // are vectors.
1488   if (WantSplatVector && !PtrTy.isVector()) {
1489     BaseReg =
1490         MIRBuilder
1491             .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg)
1492             .getReg(0);
1493     PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1494     PtrTy = getLLTForType(*PtrIRTy, *DL);
1495     OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1496     OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1497   }
1498 
1499   int64_t Offset = 0;
1500   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1501        GTI != E; ++GTI) {
1502     const Value *Idx = GTI.getOperand();
1503     if (StructType *StTy = GTI.getStructTypeOrNull()) {
1504       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1505       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1506       continue;
1507     } else {
1508       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1509 
1510       // If this is a scalar constant or a splat vector of constants,
1511       // handle it quickly.
1512       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1513         Offset += ElementSize * CI->getSExtValue();
1514         continue;
1515       }
1516 
1517       if (Offset != 0) {
1518         auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1519         BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1520                       .getReg(0);
1521         Offset = 0;
1522       }
1523 
1524       Register IdxReg = getOrCreateVReg(*Idx);
1525       LLT IdxTy = MRI->getType(IdxReg);
1526       if (IdxTy != OffsetTy) {
1527         if (!IdxTy.isVector() && WantSplatVector) {
1528           IdxReg = MIRBuilder.buildSplatVector(
1529             OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1530         }
1531 
1532         IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1533       }
1534 
1535       // N = N + Idx * ElementSize;
1536       // Avoid doing it for ElementSize of 1.
1537       Register GepOffsetReg;
1538       if (ElementSize != 1) {
1539         auto ElementSizeMIB = MIRBuilder.buildConstant(
1540             getLLTForType(*OffsetIRTy, *DL), ElementSize);
1541         GepOffsetReg =
1542             MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1543       } else
1544         GepOffsetReg = IdxReg;
1545 
1546       BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1547     }
1548   }
1549 
1550   if (Offset != 0) {
1551     auto OffsetMIB =
1552         MIRBuilder.buildConstant(OffsetTy, Offset);
1553     MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1554     return true;
1555   }
1556 
1557   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1558   return true;
1559 }
1560 
1561 bool IRTranslator::translateMemFunc(const CallInst &CI,
1562                                     MachineIRBuilder &MIRBuilder,
1563                                     unsigned Opcode) {
1564 
1565   // If the source is undef, then just emit a nop.
1566   if (isa<UndefValue>(CI.getArgOperand(1)))
1567     return true;
1568 
1569   SmallVector<Register, 3> SrcRegs;
1570 
1571   unsigned MinPtrSize = UINT_MAX;
1572   for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
1573     Register SrcReg = getOrCreateVReg(**AI);
1574     LLT SrcTy = MRI->getType(SrcReg);
1575     if (SrcTy.isPointer())
1576       MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize);
1577     SrcRegs.push_back(SrcReg);
1578   }
1579 
1580   LLT SizeTy = LLT::scalar(MinPtrSize);
1581 
1582   // The size operand should be the minimum of the pointer sizes.
1583   Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1584   if (MRI->getType(SizeOpReg) != SizeTy)
1585     SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
1586 
1587   auto ICall = MIRBuilder.buildInstr(Opcode);
1588   for (Register SrcReg : SrcRegs)
1589     ICall.addUse(SrcReg);
1590 
1591   Align DstAlign;
1592   Align SrcAlign;
1593   unsigned IsVol =
1594       cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
1595           ->getZExtValue();
1596 
1597   if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1598     DstAlign = MCI->getDestAlign().valueOrOne();
1599     SrcAlign = MCI->getSourceAlign().valueOrOne();
1600   } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) {
1601     DstAlign = MCI->getDestAlign().valueOrOne();
1602     SrcAlign = MCI->getSourceAlign().valueOrOne();
1603   } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1604     DstAlign = MMI->getDestAlign().valueOrOne();
1605     SrcAlign = MMI->getSourceAlign().valueOrOne();
1606   } else {
1607     auto *MSI = cast<MemSetInst>(&CI);
1608     DstAlign = MSI->getDestAlign().valueOrOne();
1609   }
1610 
1611   if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
1612     // We need to propagate the tail call flag from the IR inst as an argument.
1613     // Otherwise, we have to pessimize and assume later that we cannot tail call
1614     // any memory intrinsics.
1615     ICall.addImm(CI.isTailCall() ? 1 : 0);
1616   }
1617 
1618   // Create mem operands to store the alignment and volatile info.
1619   auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
1620   ICall.addMemOperand(MF->getMachineMemOperand(
1621       MachinePointerInfo(CI.getArgOperand(0)),
1622       MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
1623   if (Opcode != TargetOpcode::G_MEMSET)
1624     ICall.addMemOperand(MF->getMachineMemOperand(
1625         MachinePointerInfo(CI.getArgOperand(1)),
1626         MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
1627 
1628   return true;
1629 }
1630 
1631 void IRTranslator::getStackGuard(Register DstReg,
1632                                  MachineIRBuilder &MIRBuilder) {
1633   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1634   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1635   auto MIB =
1636       MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1637 
1638   auto &TLI = *MF->getSubtarget().getTargetLowering();
1639   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1640   if (!Global)
1641     return;
1642 
1643   unsigned AddrSpace = Global->getType()->getPointerAddressSpace();
1644   LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace));
1645 
1646   MachinePointerInfo MPInfo(Global);
1647   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1648                MachineMemOperand::MODereferenceable;
1649   MachineMemOperand *MemRef = MF->getMachineMemOperand(
1650       MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace));
1651   MIB.setMemRefs({MemRef});
1652 }
1653 
1654 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1655                                               MachineIRBuilder &MIRBuilder) {
1656   ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1657   MIRBuilder.buildInstr(
1658       Op, {ResRegs[0], ResRegs[1]},
1659       {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1660 
1661   return true;
1662 }
1663 
1664 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1665                                                 MachineIRBuilder &MIRBuilder) {
1666   Register Dst = getOrCreateVReg(CI);
1667   Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1668   Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1669   uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1670   MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1671   return true;
1672 }
1673 
1674 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1675   switch (ID) {
1676     default:
1677       break;
1678     case Intrinsic::bswap:
1679       return TargetOpcode::G_BSWAP;
1680     case Intrinsic::bitreverse:
1681       return TargetOpcode::G_BITREVERSE;
1682     case Intrinsic::fshl:
1683       return TargetOpcode::G_FSHL;
1684     case Intrinsic::fshr:
1685       return TargetOpcode::G_FSHR;
1686     case Intrinsic::ceil:
1687       return TargetOpcode::G_FCEIL;
1688     case Intrinsic::cos:
1689       return TargetOpcode::G_FCOS;
1690     case Intrinsic::ctpop:
1691       return TargetOpcode::G_CTPOP;
1692     case Intrinsic::exp:
1693       return TargetOpcode::G_FEXP;
1694     case Intrinsic::exp2:
1695       return TargetOpcode::G_FEXP2;
1696     case Intrinsic::fabs:
1697       return TargetOpcode::G_FABS;
1698     case Intrinsic::copysign:
1699       return TargetOpcode::G_FCOPYSIGN;
1700     case Intrinsic::minnum:
1701       return TargetOpcode::G_FMINNUM;
1702     case Intrinsic::maxnum:
1703       return TargetOpcode::G_FMAXNUM;
1704     case Intrinsic::minimum:
1705       return TargetOpcode::G_FMINIMUM;
1706     case Intrinsic::maximum:
1707       return TargetOpcode::G_FMAXIMUM;
1708     case Intrinsic::canonicalize:
1709       return TargetOpcode::G_FCANONICALIZE;
1710     case Intrinsic::floor:
1711       return TargetOpcode::G_FFLOOR;
1712     case Intrinsic::fma:
1713       return TargetOpcode::G_FMA;
1714     case Intrinsic::log:
1715       return TargetOpcode::G_FLOG;
1716     case Intrinsic::log2:
1717       return TargetOpcode::G_FLOG2;
1718     case Intrinsic::log10:
1719       return TargetOpcode::G_FLOG10;
1720     case Intrinsic::nearbyint:
1721       return TargetOpcode::G_FNEARBYINT;
1722     case Intrinsic::pow:
1723       return TargetOpcode::G_FPOW;
1724     case Intrinsic::powi:
1725       return TargetOpcode::G_FPOWI;
1726     case Intrinsic::rint:
1727       return TargetOpcode::G_FRINT;
1728     case Intrinsic::round:
1729       return TargetOpcode::G_INTRINSIC_ROUND;
1730     case Intrinsic::roundeven:
1731       return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1732     case Intrinsic::sin:
1733       return TargetOpcode::G_FSIN;
1734     case Intrinsic::sqrt:
1735       return TargetOpcode::G_FSQRT;
1736     case Intrinsic::trunc:
1737       return TargetOpcode::G_INTRINSIC_TRUNC;
1738     case Intrinsic::readcyclecounter:
1739       return TargetOpcode::G_READCYCLECOUNTER;
1740     case Intrinsic::ptrmask:
1741       return TargetOpcode::G_PTRMASK;
1742     case Intrinsic::lrint:
1743       return TargetOpcode::G_INTRINSIC_LRINT;
1744     // FADD/FMUL require checking the FMF, so are handled elsewhere.
1745     case Intrinsic::vector_reduce_fmin:
1746       return TargetOpcode::G_VECREDUCE_FMIN;
1747     case Intrinsic::vector_reduce_fmax:
1748       return TargetOpcode::G_VECREDUCE_FMAX;
1749     case Intrinsic::vector_reduce_add:
1750       return TargetOpcode::G_VECREDUCE_ADD;
1751     case Intrinsic::vector_reduce_mul:
1752       return TargetOpcode::G_VECREDUCE_MUL;
1753     case Intrinsic::vector_reduce_and:
1754       return TargetOpcode::G_VECREDUCE_AND;
1755     case Intrinsic::vector_reduce_or:
1756       return TargetOpcode::G_VECREDUCE_OR;
1757     case Intrinsic::vector_reduce_xor:
1758       return TargetOpcode::G_VECREDUCE_XOR;
1759     case Intrinsic::vector_reduce_smax:
1760       return TargetOpcode::G_VECREDUCE_SMAX;
1761     case Intrinsic::vector_reduce_smin:
1762       return TargetOpcode::G_VECREDUCE_SMIN;
1763     case Intrinsic::vector_reduce_umax:
1764       return TargetOpcode::G_VECREDUCE_UMAX;
1765     case Intrinsic::vector_reduce_umin:
1766       return TargetOpcode::G_VECREDUCE_UMIN;
1767     case Intrinsic::lround:
1768       return TargetOpcode::G_LROUND;
1769     case Intrinsic::llround:
1770       return TargetOpcode::G_LLROUND;
1771   }
1772   return Intrinsic::not_intrinsic;
1773 }
1774 
1775 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1776                                             Intrinsic::ID ID,
1777                                             MachineIRBuilder &MIRBuilder) {
1778 
1779   unsigned Op = getSimpleIntrinsicOpcode(ID);
1780 
1781   // Is this a simple intrinsic?
1782   if (Op == Intrinsic::not_intrinsic)
1783     return false;
1784 
1785   // Yes. Let's translate it.
1786   SmallVector<llvm::SrcOp, 4> VRegs;
1787   for (auto &Arg : CI.arg_operands())
1788     VRegs.push_back(getOrCreateVReg(*Arg));
1789 
1790   MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1791                         MachineInstr::copyFlagsFromInstruction(CI));
1792   return true;
1793 }
1794 
1795 // TODO: Include ConstainedOps.def when all strict instructions are defined.
1796 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1797   switch (ID) {
1798   case Intrinsic::experimental_constrained_fadd:
1799     return TargetOpcode::G_STRICT_FADD;
1800   case Intrinsic::experimental_constrained_fsub:
1801     return TargetOpcode::G_STRICT_FSUB;
1802   case Intrinsic::experimental_constrained_fmul:
1803     return TargetOpcode::G_STRICT_FMUL;
1804   case Intrinsic::experimental_constrained_fdiv:
1805     return TargetOpcode::G_STRICT_FDIV;
1806   case Intrinsic::experimental_constrained_frem:
1807     return TargetOpcode::G_STRICT_FREM;
1808   case Intrinsic::experimental_constrained_fma:
1809     return TargetOpcode::G_STRICT_FMA;
1810   case Intrinsic::experimental_constrained_sqrt:
1811     return TargetOpcode::G_STRICT_FSQRT;
1812   default:
1813     return 0;
1814   }
1815 }
1816 
1817 bool IRTranslator::translateConstrainedFPIntrinsic(
1818   const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1819   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
1820 
1821   unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1822   if (!Opcode)
1823     return false;
1824 
1825   unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1826   if (EB == fp::ExceptionBehavior::ebIgnore)
1827     Flags |= MachineInstr::NoFPExcept;
1828 
1829   SmallVector<llvm::SrcOp, 4> VRegs;
1830   VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1831   if (!FPI.isUnaryOp())
1832     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1833   if (FPI.isTernaryOp())
1834     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1835 
1836   MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1837   return true;
1838 }
1839 
1840 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1841                                            MachineIRBuilder &MIRBuilder) {
1842   if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) {
1843     if (ORE->enabled()) {
1844       const Function &F = *MI->getParent()->getParent();
1845       auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1846       if (MemoryOpRemark::canHandle(MI, TLI)) {
1847         MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI);
1848         R.visit(MI);
1849       }
1850     }
1851   }
1852 
1853   // If this is a simple intrinsic (that is, we just need to add a def of
1854   // a vreg, and uses for each arg operand, then translate it.
1855   if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1856     return true;
1857 
1858   switch (ID) {
1859   default:
1860     break;
1861   case Intrinsic::lifetime_start:
1862   case Intrinsic::lifetime_end: {
1863     // No stack colouring in O0, discard region information.
1864     if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1865       return true;
1866 
1867     unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1868                                                   : TargetOpcode::LIFETIME_END;
1869 
1870     // Get the underlying objects for the location passed on the lifetime
1871     // marker.
1872     SmallVector<const Value *, 4> Allocas;
1873     getUnderlyingObjects(CI.getArgOperand(1), Allocas);
1874 
1875     // Iterate over each underlying object, creating lifetime markers for each
1876     // static alloca. Quit if we find a non-static alloca.
1877     for (const Value *V : Allocas) {
1878       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1879       if (!AI)
1880         continue;
1881 
1882       if (!AI->isStaticAlloca())
1883         return true;
1884 
1885       MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1886     }
1887     return true;
1888   }
1889   case Intrinsic::dbg_declare: {
1890     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1891     assert(DI.getVariable() && "Missing variable");
1892 
1893     const Value *Address = DI.getAddress();
1894     if (!Address || isa<UndefValue>(Address)) {
1895       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1896       return true;
1897     }
1898 
1899     assert(DI.getVariable()->isValidLocationForIntrinsic(
1900                MIRBuilder.getDebugLoc()) &&
1901            "Expected inlined-at fields to agree");
1902     auto AI = dyn_cast<AllocaInst>(Address);
1903     if (AI && AI->isStaticAlloca()) {
1904       // Static allocas are tracked at the MF level, no need for DBG_VALUE
1905       // instructions (in fact, they get ignored if they *do* exist).
1906       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1907                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1908     } else {
1909       // A dbg.declare describes the address of a source variable, so lower it
1910       // into an indirect DBG_VALUE.
1911       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1912                                        DI.getVariable(), DI.getExpression());
1913     }
1914     return true;
1915   }
1916   case Intrinsic::dbg_label: {
1917     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1918     assert(DI.getLabel() && "Missing label");
1919 
1920     assert(DI.getLabel()->isValidLocationForIntrinsic(
1921                MIRBuilder.getDebugLoc()) &&
1922            "Expected inlined-at fields to agree");
1923 
1924     MIRBuilder.buildDbgLabel(DI.getLabel());
1925     return true;
1926   }
1927   case Intrinsic::vaend:
1928     // No target I know of cares about va_end. Certainly no in-tree target
1929     // does. Simplest intrinsic ever!
1930     return true;
1931   case Intrinsic::vastart: {
1932     auto &TLI = *MF->getSubtarget().getTargetLowering();
1933     Value *Ptr = CI.getArgOperand(0);
1934     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1935 
1936     // FIXME: Get alignment
1937     MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
1938         .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
1939                                                 MachineMemOperand::MOStore,
1940                                                 ListSize, Align(1)));
1941     return true;
1942   }
1943   case Intrinsic::dbg_value: {
1944     // This form of DBG_VALUE is target-independent.
1945     const DbgValueInst &DI = cast<DbgValueInst>(CI);
1946     const Value *V = DI.getValue();
1947     assert(DI.getVariable()->isValidLocationForIntrinsic(
1948                MIRBuilder.getDebugLoc()) &&
1949            "Expected inlined-at fields to agree");
1950     if (!V || DI.hasArgList()) {
1951       // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
1952       // terminate any prior location.
1953       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1954     } else if (const auto *CI = dyn_cast<Constant>(V)) {
1955       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1956     } else {
1957       for (Register Reg : getOrCreateVRegs(*V)) {
1958         // FIXME: This does not handle register-indirect values at offset 0. The
1959         // direct/indirect thing shouldn't really be handled by something as
1960         // implicit as reg+noreg vs reg+imm in the first place, but it seems
1961         // pretty baked in right now.
1962         MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
1963       }
1964     }
1965     return true;
1966   }
1967   case Intrinsic::uadd_with_overflow:
1968     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
1969   case Intrinsic::sadd_with_overflow:
1970     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
1971   case Intrinsic::usub_with_overflow:
1972     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
1973   case Intrinsic::ssub_with_overflow:
1974     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
1975   case Intrinsic::umul_with_overflow:
1976     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
1977   case Intrinsic::smul_with_overflow:
1978     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
1979   case Intrinsic::uadd_sat:
1980     return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
1981   case Intrinsic::sadd_sat:
1982     return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
1983   case Intrinsic::usub_sat:
1984     return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
1985   case Intrinsic::ssub_sat:
1986     return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
1987   case Intrinsic::ushl_sat:
1988     return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
1989   case Intrinsic::sshl_sat:
1990     return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
1991   case Intrinsic::umin:
1992     return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
1993   case Intrinsic::umax:
1994     return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
1995   case Intrinsic::smin:
1996     return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
1997   case Intrinsic::smax:
1998     return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
1999   case Intrinsic::abs:
2000     // TODO: Preserve "int min is poison" arg in GMIR?
2001     return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
2002   case Intrinsic::smul_fix:
2003     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
2004   case Intrinsic::umul_fix:
2005     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
2006   case Intrinsic::smul_fix_sat:
2007     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
2008   case Intrinsic::umul_fix_sat:
2009     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
2010   case Intrinsic::sdiv_fix:
2011     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
2012   case Intrinsic::udiv_fix:
2013     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
2014   case Intrinsic::sdiv_fix_sat:
2015     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
2016   case Intrinsic::udiv_fix_sat:
2017     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
2018   case Intrinsic::fmuladd: {
2019     const TargetMachine &TM = MF->getTarget();
2020     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2021     Register Dst = getOrCreateVReg(CI);
2022     Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
2023     Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
2024     Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
2025     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
2026         TLI.isFMAFasterThanFMulAndFAdd(*MF,
2027                                        TLI.getValueType(*DL, CI.getType()))) {
2028       // TODO: Revisit this to see if we should move this part of the
2029       // lowering to the combiner.
2030       MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
2031                           MachineInstr::copyFlagsFromInstruction(CI));
2032     } else {
2033       LLT Ty = getLLTForType(*CI.getType(), *DL);
2034       auto FMul = MIRBuilder.buildFMul(
2035           Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
2036       MIRBuilder.buildFAdd(Dst, FMul, Op2,
2037                            MachineInstr::copyFlagsFromInstruction(CI));
2038     }
2039     return true;
2040   }
2041   case Intrinsic::convert_from_fp16:
2042     // FIXME: This intrinsic should probably be removed from the IR.
2043     MIRBuilder.buildFPExt(getOrCreateVReg(CI),
2044                           getOrCreateVReg(*CI.getArgOperand(0)),
2045                           MachineInstr::copyFlagsFromInstruction(CI));
2046     return true;
2047   case Intrinsic::convert_to_fp16:
2048     // FIXME: This intrinsic should probably be removed from the IR.
2049     MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
2050                             getOrCreateVReg(*CI.getArgOperand(0)),
2051                             MachineInstr::copyFlagsFromInstruction(CI));
2052     return true;
2053   case Intrinsic::memcpy_inline:
2054     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE);
2055   case Intrinsic::memcpy:
2056     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2057   case Intrinsic::memmove:
2058     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2059   case Intrinsic::memset:
2060     return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2061   case Intrinsic::eh_typeid_for: {
2062     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
2063     Register Reg = getOrCreateVReg(CI);
2064     unsigned TypeID = MF->getTypeIDFor(GV);
2065     MIRBuilder.buildConstant(Reg, TypeID);
2066     return true;
2067   }
2068   case Intrinsic::objectsize:
2069     llvm_unreachable("llvm.objectsize.* should have been lowered already");
2070 
2071   case Intrinsic::is_constant:
2072     llvm_unreachable("llvm.is.constant.* should have been lowered already");
2073 
2074   case Intrinsic::stackguard:
2075     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2076     return true;
2077   case Intrinsic::stackprotector: {
2078     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2079     Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2080     getStackGuard(GuardVal, MIRBuilder);
2081 
2082     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
2083     int FI = getOrCreateFrameIndex(*Slot);
2084     MF->getFrameInfo().setStackProtectorIndex(FI);
2085 
2086     MIRBuilder.buildStore(
2087         GuardVal, getOrCreateVReg(*Slot),
2088         *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
2089                                   MachineMemOperand::MOStore |
2090                                       MachineMemOperand::MOVolatile,
2091                                   PtrTy, Align(8)));
2092     return true;
2093   }
2094   case Intrinsic::stacksave: {
2095     // Save the stack pointer to the location provided by the intrinsic.
2096     Register Reg = getOrCreateVReg(CI);
2097     Register StackPtr = MF->getSubtarget()
2098                             .getTargetLowering()
2099                             ->getStackPointerRegisterToSaveRestore();
2100 
2101     // If the target doesn't specify a stack pointer, then fall back.
2102     if (!StackPtr)
2103       return false;
2104 
2105     MIRBuilder.buildCopy(Reg, StackPtr);
2106     return true;
2107   }
2108   case Intrinsic::stackrestore: {
2109     // Restore the stack pointer from the location provided by the intrinsic.
2110     Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
2111     Register StackPtr = MF->getSubtarget()
2112                             .getTargetLowering()
2113                             ->getStackPointerRegisterToSaveRestore();
2114 
2115     // If the target doesn't specify a stack pointer, then fall back.
2116     if (!StackPtr)
2117       return false;
2118 
2119     MIRBuilder.buildCopy(StackPtr, Reg);
2120     return true;
2121   }
2122   case Intrinsic::cttz:
2123   case Intrinsic::ctlz: {
2124     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
2125     bool isTrailing = ID == Intrinsic::cttz;
2126     unsigned Opcode = isTrailing
2127                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
2128                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
2129                           : Cst->isZero() ? TargetOpcode::G_CTLZ
2130                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2131     MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
2132                           {getOrCreateVReg(*CI.getArgOperand(0))});
2133     return true;
2134   }
2135   case Intrinsic::invariant_start: {
2136     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2137     Register Undef = MRI->createGenericVirtualRegister(PtrTy);
2138     MIRBuilder.buildUndef(Undef);
2139     return true;
2140   }
2141   case Intrinsic::invariant_end:
2142     return true;
2143   case Intrinsic::expect:
2144   case Intrinsic::annotation:
2145   case Intrinsic::ptr_annotation:
2146   case Intrinsic::launder_invariant_group:
2147   case Intrinsic::strip_invariant_group: {
2148     // Drop the intrinsic, but forward the value.
2149     MIRBuilder.buildCopy(getOrCreateVReg(CI),
2150                          getOrCreateVReg(*CI.getArgOperand(0)));
2151     return true;
2152   }
2153   case Intrinsic::assume:
2154   case Intrinsic::experimental_noalias_scope_decl:
2155   case Intrinsic::var_annotation:
2156   case Intrinsic::sideeffect:
2157     // Discard annotate attributes, assumptions, and artificial side-effects.
2158     return true;
2159   case Intrinsic::read_volatile_register:
2160   case Intrinsic::read_register: {
2161     Value *Arg = CI.getArgOperand(0);
2162     MIRBuilder
2163         .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2164         .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
2165     return true;
2166   }
2167   case Intrinsic::write_register: {
2168     Value *Arg = CI.getArgOperand(0);
2169     MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
2170       .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
2171       .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
2172     return true;
2173   }
2174   case Intrinsic::localescape: {
2175     MachineBasicBlock &EntryMBB = MF->front();
2176     StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
2177 
2178     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2179     // is the same on all targets.
2180     for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) {
2181       Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
2182       if (isa<ConstantPointerNull>(Arg))
2183         continue; // Skip null pointers. They represent a hole in index space.
2184 
2185       int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
2186       MCSymbol *FrameAllocSym =
2187           MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
2188                                                                 Idx);
2189 
2190       // This should be inserted at the start of the entry block.
2191       auto LocalEscape =
2192           MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
2193               .addSym(FrameAllocSym)
2194               .addFrameIndex(FI);
2195 
2196       EntryMBB.insert(EntryMBB.begin(), LocalEscape);
2197     }
2198 
2199     return true;
2200   }
2201   case Intrinsic::vector_reduce_fadd:
2202   case Intrinsic::vector_reduce_fmul: {
2203     // Need to check for the reassoc flag to decide whether we want a
2204     // sequential reduction opcode or not.
2205     Register Dst = getOrCreateVReg(CI);
2206     Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
2207     Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
2208     unsigned Opc = 0;
2209     if (!CI.hasAllowReassoc()) {
2210       // The sequential ordering case.
2211       Opc = ID == Intrinsic::vector_reduce_fadd
2212                 ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2213                 : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2214       MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
2215                             MachineInstr::copyFlagsFromInstruction(CI));
2216       return true;
2217     }
2218     // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2219     // since the associativity doesn't matter.
2220     unsigned ScalarOpc;
2221     if (ID == Intrinsic::vector_reduce_fadd) {
2222       Opc = TargetOpcode::G_VECREDUCE_FADD;
2223       ScalarOpc = TargetOpcode::G_FADD;
2224     } else {
2225       Opc = TargetOpcode::G_VECREDUCE_FMUL;
2226       ScalarOpc = TargetOpcode::G_FMUL;
2227     }
2228     LLT DstTy = MRI->getType(Dst);
2229     auto Rdx = MIRBuilder.buildInstr(
2230         Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
2231     MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2232                           MachineInstr::copyFlagsFromInstruction(CI));
2233 
2234     return true;
2235   }
2236 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)  \
2237   case Intrinsic::INTRINSIC:
2238 #include "llvm/IR/ConstrainedOps.def"
2239     return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
2240                                            MIRBuilder);
2241 
2242   }
2243   return false;
2244 }
2245 
2246 bool IRTranslator::translateInlineAsm(const CallBase &CB,
2247                                       MachineIRBuilder &MIRBuilder) {
2248 
2249   const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2250 
2251   if (!ALI) {
2252     LLVM_DEBUG(
2253         dbgs() << "Inline asm lowering is not supported for this target yet\n");
2254     return false;
2255   }
2256 
2257   return ALI->lowerInlineAsm(
2258       MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
2259 }
2260 
2261 bool IRTranslator::translateCallBase(const CallBase &CB,
2262                                      MachineIRBuilder &MIRBuilder) {
2263   ArrayRef<Register> Res = getOrCreateVRegs(CB);
2264 
2265   SmallVector<ArrayRef<Register>, 8> Args;
2266   Register SwiftInVReg = 0;
2267   Register SwiftErrorVReg = 0;
2268   for (auto &Arg : CB.args()) {
2269     if (CLI->supportSwiftError() && isSwiftError(Arg)) {
2270       assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2271       LLT Ty = getLLTForType(*Arg->getType(), *DL);
2272       SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2273       MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2274                                             &CB, &MIRBuilder.getMBB(), Arg));
2275       Args.emplace_back(makeArrayRef(SwiftInVReg));
2276       SwiftErrorVReg =
2277           SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2278       continue;
2279     }
2280     Args.push_back(getOrCreateVRegs(*Arg));
2281   }
2282 
2283   if (auto *CI = dyn_cast<CallInst>(&CB)) {
2284     if (ORE->enabled()) {
2285       const Function &F = *CI->getParent()->getParent();
2286       auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2287       if (MemoryOpRemark::canHandle(CI, TLI)) {
2288         MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI);
2289         R.visit(CI);
2290       }
2291     }
2292   }
2293 
2294   // We don't set HasCalls on MFI here yet because call lowering may decide to
2295   // optimize into tail calls. Instead, we defer that to selection where a final
2296   // scan is done to check if any instructions are calls.
2297   bool Success =
2298       CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
2299                      [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
2300 
2301   // Check if we just inserted a tail call.
2302   if (Success) {
2303     assert(!HasTailCall && "Can't tail call return twice from block?");
2304     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2305     HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
2306   }
2307 
2308   return Success;
2309 }
2310 
2311 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2312   const CallInst &CI = cast<CallInst>(U);
2313   auto TII = MF->getTarget().getIntrinsicInfo();
2314   const Function *F = CI.getCalledFunction();
2315 
2316   // FIXME: support Windows dllimport function calls.
2317   if (F && (F->hasDLLImportStorageClass() ||
2318             (MF->getTarget().getTargetTriple().isOSWindows() &&
2319              F->hasExternalWeakLinkage())))
2320     return false;
2321 
2322   // FIXME: support control flow guard targets.
2323   if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2324     return false;
2325 
2326   if (CI.isInlineAsm())
2327     return translateInlineAsm(CI, MIRBuilder);
2328 
2329   if (F && F->hasFnAttribute("dontcall")) {
2330     unsigned LocCookie = 0;
2331     if (MDNode *MD = CI.getMetadata("srcloc"))
2332       LocCookie =
2333           mdconst::extract<ConstantInt>(MD->getOperand(0))->getZExtValue();
2334     DiagnosticInfoDontCall D(F->getName(), LocCookie);
2335     F->getContext().diagnose(D);
2336   }
2337 
2338   Intrinsic::ID ID = Intrinsic::not_intrinsic;
2339   if (F && F->isIntrinsic()) {
2340     ID = F->getIntrinsicID();
2341     if (TII && ID == Intrinsic::not_intrinsic)
2342       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2343   }
2344 
2345   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2346     return translateCallBase(CI, MIRBuilder);
2347 
2348   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2349 
2350   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2351     return true;
2352 
2353   ArrayRef<Register> ResultRegs;
2354   if (!CI.getType()->isVoidTy())
2355     ResultRegs = getOrCreateVRegs(CI);
2356 
2357   // Ignore the callsite attributes. Backend code is most likely not expecting
2358   // an intrinsic to sometimes have side effects and sometimes not.
2359   MachineInstrBuilder MIB =
2360       MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
2361   if (isa<FPMathOperator>(CI))
2362     MIB->copyIRFlags(CI);
2363 
2364   for (auto &Arg : enumerate(CI.arg_operands())) {
2365     // If this is required to be an immediate, don't materialize it in a
2366     // register.
2367     if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2368       if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
2369         // imm arguments are more convenient than cimm (and realistically
2370         // probably sufficient), so use them.
2371         assert(CI->getBitWidth() <= 64 &&
2372                "large intrinsic immediates not handled");
2373         MIB.addImm(CI->getSExtValue());
2374       } else {
2375         MIB.addFPImm(cast<ConstantFP>(Arg.value()));
2376       }
2377     } else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) {
2378       auto *MDN = dyn_cast<MDNode>(MD->getMetadata());
2379       if (!MDN) // This was probably an MDString.
2380         return false;
2381       MIB.addMetadata(MDN);
2382     } else {
2383       ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
2384       if (VRegs.size() > 1)
2385         return false;
2386       MIB.addUse(VRegs[0]);
2387     }
2388   }
2389 
2390   // Add a MachineMemOperand if it is a target mem intrinsic.
2391   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2392   TargetLowering::IntrinsicInfo Info;
2393   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2394   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2395     Align Alignment = Info.align.getValueOr(
2396         DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
2397     LLT MemTy = Info.memVT.isSimple()
2398                     ? getLLTForMVT(Info.memVT.getSimpleVT())
2399                     : LLT::scalar(Info.memVT.getStoreSizeInBits());
2400     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
2401                                                Info.flags, MemTy, Alignment));
2402   }
2403 
2404   return true;
2405 }
2406 
2407 bool IRTranslator::findUnwindDestinations(
2408     const BasicBlock *EHPadBB,
2409     BranchProbability Prob,
2410     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2411         &UnwindDests) {
2412   EHPersonality Personality = classifyEHPersonality(
2413       EHPadBB->getParent()->getFunction().getPersonalityFn());
2414   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2415   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2416   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2417   bool IsSEH = isAsynchronousEHPersonality(Personality);
2418 
2419   if (IsWasmCXX) {
2420     // Ignore this for now.
2421     return false;
2422   }
2423 
2424   while (EHPadBB) {
2425     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2426     BasicBlock *NewEHPadBB = nullptr;
2427     if (isa<LandingPadInst>(Pad)) {
2428       // Stop on landingpads. They are not funclets.
2429       UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2430       break;
2431     }
2432     if (isa<CleanupPadInst>(Pad)) {
2433       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2434       // personalities.
2435       UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2436       UnwindDests.back().first->setIsEHScopeEntry();
2437       UnwindDests.back().first->setIsEHFuncletEntry();
2438       break;
2439     }
2440     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2441       // Add the catchpad handlers to the possible destinations.
2442       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2443         UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2444         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2445         if (IsMSVCCXX || IsCoreCLR)
2446           UnwindDests.back().first->setIsEHFuncletEntry();
2447         if (!IsSEH)
2448           UnwindDests.back().first->setIsEHScopeEntry();
2449       }
2450       NewEHPadBB = CatchSwitch->getUnwindDest();
2451     } else {
2452       continue;
2453     }
2454 
2455     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2456     if (BPI && NewEHPadBB)
2457       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2458     EHPadBB = NewEHPadBB;
2459   }
2460   return true;
2461 }
2462 
2463 bool IRTranslator::translateInvoke(const User &U,
2464                                    MachineIRBuilder &MIRBuilder) {
2465   const InvokeInst &I = cast<InvokeInst>(U);
2466   MCContext &Context = MF->getContext();
2467 
2468   const BasicBlock *ReturnBB = I.getSuccessor(0);
2469   const BasicBlock *EHPadBB = I.getSuccessor(1);
2470 
2471   const Function *Fn = I.getCalledFunction();
2472 
2473   // FIXME: support invoking patchpoint and statepoint intrinsics.
2474   if (Fn && Fn->isIntrinsic())
2475     return false;
2476 
2477   // FIXME: support whatever these are.
2478   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
2479     return false;
2480 
2481   // FIXME: support control flow guard targets.
2482   if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2483     return false;
2484 
2485   // FIXME: support Windows exception handling.
2486   if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
2487     return false;
2488 
2489   bool LowerInlineAsm = false;
2490   if (I.isInlineAsm()) {
2491     const InlineAsm *IA = cast<InlineAsm>(I.getCalledOperand());
2492     if (!IA->canThrow()) {
2493       // Fast path without emitting EH_LABELs.
2494 
2495       if (!translateInlineAsm(I, MIRBuilder))
2496         return false;
2497 
2498       MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(),
2499                         *ReturnMBB = &getMBB(*ReturnBB);
2500 
2501       // Update successor info.
2502       addSuccessorWithProb(InvokeMBB, ReturnMBB, BranchProbability::getOne());
2503 
2504       MIRBuilder.buildBr(*ReturnMBB);
2505       return true;
2506     } else {
2507       LowerInlineAsm = true;
2508     }
2509   }
2510 
2511   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2512   // the region covered by the try.
2513   MCSymbol *BeginSymbol = Context.createTempSymbol();
2514   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
2515 
2516   if (LowerInlineAsm) {
2517     if (!translateInlineAsm(I, MIRBuilder))
2518       return false;
2519   } else if (!translateCallBase(I, MIRBuilder))
2520     return false;
2521 
2522   MCSymbol *EndSymbol = Context.createTempSymbol();
2523   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
2524 
2525   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2526   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2527   MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2528   BranchProbability EHPadBBProb =
2529       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2530           : BranchProbability::getZero();
2531 
2532   if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
2533     return false;
2534 
2535   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
2536                     &ReturnMBB = getMBB(*ReturnBB);
2537   // Update successor info.
2538   addSuccessorWithProb(InvokeMBB, &ReturnMBB);
2539   for (auto &UnwindDest : UnwindDests) {
2540     UnwindDest.first->setIsEHPad();
2541     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2542   }
2543   InvokeMBB->normalizeSuccProbs();
2544 
2545   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
2546   MIRBuilder.buildBr(ReturnMBB);
2547   return true;
2548 }
2549 
2550 bool IRTranslator::translateCallBr(const User &U,
2551                                    MachineIRBuilder &MIRBuilder) {
2552   // FIXME: Implement this.
2553   return false;
2554 }
2555 
2556 bool IRTranslator::translateLandingPad(const User &U,
2557                                        MachineIRBuilder &MIRBuilder) {
2558   const LandingPadInst &LP = cast<LandingPadInst>(U);
2559 
2560   MachineBasicBlock &MBB = MIRBuilder.getMBB();
2561 
2562   MBB.setIsEHPad();
2563 
2564   // If there aren't registers to copy the values into (e.g., during SjLj
2565   // exceptions), then don't bother.
2566   auto &TLI = *MF->getSubtarget().getTargetLowering();
2567   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
2568   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2569       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2570     return true;
2571 
2572   // If landingpad's return type is token type, we don't create DAG nodes
2573   // for its exception pointer and selector value. The extraction of exception
2574   // pointer or selector value from token type landingpads is not currently
2575   // supported.
2576   if (LP.getType()->isTokenTy())
2577     return true;
2578 
2579   // Add a label to mark the beginning of the landing pad.  Deletion of the
2580   // landing pad can thus be detected via the MachineModuleInfo.
2581   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
2582     .addSym(MF->addLandingPad(&MBB));
2583 
2584   // If the unwinder does not preserve all registers, ensure that the
2585   // function marks the clobbered registers as used.
2586   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
2587   if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
2588     MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
2589 
2590   LLT Ty = getLLTForType(*LP.getType(), *DL);
2591   Register Undef = MRI->createGenericVirtualRegister(Ty);
2592   MIRBuilder.buildUndef(Undef);
2593 
2594   SmallVector<LLT, 2> Tys;
2595   for (Type *Ty : cast<StructType>(LP.getType())->elements())
2596     Tys.push_back(getLLTForType(*Ty, *DL));
2597   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
2598 
2599   // Mark exception register as live in.
2600   Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
2601   if (!ExceptionReg)
2602     return false;
2603 
2604   MBB.addLiveIn(ExceptionReg);
2605   ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
2606   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
2607 
2608   Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
2609   if (!SelectorReg)
2610     return false;
2611 
2612   MBB.addLiveIn(SelectorReg);
2613   Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
2614   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
2615   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
2616 
2617   return true;
2618 }
2619 
2620 bool IRTranslator::translateAlloca(const User &U,
2621                                    MachineIRBuilder &MIRBuilder) {
2622   auto &AI = cast<AllocaInst>(U);
2623 
2624   if (AI.isSwiftError())
2625     return true;
2626 
2627   if (AI.isStaticAlloca()) {
2628     Register Res = getOrCreateVReg(AI);
2629     int FI = getOrCreateFrameIndex(AI);
2630     MIRBuilder.buildFrameIndex(Res, FI);
2631     return true;
2632   }
2633 
2634   // FIXME: support stack probing for Windows.
2635   if (MF->getTarget().getTargetTriple().isOSWindows())
2636     return false;
2637 
2638   // Now we're in the harder dynamic case.
2639   Register NumElts = getOrCreateVReg(*AI.getArraySize());
2640   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
2641   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
2642   if (MRI->getType(NumElts) != IntPtrTy) {
2643     Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
2644     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
2645     NumElts = ExtElts;
2646   }
2647 
2648   Type *Ty = AI.getAllocatedType();
2649 
2650   Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
2651   Register TySize =
2652       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
2653   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
2654 
2655   // Round the size of the allocation up to the stack alignment size
2656   // by add SA-1 to the size. This doesn't overflow because we're computing
2657   // an address inside an alloca.
2658   Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
2659   auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
2660   auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
2661                                       MachineInstr::NoUWrap);
2662   auto AlignCst =
2663       MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
2664   auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
2665 
2666   Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
2667   if (Alignment <= StackAlign)
2668     Alignment = Align(1);
2669   MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
2670 
2671   MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
2672   assert(MF->getFrameInfo().hasVarSizedObjects());
2673   return true;
2674 }
2675 
2676 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
2677   // FIXME: We may need more info about the type. Because of how LLT works,
2678   // we're completely discarding the i64/double distinction here (amongst
2679   // others). Fortunately the ABIs I know of where that matters don't use va_arg
2680   // anyway but that's not guaranteed.
2681   MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
2682                         {getOrCreateVReg(*U.getOperand(0)),
2683                          DL->getABITypeAlign(U.getType()).value()});
2684   return true;
2685 }
2686 
2687 bool IRTranslator::translateInsertElement(const User &U,
2688                                           MachineIRBuilder &MIRBuilder) {
2689   // If it is a <1 x Ty> vector, use the scalar as it is
2690   // not a legal vector type in LLT.
2691   if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
2692     return translateCopy(U, *U.getOperand(1), MIRBuilder);
2693 
2694   Register Res = getOrCreateVReg(U);
2695   Register Val = getOrCreateVReg(*U.getOperand(0));
2696   Register Elt = getOrCreateVReg(*U.getOperand(1));
2697   Register Idx = getOrCreateVReg(*U.getOperand(2));
2698   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
2699   return true;
2700 }
2701 
2702 bool IRTranslator::translateExtractElement(const User &U,
2703                                            MachineIRBuilder &MIRBuilder) {
2704   // If it is a <1 x Ty> vector, use the scalar as it is
2705   // not a legal vector type in LLT.
2706   if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
2707     return translateCopy(U, *U.getOperand(0), MIRBuilder);
2708 
2709   Register Res = getOrCreateVReg(U);
2710   Register Val = getOrCreateVReg(*U.getOperand(0));
2711   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2712   unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
2713   Register Idx;
2714   if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
2715     if (CI->getBitWidth() != PreferredVecIdxWidth) {
2716       APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
2717       auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
2718       Idx = getOrCreateVReg(*NewIdxCI);
2719     }
2720   }
2721   if (!Idx)
2722     Idx = getOrCreateVReg(*U.getOperand(1));
2723   if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
2724     const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
2725     Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
2726   }
2727   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
2728   return true;
2729 }
2730 
2731 bool IRTranslator::translateShuffleVector(const User &U,
2732                                           MachineIRBuilder &MIRBuilder) {
2733   ArrayRef<int> Mask;
2734   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
2735     Mask = SVI->getShuffleMask();
2736   else
2737     Mask = cast<ConstantExpr>(U).getShuffleMask();
2738   ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
2739   MIRBuilder
2740       .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
2741                   {getOrCreateVReg(*U.getOperand(0)),
2742                    getOrCreateVReg(*U.getOperand(1))})
2743       .addShuffleMask(MaskAlloc);
2744   return true;
2745 }
2746 
2747 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
2748   const PHINode &PI = cast<PHINode>(U);
2749 
2750   SmallVector<MachineInstr *, 4> Insts;
2751   for (auto Reg : getOrCreateVRegs(PI)) {
2752     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
2753     Insts.push_back(MIB.getInstr());
2754   }
2755 
2756   PendingPHIs.emplace_back(&PI, std::move(Insts));
2757   return true;
2758 }
2759 
2760 bool IRTranslator::translateAtomicCmpXchg(const User &U,
2761                                           MachineIRBuilder &MIRBuilder) {
2762   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
2763 
2764   auto &TLI = *MF->getSubtarget().getTargetLowering();
2765   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2766 
2767   auto Res = getOrCreateVRegs(I);
2768   Register OldValRes = Res[0];
2769   Register SuccessRes = Res[1];
2770   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2771   Register Cmp = getOrCreateVReg(*I.getCompareOperand());
2772   Register NewVal = getOrCreateVReg(*I.getNewValOperand());
2773 
2774   AAMDNodes AAMetadata;
2775   I.getAAMetadata(AAMetadata);
2776 
2777   MIRBuilder.buildAtomicCmpXchgWithSuccess(
2778       OldValRes, SuccessRes, Addr, Cmp, NewVal,
2779       *MF->getMachineMemOperand(
2780           MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp),
2781           getMemOpAlign(I), AAMetadata, nullptr, I.getSyncScopeID(),
2782           I.getSuccessOrdering(), I.getFailureOrdering()));
2783   return true;
2784 }
2785 
2786 bool IRTranslator::translateAtomicRMW(const User &U,
2787                                       MachineIRBuilder &MIRBuilder) {
2788   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2789   auto &TLI = *MF->getSubtarget().getTargetLowering();
2790   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2791 
2792   Register Res = getOrCreateVReg(I);
2793   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2794   Register Val = getOrCreateVReg(*I.getValOperand());
2795 
2796   unsigned Opcode = 0;
2797   switch (I.getOperation()) {
2798   default:
2799     return false;
2800   case AtomicRMWInst::Xchg:
2801     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
2802     break;
2803   case AtomicRMWInst::Add:
2804     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2805     break;
2806   case AtomicRMWInst::Sub:
2807     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2808     break;
2809   case AtomicRMWInst::And:
2810     Opcode = TargetOpcode::G_ATOMICRMW_AND;
2811     break;
2812   case AtomicRMWInst::Nand:
2813     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2814     break;
2815   case AtomicRMWInst::Or:
2816     Opcode = TargetOpcode::G_ATOMICRMW_OR;
2817     break;
2818   case AtomicRMWInst::Xor:
2819     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2820     break;
2821   case AtomicRMWInst::Max:
2822     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2823     break;
2824   case AtomicRMWInst::Min:
2825     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2826     break;
2827   case AtomicRMWInst::UMax:
2828     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2829     break;
2830   case AtomicRMWInst::UMin:
2831     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2832     break;
2833   case AtomicRMWInst::FAdd:
2834     Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2835     break;
2836   case AtomicRMWInst::FSub:
2837     Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2838     break;
2839   }
2840 
2841   AAMDNodes AAMetadata;
2842   I.getAAMetadata(AAMetadata);
2843 
2844   MIRBuilder.buildAtomicRMW(
2845       Opcode, Res, Addr, Val,
2846       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2847                                 Flags, MRI->getType(Val), getMemOpAlign(I),
2848                                 AAMetadata, nullptr, I.getSyncScopeID(),
2849                                 I.getOrdering()));
2850   return true;
2851 }
2852 
2853 bool IRTranslator::translateFence(const User &U,
2854                                   MachineIRBuilder &MIRBuilder) {
2855   const FenceInst &Fence = cast<FenceInst>(U);
2856   MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2857                         Fence.getSyncScopeID());
2858   return true;
2859 }
2860 
2861 bool IRTranslator::translateFreeze(const User &U,
2862                                    MachineIRBuilder &MIRBuilder) {
2863   const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
2864   const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
2865 
2866   assert(DstRegs.size() == SrcRegs.size() &&
2867          "Freeze with different source and destination type?");
2868 
2869   for (unsigned I = 0; I < DstRegs.size(); ++I) {
2870     MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
2871   }
2872 
2873   return true;
2874 }
2875 
2876 void IRTranslator::finishPendingPhis() {
2877 #ifndef NDEBUG
2878   DILocationVerifier Verifier;
2879   GISelObserverWrapper WrapperObserver(&Verifier);
2880   RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2881 #endif // ifndef NDEBUG
2882   for (auto &Phi : PendingPHIs) {
2883     const PHINode *PI = Phi.first;
2884     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
2885     MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
2886     EntryBuilder->setDebugLoc(PI->getDebugLoc());
2887 #ifndef NDEBUG
2888     Verifier.setCurrentInst(PI);
2889 #endif // ifndef NDEBUG
2890 
2891     SmallSet<const MachineBasicBlock *, 16> SeenPreds;
2892     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
2893       auto IRPred = PI->getIncomingBlock(i);
2894       ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
2895       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
2896         if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
2897           continue;
2898         SeenPreds.insert(Pred);
2899         for (unsigned j = 0; j < ValRegs.size(); ++j) {
2900           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
2901           MIB.addUse(ValRegs[j]);
2902           MIB.addMBB(Pred);
2903         }
2904       }
2905     }
2906   }
2907 }
2908 
2909 bool IRTranslator::valueIsSplit(const Value &V,
2910                                 SmallVectorImpl<uint64_t> *Offsets) {
2911   SmallVector<LLT, 4> SplitTys;
2912   if (Offsets && !Offsets->empty())
2913     Offsets->clear();
2914   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
2915   return SplitTys.size() > 1;
2916 }
2917 
2918 bool IRTranslator::translate(const Instruction &Inst) {
2919   CurBuilder->setDebugLoc(Inst.getDebugLoc());
2920 
2921   auto &TLI = *MF->getSubtarget().getTargetLowering();
2922   if (TLI.fallBackToDAGISel(Inst))
2923     return false;
2924 
2925   switch (Inst.getOpcode()) {
2926 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2927   case Instruction::OPCODE:                                                    \
2928     return translate##OPCODE(Inst, *CurBuilder.get());
2929 #include "llvm/IR/Instruction.def"
2930   default:
2931     return false;
2932   }
2933 }
2934 
2935 bool IRTranslator::translate(const Constant &C, Register Reg) {
2936   // We only emit constants into the entry block from here. To prevent jumpy
2937   // debug behaviour set the line to 0.
2938   if (auto CurrInstDL = CurBuilder->getDL())
2939     EntryBuilder->setDebugLoc(DILocation::get(C.getContext(), 0, 0,
2940                                               CurrInstDL.getScope(),
2941                                               CurrInstDL.getInlinedAt()));
2942 
2943   if (auto CI = dyn_cast<ConstantInt>(&C))
2944     EntryBuilder->buildConstant(Reg, *CI);
2945   else if (auto CF = dyn_cast<ConstantFP>(&C))
2946     EntryBuilder->buildFConstant(Reg, *CF);
2947   else if (isa<UndefValue>(C))
2948     EntryBuilder->buildUndef(Reg);
2949   else if (isa<ConstantPointerNull>(C))
2950     EntryBuilder->buildConstant(Reg, 0);
2951   else if (auto GV = dyn_cast<GlobalValue>(&C))
2952     EntryBuilder->buildGlobalValue(Reg, GV);
2953   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
2954     if (!isa<FixedVectorType>(CAZ->getType()))
2955       return false;
2956     // Return the scalar if it is a <1 x Ty> vector.
2957     unsigned NumElts = CAZ->getElementCount().getFixedValue();
2958     if (NumElts == 1)
2959       return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get());
2960     SmallVector<Register, 4> Ops;
2961     for (unsigned I = 0; I < NumElts; ++I) {
2962       Constant &Elt = *CAZ->getElementValue(I);
2963       Ops.push_back(getOrCreateVReg(Elt));
2964     }
2965     EntryBuilder->buildBuildVector(Reg, Ops);
2966   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
2967     // Return the scalar if it is a <1 x Ty> vector.
2968     if (CV->getNumElements() == 1)
2969       return translateCopy(C, *CV->getElementAsConstant(0),
2970                            *EntryBuilder.get());
2971     SmallVector<Register, 4> Ops;
2972     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
2973       Constant &Elt = *CV->getElementAsConstant(i);
2974       Ops.push_back(getOrCreateVReg(Elt));
2975     }
2976     EntryBuilder->buildBuildVector(Reg, Ops);
2977   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
2978     switch(CE->getOpcode()) {
2979 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2980   case Instruction::OPCODE:                                                    \
2981     return translate##OPCODE(*CE, *EntryBuilder.get());
2982 #include "llvm/IR/Instruction.def"
2983     default:
2984       return false;
2985     }
2986   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
2987     if (CV->getNumOperands() == 1)
2988       return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get());
2989     SmallVector<Register, 4> Ops;
2990     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
2991       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
2992     }
2993     EntryBuilder->buildBuildVector(Reg, Ops);
2994   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
2995     EntryBuilder->buildBlockAddress(Reg, BA);
2996   } else
2997     return false;
2998 
2999   return true;
3000 }
3001 
3002 void IRTranslator::finalizeBasicBlock() {
3003   for (auto &BTB : SL->BitTestCases) {
3004     // Emit header first, if it wasn't already emitted.
3005     if (!BTB.Emitted)
3006       emitBitTestHeader(BTB, BTB.Parent);
3007 
3008     BranchProbability UnhandledProb = BTB.Prob;
3009     for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
3010       UnhandledProb -= BTB.Cases[j].ExtraProb;
3011       // Set the current basic block to the mbb we wish to insert the code into
3012       MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
3013       // If all cases cover a contiguous range, it is not necessary to jump to
3014       // the default block after the last bit test fails. This is because the
3015       // range check during bit test header creation has guaranteed that every
3016       // case here doesn't go outside the range. In this case, there is no need
3017       // to perform the last bit test, as it will always be true. Instead, make
3018       // the second-to-last bit-test fall through to the target of the last bit
3019       // test, and delete the last bit test.
3020 
3021       MachineBasicBlock *NextMBB;
3022       if (BTB.ContiguousRange && j + 2 == ej) {
3023         // Second-to-last bit-test with contiguous range: fall through to the
3024         // target of the final bit test.
3025         NextMBB = BTB.Cases[j + 1].TargetBB;
3026       } else if (j + 1 == ej) {
3027         // For the last bit test, fall through to Default.
3028         NextMBB = BTB.Default;
3029       } else {
3030         // Otherwise, fall through to the next bit test.
3031         NextMBB = BTB.Cases[j + 1].ThisBB;
3032       }
3033 
3034       emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
3035 
3036       if (BTB.ContiguousRange && j + 2 == ej) {
3037         // We need to record the replacement phi edge here that normally
3038         // happens in emitBitTestCase before we delete the case, otherwise the
3039         // phi edge will be lost.
3040         addMachineCFGPred({BTB.Parent->getBasicBlock(),
3041                            BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
3042                           MBB);
3043         // Since we're not going to use the final bit test, remove it.
3044         BTB.Cases.pop_back();
3045         break;
3046       }
3047     }
3048     // This is "default" BB. We have two jumps to it. From "header" BB and from
3049     // last "case" BB, unless the latter was skipped.
3050     CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
3051                                    BTB.Default->getBasicBlock()};
3052     addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
3053     if (!BTB.ContiguousRange) {
3054       addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
3055     }
3056   }
3057   SL->BitTestCases.clear();
3058 
3059   for (auto &JTCase : SL->JTCases) {
3060     // Emit header first, if it wasn't already emitted.
3061     if (!JTCase.first.Emitted)
3062       emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
3063 
3064     emitJumpTable(JTCase.second, JTCase.second.MBB);
3065   }
3066   SL->JTCases.clear();
3067 
3068   for (auto &SwCase : SL->SwitchCases)
3069     emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
3070   SL->SwitchCases.clear();
3071 }
3072 
3073 void IRTranslator::finalizeFunction() {
3074   // Release the memory used by the different maps we
3075   // needed during the translation.
3076   PendingPHIs.clear();
3077   VMap.reset();
3078   FrameIndices.clear();
3079   MachinePreds.clear();
3080   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3081   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
3082   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3083   EntryBuilder.reset();
3084   CurBuilder.reset();
3085   FuncInfo.clear();
3086 }
3087 
3088 /// Returns true if a BasicBlock \p BB within a variadic function contains a
3089 /// variadic musttail call.
3090 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3091   if (!IsVarArg)
3092     return false;
3093 
3094   // Walk the block backwards, because tail calls usually only appear at the end
3095   // of a block.
3096   return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
3097     const auto *CI = dyn_cast<CallInst>(&I);
3098     return CI && CI->isMustTailCall();
3099   });
3100 }
3101 
3102 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3103   MF = &CurMF;
3104   const Function &F = MF->getFunction();
3105   GISelCSEAnalysisWrapper &Wrapper =
3106       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3107   // Set the CSEConfig and run the analysis.
3108   GISelCSEInfo *CSEInfo = nullptr;
3109   TPC = &getAnalysis<TargetPassConfig>();
3110   bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3111                        ? EnableCSEInIRTranslator
3112                        : TPC->isGISelCSEEnabled();
3113 
3114   if (EnableCSE) {
3115     EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3116     CSEInfo = &Wrapper.get(TPC->getCSEConfig());
3117     EntryBuilder->setCSEInfo(CSEInfo);
3118     CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3119     CurBuilder->setCSEInfo(CSEInfo);
3120   } else {
3121     EntryBuilder = std::make_unique<MachineIRBuilder>();
3122     CurBuilder = std::make_unique<MachineIRBuilder>();
3123   }
3124   CLI = MF->getSubtarget().getCallLowering();
3125   CurBuilder->setMF(*MF);
3126   EntryBuilder->setMF(*MF);
3127   MRI = &MF->getRegInfo();
3128   DL = &F.getParent()->getDataLayout();
3129   ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
3130   const TargetMachine &TM = MF->getTarget();
3131   TM.resetTargetOptions(F);
3132   EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F);
3133   FuncInfo.MF = MF;
3134   if (EnableOpts)
3135     FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3136   else
3137     FuncInfo.BPI = nullptr;
3138 
3139   FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
3140 
3141   const auto &TLI = *MF->getSubtarget().getTargetLowering();
3142 
3143   SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
3144   SL->init(TLI, TM, *DL);
3145 
3146 
3147 
3148   assert(PendingPHIs.empty() && "stale PHIs");
3149 
3150   // Targets which want to use big endian can enable it using
3151   // enableBigEndian()
3152   if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
3153     // Currently we don't properly handle big endian code.
3154     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3155                                F.getSubprogram(), &F.getEntryBlock());
3156     R << "unable to translate in big endian mode";
3157     reportTranslationError(*MF, *TPC, *ORE, R);
3158   }
3159 
3160   // Release the per-function state when we return, whether we succeeded or not.
3161   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
3162 
3163   // Setup a separate basic-block for the arguments and constants
3164   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
3165   MF->push_back(EntryBB);
3166   EntryBuilder->setMBB(*EntryBB);
3167 
3168   DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3169   SwiftError.setFunction(CurMF);
3170   SwiftError.createEntriesInEntryBlock(DbgLoc);
3171 
3172   bool IsVarArg = F.isVarArg();
3173   bool HasMustTailInVarArgFn = false;
3174 
3175   // Create all blocks, in IR order, to preserve the layout.
3176   for (const BasicBlock &BB: F) {
3177     auto *&MBB = BBToMBB[&BB];
3178 
3179     MBB = MF->CreateMachineBasicBlock(&BB);
3180     MF->push_back(MBB);
3181 
3182     if (BB.hasAddressTaken())
3183       MBB->setHasAddressTaken();
3184 
3185     if (!HasMustTailInVarArgFn)
3186       HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
3187   }
3188 
3189   MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
3190 
3191   // Make our arguments/constants entry block fallthrough to the IR entry block.
3192   EntryBB->addSuccessor(&getMBB(F.front()));
3193 
3194   if (CLI->fallBackToDAGISel(*MF)) {
3195     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3196                                F.getSubprogram(), &F.getEntryBlock());
3197     R << "unable to lower function: " << ore::NV("Prototype", F.getType());
3198     reportTranslationError(*MF, *TPC, *ORE, R);
3199     return false;
3200   }
3201 
3202   // Lower the actual args into this basic block.
3203   SmallVector<ArrayRef<Register>, 8> VRegArgs;
3204   for (const Argument &Arg: F.args()) {
3205     if (DL->getTypeStoreSize(Arg.getType()).isZero())
3206       continue; // Don't handle zero sized types.
3207     ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
3208     VRegArgs.push_back(VRegs);
3209 
3210     if (Arg.hasSwiftErrorAttr()) {
3211       assert(VRegs.size() == 1 && "Too many vregs for Swift error");
3212       SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
3213     }
3214   }
3215 
3216   if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs, FuncInfo)) {
3217     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3218                                F.getSubprogram(), &F.getEntryBlock());
3219     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
3220     reportTranslationError(*MF, *TPC, *ORE, R);
3221     return false;
3222   }
3223 
3224   // Need to visit defs before uses when translating instructions.
3225   GISelObserverWrapper WrapperObserver;
3226   if (EnableCSE && CSEInfo)
3227     WrapperObserver.addObserver(CSEInfo);
3228   {
3229     ReversePostOrderTraversal<const Function *> RPOT(&F);
3230 #ifndef NDEBUG
3231     DILocationVerifier Verifier;
3232     WrapperObserver.addObserver(&Verifier);
3233 #endif // ifndef NDEBUG
3234     RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3235     RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
3236     for (const BasicBlock *BB : RPOT) {
3237       MachineBasicBlock &MBB = getMBB(*BB);
3238       // Set the insertion point of all the following translations to
3239       // the end of this basic block.
3240       CurBuilder->setMBB(MBB);
3241       HasTailCall = false;
3242       for (const Instruction &Inst : *BB) {
3243         // If we translated a tail call in the last step, then we know
3244         // everything after the call is either a return, or something that is
3245         // handled by the call itself. (E.g. a lifetime marker or assume
3246         // intrinsic.) In this case, we should stop translating the block and
3247         // move on.
3248         if (HasTailCall)
3249           break;
3250 #ifndef NDEBUG
3251         Verifier.setCurrentInst(&Inst);
3252 #endif // ifndef NDEBUG
3253         if (translate(Inst))
3254           continue;
3255 
3256         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3257                                    Inst.getDebugLoc(), BB);
3258         R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
3259 
3260         if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
3261           std::string InstStrStorage;
3262           raw_string_ostream InstStr(InstStrStorage);
3263           InstStr << Inst;
3264 
3265           R << ": '" << InstStr.str() << "'";
3266         }
3267 
3268         reportTranslationError(*MF, *TPC, *ORE, R);
3269         return false;
3270       }
3271 
3272       finalizeBasicBlock();
3273     }
3274 #ifndef NDEBUG
3275     WrapperObserver.removeObserver(&Verifier);
3276 #endif
3277   }
3278 
3279   finishPendingPhis();
3280 
3281   SwiftError.propagateVRegs();
3282 
3283   // Merge the argument lowering and constants block with its single
3284   // successor, the LLVM-IR entry block.  We want the basic block to
3285   // be maximal.
3286   assert(EntryBB->succ_size() == 1 &&
3287          "Custom BB used for lowering should have only one successor");
3288   // Get the successor of the current entry block.
3289   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
3290   assert(NewEntryBB.pred_size() == 1 &&
3291          "LLVM-IR entry block has a predecessor!?");
3292   // Move all the instruction from the current entry block to the
3293   // new entry block.
3294   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
3295                     EntryBB->end());
3296 
3297   // Update the live-in information for the new entry block.
3298   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
3299     NewEntryBB.addLiveIn(LiveIn);
3300   NewEntryBB.sortUniqueLiveIns();
3301 
3302   // Get rid of the now empty basic block.
3303   EntryBB->removeSuccessor(&NewEntryBB);
3304   MF->remove(EntryBB);
3305   MF->DeleteMachineBasicBlock(EntryBB);
3306 
3307   assert(&MF->front() == &NewEntryBB &&
3308          "New entry wasn't next in the list of basic block!");
3309 
3310   // Initialize stack protector information.
3311   StackProtector &SP = getAnalysis<StackProtector>();
3312   SP.copyToMachineFrameInfo(MF->getFrameInfo());
3313 
3314   return false;
3315 }
3316