1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/FunctionLoweringInfo.h"
24 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
25 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
26 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
27 #include "llvm/CodeGen/LowLevelType.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/StackProtector.h"
36 #include "llvm/CodeGen/TargetFrameLowering.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfo.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GetElementPtrTypeIterator.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/MCContext.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/LowLevelTypeImpl.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetIntrinsicInfo.h"
72 #include "llvm/Target/TargetMachine.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <iterator>
77 #include <string>
78 #include <utility>
79 #include <vector>
80 
81 #define DEBUG_TYPE "irtranslator"
82 
83 using namespace llvm;
84 
85 static cl::opt<bool>
86     EnableCSEInIRTranslator("enable-cse-in-irtranslator",
87                             cl::desc("Should enable CSE in irtranslator"),
88                             cl::Optional, cl::init(false));
89 char IRTranslator::ID = 0;
90 
91 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
92                 false, false)
93 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
94 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
95 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
96                 false, false)
97 
98 static void reportTranslationError(MachineFunction &MF,
99                                    const TargetPassConfig &TPC,
100                                    OptimizationRemarkEmitter &ORE,
101                                    OptimizationRemarkMissed &R) {
102   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
103 
104   // Print the function name explicitly if we don't have a debug location (which
105   // makes the diagnostic less useful) or if we're going to emit a raw error.
106   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
107     R << (" (in function: " + MF.getName() + ")").str();
108 
109   if (TPC.isGlobalISelAbortEnabled())
110     report_fatal_error(R.getMsg());
111   else
112     ORE.emit(R);
113 }
114 
115 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { }
116 
117 #ifndef NDEBUG
118 namespace {
119 /// Verify that every instruction created has the same DILocation as the
120 /// instruction being translated.
121 class DILocationVerifier : public GISelChangeObserver {
122   const Instruction *CurrInst = nullptr;
123 
124 public:
125   DILocationVerifier() = default;
126   ~DILocationVerifier() = default;
127 
128   const Instruction *getCurrentInst() const { return CurrInst; }
129   void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
130 
131   void erasingInstr(MachineInstr &MI) override {}
132   void changingInstr(MachineInstr &MI) override {}
133   void changedInstr(MachineInstr &MI) override {}
134 
135   void createdInstr(MachineInstr &MI) override {
136     assert(getCurrentInst() && "Inserted instruction without a current MI");
137 
138     // Only print the check message if we're actually checking it.
139 #ifndef NDEBUG
140     LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
141                       << " was copied to " << MI);
142 #endif
143     // We allow insts in the entry block to have a debug loc line of 0 because
144     // they could have originated from constants, and we don't want a jumpy
145     // debug experience.
146     assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
147             MI.getDebugLoc().getLine() == 0) &&
148            "Line info was not transferred to all instructions");
149   }
150 };
151 } // namespace
152 #endif // ifndef NDEBUG
153 
154 
155 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
156   AU.addRequired<StackProtector>();
157   AU.addRequired<TargetPassConfig>();
158   AU.addRequired<GISelCSEAnalysisWrapperPass>();
159   getSelectionDAGFallbackAnalysisUsage(AU);
160   MachineFunctionPass::getAnalysisUsage(AU);
161 }
162 
163 IRTranslator::ValueToVRegInfo::VRegListT &
164 IRTranslator::allocateVRegs(const Value &Val) {
165   assert(!VMap.contains(Val) && "Value already allocated in VMap");
166   auto *Regs = VMap.getVRegs(Val);
167   auto *Offsets = VMap.getOffsets(Val);
168   SmallVector<LLT, 4> SplitTys;
169   computeValueLLTs(*DL, *Val.getType(), SplitTys,
170                    Offsets->empty() ? Offsets : nullptr);
171   for (unsigned i = 0; i < SplitTys.size(); ++i)
172     Regs->push_back(0);
173   return *Regs;
174 }
175 
176 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
177   auto VRegsIt = VMap.findVRegs(Val);
178   if (VRegsIt != VMap.vregs_end())
179     return *VRegsIt->second;
180 
181   if (Val.getType()->isVoidTy())
182     return *VMap.getVRegs(Val);
183 
184   // Create entry for this type.
185   auto *VRegs = VMap.getVRegs(Val);
186   auto *Offsets = VMap.getOffsets(Val);
187 
188   assert(Val.getType()->isSized() &&
189          "Don't know how to create an empty vreg");
190 
191   SmallVector<LLT, 4> SplitTys;
192   computeValueLLTs(*DL, *Val.getType(), SplitTys,
193                    Offsets->empty() ? Offsets : nullptr);
194 
195   if (!isa<Constant>(Val)) {
196     for (auto Ty : SplitTys)
197       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
198     return *VRegs;
199   }
200 
201   if (Val.getType()->isAggregateType()) {
202     // UndefValue, ConstantAggregateZero
203     auto &C = cast<Constant>(Val);
204     unsigned Idx = 0;
205     while (auto Elt = C.getAggregateElement(Idx++)) {
206       auto EltRegs = getOrCreateVRegs(*Elt);
207       llvm::copy(EltRegs, std::back_inserter(*VRegs));
208     }
209   } else {
210     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
211     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
212     bool Success = translate(cast<Constant>(Val), VRegs->front());
213     if (!Success) {
214       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
215                                  MF->getFunction().getSubprogram(),
216                                  &MF->getFunction().getEntryBlock());
217       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
218       reportTranslationError(*MF, *TPC, *ORE, R);
219       return *VRegs;
220     }
221   }
222 
223   return *VRegs;
224 }
225 
226 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
227   if (FrameIndices.find(&AI) != FrameIndices.end())
228     return FrameIndices[&AI];
229 
230   uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
231   uint64_t Size =
232       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
233 
234   // Always allocate at least one byte.
235   Size = std::max<uint64_t>(Size, 1u);
236 
237   unsigned Alignment = AI.getAlignment();
238   if (!Alignment)
239     Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
240 
241   int &FI = FrameIndices[&AI];
242   FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
243   return FI;
244 }
245 
246 Align IRTranslator::getMemOpAlign(const Instruction &I) {
247   if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
248     Type *ValTy = SI->getValueOperand()->getType();
249     return SI->getAlign().getValueOr(DL->getABITypeAlign(ValTy));
250   }
251   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
252     return DL->getValueOrABITypeAlignment(LI->getAlign(), LI->getType());
253   }
254   if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
255     // TODO(PR27168): This instruction has no alignment attribute, but unlike
256     // the default alignment for load/store, the default here is to assume
257     // it has NATURAL alignment, not DataLayout-specified alignment.
258     const DataLayout &DL = AI->getModule()->getDataLayout();
259     return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType()));
260   }
261   if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
262     // TODO(PR27168): This instruction has no alignment attribute, but unlike
263     // the default alignment for load/store, the default here is to assume
264     // it has NATURAL alignment, not DataLayout-specified alignment.
265     const DataLayout &DL = AI->getModule()->getDataLayout();
266     return Align(DL.getTypeStoreSize(AI->getValOperand()->getType()));
267   }
268   OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
269   R << "unable to translate memop: " << ore::NV("Opcode", &I);
270   reportTranslationError(*MF, *TPC, *ORE, R);
271   return Align(1);
272 }
273 
274 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
275   MachineBasicBlock *&MBB = BBToMBB[&BB];
276   assert(MBB && "BasicBlock was not encountered before");
277   return *MBB;
278 }
279 
280 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
281   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
282   MachinePreds[Edge].push_back(NewPred);
283 }
284 
285 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
286                                      MachineIRBuilder &MIRBuilder) {
287   // Get or create a virtual register for each value.
288   // Unless the value is a Constant => loadimm cst?
289   // or inline constant each time?
290   // Creation of a virtual register needs to have a size.
291   Register Op0 = getOrCreateVReg(*U.getOperand(0));
292   Register Op1 = getOrCreateVReg(*U.getOperand(1));
293   Register Res = getOrCreateVReg(U);
294   uint16_t Flags = 0;
295   if (isa<Instruction>(U)) {
296     const Instruction &I = cast<Instruction>(U);
297     Flags = MachineInstr::copyFlagsFromInstruction(I);
298   }
299 
300   MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
301   return true;
302 }
303 
304 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
305   // -0.0 - X --> G_FNEG
306   if (isa<Constant>(U.getOperand(0)) &&
307       U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
308     Register Op1 = getOrCreateVReg(*U.getOperand(1));
309     Register Res = getOrCreateVReg(U);
310     uint16_t Flags = 0;
311     if (isa<Instruction>(U)) {
312       const Instruction &I = cast<Instruction>(U);
313       Flags = MachineInstr::copyFlagsFromInstruction(I);
314     }
315     // Negate the last operand of the FSUB
316     MIRBuilder.buildFNeg(Res, Op1, Flags);
317     return true;
318   }
319   return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
320 }
321 
322 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
323   Register Op0 = getOrCreateVReg(*U.getOperand(0));
324   Register Res = getOrCreateVReg(U);
325   uint16_t Flags = 0;
326   if (isa<Instruction>(U)) {
327     const Instruction &I = cast<Instruction>(U);
328     Flags = MachineInstr::copyFlagsFromInstruction(I);
329   }
330   MIRBuilder.buildFNeg(Res, Op0, Flags);
331   return true;
332 }
333 
334 bool IRTranslator::translateCompare(const User &U,
335                                     MachineIRBuilder &MIRBuilder) {
336   auto *CI = dyn_cast<CmpInst>(&U);
337   Register Op0 = getOrCreateVReg(*U.getOperand(0));
338   Register Op1 = getOrCreateVReg(*U.getOperand(1));
339   Register Res = getOrCreateVReg(U);
340   CmpInst::Predicate Pred =
341       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
342                                     cast<ConstantExpr>(U).getPredicate());
343   if (CmpInst::isIntPredicate(Pred))
344     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
345   else if (Pred == CmpInst::FCMP_FALSE)
346     MIRBuilder.buildCopy(
347         Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
348   else if (Pred == CmpInst::FCMP_TRUE)
349     MIRBuilder.buildCopy(
350         Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
351   else {
352     assert(CI && "Instruction should be CmpInst");
353     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1,
354                          MachineInstr::copyFlagsFromInstruction(*CI));
355   }
356 
357   return true;
358 }
359 
360 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
361   const ReturnInst &RI = cast<ReturnInst>(U);
362   const Value *Ret = RI.getReturnValue();
363   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
364     Ret = nullptr;
365 
366   ArrayRef<Register> VRegs;
367   if (Ret)
368     VRegs = getOrCreateVRegs(*Ret);
369 
370   Register SwiftErrorVReg = 0;
371   if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
372     SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
373         &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
374   }
375 
376   // The target may mess up with the insertion point, but
377   // this is not important as a return is the last instruction
378   // of the block anyway.
379   return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg);
380 }
381 
382 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
383   const BranchInst &BrInst = cast<BranchInst>(U);
384   unsigned Succ = 0;
385   if (!BrInst.isUnconditional()) {
386     // We want a G_BRCOND to the true BB followed by an unconditional branch.
387     Register Tst = getOrCreateVReg(*BrInst.getCondition());
388     const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
389     MachineBasicBlock &TrueBB = getMBB(TrueTgt);
390     MIRBuilder.buildBrCond(Tst, TrueBB);
391   }
392 
393   const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
394   MachineBasicBlock &TgtBB = getMBB(BrTgt);
395   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
396 
397   // If the unconditional target is the layout successor, fallthrough.
398   if (!CurBB.isLayoutSuccessor(&TgtBB))
399     MIRBuilder.buildBr(TgtBB);
400 
401   // Link successors.
402   for (const BasicBlock *Succ : successors(&BrInst))
403     CurBB.addSuccessor(&getMBB(*Succ));
404   return true;
405 }
406 
407 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
408                                         MachineBasicBlock *Dst,
409                                         BranchProbability Prob) {
410   if (!FuncInfo.BPI) {
411     Src->addSuccessorWithoutProb(Dst);
412     return;
413   }
414   if (Prob.isUnknown())
415     Prob = getEdgeProbability(Src, Dst);
416   Src->addSuccessor(Dst, Prob);
417 }
418 
419 BranchProbability
420 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
421                                  const MachineBasicBlock *Dst) const {
422   const BasicBlock *SrcBB = Src->getBasicBlock();
423   const BasicBlock *DstBB = Dst->getBasicBlock();
424   if (!FuncInfo.BPI) {
425     // If BPI is not available, set the default probability as 1 / N, where N is
426     // the number of successors.
427     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
428     return BranchProbability(1, SuccSize);
429   }
430   return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
431 }
432 
433 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
434   using namespace SwitchCG;
435   // Extract cases from the switch.
436   const SwitchInst &SI = cast<SwitchInst>(U);
437   BranchProbabilityInfo *BPI = FuncInfo.BPI;
438   CaseClusterVector Clusters;
439   Clusters.reserve(SI.getNumCases());
440   for (auto &I : SI.cases()) {
441     MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
442     assert(Succ && "Could not find successor mbb in mapping");
443     const ConstantInt *CaseVal = I.getCaseValue();
444     BranchProbability Prob =
445         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
446             : BranchProbability(1, SI.getNumCases() + 1);
447     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
448   }
449 
450   MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
451 
452   // Cluster adjacent cases with the same destination. We do this at all
453   // optimization levels because it's cheap to do and will make codegen faster
454   // if there are many clusters.
455   sortAndRangeify(Clusters);
456 
457   MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
458 
459   // If there is only the default destination, jump there directly.
460   if (Clusters.empty()) {
461     SwitchMBB->addSuccessor(DefaultMBB);
462     if (DefaultMBB != SwitchMBB->getNextNode())
463       MIB.buildBr(*DefaultMBB);
464     return true;
465   }
466 
467   SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
468 
469   LLVM_DEBUG({
470     dbgs() << "Case clusters: ";
471     for (const CaseCluster &C : Clusters) {
472       if (C.Kind == CC_JumpTable)
473         dbgs() << "JT:";
474       if (C.Kind == CC_BitTests)
475         dbgs() << "BT:";
476 
477       C.Low->getValue().print(dbgs(), true);
478       if (C.Low != C.High) {
479         dbgs() << '-';
480         C.High->getValue().print(dbgs(), true);
481       }
482       dbgs() << ' ';
483     }
484     dbgs() << '\n';
485   });
486 
487   assert(!Clusters.empty());
488   SwitchWorkList WorkList;
489   CaseClusterIt First = Clusters.begin();
490   CaseClusterIt Last = Clusters.end() - 1;
491   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
492   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
493 
494   // FIXME: At the moment we don't do any splitting optimizations here like
495   // SelectionDAG does, so this worklist only has one entry.
496   while (!WorkList.empty()) {
497     SwitchWorkListItem W = WorkList.back();
498     WorkList.pop_back();
499     if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
500       return false;
501   }
502   return true;
503 }
504 
505 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
506                                  MachineBasicBlock *MBB) {
507   // Emit the code for the jump table
508   assert(JT.Reg != -1U && "Should lower JT Header first!");
509   MachineIRBuilder MIB(*MBB->getParent());
510   MIB.setMBB(*MBB);
511   MIB.setDebugLoc(CurBuilder->getDebugLoc());
512 
513   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
514   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
515 
516   auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
517   MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
518 }
519 
520 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
521                                        SwitchCG::JumpTableHeader &JTH,
522                                        MachineBasicBlock *HeaderBB) {
523   MachineIRBuilder MIB(*HeaderBB->getParent());
524   MIB.setMBB(*HeaderBB);
525   MIB.setDebugLoc(CurBuilder->getDebugLoc());
526 
527   const Value &SValue = *JTH.SValue;
528   // Subtract the lowest switch case value from the value being switched on.
529   const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
530   Register SwitchOpReg = getOrCreateVReg(SValue);
531   auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
532   auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
533 
534   // This value may be smaller or larger than the target's pointer type, and
535   // therefore require extension or truncating.
536   Type *PtrIRTy = SValue.getType()->getPointerTo();
537   const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
538   Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
539 
540   JT.Reg = Sub.getReg(0);
541 
542   if (JTH.OmitRangeCheck) {
543     if (JT.MBB != HeaderBB->getNextNode())
544       MIB.buildBr(*JT.MBB);
545     return true;
546   }
547 
548   // Emit the range check for the jump table, and branch to the default block
549   // for the switch statement if the value being switched on exceeds the
550   // largest case in the switch.
551   auto Cst = getOrCreateVReg(
552       *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
553   Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
554   auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
555 
556   auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
557 
558   // Avoid emitting unnecessary branches to the next block.
559   if (JT.MBB != HeaderBB->getNextNode())
560     BrCond = MIB.buildBr(*JT.MBB);
561   return true;
562 }
563 
564 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
565                                   MachineBasicBlock *SwitchBB,
566                                   MachineIRBuilder &MIB) {
567   Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
568   Register Cond;
569   DebugLoc OldDbgLoc = MIB.getDebugLoc();
570   MIB.setDebugLoc(CB.DbgLoc);
571   MIB.setMBB(*CB.ThisBB);
572 
573   if (CB.PredInfo.NoCmp) {
574     // Branch or fall through to TrueBB.
575     addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
576     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
577                       CB.ThisBB);
578     CB.ThisBB->normalizeSuccProbs();
579     if (CB.TrueBB != CB.ThisBB->getNextNode())
580       MIB.buildBr(*CB.TrueBB);
581     MIB.setDebugLoc(OldDbgLoc);
582     return;
583   }
584 
585   const LLT i1Ty = LLT::scalar(1);
586   // Build the compare.
587   if (!CB.CmpMHS) {
588     Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
589     Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
590   } else {
591     assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
592            "Can only handle SLE ranges");
593 
594     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
595     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
596 
597     Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
598     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
599       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
600       Cond =
601           MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
602     } else {
603       const LLT CmpTy = MRI->getType(CmpOpReg);
604       auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
605       auto Diff = MIB.buildConstant(CmpTy, High - Low);
606       Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
607     }
608   }
609 
610   // Update successor info
611   addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
612 
613   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
614                     CB.ThisBB);
615 
616   // TrueBB and FalseBB are always different unless the incoming IR is
617   // degenerate. This only happens when running llc on weird IR.
618   if (CB.TrueBB != CB.FalseBB)
619     addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
620   CB.ThisBB->normalizeSuccProbs();
621 
622   //  if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock())
623     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
624                       CB.ThisBB);
625 
626   // If the lhs block is the next block, invert the condition so that we can
627   // fall through to the lhs instead of the rhs block.
628   if (CB.TrueBB == CB.ThisBB->getNextNode()) {
629     std::swap(CB.TrueBB, CB.FalseBB);
630     auto True = MIB.buildConstant(i1Ty, 1);
631     Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0);
632   }
633 
634   MIB.buildBrCond(Cond, *CB.TrueBB);
635   MIB.buildBr(*CB.FalseBB);
636   MIB.setDebugLoc(OldDbgLoc);
637 }
638 
639 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
640                                           MachineBasicBlock *SwitchMBB,
641                                           MachineBasicBlock *CurMBB,
642                                           MachineBasicBlock *DefaultMBB,
643                                           MachineIRBuilder &MIB,
644                                           MachineFunction::iterator BBI,
645                                           BranchProbability UnhandledProbs,
646                                           SwitchCG::CaseClusterIt I,
647                                           MachineBasicBlock *Fallthrough,
648                                           bool FallthroughUnreachable) {
649   using namespace SwitchCG;
650   MachineFunction *CurMF = SwitchMBB->getParent();
651   // FIXME: Optimize away range check based on pivot comparisons.
652   JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
653   SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
654   BranchProbability DefaultProb = W.DefaultProb;
655 
656   // The jump block hasn't been inserted yet; insert it here.
657   MachineBasicBlock *JumpMBB = JT->MBB;
658   CurMF->insert(BBI, JumpMBB);
659 
660   // Since the jump table block is separate from the switch block, we need
661   // to keep track of it as a machine predecessor to the default block,
662   // otherwise we lose the phi edges.
663   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
664                     CurMBB);
665   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
666                     JumpMBB);
667 
668   auto JumpProb = I->Prob;
669   auto FallthroughProb = UnhandledProbs;
670 
671   // If the default statement is a target of the jump table, we evenly
672   // distribute the default probability to successors of CurMBB. Also
673   // update the probability on the edge from JumpMBB to Fallthrough.
674   for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
675                                         SE = JumpMBB->succ_end();
676        SI != SE; ++SI) {
677     if (*SI == DefaultMBB) {
678       JumpProb += DefaultProb / 2;
679       FallthroughProb -= DefaultProb / 2;
680       JumpMBB->setSuccProbability(SI, DefaultProb / 2);
681       JumpMBB->normalizeSuccProbs();
682     } else {
683       // Also record edges from the jump table block to it's successors.
684       addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
685                         JumpMBB);
686     }
687   }
688 
689   // Skip the range check if the fallthrough block is unreachable.
690   if (FallthroughUnreachable)
691     JTH->OmitRangeCheck = true;
692 
693   if (!JTH->OmitRangeCheck)
694     addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
695   addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
696   CurMBB->normalizeSuccProbs();
697 
698   // The jump table header will be inserted in our current block, do the
699   // range check, and fall through to our fallthrough block.
700   JTH->HeaderBB = CurMBB;
701   JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
702 
703   // If we're in the right place, emit the jump table header right now.
704   if (CurMBB == SwitchMBB) {
705     if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
706       return false;
707     JTH->Emitted = true;
708   }
709   return true;
710 }
711 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
712                                             Value *Cond,
713                                             MachineBasicBlock *Fallthrough,
714                                             bool FallthroughUnreachable,
715                                             BranchProbability UnhandledProbs,
716                                             MachineBasicBlock *CurMBB,
717                                             MachineIRBuilder &MIB,
718                                             MachineBasicBlock *SwitchMBB) {
719   using namespace SwitchCG;
720   const Value *RHS, *LHS, *MHS;
721   CmpInst::Predicate Pred;
722   if (I->Low == I->High) {
723     // Check Cond == I->Low.
724     Pred = CmpInst::ICMP_EQ;
725     LHS = Cond;
726     RHS = I->Low;
727     MHS = nullptr;
728   } else {
729     // Check I->Low <= Cond <= I->High.
730     Pred = CmpInst::ICMP_SLE;
731     LHS = I->Low;
732     MHS = Cond;
733     RHS = I->High;
734   }
735 
736   // If Fallthrough is unreachable, fold away the comparison.
737   // The false probability is the sum of all unhandled cases.
738   CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
739                CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
740 
741   emitSwitchCase(CB, SwitchMBB, MIB);
742   return true;
743 }
744 
745 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
746                                        Value *Cond,
747                                        MachineBasicBlock *SwitchMBB,
748                                        MachineBasicBlock *DefaultMBB,
749                                        MachineIRBuilder &MIB) {
750   using namespace SwitchCG;
751   MachineFunction *CurMF = FuncInfo.MF;
752   MachineBasicBlock *NextMBB = nullptr;
753   MachineFunction::iterator BBI(W.MBB);
754   if (++BBI != FuncInfo.MF->end())
755     NextMBB = &*BBI;
756 
757   if (EnableOpts) {
758     // Here, we order cases by probability so the most likely case will be
759     // checked first. However, two clusters can have the same probability in
760     // which case their relative ordering is non-deterministic. So we use Low
761     // as a tie-breaker as clusters are guaranteed to never overlap.
762     llvm::sort(W.FirstCluster, W.LastCluster + 1,
763                [](const CaseCluster &a, const CaseCluster &b) {
764                  return a.Prob != b.Prob
765                             ? a.Prob > b.Prob
766                             : a.Low->getValue().slt(b.Low->getValue());
767                });
768 
769     // Rearrange the case blocks so that the last one falls through if possible
770     // without changing the order of probabilities.
771     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
772       --I;
773       if (I->Prob > W.LastCluster->Prob)
774         break;
775       if (I->Kind == CC_Range && I->MBB == NextMBB) {
776         std::swap(*I, *W.LastCluster);
777         break;
778       }
779     }
780   }
781 
782   // Compute total probability.
783   BranchProbability DefaultProb = W.DefaultProb;
784   BranchProbability UnhandledProbs = DefaultProb;
785   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
786     UnhandledProbs += I->Prob;
787 
788   MachineBasicBlock *CurMBB = W.MBB;
789   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
790     bool FallthroughUnreachable = false;
791     MachineBasicBlock *Fallthrough;
792     if (I == W.LastCluster) {
793       // For the last cluster, fall through to the default destination.
794       Fallthrough = DefaultMBB;
795       FallthroughUnreachable = isa<UnreachableInst>(
796           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
797     } else {
798       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
799       CurMF->insert(BBI, Fallthrough);
800     }
801     UnhandledProbs -= I->Prob;
802 
803     switch (I->Kind) {
804     case CC_BitTests: {
805       LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented");
806       return false; // Bit tests currently unimplemented.
807     }
808     case CC_JumpTable: {
809       if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
810                                   UnhandledProbs, I, Fallthrough,
811                                   FallthroughUnreachable)) {
812         LLVM_DEBUG(dbgs() << "Failed to lower jump table");
813         return false;
814       }
815       break;
816     }
817     case CC_Range: {
818       if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
819                                     FallthroughUnreachable, UnhandledProbs,
820                                     CurMBB, MIB, SwitchMBB)) {
821         LLVM_DEBUG(dbgs() << "Failed to lower switch range");
822         return false;
823       }
824       break;
825     }
826     }
827     CurMBB = Fallthrough;
828   }
829 
830   return true;
831 }
832 
833 bool IRTranslator::translateIndirectBr(const User &U,
834                                        MachineIRBuilder &MIRBuilder) {
835   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
836 
837   const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
838   MIRBuilder.buildBrIndirect(Tgt);
839 
840   // Link successors.
841   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
842   for (const BasicBlock *Succ : successors(&BrInst))
843     CurBB.addSuccessor(&getMBB(*Succ));
844 
845   return true;
846 }
847 
848 static bool isSwiftError(const Value *V) {
849   if (auto Arg = dyn_cast<Argument>(V))
850     return Arg->hasSwiftErrorAttr();
851   if (auto AI = dyn_cast<AllocaInst>(V))
852     return AI->isSwiftError();
853   return false;
854 }
855 
856 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
857   const LoadInst &LI = cast<LoadInst>(U);
858   if (DL->getTypeStoreSize(LI.getType()) == 0)
859     return true;
860 
861   ArrayRef<Register> Regs = getOrCreateVRegs(LI);
862   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
863   Register Base = getOrCreateVReg(*LI.getPointerOperand());
864 
865   Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
866   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
867 
868   if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
869     assert(Regs.size() == 1 && "swifterror should be single pointer");
870     Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
871                                                     LI.getPointerOperand());
872     MIRBuilder.buildCopy(Regs[0], VReg);
873     return true;
874   }
875 
876   auto &TLI = *MF->getSubtarget().getTargetLowering();
877   MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
878 
879   const MDNode *Ranges =
880       Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
881   for (unsigned i = 0; i < Regs.size(); ++i) {
882     Register Addr;
883     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
884 
885     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
886     Align BaseAlign = getMemOpAlign(LI);
887     AAMDNodes AAMetadata;
888     LI.getAAMetadata(AAMetadata);
889     auto MMO = MF->getMachineMemOperand(
890         Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(),
891         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges,
892         LI.getSyncScopeID(), LI.getOrdering());
893     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
894   }
895 
896   return true;
897 }
898 
899 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
900   const StoreInst &SI = cast<StoreInst>(U);
901   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
902     return true;
903 
904   ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
905   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
906   Register Base = getOrCreateVReg(*SI.getPointerOperand());
907 
908   Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
909   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
910 
911   if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
912     assert(Vals.size() == 1 && "swifterror should be single pointer");
913 
914     Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
915                                                     SI.getPointerOperand());
916     MIRBuilder.buildCopy(VReg, Vals[0]);
917     return true;
918   }
919 
920   auto &TLI = *MF->getSubtarget().getTargetLowering();
921   MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
922 
923   for (unsigned i = 0; i < Vals.size(); ++i) {
924     Register Addr;
925     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
926 
927     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
928     Align BaseAlign = getMemOpAlign(SI);
929     AAMDNodes AAMetadata;
930     SI.getAAMetadata(AAMetadata);
931     auto MMO = MF->getMachineMemOperand(
932         Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(),
933         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr,
934         SI.getSyncScopeID(), SI.getOrdering());
935     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
936   }
937   return true;
938 }
939 
940 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
941   const Value *Src = U.getOperand(0);
942   Type *Int32Ty = Type::getInt32Ty(U.getContext());
943 
944   // getIndexedOffsetInType is designed for GEPs, so the first index is the
945   // usual array element rather than looking into the actual aggregate.
946   SmallVector<Value *, 1> Indices;
947   Indices.push_back(ConstantInt::get(Int32Ty, 0));
948 
949   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
950     for (auto Idx : EVI->indices())
951       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
952   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
953     for (auto Idx : IVI->indices())
954       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
955   } else {
956     for (unsigned i = 1; i < U.getNumOperands(); ++i)
957       Indices.push_back(U.getOperand(i));
958   }
959 
960   return 8 * static_cast<uint64_t>(
961                  DL.getIndexedOffsetInType(Src->getType(), Indices));
962 }
963 
964 bool IRTranslator::translateExtractValue(const User &U,
965                                          MachineIRBuilder &MIRBuilder) {
966   const Value *Src = U.getOperand(0);
967   uint64_t Offset = getOffsetFromIndices(U, *DL);
968   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
969   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
970   unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
971   auto &DstRegs = allocateVRegs(U);
972 
973   for (unsigned i = 0; i < DstRegs.size(); ++i)
974     DstRegs[i] = SrcRegs[Idx++];
975 
976   return true;
977 }
978 
979 bool IRTranslator::translateInsertValue(const User &U,
980                                         MachineIRBuilder &MIRBuilder) {
981   const Value *Src = U.getOperand(0);
982   uint64_t Offset = getOffsetFromIndices(U, *DL);
983   auto &DstRegs = allocateVRegs(U);
984   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
985   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
986   ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
987   auto InsertedIt = InsertedRegs.begin();
988 
989   for (unsigned i = 0; i < DstRegs.size(); ++i) {
990     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
991       DstRegs[i] = *InsertedIt++;
992     else
993       DstRegs[i] = SrcRegs[i];
994   }
995 
996   return true;
997 }
998 
999 bool IRTranslator::translateSelect(const User &U,
1000                                    MachineIRBuilder &MIRBuilder) {
1001   Register Tst = getOrCreateVReg(*U.getOperand(0));
1002   ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1003   ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1004   ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1005 
1006   const SelectInst &SI = cast<SelectInst>(U);
1007   uint16_t Flags = 0;
1008   if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition()))
1009     Flags = MachineInstr::copyFlagsFromInstruction(*Cmp);
1010 
1011   for (unsigned i = 0; i < ResRegs.size(); ++i) {
1012     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1013   }
1014 
1015   return true;
1016 }
1017 
1018 bool IRTranslator::translateBitCast(const User &U,
1019                                     MachineIRBuilder &MIRBuilder) {
1020   // If we're bitcasting to the source type, we can reuse the source vreg.
1021   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1022       getLLTForType(*U.getType(), *DL)) {
1023     Register SrcReg = getOrCreateVReg(*U.getOperand(0));
1024     auto &Regs = *VMap.getVRegs(U);
1025     // If we already assigned a vreg for this bitcast, we can't change that.
1026     // Emit a copy to satisfy the users we already emitted.
1027     if (!Regs.empty())
1028       MIRBuilder.buildCopy(Regs[0], SrcReg);
1029     else {
1030       Regs.push_back(SrcReg);
1031       VMap.getOffsets(U)->push_back(0);
1032     }
1033     return true;
1034   }
1035   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1036 }
1037 
1038 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1039                                  MachineIRBuilder &MIRBuilder) {
1040   Register Op = getOrCreateVReg(*U.getOperand(0));
1041   Register Res = getOrCreateVReg(U);
1042   MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1043   return true;
1044 }
1045 
1046 bool IRTranslator::translateGetElementPtr(const User &U,
1047                                           MachineIRBuilder &MIRBuilder) {
1048   Value &Op0 = *U.getOperand(0);
1049   Register BaseReg = getOrCreateVReg(Op0);
1050   Type *PtrIRTy = Op0.getType();
1051   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1052   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1053   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1054 
1055   // Normalize Vector GEP - all scalar operands should be converted to the
1056   // splat vector.
1057   unsigned VectorWidth = 0;
1058   if (auto *VT = dyn_cast<VectorType>(U.getType()))
1059     VectorWidth = VT->getNumElements();
1060 
1061   // We might need to splat the base pointer into a vector if the offsets
1062   // are vectors.
1063   if (VectorWidth && !PtrTy.isVector()) {
1064     BaseReg =
1065         MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg)
1066             .getReg(0);
1067     PtrIRTy = VectorType::get(PtrIRTy, VectorWidth);
1068     PtrTy = getLLTForType(*PtrIRTy, *DL);
1069     OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1070     OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1071   }
1072 
1073   int64_t Offset = 0;
1074   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1075        GTI != E; ++GTI) {
1076     const Value *Idx = GTI.getOperand();
1077     if (StructType *StTy = GTI.getStructTypeOrNull()) {
1078       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1079       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1080       continue;
1081     } else {
1082       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1083 
1084       // If this is a scalar constant or a splat vector of constants,
1085       // handle it quickly.
1086       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1087         Offset += ElementSize * CI->getSExtValue();
1088         continue;
1089       }
1090 
1091       if (Offset != 0) {
1092         auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1093         BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1094                       .getReg(0);
1095         Offset = 0;
1096       }
1097 
1098       Register IdxReg = getOrCreateVReg(*Idx);
1099       LLT IdxTy = MRI->getType(IdxReg);
1100       if (IdxTy != OffsetTy) {
1101         if (!IdxTy.isVector() && VectorWidth) {
1102           IdxReg = MIRBuilder.buildSplatVector(
1103             OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1104         }
1105 
1106         IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1107       }
1108 
1109       // N = N + Idx * ElementSize;
1110       // Avoid doing it for ElementSize of 1.
1111       Register GepOffsetReg;
1112       if (ElementSize != 1) {
1113         auto ElementSizeMIB = MIRBuilder.buildConstant(
1114             getLLTForType(*OffsetIRTy, *DL), ElementSize);
1115         GepOffsetReg =
1116             MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1117       } else
1118         GepOffsetReg = IdxReg;
1119 
1120       BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1121     }
1122   }
1123 
1124   if (Offset != 0) {
1125     auto OffsetMIB =
1126         MIRBuilder.buildConstant(OffsetTy, Offset);
1127     MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1128     return true;
1129   }
1130 
1131   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1132   return true;
1133 }
1134 
1135 bool IRTranslator::translateMemFunc(const CallInst &CI,
1136                                     MachineIRBuilder &MIRBuilder,
1137                                     Intrinsic::ID ID) {
1138 
1139   // If the source is undef, then just emit a nop.
1140   if (isa<UndefValue>(CI.getArgOperand(1)))
1141     return true;
1142 
1143   ArrayRef<Register> Res;
1144   auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true);
1145   for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI)
1146     ICall.addUse(getOrCreateVReg(**AI));
1147 
1148   Align DstAlign;
1149   Align SrcAlign;
1150   unsigned IsVol =
1151       cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
1152           ->getZExtValue();
1153 
1154   if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1155     DstAlign = MCI->getDestAlign().valueOrOne();
1156     SrcAlign = MCI->getSourceAlign().valueOrOne();
1157   } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1158     DstAlign = MMI->getDestAlign().valueOrOne();
1159     SrcAlign = MMI->getSourceAlign().valueOrOne();
1160   } else {
1161     auto *MSI = cast<MemSetInst>(&CI);
1162     DstAlign = MSI->getDestAlign().valueOrOne();
1163   }
1164 
1165   // We need to propagate the tail call flag from the IR inst as an argument.
1166   // Otherwise, we have to pessimize and assume later that we cannot tail call
1167   // any memory intrinsics.
1168   ICall.addImm(CI.isTailCall() ? 1 : 0);
1169 
1170   // Create mem operands to store the alignment and volatile info.
1171   auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
1172   ICall.addMemOperand(MF->getMachineMemOperand(
1173       MachinePointerInfo(CI.getArgOperand(0)),
1174       MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
1175   if (ID != Intrinsic::memset)
1176     ICall.addMemOperand(MF->getMachineMemOperand(
1177         MachinePointerInfo(CI.getArgOperand(1)),
1178         MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
1179 
1180   return true;
1181 }
1182 
1183 void IRTranslator::getStackGuard(Register DstReg,
1184                                  MachineIRBuilder &MIRBuilder) {
1185   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1186   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1187   auto MIB =
1188       MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1189 
1190   auto &TLI = *MF->getSubtarget().getTargetLowering();
1191   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1192   if (!Global)
1193     return;
1194 
1195   MachinePointerInfo MPInfo(Global);
1196   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1197                MachineMemOperand::MODereferenceable;
1198   MachineMemOperand *MemRef =
1199       MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
1200                                DL->getPointerABIAlignment(0));
1201   MIB.setMemRefs({MemRef});
1202 }
1203 
1204 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1205                                               MachineIRBuilder &MIRBuilder) {
1206   ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1207   MIRBuilder.buildInstr(
1208       Op, {ResRegs[0], ResRegs[1]},
1209       {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1210 
1211   return true;
1212 }
1213 
1214 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1215   switch (ID) {
1216     default:
1217       break;
1218     case Intrinsic::bswap:
1219       return TargetOpcode::G_BSWAP;
1220     case Intrinsic::bitreverse:
1221       return TargetOpcode::G_BITREVERSE;
1222     case Intrinsic::fshl:
1223       return TargetOpcode::G_FSHL;
1224     case Intrinsic::fshr:
1225       return TargetOpcode::G_FSHR;
1226     case Intrinsic::ceil:
1227       return TargetOpcode::G_FCEIL;
1228     case Intrinsic::cos:
1229       return TargetOpcode::G_FCOS;
1230     case Intrinsic::ctpop:
1231       return TargetOpcode::G_CTPOP;
1232     case Intrinsic::exp:
1233       return TargetOpcode::G_FEXP;
1234     case Intrinsic::exp2:
1235       return TargetOpcode::G_FEXP2;
1236     case Intrinsic::fabs:
1237       return TargetOpcode::G_FABS;
1238     case Intrinsic::copysign:
1239       return TargetOpcode::G_FCOPYSIGN;
1240     case Intrinsic::minnum:
1241       return TargetOpcode::G_FMINNUM;
1242     case Intrinsic::maxnum:
1243       return TargetOpcode::G_FMAXNUM;
1244     case Intrinsic::minimum:
1245       return TargetOpcode::G_FMINIMUM;
1246     case Intrinsic::maximum:
1247       return TargetOpcode::G_FMAXIMUM;
1248     case Intrinsic::canonicalize:
1249       return TargetOpcode::G_FCANONICALIZE;
1250     case Intrinsic::floor:
1251       return TargetOpcode::G_FFLOOR;
1252     case Intrinsic::fma:
1253       return TargetOpcode::G_FMA;
1254     case Intrinsic::log:
1255       return TargetOpcode::G_FLOG;
1256     case Intrinsic::log2:
1257       return TargetOpcode::G_FLOG2;
1258     case Intrinsic::log10:
1259       return TargetOpcode::G_FLOG10;
1260     case Intrinsic::nearbyint:
1261       return TargetOpcode::G_FNEARBYINT;
1262     case Intrinsic::pow:
1263       return TargetOpcode::G_FPOW;
1264     case Intrinsic::rint:
1265       return TargetOpcode::G_FRINT;
1266     case Intrinsic::round:
1267       return TargetOpcode::G_INTRINSIC_ROUND;
1268     case Intrinsic::sin:
1269       return TargetOpcode::G_FSIN;
1270     case Intrinsic::sqrt:
1271       return TargetOpcode::G_FSQRT;
1272     case Intrinsic::trunc:
1273       return TargetOpcode::G_INTRINSIC_TRUNC;
1274     case Intrinsic::readcyclecounter:
1275       return TargetOpcode::G_READCYCLECOUNTER;
1276   }
1277   return Intrinsic::not_intrinsic;
1278 }
1279 
1280 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1281                                             Intrinsic::ID ID,
1282                                             MachineIRBuilder &MIRBuilder) {
1283 
1284   unsigned Op = getSimpleIntrinsicOpcode(ID);
1285 
1286   // Is this a simple intrinsic?
1287   if (Op == Intrinsic::not_intrinsic)
1288     return false;
1289 
1290   // Yes. Let's translate it.
1291   SmallVector<llvm::SrcOp, 4> VRegs;
1292   for (auto &Arg : CI.arg_operands())
1293     VRegs.push_back(getOrCreateVReg(*Arg));
1294 
1295   MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1296                         MachineInstr::copyFlagsFromInstruction(CI));
1297   return true;
1298 }
1299 
1300 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1301                                            MachineIRBuilder &MIRBuilder) {
1302 
1303   // If this is a simple intrinsic (that is, we just need to add a def of
1304   // a vreg, and uses for each arg operand, then translate it.
1305   if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1306     return true;
1307 
1308   switch (ID) {
1309   default:
1310     break;
1311   case Intrinsic::lifetime_start:
1312   case Intrinsic::lifetime_end: {
1313     // No stack colouring in O0, discard region information.
1314     if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1315       return true;
1316 
1317     unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1318                                                   : TargetOpcode::LIFETIME_END;
1319 
1320     // Get the underlying objects for the location passed on the lifetime
1321     // marker.
1322     SmallVector<const Value *, 4> Allocas;
1323     GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL);
1324 
1325     // Iterate over each underlying object, creating lifetime markers for each
1326     // static alloca. Quit if we find a non-static alloca.
1327     for (const Value *V : Allocas) {
1328       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1329       if (!AI)
1330         continue;
1331 
1332       if (!AI->isStaticAlloca())
1333         return true;
1334 
1335       MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1336     }
1337     return true;
1338   }
1339   case Intrinsic::dbg_declare: {
1340     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1341     assert(DI.getVariable() && "Missing variable");
1342 
1343     const Value *Address = DI.getAddress();
1344     if (!Address || isa<UndefValue>(Address)) {
1345       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1346       return true;
1347     }
1348 
1349     assert(DI.getVariable()->isValidLocationForIntrinsic(
1350                MIRBuilder.getDebugLoc()) &&
1351            "Expected inlined-at fields to agree");
1352     auto AI = dyn_cast<AllocaInst>(Address);
1353     if (AI && AI->isStaticAlloca()) {
1354       // Static allocas are tracked at the MF level, no need for DBG_VALUE
1355       // instructions (in fact, they get ignored if they *do* exist).
1356       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1357                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1358     } else {
1359       // A dbg.declare describes the address of a source variable, so lower it
1360       // into an indirect DBG_VALUE.
1361       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1362                                        DI.getVariable(), DI.getExpression());
1363     }
1364     return true;
1365   }
1366   case Intrinsic::dbg_label: {
1367     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1368     assert(DI.getLabel() && "Missing label");
1369 
1370     assert(DI.getLabel()->isValidLocationForIntrinsic(
1371                MIRBuilder.getDebugLoc()) &&
1372            "Expected inlined-at fields to agree");
1373 
1374     MIRBuilder.buildDbgLabel(DI.getLabel());
1375     return true;
1376   }
1377   case Intrinsic::vaend:
1378     // No target I know of cares about va_end. Certainly no in-tree target
1379     // does. Simplest intrinsic ever!
1380     return true;
1381   case Intrinsic::vastart: {
1382     auto &TLI = *MF->getSubtarget().getTargetLowering();
1383     Value *Ptr = CI.getArgOperand(0);
1384     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1385 
1386     // FIXME: Get alignment
1387     MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
1388         .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
1389                                                 MachineMemOperand::MOStore,
1390                                                 ListSize, Align(1)));
1391     return true;
1392   }
1393   case Intrinsic::dbg_value: {
1394     // This form of DBG_VALUE is target-independent.
1395     const DbgValueInst &DI = cast<DbgValueInst>(CI);
1396     const Value *V = DI.getValue();
1397     assert(DI.getVariable()->isValidLocationForIntrinsic(
1398                MIRBuilder.getDebugLoc()) &&
1399            "Expected inlined-at fields to agree");
1400     if (!V) {
1401       // Currently the optimizer can produce this; insert an undef to
1402       // help debugging.  Probably the optimizer should not do this.
1403       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1404     } else if (const auto *CI = dyn_cast<Constant>(V)) {
1405       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1406     } else {
1407       for (Register Reg : getOrCreateVRegs(*V)) {
1408         // FIXME: This does not handle register-indirect values at offset 0. The
1409         // direct/indirect thing shouldn't really be handled by something as
1410         // implicit as reg+noreg vs reg+imm in the first place, but it seems
1411         // pretty baked in right now.
1412         MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
1413       }
1414     }
1415     return true;
1416   }
1417   case Intrinsic::uadd_with_overflow:
1418     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
1419   case Intrinsic::sadd_with_overflow:
1420     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
1421   case Intrinsic::usub_with_overflow:
1422     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
1423   case Intrinsic::ssub_with_overflow:
1424     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
1425   case Intrinsic::umul_with_overflow:
1426     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
1427   case Intrinsic::smul_with_overflow:
1428     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
1429   case Intrinsic::uadd_sat:
1430     return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
1431   case Intrinsic::sadd_sat:
1432     return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
1433   case Intrinsic::usub_sat:
1434     return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
1435   case Intrinsic::ssub_sat:
1436     return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
1437   case Intrinsic::fmuladd: {
1438     const TargetMachine &TM = MF->getTarget();
1439     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1440     Register Dst = getOrCreateVReg(CI);
1441     Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
1442     Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
1443     Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
1444     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
1445         TLI.isFMAFasterThanFMulAndFAdd(*MF,
1446                                        TLI.getValueType(*DL, CI.getType()))) {
1447       // TODO: Revisit this to see if we should move this part of the
1448       // lowering to the combiner.
1449       MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
1450                           MachineInstr::copyFlagsFromInstruction(CI));
1451     } else {
1452       LLT Ty = getLLTForType(*CI.getType(), *DL);
1453       auto FMul = MIRBuilder.buildFMul(
1454           Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
1455       MIRBuilder.buildFAdd(Dst, FMul, Op2,
1456                            MachineInstr::copyFlagsFromInstruction(CI));
1457     }
1458     return true;
1459   }
1460   case Intrinsic::memcpy:
1461   case Intrinsic::memmove:
1462   case Intrinsic::memset:
1463     return translateMemFunc(CI, MIRBuilder, ID);
1464   case Intrinsic::eh_typeid_for: {
1465     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
1466     Register Reg = getOrCreateVReg(CI);
1467     unsigned TypeID = MF->getTypeIDFor(GV);
1468     MIRBuilder.buildConstant(Reg, TypeID);
1469     return true;
1470   }
1471   case Intrinsic::objectsize:
1472     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1473 
1474   case Intrinsic::is_constant:
1475     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1476 
1477   case Intrinsic::stackguard:
1478     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
1479     return true;
1480   case Intrinsic::stackprotector: {
1481     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1482     Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
1483     getStackGuard(GuardVal, MIRBuilder);
1484 
1485     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
1486     int FI = getOrCreateFrameIndex(*Slot);
1487     MF->getFrameInfo().setStackProtectorIndex(FI);
1488 
1489     MIRBuilder.buildStore(
1490         GuardVal, getOrCreateVReg(*Slot),
1491         *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
1492                                   MachineMemOperand::MOStore |
1493                                       MachineMemOperand::MOVolatile,
1494                                   PtrTy.getSizeInBits() / 8, Align(8)));
1495     return true;
1496   }
1497   case Intrinsic::stacksave: {
1498     // Save the stack pointer to the location provided by the intrinsic.
1499     Register Reg = getOrCreateVReg(CI);
1500     Register StackPtr = MF->getSubtarget()
1501                             .getTargetLowering()
1502                             ->getStackPointerRegisterToSaveRestore();
1503 
1504     // If the target doesn't specify a stack pointer, then fall back.
1505     if (!StackPtr)
1506       return false;
1507 
1508     MIRBuilder.buildCopy(Reg, StackPtr);
1509     return true;
1510   }
1511   case Intrinsic::stackrestore: {
1512     // Restore the stack pointer from the location provided by the intrinsic.
1513     Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
1514     Register StackPtr = MF->getSubtarget()
1515                             .getTargetLowering()
1516                             ->getStackPointerRegisterToSaveRestore();
1517 
1518     // If the target doesn't specify a stack pointer, then fall back.
1519     if (!StackPtr)
1520       return false;
1521 
1522     MIRBuilder.buildCopy(StackPtr, Reg);
1523     return true;
1524   }
1525   case Intrinsic::cttz:
1526   case Intrinsic::ctlz: {
1527     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
1528     bool isTrailing = ID == Intrinsic::cttz;
1529     unsigned Opcode = isTrailing
1530                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
1531                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
1532                           : Cst->isZero() ? TargetOpcode::G_CTLZ
1533                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
1534     MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
1535                           {getOrCreateVReg(*CI.getArgOperand(0))});
1536     return true;
1537   }
1538   case Intrinsic::invariant_start: {
1539     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1540     Register Undef = MRI->createGenericVirtualRegister(PtrTy);
1541     MIRBuilder.buildUndef(Undef);
1542     return true;
1543   }
1544   case Intrinsic::invariant_end:
1545     return true;
1546   case Intrinsic::assume:
1547   case Intrinsic::var_annotation:
1548   case Intrinsic::sideeffect:
1549     // Discard annotate attributes, assumptions, and artificial side-effects.
1550     return true;
1551   case Intrinsic::read_register: {
1552     Value *Arg = CI.getArgOperand(0);
1553     MIRBuilder
1554         .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
1555         .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
1556     return true;
1557   }
1558   case Intrinsic::write_register: {
1559     Value *Arg = CI.getArgOperand(0);
1560     MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
1561       .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
1562       .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
1563     return true;
1564   }
1565   }
1566   return false;
1567 }
1568 
1569 bool IRTranslator::translateInlineAsm(const CallBase &CB,
1570                                       MachineIRBuilder &MIRBuilder) {
1571 
1572   const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
1573 
1574   if (!ALI) {
1575     LLVM_DEBUG(
1576         dbgs() << "Inline asm lowering is not supported for this target yet\n");
1577     return false;
1578   }
1579 
1580   return ALI->lowerInlineAsm(
1581       MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
1582 }
1583 
1584 bool IRTranslator::translateCallBase(const CallBase &CB,
1585                                      MachineIRBuilder &MIRBuilder) {
1586   ArrayRef<Register> Res = getOrCreateVRegs(CB);
1587 
1588   SmallVector<ArrayRef<Register>, 8> Args;
1589   Register SwiftInVReg = 0;
1590   Register SwiftErrorVReg = 0;
1591   for (auto &Arg : CB.args()) {
1592     if (CLI->supportSwiftError() && isSwiftError(Arg)) {
1593       assert(SwiftInVReg == 0 && "Expected only one swift error argument");
1594       LLT Ty = getLLTForType(*Arg->getType(), *DL);
1595       SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
1596       MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
1597                                             &CB, &MIRBuilder.getMBB(), Arg));
1598       Args.emplace_back(makeArrayRef(SwiftInVReg));
1599       SwiftErrorVReg =
1600           SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
1601       continue;
1602     }
1603     Args.push_back(getOrCreateVRegs(*Arg));
1604   }
1605 
1606   // We don't set HasCalls on MFI here yet because call lowering may decide to
1607   // optimize into tail calls. Instead, we defer that to selection where a final
1608   // scan is done to check if any instructions are calls.
1609   bool Success =
1610       CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
1611                      [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
1612 
1613   // Check if we just inserted a tail call.
1614   if (Success) {
1615     assert(!HasTailCall && "Can't tail call return twice from block?");
1616     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1617     HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
1618   }
1619 
1620   return Success;
1621 }
1622 
1623 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
1624   const CallInst &CI = cast<CallInst>(U);
1625   auto TII = MF->getTarget().getIntrinsicInfo();
1626   const Function *F = CI.getCalledFunction();
1627 
1628   // FIXME: support Windows dllimport function calls.
1629   if (F && (F->hasDLLImportStorageClass() ||
1630             (MF->getTarget().getTargetTriple().isOSWindows() &&
1631              F->hasExternalWeakLinkage())))
1632     return false;
1633 
1634   // FIXME: support control flow guard targets.
1635   if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
1636     return false;
1637 
1638   if (CI.isInlineAsm())
1639     return translateInlineAsm(CI, MIRBuilder);
1640 
1641   Intrinsic::ID ID = Intrinsic::not_intrinsic;
1642   if (F && F->isIntrinsic()) {
1643     ID = F->getIntrinsicID();
1644     if (TII && ID == Intrinsic::not_intrinsic)
1645       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
1646   }
1647 
1648   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
1649     return translateCallBase(CI, MIRBuilder);
1650 
1651   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
1652 
1653   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
1654     return true;
1655 
1656   ArrayRef<Register> ResultRegs;
1657   if (!CI.getType()->isVoidTy())
1658     ResultRegs = getOrCreateVRegs(CI);
1659 
1660   // Ignore the callsite attributes. Backend code is most likely not expecting
1661   // an intrinsic to sometimes have side effects and sometimes not.
1662   MachineInstrBuilder MIB =
1663       MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
1664   if (isa<FPMathOperator>(CI))
1665     MIB->copyIRFlags(CI);
1666 
1667   for (auto &Arg : enumerate(CI.arg_operands())) {
1668     // Some intrinsics take metadata parameters. Reject them.
1669     if (isa<MetadataAsValue>(Arg.value()))
1670       return false;
1671 
1672     // If this is required to be an immediate, don't materialize it in a
1673     // register.
1674     if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
1675       if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
1676         // imm arguments are more convenient than cimm (and realistically
1677         // probably sufficient), so use them.
1678         assert(CI->getBitWidth() <= 64 &&
1679                "large intrinsic immediates not handled");
1680         MIB.addImm(CI->getSExtValue());
1681       } else {
1682         MIB.addFPImm(cast<ConstantFP>(Arg.value()));
1683       }
1684     } else {
1685       ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
1686       if (VRegs.size() > 1)
1687         return false;
1688       MIB.addUse(VRegs[0]);
1689     }
1690   }
1691 
1692   // Add a MachineMemOperand if it is a target mem intrinsic.
1693   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1694   TargetLowering::IntrinsicInfo Info;
1695   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
1696   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
1697     Align Alignment = Info.align.getValueOr(
1698         DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
1699 
1700     uint64_t Size = Info.memVT.getStoreSize();
1701     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
1702                                                Info.flags, Size, Alignment));
1703   }
1704 
1705   return true;
1706 }
1707 
1708 bool IRTranslator::translateInvoke(const User &U,
1709                                    MachineIRBuilder &MIRBuilder) {
1710   const InvokeInst &I = cast<InvokeInst>(U);
1711   MCContext &Context = MF->getContext();
1712 
1713   const BasicBlock *ReturnBB = I.getSuccessor(0);
1714   const BasicBlock *EHPadBB = I.getSuccessor(1);
1715 
1716   const Function *Fn = I.getCalledFunction();
1717   if (I.isInlineAsm())
1718     return false;
1719 
1720   // FIXME: support invoking patchpoint and statepoint intrinsics.
1721   if (Fn && Fn->isIntrinsic())
1722     return false;
1723 
1724   // FIXME: support whatever these are.
1725   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
1726     return false;
1727 
1728   // FIXME: support control flow guard targets.
1729   if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
1730     return false;
1731 
1732   // FIXME: support Windows exception handling.
1733   if (!isa<LandingPadInst>(EHPadBB->front()))
1734     return false;
1735 
1736   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
1737   // the region covered by the try.
1738   MCSymbol *BeginSymbol = Context.createTempSymbol();
1739   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
1740 
1741   if (!translateCallBase(I, MIRBuilder))
1742     return false;
1743 
1744   MCSymbol *EndSymbol = Context.createTempSymbol();
1745   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
1746 
1747   // FIXME: track probabilities.
1748   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
1749                     &ReturnMBB = getMBB(*ReturnBB);
1750   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
1751   MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
1752   MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
1753   MIRBuilder.buildBr(ReturnMBB);
1754 
1755   return true;
1756 }
1757 
1758 bool IRTranslator::translateCallBr(const User &U,
1759                                    MachineIRBuilder &MIRBuilder) {
1760   // FIXME: Implement this.
1761   return false;
1762 }
1763 
1764 bool IRTranslator::translateLandingPad(const User &U,
1765                                        MachineIRBuilder &MIRBuilder) {
1766   const LandingPadInst &LP = cast<LandingPadInst>(U);
1767 
1768   MachineBasicBlock &MBB = MIRBuilder.getMBB();
1769 
1770   MBB.setIsEHPad();
1771 
1772   // If there aren't registers to copy the values into (e.g., during SjLj
1773   // exceptions), then don't bother.
1774   auto &TLI = *MF->getSubtarget().getTargetLowering();
1775   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
1776   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
1777       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
1778     return true;
1779 
1780   // If landingpad's return type is token type, we don't create DAG nodes
1781   // for its exception pointer and selector value. The extraction of exception
1782   // pointer or selector value from token type landingpads is not currently
1783   // supported.
1784   if (LP.getType()->isTokenTy())
1785     return true;
1786 
1787   // Add a label to mark the beginning of the landing pad.  Deletion of the
1788   // landing pad can thus be detected via the MachineModuleInfo.
1789   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
1790     .addSym(MF->addLandingPad(&MBB));
1791 
1792   LLT Ty = getLLTForType(*LP.getType(), *DL);
1793   Register Undef = MRI->createGenericVirtualRegister(Ty);
1794   MIRBuilder.buildUndef(Undef);
1795 
1796   SmallVector<LLT, 2> Tys;
1797   for (Type *Ty : cast<StructType>(LP.getType())->elements())
1798     Tys.push_back(getLLTForType(*Ty, *DL));
1799   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
1800 
1801   // Mark exception register as live in.
1802   Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
1803   if (!ExceptionReg)
1804     return false;
1805 
1806   MBB.addLiveIn(ExceptionReg);
1807   ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
1808   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
1809 
1810   Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
1811   if (!SelectorReg)
1812     return false;
1813 
1814   MBB.addLiveIn(SelectorReg);
1815   Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
1816   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
1817   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
1818 
1819   return true;
1820 }
1821 
1822 bool IRTranslator::translateAlloca(const User &U,
1823                                    MachineIRBuilder &MIRBuilder) {
1824   auto &AI = cast<AllocaInst>(U);
1825 
1826   if (AI.isSwiftError())
1827     return true;
1828 
1829   if (AI.isStaticAlloca()) {
1830     Register Res = getOrCreateVReg(AI);
1831     int FI = getOrCreateFrameIndex(AI);
1832     MIRBuilder.buildFrameIndex(Res, FI);
1833     return true;
1834   }
1835 
1836   // FIXME: support stack probing for Windows.
1837   if (MF->getTarget().getTargetTriple().isOSWindows())
1838     return false;
1839 
1840   // Now we're in the harder dynamic case.
1841   Register NumElts = getOrCreateVReg(*AI.getArraySize());
1842   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
1843   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
1844   if (MRI->getType(NumElts) != IntPtrTy) {
1845     Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
1846     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
1847     NumElts = ExtElts;
1848   }
1849 
1850   Type *Ty = AI.getAllocatedType();
1851 
1852   Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
1853   Register TySize =
1854       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
1855   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
1856 
1857   // Round the size of the allocation up to the stack alignment size
1858   // by add SA-1 to the size. This doesn't overflow because we're computing
1859   // an address inside an alloca.
1860   Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
1861   auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
1862   auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
1863                                       MachineInstr::NoUWrap);
1864   auto AlignCst =
1865       MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
1866   auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
1867 
1868   Align Alignment = max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
1869   if (Alignment <= StackAlign)
1870     Alignment = Align(1);
1871   MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
1872 
1873   MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
1874   assert(MF->getFrameInfo().hasVarSizedObjects());
1875   return true;
1876 }
1877 
1878 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
1879   // FIXME: We may need more info about the type. Because of how LLT works,
1880   // we're completely discarding the i64/double distinction here (amongst
1881   // others). Fortunately the ABIs I know of where that matters don't use va_arg
1882   // anyway but that's not guaranteed.
1883   MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
1884                         {getOrCreateVReg(*U.getOperand(0)),
1885                          uint64_t(DL->getABITypeAlignment(U.getType()))});
1886   return true;
1887 }
1888 
1889 bool IRTranslator::translateInsertElement(const User &U,
1890                                           MachineIRBuilder &MIRBuilder) {
1891   // If it is a <1 x Ty> vector, use the scalar as it is
1892   // not a legal vector type in LLT.
1893   if (cast<VectorType>(U.getType())->getNumElements() == 1) {
1894     Register Elt = getOrCreateVReg(*U.getOperand(1));
1895     auto &Regs = *VMap.getVRegs(U);
1896     if (Regs.empty()) {
1897       Regs.push_back(Elt);
1898       VMap.getOffsets(U)->push_back(0);
1899     } else {
1900       MIRBuilder.buildCopy(Regs[0], Elt);
1901     }
1902     return true;
1903   }
1904 
1905   Register Res = getOrCreateVReg(U);
1906   Register Val = getOrCreateVReg(*U.getOperand(0));
1907   Register Elt = getOrCreateVReg(*U.getOperand(1));
1908   Register Idx = getOrCreateVReg(*U.getOperand(2));
1909   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
1910   return true;
1911 }
1912 
1913 bool IRTranslator::translateExtractElement(const User &U,
1914                                            MachineIRBuilder &MIRBuilder) {
1915   // If it is a <1 x Ty> vector, use the scalar as it is
1916   // not a legal vector type in LLT.
1917   if (cast<VectorType>(U.getOperand(0)->getType())->getNumElements() == 1) {
1918     Register Elt = getOrCreateVReg(*U.getOperand(0));
1919     auto &Regs = *VMap.getVRegs(U);
1920     if (Regs.empty()) {
1921       Regs.push_back(Elt);
1922       VMap.getOffsets(U)->push_back(0);
1923     } else {
1924       MIRBuilder.buildCopy(Regs[0], Elt);
1925     }
1926     return true;
1927   }
1928   Register Res = getOrCreateVReg(U);
1929   Register Val = getOrCreateVReg(*U.getOperand(0));
1930   const auto &TLI = *MF->getSubtarget().getTargetLowering();
1931   unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
1932   Register Idx;
1933   if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
1934     if (CI->getBitWidth() != PreferredVecIdxWidth) {
1935       APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
1936       auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
1937       Idx = getOrCreateVReg(*NewIdxCI);
1938     }
1939   }
1940   if (!Idx)
1941     Idx = getOrCreateVReg(*U.getOperand(1));
1942   if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
1943     const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
1944     Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
1945   }
1946   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
1947   return true;
1948 }
1949 
1950 bool IRTranslator::translateShuffleVector(const User &U,
1951                                           MachineIRBuilder &MIRBuilder) {
1952   ArrayRef<int> Mask;
1953   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
1954     Mask = SVI->getShuffleMask();
1955   else
1956     Mask = cast<ConstantExpr>(U).getShuffleMask();
1957   ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
1958   MIRBuilder
1959       .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
1960                   {getOrCreateVReg(*U.getOperand(0)),
1961                    getOrCreateVReg(*U.getOperand(1))})
1962       .addShuffleMask(MaskAlloc);
1963   return true;
1964 }
1965 
1966 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
1967   const PHINode &PI = cast<PHINode>(U);
1968 
1969   SmallVector<MachineInstr *, 4> Insts;
1970   for (auto Reg : getOrCreateVRegs(PI)) {
1971     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
1972     Insts.push_back(MIB.getInstr());
1973   }
1974 
1975   PendingPHIs.emplace_back(&PI, std::move(Insts));
1976   return true;
1977 }
1978 
1979 bool IRTranslator::translateAtomicCmpXchg(const User &U,
1980                                           MachineIRBuilder &MIRBuilder) {
1981   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
1982 
1983   if (I.isWeak())
1984     return false;
1985 
1986   auto &TLI = *MF->getSubtarget().getTargetLowering();
1987   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
1988 
1989   Type *ResType = I.getType();
1990   Type *ValType = ResType->Type::getStructElementType(0);
1991 
1992   auto Res = getOrCreateVRegs(I);
1993   Register OldValRes = Res[0];
1994   Register SuccessRes = Res[1];
1995   Register Addr = getOrCreateVReg(*I.getPointerOperand());
1996   Register Cmp = getOrCreateVReg(*I.getCompareOperand());
1997   Register NewVal = getOrCreateVReg(*I.getNewValOperand());
1998 
1999   AAMDNodes AAMetadata;
2000   I.getAAMetadata(AAMetadata);
2001 
2002   MIRBuilder.buildAtomicCmpXchgWithSuccess(
2003       OldValRes, SuccessRes, Addr, Cmp, NewVal,
2004       *MF->getMachineMemOperand(
2005           MachinePointerInfo(I.getPointerOperand()), Flags,
2006           DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr,
2007           I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering()));
2008   return true;
2009 }
2010 
2011 bool IRTranslator::translateAtomicRMW(const User &U,
2012                                       MachineIRBuilder &MIRBuilder) {
2013   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2014   auto &TLI = *MF->getSubtarget().getTargetLowering();
2015   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2016 
2017   Type *ResType = I.getType();
2018 
2019   Register Res = getOrCreateVReg(I);
2020   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2021   Register Val = getOrCreateVReg(*I.getValOperand());
2022 
2023   unsigned Opcode = 0;
2024   switch (I.getOperation()) {
2025   default:
2026     return false;
2027   case AtomicRMWInst::Xchg:
2028     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
2029     break;
2030   case AtomicRMWInst::Add:
2031     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2032     break;
2033   case AtomicRMWInst::Sub:
2034     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2035     break;
2036   case AtomicRMWInst::And:
2037     Opcode = TargetOpcode::G_ATOMICRMW_AND;
2038     break;
2039   case AtomicRMWInst::Nand:
2040     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2041     break;
2042   case AtomicRMWInst::Or:
2043     Opcode = TargetOpcode::G_ATOMICRMW_OR;
2044     break;
2045   case AtomicRMWInst::Xor:
2046     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2047     break;
2048   case AtomicRMWInst::Max:
2049     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2050     break;
2051   case AtomicRMWInst::Min:
2052     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2053     break;
2054   case AtomicRMWInst::UMax:
2055     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2056     break;
2057   case AtomicRMWInst::UMin:
2058     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2059     break;
2060   case AtomicRMWInst::FAdd:
2061     Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2062     break;
2063   case AtomicRMWInst::FSub:
2064     Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2065     break;
2066   }
2067 
2068   AAMDNodes AAMetadata;
2069   I.getAAMetadata(AAMetadata);
2070 
2071   MIRBuilder.buildAtomicRMW(
2072       Opcode, Res, Addr, Val,
2073       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2074                                 Flags, DL->getTypeStoreSize(ResType),
2075                                 getMemOpAlign(I), AAMetadata, nullptr,
2076                                 I.getSyncScopeID(), I.getOrdering()));
2077   return true;
2078 }
2079 
2080 bool IRTranslator::translateFence(const User &U,
2081                                   MachineIRBuilder &MIRBuilder) {
2082   const FenceInst &Fence = cast<FenceInst>(U);
2083   MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2084                         Fence.getSyncScopeID());
2085   return true;
2086 }
2087 
2088 bool IRTranslator::translateFreeze(const User &U,
2089                                    MachineIRBuilder &MIRBuilder) {
2090   const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
2091   const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
2092 
2093   assert(DstRegs.size() == SrcRegs.size() &&
2094          "Freeze with different source and destination type?");
2095 
2096   for (unsigned I = 0; I < DstRegs.size(); ++I) {
2097     MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
2098   }
2099 
2100   return true;
2101 }
2102 
2103 void IRTranslator::finishPendingPhis() {
2104 #ifndef NDEBUG
2105   DILocationVerifier Verifier;
2106   GISelObserverWrapper WrapperObserver(&Verifier);
2107   RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2108 #endif // ifndef NDEBUG
2109   for (auto &Phi : PendingPHIs) {
2110     const PHINode *PI = Phi.first;
2111     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
2112     MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
2113     EntryBuilder->setDebugLoc(PI->getDebugLoc());
2114 #ifndef NDEBUG
2115     Verifier.setCurrentInst(PI);
2116 #endif // ifndef NDEBUG
2117 
2118     SmallSet<const MachineBasicBlock *, 16> SeenPreds;
2119     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
2120       auto IRPred = PI->getIncomingBlock(i);
2121       ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
2122       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
2123         if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
2124           continue;
2125         SeenPreds.insert(Pred);
2126         for (unsigned j = 0; j < ValRegs.size(); ++j) {
2127           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
2128           MIB.addUse(ValRegs[j]);
2129           MIB.addMBB(Pred);
2130         }
2131       }
2132     }
2133   }
2134 }
2135 
2136 bool IRTranslator::valueIsSplit(const Value &V,
2137                                 SmallVectorImpl<uint64_t> *Offsets) {
2138   SmallVector<LLT, 4> SplitTys;
2139   if (Offsets && !Offsets->empty())
2140     Offsets->clear();
2141   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
2142   return SplitTys.size() > 1;
2143 }
2144 
2145 bool IRTranslator::translate(const Instruction &Inst) {
2146   CurBuilder->setDebugLoc(Inst.getDebugLoc());
2147   // We only emit constants into the entry block from here. To prevent jumpy
2148   // debug behaviour set the line to 0.
2149   if (const DebugLoc &DL = Inst.getDebugLoc())
2150     EntryBuilder->setDebugLoc(
2151         DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
2152   else
2153     EntryBuilder->setDebugLoc(DebugLoc());
2154 
2155   switch (Inst.getOpcode()) {
2156 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2157   case Instruction::OPCODE:                                                    \
2158     return translate##OPCODE(Inst, *CurBuilder.get());
2159 #include "llvm/IR/Instruction.def"
2160   default:
2161     return false;
2162   }
2163 }
2164 
2165 bool IRTranslator::translate(const Constant &C, Register Reg) {
2166   if (auto CI = dyn_cast<ConstantInt>(&C))
2167     EntryBuilder->buildConstant(Reg, *CI);
2168   else if (auto CF = dyn_cast<ConstantFP>(&C))
2169     EntryBuilder->buildFConstant(Reg, *CF);
2170   else if (isa<UndefValue>(C))
2171     EntryBuilder->buildUndef(Reg);
2172   else if (isa<ConstantPointerNull>(C))
2173     EntryBuilder->buildConstant(Reg, 0);
2174   else if (auto GV = dyn_cast<GlobalValue>(&C))
2175     EntryBuilder->buildGlobalValue(Reg, GV);
2176   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
2177     if (!CAZ->getType()->isVectorTy())
2178       return false;
2179     // Return the scalar if it is a <1 x Ty> vector.
2180     if (CAZ->getNumElements() == 1)
2181       return translate(*CAZ->getElementValue(0u), Reg);
2182     SmallVector<Register, 4> Ops;
2183     for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
2184       Constant &Elt = *CAZ->getElementValue(i);
2185       Ops.push_back(getOrCreateVReg(Elt));
2186     }
2187     EntryBuilder->buildBuildVector(Reg, Ops);
2188   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
2189     // Return the scalar if it is a <1 x Ty> vector.
2190     if (CV->getNumElements() == 1)
2191       return translate(*CV->getElementAsConstant(0), Reg);
2192     SmallVector<Register, 4> Ops;
2193     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
2194       Constant &Elt = *CV->getElementAsConstant(i);
2195       Ops.push_back(getOrCreateVReg(Elt));
2196     }
2197     EntryBuilder->buildBuildVector(Reg, Ops);
2198   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
2199     switch(CE->getOpcode()) {
2200 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2201   case Instruction::OPCODE:                                                    \
2202     return translate##OPCODE(*CE, *EntryBuilder.get());
2203 #include "llvm/IR/Instruction.def"
2204     default:
2205       return false;
2206     }
2207   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
2208     if (CV->getNumOperands() == 1)
2209       return translate(*CV->getOperand(0), Reg);
2210     SmallVector<Register, 4> Ops;
2211     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
2212       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
2213     }
2214     EntryBuilder->buildBuildVector(Reg, Ops);
2215   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
2216     EntryBuilder->buildBlockAddress(Reg, BA);
2217   } else
2218     return false;
2219 
2220   return true;
2221 }
2222 
2223 void IRTranslator::finalizeBasicBlock() {
2224   for (auto &JTCase : SL->JTCases) {
2225     // Emit header first, if it wasn't already emitted.
2226     if (!JTCase.first.Emitted)
2227       emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
2228 
2229     emitJumpTable(JTCase.second, JTCase.second.MBB);
2230   }
2231   SL->JTCases.clear();
2232 }
2233 
2234 void IRTranslator::finalizeFunction() {
2235   // Release the memory used by the different maps we
2236   // needed during the translation.
2237   PendingPHIs.clear();
2238   VMap.reset();
2239   FrameIndices.clear();
2240   MachinePreds.clear();
2241   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
2242   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
2243   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
2244   EntryBuilder.reset();
2245   CurBuilder.reset();
2246   FuncInfo.clear();
2247 }
2248 
2249 /// Returns true if a BasicBlock \p BB within a variadic function contains a
2250 /// variadic musttail call.
2251 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
2252   if (!IsVarArg)
2253     return false;
2254 
2255   // Walk the block backwards, because tail calls usually only appear at the end
2256   // of a block.
2257   return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
2258     const auto *CI = dyn_cast<CallInst>(&I);
2259     return CI && CI->isMustTailCall();
2260   });
2261 }
2262 
2263 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
2264   MF = &CurMF;
2265   const Function &F = MF->getFunction();
2266   if (F.empty())
2267     return false;
2268   GISelCSEAnalysisWrapper &Wrapper =
2269       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
2270   // Set the CSEConfig and run the analysis.
2271   GISelCSEInfo *CSEInfo = nullptr;
2272   TPC = &getAnalysis<TargetPassConfig>();
2273   bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
2274                        ? EnableCSEInIRTranslator
2275                        : TPC->isGISelCSEEnabled();
2276 
2277   if (EnableCSE) {
2278     EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
2279     CSEInfo = &Wrapper.get(TPC->getCSEConfig());
2280     EntryBuilder->setCSEInfo(CSEInfo);
2281     CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
2282     CurBuilder->setCSEInfo(CSEInfo);
2283   } else {
2284     EntryBuilder = std::make_unique<MachineIRBuilder>();
2285     CurBuilder = std::make_unique<MachineIRBuilder>();
2286   }
2287   CLI = MF->getSubtarget().getCallLowering();
2288   CurBuilder->setMF(*MF);
2289   EntryBuilder->setMF(*MF);
2290   MRI = &MF->getRegInfo();
2291   DL = &F.getParent()->getDataLayout();
2292   ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
2293   FuncInfo.MF = MF;
2294   FuncInfo.BPI = nullptr;
2295   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2296   const TargetMachine &TM = MF->getTarget();
2297   SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
2298   SL->init(TLI, TM, *DL);
2299 
2300   EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F);
2301 
2302   assert(PendingPHIs.empty() && "stale PHIs");
2303 
2304   if (!DL->isLittleEndian()) {
2305     // Currently we don't properly handle big endian code.
2306     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2307                                F.getSubprogram(), &F.getEntryBlock());
2308     R << "unable to translate in big endian mode";
2309     reportTranslationError(*MF, *TPC, *ORE, R);
2310   }
2311 
2312   // Release the per-function state when we return, whether we succeeded or not.
2313   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
2314 
2315   // Setup a separate basic-block for the arguments and constants
2316   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
2317   MF->push_back(EntryBB);
2318   EntryBuilder->setMBB(*EntryBB);
2319 
2320   DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
2321   SwiftError.setFunction(CurMF);
2322   SwiftError.createEntriesInEntryBlock(DbgLoc);
2323 
2324   bool IsVarArg = F.isVarArg();
2325   bool HasMustTailInVarArgFn = false;
2326 
2327   // Create all blocks, in IR order, to preserve the layout.
2328   for (const BasicBlock &BB: F) {
2329     auto *&MBB = BBToMBB[&BB];
2330 
2331     MBB = MF->CreateMachineBasicBlock(&BB);
2332     MF->push_back(MBB);
2333 
2334     if (BB.hasAddressTaken())
2335       MBB->setHasAddressTaken();
2336 
2337     if (!HasMustTailInVarArgFn)
2338       HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
2339   }
2340 
2341   MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
2342 
2343   // Make our arguments/constants entry block fallthrough to the IR entry block.
2344   EntryBB->addSuccessor(&getMBB(F.front()));
2345 
2346   // Lower the actual args into this basic block.
2347   SmallVector<ArrayRef<Register>, 8> VRegArgs;
2348   for (const Argument &Arg: F.args()) {
2349     if (DL->getTypeStoreSize(Arg.getType()) == 0)
2350       continue; // Don't handle zero sized types.
2351     ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
2352     VRegArgs.push_back(VRegs);
2353 
2354     if (Arg.hasSwiftErrorAttr()) {
2355       assert(VRegs.size() == 1 && "Too many vregs for Swift error");
2356       SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
2357     }
2358   }
2359 
2360   if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) {
2361     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2362                                F.getSubprogram(), &F.getEntryBlock());
2363     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
2364     reportTranslationError(*MF, *TPC, *ORE, R);
2365     return false;
2366   }
2367 
2368   // Need to visit defs before uses when translating instructions.
2369   GISelObserverWrapper WrapperObserver;
2370   if (EnableCSE && CSEInfo)
2371     WrapperObserver.addObserver(CSEInfo);
2372   {
2373     ReversePostOrderTraversal<const Function *> RPOT(&F);
2374 #ifndef NDEBUG
2375     DILocationVerifier Verifier;
2376     WrapperObserver.addObserver(&Verifier);
2377 #endif // ifndef NDEBUG
2378     RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2379     RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
2380     for (const BasicBlock *BB : RPOT) {
2381       MachineBasicBlock &MBB = getMBB(*BB);
2382       // Set the insertion point of all the following translations to
2383       // the end of this basic block.
2384       CurBuilder->setMBB(MBB);
2385       HasTailCall = false;
2386       for (const Instruction &Inst : *BB) {
2387         // If we translated a tail call in the last step, then we know
2388         // everything after the call is either a return, or something that is
2389         // handled by the call itself. (E.g. a lifetime marker or assume
2390         // intrinsic.) In this case, we should stop translating the block and
2391         // move on.
2392         if (HasTailCall)
2393           break;
2394 #ifndef NDEBUG
2395         Verifier.setCurrentInst(&Inst);
2396 #endif // ifndef NDEBUG
2397         if (translate(Inst))
2398           continue;
2399 
2400         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2401                                    Inst.getDebugLoc(), BB);
2402         R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
2403 
2404         if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
2405           std::string InstStrStorage;
2406           raw_string_ostream InstStr(InstStrStorage);
2407           InstStr << Inst;
2408 
2409           R << ": '" << InstStr.str() << "'";
2410         }
2411 
2412         reportTranslationError(*MF, *TPC, *ORE, R);
2413         return false;
2414       }
2415 
2416       finalizeBasicBlock();
2417     }
2418 #ifndef NDEBUG
2419     WrapperObserver.removeObserver(&Verifier);
2420 #endif
2421   }
2422 
2423   finishPendingPhis();
2424 
2425   SwiftError.propagateVRegs();
2426 
2427   // Merge the argument lowering and constants block with its single
2428   // successor, the LLVM-IR entry block.  We want the basic block to
2429   // be maximal.
2430   assert(EntryBB->succ_size() == 1 &&
2431          "Custom BB used for lowering should have only one successor");
2432   // Get the successor of the current entry block.
2433   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
2434   assert(NewEntryBB.pred_size() == 1 &&
2435          "LLVM-IR entry block has a predecessor!?");
2436   // Move all the instruction from the current entry block to the
2437   // new entry block.
2438   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
2439                     EntryBB->end());
2440 
2441   // Update the live-in information for the new entry block.
2442   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
2443     NewEntryBB.addLiveIn(LiveIn);
2444   NewEntryBB.sortUniqueLiveIns();
2445 
2446   // Get rid of the now empty basic block.
2447   EntryBB->removeSuccessor(&NewEntryBB);
2448   MF->remove(EntryBB);
2449   MF->DeleteMachineBasicBlock(EntryBB);
2450 
2451   assert(&MF->front() == &NewEntryBB &&
2452          "New entry wasn't next in the list of basic block!");
2453 
2454   // Initialize stack protector information.
2455   StackProtector &SP = getAnalysis<StackProtector>();
2456   SP.copyToMachineFrameInfo(MF->getFrameInfo());
2457 
2458   return false;
2459 }
2460