1 //===-- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator --*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/FunctionLoweringInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/Target/TargetIntrinsicInfo.h" 31 #include "llvm/Target/TargetLowering.h" 32 33 #define DEBUG_TYPE "irtranslator" 34 35 using namespace llvm; 36 37 char IRTranslator::ID = 0; 38 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 39 false, false) 40 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 41 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 42 false, false) 43 44 static void reportTranslationError(const Value &V, const Twine &Message) { 45 std::string ErrStorage; 46 raw_string_ostream Err(ErrStorage); 47 Err << Message << ": " << V << '\n'; 48 report_fatal_error(Err.str()); 49 } 50 51 IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) { 52 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 53 } 54 55 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 56 AU.addRequired<TargetPassConfig>(); 57 MachineFunctionPass::getAnalysisUsage(AU); 58 } 59 60 61 unsigned IRTranslator::getOrCreateVReg(const Value &Val) { 62 unsigned &ValReg = ValToVReg[&Val]; 63 // Check if this is the first time we see Val. 64 if (!ValReg) { 65 // Fill ValRegsSequence with the sequence of registers 66 // we need to concat together to produce the value. 67 assert(Val.getType()->isSized() && 68 "Don't know how to create an empty vreg"); 69 unsigned VReg = MRI->createGenericVirtualRegister(LLT{*Val.getType(), *DL}); 70 ValReg = VReg; 71 72 if (auto CV = dyn_cast<Constant>(&Val)) { 73 bool Success = translate(*CV, VReg); 74 if (!Success) { 75 if (!TPC->isGlobalISelAbortEnabled()) { 76 MIRBuilder.getMF().getProperties().set( 77 MachineFunctionProperties::Property::FailedISel); 78 return 0; 79 } 80 reportTranslationError(Val, "unable to translate constant"); 81 } 82 } 83 } 84 return ValReg; 85 } 86 87 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 88 if (FrameIndices.find(&AI) != FrameIndices.end()) 89 return FrameIndices[&AI]; 90 91 MachineFunction &MF = MIRBuilder.getMF(); 92 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 93 unsigned Size = 94 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 95 96 // Always allocate at least one byte. 97 Size = std::max(Size, 1u); 98 99 unsigned Alignment = AI.getAlignment(); 100 if (!Alignment) 101 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 102 103 int &FI = FrameIndices[&AI]; 104 FI = MF.getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 105 return FI; 106 } 107 108 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 109 unsigned Alignment = 0; 110 Type *ValTy = nullptr; 111 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 112 Alignment = SI->getAlignment(); 113 ValTy = SI->getValueOperand()->getType(); 114 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 115 Alignment = LI->getAlignment(); 116 ValTy = LI->getType(); 117 } else if (!TPC->isGlobalISelAbortEnabled()) { 118 MIRBuilder.getMF().getProperties().set( 119 MachineFunctionProperties::Property::FailedISel); 120 return 1; 121 } else 122 llvm_unreachable("unhandled memory instruction"); 123 124 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 125 } 126 127 MachineBasicBlock &IRTranslator::getOrCreateBB(const BasicBlock &BB) { 128 MachineBasicBlock *&MBB = BBToMBB[&BB]; 129 if (!MBB) { 130 MachineFunction &MF = MIRBuilder.getMF(); 131 MBB = MF.CreateMachineBasicBlock(); 132 MF.push_back(MBB); 133 } 134 return *MBB; 135 } 136 137 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U) { 138 // FIXME: handle signed/unsigned wrapping flags. 139 140 // Get or create a virtual register for each value. 141 // Unless the value is a Constant => loadimm cst? 142 // or inline constant each time? 143 // Creation of a virtual register needs to have a size. 144 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 145 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 146 unsigned Res = getOrCreateVReg(U); 147 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); 148 return true; 149 } 150 151 bool IRTranslator::translateCompare(const User &U) { 152 const CmpInst *CI = dyn_cast<CmpInst>(&U); 153 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 154 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 155 unsigned Res = getOrCreateVReg(U); 156 CmpInst::Predicate Pred = 157 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 158 cast<ConstantExpr>(U).getPredicate()); 159 160 if (CmpInst::isIntPredicate(Pred)) 161 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 162 else 163 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); 164 165 return true; 166 } 167 168 bool IRTranslator::translateRet(const User &U) { 169 const ReturnInst &RI = cast<ReturnInst>(U); 170 const Value *Ret = RI.getReturnValue(); 171 // The target may mess up with the insertion point, but 172 // this is not important as a return is the last instruction 173 // of the block anyway. 174 return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret)); 175 } 176 177 bool IRTranslator::translateBr(const User &U) { 178 const BranchInst &BrInst = cast<BranchInst>(U); 179 unsigned Succ = 0; 180 if (!BrInst.isUnconditional()) { 181 // We want a G_BRCOND to the true BB followed by an unconditional branch. 182 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 183 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 184 MachineBasicBlock &TrueBB = getOrCreateBB(TrueTgt); 185 MIRBuilder.buildBrCond(Tst, TrueBB); 186 } 187 188 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 189 MachineBasicBlock &TgtBB = getOrCreateBB(BrTgt); 190 MIRBuilder.buildBr(TgtBB); 191 192 // Link successors. 193 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 194 for (const BasicBlock *Succ : BrInst.successors()) 195 CurBB.addSuccessor(&getOrCreateBB(*Succ)); 196 return true; 197 } 198 199 bool IRTranslator::translateLoad(const User &U) { 200 const LoadInst &LI = cast<LoadInst>(U); 201 202 if (!TPC->isGlobalISelAbortEnabled() && LI.isAtomic()) 203 return false; 204 205 assert(!LI.isAtomic() && "only non-atomic loads are supported at the moment"); 206 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 207 : MachineMemOperand::MONone; 208 Flags |= MachineMemOperand::MOLoad; 209 210 MachineFunction &MF = MIRBuilder.getMF(); 211 unsigned Res = getOrCreateVReg(LI); 212 unsigned Addr = getOrCreateVReg(*LI.getPointerOperand()); 213 LLT VTy{*LI.getType(), *DL}, PTy{*LI.getPointerOperand()->getType(), *DL}; 214 MIRBuilder.buildLoad( 215 Res, Addr, 216 *MF.getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()), 217 Flags, DL->getTypeStoreSize(LI.getType()), 218 getMemOpAlignment(LI))); 219 return true; 220 } 221 222 bool IRTranslator::translateStore(const User &U) { 223 const StoreInst &SI = cast<StoreInst>(U); 224 225 if (!TPC->isGlobalISelAbortEnabled() && SI.isAtomic()) 226 return false; 227 228 assert(!SI.isAtomic() && "only non-atomic stores supported at the moment"); 229 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 230 : MachineMemOperand::MONone; 231 Flags |= MachineMemOperand::MOStore; 232 233 MachineFunction &MF = MIRBuilder.getMF(); 234 unsigned Val = getOrCreateVReg(*SI.getValueOperand()); 235 unsigned Addr = getOrCreateVReg(*SI.getPointerOperand()); 236 LLT VTy{*SI.getValueOperand()->getType(), *DL}, 237 PTy{*SI.getPointerOperand()->getType(), *DL}; 238 239 MIRBuilder.buildStore( 240 Val, Addr, *MF.getMachineMemOperand( 241 MachinePointerInfo(SI.getPointerOperand()), Flags, 242 DL->getTypeStoreSize(SI.getValueOperand()->getType()), 243 getMemOpAlignment(SI))); 244 return true; 245 } 246 247 bool IRTranslator::translateExtractValue(const User &U) { 248 const Value *Src = U.getOperand(0); 249 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 250 SmallVector<Value *, 1> Indices; 251 252 // getIndexedOffsetInType is designed for GEPs, so the first index is the 253 // usual array element rather than looking into the actual aggregate. 254 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 255 256 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 257 for (auto Idx : EVI->indices()) 258 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 259 } else { 260 for (unsigned i = 1; i < U.getNumOperands(); ++i) 261 Indices.push_back(U.getOperand(i)); 262 } 263 264 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 265 266 unsigned Res = getOrCreateVReg(U); 267 MIRBuilder.buildExtract(Res, Offset, getOrCreateVReg(*Src)); 268 269 return true; 270 } 271 272 bool IRTranslator::translateInsertValue(const User &U) { 273 const Value *Src = U.getOperand(0); 274 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 275 SmallVector<Value *, 1> Indices; 276 277 // getIndexedOffsetInType is designed for GEPs, so the first index is the 278 // usual array element rather than looking into the actual aggregate. 279 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 280 281 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 282 for (auto Idx : IVI->indices()) 283 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 284 } else { 285 for (unsigned i = 2; i < U.getNumOperands(); ++i) 286 Indices.push_back(U.getOperand(i)); 287 } 288 289 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 290 291 unsigned Res = getOrCreateVReg(U); 292 const Value &Inserted = *U.getOperand(1); 293 MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), getOrCreateVReg(Inserted), 294 Offset); 295 296 return true; 297 } 298 299 bool IRTranslator::translateSelect(const User &U) { 300 MIRBuilder.buildSelect(getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)), 301 getOrCreateVReg(*U.getOperand(1)), 302 getOrCreateVReg(*U.getOperand(2))); 303 return true; 304 } 305 306 bool IRTranslator::translateBitCast(const User &U) { 307 if (LLT{*U.getOperand(0)->getType(), *DL} == LLT{*U.getType(), *DL}) { 308 unsigned &Reg = ValToVReg[&U]; 309 if (Reg) 310 MIRBuilder.buildCopy(Reg, getOrCreateVReg(*U.getOperand(0))); 311 else 312 Reg = getOrCreateVReg(*U.getOperand(0)); 313 return true; 314 } 315 return translateCast(TargetOpcode::G_BITCAST, U); 316 } 317 318 bool IRTranslator::translateCast(unsigned Opcode, const User &U) { 319 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 320 unsigned Res = getOrCreateVReg(U); 321 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 322 return true; 323 } 324 325 bool IRTranslator::translateGetElementPtr(const User &U) { 326 // FIXME: support vector GEPs. 327 if (U.getType()->isVectorTy()) 328 return false; 329 330 Value &Op0 = *U.getOperand(0); 331 unsigned BaseReg = getOrCreateVReg(Op0); 332 LLT PtrTy{*Op0.getType(), *DL}; 333 unsigned PtrSize = DL->getPointerSizeInBits(PtrTy.getAddressSpace()); 334 LLT OffsetTy = LLT::scalar(PtrSize); 335 336 int64_t Offset = 0; 337 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 338 GTI != E; ++GTI) { 339 const Value *Idx = GTI.getOperand(); 340 if (StructType *StTy = dyn_cast<StructType>(*GTI)) { 341 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 342 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 343 continue; 344 } else { 345 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 346 347 // If this is a scalar constant or a splat vector of constants, 348 // handle it quickly. 349 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 350 Offset += ElementSize * CI->getSExtValue(); 351 continue; 352 } 353 354 if (Offset != 0) { 355 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 356 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 357 MIRBuilder.buildConstant(OffsetReg, Offset); 358 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 359 360 BaseReg = NewBaseReg; 361 Offset = 0; 362 } 363 364 // N = N + Idx * ElementSize; 365 unsigned ElementSizeReg = MRI->createGenericVirtualRegister(OffsetTy); 366 MIRBuilder.buildConstant(ElementSizeReg, ElementSize); 367 368 unsigned IdxReg = getOrCreateVReg(*Idx); 369 if (MRI->getType(IdxReg) != OffsetTy) { 370 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 371 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 372 IdxReg = NewIdxReg; 373 } 374 375 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 376 MIRBuilder.buildMul(OffsetReg, ElementSizeReg, IdxReg); 377 378 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 379 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 380 BaseReg = NewBaseReg; 381 } 382 } 383 384 if (Offset != 0) { 385 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 386 MIRBuilder.buildConstant(OffsetReg, Offset); 387 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 388 return true; 389 } 390 391 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 392 return true; 393 } 394 395 bool IRTranslator::translateMemcpy(const CallInst &CI) { 396 LLT SizeTy{*CI.getArgOperand(2)->getType(), *DL}; 397 if (cast<PointerType>(CI.getArgOperand(0)->getType())->getAddressSpace() != 398 0 || 399 cast<PointerType>(CI.getArgOperand(1)->getType())->getAddressSpace() != 400 0 || 401 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 402 return false; 403 404 SmallVector<CallLowering::ArgInfo, 8> Args; 405 for (int i = 0; i < 3; ++i) { 406 const auto &Arg = CI.getArgOperand(i); 407 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 408 } 409 410 MachineOperand Callee = MachineOperand::CreateES("memcpy"); 411 412 return CLI->lowerCall(MIRBuilder, Callee, 413 CallLowering::ArgInfo(0, CI.getType()), Args); 414 } 415 416 void IRTranslator::getStackGuard(unsigned DstReg) { 417 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 418 MIB.addDef(DstReg); 419 420 auto &MF = MIRBuilder.getMF(); 421 auto &TLI = *MF.getSubtarget().getTargetLowering(); 422 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 423 if (!Global) 424 return; 425 426 MachinePointerInfo MPInfo(Global); 427 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 428 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 429 MachineMemOperand::MODereferenceable; 430 *MemRefs = 431 MF.getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 432 DL->getPointerABIAlignment()); 433 MIB.setMemRefs(MemRefs, MemRefs + 1); 434 } 435 436 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, 437 Intrinsic::ID ID) { 438 unsigned Op = 0; 439 switch (ID) { 440 default: return false; 441 case Intrinsic::uadd_with_overflow: Op = TargetOpcode::G_UADDE; break; 442 case Intrinsic::sadd_with_overflow: Op = TargetOpcode::G_SADDO; break; 443 case Intrinsic::usub_with_overflow: Op = TargetOpcode::G_USUBE; break; 444 case Intrinsic::ssub_with_overflow: Op = TargetOpcode::G_SSUBO; break; 445 case Intrinsic::umul_with_overflow: Op = TargetOpcode::G_UMULO; break; 446 case Intrinsic::smul_with_overflow: Op = TargetOpcode::G_SMULO; break; 447 case Intrinsic::memcpy: 448 return translateMemcpy(CI); 449 case Intrinsic::eh_typeid_for: { 450 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 451 unsigned Reg = getOrCreateVReg(CI); 452 unsigned TypeID = MIRBuilder.getMF().getMMI().getTypeIDFor(GV); 453 MIRBuilder.buildConstant(Reg, TypeID); 454 return true; 455 } 456 case Intrinsic::objectsize: { 457 // If we don't know by now, we're never going to know. 458 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 459 460 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 461 return true; 462 } 463 case Intrinsic::stackguard: 464 getStackGuard(getOrCreateVReg(CI)); 465 return true; 466 case Intrinsic::stackprotector: { 467 MachineFunction &MF = MIRBuilder.getMF(); 468 LLT PtrTy{*CI.getArgOperand(0)->getType(), *DL}; 469 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 470 getStackGuard(GuardVal); 471 472 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 473 MIRBuilder.buildStore( 474 GuardVal, getOrCreateVReg(*Slot), 475 *MF.getMachineMemOperand( 476 MachinePointerInfo::getFixedStack(MF, getOrCreateFrameIndex(*Slot)), 477 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 478 PtrTy.getSizeInBits() / 8, 8)); 479 return true; 480 } 481 } 482 483 LLT Ty{*CI.getOperand(0)->getType(), *DL}; 484 LLT s1 = LLT::scalar(1); 485 unsigned Width = Ty.getSizeInBits(); 486 unsigned Res = MRI->createGenericVirtualRegister(Ty); 487 unsigned Overflow = MRI->createGenericVirtualRegister(s1); 488 auto MIB = MIRBuilder.buildInstr(Op) 489 .addDef(Res) 490 .addDef(Overflow) 491 .addUse(getOrCreateVReg(*CI.getOperand(0))) 492 .addUse(getOrCreateVReg(*CI.getOperand(1))); 493 494 if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) { 495 unsigned Zero = MRI->createGenericVirtualRegister(s1); 496 EntryBuilder.buildConstant(Zero, 0); 497 MIB.addUse(Zero); 498 } 499 500 MIRBuilder.buildSequence(getOrCreateVReg(CI), Res, 0, Overflow, Width); 501 return true; 502 } 503 504 bool IRTranslator::translateCall(const User &U) { 505 const CallInst &CI = cast<CallInst>(U); 506 auto TII = MIRBuilder.getMF().getTarget().getIntrinsicInfo(); 507 const Function *F = CI.getCalledFunction(); 508 509 if (!F || !F->isIntrinsic()) { 510 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 511 SmallVector<unsigned, 8> Args; 512 for (auto &Arg: CI.arg_operands()) 513 Args.push_back(getOrCreateVReg(*Arg)); 514 515 return CLI->lowerCall(MIRBuilder, CI, Res, Args, [&]() { 516 return getOrCreateVReg(*CI.getCalledValue()); 517 }); 518 } 519 520 Intrinsic::ID ID = F->getIntrinsicID(); 521 if (TII && ID == Intrinsic::not_intrinsic) 522 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 523 524 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 525 526 if (translateKnownIntrinsic(CI, ID)) 527 return true; 528 529 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 530 MachineInstrBuilder MIB = 531 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 532 533 for (auto &Arg : CI.arg_operands()) { 534 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) 535 MIB.addImm(CI->getSExtValue()); 536 else 537 MIB.addUse(getOrCreateVReg(*Arg)); 538 } 539 return true; 540 } 541 542 bool IRTranslator::translateInvoke(const User &U) { 543 const InvokeInst &I = cast<InvokeInst>(U); 544 MachineFunction &MF = MIRBuilder.getMF(); 545 MachineModuleInfo &MMI = MF.getMMI(); 546 547 const BasicBlock *ReturnBB = I.getSuccessor(0); 548 const BasicBlock *EHPadBB = I.getSuccessor(1); 549 550 const Value *Callee(I.getCalledValue()); 551 const Function *Fn = dyn_cast<Function>(Callee); 552 if (isa<InlineAsm>(Callee)) 553 return false; 554 555 // FIXME: support invoking patchpoint and statepoint intrinsics. 556 if (Fn && Fn->isIntrinsic()) 557 return false; 558 559 // FIXME: support whatever these are. 560 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 561 return false; 562 563 // FIXME: support Windows exception handling. 564 if (!isa<LandingPadInst>(EHPadBB->front())) 565 return false; 566 567 568 // Emit the actual call, bracketed by EH_LABELs so that the MMI knows about 569 // the region covered by the try. 570 MCSymbol *BeginSymbol = MMI.getContext().createTempSymbol(); 571 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 572 573 unsigned Res = I.getType()->isVoidTy() ? 0 : getOrCreateVReg(I); 574 SmallVector<CallLowering::ArgInfo, 8> Args; 575 for (auto &Arg: I.arg_operands()) 576 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 577 578 if (!CLI->lowerCall(MIRBuilder, MachineOperand::CreateGA(Fn, 0), 579 CallLowering::ArgInfo(Res, I.getType()), Args)) 580 return false; 581 582 MCSymbol *EndSymbol = MMI.getContext().createTempSymbol(); 583 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 584 585 // FIXME: track probabilities. 586 MachineBasicBlock &EHPadMBB = getOrCreateBB(*EHPadBB), 587 &ReturnMBB = getOrCreateBB(*ReturnBB); 588 MMI.addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 589 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 590 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 591 592 return true; 593 } 594 595 bool IRTranslator::translateLandingPad(const User &U) { 596 const LandingPadInst &LP = cast<LandingPadInst>(U); 597 598 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 599 MachineFunction &MF = MIRBuilder.getMF(); 600 MachineModuleInfo &MMI = MF.getMMI(); 601 AddLandingPadInfo(LP, MMI, &MBB); 602 603 MBB.setIsEHPad(); 604 605 // If there aren't registers to copy the values into (e.g., during SjLj 606 // exceptions), then don't bother. 607 auto &TLI = *MF.getSubtarget().getTargetLowering(); 608 const Constant *PersonalityFn = MF.getFunction()->getPersonalityFn(); 609 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 610 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 611 return true; 612 613 // If landingpad's return type is token type, we don't create DAG nodes 614 // for its exception pointer and selector value. The extraction of exception 615 // pointer or selector value from token type landingpads is not currently 616 // supported. 617 if (LP.getType()->isTokenTy()) 618 return true; 619 620 // Add a label to mark the beginning of the landing pad. Deletion of the 621 // landing pad can thus be detected via the MachineModuleInfo. 622 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 623 .addSym(MMI.addLandingPad(&MBB)); 624 625 // Mark exception register as live in. 626 SmallVector<unsigned, 2> Regs; 627 SmallVector<uint64_t, 2> Offsets; 628 LLT p0 = LLT::pointer(0, DL->getPointerSizeInBits()); 629 if (unsigned Reg = TLI.getExceptionPointerRegister(PersonalityFn)) { 630 unsigned VReg = MRI->createGenericVirtualRegister(p0); 631 MIRBuilder.buildCopy(VReg, Reg); 632 Regs.push_back(VReg); 633 Offsets.push_back(0); 634 } 635 636 if (unsigned Reg = TLI.getExceptionSelectorRegister(PersonalityFn)) { 637 unsigned VReg = MRI->createGenericVirtualRegister(p0); 638 MIRBuilder.buildCopy(VReg, Reg); 639 Regs.push_back(VReg); 640 Offsets.push_back(p0.getSizeInBits()); 641 } 642 643 MIRBuilder.buildSequence(getOrCreateVReg(LP), Regs, Offsets); 644 return true; 645 } 646 647 bool IRTranslator::translateStaticAlloca(const AllocaInst &AI) { 648 if (!TPC->isGlobalISelAbortEnabled() && !AI.isStaticAlloca()) 649 return false; 650 651 assert(AI.isStaticAlloca() && "only handle static allocas now"); 652 unsigned Res = getOrCreateVReg(AI); 653 int FI = getOrCreateFrameIndex(AI); 654 MIRBuilder.buildFrameIndex(Res, FI); 655 return true; 656 } 657 658 bool IRTranslator::translatePHI(const User &U) { 659 const PHINode &PI = cast<PHINode>(U); 660 auto MIB = MIRBuilder.buildInstr(TargetOpcode::PHI); 661 MIB.addDef(getOrCreateVReg(PI)); 662 663 PendingPHIs.emplace_back(&PI, MIB.getInstr()); 664 return true; 665 } 666 667 void IRTranslator::finishPendingPhis() { 668 for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) { 669 const PHINode *PI = Phi.first; 670 MachineInstrBuilder MIB(MIRBuilder.getMF(), Phi.second); 671 672 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 673 // won't create extra control flow here, otherwise we need to find the 674 // dominating predecessor here (or perhaps force the weirder IRTranslators 675 // to provide a simple boundary). 676 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 677 assert(BBToMBB[PI->getIncomingBlock(i)]->isSuccessor(MIB->getParent()) && 678 "I appear to have misunderstood Machine PHIs"); 679 MIB.addUse(getOrCreateVReg(*PI->getIncomingValue(i))); 680 MIB.addMBB(BBToMBB[PI->getIncomingBlock(i)]); 681 } 682 } 683 684 PendingPHIs.clear(); 685 } 686 687 bool IRTranslator::translate(const Instruction &Inst) { 688 MIRBuilder.setDebugLoc(Inst.getDebugLoc()); 689 switch(Inst.getOpcode()) { 690 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 691 case Instruction::OPCODE: return translate##OPCODE(Inst); 692 #include "llvm/IR/Instruction.def" 693 default: 694 if (!TPC->isGlobalISelAbortEnabled()) 695 return false; 696 llvm_unreachable("unknown opcode"); 697 } 698 } 699 700 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 701 if (auto CI = dyn_cast<ConstantInt>(&C)) 702 EntryBuilder.buildConstant(Reg, CI->getZExtValue()); 703 else if (auto CF = dyn_cast<ConstantFP>(&C)) 704 EntryBuilder.buildFConstant(Reg, *CF); 705 else if (isa<UndefValue>(C)) 706 EntryBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF).addDef(Reg); 707 else if (isa<ConstantPointerNull>(C)) 708 EntryBuilder.buildInstr(TargetOpcode::G_CONSTANT) 709 .addDef(Reg) 710 .addImm(0); 711 else if (auto GV = dyn_cast<GlobalValue>(&C)) 712 EntryBuilder.buildGlobalValue(Reg, GV); 713 else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 714 switch(CE->getOpcode()) { 715 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 716 case Instruction::OPCODE: return translate##OPCODE(*CE); 717 #include "llvm/IR/Instruction.def" 718 default: 719 if (!TPC->isGlobalISelAbortEnabled()) 720 return false; 721 llvm_unreachable("unknown opcode"); 722 } 723 } else if (!TPC->isGlobalISelAbortEnabled()) 724 return false; 725 else 726 llvm_unreachable("unhandled constant kind"); 727 728 return true; 729 } 730 731 void IRTranslator::finalizeFunction() { 732 finishPendingPhis(); 733 734 // Release the memory used by the different maps we 735 // needed during the translation. 736 ValToVReg.clear(); 737 FrameIndices.clear(); 738 Constants.clear(); 739 } 740 741 bool IRTranslator::runOnMachineFunction(MachineFunction &MF) { 742 const Function &F = *MF.getFunction(); 743 if (F.empty()) 744 return false; 745 CLI = MF.getSubtarget().getCallLowering(); 746 MIRBuilder.setMF(MF); 747 EntryBuilder.setMF(MF); 748 MRI = &MF.getRegInfo(); 749 DL = &F.getParent()->getDataLayout(); 750 TPC = &getAnalysis<TargetPassConfig>(); 751 752 assert(PendingPHIs.empty() && "stale PHIs"); 753 754 // Setup the arguments. 755 MachineBasicBlock &MBB = getOrCreateBB(F.front()); 756 MIRBuilder.setMBB(MBB); 757 SmallVector<unsigned, 8> VRegArgs; 758 for (const Argument &Arg: F.args()) 759 VRegArgs.push_back(getOrCreateVReg(Arg)); 760 bool Succeeded = CLI->lowerFormalArguments(MIRBuilder, F, VRegArgs); 761 if (!Succeeded) { 762 if (!TPC->isGlobalISelAbortEnabled()) { 763 MIRBuilder.getMF().getProperties().set( 764 MachineFunctionProperties::Property::FailedISel); 765 return false; 766 } 767 report_fatal_error("Unable to lower arguments"); 768 } 769 770 // Now that we've got the ABI handling code, it's safe to set a location for 771 // any Constants we find in the IR. 772 if (MBB.empty()) 773 EntryBuilder.setMBB(MBB); 774 else 775 EntryBuilder.setInstr(MBB.back(), /* Before */ false); 776 777 for (const BasicBlock &BB: F) { 778 MachineBasicBlock &MBB = getOrCreateBB(BB); 779 // Set the insertion point of all the following translations to 780 // the end of this basic block. 781 MIRBuilder.setMBB(MBB); 782 783 for (const Instruction &Inst: BB) { 784 bool Succeeded = translate(Inst); 785 if (!Succeeded) { 786 if (TPC->isGlobalISelAbortEnabled()) 787 reportTranslationError(Inst, "unable to translate instruction"); 788 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 789 break; 790 } 791 } 792 } 793 794 finalizeFunction(); 795 796 // Now that the MachineFrameInfo has been configured, no further changes to 797 // the reserved registers are possible. 798 MRI->freezeReservedRegs(MF); 799 800 return false; 801 } 802