1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/FunctionLoweringInfo.h" 24 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 25 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 26 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 27 #include "llvm/CodeGen/LowLevelType.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/StackProtector.h" 36 #include "llvm/CodeGen/TargetFrameLowering.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfo.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GetElementPtrTypeIterator.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/MCContext.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/LowLevelTypeImpl.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetIntrinsicInfo.h" 72 #include "llvm/Target/TargetMachine.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <iterator> 77 #include <string> 78 #include <utility> 79 #include <vector> 80 81 #define DEBUG_TYPE "irtranslator" 82 83 using namespace llvm; 84 85 static cl::opt<bool> 86 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 87 cl::desc("Should enable CSE in irtranslator"), 88 cl::Optional, cl::init(false)); 89 char IRTranslator::ID = 0; 90 91 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 92 false, false) 93 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 94 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 95 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 96 false, false) 97 98 static void reportTranslationError(MachineFunction &MF, 99 const TargetPassConfig &TPC, 100 OptimizationRemarkEmitter &ORE, 101 OptimizationRemarkMissed &R) { 102 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 103 104 // Print the function name explicitly if we don't have a debug location (which 105 // makes the diagnostic less useful) or if we're going to emit a raw error. 106 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 107 R << (" (in function: " + MF.getName() + ")").str(); 108 109 if (TPC.isGlobalISelAbortEnabled()) 110 report_fatal_error(R.getMsg()); 111 else 112 ORE.emit(R); 113 } 114 115 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } 116 117 #ifndef NDEBUG 118 namespace { 119 /// Verify that every instruction created has the same DILocation as the 120 /// instruction being translated. 121 class DILocationVerifier : public GISelChangeObserver { 122 const Instruction *CurrInst = nullptr; 123 124 public: 125 DILocationVerifier() = default; 126 ~DILocationVerifier() = default; 127 128 const Instruction *getCurrentInst() const { return CurrInst; } 129 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 130 131 void erasingInstr(MachineInstr &MI) override {} 132 void changingInstr(MachineInstr &MI) override {} 133 void changedInstr(MachineInstr &MI) override {} 134 135 void createdInstr(MachineInstr &MI) override { 136 assert(getCurrentInst() && "Inserted instruction without a current MI"); 137 138 // Only print the check message if we're actually checking it. 139 #ifndef NDEBUG 140 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 141 << " was copied to " << MI); 142 #endif 143 // We allow insts in the entry block to have a debug loc line of 0 because 144 // they could have originated from constants, and we don't want a jumpy 145 // debug experience. 146 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 147 MI.getDebugLoc().getLine() == 0) && 148 "Line info was not transferred to all instructions"); 149 } 150 }; 151 } // namespace 152 #endif // ifndef NDEBUG 153 154 155 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 156 AU.addRequired<StackProtector>(); 157 AU.addRequired<TargetPassConfig>(); 158 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 159 getSelectionDAGFallbackAnalysisUsage(AU); 160 MachineFunctionPass::getAnalysisUsage(AU); 161 } 162 163 IRTranslator::ValueToVRegInfo::VRegListT & 164 IRTranslator::allocateVRegs(const Value &Val) { 165 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 166 auto *Regs = VMap.getVRegs(Val); 167 auto *Offsets = VMap.getOffsets(Val); 168 SmallVector<LLT, 4> SplitTys; 169 computeValueLLTs(*DL, *Val.getType(), SplitTys, 170 Offsets->empty() ? Offsets : nullptr); 171 for (unsigned i = 0; i < SplitTys.size(); ++i) 172 Regs->push_back(0); 173 return *Regs; 174 } 175 176 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 177 auto VRegsIt = VMap.findVRegs(Val); 178 if (VRegsIt != VMap.vregs_end()) 179 return *VRegsIt->second; 180 181 if (Val.getType()->isVoidTy()) 182 return *VMap.getVRegs(Val); 183 184 // Create entry for this type. 185 auto *VRegs = VMap.getVRegs(Val); 186 auto *Offsets = VMap.getOffsets(Val); 187 188 assert(Val.getType()->isSized() && 189 "Don't know how to create an empty vreg"); 190 191 SmallVector<LLT, 4> SplitTys; 192 computeValueLLTs(*DL, *Val.getType(), SplitTys, 193 Offsets->empty() ? Offsets : nullptr); 194 195 if (!isa<Constant>(Val)) { 196 for (auto Ty : SplitTys) 197 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 198 return *VRegs; 199 } 200 201 if (Val.getType()->isAggregateType()) { 202 // UndefValue, ConstantAggregateZero 203 auto &C = cast<Constant>(Val); 204 unsigned Idx = 0; 205 while (auto Elt = C.getAggregateElement(Idx++)) { 206 auto EltRegs = getOrCreateVRegs(*Elt); 207 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 208 } 209 } else { 210 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 211 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 212 bool Success = translate(cast<Constant>(Val), VRegs->front()); 213 if (!Success) { 214 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 215 MF->getFunction().getSubprogram(), 216 &MF->getFunction().getEntryBlock()); 217 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 218 reportTranslationError(*MF, *TPC, *ORE, R); 219 return *VRegs; 220 } 221 } 222 223 return *VRegs; 224 } 225 226 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 227 if (FrameIndices.find(&AI) != FrameIndices.end()) 228 return FrameIndices[&AI]; 229 230 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 231 uint64_t Size = 232 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 233 234 // Always allocate at least one byte. 235 Size = std::max<uint64_t>(Size, 1u); 236 237 unsigned Alignment = AI.getAlignment(); 238 if (!Alignment) 239 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 240 241 int &FI = FrameIndices[&AI]; 242 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 243 return FI; 244 } 245 246 Align IRTranslator::getMemOpAlign(const Instruction &I) { 247 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 248 Type *ValTy = SI->getValueOperand()->getType(); 249 return SI->getAlign().getValueOr(DL->getABITypeAlign(ValTy)); 250 } 251 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 252 return DL->getValueOrABITypeAlignment(LI->getAlign(), LI->getType()); 253 } 254 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 255 // TODO(PR27168): This instruction has no alignment attribute, but unlike 256 // the default alignment for load/store, the default here is to assume 257 // it has NATURAL alignment, not DataLayout-specified alignment. 258 const DataLayout &DL = AI->getModule()->getDataLayout(); 259 return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType())); 260 } 261 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 262 // TODO(PR27168): This instruction has no alignment attribute, but unlike 263 // the default alignment for load/store, the default here is to assume 264 // it has NATURAL alignment, not DataLayout-specified alignment. 265 const DataLayout &DL = AI->getModule()->getDataLayout(); 266 return Align(DL.getTypeStoreSize(AI->getValOperand()->getType())); 267 } 268 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 269 R << "unable to translate memop: " << ore::NV("Opcode", &I); 270 reportTranslationError(*MF, *TPC, *ORE, R); 271 return Align(1); 272 } 273 274 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 275 MachineBasicBlock *&MBB = BBToMBB[&BB]; 276 assert(MBB && "BasicBlock was not encountered before"); 277 return *MBB; 278 } 279 280 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 281 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 282 MachinePreds[Edge].push_back(NewPred); 283 } 284 285 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 286 MachineIRBuilder &MIRBuilder) { 287 // Get or create a virtual register for each value. 288 // Unless the value is a Constant => loadimm cst? 289 // or inline constant each time? 290 // Creation of a virtual register needs to have a size. 291 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 292 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 293 Register Res = getOrCreateVReg(U); 294 uint16_t Flags = 0; 295 if (isa<Instruction>(U)) { 296 const Instruction &I = cast<Instruction>(U); 297 Flags = MachineInstr::copyFlagsFromInstruction(I); 298 } 299 300 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 301 return true; 302 } 303 304 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 305 // -0.0 - X --> G_FNEG 306 if (isa<Constant>(U.getOperand(0)) && 307 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 308 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 309 Register Res = getOrCreateVReg(U); 310 uint16_t Flags = 0; 311 if (isa<Instruction>(U)) { 312 const Instruction &I = cast<Instruction>(U); 313 Flags = MachineInstr::copyFlagsFromInstruction(I); 314 } 315 // Negate the last operand of the FSUB 316 MIRBuilder.buildFNeg(Res, Op1, Flags); 317 return true; 318 } 319 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 320 } 321 322 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 323 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 324 Register Res = getOrCreateVReg(U); 325 uint16_t Flags = 0; 326 if (isa<Instruction>(U)) { 327 const Instruction &I = cast<Instruction>(U); 328 Flags = MachineInstr::copyFlagsFromInstruction(I); 329 } 330 MIRBuilder.buildFNeg(Res, Op0, Flags); 331 return true; 332 } 333 334 bool IRTranslator::translateCompare(const User &U, 335 MachineIRBuilder &MIRBuilder) { 336 auto *CI = dyn_cast<CmpInst>(&U); 337 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 338 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 339 Register Res = getOrCreateVReg(U); 340 CmpInst::Predicate Pred = 341 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 342 cast<ConstantExpr>(U).getPredicate()); 343 if (CmpInst::isIntPredicate(Pred)) 344 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 345 else if (Pred == CmpInst::FCMP_FALSE) 346 MIRBuilder.buildCopy( 347 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 348 else if (Pred == CmpInst::FCMP_TRUE) 349 MIRBuilder.buildCopy( 350 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 351 else { 352 assert(CI && "Instruction should be CmpInst"); 353 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, 354 MachineInstr::copyFlagsFromInstruction(*CI)); 355 } 356 357 return true; 358 } 359 360 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 361 const ReturnInst &RI = cast<ReturnInst>(U); 362 const Value *Ret = RI.getReturnValue(); 363 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 364 Ret = nullptr; 365 366 ArrayRef<Register> VRegs; 367 if (Ret) 368 VRegs = getOrCreateVRegs(*Ret); 369 370 Register SwiftErrorVReg = 0; 371 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 372 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 373 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 374 } 375 376 // The target may mess up with the insertion point, but 377 // this is not important as a return is the last instruction 378 // of the block anyway. 379 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 380 } 381 382 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 383 const BranchInst &BrInst = cast<BranchInst>(U); 384 unsigned Succ = 0; 385 if (!BrInst.isUnconditional()) { 386 // We want a G_BRCOND to the true BB followed by an unconditional branch. 387 Register Tst = getOrCreateVReg(*BrInst.getCondition()); 388 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 389 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 390 MIRBuilder.buildBrCond(Tst, TrueBB); 391 } 392 393 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 394 MachineBasicBlock &TgtBB = getMBB(BrTgt); 395 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 396 397 // If the unconditional target is the layout successor, fallthrough. 398 if (!CurBB.isLayoutSuccessor(&TgtBB)) 399 MIRBuilder.buildBr(TgtBB); 400 401 // Link successors. 402 for (const BasicBlock *Succ : successors(&BrInst)) 403 CurBB.addSuccessor(&getMBB(*Succ)); 404 return true; 405 } 406 407 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 408 MachineBasicBlock *Dst, 409 BranchProbability Prob) { 410 if (!FuncInfo.BPI) { 411 Src->addSuccessorWithoutProb(Dst); 412 return; 413 } 414 if (Prob.isUnknown()) 415 Prob = getEdgeProbability(Src, Dst); 416 Src->addSuccessor(Dst, Prob); 417 } 418 419 BranchProbability 420 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 421 const MachineBasicBlock *Dst) const { 422 const BasicBlock *SrcBB = Src->getBasicBlock(); 423 const BasicBlock *DstBB = Dst->getBasicBlock(); 424 if (!FuncInfo.BPI) { 425 // If BPI is not available, set the default probability as 1 / N, where N is 426 // the number of successors. 427 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 428 return BranchProbability(1, SuccSize); 429 } 430 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 431 } 432 433 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 434 using namespace SwitchCG; 435 // Extract cases from the switch. 436 const SwitchInst &SI = cast<SwitchInst>(U); 437 BranchProbabilityInfo *BPI = FuncInfo.BPI; 438 CaseClusterVector Clusters; 439 Clusters.reserve(SI.getNumCases()); 440 for (auto &I : SI.cases()) { 441 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 442 assert(Succ && "Could not find successor mbb in mapping"); 443 const ConstantInt *CaseVal = I.getCaseValue(); 444 BranchProbability Prob = 445 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 446 : BranchProbability(1, SI.getNumCases() + 1); 447 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 448 } 449 450 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 451 452 // Cluster adjacent cases with the same destination. We do this at all 453 // optimization levels because it's cheap to do and will make codegen faster 454 // if there are many clusters. 455 sortAndRangeify(Clusters); 456 457 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 458 459 // If there is only the default destination, jump there directly. 460 if (Clusters.empty()) { 461 SwitchMBB->addSuccessor(DefaultMBB); 462 if (DefaultMBB != SwitchMBB->getNextNode()) 463 MIB.buildBr(*DefaultMBB); 464 return true; 465 } 466 467 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 468 469 LLVM_DEBUG({ 470 dbgs() << "Case clusters: "; 471 for (const CaseCluster &C : Clusters) { 472 if (C.Kind == CC_JumpTable) 473 dbgs() << "JT:"; 474 if (C.Kind == CC_BitTests) 475 dbgs() << "BT:"; 476 477 C.Low->getValue().print(dbgs(), true); 478 if (C.Low != C.High) { 479 dbgs() << '-'; 480 C.High->getValue().print(dbgs(), true); 481 } 482 dbgs() << ' '; 483 } 484 dbgs() << '\n'; 485 }); 486 487 assert(!Clusters.empty()); 488 SwitchWorkList WorkList; 489 CaseClusterIt First = Clusters.begin(); 490 CaseClusterIt Last = Clusters.end() - 1; 491 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 492 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 493 494 // FIXME: At the moment we don't do any splitting optimizations here like 495 // SelectionDAG does, so this worklist only has one entry. 496 while (!WorkList.empty()) { 497 SwitchWorkListItem W = WorkList.back(); 498 WorkList.pop_back(); 499 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 500 return false; 501 } 502 return true; 503 } 504 505 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 506 MachineBasicBlock *MBB) { 507 // Emit the code for the jump table 508 assert(JT.Reg != -1U && "Should lower JT Header first!"); 509 MachineIRBuilder MIB(*MBB->getParent()); 510 MIB.setMBB(*MBB); 511 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 512 513 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 514 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 515 516 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 517 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 518 } 519 520 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 521 SwitchCG::JumpTableHeader &JTH, 522 MachineBasicBlock *HeaderBB) { 523 MachineIRBuilder MIB(*HeaderBB->getParent()); 524 MIB.setMBB(*HeaderBB); 525 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 526 527 const Value &SValue = *JTH.SValue; 528 // Subtract the lowest switch case value from the value being switched on. 529 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 530 Register SwitchOpReg = getOrCreateVReg(SValue); 531 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 532 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 533 534 // This value may be smaller or larger than the target's pointer type, and 535 // therefore require extension or truncating. 536 Type *PtrIRTy = SValue.getType()->getPointerTo(); 537 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 538 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 539 540 JT.Reg = Sub.getReg(0); 541 542 if (JTH.OmitRangeCheck) { 543 if (JT.MBB != HeaderBB->getNextNode()) 544 MIB.buildBr(*JT.MBB); 545 return true; 546 } 547 548 // Emit the range check for the jump table, and branch to the default block 549 // for the switch statement if the value being switched on exceeds the 550 // largest case in the switch. 551 auto Cst = getOrCreateVReg( 552 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 553 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 554 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 555 556 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 557 558 // Avoid emitting unnecessary branches to the next block. 559 if (JT.MBB != HeaderBB->getNextNode()) 560 BrCond = MIB.buildBr(*JT.MBB); 561 return true; 562 } 563 564 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 565 MachineBasicBlock *SwitchBB, 566 MachineIRBuilder &MIB) { 567 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 568 Register Cond; 569 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 570 MIB.setDebugLoc(CB.DbgLoc); 571 MIB.setMBB(*CB.ThisBB); 572 573 if (CB.PredInfo.NoCmp) { 574 // Branch or fall through to TrueBB. 575 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 576 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 577 CB.ThisBB); 578 CB.ThisBB->normalizeSuccProbs(); 579 if (CB.TrueBB != CB.ThisBB->getNextNode()) 580 MIB.buildBr(*CB.TrueBB); 581 MIB.setDebugLoc(OldDbgLoc); 582 return; 583 } 584 585 const LLT i1Ty = LLT::scalar(1); 586 // Build the compare. 587 if (!CB.CmpMHS) { 588 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 589 Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 590 } else { 591 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 592 "Can only handle SLE ranges"); 593 594 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 595 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 596 597 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 598 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 599 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 600 Cond = 601 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 602 } else { 603 const LLT CmpTy = MRI->getType(CmpOpReg); 604 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 605 auto Diff = MIB.buildConstant(CmpTy, High - Low); 606 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 607 } 608 } 609 610 // Update successor info 611 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 612 613 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 614 CB.ThisBB); 615 616 // TrueBB and FalseBB are always different unless the incoming IR is 617 // degenerate. This only happens when running llc on weird IR. 618 if (CB.TrueBB != CB.FalseBB) 619 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 620 CB.ThisBB->normalizeSuccProbs(); 621 622 // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) 623 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 624 CB.ThisBB); 625 626 // If the lhs block is the next block, invert the condition so that we can 627 // fall through to the lhs instead of the rhs block. 628 if (CB.TrueBB == CB.ThisBB->getNextNode()) { 629 std::swap(CB.TrueBB, CB.FalseBB); 630 auto True = MIB.buildConstant(i1Ty, 1); 631 Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0); 632 } 633 634 MIB.buildBrCond(Cond, *CB.TrueBB); 635 MIB.buildBr(*CB.FalseBB); 636 MIB.setDebugLoc(OldDbgLoc); 637 } 638 639 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 640 MachineBasicBlock *SwitchMBB, 641 MachineBasicBlock *CurMBB, 642 MachineBasicBlock *DefaultMBB, 643 MachineIRBuilder &MIB, 644 MachineFunction::iterator BBI, 645 BranchProbability UnhandledProbs, 646 SwitchCG::CaseClusterIt I, 647 MachineBasicBlock *Fallthrough, 648 bool FallthroughUnreachable) { 649 using namespace SwitchCG; 650 MachineFunction *CurMF = SwitchMBB->getParent(); 651 // FIXME: Optimize away range check based on pivot comparisons. 652 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 653 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 654 BranchProbability DefaultProb = W.DefaultProb; 655 656 // The jump block hasn't been inserted yet; insert it here. 657 MachineBasicBlock *JumpMBB = JT->MBB; 658 CurMF->insert(BBI, JumpMBB); 659 660 // Since the jump table block is separate from the switch block, we need 661 // to keep track of it as a machine predecessor to the default block, 662 // otherwise we lose the phi edges. 663 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 664 CurMBB); 665 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 666 JumpMBB); 667 668 auto JumpProb = I->Prob; 669 auto FallthroughProb = UnhandledProbs; 670 671 // If the default statement is a target of the jump table, we evenly 672 // distribute the default probability to successors of CurMBB. Also 673 // update the probability on the edge from JumpMBB to Fallthrough. 674 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 675 SE = JumpMBB->succ_end(); 676 SI != SE; ++SI) { 677 if (*SI == DefaultMBB) { 678 JumpProb += DefaultProb / 2; 679 FallthroughProb -= DefaultProb / 2; 680 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 681 JumpMBB->normalizeSuccProbs(); 682 } else { 683 // Also record edges from the jump table block to it's successors. 684 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 685 JumpMBB); 686 } 687 } 688 689 // Skip the range check if the fallthrough block is unreachable. 690 if (FallthroughUnreachable) 691 JTH->OmitRangeCheck = true; 692 693 if (!JTH->OmitRangeCheck) 694 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 695 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 696 CurMBB->normalizeSuccProbs(); 697 698 // The jump table header will be inserted in our current block, do the 699 // range check, and fall through to our fallthrough block. 700 JTH->HeaderBB = CurMBB; 701 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 702 703 // If we're in the right place, emit the jump table header right now. 704 if (CurMBB == SwitchMBB) { 705 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 706 return false; 707 JTH->Emitted = true; 708 } 709 return true; 710 } 711 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 712 Value *Cond, 713 MachineBasicBlock *Fallthrough, 714 bool FallthroughUnreachable, 715 BranchProbability UnhandledProbs, 716 MachineBasicBlock *CurMBB, 717 MachineIRBuilder &MIB, 718 MachineBasicBlock *SwitchMBB) { 719 using namespace SwitchCG; 720 const Value *RHS, *LHS, *MHS; 721 CmpInst::Predicate Pred; 722 if (I->Low == I->High) { 723 // Check Cond == I->Low. 724 Pred = CmpInst::ICMP_EQ; 725 LHS = Cond; 726 RHS = I->Low; 727 MHS = nullptr; 728 } else { 729 // Check I->Low <= Cond <= I->High. 730 Pred = CmpInst::ICMP_SLE; 731 LHS = I->Low; 732 MHS = Cond; 733 RHS = I->High; 734 } 735 736 // If Fallthrough is unreachable, fold away the comparison. 737 // The false probability is the sum of all unhandled cases. 738 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 739 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 740 741 emitSwitchCase(CB, SwitchMBB, MIB); 742 return true; 743 } 744 745 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 746 Value *Cond, 747 MachineBasicBlock *SwitchMBB, 748 MachineBasicBlock *DefaultMBB, 749 MachineIRBuilder &MIB) { 750 using namespace SwitchCG; 751 MachineFunction *CurMF = FuncInfo.MF; 752 MachineBasicBlock *NextMBB = nullptr; 753 MachineFunction::iterator BBI(W.MBB); 754 if (++BBI != FuncInfo.MF->end()) 755 NextMBB = &*BBI; 756 757 if (EnableOpts) { 758 // Here, we order cases by probability so the most likely case will be 759 // checked first. However, two clusters can have the same probability in 760 // which case their relative ordering is non-deterministic. So we use Low 761 // as a tie-breaker as clusters are guaranteed to never overlap. 762 llvm::sort(W.FirstCluster, W.LastCluster + 1, 763 [](const CaseCluster &a, const CaseCluster &b) { 764 return a.Prob != b.Prob 765 ? a.Prob > b.Prob 766 : a.Low->getValue().slt(b.Low->getValue()); 767 }); 768 769 // Rearrange the case blocks so that the last one falls through if possible 770 // without changing the order of probabilities. 771 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 772 --I; 773 if (I->Prob > W.LastCluster->Prob) 774 break; 775 if (I->Kind == CC_Range && I->MBB == NextMBB) { 776 std::swap(*I, *W.LastCluster); 777 break; 778 } 779 } 780 } 781 782 // Compute total probability. 783 BranchProbability DefaultProb = W.DefaultProb; 784 BranchProbability UnhandledProbs = DefaultProb; 785 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 786 UnhandledProbs += I->Prob; 787 788 MachineBasicBlock *CurMBB = W.MBB; 789 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 790 bool FallthroughUnreachable = false; 791 MachineBasicBlock *Fallthrough; 792 if (I == W.LastCluster) { 793 // For the last cluster, fall through to the default destination. 794 Fallthrough = DefaultMBB; 795 FallthroughUnreachable = isa<UnreachableInst>( 796 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 797 } else { 798 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 799 CurMF->insert(BBI, Fallthrough); 800 } 801 UnhandledProbs -= I->Prob; 802 803 switch (I->Kind) { 804 case CC_BitTests: { 805 LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented"); 806 return false; // Bit tests currently unimplemented. 807 } 808 case CC_JumpTable: { 809 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 810 UnhandledProbs, I, Fallthrough, 811 FallthroughUnreachable)) { 812 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 813 return false; 814 } 815 break; 816 } 817 case CC_Range: { 818 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 819 FallthroughUnreachable, UnhandledProbs, 820 CurMBB, MIB, SwitchMBB)) { 821 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 822 return false; 823 } 824 break; 825 } 826 } 827 CurMBB = Fallthrough; 828 } 829 830 return true; 831 } 832 833 bool IRTranslator::translateIndirectBr(const User &U, 834 MachineIRBuilder &MIRBuilder) { 835 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 836 837 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 838 MIRBuilder.buildBrIndirect(Tgt); 839 840 // Link successors. 841 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 842 for (const BasicBlock *Succ : successors(&BrInst)) 843 CurBB.addSuccessor(&getMBB(*Succ)); 844 845 return true; 846 } 847 848 static bool isSwiftError(const Value *V) { 849 if (auto Arg = dyn_cast<Argument>(V)) 850 return Arg->hasSwiftErrorAttr(); 851 if (auto AI = dyn_cast<AllocaInst>(V)) 852 return AI->isSwiftError(); 853 return false; 854 } 855 856 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 857 const LoadInst &LI = cast<LoadInst>(U); 858 if (DL->getTypeStoreSize(LI.getType()) == 0) 859 return true; 860 861 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 862 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 863 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 864 865 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 866 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 867 868 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 869 assert(Regs.size() == 1 && "swifterror should be single pointer"); 870 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 871 LI.getPointerOperand()); 872 MIRBuilder.buildCopy(Regs[0], VReg); 873 return true; 874 } 875 876 auto &TLI = *MF->getSubtarget().getTargetLowering(); 877 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 878 879 const MDNode *Ranges = 880 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 881 for (unsigned i = 0; i < Regs.size(); ++i) { 882 Register Addr; 883 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 884 885 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 886 Align BaseAlign = getMemOpAlign(LI); 887 AAMDNodes AAMetadata; 888 LI.getAAMetadata(AAMetadata); 889 auto MMO = MF->getMachineMemOperand( 890 Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(), 891 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges, 892 LI.getSyncScopeID(), LI.getOrdering()); 893 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 894 } 895 896 return true; 897 } 898 899 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 900 const StoreInst &SI = cast<StoreInst>(U); 901 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 902 return true; 903 904 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 905 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 906 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 907 908 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 909 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 910 911 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 912 assert(Vals.size() == 1 && "swifterror should be single pointer"); 913 914 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 915 SI.getPointerOperand()); 916 MIRBuilder.buildCopy(VReg, Vals[0]); 917 return true; 918 } 919 920 auto &TLI = *MF->getSubtarget().getTargetLowering(); 921 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 922 923 for (unsigned i = 0; i < Vals.size(); ++i) { 924 Register Addr; 925 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 926 927 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 928 Align BaseAlign = getMemOpAlign(SI); 929 AAMDNodes AAMetadata; 930 SI.getAAMetadata(AAMetadata); 931 auto MMO = MF->getMachineMemOperand( 932 Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(), 933 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr, 934 SI.getSyncScopeID(), SI.getOrdering()); 935 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 936 } 937 return true; 938 } 939 940 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 941 const Value *Src = U.getOperand(0); 942 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 943 944 // getIndexedOffsetInType is designed for GEPs, so the first index is the 945 // usual array element rather than looking into the actual aggregate. 946 SmallVector<Value *, 1> Indices; 947 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 948 949 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 950 for (auto Idx : EVI->indices()) 951 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 952 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 953 for (auto Idx : IVI->indices()) 954 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 955 } else { 956 for (unsigned i = 1; i < U.getNumOperands(); ++i) 957 Indices.push_back(U.getOperand(i)); 958 } 959 960 return 8 * static_cast<uint64_t>( 961 DL.getIndexedOffsetInType(Src->getType(), Indices)); 962 } 963 964 bool IRTranslator::translateExtractValue(const User &U, 965 MachineIRBuilder &MIRBuilder) { 966 const Value *Src = U.getOperand(0); 967 uint64_t Offset = getOffsetFromIndices(U, *DL); 968 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 969 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 970 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 971 auto &DstRegs = allocateVRegs(U); 972 973 for (unsigned i = 0; i < DstRegs.size(); ++i) 974 DstRegs[i] = SrcRegs[Idx++]; 975 976 return true; 977 } 978 979 bool IRTranslator::translateInsertValue(const User &U, 980 MachineIRBuilder &MIRBuilder) { 981 const Value *Src = U.getOperand(0); 982 uint64_t Offset = getOffsetFromIndices(U, *DL); 983 auto &DstRegs = allocateVRegs(U); 984 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 985 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 986 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 987 auto InsertedIt = InsertedRegs.begin(); 988 989 for (unsigned i = 0; i < DstRegs.size(); ++i) { 990 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 991 DstRegs[i] = *InsertedIt++; 992 else 993 DstRegs[i] = SrcRegs[i]; 994 } 995 996 return true; 997 } 998 999 bool IRTranslator::translateSelect(const User &U, 1000 MachineIRBuilder &MIRBuilder) { 1001 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1002 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1003 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1004 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1005 1006 const SelectInst &SI = cast<SelectInst>(U); 1007 uint16_t Flags = 0; 1008 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 1009 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 1010 1011 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1012 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1013 } 1014 1015 return true; 1016 } 1017 1018 bool IRTranslator::translateBitCast(const User &U, 1019 MachineIRBuilder &MIRBuilder) { 1020 // If we're bitcasting to the source type, we can reuse the source vreg. 1021 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1022 getLLTForType(*U.getType(), *DL)) { 1023 Register SrcReg = getOrCreateVReg(*U.getOperand(0)); 1024 auto &Regs = *VMap.getVRegs(U); 1025 // If we already assigned a vreg for this bitcast, we can't change that. 1026 // Emit a copy to satisfy the users we already emitted. 1027 if (!Regs.empty()) 1028 MIRBuilder.buildCopy(Regs[0], SrcReg); 1029 else { 1030 Regs.push_back(SrcReg); 1031 VMap.getOffsets(U)->push_back(0); 1032 } 1033 return true; 1034 } 1035 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1036 } 1037 1038 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1039 MachineIRBuilder &MIRBuilder) { 1040 Register Op = getOrCreateVReg(*U.getOperand(0)); 1041 Register Res = getOrCreateVReg(U); 1042 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1043 return true; 1044 } 1045 1046 bool IRTranslator::translateGetElementPtr(const User &U, 1047 MachineIRBuilder &MIRBuilder) { 1048 Value &Op0 = *U.getOperand(0); 1049 Register BaseReg = getOrCreateVReg(Op0); 1050 Type *PtrIRTy = Op0.getType(); 1051 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1052 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1053 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1054 1055 // Normalize Vector GEP - all scalar operands should be converted to the 1056 // splat vector. 1057 unsigned VectorWidth = 0; 1058 if (auto *VT = dyn_cast<VectorType>(U.getType())) 1059 VectorWidth = VT->getNumElements(); 1060 1061 // We might need to splat the base pointer into a vector if the offsets 1062 // are vectors. 1063 if (VectorWidth && !PtrTy.isVector()) { 1064 BaseReg = 1065 MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg) 1066 .getReg(0); 1067 PtrIRTy = VectorType::get(PtrIRTy, VectorWidth); 1068 PtrTy = getLLTForType(*PtrIRTy, *DL); 1069 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1070 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1071 } 1072 1073 int64_t Offset = 0; 1074 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1075 GTI != E; ++GTI) { 1076 const Value *Idx = GTI.getOperand(); 1077 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1078 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1079 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1080 continue; 1081 } else { 1082 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1083 1084 // If this is a scalar constant or a splat vector of constants, 1085 // handle it quickly. 1086 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1087 Offset += ElementSize * CI->getSExtValue(); 1088 continue; 1089 } 1090 1091 if (Offset != 0) { 1092 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1093 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1094 .getReg(0); 1095 Offset = 0; 1096 } 1097 1098 Register IdxReg = getOrCreateVReg(*Idx); 1099 LLT IdxTy = MRI->getType(IdxReg); 1100 if (IdxTy != OffsetTy) { 1101 if (!IdxTy.isVector() && VectorWidth) { 1102 IdxReg = MIRBuilder.buildSplatVector( 1103 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1104 } 1105 1106 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1107 } 1108 1109 // N = N + Idx * ElementSize; 1110 // Avoid doing it for ElementSize of 1. 1111 Register GepOffsetReg; 1112 if (ElementSize != 1) { 1113 auto ElementSizeMIB = MIRBuilder.buildConstant( 1114 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1115 GepOffsetReg = 1116 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1117 } else 1118 GepOffsetReg = IdxReg; 1119 1120 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1121 } 1122 } 1123 1124 if (Offset != 0) { 1125 auto OffsetMIB = 1126 MIRBuilder.buildConstant(OffsetTy, Offset); 1127 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1128 return true; 1129 } 1130 1131 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1132 return true; 1133 } 1134 1135 bool IRTranslator::translateMemFunc(const CallInst &CI, 1136 MachineIRBuilder &MIRBuilder, 1137 Intrinsic::ID ID) { 1138 1139 // If the source is undef, then just emit a nop. 1140 if (isa<UndefValue>(CI.getArgOperand(1))) 1141 return true; 1142 1143 ArrayRef<Register> Res; 1144 auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true); 1145 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) 1146 ICall.addUse(getOrCreateVReg(**AI)); 1147 1148 Align DstAlign; 1149 Align SrcAlign; 1150 unsigned IsVol = 1151 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1152 ->getZExtValue(); 1153 1154 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1155 DstAlign = MCI->getDestAlign().valueOrOne(); 1156 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1157 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1158 DstAlign = MMI->getDestAlign().valueOrOne(); 1159 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1160 } else { 1161 auto *MSI = cast<MemSetInst>(&CI); 1162 DstAlign = MSI->getDestAlign().valueOrOne(); 1163 } 1164 1165 // We need to propagate the tail call flag from the IR inst as an argument. 1166 // Otherwise, we have to pessimize and assume later that we cannot tail call 1167 // any memory intrinsics. 1168 ICall.addImm(CI.isTailCall() ? 1 : 0); 1169 1170 // Create mem operands to store the alignment and volatile info. 1171 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1172 ICall.addMemOperand(MF->getMachineMemOperand( 1173 MachinePointerInfo(CI.getArgOperand(0)), 1174 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1175 if (ID != Intrinsic::memset) 1176 ICall.addMemOperand(MF->getMachineMemOperand( 1177 MachinePointerInfo(CI.getArgOperand(1)), 1178 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1179 1180 return true; 1181 } 1182 1183 void IRTranslator::getStackGuard(Register DstReg, 1184 MachineIRBuilder &MIRBuilder) { 1185 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1186 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1187 auto MIB = 1188 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1189 1190 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1191 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1192 if (!Global) 1193 return; 1194 1195 MachinePointerInfo MPInfo(Global); 1196 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1197 MachineMemOperand::MODereferenceable; 1198 MachineMemOperand *MemRef = 1199 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 1200 DL->getPointerABIAlignment(0)); 1201 MIB.setMemRefs({MemRef}); 1202 } 1203 1204 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1205 MachineIRBuilder &MIRBuilder) { 1206 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1207 MIRBuilder.buildInstr( 1208 Op, {ResRegs[0], ResRegs[1]}, 1209 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1210 1211 return true; 1212 } 1213 1214 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1215 switch (ID) { 1216 default: 1217 break; 1218 case Intrinsic::bswap: 1219 return TargetOpcode::G_BSWAP; 1220 case Intrinsic::bitreverse: 1221 return TargetOpcode::G_BITREVERSE; 1222 case Intrinsic::fshl: 1223 return TargetOpcode::G_FSHL; 1224 case Intrinsic::fshr: 1225 return TargetOpcode::G_FSHR; 1226 case Intrinsic::ceil: 1227 return TargetOpcode::G_FCEIL; 1228 case Intrinsic::cos: 1229 return TargetOpcode::G_FCOS; 1230 case Intrinsic::ctpop: 1231 return TargetOpcode::G_CTPOP; 1232 case Intrinsic::exp: 1233 return TargetOpcode::G_FEXP; 1234 case Intrinsic::exp2: 1235 return TargetOpcode::G_FEXP2; 1236 case Intrinsic::fabs: 1237 return TargetOpcode::G_FABS; 1238 case Intrinsic::copysign: 1239 return TargetOpcode::G_FCOPYSIGN; 1240 case Intrinsic::minnum: 1241 return TargetOpcode::G_FMINNUM; 1242 case Intrinsic::maxnum: 1243 return TargetOpcode::G_FMAXNUM; 1244 case Intrinsic::minimum: 1245 return TargetOpcode::G_FMINIMUM; 1246 case Intrinsic::maximum: 1247 return TargetOpcode::G_FMAXIMUM; 1248 case Intrinsic::canonicalize: 1249 return TargetOpcode::G_FCANONICALIZE; 1250 case Intrinsic::floor: 1251 return TargetOpcode::G_FFLOOR; 1252 case Intrinsic::fma: 1253 return TargetOpcode::G_FMA; 1254 case Intrinsic::log: 1255 return TargetOpcode::G_FLOG; 1256 case Intrinsic::log2: 1257 return TargetOpcode::G_FLOG2; 1258 case Intrinsic::log10: 1259 return TargetOpcode::G_FLOG10; 1260 case Intrinsic::nearbyint: 1261 return TargetOpcode::G_FNEARBYINT; 1262 case Intrinsic::pow: 1263 return TargetOpcode::G_FPOW; 1264 case Intrinsic::rint: 1265 return TargetOpcode::G_FRINT; 1266 case Intrinsic::round: 1267 return TargetOpcode::G_INTRINSIC_ROUND; 1268 case Intrinsic::sin: 1269 return TargetOpcode::G_FSIN; 1270 case Intrinsic::sqrt: 1271 return TargetOpcode::G_FSQRT; 1272 case Intrinsic::trunc: 1273 return TargetOpcode::G_INTRINSIC_TRUNC; 1274 case Intrinsic::readcyclecounter: 1275 return TargetOpcode::G_READCYCLECOUNTER; 1276 } 1277 return Intrinsic::not_intrinsic; 1278 } 1279 1280 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1281 Intrinsic::ID ID, 1282 MachineIRBuilder &MIRBuilder) { 1283 1284 unsigned Op = getSimpleIntrinsicOpcode(ID); 1285 1286 // Is this a simple intrinsic? 1287 if (Op == Intrinsic::not_intrinsic) 1288 return false; 1289 1290 // Yes. Let's translate it. 1291 SmallVector<llvm::SrcOp, 4> VRegs; 1292 for (auto &Arg : CI.arg_operands()) 1293 VRegs.push_back(getOrCreateVReg(*Arg)); 1294 1295 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1296 MachineInstr::copyFlagsFromInstruction(CI)); 1297 return true; 1298 } 1299 1300 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1301 MachineIRBuilder &MIRBuilder) { 1302 1303 // If this is a simple intrinsic (that is, we just need to add a def of 1304 // a vreg, and uses for each arg operand, then translate it. 1305 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1306 return true; 1307 1308 switch (ID) { 1309 default: 1310 break; 1311 case Intrinsic::lifetime_start: 1312 case Intrinsic::lifetime_end: { 1313 // No stack colouring in O0, discard region information. 1314 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1315 return true; 1316 1317 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1318 : TargetOpcode::LIFETIME_END; 1319 1320 // Get the underlying objects for the location passed on the lifetime 1321 // marker. 1322 SmallVector<const Value *, 4> Allocas; 1323 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 1324 1325 // Iterate over each underlying object, creating lifetime markers for each 1326 // static alloca. Quit if we find a non-static alloca. 1327 for (const Value *V : Allocas) { 1328 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1329 if (!AI) 1330 continue; 1331 1332 if (!AI->isStaticAlloca()) 1333 return true; 1334 1335 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1336 } 1337 return true; 1338 } 1339 case Intrinsic::dbg_declare: { 1340 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1341 assert(DI.getVariable() && "Missing variable"); 1342 1343 const Value *Address = DI.getAddress(); 1344 if (!Address || isa<UndefValue>(Address)) { 1345 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1346 return true; 1347 } 1348 1349 assert(DI.getVariable()->isValidLocationForIntrinsic( 1350 MIRBuilder.getDebugLoc()) && 1351 "Expected inlined-at fields to agree"); 1352 auto AI = dyn_cast<AllocaInst>(Address); 1353 if (AI && AI->isStaticAlloca()) { 1354 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1355 // instructions (in fact, they get ignored if they *do* exist). 1356 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1357 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1358 } else { 1359 // A dbg.declare describes the address of a source variable, so lower it 1360 // into an indirect DBG_VALUE. 1361 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1362 DI.getVariable(), DI.getExpression()); 1363 } 1364 return true; 1365 } 1366 case Intrinsic::dbg_label: { 1367 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1368 assert(DI.getLabel() && "Missing label"); 1369 1370 assert(DI.getLabel()->isValidLocationForIntrinsic( 1371 MIRBuilder.getDebugLoc()) && 1372 "Expected inlined-at fields to agree"); 1373 1374 MIRBuilder.buildDbgLabel(DI.getLabel()); 1375 return true; 1376 } 1377 case Intrinsic::vaend: 1378 // No target I know of cares about va_end. Certainly no in-tree target 1379 // does. Simplest intrinsic ever! 1380 return true; 1381 case Intrinsic::vastart: { 1382 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1383 Value *Ptr = CI.getArgOperand(0); 1384 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1385 1386 // FIXME: Get alignment 1387 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1388 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 1389 MachineMemOperand::MOStore, 1390 ListSize, Align(1))); 1391 return true; 1392 } 1393 case Intrinsic::dbg_value: { 1394 // This form of DBG_VALUE is target-independent. 1395 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1396 const Value *V = DI.getValue(); 1397 assert(DI.getVariable()->isValidLocationForIntrinsic( 1398 MIRBuilder.getDebugLoc()) && 1399 "Expected inlined-at fields to agree"); 1400 if (!V) { 1401 // Currently the optimizer can produce this; insert an undef to 1402 // help debugging. Probably the optimizer should not do this. 1403 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1404 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1405 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1406 } else { 1407 for (Register Reg : getOrCreateVRegs(*V)) { 1408 // FIXME: This does not handle register-indirect values at offset 0. The 1409 // direct/indirect thing shouldn't really be handled by something as 1410 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1411 // pretty baked in right now. 1412 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1413 } 1414 } 1415 return true; 1416 } 1417 case Intrinsic::uadd_with_overflow: 1418 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1419 case Intrinsic::sadd_with_overflow: 1420 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1421 case Intrinsic::usub_with_overflow: 1422 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1423 case Intrinsic::ssub_with_overflow: 1424 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1425 case Intrinsic::umul_with_overflow: 1426 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1427 case Intrinsic::smul_with_overflow: 1428 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1429 case Intrinsic::uadd_sat: 1430 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 1431 case Intrinsic::sadd_sat: 1432 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 1433 case Intrinsic::usub_sat: 1434 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 1435 case Intrinsic::ssub_sat: 1436 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 1437 case Intrinsic::fmuladd: { 1438 const TargetMachine &TM = MF->getTarget(); 1439 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1440 Register Dst = getOrCreateVReg(CI); 1441 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1442 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1443 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1444 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1445 TLI.isFMAFasterThanFMulAndFAdd(*MF, 1446 TLI.getValueType(*DL, CI.getType()))) { 1447 // TODO: Revisit this to see if we should move this part of the 1448 // lowering to the combiner. 1449 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 1450 MachineInstr::copyFlagsFromInstruction(CI)); 1451 } else { 1452 LLT Ty = getLLTForType(*CI.getType(), *DL); 1453 auto FMul = MIRBuilder.buildFMul( 1454 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 1455 MIRBuilder.buildFAdd(Dst, FMul, Op2, 1456 MachineInstr::copyFlagsFromInstruction(CI)); 1457 } 1458 return true; 1459 } 1460 case Intrinsic::memcpy: 1461 case Intrinsic::memmove: 1462 case Intrinsic::memset: 1463 return translateMemFunc(CI, MIRBuilder, ID); 1464 case Intrinsic::eh_typeid_for: { 1465 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1466 Register Reg = getOrCreateVReg(CI); 1467 unsigned TypeID = MF->getTypeIDFor(GV); 1468 MIRBuilder.buildConstant(Reg, TypeID); 1469 return true; 1470 } 1471 case Intrinsic::objectsize: 1472 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1473 1474 case Intrinsic::is_constant: 1475 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1476 1477 case Intrinsic::stackguard: 1478 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1479 return true; 1480 case Intrinsic::stackprotector: { 1481 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1482 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1483 getStackGuard(GuardVal, MIRBuilder); 1484 1485 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1486 int FI = getOrCreateFrameIndex(*Slot); 1487 MF->getFrameInfo().setStackProtectorIndex(FI); 1488 1489 MIRBuilder.buildStore( 1490 GuardVal, getOrCreateVReg(*Slot), 1491 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1492 MachineMemOperand::MOStore | 1493 MachineMemOperand::MOVolatile, 1494 PtrTy.getSizeInBits() / 8, Align(8))); 1495 return true; 1496 } 1497 case Intrinsic::stacksave: { 1498 // Save the stack pointer to the location provided by the intrinsic. 1499 Register Reg = getOrCreateVReg(CI); 1500 Register StackPtr = MF->getSubtarget() 1501 .getTargetLowering() 1502 ->getStackPointerRegisterToSaveRestore(); 1503 1504 // If the target doesn't specify a stack pointer, then fall back. 1505 if (!StackPtr) 1506 return false; 1507 1508 MIRBuilder.buildCopy(Reg, StackPtr); 1509 return true; 1510 } 1511 case Intrinsic::stackrestore: { 1512 // Restore the stack pointer from the location provided by the intrinsic. 1513 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1514 Register StackPtr = MF->getSubtarget() 1515 .getTargetLowering() 1516 ->getStackPointerRegisterToSaveRestore(); 1517 1518 // If the target doesn't specify a stack pointer, then fall back. 1519 if (!StackPtr) 1520 return false; 1521 1522 MIRBuilder.buildCopy(StackPtr, Reg); 1523 return true; 1524 } 1525 case Intrinsic::cttz: 1526 case Intrinsic::ctlz: { 1527 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1528 bool isTrailing = ID == Intrinsic::cttz; 1529 unsigned Opcode = isTrailing 1530 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1531 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1532 : Cst->isZero() ? TargetOpcode::G_CTLZ 1533 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1534 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 1535 {getOrCreateVReg(*CI.getArgOperand(0))}); 1536 return true; 1537 } 1538 case Intrinsic::invariant_start: { 1539 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1540 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 1541 MIRBuilder.buildUndef(Undef); 1542 return true; 1543 } 1544 case Intrinsic::invariant_end: 1545 return true; 1546 case Intrinsic::assume: 1547 case Intrinsic::var_annotation: 1548 case Intrinsic::sideeffect: 1549 // Discard annotate attributes, assumptions, and artificial side-effects. 1550 return true; 1551 case Intrinsic::read_register: { 1552 Value *Arg = CI.getArgOperand(0); 1553 MIRBuilder 1554 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 1555 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 1556 return true; 1557 } 1558 case Intrinsic::write_register: { 1559 Value *Arg = CI.getArgOperand(0); 1560 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 1561 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 1562 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 1563 return true; 1564 } 1565 } 1566 return false; 1567 } 1568 1569 bool IRTranslator::translateInlineAsm(const CallBase &CB, 1570 MachineIRBuilder &MIRBuilder) { 1571 1572 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 1573 1574 if (!ALI) { 1575 LLVM_DEBUG( 1576 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 1577 return false; 1578 } 1579 1580 return ALI->lowerInlineAsm( 1581 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 1582 } 1583 1584 bool IRTranslator::translateCallBase(const CallBase &CB, 1585 MachineIRBuilder &MIRBuilder) { 1586 ArrayRef<Register> Res = getOrCreateVRegs(CB); 1587 1588 SmallVector<ArrayRef<Register>, 8> Args; 1589 Register SwiftInVReg = 0; 1590 Register SwiftErrorVReg = 0; 1591 for (auto &Arg : CB.args()) { 1592 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1593 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 1594 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1595 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 1596 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 1597 &CB, &MIRBuilder.getMBB(), Arg)); 1598 Args.emplace_back(makeArrayRef(SwiftInVReg)); 1599 SwiftErrorVReg = 1600 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 1601 continue; 1602 } 1603 Args.push_back(getOrCreateVRegs(*Arg)); 1604 } 1605 1606 // We don't set HasCalls on MFI here yet because call lowering may decide to 1607 // optimize into tail calls. Instead, we defer that to selection where a final 1608 // scan is done to check if any instructions are calls. 1609 bool Success = 1610 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 1611 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 1612 1613 // Check if we just inserted a tail call. 1614 if (Success) { 1615 assert(!HasTailCall && "Can't tail call return twice from block?"); 1616 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1617 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 1618 } 1619 1620 return Success; 1621 } 1622 1623 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1624 const CallInst &CI = cast<CallInst>(U); 1625 auto TII = MF->getTarget().getIntrinsicInfo(); 1626 const Function *F = CI.getCalledFunction(); 1627 1628 // FIXME: support Windows dllimport function calls. 1629 if (F && (F->hasDLLImportStorageClass() || 1630 (MF->getTarget().getTargetTriple().isOSWindows() && 1631 F->hasExternalWeakLinkage()))) 1632 return false; 1633 1634 // FIXME: support control flow guard targets. 1635 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1636 return false; 1637 1638 if (CI.isInlineAsm()) 1639 return translateInlineAsm(CI, MIRBuilder); 1640 1641 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1642 if (F && F->isIntrinsic()) { 1643 ID = F->getIntrinsicID(); 1644 if (TII && ID == Intrinsic::not_intrinsic) 1645 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1646 } 1647 1648 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 1649 return translateCallBase(CI, MIRBuilder); 1650 1651 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1652 1653 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1654 return true; 1655 1656 ArrayRef<Register> ResultRegs; 1657 if (!CI.getType()->isVoidTy()) 1658 ResultRegs = getOrCreateVRegs(CI); 1659 1660 // Ignore the callsite attributes. Backend code is most likely not expecting 1661 // an intrinsic to sometimes have side effects and sometimes not. 1662 MachineInstrBuilder MIB = 1663 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 1664 if (isa<FPMathOperator>(CI)) 1665 MIB->copyIRFlags(CI); 1666 1667 for (auto &Arg : enumerate(CI.arg_operands())) { 1668 // Some intrinsics take metadata parameters. Reject them. 1669 if (isa<MetadataAsValue>(Arg.value())) 1670 return false; 1671 1672 // If this is required to be an immediate, don't materialize it in a 1673 // register. 1674 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 1675 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 1676 // imm arguments are more convenient than cimm (and realistically 1677 // probably sufficient), so use them. 1678 assert(CI->getBitWidth() <= 64 && 1679 "large intrinsic immediates not handled"); 1680 MIB.addImm(CI->getSExtValue()); 1681 } else { 1682 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 1683 } 1684 } else { 1685 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 1686 if (VRegs.size() > 1) 1687 return false; 1688 MIB.addUse(VRegs[0]); 1689 } 1690 } 1691 1692 // Add a MachineMemOperand if it is a target mem intrinsic. 1693 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1694 TargetLowering::IntrinsicInfo Info; 1695 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1696 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1697 Align Alignment = Info.align.getValueOr( 1698 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 1699 1700 uint64_t Size = Info.memVT.getStoreSize(); 1701 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1702 Info.flags, Size, Alignment)); 1703 } 1704 1705 return true; 1706 } 1707 1708 bool IRTranslator::translateInvoke(const User &U, 1709 MachineIRBuilder &MIRBuilder) { 1710 const InvokeInst &I = cast<InvokeInst>(U); 1711 MCContext &Context = MF->getContext(); 1712 1713 const BasicBlock *ReturnBB = I.getSuccessor(0); 1714 const BasicBlock *EHPadBB = I.getSuccessor(1); 1715 1716 const Function *Fn = I.getCalledFunction(); 1717 if (I.isInlineAsm()) 1718 return false; 1719 1720 // FIXME: support invoking patchpoint and statepoint intrinsics. 1721 if (Fn && Fn->isIntrinsic()) 1722 return false; 1723 1724 // FIXME: support whatever these are. 1725 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1726 return false; 1727 1728 // FIXME: support control flow guard targets. 1729 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1730 return false; 1731 1732 // FIXME: support Windows exception handling. 1733 if (!isa<LandingPadInst>(EHPadBB->front())) 1734 return false; 1735 1736 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1737 // the region covered by the try. 1738 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1739 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1740 1741 if (!translateCallBase(I, MIRBuilder)) 1742 return false; 1743 1744 MCSymbol *EndSymbol = Context.createTempSymbol(); 1745 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1746 1747 // FIXME: track probabilities. 1748 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1749 &ReturnMBB = getMBB(*ReturnBB); 1750 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1751 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1752 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1753 MIRBuilder.buildBr(ReturnMBB); 1754 1755 return true; 1756 } 1757 1758 bool IRTranslator::translateCallBr(const User &U, 1759 MachineIRBuilder &MIRBuilder) { 1760 // FIXME: Implement this. 1761 return false; 1762 } 1763 1764 bool IRTranslator::translateLandingPad(const User &U, 1765 MachineIRBuilder &MIRBuilder) { 1766 const LandingPadInst &LP = cast<LandingPadInst>(U); 1767 1768 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1769 1770 MBB.setIsEHPad(); 1771 1772 // If there aren't registers to copy the values into (e.g., during SjLj 1773 // exceptions), then don't bother. 1774 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1775 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1776 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1777 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1778 return true; 1779 1780 // If landingpad's return type is token type, we don't create DAG nodes 1781 // for its exception pointer and selector value. The extraction of exception 1782 // pointer or selector value from token type landingpads is not currently 1783 // supported. 1784 if (LP.getType()->isTokenTy()) 1785 return true; 1786 1787 // Add a label to mark the beginning of the landing pad. Deletion of the 1788 // landing pad can thus be detected via the MachineModuleInfo. 1789 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1790 .addSym(MF->addLandingPad(&MBB)); 1791 1792 LLT Ty = getLLTForType(*LP.getType(), *DL); 1793 Register Undef = MRI->createGenericVirtualRegister(Ty); 1794 MIRBuilder.buildUndef(Undef); 1795 1796 SmallVector<LLT, 2> Tys; 1797 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1798 Tys.push_back(getLLTForType(*Ty, *DL)); 1799 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1800 1801 // Mark exception register as live in. 1802 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1803 if (!ExceptionReg) 1804 return false; 1805 1806 MBB.addLiveIn(ExceptionReg); 1807 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 1808 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1809 1810 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1811 if (!SelectorReg) 1812 return false; 1813 1814 MBB.addLiveIn(SelectorReg); 1815 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1816 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1817 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1818 1819 return true; 1820 } 1821 1822 bool IRTranslator::translateAlloca(const User &U, 1823 MachineIRBuilder &MIRBuilder) { 1824 auto &AI = cast<AllocaInst>(U); 1825 1826 if (AI.isSwiftError()) 1827 return true; 1828 1829 if (AI.isStaticAlloca()) { 1830 Register Res = getOrCreateVReg(AI); 1831 int FI = getOrCreateFrameIndex(AI); 1832 MIRBuilder.buildFrameIndex(Res, FI); 1833 return true; 1834 } 1835 1836 // FIXME: support stack probing for Windows. 1837 if (MF->getTarget().getTargetTriple().isOSWindows()) 1838 return false; 1839 1840 // Now we're in the harder dynamic case. 1841 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 1842 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1843 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1844 if (MRI->getType(NumElts) != IntPtrTy) { 1845 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1846 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1847 NumElts = ExtElts; 1848 } 1849 1850 Type *Ty = AI.getAllocatedType(); 1851 1852 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1853 Register TySize = 1854 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 1855 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1856 1857 // Round the size of the allocation up to the stack alignment size 1858 // by add SA-1 to the size. This doesn't overflow because we're computing 1859 // an address inside an alloca. 1860 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 1861 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 1862 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 1863 MachineInstr::NoUWrap); 1864 auto AlignCst = 1865 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 1866 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 1867 1868 Align Alignment = max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 1869 if (Alignment <= StackAlign) 1870 Alignment = Align(1); 1871 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 1872 1873 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 1874 assert(MF->getFrameInfo().hasVarSizedObjects()); 1875 return true; 1876 } 1877 1878 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1879 // FIXME: We may need more info about the type. Because of how LLT works, 1880 // we're completely discarding the i64/double distinction here (amongst 1881 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1882 // anyway but that's not guaranteed. 1883 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 1884 {getOrCreateVReg(*U.getOperand(0)), 1885 uint64_t(DL->getABITypeAlignment(U.getType()))}); 1886 return true; 1887 } 1888 1889 bool IRTranslator::translateInsertElement(const User &U, 1890 MachineIRBuilder &MIRBuilder) { 1891 // If it is a <1 x Ty> vector, use the scalar as it is 1892 // not a legal vector type in LLT. 1893 if (cast<VectorType>(U.getType())->getNumElements() == 1) { 1894 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1895 auto &Regs = *VMap.getVRegs(U); 1896 if (Regs.empty()) { 1897 Regs.push_back(Elt); 1898 VMap.getOffsets(U)->push_back(0); 1899 } else { 1900 MIRBuilder.buildCopy(Regs[0], Elt); 1901 } 1902 return true; 1903 } 1904 1905 Register Res = getOrCreateVReg(U); 1906 Register Val = getOrCreateVReg(*U.getOperand(0)); 1907 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1908 Register Idx = getOrCreateVReg(*U.getOperand(2)); 1909 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1910 return true; 1911 } 1912 1913 bool IRTranslator::translateExtractElement(const User &U, 1914 MachineIRBuilder &MIRBuilder) { 1915 // If it is a <1 x Ty> vector, use the scalar as it is 1916 // not a legal vector type in LLT. 1917 if (cast<VectorType>(U.getOperand(0)->getType())->getNumElements() == 1) { 1918 Register Elt = getOrCreateVReg(*U.getOperand(0)); 1919 auto &Regs = *VMap.getVRegs(U); 1920 if (Regs.empty()) { 1921 Regs.push_back(Elt); 1922 VMap.getOffsets(U)->push_back(0); 1923 } else { 1924 MIRBuilder.buildCopy(Regs[0], Elt); 1925 } 1926 return true; 1927 } 1928 Register Res = getOrCreateVReg(U); 1929 Register Val = getOrCreateVReg(*U.getOperand(0)); 1930 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1931 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1932 Register Idx; 1933 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1934 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1935 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1936 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1937 Idx = getOrCreateVReg(*NewIdxCI); 1938 } 1939 } 1940 if (!Idx) 1941 Idx = getOrCreateVReg(*U.getOperand(1)); 1942 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1943 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1944 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0); 1945 } 1946 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1947 return true; 1948 } 1949 1950 bool IRTranslator::translateShuffleVector(const User &U, 1951 MachineIRBuilder &MIRBuilder) { 1952 ArrayRef<int> Mask; 1953 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 1954 Mask = SVI->getShuffleMask(); 1955 else 1956 Mask = cast<ConstantExpr>(U).getShuffleMask(); 1957 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 1958 MIRBuilder 1959 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 1960 {getOrCreateVReg(*U.getOperand(0)), 1961 getOrCreateVReg(*U.getOperand(1))}) 1962 .addShuffleMask(MaskAlloc); 1963 return true; 1964 } 1965 1966 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1967 const PHINode &PI = cast<PHINode>(U); 1968 1969 SmallVector<MachineInstr *, 4> Insts; 1970 for (auto Reg : getOrCreateVRegs(PI)) { 1971 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1972 Insts.push_back(MIB.getInstr()); 1973 } 1974 1975 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1976 return true; 1977 } 1978 1979 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1980 MachineIRBuilder &MIRBuilder) { 1981 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1982 1983 if (I.isWeak()) 1984 return false; 1985 1986 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1987 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 1988 1989 Type *ResType = I.getType(); 1990 Type *ValType = ResType->Type::getStructElementType(0); 1991 1992 auto Res = getOrCreateVRegs(I); 1993 Register OldValRes = Res[0]; 1994 Register SuccessRes = Res[1]; 1995 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 1996 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 1997 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 1998 1999 AAMDNodes AAMetadata; 2000 I.getAAMetadata(AAMetadata); 2001 2002 MIRBuilder.buildAtomicCmpXchgWithSuccess( 2003 OldValRes, SuccessRes, Addr, Cmp, NewVal, 2004 *MF->getMachineMemOperand( 2005 MachinePointerInfo(I.getPointerOperand()), Flags, 2006 DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr, 2007 I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering())); 2008 return true; 2009 } 2010 2011 bool IRTranslator::translateAtomicRMW(const User &U, 2012 MachineIRBuilder &MIRBuilder) { 2013 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2014 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2015 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2016 2017 Type *ResType = I.getType(); 2018 2019 Register Res = getOrCreateVReg(I); 2020 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2021 Register Val = getOrCreateVReg(*I.getValOperand()); 2022 2023 unsigned Opcode = 0; 2024 switch (I.getOperation()) { 2025 default: 2026 return false; 2027 case AtomicRMWInst::Xchg: 2028 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2029 break; 2030 case AtomicRMWInst::Add: 2031 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2032 break; 2033 case AtomicRMWInst::Sub: 2034 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2035 break; 2036 case AtomicRMWInst::And: 2037 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2038 break; 2039 case AtomicRMWInst::Nand: 2040 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2041 break; 2042 case AtomicRMWInst::Or: 2043 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2044 break; 2045 case AtomicRMWInst::Xor: 2046 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2047 break; 2048 case AtomicRMWInst::Max: 2049 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2050 break; 2051 case AtomicRMWInst::Min: 2052 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2053 break; 2054 case AtomicRMWInst::UMax: 2055 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2056 break; 2057 case AtomicRMWInst::UMin: 2058 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2059 break; 2060 case AtomicRMWInst::FAdd: 2061 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2062 break; 2063 case AtomicRMWInst::FSub: 2064 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2065 break; 2066 } 2067 2068 AAMDNodes AAMetadata; 2069 I.getAAMetadata(AAMetadata); 2070 2071 MIRBuilder.buildAtomicRMW( 2072 Opcode, Res, Addr, Val, 2073 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2074 Flags, DL->getTypeStoreSize(ResType), 2075 getMemOpAlign(I), AAMetadata, nullptr, 2076 I.getSyncScopeID(), I.getOrdering())); 2077 return true; 2078 } 2079 2080 bool IRTranslator::translateFence(const User &U, 2081 MachineIRBuilder &MIRBuilder) { 2082 const FenceInst &Fence = cast<FenceInst>(U); 2083 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2084 Fence.getSyncScopeID()); 2085 return true; 2086 } 2087 2088 bool IRTranslator::translateFreeze(const User &U, 2089 MachineIRBuilder &MIRBuilder) { 2090 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 2091 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 2092 2093 assert(DstRegs.size() == SrcRegs.size() && 2094 "Freeze with different source and destination type?"); 2095 2096 for (unsigned I = 0; I < DstRegs.size(); ++I) { 2097 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 2098 } 2099 2100 return true; 2101 } 2102 2103 void IRTranslator::finishPendingPhis() { 2104 #ifndef NDEBUG 2105 DILocationVerifier Verifier; 2106 GISelObserverWrapper WrapperObserver(&Verifier); 2107 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2108 #endif // ifndef NDEBUG 2109 for (auto &Phi : PendingPHIs) { 2110 const PHINode *PI = Phi.first; 2111 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2112 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2113 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2114 #ifndef NDEBUG 2115 Verifier.setCurrentInst(PI); 2116 #endif // ifndef NDEBUG 2117 2118 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2119 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2120 auto IRPred = PI->getIncomingBlock(i); 2121 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2122 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2123 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2124 continue; 2125 SeenPreds.insert(Pred); 2126 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2127 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2128 MIB.addUse(ValRegs[j]); 2129 MIB.addMBB(Pred); 2130 } 2131 } 2132 } 2133 } 2134 } 2135 2136 bool IRTranslator::valueIsSplit(const Value &V, 2137 SmallVectorImpl<uint64_t> *Offsets) { 2138 SmallVector<LLT, 4> SplitTys; 2139 if (Offsets && !Offsets->empty()) 2140 Offsets->clear(); 2141 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2142 return SplitTys.size() > 1; 2143 } 2144 2145 bool IRTranslator::translate(const Instruction &Inst) { 2146 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2147 // We only emit constants into the entry block from here. To prevent jumpy 2148 // debug behaviour set the line to 0. 2149 if (const DebugLoc &DL = Inst.getDebugLoc()) 2150 EntryBuilder->setDebugLoc( 2151 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 2152 else 2153 EntryBuilder->setDebugLoc(DebugLoc()); 2154 2155 switch (Inst.getOpcode()) { 2156 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2157 case Instruction::OPCODE: \ 2158 return translate##OPCODE(Inst, *CurBuilder.get()); 2159 #include "llvm/IR/Instruction.def" 2160 default: 2161 return false; 2162 } 2163 } 2164 2165 bool IRTranslator::translate(const Constant &C, Register Reg) { 2166 if (auto CI = dyn_cast<ConstantInt>(&C)) 2167 EntryBuilder->buildConstant(Reg, *CI); 2168 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2169 EntryBuilder->buildFConstant(Reg, *CF); 2170 else if (isa<UndefValue>(C)) 2171 EntryBuilder->buildUndef(Reg); 2172 else if (isa<ConstantPointerNull>(C)) 2173 EntryBuilder->buildConstant(Reg, 0); 2174 else if (auto GV = dyn_cast<GlobalValue>(&C)) 2175 EntryBuilder->buildGlobalValue(Reg, GV); 2176 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2177 if (!CAZ->getType()->isVectorTy()) 2178 return false; 2179 // Return the scalar if it is a <1 x Ty> vector. 2180 if (CAZ->getNumElements() == 1) 2181 return translate(*CAZ->getElementValue(0u), Reg); 2182 SmallVector<Register, 4> Ops; 2183 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 2184 Constant &Elt = *CAZ->getElementValue(i); 2185 Ops.push_back(getOrCreateVReg(Elt)); 2186 } 2187 EntryBuilder->buildBuildVector(Reg, Ops); 2188 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2189 // Return the scalar if it is a <1 x Ty> vector. 2190 if (CV->getNumElements() == 1) 2191 return translate(*CV->getElementAsConstant(0), Reg); 2192 SmallVector<Register, 4> Ops; 2193 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2194 Constant &Elt = *CV->getElementAsConstant(i); 2195 Ops.push_back(getOrCreateVReg(Elt)); 2196 } 2197 EntryBuilder->buildBuildVector(Reg, Ops); 2198 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2199 switch(CE->getOpcode()) { 2200 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2201 case Instruction::OPCODE: \ 2202 return translate##OPCODE(*CE, *EntryBuilder.get()); 2203 #include "llvm/IR/Instruction.def" 2204 default: 2205 return false; 2206 } 2207 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2208 if (CV->getNumOperands() == 1) 2209 return translate(*CV->getOperand(0), Reg); 2210 SmallVector<Register, 4> Ops; 2211 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2212 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2213 } 2214 EntryBuilder->buildBuildVector(Reg, Ops); 2215 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2216 EntryBuilder->buildBlockAddress(Reg, BA); 2217 } else 2218 return false; 2219 2220 return true; 2221 } 2222 2223 void IRTranslator::finalizeBasicBlock() { 2224 for (auto &JTCase : SL->JTCases) { 2225 // Emit header first, if it wasn't already emitted. 2226 if (!JTCase.first.Emitted) 2227 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 2228 2229 emitJumpTable(JTCase.second, JTCase.second.MBB); 2230 } 2231 SL->JTCases.clear(); 2232 } 2233 2234 void IRTranslator::finalizeFunction() { 2235 // Release the memory used by the different maps we 2236 // needed during the translation. 2237 PendingPHIs.clear(); 2238 VMap.reset(); 2239 FrameIndices.clear(); 2240 MachinePreds.clear(); 2241 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 2242 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 2243 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 2244 EntryBuilder.reset(); 2245 CurBuilder.reset(); 2246 FuncInfo.clear(); 2247 } 2248 2249 /// Returns true if a BasicBlock \p BB within a variadic function contains a 2250 /// variadic musttail call. 2251 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 2252 if (!IsVarArg) 2253 return false; 2254 2255 // Walk the block backwards, because tail calls usually only appear at the end 2256 // of a block. 2257 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 2258 const auto *CI = dyn_cast<CallInst>(&I); 2259 return CI && CI->isMustTailCall(); 2260 }); 2261 } 2262 2263 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 2264 MF = &CurMF; 2265 const Function &F = MF->getFunction(); 2266 if (F.empty()) 2267 return false; 2268 GISelCSEAnalysisWrapper &Wrapper = 2269 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 2270 // Set the CSEConfig and run the analysis. 2271 GISelCSEInfo *CSEInfo = nullptr; 2272 TPC = &getAnalysis<TargetPassConfig>(); 2273 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 2274 ? EnableCSEInIRTranslator 2275 : TPC->isGISelCSEEnabled(); 2276 2277 if (EnableCSE) { 2278 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2279 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 2280 EntryBuilder->setCSEInfo(CSEInfo); 2281 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2282 CurBuilder->setCSEInfo(CSEInfo); 2283 } else { 2284 EntryBuilder = std::make_unique<MachineIRBuilder>(); 2285 CurBuilder = std::make_unique<MachineIRBuilder>(); 2286 } 2287 CLI = MF->getSubtarget().getCallLowering(); 2288 CurBuilder->setMF(*MF); 2289 EntryBuilder->setMF(*MF); 2290 MRI = &MF->getRegInfo(); 2291 DL = &F.getParent()->getDataLayout(); 2292 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2293 FuncInfo.MF = MF; 2294 FuncInfo.BPI = nullptr; 2295 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2296 const TargetMachine &TM = MF->getTarget(); 2297 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 2298 SL->init(TLI, TM, *DL); 2299 2300 EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); 2301 2302 assert(PendingPHIs.empty() && "stale PHIs"); 2303 2304 if (!DL->isLittleEndian()) { 2305 // Currently we don't properly handle big endian code. 2306 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2307 F.getSubprogram(), &F.getEntryBlock()); 2308 R << "unable to translate in big endian mode"; 2309 reportTranslationError(*MF, *TPC, *ORE, R); 2310 } 2311 2312 // Release the per-function state when we return, whether we succeeded or not. 2313 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 2314 2315 // Setup a separate basic-block for the arguments and constants 2316 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 2317 MF->push_back(EntryBB); 2318 EntryBuilder->setMBB(*EntryBB); 2319 2320 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 2321 SwiftError.setFunction(CurMF); 2322 SwiftError.createEntriesInEntryBlock(DbgLoc); 2323 2324 bool IsVarArg = F.isVarArg(); 2325 bool HasMustTailInVarArgFn = false; 2326 2327 // Create all blocks, in IR order, to preserve the layout. 2328 for (const BasicBlock &BB: F) { 2329 auto *&MBB = BBToMBB[&BB]; 2330 2331 MBB = MF->CreateMachineBasicBlock(&BB); 2332 MF->push_back(MBB); 2333 2334 if (BB.hasAddressTaken()) 2335 MBB->setHasAddressTaken(); 2336 2337 if (!HasMustTailInVarArgFn) 2338 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 2339 } 2340 2341 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 2342 2343 // Make our arguments/constants entry block fallthrough to the IR entry block. 2344 EntryBB->addSuccessor(&getMBB(F.front())); 2345 2346 // Lower the actual args into this basic block. 2347 SmallVector<ArrayRef<Register>, 8> VRegArgs; 2348 for (const Argument &Arg: F.args()) { 2349 if (DL->getTypeStoreSize(Arg.getType()) == 0) 2350 continue; // Don't handle zero sized types. 2351 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 2352 VRegArgs.push_back(VRegs); 2353 2354 if (Arg.hasSwiftErrorAttr()) { 2355 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 2356 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 2357 } 2358 } 2359 2360 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 2361 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2362 F.getSubprogram(), &F.getEntryBlock()); 2363 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 2364 reportTranslationError(*MF, *TPC, *ORE, R); 2365 return false; 2366 } 2367 2368 // Need to visit defs before uses when translating instructions. 2369 GISelObserverWrapper WrapperObserver; 2370 if (EnableCSE && CSEInfo) 2371 WrapperObserver.addObserver(CSEInfo); 2372 { 2373 ReversePostOrderTraversal<const Function *> RPOT(&F); 2374 #ifndef NDEBUG 2375 DILocationVerifier Verifier; 2376 WrapperObserver.addObserver(&Verifier); 2377 #endif // ifndef NDEBUG 2378 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2379 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 2380 for (const BasicBlock *BB : RPOT) { 2381 MachineBasicBlock &MBB = getMBB(*BB); 2382 // Set the insertion point of all the following translations to 2383 // the end of this basic block. 2384 CurBuilder->setMBB(MBB); 2385 HasTailCall = false; 2386 for (const Instruction &Inst : *BB) { 2387 // If we translated a tail call in the last step, then we know 2388 // everything after the call is either a return, or something that is 2389 // handled by the call itself. (E.g. a lifetime marker or assume 2390 // intrinsic.) In this case, we should stop translating the block and 2391 // move on. 2392 if (HasTailCall) 2393 break; 2394 #ifndef NDEBUG 2395 Verifier.setCurrentInst(&Inst); 2396 #endif // ifndef NDEBUG 2397 if (translate(Inst)) 2398 continue; 2399 2400 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2401 Inst.getDebugLoc(), BB); 2402 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 2403 2404 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 2405 std::string InstStrStorage; 2406 raw_string_ostream InstStr(InstStrStorage); 2407 InstStr << Inst; 2408 2409 R << ": '" << InstStr.str() << "'"; 2410 } 2411 2412 reportTranslationError(*MF, *TPC, *ORE, R); 2413 return false; 2414 } 2415 2416 finalizeBasicBlock(); 2417 } 2418 #ifndef NDEBUG 2419 WrapperObserver.removeObserver(&Verifier); 2420 #endif 2421 } 2422 2423 finishPendingPhis(); 2424 2425 SwiftError.propagateVRegs(); 2426 2427 // Merge the argument lowering and constants block with its single 2428 // successor, the LLVM-IR entry block. We want the basic block to 2429 // be maximal. 2430 assert(EntryBB->succ_size() == 1 && 2431 "Custom BB used for lowering should have only one successor"); 2432 // Get the successor of the current entry block. 2433 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 2434 assert(NewEntryBB.pred_size() == 1 && 2435 "LLVM-IR entry block has a predecessor!?"); 2436 // Move all the instruction from the current entry block to the 2437 // new entry block. 2438 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 2439 EntryBB->end()); 2440 2441 // Update the live-in information for the new entry block. 2442 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 2443 NewEntryBB.addLiveIn(LiveIn); 2444 NewEntryBB.sortUniqueLiveIns(); 2445 2446 // Get rid of the now empty basic block. 2447 EntryBB->removeSuccessor(&NewEntryBB); 2448 MF->remove(EntryBB); 2449 MF->DeleteMachineBasicBlock(EntryBB); 2450 2451 assert(&MF->front() == &NewEntryBB && 2452 "New entry wasn't next in the list of basic block!"); 2453 2454 // Initialize stack protector information. 2455 StackProtector &SP = getAnalysis<StackProtector>(); 2456 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2457 2458 return false; 2459 } 2460