1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
26 #include "llvm/CodeGen/LowLevelType.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/StackProtector.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfo.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GetElementPtrTypeIterator.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/MC/MCContext.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CodeGen.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/LowLevelTypeImpl.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetIntrinsicInfo.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <iterator>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 #define DEBUG_TYPE "irtranslator"
81 
82 using namespace llvm;
83 
84 static cl::opt<bool>
85     EnableCSEInIRTranslator("enable-cse-in-irtranslator",
86                             cl::desc("Should enable CSE in irtranslator"),
87                             cl::Optional, cl::init(false));
88 char IRTranslator::ID = 0;
89 
90 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
91                 false, false)
92 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
93 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
94 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
95                 false, false)
96 
97 static void reportTranslationError(MachineFunction &MF,
98                                    const TargetPassConfig &TPC,
99                                    OptimizationRemarkEmitter &ORE,
100                                    OptimizationRemarkMissed &R) {
101   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
102 
103   // Print the function name explicitly if we don't have a debug location (which
104   // makes the diagnostic less useful) or if we're going to emit a raw error.
105   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
106     R << (" (in function: " + MF.getName() + ")").str();
107 
108   if (TPC.isGlobalISelAbortEnabled())
109     report_fatal_error(R.getMsg());
110   else
111     ORE.emit(R);
112 }
113 
114 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { }
115 
116 #ifndef NDEBUG
117 namespace {
118 /// Verify that every instruction created has the same DILocation as the
119 /// instruction being translated.
120 class DILocationVerifier : public GISelChangeObserver {
121   const Instruction *CurrInst = nullptr;
122 
123 public:
124   DILocationVerifier() = default;
125   ~DILocationVerifier() = default;
126 
127   const Instruction *getCurrentInst() const { return CurrInst; }
128   void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
129 
130   void erasingInstr(MachineInstr &MI) override {}
131   void changingInstr(MachineInstr &MI) override {}
132   void changedInstr(MachineInstr &MI) override {}
133 
134   void createdInstr(MachineInstr &MI) override {
135     assert(getCurrentInst() && "Inserted instruction without a current MI");
136 
137     // Only print the check message if we're actually checking it.
138 #ifndef NDEBUG
139     LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
140                       << " was copied to " << MI);
141 #endif
142     // We allow insts in the entry block to have a debug loc line of 0 because
143     // they could have originated from constants, and we don't want a jumpy
144     // debug experience.
145     assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
146             MI.getDebugLoc().getLine() == 0) &&
147            "Line info was not transferred to all instructions");
148   }
149 };
150 } // namespace
151 #endif // ifndef NDEBUG
152 
153 
154 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
155   AU.addRequired<StackProtector>();
156   AU.addRequired<TargetPassConfig>();
157   AU.addRequired<GISelCSEAnalysisWrapperPass>();
158   getSelectionDAGFallbackAnalysisUsage(AU);
159   MachineFunctionPass::getAnalysisUsage(AU);
160 }
161 
162 IRTranslator::ValueToVRegInfo::VRegListT &
163 IRTranslator::allocateVRegs(const Value &Val) {
164   assert(!VMap.contains(Val) && "Value already allocated in VMap");
165   auto *Regs = VMap.getVRegs(Val);
166   auto *Offsets = VMap.getOffsets(Val);
167   SmallVector<LLT, 4> SplitTys;
168   computeValueLLTs(*DL, *Val.getType(), SplitTys,
169                    Offsets->empty() ? Offsets : nullptr);
170   for (unsigned i = 0; i < SplitTys.size(); ++i)
171     Regs->push_back(0);
172   return *Regs;
173 }
174 
175 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
176   auto VRegsIt = VMap.findVRegs(Val);
177   if (VRegsIt != VMap.vregs_end())
178     return *VRegsIt->second;
179 
180   if (Val.getType()->isVoidTy())
181     return *VMap.getVRegs(Val);
182 
183   // Create entry for this type.
184   auto *VRegs = VMap.getVRegs(Val);
185   auto *Offsets = VMap.getOffsets(Val);
186 
187   assert(Val.getType()->isSized() &&
188          "Don't know how to create an empty vreg");
189 
190   SmallVector<LLT, 4> SplitTys;
191   computeValueLLTs(*DL, *Val.getType(), SplitTys,
192                    Offsets->empty() ? Offsets : nullptr);
193 
194   if (!isa<Constant>(Val)) {
195     for (auto Ty : SplitTys)
196       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
197     return *VRegs;
198   }
199 
200   if (Val.getType()->isAggregateType()) {
201     // UndefValue, ConstantAggregateZero
202     auto &C = cast<Constant>(Val);
203     unsigned Idx = 0;
204     while (auto Elt = C.getAggregateElement(Idx++)) {
205       auto EltRegs = getOrCreateVRegs(*Elt);
206       llvm::copy(EltRegs, std::back_inserter(*VRegs));
207     }
208   } else {
209     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
210     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
211     bool Success = translate(cast<Constant>(Val), VRegs->front());
212     if (!Success) {
213       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
214                                  MF->getFunction().getSubprogram(),
215                                  &MF->getFunction().getEntryBlock());
216       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
217       reportTranslationError(*MF, *TPC, *ORE, R);
218       return *VRegs;
219     }
220   }
221 
222   return *VRegs;
223 }
224 
225 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
226   if (FrameIndices.find(&AI) != FrameIndices.end())
227     return FrameIndices[&AI];
228 
229   uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
230   uint64_t Size =
231       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
232 
233   // Always allocate at least one byte.
234   Size = std::max<uint64_t>(Size, 1u);
235 
236   unsigned Alignment = AI.getAlignment();
237   if (!Alignment)
238     Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
239 
240   int &FI = FrameIndices[&AI];
241   FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
242   return FI;
243 }
244 
245 Align IRTranslator::getMemOpAlign(const Instruction &I) {
246   if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
247     return SI->getAlign();
248   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
249     return LI->getAlign();
250   }
251   if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
252     // TODO(PR27168): This instruction has no alignment attribute, but unlike
253     // the default alignment for load/store, the default here is to assume
254     // it has NATURAL alignment, not DataLayout-specified alignment.
255     const DataLayout &DL = AI->getModule()->getDataLayout();
256     return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType()));
257   }
258   if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
259     // TODO(PR27168): This instruction has no alignment attribute, but unlike
260     // the default alignment for load/store, the default here is to assume
261     // it has NATURAL alignment, not DataLayout-specified alignment.
262     const DataLayout &DL = AI->getModule()->getDataLayout();
263     return Align(DL.getTypeStoreSize(AI->getValOperand()->getType()));
264   }
265   OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
266   R << "unable to translate memop: " << ore::NV("Opcode", &I);
267   reportTranslationError(*MF, *TPC, *ORE, R);
268   return Align(1);
269 }
270 
271 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
272   MachineBasicBlock *&MBB = BBToMBB[&BB];
273   assert(MBB && "BasicBlock was not encountered before");
274   return *MBB;
275 }
276 
277 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
278   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
279   MachinePreds[Edge].push_back(NewPred);
280 }
281 
282 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
283                                      MachineIRBuilder &MIRBuilder) {
284   // Get or create a virtual register for each value.
285   // Unless the value is a Constant => loadimm cst?
286   // or inline constant each time?
287   // Creation of a virtual register needs to have a size.
288   Register Op0 = getOrCreateVReg(*U.getOperand(0));
289   Register Op1 = getOrCreateVReg(*U.getOperand(1));
290   Register Res = getOrCreateVReg(U);
291   uint16_t Flags = 0;
292   if (isa<Instruction>(U)) {
293     const Instruction &I = cast<Instruction>(U);
294     Flags = MachineInstr::copyFlagsFromInstruction(I);
295   }
296 
297   MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
298   return true;
299 }
300 
301 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
302   // -0.0 - X --> G_FNEG
303   if (isa<Constant>(U.getOperand(0)) &&
304       U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
305     Register Op1 = getOrCreateVReg(*U.getOperand(1));
306     Register Res = getOrCreateVReg(U);
307     uint16_t Flags = 0;
308     if (isa<Instruction>(U)) {
309       const Instruction &I = cast<Instruction>(U);
310       Flags = MachineInstr::copyFlagsFromInstruction(I);
311     }
312     // Negate the last operand of the FSUB
313     MIRBuilder.buildFNeg(Res, Op1, Flags);
314     return true;
315   }
316   return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
317 }
318 
319 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
320   Register Op0 = getOrCreateVReg(*U.getOperand(0));
321   Register Res = getOrCreateVReg(U);
322   uint16_t Flags = 0;
323   if (isa<Instruction>(U)) {
324     const Instruction &I = cast<Instruction>(U);
325     Flags = MachineInstr::copyFlagsFromInstruction(I);
326   }
327   MIRBuilder.buildFNeg(Res, Op0, Flags);
328   return true;
329 }
330 
331 bool IRTranslator::translateCompare(const User &U,
332                                     MachineIRBuilder &MIRBuilder) {
333   auto *CI = dyn_cast<CmpInst>(&U);
334   Register Op0 = getOrCreateVReg(*U.getOperand(0));
335   Register Op1 = getOrCreateVReg(*U.getOperand(1));
336   Register Res = getOrCreateVReg(U);
337   CmpInst::Predicate Pred =
338       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
339                                     cast<ConstantExpr>(U).getPredicate());
340   if (CmpInst::isIntPredicate(Pred))
341     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
342   else if (Pred == CmpInst::FCMP_FALSE)
343     MIRBuilder.buildCopy(
344         Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
345   else if (Pred == CmpInst::FCMP_TRUE)
346     MIRBuilder.buildCopy(
347         Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
348   else {
349     assert(CI && "Instruction should be CmpInst");
350     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1,
351                          MachineInstr::copyFlagsFromInstruction(*CI));
352   }
353 
354   return true;
355 }
356 
357 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
358   const ReturnInst &RI = cast<ReturnInst>(U);
359   const Value *Ret = RI.getReturnValue();
360   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
361     Ret = nullptr;
362 
363   ArrayRef<Register> VRegs;
364   if (Ret)
365     VRegs = getOrCreateVRegs(*Ret);
366 
367   Register SwiftErrorVReg = 0;
368   if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
369     SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
370         &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
371   }
372 
373   // The target may mess up with the insertion point, but
374   // this is not important as a return is the last instruction
375   // of the block anyway.
376   return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg);
377 }
378 
379 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
380   const BranchInst &BrInst = cast<BranchInst>(U);
381   unsigned Succ = 0;
382   if (!BrInst.isUnconditional()) {
383     // We want a G_BRCOND to the true BB followed by an unconditional branch.
384     Register Tst = getOrCreateVReg(*BrInst.getCondition());
385     const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
386     MachineBasicBlock &TrueBB = getMBB(TrueTgt);
387     MIRBuilder.buildBrCond(Tst, TrueBB);
388   }
389 
390   const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
391   MachineBasicBlock &TgtBB = getMBB(BrTgt);
392   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
393 
394   // If the unconditional target is the layout successor, fallthrough.
395   if (!CurBB.isLayoutSuccessor(&TgtBB))
396     MIRBuilder.buildBr(TgtBB);
397 
398   // Link successors.
399   for (const BasicBlock *Succ : successors(&BrInst))
400     CurBB.addSuccessor(&getMBB(*Succ));
401   return true;
402 }
403 
404 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
405                                         MachineBasicBlock *Dst,
406                                         BranchProbability Prob) {
407   if (!FuncInfo.BPI) {
408     Src->addSuccessorWithoutProb(Dst);
409     return;
410   }
411   if (Prob.isUnknown())
412     Prob = getEdgeProbability(Src, Dst);
413   Src->addSuccessor(Dst, Prob);
414 }
415 
416 BranchProbability
417 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
418                                  const MachineBasicBlock *Dst) const {
419   const BasicBlock *SrcBB = Src->getBasicBlock();
420   const BasicBlock *DstBB = Dst->getBasicBlock();
421   if (!FuncInfo.BPI) {
422     // If BPI is not available, set the default probability as 1 / N, where N is
423     // the number of successors.
424     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
425     return BranchProbability(1, SuccSize);
426   }
427   return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
428 }
429 
430 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
431   using namespace SwitchCG;
432   // Extract cases from the switch.
433   const SwitchInst &SI = cast<SwitchInst>(U);
434   BranchProbabilityInfo *BPI = FuncInfo.BPI;
435   CaseClusterVector Clusters;
436   Clusters.reserve(SI.getNumCases());
437   for (auto &I : SI.cases()) {
438     MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
439     assert(Succ && "Could not find successor mbb in mapping");
440     const ConstantInt *CaseVal = I.getCaseValue();
441     BranchProbability Prob =
442         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
443             : BranchProbability(1, SI.getNumCases() + 1);
444     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
445   }
446 
447   MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
448 
449   // Cluster adjacent cases with the same destination. We do this at all
450   // optimization levels because it's cheap to do and will make codegen faster
451   // if there are many clusters.
452   sortAndRangeify(Clusters);
453 
454   MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
455 
456   // If there is only the default destination, jump there directly.
457   if (Clusters.empty()) {
458     SwitchMBB->addSuccessor(DefaultMBB);
459     if (DefaultMBB != SwitchMBB->getNextNode())
460       MIB.buildBr(*DefaultMBB);
461     return true;
462   }
463 
464   SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
465 
466   LLVM_DEBUG({
467     dbgs() << "Case clusters: ";
468     for (const CaseCluster &C : Clusters) {
469       if (C.Kind == CC_JumpTable)
470         dbgs() << "JT:";
471       if (C.Kind == CC_BitTests)
472         dbgs() << "BT:";
473 
474       C.Low->getValue().print(dbgs(), true);
475       if (C.Low != C.High) {
476         dbgs() << '-';
477         C.High->getValue().print(dbgs(), true);
478       }
479       dbgs() << ' ';
480     }
481     dbgs() << '\n';
482   });
483 
484   assert(!Clusters.empty());
485   SwitchWorkList WorkList;
486   CaseClusterIt First = Clusters.begin();
487   CaseClusterIt Last = Clusters.end() - 1;
488   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
489   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
490 
491   // FIXME: At the moment we don't do any splitting optimizations here like
492   // SelectionDAG does, so this worklist only has one entry.
493   while (!WorkList.empty()) {
494     SwitchWorkListItem W = WorkList.back();
495     WorkList.pop_back();
496     if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
497       return false;
498   }
499   return true;
500 }
501 
502 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
503                                  MachineBasicBlock *MBB) {
504   // Emit the code for the jump table
505   assert(JT.Reg != -1U && "Should lower JT Header first!");
506   MachineIRBuilder MIB(*MBB->getParent());
507   MIB.setMBB(*MBB);
508   MIB.setDebugLoc(CurBuilder->getDebugLoc());
509 
510   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
511   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
512 
513   auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
514   MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
515 }
516 
517 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
518                                        SwitchCG::JumpTableHeader &JTH,
519                                        MachineBasicBlock *HeaderBB) {
520   MachineIRBuilder MIB(*HeaderBB->getParent());
521   MIB.setMBB(*HeaderBB);
522   MIB.setDebugLoc(CurBuilder->getDebugLoc());
523 
524   const Value &SValue = *JTH.SValue;
525   // Subtract the lowest switch case value from the value being switched on.
526   const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
527   Register SwitchOpReg = getOrCreateVReg(SValue);
528   auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
529   auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
530 
531   // This value may be smaller or larger than the target's pointer type, and
532   // therefore require extension or truncating.
533   Type *PtrIRTy = SValue.getType()->getPointerTo();
534   const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
535   Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
536 
537   JT.Reg = Sub.getReg(0);
538 
539   if (JTH.OmitRangeCheck) {
540     if (JT.MBB != HeaderBB->getNextNode())
541       MIB.buildBr(*JT.MBB);
542     return true;
543   }
544 
545   // Emit the range check for the jump table, and branch to the default block
546   // for the switch statement if the value being switched on exceeds the
547   // largest case in the switch.
548   auto Cst = getOrCreateVReg(
549       *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
550   Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
551   auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
552 
553   auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
554 
555   // Avoid emitting unnecessary branches to the next block.
556   if (JT.MBB != HeaderBB->getNextNode())
557     BrCond = MIB.buildBr(*JT.MBB);
558   return true;
559 }
560 
561 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
562                                   MachineBasicBlock *SwitchBB,
563                                   MachineIRBuilder &MIB) {
564   Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
565   Register Cond;
566   DebugLoc OldDbgLoc = MIB.getDebugLoc();
567   MIB.setDebugLoc(CB.DbgLoc);
568   MIB.setMBB(*CB.ThisBB);
569 
570   if (CB.PredInfo.NoCmp) {
571     // Branch or fall through to TrueBB.
572     addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
573     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
574                       CB.ThisBB);
575     CB.ThisBB->normalizeSuccProbs();
576     if (CB.TrueBB != CB.ThisBB->getNextNode())
577       MIB.buildBr(*CB.TrueBB);
578     MIB.setDebugLoc(OldDbgLoc);
579     return;
580   }
581 
582   const LLT i1Ty = LLT::scalar(1);
583   // Build the compare.
584   if (!CB.CmpMHS) {
585     Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
586     Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
587   } else {
588     assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
589            "Can only handle SLE ranges");
590 
591     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
592     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
593 
594     Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
595     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
596       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
597       Cond =
598           MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
599     } else {
600       const LLT CmpTy = MRI->getType(CmpOpReg);
601       auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
602       auto Diff = MIB.buildConstant(CmpTy, High - Low);
603       Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
604     }
605   }
606 
607   // Update successor info
608   addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
609 
610   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
611                     CB.ThisBB);
612 
613   // TrueBB and FalseBB are always different unless the incoming IR is
614   // degenerate. This only happens when running llc on weird IR.
615   if (CB.TrueBB != CB.FalseBB)
616     addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
617   CB.ThisBB->normalizeSuccProbs();
618 
619   //  if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock())
620     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
621                       CB.ThisBB);
622 
623   // If the lhs block is the next block, invert the condition so that we can
624   // fall through to the lhs instead of the rhs block.
625   if (CB.TrueBB == CB.ThisBB->getNextNode()) {
626     std::swap(CB.TrueBB, CB.FalseBB);
627     auto True = MIB.buildConstant(i1Ty, 1);
628     Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0);
629   }
630 
631   MIB.buildBrCond(Cond, *CB.TrueBB);
632   MIB.buildBr(*CB.FalseBB);
633   MIB.setDebugLoc(OldDbgLoc);
634 }
635 
636 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
637                                           MachineBasicBlock *SwitchMBB,
638                                           MachineBasicBlock *CurMBB,
639                                           MachineBasicBlock *DefaultMBB,
640                                           MachineIRBuilder &MIB,
641                                           MachineFunction::iterator BBI,
642                                           BranchProbability UnhandledProbs,
643                                           SwitchCG::CaseClusterIt I,
644                                           MachineBasicBlock *Fallthrough,
645                                           bool FallthroughUnreachable) {
646   using namespace SwitchCG;
647   MachineFunction *CurMF = SwitchMBB->getParent();
648   // FIXME: Optimize away range check based on pivot comparisons.
649   JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
650   SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
651   BranchProbability DefaultProb = W.DefaultProb;
652 
653   // The jump block hasn't been inserted yet; insert it here.
654   MachineBasicBlock *JumpMBB = JT->MBB;
655   CurMF->insert(BBI, JumpMBB);
656 
657   // Since the jump table block is separate from the switch block, we need
658   // to keep track of it as a machine predecessor to the default block,
659   // otherwise we lose the phi edges.
660   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
661                     CurMBB);
662   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
663                     JumpMBB);
664 
665   auto JumpProb = I->Prob;
666   auto FallthroughProb = UnhandledProbs;
667 
668   // If the default statement is a target of the jump table, we evenly
669   // distribute the default probability to successors of CurMBB. Also
670   // update the probability on the edge from JumpMBB to Fallthrough.
671   for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
672                                         SE = JumpMBB->succ_end();
673        SI != SE; ++SI) {
674     if (*SI == DefaultMBB) {
675       JumpProb += DefaultProb / 2;
676       FallthroughProb -= DefaultProb / 2;
677       JumpMBB->setSuccProbability(SI, DefaultProb / 2);
678       JumpMBB->normalizeSuccProbs();
679     } else {
680       // Also record edges from the jump table block to it's successors.
681       addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
682                         JumpMBB);
683     }
684   }
685 
686   // Skip the range check if the fallthrough block is unreachable.
687   if (FallthroughUnreachable)
688     JTH->OmitRangeCheck = true;
689 
690   if (!JTH->OmitRangeCheck)
691     addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
692   addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
693   CurMBB->normalizeSuccProbs();
694 
695   // The jump table header will be inserted in our current block, do the
696   // range check, and fall through to our fallthrough block.
697   JTH->HeaderBB = CurMBB;
698   JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
699 
700   // If we're in the right place, emit the jump table header right now.
701   if (CurMBB == SwitchMBB) {
702     if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
703       return false;
704     JTH->Emitted = true;
705   }
706   return true;
707 }
708 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
709                                             Value *Cond,
710                                             MachineBasicBlock *Fallthrough,
711                                             bool FallthroughUnreachable,
712                                             BranchProbability UnhandledProbs,
713                                             MachineBasicBlock *CurMBB,
714                                             MachineIRBuilder &MIB,
715                                             MachineBasicBlock *SwitchMBB) {
716   using namespace SwitchCG;
717   const Value *RHS, *LHS, *MHS;
718   CmpInst::Predicate Pred;
719   if (I->Low == I->High) {
720     // Check Cond == I->Low.
721     Pred = CmpInst::ICMP_EQ;
722     LHS = Cond;
723     RHS = I->Low;
724     MHS = nullptr;
725   } else {
726     // Check I->Low <= Cond <= I->High.
727     Pred = CmpInst::ICMP_SLE;
728     LHS = I->Low;
729     MHS = Cond;
730     RHS = I->High;
731   }
732 
733   // If Fallthrough is unreachable, fold away the comparison.
734   // The false probability is the sum of all unhandled cases.
735   CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
736                CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
737 
738   emitSwitchCase(CB, SwitchMBB, MIB);
739   return true;
740 }
741 
742 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
743                                        Value *Cond,
744                                        MachineBasicBlock *SwitchMBB,
745                                        MachineBasicBlock *DefaultMBB,
746                                        MachineIRBuilder &MIB) {
747   using namespace SwitchCG;
748   MachineFunction *CurMF = FuncInfo.MF;
749   MachineBasicBlock *NextMBB = nullptr;
750   MachineFunction::iterator BBI(W.MBB);
751   if (++BBI != FuncInfo.MF->end())
752     NextMBB = &*BBI;
753 
754   if (EnableOpts) {
755     // Here, we order cases by probability so the most likely case will be
756     // checked first. However, two clusters can have the same probability in
757     // which case their relative ordering is non-deterministic. So we use Low
758     // as a tie-breaker as clusters are guaranteed to never overlap.
759     llvm::sort(W.FirstCluster, W.LastCluster + 1,
760                [](const CaseCluster &a, const CaseCluster &b) {
761                  return a.Prob != b.Prob
762                             ? a.Prob > b.Prob
763                             : a.Low->getValue().slt(b.Low->getValue());
764                });
765 
766     // Rearrange the case blocks so that the last one falls through if possible
767     // without changing the order of probabilities.
768     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
769       --I;
770       if (I->Prob > W.LastCluster->Prob)
771         break;
772       if (I->Kind == CC_Range && I->MBB == NextMBB) {
773         std::swap(*I, *W.LastCluster);
774         break;
775       }
776     }
777   }
778 
779   // Compute total probability.
780   BranchProbability DefaultProb = W.DefaultProb;
781   BranchProbability UnhandledProbs = DefaultProb;
782   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
783     UnhandledProbs += I->Prob;
784 
785   MachineBasicBlock *CurMBB = W.MBB;
786   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
787     bool FallthroughUnreachable = false;
788     MachineBasicBlock *Fallthrough;
789     if (I == W.LastCluster) {
790       // For the last cluster, fall through to the default destination.
791       Fallthrough = DefaultMBB;
792       FallthroughUnreachable = isa<UnreachableInst>(
793           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
794     } else {
795       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
796       CurMF->insert(BBI, Fallthrough);
797     }
798     UnhandledProbs -= I->Prob;
799 
800     switch (I->Kind) {
801     case CC_BitTests: {
802       LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented");
803       return false; // Bit tests currently unimplemented.
804     }
805     case CC_JumpTable: {
806       if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
807                                   UnhandledProbs, I, Fallthrough,
808                                   FallthroughUnreachable)) {
809         LLVM_DEBUG(dbgs() << "Failed to lower jump table");
810         return false;
811       }
812       break;
813     }
814     case CC_Range: {
815       if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
816                                     FallthroughUnreachable, UnhandledProbs,
817                                     CurMBB, MIB, SwitchMBB)) {
818         LLVM_DEBUG(dbgs() << "Failed to lower switch range");
819         return false;
820       }
821       break;
822     }
823     }
824     CurMBB = Fallthrough;
825   }
826 
827   return true;
828 }
829 
830 bool IRTranslator::translateIndirectBr(const User &U,
831                                        MachineIRBuilder &MIRBuilder) {
832   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
833 
834   const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
835   MIRBuilder.buildBrIndirect(Tgt);
836 
837   // Link successors.
838   SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
839   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
840   for (const BasicBlock *Succ : successors(&BrInst)) {
841     // It's legal for indirectbr instructions to have duplicate blocks in the
842     // destination list. We don't allow this in MIR. Skip anything that's
843     // already a successor.
844     if (!AddedSuccessors.insert(Succ).second)
845       continue;
846     CurBB.addSuccessor(&getMBB(*Succ));
847   }
848 
849   return true;
850 }
851 
852 static bool isSwiftError(const Value *V) {
853   if (auto Arg = dyn_cast<Argument>(V))
854     return Arg->hasSwiftErrorAttr();
855   if (auto AI = dyn_cast<AllocaInst>(V))
856     return AI->isSwiftError();
857   return false;
858 }
859 
860 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
861   const LoadInst &LI = cast<LoadInst>(U);
862   if (DL->getTypeStoreSize(LI.getType()) == 0)
863     return true;
864 
865   ArrayRef<Register> Regs = getOrCreateVRegs(LI);
866   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
867   Register Base = getOrCreateVReg(*LI.getPointerOperand());
868 
869   Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
870   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
871 
872   if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
873     assert(Regs.size() == 1 && "swifterror should be single pointer");
874     Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
875                                                     LI.getPointerOperand());
876     MIRBuilder.buildCopy(Regs[0], VReg);
877     return true;
878   }
879 
880   auto &TLI = *MF->getSubtarget().getTargetLowering();
881   MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
882 
883   const MDNode *Ranges =
884       Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
885   for (unsigned i = 0; i < Regs.size(); ++i) {
886     Register Addr;
887     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
888 
889     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
890     Align BaseAlign = getMemOpAlign(LI);
891     AAMDNodes AAMetadata;
892     LI.getAAMetadata(AAMetadata);
893     auto MMO = MF->getMachineMemOperand(
894         Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(),
895         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges,
896         LI.getSyncScopeID(), LI.getOrdering());
897     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
898   }
899 
900   return true;
901 }
902 
903 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
904   const StoreInst &SI = cast<StoreInst>(U);
905   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
906     return true;
907 
908   ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
909   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
910   Register Base = getOrCreateVReg(*SI.getPointerOperand());
911 
912   Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
913   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
914 
915   if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
916     assert(Vals.size() == 1 && "swifterror should be single pointer");
917 
918     Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
919                                                     SI.getPointerOperand());
920     MIRBuilder.buildCopy(VReg, Vals[0]);
921     return true;
922   }
923 
924   auto &TLI = *MF->getSubtarget().getTargetLowering();
925   MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
926 
927   for (unsigned i = 0; i < Vals.size(); ++i) {
928     Register Addr;
929     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
930 
931     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
932     Align BaseAlign = getMemOpAlign(SI);
933     AAMDNodes AAMetadata;
934     SI.getAAMetadata(AAMetadata);
935     auto MMO = MF->getMachineMemOperand(
936         Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(),
937         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr,
938         SI.getSyncScopeID(), SI.getOrdering());
939     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
940   }
941   return true;
942 }
943 
944 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
945   const Value *Src = U.getOperand(0);
946   Type *Int32Ty = Type::getInt32Ty(U.getContext());
947 
948   // getIndexedOffsetInType is designed for GEPs, so the first index is the
949   // usual array element rather than looking into the actual aggregate.
950   SmallVector<Value *, 1> Indices;
951   Indices.push_back(ConstantInt::get(Int32Ty, 0));
952 
953   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
954     for (auto Idx : EVI->indices())
955       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
956   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
957     for (auto Idx : IVI->indices())
958       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
959   } else {
960     for (unsigned i = 1; i < U.getNumOperands(); ++i)
961       Indices.push_back(U.getOperand(i));
962   }
963 
964   return 8 * static_cast<uint64_t>(
965                  DL.getIndexedOffsetInType(Src->getType(), Indices));
966 }
967 
968 bool IRTranslator::translateExtractValue(const User &U,
969                                          MachineIRBuilder &MIRBuilder) {
970   const Value *Src = U.getOperand(0);
971   uint64_t Offset = getOffsetFromIndices(U, *DL);
972   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
973   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
974   unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
975   auto &DstRegs = allocateVRegs(U);
976 
977   for (unsigned i = 0; i < DstRegs.size(); ++i)
978     DstRegs[i] = SrcRegs[Idx++];
979 
980   return true;
981 }
982 
983 bool IRTranslator::translateInsertValue(const User &U,
984                                         MachineIRBuilder &MIRBuilder) {
985   const Value *Src = U.getOperand(0);
986   uint64_t Offset = getOffsetFromIndices(U, *DL);
987   auto &DstRegs = allocateVRegs(U);
988   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
989   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
990   ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
991   auto InsertedIt = InsertedRegs.begin();
992 
993   for (unsigned i = 0; i < DstRegs.size(); ++i) {
994     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
995       DstRegs[i] = *InsertedIt++;
996     else
997       DstRegs[i] = SrcRegs[i];
998   }
999 
1000   return true;
1001 }
1002 
1003 bool IRTranslator::translateSelect(const User &U,
1004                                    MachineIRBuilder &MIRBuilder) {
1005   Register Tst = getOrCreateVReg(*U.getOperand(0));
1006   ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1007   ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1008   ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1009 
1010   uint16_t Flags = 0;
1011   if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1012     Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1013 
1014   for (unsigned i = 0; i < ResRegs.size(); ++i) {
1015     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1016   }
1017 
1018   return true;
1019 }
1020 
1021 bool IRTranslator::translateCopy(const User &U, const Value &V,
1022                                  MachineIRBuilder &MIRBuilder) {
1023   Register Src = getOrCreateVReg(V);
1024   auto &Regs = *VMap.getVRegs(U);
1025   if (Regs.empty()) {
1026     Regs.push_back(Src);
1027     VMap.getOffsets(U)->push_back(0);
1028   } else {
1029     // If we already assigned a vreg for this instruction, we can't change that.
1030     // Emit a copy to satisfy the users we already emitted.
1031     MIRBuilder.buildCopy(Regs[0], Src);
1032   }
1033   return true;
1034 }
1035 
1036 bool IRTranslator::translateBitCast(const User &U,
1037                                     MachineIRBuilder &MIRBuilder) {
1038   // If we're bitcasting to the source type, we can reuse the source vreg.
1039   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1040       getLLTForType(*U.getType(), *DL))
1041     return translateCopy(U, *U.getOperand(0), MIRBuilder);
1042 
1043   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1044 }
1045 
1046 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1047                                  MachineIRBuilder &MIRBuilder) {
1048   Register Op = getOrCreateVReg(*U.getOperand(0));
1049   Register Res = getOrCreateVReg(U);
1050   MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1051   return true;
1052 }
1053 
1054 bool IRTranslator::translateGetElementPtr(const User &U,
1055                                           MachineIRBuilder &MIRBuilder) {
1056   Value &Op0 = *U.getOperand(0);
1057   Register BaseReg = getOrCreateVReg(Op0);
1058   Type *PtrIRTy = Op0.getType();
1059   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1060   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1061   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1062 
1063   // Normalize Vector GEP - all scalar operands should be converted to the
1064   // splat vector.
1065   unsigned VectorWidth = 0;
1066   if (auto *VT = dyn_cast<VectorType>(U.getType()))
1067     VectorWidth = VT->getNumElements();
1068 
1069   // We might need to splat the base pointer into a vector if the offsets
1070   // are vectors.
1071   if (VectorWidth && !PtrTy.isVector()) {
1072     BaseReg =
1073         MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg)
1074             .getReg(0);
1075     PtrIRTy = VectorType::get(PtrIRTy, VectorWidth);
1076     PtrTy = getLLTForType(*PtrIRTy, *DL);
1077     OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1078     OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1079   }
1080 
1081   int64_t Offset = 0;
1082   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1083        GTI != E; ++GTI) {
1084     const Value *Idx = GTI.getOperand();
1085     if (StructType *StTy = GTI.getStructTypeOrNull()) {
1086       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1087       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1088       continue;
1089     } else {
1090       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1091 
1092       // If this is a scalar constant or a splat vector of constants,
1093       // handle it quickly.
1094       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1095         Offset += ElementSize * CI->getSExtValue();
1096         continue;
1097       }
1098 
1099       if (Offset != 0) {
1100         auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1101         BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1102                       .getReg(0);
1103         Offset = 0;
1104       }
1105 
1106       Register IdxReg = getOrCreateVReg(*Idx);
1107       LLT IdxTy = MRI->getType(IdxReg);
1108       if (IdxTy != OffsetTy) {
1109         if (!IdxTy.isVector() && VectorWidth) {
1110           IdxReg = MIRBuilder.buildSplatVector(
1111             OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1112         }
1113 
1114         IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1115       }
1116 
1117       // N = N + Idx * ElementSize;
1118       // Avoid doing it for ElementSize of 1.
1119       Register GepOffsetReg;
1120       if (ElementSize != 1) {
1121         auto ElementSizeMIB = MIRBuilder.buildConstant(
1122             getLLTForType(*OffsetIRTy, *DL), ElementSize);
1123         GepOffsetReg =
1124             MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1125       } else
1126         GepOffsetReg = IdxReg;
1127 
1128       BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1129     }
1130   }
1131 
1132   if (Offset != 0) {
1133     auto OffsetMIB =
1134         MIRBuilder.buildConstant(OffsetTy, Offset);
1135     MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1136     return true;
1137   }
1138 
1139   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1140   return true;
1141 }
1142 
1143 bool IRTranslator::translateMemFunc(const CallInst &CI,
1144                                     MachineIRBuilder &MIRBuilder,
1145                                     Intrinsic::ID ID) {
1146 
1147   // If the source is undef, then just emit a nop.
1148   if (isa<UndefValue>(CI.getArgOperand(1)))
1149     return true;
1150 
1151   ArrayRef<Register> Res;
1152   auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true);
1153   for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI)
1154     ICall.addUse(getOrCreateVReg(**AI));
1155 
1156   Align DstAlign;
1157   Align SrcAlign;
1158   unsigned IsVol =
1159       cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
1160           ->getZExtValue();
1161 
1162   if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1163     DstAlign = MCI->getDestAlign().valueOrOne();
1164     SrcAlign = MCI->getSourceAlign().valueOrOne();
1165   } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1166     DstAlign = MMI->getDestAlign().valueOrOne();
1167     SrcAlign = MMI->getSourceAlign().valueOrOne();
1168   } else {
1169     auto *MSI = cast<MemSetInst>(&CI);
1170     DstAlign = MSI->getDestAlign().valueOrOne();
1171   }
1172 
1173   // We need to propagate the tail call flag from the IR inst as an argument.
1174   // Otherwise, we have to pessimize and assume later that we cannot tail call
1175   // any memory intrinsics.
1176   ICall.addImm(CI.isTailCall() ? 1 : 0);
1177 
1178   // Create mem operands to store the alignment and volatile info.
1179   auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
1180   ICall.addMemOperand(MF->getMachineMemOperand(
1181       MachinePointerInfo(CI.getArgOperand(0)),
1182       MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
1183   if (ID != Intrinsic::memset)
1184     ICall.addMemOperand(MF->getMachineMemOperand(
1185         MachinePointerInfo(CI.getArgOperand(1)),
1186         MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
1187 
1188   return true;
1189 }
1190 
1191 void IRTranslator::getStackGuard(Register DstReg,
1192                                  MachineIRBuilder &MIRBuilder) {
1193   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1194   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1195   auto MIB =
1196       MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1197 
1198   auto &TLI = *MF->getSubtarget().getTargetLowering();
1199   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1200   if (!Global)
1201     return;
1202 
1203   MachinePointerInfo MPInfo(Global);
1204   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1205                MachineMemOperand::MODereferenceable;
1206   MachineMemOperand *MemRef =
1207       MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
1208                                DL->getPointerABIAlignment(0));
1209   MIB.setMemRefs({MemRef});
1210 }
1211 
1212 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1213                                               MachineIRBuilder &MIRBuilder) {
1214   ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1215   MIRBuilder.buildInstr(
1216       Op, {ResRegs[0], ResRegs[1]},
1217       {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1218 
1219   return true;
1220 }
1221 
1222 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1223   switch (ID) {
1224     default:
1225       break;
1226     case Intrinsic::bswap:
1227       return TargetOpcode::G_BSWAP;
1228     case Intrinsic::bitreverse:
1229       return TargetOpcode::G_BITREVERSE;
1230     case Intrinsic::fshl:
1231       return TargetOpcode::G_FSHL;
1232     case Intrinsic::fshr:
1233       return TargetOpcode::G_FSHR;
1234     case Intrinsic::ceil:
1235       return TargetOpcode::G_FCEIL;
1236     case Intrinsic::cos:
1237       return TargetOpcode::G_FCOS;
1238     case Intrinsic::ctpop:
1239       return TargetOpcode::G_CTPOP;
1240     case Intrinsic::exp:
1241       return TargetOpcode::G_FEXP;
1242     case Intrinsic::exp2:
1243       return TargetOpcode::G_FEXP2;
1244     case Intrinsic::fabs:
1245       return TargetOpcode::G_FABS;
1246     case Intrinsic::copysign:
1247       return TargetOpcode::G_FCOPYSIGN;
1248     case Intrinsic::minnum:
1249       return TargetOpcode::G_FMINNUM;
1250     case Intrinsic::maxnum:
1251       return TargetOpcode::G_FMAXNUM;
1252     case Intrinsic::minimum:
1253       return TargetOpcode::G_FMINIMUM;
1254     case Intrinsic::maximum:
1255       return TargetOpcode::G_FMAXIMUM;
1256     case Intrinsic::canonicalize:
1257       return TargetOpcode::G_FCANONICALIZE;
1258     case Intrinsic::floor:
1259       return TargetOpcode::G_FFLOOR;
1260     case Intrinsic::fma:
1261       return TargetOpcode::G_FMA;
1262     case Intrinsic::log:
1263       return TargetOpcode::G_FLOG;
1264     case Intrinsic::log2:
1265       return TargetOpcode::G_FLOG2;
1266     case Intrinsic::log10:
1267       return TargetOpcode::G_FLOG10;
1268     case Intrinsic::nearbyint:
1269       return TargetOpcode::G_FNEARBYINT;
1270     case Intrinsic::pow:
1271       return TargetOpcode::G_FPOW;
1272     case Intrinsic::rint:
1273       return TargetOpcode::G_FRINT;
1274     case Intrinsic::round:
1275       return TargetOpcode::G_INTRINSIC_ROUND;
1276     case Intrinsic::sin:
1277       return TargetOpcode::G_FSIN;
1278     case Intrinsic::sqrt:
1279       return TargetOpcode::G_FSQRT;
1280     case Intrinsic::trunc:
1281       return TargetOpcode::G_INTRINSIC_TRUNC;
1282     case Intrinsic::readcyclecounter:
1283       return TargetOpcode::G_READCYCLECOUNTER;
1284     case Intrinsic::ptrmask:
1285       return TargetOpcode::G_PTRMASK;
1286   }
1287   return Intrinsic::not_intrinsic;
1288 }
1289 
1290 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1291                                             Intrinsic::ID ID,
1292                                             MachineIRBuilder &MIRBuilder) {
1293 
1294   unsigned Op = getSimpleIntrinsicOpcode(ID);
1295 
1296   // Is this a simple intrinsic?
1297   if (Op == Intrinsic::not_intrinsic)
1298     return false;
1299 
1300   // Yes. Let's translate it.
1301   SmallVector<llvm::SrcOp, 4> VRegs;
1302   for (auto &Arg : CI.arg_operands())
1303     VRegs.push_back(getOrCreateVReg(*Arg));
1304 
1305   MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1306                         MachineInstr::copyFlagsFromInstruction(CI));
1307   return true;
1308 }
1309 
1310 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1311                                            MachineIRBuilder &MIRBuilder) {
1312 
1313   // If this is a simple intrinsic (that is, we just need to add a def of
1314   // a vreg, and uses for each arg operand, then translate it.
1315   if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1316     return true;
1317 
1318   switch (ID) {
1319   default:
1320     break;
1321   case Intrinsic::lifetime_start:
1322   case Intrinsic::lifetime_end: {
1323     // No stack colouring in O0, discard region information.
1324     if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1325       return true;
1326 
1327     unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1328                                                   : TargetOpcode::LIFETIME_END;
1329 
1330     // Get the underlying objects for the location passed on the lifetime
1331     // marker.
1332     SmallVector<const Value *, 4> Allocas;
1333     GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL);
1334 
1335     // Iterate over each underlying object, creating lifetime markers for each
1336     // static alloca. Quit if we find a non-static alloca.
1337     for (const Value *V : Allocas) {
1338       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1339       if (!AI)
1340         continue;
1341 
1342       if (!AI->isStaticAlloca())
1343         return true;
1344 
1345       MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1346     }
1347     return true;
1348   }
1349   case Intrinsic::dbg_declare: {
1350     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1351     assert(DI.getVariable() && "Missing variable");
1352 
1353     const Value *Address = DI.getAddress();
1354     if (!Address || isa<UndefValue>(Address)) {
1355       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1356       return true;
1357     }
1358 
1359     assert(DI.getVariable()->isValidLocationForIntrinsic(
1360                MIRBuilder.getDebugLoc()) &&
1361            "Expected inlined-at fields to agree");
1362     auto AI = dyn_cast<AllocaInst>(Address);
1363     if (AI && AI->isStaticAlloca()) {
1364       // Static allocas are tracked at the MF level, no need for DBG_VALUE
1365       // instructions (in fact, they get ignored if they *do* exist).
1366       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1367                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1368     } else {
1369       // A dbg.declare describes the address of a source variable, so lower it
1370       // into an indirect DBG_VALUE.
1371       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1372                                        DI.getVariable(), DI.getExpression());
1373     }
1374     return true;
1375   }
1376   case Intrinsic::dbg_label: {
1377     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1378     assert(DI.getLabel() && "Missing label");
1379 
1380     assert(DI.getLabel()->isValidLocationForIntrinsic(
1381                MIRBuilder.getDebugLoc()) &&
1382            "Expected inlined-at fields to agree");
1383 
1384     MIRBuilder.buildDbgLabel(DI.getLabel());
1385     return true;
1386   }
1387   case Intrinsic::vaend:
1388     // No target I know of cares about va_end. Certainly no in-tree target
1389     // does. Simplest intrinsic ever!
1390     return true;
1391   case Intrinsic::vastart: {
1392     auto &TLI = *MF->getSubtarget().getTargetLowering();
1393     Value *Ptr = CI.getArgOperand(0);
1394     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1395 
1396     // FIXME: Get alignment
1397     MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
1398         .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
1399                                                 MachineMemOperand::MOStore,
1400                                                 ListSize, Align(1)));
1401     return true;
1402   }
1403   case Intrinsic::dbg_value: {
1404     // This form of DBG_VALUE is target-independent.
1405     const DbgValueInst &DI = cast<DbgValueInst>(CI);
1406     const Value *V = DI.getValue();
1407     assert(DI.getVariable()->isValidLocationForIntrinsic(
1408                MIRBuilder.getDebugLoc()) &&
1409            "Expected inlined-at fields to agree");
1410     if (!V) {
1411       // Currently the optimizer can produce this; insert an undef to
1412       // help debugging.  Probably the optimizer should not do this.
1413       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1414     } else if (const auto *CI = dyn_cast<Constant>(V)) {
1415       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1416     } else {
1417       for (Register Reg : getOrCreateVRegs(*V)) {
1418         // FIXME: This does not handle register-indirect values at offset 0. The
1419         // direct/indirect thing shouldn't really be handled by something as
1420         // implicit as reg+noreg vs reg+imm in the first place, but it seems
1421         // pretty baked in right now.
1422         MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
1423       }
1424     }
1425     return true;
1426   }
1427   case Intrinsic::uadd_with_overflow:
1428     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
1429   case Intrinsic::sadd_with_overflow:
1430     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
1431   case Intrinsic::usub_with_overflow:
1432     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
1433   case Intrinsic::ssub_with_overflow:
1434     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
1435   case Intrinsic::umul_with_overflow:
1436     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
1437   case Intrinsic::smul_with_overflow:
1438     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
1439   case Intrinsic::uadd_sat:
1440     return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
1441   case Intrinsic::sadd_sat:
1442     return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
1443   case Intrinsic::usub_sat:
1444     return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
1445   case Intrinsic::ssub_sat:
1446     return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
1447   case Intrinsic::fmuladd: {
1448     const TargetMachine &TM = MF->getTarget();
1449     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1450     Register Dst = getOrCreateVReg(CI);
1451     Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
1452     Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
1453     Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
1454     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
1455         TLI.isFMAFasterThanFMulAndFAdd(*MF,
1456                                        TLI.getValueType(*DL, CI.getType()))) {
1457       // TODO: Revisit this to see if we should move this part of the
1458       // lowering to the combiner.
1459       MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
1460                           MachineInstr::copyFlagsFromInstruction(CI));
1461     } else {
1462       LLT Ty = getLLTForType(*CI.getType(), *DL);
1463       auto FMul = MIRBuilder.buildFMul(
1464           Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
1465       MIRBuilder.buildFAdd(Dst, FMul, Op2,
1466                            MachineInstr::copyFlagsFromInstruction(CI));
1467     }
1468     return true;
1469   }
1470   case Intrinsic::memcpy:
1471   case Intrinsic::memmove:
1472   case Intrinsic::memset:
1473     return translateMemFunc(CI, MIRBuilder, ID);
1474   case Intrinsic::eh_typeid_for: {
1475     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
1476     Register Reg = getOrCreateVReg(CI);
1477     unsigned TypeID = MF->getTypeIDFor(GV);
1478     MIRBuilder.buildConstant(Reg, TypeID);
1479     return true;
1480   }
1481   case Intrinsic::objectsize:
1482     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1483 
1484   case Intrinsic::is_constant:
1485     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1486 
1487   case Intrinsic::stackguard:
1488     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
1489     return true;
1490   case Intrinsic::stackprotector: {
1491     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1492     Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
1493     getStackGuard(GuardVal, MIRBuilder);
1494 
1495     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
1496     int FI = getOrCreateFrameIndex(*Slot);
1497     MF->getFrameInfo().setStackProtectorIndex(FI);
1498 
1499     MIRBuilder.buildStore(
1500         GuardVal, getOrCreateVReg(*Slot),
1501         *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
1502                                   MachineMemOperand::MOStore |
1503                                       MachineMemOperand::MOVolatile,
1504                                   PtrTy.getSizeInBits() / 8, Align(8)));
1505     return true;
1506   }
1507   case Intrinsic::stacksave: {
1508     // Save the stack pointer to the location provided by the intrinsic.
1509     Register Reg = getOrCreateVReg(CI);
1510     Register StackPtr = MF->getSubtarget()
1511                             .getTargetLowering()
1512                             ->getStackPointerRegisterToSaveRestore();
1513 
1514     // If the target doesn't specify a stack pointer, then fall back.
1515     if (!StackPtr)
1516       return false;
1517 
1518     MIRBuilder.buildCopy(Reg, StackPtr);
1519     return true;
1520   }
1521   case Intrinsic::stackrestore: {
1522     // Restore the stack pointer from the location provided by the intrinsic.
1523     Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
1524     Register StackPtr = MF->getSubtarget()
1525                             .getTargetLowering()
1526                             ->getStackPointerRegisterToSaveRestore();
1527 
1528     // If the target doesn't specify a stack pointer, then fall back.
1529     if (!StackPtr)
1530       return false;
1531 
1532     MIRBuilder.buildCopy(StackPtr, Reg);
1533     return true;
1534   }
1535   case Intrinsic::cttz:
1536   case Intrinsic::ctlz: {
1537     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
1538     bool isTrailing = ID == Intrinsic::cttz;
1539     unsigned Opcode = isTrailing
1540                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
1541                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
1542                           : Cst->isZero() ? TargetOpcode::G_CTLZ
1543                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
1544     MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
1545                           {getOrCreateVReg(*CI.getArgOperand(0))});
1546     return true;
1547   }
1548   case Intrinsic::invariant_start: {
1549     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1550     Register Undef = MRI->createGenericVirtualRegister(PtrTy);
1551     MIRBuilder.buildUndef(Undef);
1552     return true;
1553   }
1554   case Intrinsic::invariant_end:
1555     return true;
1556   case Intrinsic::assume:
1557   case Intrinsic::var_annotation:
1558   case Intrinsic::sideeffect:
1559     // Discard annotate attributes, assumptions, and artificial side-effects.
1560     return true;
1561   case Intrinsic::read_register: {
1562     Value *Arg = CI.getArgOperand(0);
1563     MIRBuilder
1564         .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
1565         .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
1566     return true;
1567   }
1568   case Intrinsic::write_register: {
1569     Value *Arg = CI.getArgOperand(0);
1570     MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
1571       .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
1572       .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
1573     return true;
1574   }
1575   }
1576   return false;
1577 }
1578 
1579 bool IRTranslator::translateInlineAsm(const CallBase &CB,
1580                                       MachineIRBuilder &MIRBuilder) {
1581 
1582   const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
1583 
1584   if (!ALI) {
1585     LLVM_DEBUG(
1586         dbgs() << "Inline asm lowering is not supported for this target yet\n");
1587     return false;
1588   }
1589 
1590   return ALI->lowerInlineAsm(
1591       MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
1592 }
1593 
1594 bool IRTranslator::translateCallBase(const CallBase &CB,
1595                                      MachineIRBuilder &MIRBuilder) {
1596   ArrayRef<Register> Res = getOrCreateVRegs(CB);
1597 
1598   SmallVector<ArrayRef<Register>, 8> Args;
1599   Register SwiftInVReg = 0;
1600   Register SwiftErrorVReg = 0;
1601   for (auto &Arg : CB.args()) {
1602     if (CLI->supportSwiftError() && isSwiftError(Arg)) {
1603       assert(SwiftInVReg == 0 && "Expected only one swift error argument");
1604       LLT Ty = getLLTForType(*Arg->getType(), *DL);
1605       SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
1606       MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
1607                                             &CB, &MIRBuilder.getMBB(), Arg));
1608       Args.emplace_back(makeArrayRef(SwiftInVReg));
1609       SwiftErrorVReg =
1610           SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
1611       continue;
1612     }
1613     Args.push_back(getOrCreateVRegs(*Arg));
1614   }
1615 
1616   // We don't set HasCalls on MFI here yet because call lowering may decide to
1617   // optimize into tail calls. Instead, we defer that to selection where a final
1618   // scan is done to check if any instructions are calls.
1619   bool Success =
1620       CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
1621                      [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
1622 
1623   // Check if we just inserted a tail call.
1624   if (Success) {
1625     assert(!HasTailCall && "Can't tail call return twice from block?");
1626     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1627     HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
1628   }
1629 
1630   return Success;
1631 }
1632 
1633 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
1634   const CallInst &CI = cast<CallInst>(U);
1635   auto TII = MF->getTarget().getIntrinsicInfo();
1636   const Function *F = CI.getCalledFunction();
1637 
1638   // FIXME: support Windows dllimport function calls.
1639   if (F && (F->hasDLLImportStorageClass() ||
1640             (MF->getTarget().getTargetTriple().isOSWindows() &&
1641              F->hasExternalWeakLinkage())))
1642     return false;
1643 
1644   // FIXME: support control flow guard targets.
1645   if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
1646     return false;
1647 
1648   if (CI.isInlineAsm())
1649     return translateInlineAsm(CI, MIRBuilder);
1650 
1651   Intrinsic::ID ID = Intrinsic::not_intrinsic;
1652   if (F && F->isIntrinsic()) {
1653     ID = F->getIntrinsicID();
1654     if (TII && ID == Intrinsic::not_intrinsic)
1655       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
1656   }
1657 
1658   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
1659     return translateCallBase(CI, MIRBuilder);
1660 
1661   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
1662 
1663   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
1664     return true;
1665 
1666   ArrayRef<Register> ResultRegs;
1667   if (!CI.getType()->isVoidTy())
1668     ResultRegs = getOrCreateVRegs(CI);
1669 
1670   // Ignore the callsite attributes. Backend code is most likely not expecting
1671   // an intrinsic to sometimes have side effects and sometimes not.
1672   MachineInstrBuilder MIB =
1673       MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
1674   if (isa<FPMathOperator>(CI))
1675     MIB->copyIRFlags(CI);
1676 
1677   for (auto &Arg : enumerate(CI.arg_operands())) {
1678     // Some intrinsics take metadata parameters. Reject them.
1679     if (isa<MetadataAsValue>(Arg.value()))
1680       return false;
1681 
1682     // If this is required to be an immediate, don't materialize it in a
1683     // register.
1684     if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
1685       if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
1686         // imm arguments are more convenient than cimm (and realistically
1687         // probably sufficient), so use them.
1688         assert(CI->getBitWidth() <= 64 &&
1689                "large intrinsic immediates not handled");
1690         MIB.addImm(CI->getSExtValue());
1691       } else {
1692         MIB.addFPImm(cast<ConstantFP>(Arg.value()));
1693       }
1694     } else {
1695       ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
1696       if (VRegs.size() > 1)
1697         return false;
1698       MIB.addUse(VRegs[0]);
1699     }
1700   }
1701 
1702   // Add a MachineMemOperand if it is a target mem intrinsic.
1703   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1704   TargetLowering::IntrinsicInfo Info;
1705   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
1706   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
1707     Align Alignment = Info.align.getValueOr(
1708         DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
1709 
1710     uint64_t Size = Info.memVT.getStoreSize();
1711     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
1712                                                Info.flags, Size, Alignment));
1713   }
1714 
1715   return true;
1716 }
1717 
1718 bool IRTranslator::translateInvoke(const User &U,
1719                                    MachineIRBuilder &MIRBuilder) {
1720   const InvokeInst &I = cast<InvokeInst>(U);
1721   MCContext &Context = MF->getContext();
1722 
1723   const BasicBlock *ReturnBB = I.getSuccessor(0);
1724   const BasicBlock *EHPadBB = I.getSuccessor(1);
1725 
1726   const Function *Fn = I.getCalledFunction();
1727   if (I.isInlineAsm())
1728     return false;
1729 
1730   // FIXME: support invoking patchpoint and statepoint intrinsics.
1731   if (Fn && Fn->isIntrinsic())
1732     return false;
1733 
1734   // FIXME: support whatever these are.
1735   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
1736     return false;
1737 
1738   // FIXME: support control flow guard targets.
1739   if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
1740     return false;
1741 
1742   // FIXME: support Windows exception handling.
1743   if (!isa<LandingPadInst>(EHPadBB->front()))
1744     return false;
1745 
1746   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
1747   // the region covered by the try.
1748   MCSymbol *BeginSymbol = Context.createTempSymbol();
1749   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
1750 
1751   if (!translateCallBase(I, MIRBuilder))
1752     return false;
1753 
1754   MCSymbol *EndSymbol = Context.createTempSymbol();
1755   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
1756 
1757   // FIXME: track probabilities.
1758   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
1759                     &ReturnMBB = getMBB(*ReturnBB);
1760   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
1761   MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
1762   MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
1763   MIRBuilder.buildBr(ReturnMBB);
1764 
1765   return true;
1766 }
1767 
1768 bool IRTranslator::translateCallBr(const User &U,
1769                                    MachineIRBuilder &MIRBuilder) {
1770   // FIXME: Implement this.
1771   return false;
1772 }
1773 
1774 bool IRTranslator::translateLandingPad(const User &U,
1775                                        MachineIRBuilder &MIRBuilder) {
1776   const LandingPadInst &LP = cast<LandingPadInst>(U);
1777 
1778   MachineBasicBlock &MBB = MIRBuilder.getMBB();
1779 
1780   MBB.setIsEHPad();
1781 
1782   // If there aren't registers to copy the values into (e.g., during SjLj
1783   // exceptions), then don't bother.
1784   auto &TLI = *MF->getSubtarget().getTargetLowering();
1785   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
1786   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
1787       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
1788     return true;
1789 
1790   // If landingpad's return type is token type, we don't create DAG nodes
1791   // for its exception pointer and selector value. The extraction of exception
1792   // pointer or selector value from token type landingpads is not currently
1793   // supported.
1794   if (LP.getType()->isTokenTy())
1795     return true;
1796 
1797   // Add a label to mark the beginning of the landing pad.  Deletion of the
1798   // landing pad can thus be detected via the MachineModuleInfo.
1799   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
1800     .addSym(MF->addLandingPad(&MBB));
1801 
1802   LLT Ty = getLLTForType(*LP.getType(), *DL);
1803   Register Undef = MRI->createGenericVirtualRegister(Ty);
1804   MIRBuilder.buildUndef(Undef);
1805 
1806   SmallVector<LLT, 2> Tys;
1807   for (Type *Ty : cast<StructType>(LP.getType())->elements())
1808     Tys.push_back(getLLTForType(*Ty, *DL));
1809   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
1810 
1811   // Mark exception register as live in.
1812   Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
1813   if (!ExceptionReg)
1814     return false;
1815 
1816   MBB.addLiveIn(ExceptionReg);
1817   ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
1818   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
1819 
1820   Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
1821   if (!SelectorReg)
1822     return false;
1823 
1824   MBB.addLiveIn(SelectorReg);
1825   Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
1826   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
1827   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
1828 
1829   return true;
1830 }
1831 
1832 bool IRTranslator::translateAlloca(const User &U,
1833                                    MachineIRBuilder &MIRBuilder) {
1834   auto &AI = cast<AllocaInst>(U);
1835 
1836   if (AI.isSwiftError())
1837     return true;
1838 
1839   if (AI.isStaticAlloca()) {
1840     Register Res = getOrCreateVReg(AI);
1841     int FI = getOrCreateFrameIndex(AI);
1842     MIRBuilder.buildFrameIndex(Res, FI);
1843     return true;
1844   }
1845 
1846   // FIXME: support stack probing for Windows.
1847   if (MF->getTarget().getTargetTriple().isOSWindows())
1848     return false;
1849 
1850   // Now we're in the harder dynamic case.
1851   Register NumElts = getOrCreateVReg(*AI.getArraySize());
1852   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
1853   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
1854   if (MRI->getType(NumElts) != IntPtrTy) {
1855     Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
1856     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
1857     NumElts = ExtElts;
1858   }
1859 
1860   Type *Ty = AI.getAllocatedType();
1861 
1862   Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
1863   Register TySize =
1864       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
1865   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
1866 
1867   // Round the size of the allocation up to the stack alignment size
1868   // by add SA-1 to the size. This doesn't overflow because we're computing
1869   // an address inside an alloca.
1870   Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
1871   auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
1872   auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
1873                                       MachineInstr::NoUWrap);
1874   auto AlignCst =
1875       MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
1876   auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
1877 
1878   Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
1879   if (Alignment <= StackAlign)
1880     Alignment = Align(1);
1881   MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
1882 
1883   MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
1884   assert(MF->getFrameInfo().hasVarSizedObjects());
1885   return true;
1886 }
1887 
1888 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
1889   // FIXME: We may need more info about the type. Because of how LLT works,
1890   // we're completely discarding the i64/double distinction here (amongst
1891   // others). Fortunately the ABIs I know of where that matters don't use va_arg
1892   // anyway but that's not guaranteed.
1893   MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
1894                         {getOrCreateVReg(*U.getOperand(0)),
1895                          uint64_t(DL->getABITypeAlignment(U.getType()))});
1896   return true;
1897 }
1898 
1899 bool IRTranslator::translateInsertElement(const User &U,
1900                                           MachineIRBuilder &MIRBuilder) {
1901   // If it is a <1 x Ty> vector, use the scalar as it is
1902   // not a legal vector type in LLT.
1903   if (cast<VectorType>(U.getType())->getNumElements() == 1)
1904     return translateCopy(U, *U.getOperand(1), MIRBuilder);
1905 
1906   Register Res = getOrCreateVReg(U);
1907   Register Val = getOrCreateVReg(*U.getOperand(0));
1908   Register Elt = getOrCreateVReg(*U.getOperand(1));
1909   Register Idx = getOrCreateVReg(*U.getOperand(2));
1910   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
1911   return true;
1912 }
1913 
1914 bool IRTranslator::translateExtractElement(const User &U,
1915                                            MachineIRBuilder &MIRBuilder) {
1916   // If it is a <1 x Ty> vector, use the scalar as it is
1917   // not a legal vector type in LLT.
1918   if (cast<VectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
1919     return translateCopy(U, *U.getOperand(0), MIRBuilder);
1920 
1921   Register Res = getOrCreateVReg(U);
1922   Register Val = getOrCreateVReg(*U.getOperand(0));
1923   const auto &TLI = *MF->getSubtarget().getTargetLowering();
1924   unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
1925   Register Idx;
1926   if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
1927     if (CI->getBitWidth() != PreferredVecIdxWidth) {
1928       APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
1929       auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
1930       Idx = getOrCreateVReg(*NewIdxCI);
1931     }
1932   }
1933   if (!Idx)
1934     Idx = getOrCreateVReg(*U.getOperand(1));
1935   if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
1936     const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
1937     Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
1938   }
1939   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
1940   return true;
1941 }
1942 
1943 bool IRTranslator::translateShuffleVector(const User &U,
1944                                           MachineIRBuilder &MIRBuilder) {
1945   ArrayRef<int> Mask;
1946   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
1947     Mask = SVI->getShuffleMask();
1948   else
1949     Mask = cast<ConstantExpr>(U).getShuffleMask();
1950   ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
1951   MIRBuilder
1952       .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
1953                   {getOrCreateVReg(*U.getOperand(0)),
1954                    getOrCreateVReg(*U.getOperand(1))})
1955       .addShuffleMask(MaskAlloc);
1956   return true;
1957 }
1958 
1959 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
1960   const PHINode &PI = cast<PHINode>(U);
1961 
1962   SmallVector<MachineInstr *, 4> Insts;
1963   for (auto Reg : getOrCreateVRegs(PI)) {
1964     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
1965     Insts.push_back(MIB.getInstr());
1966   }
1967 
1968   PendingPHIs.emplace_back(&PI, std::move(Insts));
1969   return true;
1970 }
1971 
1972 bool IRTranslator::translateAtomicCmpXchg(const User &U,
1973                                           MachineIRBuilder &MIRBuilder) {
1974   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
1975 
1976   if (I.isWeak())
1977     return false;
1978 
1979   auto &TLI = *MF->getSubtarget().getTargetLowering();
1980   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
1981 
1982   Type *ResType = I.getType();
1983   Type *ValType = ResType->Type::getStructElementType(0);
1984 
1985   auto Res = getOrCreateVRegs(I);
1986   Register OldValRes = Res[0];
1987   Register SuccessRes = Res[1];
1988   Register Addr = getOrCreateVReg(*I.getPointerOperand());
1989   Register Cmp = getOrCreateVReg(*I.getCompareOperand());
1990   Register NewVal = getOrCreateVReg(*I.getNewValOperand());
1991 
1992   AAMDNodes AAMetadata;
1993   I.getAAMetadata(AAMetadata);
1994 
1995   MIRBuilder.buildAtomicCmpXchgWithSuccess(
1996       OldValRes, SuccessRes, Addr, Cmp, NewVal,
1997       *MF->getMachineMemOperand(
1998           MachinePointerInfo(I.getPointerOperand()), Flags,
1999           DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr,
2000           I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering()));
2001   return true;
2002 }
2003 
2004 bool IRTranslator::translateAtomicRMW(const User &U,
2005                                       MachineIRBuilder &MIRBuilder) {
2006   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2007   auto &TLI = *MF->getSubtarget().getTargetLowering();
2008   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2009 
2010   Type *ResType = I.getType();
2011 
2012   Register Res = getOrCreateVReg(I);
2013   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2014   Register Val = getOrCreateVReg(*I.getValOperand());
2015 
2016   unsigned Opcode = 0;
2017   switch (I.getOperation()) {
2018   default:
2019     return false;
2020   case AtomicRMWInst::Xchg:
2021     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
2022     break;
2023   case AtomicRMWInst::Add:
2024     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2025     break;
2026   case AtomicRMWInst::Sub:
2027     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2028     break;
2029   case AtomicRMWInst::And:
2030     Opcode = TargetOpcode::G_ATOMICRMW_AND;
2031     break;
2032   case AtomicRMWInst::Nand:
2033     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2034     break;
2035   case AtomicRMWInst::Or:
2036     Opcode = TargetOpcode::G_ATOMICRMW_OR;
2037     break;
2038   case AtomicRMWInst::Xor:
2039     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2040     break;
2041   case AtomicRMWInst::Max:
2042     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2043     break;
2044   case AtomicRMWInst::Min:
2045     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2046     break;
2047   case AtomicRMWInst::UMax:
2048     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2049     break;
2050   case AtomicRMWInst::UMin:
2051     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2052     break;
2053   case AtomicRMWInst::FAdd:
2054     Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2055     break;
2056   case AtomicRMWInst::FSub:
2057     Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2058     break;
2059   }
2060 
2061   AAMDNodes AAMetadata;
2062   I.getAAMetadata(AAMetadata);
2063 
2064   MIRBuilder.buildAtomicRMW(
2065       Opcode, Res, Addr, Val,
2066       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2067                                 Flags, DL->getTypeStoreSize(ResType),
2068                                 getMemOpAlign(I), AAMetadata, nullptr,
2069                                 I.getSyncScopeID(), I.getOrdering()));
2070   return true;
2071 }
2072 
2073 bool IRTranslator::translateFence(const User &U,
2074                                   MachineIRBuilder &MIRBuilder) {
2075   const FenceInst &Fence = cast<FenceInst>(U);
2076   MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2077                         Fence.getSyncScopeID());
2078   return true;
2079 }
2080 
2081 bool IRTranslator::translateFreeze(const User &U,
2082                                    MachineIRBuilder &MIRBuilder) {
2083   const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
2084   const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
2085 
2086   assert(DstRegs.size() == SrcRegs.size() &&
2087          "Freeze with different source and destination type?");
2088 
2089   for (unsigned I = 0; I < DstRegs.size(); ++I) {
2090     MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
2091   }
2092 
2093   return true;
2094 }
2095 
2096 void IRTranslator::finishPendingPhis() {
2097 #ifndef NDEBUG
2098   DILocationVerifier Verifier;
2099   GISelObserverWrapper WrapperObserver(&Verifier);
2100   RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2101 #endif // ifndef NDEBUG
2102   for (auto &Phi : PendingPHIs) {
2103     const PHINode *PI = Phi.first;
2104     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
2105     MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
2106     EntryBuilder->setDebugLoc(PI->getDebugLoc());
2107 #ifndef NDEBUG
2108     Verifier.setCurrentInst(PI);
2109 #endif // ifndef NDEBUG
2110 
2111     SmallSet<const MachineBasicBlock *, 16> SeenPreds;
2112     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
2113       auto IRPred = PI->getIncomingBlock(i);
2114       ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
2115       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
2116         if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
2117           continue;
2118         SeenPreds.insert(Pred);
2119         for (unsigned j = 0; j < ValRegs.size(); ++j) {
2120           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
2121           MIB.addUse(ValRegs[j]);
2122           MIB.addMBB(Pred);
2123         }
2124       }
2125     }
2126   }
2127 }
2128 
2129 bool IRTranslator::valueIsSplit(const Value &V,
2130                                 SmallVectorImpl<uint64_t> *Offsets) {
2131   SmallVector<LLT, 4> SplitTys;
2132   if (Offsets && !Offsets->empty())
2133     Offsets->clear();
2134   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
2135   return SplitTys.size() > 1;
2136 }
2137 
2138 bool IRTranslator::translate(const Instruction &Inst) {
2139   CurBuilder->setDebugLoc(Inst.getDebugLoc());
2140   // We only emit constants into the entry block from here. To prevent jumpy
2141   // debug behaviour set the line to 0.
2142   if (const DebugLoc &DL = Inst.getDebugLoc())
2143     EntryBuilder->setDebugLoc(
2144         DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
2145   else
2146     EntryBuilder->setDebugLoc(DebugLoc());
2147 
2148   switch (Inst.getOpcode()) {
2149 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2150   case Instruction::OPCODE:                                                    \
2151     return translate##OPCODE(Inst, *CurBuilder.get());
2152 #include "llvm/IR/Instruction.def"
2153   default:
2154     return false;
2155   }
2156 }
2157 
2158 bool IRTranslator::translate(const Constant &C, Register Reg) {
2159   if (auto CI = dyn_cast<ConstantInt>(&C))
2160     EntryBuilder->buildConstant(Reg, *CI);
2161   else if (auto CF = dyn_cast<ConstantFP>(&C))
2162     EntryBuilder->buildFConstant(Reg, *CF);
2163   else if (isa<UndefValue>(C))
2164     EntryBuilder->buildUndef(Reg);
2165   else if (isa<ConstantPointerNull>(C))
2166     EntryBuilder->buildConstant(Reg, 0);
2167   else if (auto GV = dyn_cast<GlobalValue>(&C))
2168     EntryBuilder->buildGlobalValue(Reg, GV);
2169   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
2170     if (!CAZ->getType()->isVectorTy())
2171       return false;
2172     // Return the scalar if it is a <1 x Ty> vector.
2173     if (CAZ->getNumElements() == 1)
2174       return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get());
2175     SmallVector<Register, 4> Ops;
2176     for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
2177       Constant &Elt = *CAZ->getElementValue(i);
2178       Ops.push_back(getOrCreateVReg(Elt));
2179     }
2180     EntryBuilder->buildBuildVector(Reg, Ops);
2181   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
2182     // Return the scalar if it is a <1 x Ty> vector.
2183     if (CV->getNumElements() == 1)
2184       return translateCopy(C, *CV->getElementAsConstant(0),
2185                            *EntryBuilder.get());
2186     SmallVector<Register, 4> Ops;
2187     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
2188       Constant &Elt = *CV->getElementAsConstant(i);
2189       Ops.push_back(getOrCreateVReg(Elt));
2190     }
2191     EntryBuilder->buildBuildVector(Reg, Ops);
2192   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
2193     switch(CE->getOpcode()) {
2194 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2195   case Instruction::OPCODE:                                                    \
2196     return translate##OPCODE(*CE, *EntryBuilder.get());
2197 #include "llvm/IR/Instruction.def"
2198     default:
2199       return false;
2200     }
2201   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
2202     if (CV->getNumOperands() == 1)
2203       return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get());
2204     SmallVector<Register, 4> Ops;
2205     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
2206       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
2207     }
2208     EntryBuilder->buildBuildVector(Reg, Ops);
2209   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
2210     EntryBuilder->buildBlockAddress(Reg, BA);
2211   } else
2212     return false;
2213 
2214   return true;
2215 }
2216 
2217 void IRTranslator::finalizeBasicBlock() {
2218   for (auto &JTCase : SL->JTCases) {
2219     // Emit header first, if it wasn't already emitted.
2220     if (!JTCase.first.Emitted)
2221       emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
2222 
2223     emitJumpTable(JTCase.second, JTCase.second.MBB);
2224   }
2225   SL->JTCases.clear();
2226 }
2227 
2228 void IRTranslator::finalizeFunction() {
2229   // Release the memory used by the different maps we
2230   // needed during the translation.
2231   PendingPHIs.clear();
2232   VMap.reset();
2233   FrameIndices.clear();
2234   MachinePreds.clear();
2235   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
2236   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
2237   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
2238   EntryBuilder.reset();
2239   CurBuilder.reset();
2240   FuncInfo.clear();
2241 }
2242 
2243 /// Returns true if a BasicBlock \p BB within a variadic function contains a
2244 /// variadic musttail call.
2245 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
2246   if (!IsVarArg)
2247     return false;
2248 
2249   // Walk the block backwards, because tail calls usually only appear at the end
2250   // of a block.
2251   return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
2252     const auto *CI = dyn_cast<CallInst>(&I);
2253     return CI && CI->isMustTailCall();
2254   });
2255 }
2256 
2257 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
2258   MF = &CurMF;
2259   const Function &F = MF->getFunction();
2260   if (F.empty())
2261     return false;
2262   GISelCSEAnalysisWrapper &Wrapper =
2263       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
2264   // Set the CSEConfig and run the analysis.
2265   GISelCSEInfo *CSEInfo = nullptr;
2266   TPC = &getAnalysis<TargetPassConfig>();
2267   bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
2268                        ? EnableCSEInIRTranslator
2269                        : TPC->isGISelCSEEnabled();
2270 
2271   if (EnableCSE) {
2272     EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
2273     CSEInfo = &Wrapper.get(TPC->getCSEConfig());
2274     EntryBuilder->setCSEInfo(CSEInfo);
2275     CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
2276     CurBuilder->setCSEInfo(CSEInfo);
2277   } else {
2278     EntryBuilder = std::make_unique<MachineIRBuilder>();
2279     CurBuilder = std::make_unique<MachineIRBuilder>();
2280   }
2281   CLI = MF->getSubtarget().getCallLowering();
2282   CurBuilder->setMF(*MF);
2283   EntryBuilder->setMF(*MF);
2284   MRI = &MF->getRegInfo();
2285   DL = &F.getParent()->getDataLayout();
2286   ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
2287   FuncInfo.MF = MF;
2288   FuncInfo.BPI = nullptr;
2289   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2290   const TargetMachine &TM = MF->getTarget();
2291   SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
2292   SL->init(TLI, TM, *DL);
2293 
2294   EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F);
2295 
2296   assert(PendingPHIs.empty() && "stale PHIs");
2297 
2298   if (!DL->isLittleEndian()) {
2299     // Currently we don't properly handle big endian code.
2300     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2301                                F.getSubprogram(), &F.getEntryBlock());
2302     R << "unable to translate in big endian mode";
2303     reportTranslationError(*MF, *TPC, *ORE, R);
2304   }
2305 
2306   // Release the per-function state when we return, whether we succeeded or not.
2307   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
2308 
2309   // Setup a separate basic-block for the arguments and constants
2310   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
2311   MF->push_back(EntryBB);
2312   EntryBuilder->setMBB(*EntryBB);
2313 
2314   DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
2315   SwiftError.setFunction(CurMF);
2316   SwiftError.createEntriesInEntryBlock(DbgLoc);
2317 
2318   bool IsVarArg = F.isVarArg();
2319   bool HasMustTailInVarArgFn = false;
2320 
2321   // Create all blocks, in IR order, to preserve the layout.
2322   for (const BasicBlock &BB: F) {
2323     auto *&MBB = BBToMBB[&BB];
2324 
2325     MBB = MF->CreateMachineBasicBlock(&BB);
2326     MF->push_back(MBB);
2327 
2328     if (BB.hasAddressTaken())
2329       MBB->setHasAddressTaken();
2330 
2331     if (!HasMustTailInVarArgFn)
2332       HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
2333   }
2334 
2335   MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
2336 
2337   // Make our arguments/constants entry block fallthrough to the IR entry block.
2338   EntryBB->addSuccessor(&getMBB(F.front()));
2339 
2340   // Lower the actual args into this basic block.
2341   SmallVector<ArrayRef<Register>, 8> VRegArgs;
2342   for (const Argument &Arg: F.args()) {
2343     if (DL->getTypeStoreSize(Arg.getType()) == 0)
2344       continue; // Don't handle zero sized types.
2345     ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
2346     VRegArgs.push_back(VRegs);
2347 
2348     if (Arg.hasSwiftErrorAttr()) {
2349       assert(VRegs.size() == 1 && "Too many vregs for Swift error");
2350       SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
2351     }
2352   }
2353 
2354   if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) {
2355     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2356                                F.getSubprogram(), &F.getEntryBlock());
2357     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
2358     reportTranslationError(*MF, *TPC, *ORE, R);
2359     return false;
2360   }
2361 
2362   // Need to visit defs before uses when translating instructions.
2363   GISelObserverWrapper WrapperObserver;
2364   if (EnableCSE && CSEInfo)
2365     WrapperObserver.addObserver(CSEInfo);
2366   {
2367     ReversePostOrderTraversal<const Function *> RPOT(&F);
2368 #ifndef NDEBUG
2369     DILocationVerifier Verifier;
2370     WrapperObserver.addObserver(&Verifier);
2371 #endif // ifndef NDEBUG
2372     RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2373     RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
2374     for (const BasicBlock *BB : RPOT) {
2375       MachineBasicBlock &MBB = getMBB(*BB);
2376       // Set the insertion point of all the following translations to
2377       // the end of this basic block.
2378       CurBuilder->setMBB(MBB);
2379       HasTailCall = false;
2380       for (const Instruction &Inst : *BB) {
2381         // If we translated a tail call in the last step, then we know
2382         // everything after the call is either a return, or something that is
2383         // handled by the call itself. (E.g. a lifetime marker or assume
2384         // intrinsic.) In this case, we should stop translating the block and
2385         // move on.
2386         if (HasTailCall)
2387           break;
2388 #ifndef NDEBUG
2389         Verifier.setCurrentInst(&Inst);
2390 #endif // ifndef NDEBUG
2391         if (translate(Inst))
2392           continue;
2393 
2394         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2395                                    Inst.getDebugLoc(), BB);
2396         R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
2397 
2398         if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
2399           std::string InstStrStorage;
2400           raw_string_ostream InstStr(InstStrStorage);
2401           InstStr << Inst;
2402 
2403           R << ": '" << InstStr.str() << "'";
2404         }
2405 
2406         reportTranslationError(*MF, *TPC, *ORE, R);
2407         return false;
2408       }
2409 
2410       finalizeBasicBlock();
2411     }
2412 #ifndef NDEBUG
2413     WrapperObserver.removeObserver(&Verifier);
2414 #endif
2415   }
2416 
2417   finishPendingPhis();
2418 
2419   SwiftError.propagateVRegs();
2420 
2421   // Merge the argument lowering and constants block with its single
2422   // successor, the LLVM-IR entry block.  We want the basic block to
2423   // be maximal.
2424   assert(EntryBB->succ_size() == 1 &&
2425          "Custom BB used for lowering should have only one successor");
2426   // Get the successor of the current entry block.
2427   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
2428   assert(NewEntryBB.pred_size() == 1 &&
2429          "LLVM-IR entry block has a predecessor!?");
2430   // Move all the instruction from the current entry block to the
2431   // new entry block.
2432   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
2433                     EntryBB->end());
2434 
2435   // Update the live-in information for the new entry block.
2436   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
2437     NewEntryBB.addLiveIn(LiveIn);
2438   NewEntryBB.sortUniqueLiveIns();
2439 
2440   // Get rid of the now empty basic block.
2441   EntryBB->removeSuccessor(&NewEntryBB);
2442   MF->remove(EntryBB);
2443   MF->DeleteMachineBasicBlock(EntryBB);
2444 
2445   assert(&MF->front() == &NewEntryBB &&
2446          "New entry wasn't next in the list of basic block!");
2447 
2448   // Initialize stack protector information.
2449   StackProtector &SP = getAnalysis<StackProtector>();
2450   SP.copyToMachineFrameInfo(MF->getFrameInfo());
2451 
2452   return false;
2453 }
2454