1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements the IRTranslator class.
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
22 #include "llvm/CodeGen/LowLevelType.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/StackProtector.h"
31 #include "llvm/CodeGen/TargetFrameLowering.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetPassConfig.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GetElementPtrTypeIterator.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/MC/MCContext.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/LowLevelTypeImpl.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetIntrinsicInfo.h"
65 #include "llvm/Target/TargetMachine.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <iterator>
70 #include <string>
71 #include <utility>
72 #include <vector>
73 
74 #define DEBUG_TYPE "irtranslator"
75 
76 using namespace llvm;
77 
78 char IRTranslator::ID = 0;
79 
80 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
81                 false, false)
82 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
83 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
84                 false, false)
85 
86 static void reportTranslationError(MachineFunction &MF,
87                                    const TargetPassConfig &TPC,
88                                    OptimizationRemarkEmitter &ORE,
89                                    OptimizationRemarkMissed &R) {
90   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
91 
92   // Print the function name explicitly if we don't have a debug location (which
93   // makes the diagnostic less useful) or if we're going to emit a raw error.
94   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
95     R << (" (in function: " + MF.getName() + ")").str();
96 
97   if (TPC.isGlobalISelAbortEnabled())
98     report_fatal_error(R.getMsg());
99   else
100     ORE.emit(R);
101 }
102 
103 IRTranslator::IRTranslator() : MachineFunctionPass(ID) {
104   initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
105 }
106 
107 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
108   AU.addRequired<StackProtector>();
109   AU.addRequired<TargetPassConfig>();
110   getSelectionDAGFallbackAnalysisUsage(AU);
111   MachineFunctionPass::getAnalysisUsage(AU);
112 }
113 
114 static void computeValueLLTs(const DataLayout &DL, Type &Ty,
115                              SmallVectorImpl<LLT> &ValueTys,
116                              SmallVectorImpl<uint64_t> *Offsets = nullptr,
117                              uint64_t StartingOffset = 0) {
118   // Given a struct type, recursively traverse the elements.
119   if (StructType *STy = dyn_cast<StructType>(&Ty)) {
120     const StructLayout *SL = DL.getStructLayout(STy);
121     for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
122       computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
123                        StartingOffset + SL->getElementOffset(I));
124     return;
125   }
126   // Given an array type, recursively traverse the elements.
127   if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
128     Type *EltTy = ATy->getElementType();
129     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
130     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
131       computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
132                        StartingOffset + i * EltSize);
133     return;
134   }
135   // Interpret void as zero return values.
136   if (Ty.isVoidTy())
137     return;
138   // Base case: we can get an LLT for this LLVM IR type.
139   ValueTys.push_back(getLLTForType(Ty, DL));
140   if (Offsets != nullptr)
141     Offsets->push_back(StartingOffset * 8);
142 }
143 
144 IRTranslator::ValueToVRegInfo::VRegListT &
145 IRTranslator::allocateVRegs(const Value &Val) {
146   assert(!VMap.contains(Val) && "Value already allocated in VMap");
147   auto *Regs = VMap.getVRegs(Val);
148   auto *Offsets = VMap.getOffsets(Val);
149   SmallVector<LLT, 4> SplitTys;
150   computeValueLLTs(*DL, *Val.getType(), SplitTys,
151                    Offsets->empty() ? Offsets : nullptr);
152   for (unsigned i = 0; i < SplitTys.size(); ++i)
153     Regs->push_back(0);
154   return *Regs;
155 }
156 
157 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) {
158   auto VRegsIt = VMap.findVRegs(Val);
159   if (VRegsIt != VMap.vregs_end())
160     return *VRegsIt->second;
161 
162   if (Val.getType()->isVoidTy())
163     return *VMap.getVRegs(Val);
164 
165   // Create entry for this type.
166   auto *VRegs = VMap.getVRegs(Val);
167   auto *Offsets = VMap.getOffsets(Val);
168 
169   assert(Val.getType()->isSized() &&
170          "Don't know how to create an empty vreg");
171 
172   SmallVector<LLT, 4> SplitTys;
173   computeValueLLTs(*DL, *Val.getType(), SplitTys,
174                    Offsets->empty() ? Offsets : nullptr);
175 
176   if (!isa<Constant>(Val)) {
177     for (auto Ty : SplitTys)
178       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
179     return *VRegs;
180   }
181 
182   if (Val.getType()->isAggregateType()) {
183     // UndefValue, ConstantAggregateZero
184     auto &C = cast<Constant>(Val);
185     unsigned Idx = 0;
186     while (auto Elt = C.getAggregateElement(Idx++)) {
187       auto EltRegs = getOrCreateVRegs(*Elt);
188       std::copy(EltRegs.begin(), EltRegs.end(), std::back_inserter(*VRegs));
189     }
190   } else {
191     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
192     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
193     bool Success = translate(cast<Constant>(Val), VRegs->front());
194     if (!Success) {
195       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
196                                  MF->getFunction().getSubprogram(),
197                                  &MF->getFunction().getEntryBlock());
198       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
199       reportTranslationError(*MF, *TPC, *ORE, R);
200       return *VRegs;
201     }
202   }
203 
204   return *VRegs;
205 }
206 
207 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
208   if (FrameIndices.find(&AI) != FrameIndices.end())
209     return FrameIndices[&AI];
210 
211   unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType());
212   unsigned Size =
213       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
214 
215   // Always allocate at least one byte.
216   Size = std::max(Size, 1u);
217 
218   unsigned Alignment = AI.getAlignment();
219   if (!Alignment)
220     Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
221 
222   int &FI = FrameIndices[&AI];
223   FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
224   return FI;
225 }
226 
227 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
228   unsigned Alignment = 0;
229   Type *ValTy = nullptr;
230   if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
231     Alignment = SI->getAlignment();
232     ValTy = SI->getValueOperand()->getType();
233   } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
234     Alignment = LI->getAlignment();
235     ValTy = LI->getType();
236   } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
237     // TODO(PR27168): This instruction has no alignment attribute, but unlike
238     // the default alignment for load/store, the default here is to assume
239     // it has NATURAL alignment, not DataLayout-specified alignment.
240     const DataLayout &DL = AI->getModule()->getDataLayout();
241     Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
242     ValTy = AI->getCompareOperand()->getType();
243   } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
244     // TODO(PR27168): This instruction has no alignment attribute, but unlike
245     // the default alignment for load/store, the default here is to assume
246     // it has NATURAL alignment, not DataLayout-specified alignment.
247     const DataLayout &DL = AI->getModule()->getDataLayout();
248     Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType());
249     ValTy = AI->getType();
250   } else {
251     OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
252     R << "unable to translate memop: " << ore::NV("Opcode", &I);
253     reportTranslationError(*MF, *TPC, *ORE, R);
254     return 1;
255   }
256 
257   return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
258 }
259 
260 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
261   MachineBasicBlock *&MBB = BBToMBB[&BB];
262   assert(MBB && "BasicBlock was not encountered before");
263   return *MBB;
264 }
265 
266 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
267   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
268   MachinePreds[Edge].push_back(NewPred);
269 }
270 
271 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
272                                      MachineIRBuilder &MIRBuilder) {
273   // FIXME: handle signed/unsigned wrapping flags.
274 
275   // Get or create a virtual register for each value.
276   // Unless the value is a Constant => loadimm cst?
277   // or inline constant each time?
278   // Creation of a virtual register needs to have a size.
279   unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
280   unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
281   unsigned Res = getOrCreateVReg(U);
282   auto FBinOp = MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1);
283   if (isa<Instruction>(U)) {
284     MachineInstr *FBinOpMI = FBinOp.getInstr();
285     const Instruction &I = cast<Instruction>(U);
286     FBinOpMI->copyIRFlags(I);
287   }
288   return true;
289 }
290 
291 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
292   // -0.0 - X --> G_FNEG
293   if (isa<Constant>(U.getOperand(0)) &&
294       U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
295     MIRBuilder.buildInstr(TargetOpcode::G_FNEG)
296         .addDef(getOrCreateVReg(U))
297         .addUse(getOrCreateVReg(*U.getOperand(1)));
298     return true;
299   }
300   return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
301 }
302 
303 bool IRTranslator::translateCompare(const User &U,
304                                     MachineIRBuilder &MIRBuilder) {
305   const CmpInst *CI = dyn_cast<CmpInst>(&U);
306   unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
307   unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
308   unsigned Res = getOrCreateVReg(U);
309   CmpInst::Predicate Pred =
310       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
311                                     cast<ConstantExpr>(U).getPredicate());
312   if (CmpInst::isIntPredicate(Pred))
313     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
314   else if (Pred == CmpInst::FCMP_FALSE)
315     MIRBuilder.buildCopy(
316         Res, getOrCreateVReg(*Constant::getNullValue(CI->getType())));
317   else if (Pred == CmpInst::FCMP_TRUE)
318     MIRBuilder.buildCopy(
319         Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType())));
320   else
321     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1);
322 
323   return true;
324 }
325 
326 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
327   const ReturnInst &RI = cast<ReturnInst>(U);
328   const Value *Ret = RI.getReturnValue();
329   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
330     Ret = nullptr;
331 
332   ArrayRef<unsigned> VRegs;
333   if (Ret)
334     VRegs = getOrCreateVRegs(*Ret);
335 
336   // The target may mess up with the insertion point, but
337   // this is not important as a return is the last instruction
338   // of the block anyway.
339 
340   return CLI->lowerReturn(MIRBuilder, Ret, VRegs);
341 }
342 
343 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
344   const BranchInst &BrInst = cast<BranchInst>(U);
345   unsigned Succ = 0;
346   if (!BrInst.isUnconditional()) {
347     // We want a G_BRCOND to the true BB followed by an unconditional branch.
348     unsigned Tst = getOrCreateVReg(*BrInst.getCondition());
349     const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
350     MachineBasicBlock &TrueBB = getMBB(TrueTgt);
351     MIRBuilder.buildBrCond(Tst, TrueBB);
352   }
353 
354   const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
355   MachineBasicBlock &TgtBB = getMBB(BrTgt);
356   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
357 
358   // If the unconditional target is the layout successor, fallthrough.
359   if (!CurBB.isLayoutSuccessor(&TgtBB))
360     MIRBuilder.buildBr(TgtBB);
361 
362   // Link successors.
363   for (const BasicBlock *Succ : successors(&BrInst))
364     CurBB.addSuccessor(&getMBB(*Succ));
365   return true;
366 }
367 
368 bool IRTranslator::translateSwitch(const User &U,
369                                    MachineIRBuilder &MIRBuilder) {
370   // For now, just translate as a chain of conditional branches.
371   // FIXME: could we share most of the logic/code in
372   // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel?
373   // At first sight, it seems most of the logic in there is independent of
374   // SelectionDAG-specifics and a lot of work went in to optimize switch
375   // lowering in there.
376 
377   const SwitchInst &SwInst = cast<SwitchInst>(U);
378   const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition());
379   const BasicBlock *OrigBB = SwInst.getParent();
380 
381   LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL);
382   for (auto &CaseIt : SwInst.cases()) {
383     const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue());
384     const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1);
385     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue);
386     MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
387     const BasicBlock *TrueBB = CaseIt.getCaseSuccessor();
388     MachineBasicBlock &TrueMBB = getMBB(*TrueBB);
389 
390     MIRBuilder.buildBrCond(Tst, TrueMBB);
391     CurMBB.addSuccessor(&TrueMBB);
392     addMachineCFGPred({OrigBB, TrueBB}, &CurMBB);
393 
394     MachineBasicBlock *FalseMBB =
395         MF->CreateMachineBasicBlock(SwInst.getParent());
396     // Insert the comparison blocks one after the other.
397     MF->insert(std::next(CurMBB.getIterator()), FalseMBB);
398     MIRBuilder.buildBr(*FalseMBB);
399     CurMBB.addSuccessor(FalseMBB);
400 
401     MIRBuilder.setMBB(*FalseMBB);
402   }
403   // handle default case
404   const BasicBlock *DefaultBB = SwInst.getDefaultDest();
405   MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB);
406   MIRBuilder.buildBr(DefaultMBB);
407   MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
408   CurMBB.addSuccessor(&DefaultMBB);
409   addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB);
410 
411   return true;
412 }
413 
414 bool IRTranslator::translateIndirectBr(const User &U,
415                                        MachineIRBuilder &MIRBuilder) {
416   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
417 
418   const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress());
419   MIRBuilder.buildBrIndirect(Tgt);
420 
421   // Link successors.
422   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
423   for (const BasicBlock *Succ : successors(&BrInst))
424     CurBB.addSuccessor(&getMBB(*Succ));
425 
426   return true;
427 }
428 
429 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
430   const LoadInst &LI = cast<LoadInst>(U);
431 
432   auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
433                                : MachineMemOperand::MONone;
434   Flags |= MachineMemOperand::MOLoad;
435 
436   if (DL->getTypeStoreSize(LI.getType()) == 0)
437     return true;
438 
439   ArrayRef<unsigned> Regs = getOrCreateVRegs(LI);
440   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
441   unsigned Base = getOrCreateVReg(*LI.getPointerOperand());
442 
443   for (unsigned i = 0; i < Regs.size(); ++i) {
444     unsigned Addr = 0;
445     MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8);
446 
447     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
448     unsigned BaseAlign = getMemOpAlignment(LI);
449     auto MMO = MF->getMachineMemOperand(
450         Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8,
451         MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
452         LI.getSyncScopeID(), LI.getOrdering());
453     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
454   }
455 
456   return true;
457 }
458 
459 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
460   const StoreInst &SI = cast<StoreInst>(U);
461   auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
462                                : MachineMemOperand::MONone;
463   Flags |= MachineMemOperand::MOStore;
464 
465   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
466     return true;
467 
468   ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand());
469   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
470   unsigned Base = getOrCreateVReg(*SI.getPointerOperand());
471 
472   for (unsigned i = 0; i < Vals.size(); ++i) {
473     unsigned Addr = 0;
474     MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8);
475 
476     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
477     unsigned BaseAlign = getMemOpAlignment(SI);
478     auto MMO = MF->getMachineMemOperand(
479         Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8,
480         MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
481         SI.getSyncScopeID(), SI.getOrdering());
482     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
483   }
484   return true;
485 }
486 
487 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
488   const Value *Src = U.getOperand(0);
489   Type *Int32Ty = Type::getInt32Ty(U.getContext());
490 
491   // getIndexedOffsetInType is designed for GEPs, so the first index is the
492   // usual array element rather than looking into the actual aggregate.
493   SmallVector<Value *, 1> Indices;
494   Indices.push_back(ConstantInt::get(Int32Ty, 0));
495 
496   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
497     for (auto Idx : EVI->indices())
498       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
499   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
500     for (auto Idx : IVI->indices())
501       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
502   } else {
503     for (unsigned i = 1; i < U.getNumOperands(); ++i)
504       Indices.push_back(U.getOperand(i));
505   }
506 
507   return 8 * static_cast<uint64_t>(
508                  DL.getIndexedOffsetInType(Src->getType(), Indices));
509 }
510 
511 bool IRTranslator::translateExtractValue(const User &U,
512                                          MachineIRBuilder &MIRBuilder) {
513   const Value *Src = U.getOperand(0);
514   uint64_t Offset = getOffsetFromIndices(U, *DL);
515   ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src);
516   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
517   unsigned Idx = std::lower_bound(Offsets.begin(), Offsets.end(), Offset) -
518                  Offsets.begin();
519   auto &DstRegs = allocateVRegs(U);
520 
521   for (unsigned i = 0; i < DstRegs.size(); ++i)
522     DstRegs[i] = SrcRegs[Idx++];
523 
524   return true;
525 }
526 
527 bool IRTranslator::translateInsertValue(const User &U,
528                                         MachineIRBuilder &MIRBuilder) {
529   const Value *Src = U.getOperand(0);
530   uint64_t Offset = getOffsetFromIndices(U, *DL);
531   auto &DstRegs = allocateVRegs(U);
532   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
533   ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src);
534   ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
535   auto InsertedIt = InsertedRegs.begin();
536 
537   for (unsigned i = 0; i < DstRegs.size(); ++i) {
538     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
539       DstRegs[i] = *InsertedIt++;
540     else
541       DstRegs[i] = SrcRegs[i];
542   }
543 
544   return true;
545 }
546 
547 bool IRTranslator::translateSelect(const User &U,
548                                    MachineIRBuilder &MIRBuilder) {
549   unsigned Tst = getOrCreateVReg(*U.getOperand(0));
550   ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U);
551   ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
552   ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
553 
554   for (unsigned i = 0; i < ResRegs.size(); ++i)
555     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i]);
556 
557   return true;
558 }
559 
560 bool IRTranslator::translateBitCast(const User &U,
561                                     MachineIRBuilder &MIRBuilder) {
562   // If we're bitcasting to the source type, we can reuse the source vreg.
563   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
564       getLLTForType(*U.getType(), *DL)) {
565     unsigned SrcReg = getOrCreateVReg(*U.getOperand(0));
566     auto &Regs = *VMap.getVRegs(U);
567     // If we already assigned a vreg for this bitcast, we can't change that.
568     // Emit a copy to satisfy the users we already emitted.
569     if (!Regs.empty())
570       MIRBuilder.buildCopy(Regs[0], SrcReg);
571     else {
572       Regs.push_back(SrcReg);
573       VMap.getOffsets(U)->push_back(0);
574     }
575     return true;
576   }
577   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
578 }
579 
580 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
581                                  MachineIRBuilder &MIRBuilder) {
582   unsigned Op = getOrCreateVReg(*U.getOperand(0));
583   unsigned Res = getOrCreateVReg(U);
584   MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op);
585   return true;
586 }
587 
588 bool IRTranslator::translateGetElementPtr(const User &U,
589                                           MachineIRBuilder &MIRBuilder) {
590   // FIXME: support vector GEPs.
591   if (U.getType()->isVectorTy())
592     return false;
593 
594   Value &Op0 = *U.getOperand(0);
595   unsigned BaseReg = getOrCreateVReg(Op0);
596   Type *PtrIRTy = Op0.getType();
597   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
598   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
599   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
600 
601   int64_t Offset = 0;
602   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
603        GTI != E; ++GTI) {
604     const Value *Idx = GTI.getOperand();
605     if (StructType *StTy = GTI.getStructTypeOrNull()) {
606       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
607       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
608       continue;
609     } else {
610       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
611 
612       // If this is a scalar constant or a splat vector of constants,
613       // handle it quickly.
614       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
615         Offset += ElementSize * CI->getSExtValue();
616         continue;
617       }
618 
619       if (Offset != 0) {
620         unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
621         unsigned OffsetReg =
622             getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
623         MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg);
624 
625         BaseReg = NewBaseReg;
626         Offset = 0;
627       }
628 
629       unsigned IdxReg = getOrCreateVReg(*Idx);
630       if (MRI->getType(IdxReg) != OffsetTy) {
631         unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy);
632         MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg);
633         IdxReg = NewIdxReg;
634       }
635 
636       // N = N + Idx * ElementSize;
637       // Avoid doing it for ElementSize of 1.
638       unsigned GepOffsetReg;
639       if (ElementSize != 1) {
640         unsigned ElementSizeReg =
641             getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize));
642 
643         GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy);
644         MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg);
645       } else
646         GepOffsetReg = IdxReg;
647 
648       unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
649       MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg);
650       BaseReg = NewBaseReg;
651     }
652   }
653 
654   if (Offset != 0) {
655     unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
656     MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg);
657     return true;
658   }
659 
660   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
661   return true;
662 }
663 
664 bool IRTranslator::translateMemfunc(const CallInst &CI,
665                                     MachineIRBuilder &MIRBuilder,
666                                     unsigned ID) {
667   LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL);
668   Type *DstTy = CI.getArgOperand(0)->getType();
669   if (cast<PointerType>(DstTy)->getAddressSpace() != 0 ||
670       SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0))
671     return false;
672 
673   SmallVector<CallLowering::ArgInfo, 8> Args;
674   for (int i = 0; i < 3; ++i) {
675     const auto &Arg = CI.getArgOperand(i);
676     Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType());
677   }
678 
679   const char *Callee;
680   switch (ID) {
681   case Intrinsic::memmove:
682   case Intrinsic::memcpy: {
683     Type *SrcTy = CI.getArgOperand(1)->getType();
684     if(cast<PointerType>(SrcTy)->getAddressSpace() != 0)
685       return false;
686     Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove";
687     break;
688   }
689   case Intrinsic::memset:
690     Callee = "memset";
691     break;
692   default:
693     return false;
694   }
695 
696   return CLI->lowerCall(MIRBuilder, CI.getCallingConv(),
697                         MachineOperand::CreateES(Callee),
698                         CallLowering::ArgInfo(0, CI.getType()), Args);
699 }
700 
701 void IRTranslator::getStackGuard(unsigned DstReg,
702                                  MachineIRBuilder &MIRBuilder) {
703   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
704   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
705   auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
706   MIB.addDef(DstReg);
707 
708   auto &TLI = *MF->getSubtarget().getTargetLowering();
709   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
710   if (!Global)
711     return;
712 
713   MachinePointerInfo MPInfo(Global);
714   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
715                MachineMemOperand::MODereferenceable;
716   MachineMemOperand *MemRef =
717       MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
718                                DL->getPointerABIAlignment(0));
719   MIB.setMemRefs({MemRef});
720 }
721 
722 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
723                                               MachineIRBuilder &MIRBuilder) {
724   ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI);
725   MIRBuilder.buildInstr(Op)
726       .addDef(ResRegs[0])
727       .addDef(ResRegs[1])
728       .addUse(getOrCreateVReg(*CI.getOperand(0)))
729       .addUse(getOrCreateVReg(*CI.getOperand(1)));
730 
731   return true;
732 }
733 
734 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
735                                            MachineIRBuilder &MIRBuilder) {
736   switch (ID) {
737   default:
738     break;
739   case Intrinsic::lifetime_start:
740   case Intrinsic::lifetime_end:
741     // Stack coloring is not enabled in O0 (which we care about now) so we can
742     // drop these. Make sure someone notices when we start compiling at higher
743     // opts though.
744     if (MF->getTarget().getOptLevel() != CodeGenOpt::None)
745       return false;
746     return true;
747   case Intrinsic::dbg_declare: {
748     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
749     assert(DI.getVariable() && "Missing variable");
750 
751     const Value *Address = DI.getAddress();
752     if (!Address || isa<UndefValue>(Address)) {
753       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
754       return true;
755     }
756 
757     assert(DI.getVariable()->isValidLocationForIntrinsic(
758                MIRBuilder.getDebugLoc()) &&
759            "Expected inlined-at fields to agree");
760     auto AI = dyn_cast<AllocaInst>(Address);
761     if (AI && AI->isStaticAlloca()) {
762       // Static allocas are tracked at the MF level, no need for DBG_VALUE
763       // instructions (in fact, they get ignored if they *do* exist).
764       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
765                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
766     } else {
767       // A dbg.declare describes the address of a source variable, so lower it
768       // into an indirect DBG_VALUE.
769       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
770                                        DI.getVariable(), DI.getExpression());
771     }
772     return true;
773   }
774   case Intrinsic::dbg_label: {
775     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
776     assert(DI.getLabel() && "Missing label");
777 
778     assert(DI.getLabel()->isValidLocationForIntrinsic(
779                MIRBuilder.getDebugLoc()) &&
780            "Expected inlined-at fields to agree");
781 
782     MIRBuilder.buildDbgLabel(DI.getLabel());
783     return true;
784   }
785   case Intrinsic::vaend:
786     // No target I know of cares about va_end. Certainly no in-tree target
787     // does. Simplest intrinsic ever!
788     return true;
789   case Intrinsic::vastart: {
790     auto &TLI = *MF->getSubtarget().getTargetLowering();
791     Value *Ptr = CI.getArgOperand(0);
792     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
793 
794     MIRBuilder.buildInstr(TargetOpcode::G_VASTART)
795         .addUse(getOrCreateVReg(*Ptr))
796         .addMemOperand(MF->getMachineMemOperand(
797             MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0));
798     return true;
799   }
800   case Intrinsic::dbg_value: {
801     // This form of DBG_VALUE is target-independent.
802     const DbgValueInst &DI = cast<DbgValueInst>(CI);
803     const Value *V = DI.getValue();
804     assert(DI.getVariable()->isValidLocationForIntrinsic(
805                MIRBuilder.getDebugLoc()) &&
806            "Expected inlined-at fields to agree");
807     if (!V) {
808       // Currently the optimizer can produce this; insert an undef to
809       // help debugging.  Probably the optimizer should not do this.
810       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
811     } else if (const auto *CI = dyn_cast<Constant>(V)) {
812       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
813     } else {
814       unsigned Reg = getOrCreateVReg(*V);
815       // FIXME: This does not handle register-indirect values at offset 0. The
816       // direct/indirect thing shouldn't really be handled by something as
817       // implicit as reg+noreg vs reg+imm in the first palce, but it seems
818       // pretty baked in right now.
819       MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
820     }
821     return true;
822   }
823   case Intrinsic::uadd_with_overflow:
824     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
825   case Intrinsic::sadd_with_overflow:
826     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
827   case Intrinsic::usub_with_overflow:
828     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
829   case Intrinsic::ssub_with_overflow:
830     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
831   case Intrinsic::umul_with_overflow:
832     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
833   case Intrinsic::smul_with_overflow:
834     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
835   case Intrinsic::pow:
836     MIRBuilder.buildInstr(TargetOpcode::G_FPOW)
837         .addDef(getOrCreateVReg(CI))
838         .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
839         .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
840     return true;
841   case Intrinsic::exp:
842     MIRBuilder.buildInstr(TargetOpcode::G_FEXP)
843         .addDef(getOrCreateVReg(CI))
844         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
845     return true;
846   case Intrinsic::exp2:
847     MIRBuilder.buildInstr(TargetOpcode::G_FEXP2)
848         .addDef(getOrCreateVReg(CI))
849         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
850     return true;
851   case Intrinsic::log:
852     MIRBuilder.buildInstr(TargetOpcode::G_FLOG)
853         .addDef(getOrCreateVReg(CI))
854         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
855     return true;
856   case Intrinsic::log2:
857     MIRBuilder.buildInstr(TargetOpcode::G_FLOG2)
858         .addDef(getOrCreateVReg(CI))
859         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
860     return true;
861   case Intrinsic::fabs:
862     MIRBuilder.buildInstr(TargetOpcode::G_FABS)
863         .addDef(getOrCreateVReg(CI))
864         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
865     return true;
866   case Intrinsic::trunc:
867     MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_TRUNC)
868         .addDef(getOrCreateVReg(CI))
869         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
870     return true;
871   case Intrinsic::round:
872     MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_ROUND)
873         .addDef(getOrCreateVReg(CI))
874         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
875     return true;
876   case Intrinsic::fma:
877     MIRBuilder.buildInstr(TargetOpcode::G_FMA)
878         .addDef(getOrCreateVReg(CI))
879         .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
880         .addUse(getOrCreateVReg(*CI.getArgOperand(1)))
881         .addUse(getOrCreateVReg(*CI.getArgOperand(2)));
882     return true;
883   case Intrinsic::fmuladd: {
884     const TargetMachine &TM = MF->getTarget();
885     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
886     unsigned Dst = getOrCreateVReg(CI);
887     unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0));
888     unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1));
889     unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2));
890     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
891         TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) {
892       // TODO: Revisit this to see if we should move this part of the
893       // lowering to the combiner.
894       MIRBuilder.buildInstr(TargetOpcode::G_FMA, Dst, Op0, Op1, Op2);
895     } else {
896       LLT Ty = getLLTForType(*CI.getType(), *DL);
897       auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, Ty, Op0, Op1);
898       MIRBuilder.buildInstr(TargetOpcode::G_FADD, Dst, FMul, Op2);
899     }
900     return true;
901   }
902   case Intrinsic::memcpy:
903   case Intrinsic::memmove:
904   case Intrinsic::memset:
905     return translateMemfunc(CI, MIRBuilder, ID);
906   case Intrinsic::eh_typeid_for: {
907     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
908     unsigned Reg = getOrCreateVReg(CI);
909     unsigned TypeID = MF->getTypeIDFor(GV);
910     MIRBuilder.buildConstant(Reg, TypeID);
911     return true;
912   }
913   case Intrinsic::objectsize: {
914     // If we don't know by now, we're never going to know.
915     const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1));
916 
917     MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0);
918     return true;
919   }
920   case Intrinsic::stackguard:
921     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
922     return true;
923   case Intrinsic::stackprotector: {
924     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
925     unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy);
926     getStackGuard(GuardVal, MIRBuilder);
927 
928     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
929     MIRBuilder.buildStore(
930         GuardVal, getOrCreateVReg(*Slot),
931         *MF->getMachineMemOperand(
932             MachinePointerInfo::getFixedStack(*MF,
933                                               getOrCreateFrameIndex(*Slot)),
934             MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
935             PtrTy.getSizeInBits() / 8, 8));
936     return true;
937   }
938   case Intrinsic::cttz:
939   case Intrinsic::ctlz: {
940     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
941     bool isTrailing = ID == Intrinsic::cttz;
942     unsigned Opcode = isTrailing
943                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
944                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
945                           : Cst->isZero() ? TargetOpcode::G_CTLZ
946                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
947     MIRBuilder.buildInstr(Opcode)
948         .addDef(getOrCreateVReg(CI))
949         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
950     return true;
951   }
952   case Intrinsic::ctpop: {
953     MIRBuilder.buildInstr(TargetOpcode::G_CTPOP)
954         .addDef(getOrCreateVReg(CI))
955         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
956     return true;
957   }
958   }
959   return false;
960 }
961 
962 bool IRTranslator::translateInlineAsm(const CallInst &CI,
963                                       MachineIRBuilder &MIRBuilder) {
964   const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
965   if (!IA.getConstraintString().empty())
966     return false;
967 
968   unsigned ExtraInfo = 0;
969   if (IA.hasSideEffects())
970     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
971   if (IA.getDialect() == InlineAsm::AD_Intel)
972     ExtraInfo |= InlineAsm::Extra_AsmDialect;
973 
974   MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
975     .addExternalSymbol(IA.getAsmString().c_str())
976     .addImm(ExtraInfo);
977 
978   return true;
979 }
980 
981 unsigned IRTranslator::packRegs(const Value &V,
982                                   MachineIRBuilder &MIRBuilder) {
983   ArrayRef<unsigned> Regs = getOrCreateVRegs(V);
984   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V);
985   LLT BigTy = getLLTForType(*V.getType(), *DL);
986 
987   if (Regs.size() == 1)
988     return Regs[0];
989 
990   unsigned Dst = MRI->createGenericVirtualRegister(BigTy);
991   MIRBuilder.buildUndef(Dst);
992   for (unsigned i = 0; i < Regs.size(); ++i) {
993     unsigned NewDst = MRI->createGenericVirtualRegister(BigTy);
994     MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]);
995     Dst = NewDst;
996   }
997   return Dst;
998 }
999 
1000 void IRTranslator::unpackRegs(const Value &V, unsigned Src,
1001                                 MachineIRBuilder &MIRBuilder) {
1002   ArrayRef<unsigned> Regs = getOrCreateVRegs(V);
1003   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V);
1004 
1005   for (unsigned i = 0; i < Regs.size(); ++i)
1006     MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]);
1007 }
1008 
1009 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
1010   const CallInst &CI = cast<CallInst>(U);
1011   auto TII = MF->getTarget().getIntrinsicInfo();
1012   const Function *F = CI.getCalledFunction();
1013 
1014   // FIXME: support Windows dllimport function calls.
1015   if (F && F->hasDLLImportStorageClass())
1016     return false;
1017 
1018   if (CI.isInlineAsm())
1019     return translateInlineAsm(CI, MIRBuilder);
1020 
1021   Intrinsic::ID ID = Intrinsic::not_intrinsic;
1022   if (F && F->isIntrinsic()) {
1023     ID = F->getIntrinsicID();
1024     if (TII && ID == Intrinsic::not_intrinsic)
1025       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
1026   }
1027 
1028   bool IsSplitType = valueIsSplit(CI);
1029   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) {
1030     unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister(
1031                                      getLLTForType(*CI.getType(), *DL))
1032                                : getOrCreateVReg(CI);
1033 
1034     SmallVector<unsigned, 8> Args;
1035     for (auto &Arg: CI.arg_operands())
1036       Args.push_back(packRegs(*Arg, MIRBuilder));
1037 
1038     MF->getFrameInfo().setHasCalls(true);
1039     bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() {
1040       return getOrCreateVReg(*CI.getCalledValue());
1041     });
1042 
1043     if (IsSplitType)
1044       unpackRegs(CI, Res, MIRBuilder);
1045     return Success;
1046   }
1047 
1048   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
1049 
1050   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
1051     return true;
1052 
1053   unsigned Res = 0;
1054   if (!CI.getType()->isVoidTy()) {
1055     if (IsSplitType)
1056       Res =
1057           MRI->createGenericVirtualRegister(getLLTForType(*CI.getType(), *DL));
1058     else
1059       Res = getOrCreateVReg(CI);
1060   }
1061   MachineInstrBuilder MIB =
1062       MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory());
1063 
1064   for (auto &Arg : CI.arg_operands()) {
1065     // Some intrinsics take metadata parameters. Reject them.
1066     if (isa<MetadataAsValue>(Arg))
1067       return false;
1068     MIB.addUse(packRegs(*Arg, MIRBuilder));
1069   }
1070 
1071   if (IsSplitType)
1072     unpackRegs(CI, Res, MIRBuilder);
1073 
1074   // Add a MachineMemOperand if it is a target mem intrinsic.
1075   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1076   TargetLowering::IntrinsicInfo Info;
1077   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
1078   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
1079     uint64_t Size = Info.memVT.getStoreSize();
1080     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
1081                                                Info.flags, Size, Info.align));
1082   }
1083 
1084   return true;
1085 }
1086 
1087 bool IRTranslator::translateInvoke(const User &U,
1088                                    MachineIRBuilder &MIRBuilder) {
1089   const InvokeInst &I = cast<InvokeInst>(U);
1090   MCContext &Context = MF->getContext();
1091 
1092   const BasicBlock *ReturnBB = I.getSuccessor(0);
1093   const BasicBlock *EHPadBB = I.getSuccessor(1);
1094 
1095   const Value *Callee = I.getCalledValue();
1096   const Function *Fn = dyn_cast<Function>(Callee);
1097   if (isa<InlineAsm>(Callee))
1098     return false;
1099 
1100   // FIXME: support invoking patchpoint and statepoint intrinsics.
1101   if (Fn && Fn->isIntrinsic())
1102     return false;
1103 
1104   // FIXME: support whatever these are.
1105   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
1106     return false;
1107 
1108   // FIXME: support Windows exception handling.
1109   if (!isa<LandingPadInst>(EHPadBB->front()))
1110     return false;
1111 
1112   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
1113   // the region covered by the try.
1114   MCSymbol *BeginSymbol = Context.createTempSymbol();
1115   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
1116 
1117   unsigned Res =
1118         MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL));
1119   SmallVector<unsigned, 8> Args;
1120   for (auto &Arg: I.arg_operands())
1121     Args.push_back(packRegs(*Arg, MIRBuilder));
1122 
1123   if (!CLI->lowerCall(MIRBuilder, &I, Res, Args,
1124                       [&]() { return getOrCreateVReg(*I.getCalledValue()); }))
1125     return false;
1126 
1127   unpackRegs(I, Res, MIRBuilder);
1128 
1129   MCSymbol *EndSymbol = Context.createTempSymbol();
1130   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
1131 
1132   // FIXME: track probabilities.
1133   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
1134                     &ReturnMBB = getMBB(*ReturnBB);
1135   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
1136   MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
1137   MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
1138   MIRBuilder.buildBr(ReturnMBB);
1139 
1140   return true;
1141 }
1142 
1143 bool IRTranslator::translateLandingPad(const User &U,
1144                                        MachineIRBuilder &MIRBuilder) {
1145   const LandingPadInst &LP = cast<LandingPadInst>(U);
1146 
1147   MachineBasicBlock &MBB = MIRBuilder.getMBB();
1148   addLandingPadInfo(LP, MBB);
1149 
1150   MBB.setIsEHPad();
1151 
1152   // If there aren't registers to copy the values into (e.g., during SjLj
1153   // exceptions), then don't bother.
1154   auto &TLI = *MF->getSubtarget().getTargetLowering();
1155   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
1156   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
1157       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
1158     return true;
1159 
1160   // If landingpad's return type is token type, we don't create DAG nodes
1161   // for its exception pointer and selector value. The extraction of exception
1162   // pointer or selector value from token type landingpads is not currently
1163   // supported.
1164   if (LP.getType()->isTokenTy())
1165     return true;
1166 
1167   // Add a label to mark the beginning of the landing pad.  Deletion of the
1168   // landing pad can thus be detected via the MachineModuleInfo.
1169   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
1170     .addSym(MF->addLandingPad(&MBB));
1171 
1172   LLT Ty = getLLTForType(*LP.getType(), *DL);
1173   unsigned Undef = MRI->createGenericVirtualRegister(Ty);
1174   MIRBuilder.buildUndef(Undef);
1175 
1176   SmallVector<LLT, 2> Tys;
1177   for (Type *Ty : cast<StructType>(LP.getType())->elements())
1178     Tys.push_back(getLLTForType(*Ty, *DL));
1179   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
1180 
1181   // Mark exception register as live in.
1182   unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
1183   if (!ExceptionReg)
1184     return false;
1185 
1186   MBB.addLiveIn(ExceptionReg);
1187   ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP);
1188   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
1189 
1190   unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
1191   if (!SelectorReg)
1192     return false;
1193 
1194   MBB.addLiveIn(SelectorReg);
1195   unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
1196   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
1197   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
1198 
1199   return true;
1200 }
1201 
1202 bool IRTranslator::translateAlloca(const User &U,
1203                                    MachineIRBuilder &MIRBuilder) {
1204   auto &AI = cast<AllocaInst>(U);
1205 
1206   if (AI.isSwiftError())
1207     return false;
1208 
1209   if (AI.isStaticAlloca()) {
1210     unsigned Res = getOrCreateVReg(AI);
1211     int FI = getOrCreateFrameIndex(AI);
1212     MIRBuilder.buildFrameIndex(Res, FI);
1213     return true;
1214   }
1215 
1216   // FIXME: support stack probing for Windows.
1217   if (MF->getTarget().getTargetTriple().isOSWindows())
1218     return false;
1219 
1220   // Now we're in the harder dynamic case.
1221   Type *Ty = AI.getAllocatedType();
1222   unsigned Align =
1223       std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());
1224 
1225   unsigned NumElts = getOrCreateVReg(*AI.getArraySize());
1226 
1227   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
1228   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
1229   if (MRI->getType(NumElts) != IntPtrTy) {
1230     unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
1231     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
1232     NumElts = ExtElts;
1233   }
1234 
1235   unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
1236   unsigned TySize =
1237       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty)));
1238   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
1239 
1240   LLT PtrTy = getLLTForType(*AI.getType(), *DL);
1241   auto &TLI = *MF->getSubtarget().getTargetLowering();
1242   unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1243 
1244   unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy);
1245   MIRBuilder.buildCopy(SPTmp, SPReg);
1246 
1247   unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy);
1248   MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize);
1249 
1250   // Handle alignment. We have to realign if the allocation granule was smaller
1251   // than stack alignment, or the specific alloca requires more than stack
1252   // alignment.
1253   unsigned StackAlign =
1254       MF->getSubtarget().getFrameLowering()->getStackAlignment();
1255   Align = std::max(Align, StackAlign);
1256   if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) {
1257     // Round the size of the allocation up to the stack alignment size
1258     // by add SA-1 to the size. This doesn't overflow because we're computing
1259     // an address inside an alloca.
1260     unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy);
1261     MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align));
1262     AllocTmp = AlignedAlloc;
1263   }
1264 
1265   MIRBuilder.buildCopy(SPReg, AllocTmp);
1266   MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp);
1267 
1268   MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
1269   assert(MF->getFrameInfo().hasVarSizedObjects());
1270   return true;
1271 }
1272 
1273 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
1274   // FIXME: We may need more info about the type. Because of how LLT works,
1275   // we're completely discarding the i64/double distinction here (amongst
1276   // others). Fortunately the ABIs I know of where that matters don't use va_arg
1277   // anyway but that's not guaranteed.
1278   MIRBuilder.buildInstr(TargetOpcode::G_VAARG)
1279     .addDef(getOrCreateVReg(U))
1280     .addUse(getOrCreateVReg(*U.getOperand(0)))
1281     .addImm(DL->getABITypeAlignment(U.getType()));
1282   return true;
1283 }
1284 
1285 bool IRTranslator::translateInsertElement(const User &U,
1286                                           MachineIRBuilder &MIRBuilder) {
1287   // If it is a <1 x Ty> vector, use the scalar as it is
1288   // not a legal vector type in LLT.
1289   if (U.getType()->getVectorNumElements() == 1) {
1290     unsigned Elt = getOrCreateVReg(*U.getOperand(1));
1291     auto &Regs = *VMap.getVRegs(U);
1292     if (Regs.empty()) {
1293       Regs.push_back(Elt);
1294       VMap.getOffsets(U)->push_back(0);
1295     } else {
1296       MIRBuilder.buildCopy(Regs[0], Elt);
1297     }
1298     return true;
1299   }
1300 
1301   unsigned Res = getOrCreateVReg(U);
1302   unsigned Val = getOrCreateVReg(*U.getOperand(0));
1303   unsigned Elt = getOrCreateVReg(*U.getOperand(1));
1304   unsigned Idx = getOrCreateVReg(*U.getOperand(2));
1305   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
1306   return true;
1307 }
1308 
1309 bool IRTranslator::translateExtractElement(const User &U,
1310                                            MachineIRBuilder &MIRBuilder) {
1311   // If it is a <1 x Ty> vector, use the scalar as it is
1312   // not a legal vector type in LLT.
1313   if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
1314     unsigned Elt = getOrCreateVReg(*U.getOperand(0));
1315     auto &Regs = *VMap.getVRegs(U);
1316     if (Regs.empty()) {
1317       Regs.push_back(Elt);
1318       VMap.getOffsets(U)->push_back(0);
1319     } else {
1320       MIRBuilder.buildCopy(Regs[0], Elt);
1321     }
1322     return true;
1323   }
1324   unsigned Res = getOrCreateVReg(U);
1325   unsigned Val = getOrCreateVReg(*U.getOperand(0));
1326   unsigned Idx = getOrCreateVReg(*U.getOperand(1));
1327   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
1328   return true;
1329 }
1330 
1331 bool IRTranslator::translateShuffleVector(const User &U,
1332                                           MachineIRBuilder &MIRBuilder) {
1333   MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR)
1334       .addDef(getOrCreateVReg(U))
1335       .addUse(getOrCreateVReg(*U.getOperand(0)))
1336       .addUse(getOrCreateVReg(*U.getOperand(1)))
1337       .addUse(getOrCreateVReg(*U.getOperand(2)));
1338   return true;
1339 }
1340 
1341 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
1342   const PHINode &PI = cast<PHINode>(U);
1343 
1344   SmallVector<MachineInstr *, 4> Insts;
1345   for (auto Reg : getOrCreateVRegs(PI)) {
1346     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, Reg);
1347     Insts.push_back(MIB.getInstr());
1348   }
1349 
1350   PendingPHIs.emplace_back(&PI, std::move(Insts));
1351   return true;
1352 }
1353 
1354 bool IRTranslator::translateAtomicCmpXchg(const User &U,
1355                                           MachineIRBuilder &MIRBuilder) {
1356   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
1357 
1358   if (I.isWeak())
1359     return false;
1360 
1361   auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
1362                               : MachineMemOperand::MONone;
1363   Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1364 
1365   Type *ResType = I.getType();
1366   Type *ValType = ResType->Type::getStructElementType(0);
1367 
1368   auto Res = getOrCreateVRegs(I);
1369   unsigned OldValRes = Res[0];
1370   unsigned SuccessRes = Res[1];
1371   unsigned Addr = getOrCreateVReg(*I.getPointerOperand());
1372   unsigned Cmp = getOrCreateVReg(*I.getCompareOperand());
1373   unsigned NewVal = getOrCreateVReg(*I.getNewValOperand());
1374 
1375   MIRBuilder.buildAtomicCmpXchgWithSuccess(
1376       OldValRes, SuccessRes, Addr, Cmp, NewVal,
1377       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
1378                                 Flags, DL->getTypeStoreSize(ValType),
1379                                 getMemOpAlignment(I), AAMDNodes(), nullptr,
1380                                 I.getSyncScopeID(), I.getSuccessOrdering(),
1381                                 I.getFailureOrdering()));
1382   return true;
1383 }
1384 
1385 bool IRTranslator::translateAtomicRMW(const User &U,
1386                                       MachineIRBuilder &MIRBuilder) {
1387   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
1388 
1389   auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
1390                               : MachineMemOperand::MONone;
1391   Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1392 
1393   Type *ResType = I.getType();
1394 
1395   unsigned Res = getOrCreateVReg(I);
1396   unsigned Addr = getOrCreateVReg(*I.getPointerOperand());
1397   unsigned Val = getOrCreateVReg(*I.getValOperand());
1398 
1399   unsigned Opcode = 0;
1400   switch (I.getOperation()) {
1401   default:
1402     llvm_unreachable("Unknown atomicrmw op");
1403     return false;
1404   case AtomicRMWInst::Xchg:
1405     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
1406     break;
1407   case AtomicRMWInst::Add:
1408     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
1409     break;
1410   case AtomicRMWInst::Sub:
1411     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
1412     break;
1413   case AtomicRMWInst::And:
1414     Opcode = TargetOpcode::G_ATOMICRMW_AND;
1415     break;
1416   case AtomicRMWInst::Nand:
1417     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
1418     break;
1419   case AtomicRMWInst::Or:
1420     Opcode = TargetOpcode::G_ATOMICRMW_OR;
1421     break;
1422   case AtomicRMWInst::Xor:
1423     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
1424     break;
1425   case AtomicRMWInst::Max:
1426     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
1427     break;
1428   case AtomicRMWInst::Min:
1429     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
1430     break;
1431   case AtomicRMWInst::UMax:
1432     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
1433     break;
1434   case AtomicRMWInst::UMin:
1435     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
1436     break;
1437   }
1438 
1439   MIRBuilder.buildAtomicRMW(
1440       Opcode, Res, Addr, Val,
1441       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
1442                                 Flags, DL->getTypeStoreSize(ResType),
1443                                 getMemOpAlignment(I), AAMDNodes(), nullptr,
1444                                 I.getSyncScopeID(), I.getOrdering()));
1445   return true;
1446 }
1447 
1448 void IRTranslator::finishPendingPhis() {
1449   for (auto &Phi : PendingPHIs) {
1450     const PHINode *PI = Phi.first;
1451     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
1452 
1453     // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator
1454     // won't create extra control flow here, otherwise we need to find the
1455     // dominating predecessor here (or perhaps force the weirder IRTranslators
1456     // to provide a simple boundary).
1457     SmallSet<const BasicBlock *, 4> HandledPreds;
1458 
1459     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
1460       auto IRPred = PI->getIncomingBlock(i);
1461       if (HandledPreds.count(IRPred))
1462         continue;
1463 
1464       HandledPreds.insert(IRPred);
1465       ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
1466       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
1467         assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) &&
1468                "incorrect CFG at MachineBasicBlock level");
1469         for (unsigned j = 0; j < ValRegs.size(); ++j) {
1470           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
1471           MIB.addUse(ValRegs[j]);
1472           MIB.addMBB(Pred);
1473         }
1474       }
1475     }
1476   }
1477 }
1478 
1479 bool IRTranslator::valueIsSplit(const Value &V,
1480                                 SmallVectorImpl<uint64_t> *Offsets) {
1481   SmallVector<LLT, 4> SplitTys;
1482   if (Offsets && !Offsets->empty())
1483     Offsets->clear();
1484   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
1485   return SplitTys.size() > 1;
1486 }
1487 
1488 bool IRTranslator::translate(const Instruction &Inst) {
1489   CurBuilder.setDebugLoc(Inst.getDebugLoc());
1490   switch(Inst.getOpcode()) {
1491 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1492     case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder);
1493 #include "llvm/IR/Instruction.def"
1494   default:
1495     return false;
1496   }
1497 }
1498 
1499 bool IRTranslator::translate(const Constant &C, unsigned Reg) {
1500   if (auto CI = dyn_cast<ConstantInt>(&C))
1501     EntryBuilder.buildConstant(Reg, *CI);
1502   else if (auto CF = dyn_cast<ConstantFP>(&C))
1503     EntryBuilder.buildFConstant(Reg, *CF);
1504   else if (isa<UndefValue>(C))
1505     EntryBuilder.buildUndef(Reg);
1506   else if (isa<ConstantPointerNull>(C)) {
1507     // As we are trying to build a constant val of 0 into a pointer,
1508     // insert a cast to make them correct with respect to types.
1509     unsigned NullSize = DL->getTypeSizeInBits(C.getType());
1510     auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize);
1511     auto *ZeroVal = ConstantInt::get(ZeroTy, 0);
1512     unsigned ZeroReg = getOrCreateVReg(*ZeroVal);
1513     EntryBuilder.buildCast(Reg, ZeroReg);
1514   } else if (auto GV = dyn_cast<GlobalValue>(&C))
1515     EntryBuilder.buildGlobalValue(Reg, GV);
1516   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
1517     if (!CAZ->getType()->isVectorTy())
1518       return false;
1519     // Return the scalar if it is a <1 x Ty> vector.
1520     if (CAZ->getNumElements() == 1)
1521       return translate(*CAZ->getElementValue(0u), Reg);
1522     std::vector<unsigned> Ops;
1523     for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
1524       Constant &Elt = *CAZ->getElementValue(i);
1525       Ops.push_back(getOrCreateVReg(Elt));
1526     }
1527     EntryBuilder.buildMerge(Reg, Ops);
1528   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
1529     // Return the scalar if it is a <1 x Ty> vector.
1530     if (CV->getNumElements() == 1)
1531       return translate(*CV->getElementAsConstant(0), Reg);
1532     std::vector<unsigned> Ops;
1533     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
1534       Constant &Elt = *CV->getElementAsConstant(i);
1535       Ops.push_back(getOrCreateVReg(Elt));
1536     }
1537     EntryBuilder.buildMerge(Reg, Ops);
1538   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
1539     switch(CE->getOpcode()) {
1540 #define HANDLE_INST(NUM, OPCODE, CLASS)                         \
1541       case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder);
1542 #include "llvm/IR/Instruction.def"
1543     default:
1544       return false;
1545     }
1546   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
1547     if (CV->getNumOperands() == 1)
1548       return translate(*CV->getOperand(0), Reg);
1549     SmallVector<unsigned, 4> Ops;
1550     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
1551       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
1552     }
1553     EntryBuilder.buildMerge(Reg, Ops);
1554   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
1555     EntryBuilder.buildBlockAddress(Reg, BA);
1556   } else
1557     return false;
1558 
1559   return true;
1560 }
1561 
1562 void IRTranslator::finalizeFunction() {
1563   // Release the memory used by the different maps we
1564   // needed during the translation.
1565   PendingPHIs.clear();
1566   VMap.reset();
1567   FrameIndices.clear();
1568   MachinePreds.clear();
1569   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
1570   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
1571   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
1572   EntryBuilder = MachineIRBuilder();
1573   CurBuilder = MachineIRBuilder();
1574 }
1575 
1576 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
1577   MF = &CurMF;
1578   const Function &F = MF->getFunction();
1579   if (F.empty())
1580     return false;
1581   CLI = MF->getSubtarget().getCallLowering();
1582   CurBuilder.setMF(*MF);
1583   EntryBuilder.setMF(*MF);
1584   MRI = &MF->getRegInfo();
1585   DL = &F.getParent()->getDataLayout();
1586   TPC = &getAnalysis<TargetPassConfig>();
1587   ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F);
1588 
1589   assert(PendingPHIs.empty() && "stale PHIs");
1590 
1591   if (!DL->isLittleEndian()) {
1592     // Currently we don't properly handle big endian code.
1593     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1594                                F.getSubprogram(), &F.getEntryBlock());
1595     R << "unable to translate in big endian mode";
1596     reportTranslationError(*MF, *TPC, *ORE, R);
1597   }
1598 
1599   // Release the per-function state when we return, whether we succeeded or not.
1600   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
1601 
1602   // Setup a separate basic-block for the arguments and constants
1603   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
1604   MF->push_back(EntryBB);
1605   EntryBuilder.setMBB(*EntryBB);
1606 
1607   // Create all blocks, in IR order, to preserve the layout.
1608   for (const BasicBlock &BB: F) {
1609     auto *&MBB = BBToMBB[&BB];
1610 
1611     MBB = MF->CreateMachineBasicBlock(&BB);
1612     MF->push_back(MBB);
1613 
1614     if (BB.hasAddressTaken())
1615       MBB->setHasAddressTaken();
1616   }
1617 
1618   // Make our arguments/constants entry block fallthrough to the IR entry block.
1619   EntryBB->addSuccessor(&getMBB(F.front()));
1620 
1621   // Lower the actual args into this basic block.
1622   SmallVector<unsigned, 8> VRegArgs;
1623   for (const Argument &Arg: F.args()) {
1624     if (DL->getTypeStoreSize(Arg.getType()) == 0)
1625       continue; // Don't handle zero sized types.
1626     VRegArgs.push_back(
1627         MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL)));
1628   }
1629 
1630   // We don't currently support translating swifterror or swiftself functions.
1631   for (auto &Arg : F.args()) {
1632     if (Arg.hasSwiftErrorAttr() || Arg.hasSwiftSelfAttr()) {
1633       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1634                                  F.getSubprogram(), &F.getEntryBlock());
1635       R << "unable to lower arguments due to swifterror/swiftself: "
1636         << ore::NV("Prototype", F.getType());
1637       reportTranslationError(*MF, *TPC, *ORE, R);
1638       return false;
1639     }
1640   }
1641 
1642   if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) {
1643     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1644                                F.getSubprogram(), &F.getEntryBlock());
1645     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
1646     reportTranslationError(*MF, *TPC, *ORE, R);
1647     return false;
1648   }
1649 
1650   auto ArgIt = F.arg_begin();
1651   for (auto &VArg : VRegArgs) {
1652     // If the argument is an unsplit scalar then don't use unpackRegs to avoid
1653     // creating redundant copies.
1654     if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) {
1655       auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt));
1656       assert(VRegs.empty() && "VRegs already populated?");
1657       VRegs.push_back(VArg);
1658     } else {
1659       unpackRegs(*ArgIt, VArg, EntryBuilder);
1660     }
1661     ArgIt++;
1662   }
1663 
1664   // Need to visit defs before uses when translating instructions.
1665   ReversePostOrderTraversal<const Function *> RPOT(&F);
1666   for (const BasicBlock *BB : RPOT) {
1667     MachineBasicBlock &MBB = getMBB(*BB);
1668     // Set the insertion point of all the following translations to
1669     // the end of this basic block.
1670     CurBuilder.setMBB(MBB);
1671 
1672     for (const Instruction &Inst : *BB) {
1673       if (translate(Inst))
1674         continue;
1675 
1676       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1677                                  Inst.getDebugLoc(), BB);
1678       R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
1679 
1680       if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
1681         std::string InstStrStorage;
1682         raw_string_ostream InstStr(InstStrStorage);
1683         InstStr << Inst;
1684 
1685         R << ": '" << InstStr.str() << "'";
1686       }
1687 
1688       reportTranslationError(*MF, *TPC, *ORE, R);
1689       return false;
1690     }
1691   }
1692 
1693   finishPendingPhis();
1694 
1695   // Merge the argument lowering and constants block with its single
1696   // successor, the LLVM-IR entry block.  We want the basic block to
1697   // be maximal.
1698   assert(EntryBB->succ_size() == 1 &&
1699          "Custom BB used for lowering should have only one successor");
1700   // Get the successor of the current entry block.
1701   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
1702   assert(NewEntryBB.pred_size() == 1 &&
1703          "LLVM-IR entry block has a predecessor!?");
1704   // Move all the instruction from the current entry block to the
1705   // new entry block.
1706   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
1707                     EntryBB->end());
1708 
1709   // Update the live-in information for the new entry block.
1710   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
1711     NewEntryBB.addLiveIn(LiveIn);
1712   NewEntryBB.sortUniqueLiveIns();
1713 
1714   // Get rid of the now empty basic block.
1715   EntryBB->removeSuccessor(&NewEntryBB);
1716   MF->remove(EntryBB);
1717   MF->DeleteMachineBasicBlock(EntryBB);
1718 
1719   assert(&MF->front() == &NewEntryBB &&
1720          "New entry wasn't next in the list of basic block!");
1721 
1722   // Initialize stack protector information.
1723   StackProtector &SP = getAnalysis<StackProtector>();
1724   SP.copyToMachineFrameInfo(MF->getFrameInfo());
1725 
1726   return false;
1727 }
1728