1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 22 #include "llvm/CodeGen/LowLevelType.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/StackProtector.h" 31 #include "llvm/CodeGen/TargetFrameLowering.h" 32 #include "llvm/CodeGen/TargetLowering.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GetElementPtrTypeIterator.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/LowLevelTypeImpl.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetIntrinsicInfo.h" 65 #include "llvm/Target/TargetMachine.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <iterator> 70 #include <string> 71 #include <utility> 72 #include <vector> 73 74 #define DEBUG_TYPE "irtranslator" 75 76 using namespace llvm; 77 78 char IRTranslator::ID = 0; 79 80 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 81 false, false) 82 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 83 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 84 false, false) 85 86 static void reportTranslationError(MachineFunction &MF, 87 const TargetPassConfig &TPC, 88 OptimizationRemarkEmitter &ORE, 89 OptimizationRemarkMissed &R) { 90 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 91 92 // Print the function name explicitly if we don't have a debug location (which 93 // makes the diagnostic less useful) or if we're going to emit a raw error. 94 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 95 R << (" (in function: " + MF.getName() + ")").str(); 96 97 if (TPC.isGlobalISelAbortEnabled()) 98 report_fatal_error(R.getMsg()); 99 else 100 ORE.emit(R); 101 } 102 103 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { 104 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 105 } 106 107 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 108 AU.addRequired<StackProtector>(); 109 AU.addRequired<TargetPassConfig>(); 110 getSelectionDAGFallbackAnalysisUsage(AU); 111 MachineFunctionPass::getAnalysisUsage(AU); 112 } 113 114 static void computeValueLLTs(const DataLayout &DL, Type &Ty, 115 SmallVectorImpl<LLT> &ValueTys, 116 SmallVectorImpl<uint64_t> *Offsets = nullptr, 117 uint64_t StartingOffset = 0) { 118 // Given a struct type, recursively traverse the elements. 119 if (StructType *STy = dyn_cast<StructType>(&Ty)) { 120 const StructLayout *SL = DL.getStructLayout(STy); 121 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) 122 computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, 123 StartingOffset + SL->getElementOffset(I)); 124 return; 125 } 126 // Given an array type, recursively traverse the elements. 127 if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { 128 Type *EltTy = ATy->getElementType(); 129 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 130 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 131 computeValueLLTs(DL, *EltTy, ValueTys, Offsets, 132 StartingOffset + i * EltSize); 133 return; 134 } 135 // Interpret void as zero return values. 136 if (Ty.isVoidTy()) 137 return; 138 // Base case: we can get an LLT for this LLVM IR type. 139 ValueTys.push_back(getLLTForType(Ty, DL)); 140 if (Offsets != nullptr) 141 Offsets->push_back(StartingOffset * 8); 142 } 143 144 IRTranslator::ValueToVRegInfo::VRegListT & 145 IRTranslator::allocateVRegs(const Value &Val) { 146 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 147 auto *Regs = VMap.getVRegs(Val); 148 auto *Offsets = VMap.getOffsets(Val); 149 SmallVector<LLT, 4> SplitTys; 150 computeValueLLTs(*DL, *Val.getType(), SplitTys, 151 Offsets->empty() ? Offsets : nullptr); 152 for (unsigned i = 0; i < SplitTys.size(); ++i) 153 Regs->push_back(0); 154 return *Regs; 155 } 156 157 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) { 158 auto VRegsIt = VMap.findVRegs(Val); 159 if (VRegsIt != VMap.vregs_end()) 160 return *VRegsIt->second; 161 162 if (Val.getType()->isVoidTy()) 163 return *VMap.getVRegs(Val); 164 165 // Create entry for this type. 166 auto *VRegs = VMap.getVRegs(Val); 167 auto *Offsets = VMap.getOffsets(Val); 168 169 assert(Val.getType()->isSized() && 170 "Don't know how to create an empty vreg"); 171 172 SmallVector<LLT, 4> SplitTys; 173 computeValueLLTs(*DL, *Val.getType(), SplitTys, 174 Offsets->empty() ? Offsets : nullptr); 175 176 if (!isa<Constant>(Val)) { 177 for (auto Ty : SplitTys) 178 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 179 return *VRegs; 180 } 181 182 if (Val.getType()->isAggregateType()) { 183 // UndefValue, ConstantAggregateZero 184 auto &C = cast<Constant>(Val); 185 unsigned Idx = 0; 186 while (auto Elt = C.getAggregateElement(Idx++)) { 187 auto EltRegs = getOrCreateVRegs(*Elt); 188 std::copy(EltRegs.begin(), EltRegs.end(), std::back_inserter(*VRegs)); 189 } 190 } else { 191 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 192 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 193 bool Success = translate(cast<Constant>(Val), VRegs->front()); 194 if (!Success) { 195 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 196 MF->getFunction().getSubprogram(), 197 &MF->getFunction().getEntryBlock()); 198 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 199 reportTranslationError(*MF, *TPC, *ORE, R); 200 return *VRegs; 201 } 202 } 203 204 return *VRegs; 205 } 206 207 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 208 if (FrameIndices.find(&AI) != FrameIndices.end()) 209 return FrameIndices[&AI]; 210 211 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 212 unsigned Size = 213 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 214 215 // Always allocate at least one byte. 216 Size = std::max(Size, 1u); 217 218 unsigned Alignment = AI.getAlignment(); 219 if (!Alignment) 220 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 221 222 int &FI = FrameIndices[&AI]; 223 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 224 return FI; 225 } 226 227 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 228 unsigned Alignment = 0; 229 Type *ValTy = nullptr; 230 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 231 Alignment = SI->getAlignment(); 232 ValTy = SI->getValueOperand()->getType(); 233 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 234 Alignment = LI->getAlignment(); 235 ValTy = LI->getType(); 236 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 237 // TODO(PR27168): This instruction has no alignment attribute, but unlike 238 // the default alignment for load/store, the default here is to assume 239 // it has NATURAL alignment, not DataLayout-specified alignment. 240 const DataLayout &DL = AI->getModule()->getDataLayout(); 241 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 242 ValTy = AI->getCompareOperand()->getType(); 243 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 244 // TODO(PR27168): This instruction has no alignment attribute, but unlike 245 // the default alignment for load/store, the default here is to assume 246 // it has NATURAL alignment, not DataLayout-specified alignment. 247 const DataLayout &DL = AI->getModule()->getDataLayout(); 248 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 249 ValTy = AI->getType(); 250 } else { 251 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 252 R << "unable to translate memop: " << ore::NV("Opcode", &I); 253 reportTranslationError(*MF, *TPC, *ORE, R); 254 return 1; 255 } 256 257 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 258 } 259 260 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 261 MachineBasicBlock *&MBB = BBToMBB[&BB]; 262 assert(MBB && "BasicBlock was not encountered before"); 263 return *MBB; 264 } 265 266 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 267 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 268 MachinePreds[Edge].push_back(NewPred); 269 } 270 271 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 272 MachineIRBuilder &MIRBuilder) { 273 // FIXME: handle signed/unsigned wrapping flags. 274 275 // Get or create a virtual register for each value. 276 // Unless the value is a Constant => loadimm cst? 277 // or inline constant each time? 278 // Creation of a virtual register needs to have a size. 279 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 280 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 281 unsigned Res = getOrCreateVReg(U); 282 auto FBinOp = MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); 283 if (isa<Instruction>(U)) { 284 MachineInstr *FBinOpMI = FBinOp.getInstr(); 285 const Instruction &I = cast<Instruction>(U); 286 FBinOpMI->copyIRFlags(I); 287 } 288 return true; 289 } 290 291 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 292 // -0.0 - X --> G_FNEG 293 if (isa<Constant>(U.getOperand(0)) && 294 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 295 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 296 .addDef(getOrCreateVReg(U)) 297 .addUse(getOrCreateVReg(*U.getOperand(1))); 298 return true; 299 } 300 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 301 } 302 303 bool IRTranslator::translateCompare(const User &U, 304 MachineIRBuilder &MIRBuilder) { 305 const CmpInst *CI = dyn_cast<CmpInst>(&U); 306 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 307 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 308 unsigned Res = getOrCreateVReg(U); 309 CmpInst::Predicate Pred = 310 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 311 cast<ConstantExpr>(U).getPredicate()); 312 if (CmpInst::isIntPredicate(Pred)) 313 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 314 else if (Pred == CmpInst::FCMP_FALSE) 315 MIRBuilder.buildCopy( 316 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 317 else if (Pred == CmpInst::FCMP_TRUE) 318 MIRBuilder.buildCopy( 319 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 320 else 321 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); 322 323 return true; 324 } 325 326 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 327 const ReturnInst &RI = cast<ReturnInst>(U); 328 const Value *Ret = RI.getReturnValue(); 329 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 330 Ret = nullptr; 331 332 ArrayRef<unsigned> VRegs; 333 if (Ret) 334 VRegs = getOrCreateVRegs(*Ret); 335 336 // The target may mess up with the insertion point, but 337 // this is not important as a return is the last instruction 338 // of the block anyway. 339 340 return CLI->lowerReturn(MIRBuilder, Ret, VRegs); 341 } 342 343 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 344 const BranchInst &BrInst = cast<BranchInst>(U); 345 unsigned Succ = 0; 346 if (!BrInst.isUnconditional()) { 347 // We want a G_BRCOND to the true BB followed by an unconditional branch. 348 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 349 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 350 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 351 MIRBuilder.buildBrCond(Tst, TrueBB); 352 } 353 354 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 355 MachineBasicBlock &TgtBB = getMBB(BrTgt); 356 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 357 358 // If the unconditional target is the layout successor, fallthrough. 359 if (!CurBB.isLayoutSuccessor(&TgtBB)) 360 MIRBuilder.buildBr(TgtBB); 361 362 // Link successors. 363 for (const BasicBlock *Succ : successors(&BrInst)) 364 CurBB.addSuccessor(&getMBB(*Succ)); 365 return true; 366 } 367 368 bool IRTranslator::translateSwitch(const User &U, 369 MachineIRBuilder &MIRBuilder) { 370 // For now, just translate as a chain of conditional branches. 371 // FIXME: could we share most of the logic/code in 372 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 373 // At first sight, it seems most of the logic in there is independent of 374 // SelectionDAG-specifics and a lot of work went in to optimize switch 375 // lowering in there. 376 377 const SwitchInst &SwInst = cast<SwitchInst>(U); 378 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 379 const BasicBlock *OrigBB = SwInst.getParent(); 380 381 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 382 for (auto &CaseIt : SwInst.cases()) { 383 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 384 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 385 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 386 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 387 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 388 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 389 390 MIRBuilder.buildBrCond(Tst, TrueMBB); 391 CurMBB.addSuccessor(&TrueMBB); 392 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 393 394 MachineBasicBlock *FalseMBB = 395 MF->CreateMachineBasicBlock(SwInst.getParent()); 396 // Insert the comparison blocks one after the other. 397 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 398 MIRBuilder.buildBr(*FalseMBB); 399 CurMBB.addSuccessor(FalseMBB); 400 401 MIRBuilder.setMBB(*FalseMBB); 402 } 403 // handle default case 404 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 405 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 406 MIRBuilder.buildBr(DefaultMBB); 407 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 408 CurMBB.addSuccessor(&DefaultMBB); 409 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 410 411 return true; 412 } 413 414 bool IRTranslator::translateIndirectBr(const User &U, 415 MachineIRBuilder &MIRBuilder) { 416 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 417 418 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 419 MIRBuilder.buildBrIndirect(Tgt); 420 421 // Link successors. 422 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 423 for (const BasicBlock *Succ : successors(&BrInst)) 424 CurBB.addSuccessor(&getMBB(*Succ)); 425 426 return true; 427 } 428 429 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 430 const LoadInst &LI = cast<LoadInst>(U); 431 432 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 433 : MachineMemOperand::MONone; 434 Flags |= MachineMemOperand::MOLoad; 435 436 if (DL->getTypeStoreSize(LI.getType()) == 0) 437 return true; 438 439 ArrayRef<unsigned> Regs = getOrCreateVRegs(LI); 440 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 441 unsigned Base = getOrCreateVReg(*LI.getPointerOperand()); 442 443 for (unsigned i = 0; i < Regs.size(); ++i) { 444 unsigned Addr = 0; 445 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); 446 447 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 448 unsigned BaseAlign = getMemOpAlignment(LI); 449 auto MMO = MF->getMachineMemOperand( 450 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 451 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 452 LI.getSyncScopeID(), LI.getOrdering()); 453 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 454 } 455 456 return true; 457 } 458 459 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 460 const StoreInst &SI = cast<StoreInst>(U); 461 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 462 : MachineMemOperand::MONone; 463 Flags |= MachineMemOperand::MOStore; 464 465 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 466 return true; 467 468 ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand()); 469 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 470 unsigned Base = getOrCreateVReg(*SI.getPointerOperand()); 471 472 for (unsigned i = 0; i < Vals.size(); ++i) { 473 unsigned Addr = 0; 474 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); 475 476 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 477 unsigned BaseAlign = getMemOpAlignment(SI); 478 auto MMO = MF->getMachineMemOperand( 479 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 480 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 481 SI.getSyncScopeID(), SI.getOrdering()); 482 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 483 } 484 return true; 485 } 486 487 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 488 const Value *Src = U.getOperand(0); 489 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 490 491 // getIndexedOffsetInType is designed for GEPs, so the first index is the 492 // usual array element rather than looking into the actual aggregate. 493 SmallVector<Value *, 1> Indices; 494 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 495 496 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 497 for (auto Idx : EVI->indices()) 498 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 499 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 500 for (auto Idx : IVI->indices()) 501 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 502 } else { 503 for (unsigned i = 1; i < U.getNumOperands(); ++i) 504 Indices.push_back(U.getOperand(i)); 505 } 506 507 return 8 * static_cast<uint64_t>( 508 DL.getIndexedOffsetInType(Src->getType(), Indices)); 509 } 510 511 bool IRTranslator::translateExtractValue(const User &U, 512 MachineIRBuilder &MIRBuilder) { 513 const Value *Src = U.getOperand(0); 514 uint64_t Offset = getOffsetFromIndices(U, *DL); 515 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 516 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 517 unsigned Idx = std::lower_bound(Offsets.begin(), Offsets.end(), Offset) - 518 Offsets.begin(); 519 auto &DstRegs = allocateVRegs(U); 520 521 for (unsigned i = 0; i < DstRegs.size(); ++i) 522 DstRegs[i] = SrcRegs[Idx++]; 523 524 return true; 525 } 526 527 bool IRTranslator::translateInsertValue(const User &U, 528 MachineIRBuilder &MIRBuilder) { 529 const Value *Src = U.getOperand(0); 530 uint64_t Offset = getOffsetFromIndices(U, *DL); 531 auto &DstRegs = allocateVRegs(U); 532 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 533 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 534 ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 535 auto InsertedIt = InsertedRegs.begin(); 536 537 for (unsigned i = 0; i < DstRegs.size(); ++i) { 538 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 539 DstRegs[i] = *InsertedIt++; 540 else 541 DstRegs[i] = SrcRegs[i]; 542 } 543 544 return true; 545 } 546 547 bool IRTranslator::translateSelect(const User &U, 548 MachineIRBuilder &MIRBuilder) { 549 unsigned Tst = getOrCreateVReg(*U.getOperand(0)); 550 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U); 551 ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 552 ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 553 554 for (unsigned i = 0; i < ResRegs.size(); ++i) 555 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i]); 556 557 return true; 558 } 559 560 bool IRTranslator::translateBitCast(const User &U, 561 MachineIRBuilder &MIRBuilder) { 562 // If we're bitcasting to the source type, we can reuse the source vreg. 563 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 564 getLLTForType(*U.getType(), *DL)) { 565 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 566 auto &Regs = *VMap.getVRegs(U); 567 // If we already assigned a vreg for this bitcast, we can't change that. 568 // Emit a copy to satisfy the users we already emitted. 569 if (!Regs.empty()) 570 MIRBuilder.buildCopy(Regs[0], SrcReg); 571 else { 572 Regs.push_back(SrcReg); 573 VMap.getOffsets(U)->push_back(0); 574 } 575 return true; 576 } 577 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 578 } 579 580 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 581 MachineIRBuilder &MIRBuilder) { 582 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 583 unsigned Res = getOrCreateVReg(U); 584 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 585 return true; 586 } 587 588 bool IRTranslator::translateGetElementPtr(const User &U, 589 MachineIRBuilder &MIRBuilder) { 590 // FIXME: support vector GEPs. 591 if (U.getType()->isVectorTy()) 592 return false; 593 594 Value &Op0 = *U.getOperand(0); 595 unsigned BaseReg = getOrCreateVReg(Op0); 596 Type *PtrIRTy = Op0.getType(); 597 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 598 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 599 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 600 601 int64_t Offset = 0; 602 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 603 GTI != E; ++GTI) { 604 const Value *Idx = GTI.getOperand(); 605 if (StructType *StTy = GTI.getStructTypeOrNull()) { 606 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 607 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 608 continue; 609 } else { 610 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 611 612 // If this is a scalar constant or a splat vector of constants, 613 // handle it quickly. 614 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 615 Offset += ElementSize * CI->getSExtValue(); 616 continue; 617 } 618 619 if (Offset != 0) { 620 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 621 unsigned OffsetReg = 622 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 623 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 624 625 BaseReg = NewBaseReg; 626 Offset = 0; 627 } 628 629 unsigned IdxReg = getOrCreateVReg(*Idx); 630 if (MRI->getType(IdxReg) != OffsetTy) { 631 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 632 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 633 IdxReg = NewIdxReg; 634 } 635 636 // N = N + Idx * ElementSize; 637 // Avoid doing it for ElementSize of 1. 638 unsigned GepOffsetReg; 639 if (ElementSize != 1) { 640 unsigned ElementSizeReg = 641 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize)); 642 643 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 644 MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg); 645 } else 646 GepOffsetReg = IdxReg; 647 648 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 649 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); 650 BaseReg = NewBaseReg; 651 } 652 } 653 654 if (Offset != 0) { 655 unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 656 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 657 return true; 658 } 659 660 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 661 return true; 662 } 663 664 bool IRTranslator::translateMemfunc(const CallInst &CI, 665 MachineIRBuilder &MIRBuilder, 666 unsigned ID) { 667 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 668 Type *DstTy = CI.getArgOperand(0)->getType(); 669 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 670 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 671 return false; 672 673 SmallVector<CallLowering::ArgInfo, 8> Args; 674 for (int i = 0; i < 3; ++i) { 675 const auto &Arg = CI.getArgOperand(i); 676 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 677 } 678 679 const char *Callee; 680 switch (ID) { 681 case Intrinsic::memmove: 682 case Intrinsic::memcpy: { 683 Type *SrcTy = CI.getArgOperand(1)->getType(); 684 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 685 return false; 686 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 687 break; 688 } 689 case Intrinsic::memset: 690 Callee = "memset"; 691 break; 692 default: 693 return false; 694 } 695 696 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 697 MachineOperand::CreateES(Callee), 698 CallLowering::ArgInfo(0, CI.getType()), Args); 699 } 700 701 void IRTranslator::getStackGuard(unsigned DstReg, 702 MachineIRBuilder &MIRBuilder) { 703 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 704 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 705 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 706 MIB.addDef(DstReg); 707 708 auto &TLI = *MF->getSubtarget().getTargetLowering(); 709 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 710 if (!Global) 711 return; 712 713 MachinePointerInfo MPInfo(Global); 714 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 715 MachineMemOperand::MODereferenceable; 716 MachineMemOperand *MemRef = 717 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 718 DL->getPointerABIAlignment(0)); 719 MIB.setMemRefs({MemRef}); 720 } 721 722 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 723 MachineIRBuilder &MIRBuilder) { 724 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI); 725 MIRBuilder.buildInstr(Op) 726 .addDef(ResRegs[0]) 727 .addDef(ResRegs[1]) 728 .addUse(getOrCreateVReg(*CI.getOperand(0))) 729 .addUse(getOrCreateVReg(*CI.getOperand(1))); 730 731 return true; 732 } 733 734 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 735 MachineIRBuilder &MIRBuilder) { 736 switch (ID) { 737 default: 738 break; 739 case Intrinsic::lifetime_start: 740 case Intrinsic::lifetime_end: 741 // Stack coloring is not enabled in O0 (which we care about now) so we can 742 // drop these. Make sure someone notices when we start compiling at higher 743 // opts though. 744 if (MF->getTarget().getOptLevel() != CodeGenOpt::None) 745 return false; 746 return true; 747 case Intrinsic::dbg_declare: { 748 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 749 assert(DI.getVariable() && "Missing variable"); 750 751 const Value *Address = DI.getAddress(); 752 if (!Address || isa<UndefValue>(Address)) { 753 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 754 return true; 755 } 756 757 assert(DI.getVariable()->isValidLocationForIntrinsic( 758 MIRBuilder.getDebugLoc()) && 759 "Expected inlined-at fields to agree"); 760 auto AI = dyn_cast<AllocaInst>(Address); 761 if (AI && AI->isStaticAlloca()) { 762 // Static allocas are tracked at the MF level, no need for DBG_VALUE 763 // instructions (in fact, they get ignored if they *do* exist). 764 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 765 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 766 } else { 767 // A dbg.declare describes the address of a source variable, so lower it 768 // into an indirect DBG_VALUE. 769 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 770 DI.getVariable(), DI.getExpression()); 771 } 772 return true; 773 } 774 case Intrinsic::dbg_label: { 775 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 776 assert(DI.getLabel() && "Missing label"); 777 778 assert(DI.getLabel()->isValidLocationForIntrinsic( 779 MIRBuilder.getDebugLoc()) && 780 "Expected inlined-at fields to agree"); 781 782 MIRBuilder.buildDbgLabel(DI.getLabel()); 783 return true; 784 } 785 case Intrinsic::vaend: 786 // No target I know of cares about va_end. Certainly no in-tree target 787 // does. Simplest intrinsic ever! 788 return true; 789 case Intrinsic::vastart: { 790 auto &TLI = *MF->getSubtarget().getTargetLowering(); 791 Value *Ptr = CI.getArgOperand(0); 792 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 793 794 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 795 .addUse(getOrCreateVReg(*Ptr)) 796 .addMemOperand(MF->getMachineMemOperand( 797 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0)); 798 return true; 799 } 800 case Intrinsic::dbg_value: { 801 // This form of DBG_VALUE is target-independent. 802 const DbgValueInst &DI = cast<DbgValueInst>(CI); 803 const Value *V = DI.getValue(); 804 assert(DI.getVariable()->isValidLocationForIntrinsic( 805 MIRBuilder.getDebugLoc()) && 806 "Expected inlined-at fields to agree"); 807 if (!V) { 808 // Currently the optimizer can produce this; insert an undef to 809 // help debugging. Probably the optimizer should not do this. 810 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 811 } else if (const auto *CI = dyn_cast<Constant>(V)) { 812 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 813 } else { 814 unsigned Reg = getOrCreateVReg(*V); 815 // FIXME: This does not handle register-indirect values at offset 0. The 816 // direct/indirect thing shouldn't really be handled by something as 817 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 818 // pretty baked in right now. 819 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 820 } 821 return true; 822 } 823 case Intrinsic::uadd_with_overflow: 824 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 825 case Intrinsic::sadd_with_overflow: 826 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 827 case Intrinsic::usub_with_overflow: 828 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 829 case Intrinsic::ssub_with_overflow: 830 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 831 case Intrinsic::umul_with_overflow: 832 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 833 case Intrinsic::smul_with_overflow: 834 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 835 case Intrinsic::pow: 836 MIRBuilder.buildInstr(TargetOpcode::G_FPOW) 837 .addDef(getOrCreateVReg(CI)) 838 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 839 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 840 return true; 841 case Intrinsic::exp: 842 MIRBuilder.buildInstr(TargetOpcode::G_FEXP) 843 .addDef(getOrCreateVReg(CI)) 844 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 845 return true; 846 case Intrinsic::exp2: 847 MIRBuilder.buildInstr(TargetOpcode::G_FEXP2) 848 .addDef(getOrCreateVReg(CI)) 849 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 850 return true; 851 case Intrinsic::log: 852 MIRBuilder.buildInstr(TargetOpcode::G_FLOG) 853 .addDef(getOrCreateVReg(CI)) 854 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 855 return true; 856 case Intrinsic::log2: 857 MIRBuilder.buildInstr(TargetOpcode::G_FLOG2) 858 .addDef(getOrCreateVReg(CI)) 859 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 860 return true; 861 case Intrinsic::fabs: 862 MIRBuilder.buildInstr(TargetOpcode::G_FABS) 863 .addDef(getOrCreateVReg(CI)) 864 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 865 return true; 866 case Intrinsic::trunc: 867 MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_TRUNC) 868 .addDef(getOrCreateVReg(CI)) 869 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 870 return true; 871 case Intrinsic::round: 872 MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_ROUND) 873 .addDef(getOrCreateVReg(CI)) 874 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 875 return true; 876 case Intrinsic::fma: 877 MIRBuilder.buildInstr(TargetOpcode::G_FMA) 878 .addDef(getOrCreateVReg(CI)) 879 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 880 .addUse(getOrCreateVReg(*CI.getArgOperand(1))) 881 .addUse(getOrCreateVReg(*CI.getArgOperand(2))); 882 return true; 883 case Intrinsic::fmuladd: { 884 const TargetMachine &TM = MF->getTarget(); 885 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 886 unsigned Dst = getOrCreateVReg(CI); 887 unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 888 unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 889 unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 890 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 891 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 892 // TODO: Revisit this to see if we should move this part of the 893 // lowering to the combiner. 894 MIRBuilder.buildInstr(TargetOpcode::G_FMA, Dst, Op0, Op1, Op2); 895 } else { 896 LLT Ty = getLLTForType(*CI.getType(), *DL); 897 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, Ty, Op0, Op1); 898 MIRBuilder.buildInstr(TargetOpcode::G_FADD, Dst, FMul, Op2); 899 } 900 return true; 901 } 902 case Intrinsic::memcpy: 903 case Intrinsic::memmove: 904 case Intrinsic::memset: 905 return translateMemfunc(CI, MIRBuilder, ID); 906 case Intrinsic::eh_typeid_for: { 907 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 908 unsigned Reg = getOrCreateVReg(CI); 909 unsigned TypeID = MF->getTypeIDFor(GV); 910 MIRBuilder.buildConstant(Reg, TypeID); 911 return true; 912 } 913 case Intrinsic::objectsize: { 914 // If we don't know by now, we're never going to know. 915 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 916 917 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 918 return true; 919 } 920 case Intrinsic::stackguard: 921 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 922 return true; 923 case Intrinsic::stackprotector: { 924 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 925 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 926 getStackGuard(GuardVal, MIRBuilder); 927 928 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 929 MIRBuilder.buildStore( 930 GuardVal, getOrCreateVReg(*Slot), 931 *MF->getMachineMemOperand( 932 MachinePointerInfo::getFixedStack(*MF, 933 getOrCreateFrameIndex(*Slot)), 934 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 935 PtrTy.getSizeInBits() / 8, 8)); 936 return true; 937 } 938 case Intrinsic::cttz: 939 case Intrinsic::ctlz: { 940 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 941 bool isTrailing = ID == Intrinsic::cttz; 942 unsigned Opcode = isTrailing 943 ? Cst->isZero() ? TargetOpcode::G_CTTZ 944 : TargetOpcode::G_CTTZ_ZERO_UNDEF 945 : Cst->isZero() ? TargetOpcode::G_CTLZ 946 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 947 MIRBuilder.buildInstr(Opcode) 948 .addDef(getOrCreateVReg(CI)) 949 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 950 return true; 951 } 952 case Intrinsic::ctpop: { 953 MIRBuilder.buildInstr(TargetOpcode::G_CTPOP) 954 .addDef(getOrCreateVReg(CI)) 955 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 956 return true; 957 } 958 } 959 return false; 960 } 961 962 bool IRTranslator::translateInlineAsm(const CallInst &CI, 963 MachineIRBuilder &MIRBuilder) { 964 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 965 if (!IA.getConstraintString().empty()) 966 return false; 967 968 unsigned ExtraInfo = 0; 969 if (IA.hasSideEffects()) 970 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 971 if (IA.getDialect() == InlineAsm::AD_Intel) 972 ExtraInfo |= InlineAsm::Extra_AsmDialect; 973 974 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 975 .addExternalSymbol(IA.getAsmString().c_str()) 976 .addImm(ExtraInfo); 977 978 return true; 979 } 980 981 unsigned IRTranslator::packRegs(const Value &V, 982 MachineIRBuilder &MIRBuilder) { 983 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 984 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 985 LLT BigTy = getLLTForType(*V.getType(), *DL); 986 987 if (Regs.size() == 1) 988 return Regs[0]; 989 990 unsigned Dst = MRI->createGenericVirtualRegister(BigTy); 991 MIRBuilder.buildUndef(Dst); 992 for (unsigned i = 0; i < Regs.size(); ++i) { 993 unsigned NewDst = MRI->createGenericVirtualRegister(BigTy); 994 MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]); 995 Dst = NewDst; 996 } 997 return Dst; 998 } 999 1000 void IRTranslator::unpackRegs(const Value &V, unsigned Src, 1001 MachineIRBuilder &MIRBuilder) { 1002 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1003 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1004 1005 for (unsigned i = 0; i < Regs.size(); ++i) 1006 MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]); 1007 } 1008 1009 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1010 const CallInst &CI = cast<CallInst>(U); 1011 auto TII = MF->getTarget().getIntrinsicInfo(); 1012 const Function *F = CI.getCalledFunction(); 1013 1014 // FIXME: support Windows dllimport function calls. 1015 if (F && F->hasDLLImportStorageClass()) 1016 return false; 1017 1018 if (CI.isInlineAsm()) 1019 return translateInlineAsm(CI, MIRBuilder); 1020 1021 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1022 if (F && F->isIntrinsic()) { 1023 ID = F->getIntrinsicID(); 1024 if (TII && ID == Intrinsic::not_intrinsic) 1025 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1026 } 1027 1028 bool IsSplitType = valueIsSplit(CI); 1029 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { 1030 unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister( 1031 getLLTForType(*CI.getType(), *DL)) 1032 : getOrCreateVReg(CI); 1033 1034 SmallVector<unsigned, 8> Args; 1035 for (auto &Arg: CI.arg_operands()) 1036 Args.push_back(packRegs(*Arg, MIRBuilder)); 1037 1038 MF->getFrameInfo().setHasCalls(true); 1039 bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() { 1040 return getOrCreateVReg(*CI.getCalledValue()); 1041 }); 1042 1043 if (IsSplitType) 1044 unpackRegs(CI, Res, MIRBuilder); 1045 return Success; 1046 } 1047 1048 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1049 1050 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1051 return true; 1052 1053 unsigned Res = 0; 1054 if (!CI.getType()->isVoidTy()) { 1055 if (IsSplitType) 1056 Res = 1057 MRI->createGenericVirtualRegister(getLLTForType(*CI.getType(), *DL)); 1058 else 1059 Res = getOrCreateVReg(CI); 1060 } 1061 MachineInstrBuilder MIB = 1062 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 1063 1064 for (auto &Arg : CI.arg_operands()) { 1065 // Some intrinsics take metadata parameters. Reject them. 1066 if (isa<MetadataAsValue>(Arg)) 1067 return false; 1068 MIB.addUse(packRegs(*Arg, MIRBuilder)); 1069 } 1070 1071 if (IsSplitType) 1072 unpackRegs(CI, Res, MIRBuilder); 1073 1074 // Add a MachineMemOperand if it is a target mem intrinsic. 1075 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1076 TargetLowering::IntrinsicInfo Info; 1077 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1078 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1079 uint64_t Size = Info.memVT.getStoreSize(); 1080 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1081 Info.flags, Size, Info.align)); 1082 } 1083 1084 return true; 1085 } 1086 1087 bool IRTranslator::translateInvoke(const User &U, 1088 MachineIRBuilder &MIRBuilder) { 1089 const InvokeInst &I = cast<InvokeInst>(U); 1090 MCContext &Context = MF->getContext(); 1091 1092 const BasicBlock *ReturnBB = I.getSuccessor(0); 1093 const BasicBlock *EHPadBB = I.getSuccessor(1); 1094 1095 const Value *Callee = I.getCalledValue(); 1096 const Function *Fn = dyn_cast<Function>(Callee); 1097 if (isa<InlineAsm>(Callee)) 1098 return false; 1099 1100 // FIXME: support invoking patchpoint and statepoint intrinsics. 1101 if (Fn && Fn->isIntrinsic()) 1102 return false; 1103 1104 // FIXME: support whatever these are. 1105 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1106 return false; 1107 1108 // FIXME: support Windows exception handling. 1109 if (!isa<LandingPadInst>(EHPadBB->front())) 1110 return false; 1111 1112 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1113 // the region covered by the try. 1114 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1115 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1116 1117 unsigned Res = 1118 MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL)); 1119 SmallVector<unsigned, 8> Args; 1120 for (auto &Arg: I.arg_operands()) 1121 Args.push_back(packRegs(*Arg, MIRBuilder)); 1122 1123 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, 1124 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 1125 return false; 1126 1127 unpackRegs(I, Res, MIRBuilder); 1128 1129 MCSymbol *EndSymbol = Context.createTempSymbol(); 1130 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1131 1132 // FIXME: track probabilities. 1133 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1134 &ReturnMBB = getMBB(*ReturnBB); 1135 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1136 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1137 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1138 MIRBuilder.buildBr(ReturnMBB); 1139 1140 return true; 1141 } 1142 1143 bool IRTranslator::translateLandingPad(const User &U, 1144 MachineIRBuilder &MIRBuilder) { 1145 const LandingPadInst &LP = cast<LandingPadInst>(U); 1146 1147 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1148 addLandingPadInfo(LP, MBB); 1149 1150 MBB.setIsEHPad(); 1151 1152 // If there aren't registers to copy the values into (e.g., during SjLj 1153 // exceptions), then don't bother. 1154 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1155 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1156 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1157 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1158 return true; 1159 1160 // If landingpad's return type is token type, we don't create DAG nodes 1161 // for its exception pointer and selector value. The extraction of exception 1162 // pointer or selector value from token type landingpads is not currently 1163 // supported. 1164 if (LP.getType()->isTokenTy()) 1165 return true; 1166 1167 // Add a label to mark the beginning of the landing pad. Deletion of the 1168 // landing pad can thus be detected via the MachineModuleInfo. 1169 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1170 .addSym(MF->addLandingPad(&MBB)); 1171 1172 LLT Ty = getLLTForType(*LP.getType(), *DL); 1173 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 1174 MIRBuilder.buildUndef(Undef); 1175 1176 SmallVector<LLT, 2> Tys; 1177 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1178 Tys.push_back(getLLTForType(*Ty, *DL)); 1179 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1180 1181 // Mark exception register as live in. 1182 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1183 if (!ExceptionReg) 1184 return false; 1185 1186 MBB.addLiveIn(ExceptionReg); 1187 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP); 1188 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1189 1190 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1191 if (!SelectorReg) 1192 return false; 1193 1194 MBB.addLiveIn(SelectorReg); 1195 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1196 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1197 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1198 1199 return true; 1200 } 1201 1202 bool IRTranslator::translateAlloca(const User &U, 1203 MachineIRBuilder &MIRBuilder) { 1204 auto &AI = cast<AllocaInst>(U); 1205 1206 if (AI.isSwiftError()) 1207 return false; 1208 1209 if (AI.isStaticAlloca()) { 1210 unsigned Res = getOrCreateVReg(AI); 1211 int FI = getOrCreateFrameIndex(AI); 1212 MIRBuilder.buildFrameIndex(Res, FI); 1213 return true; 1214 } 1215 1216 // FIXME: support stack probing for Windows. 1217 if (MF->getTarget().getTargetTriple().isOSWindows()) 1218 return false; 1219 1220 // Now we're in the harder dynamic case. 1221 Type *Ty = AI.getAllocatedType(); 1222 unsigned Align = 1223 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1224 1225 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 1226 1227 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1228 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1229 if (MRI->getType(NumElts) != IntPtrTy) { 1230 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1231 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1232 NumElts = ExtElts; 1233 } 1234 1235 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1236 unsigned TySize = 1237 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1238 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1239 1240 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1241 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1242 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1243 1244 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1245 MIRBuilder.buildCopy(SPTmp, SPReg); 1246 1247 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1248 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1249 1250 // Handle alignment. We have to realign if the allocation granule was smaller 1251 // than stack alignment, or the specific alloca requires more than stack 1252 // alignment. 1253 unsigned StackAlign = 1254 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1255 Align = std::max(Align, StackAlign); 1256 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1257 // Round the size of the allocation up to the stack alignment size 1258 // by add SA-1 to the size. This doesn't overflow because we're computing 1259 // an address inside an alloca. 1260 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1261 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1262 AllocTmp = AlignedAlloc; 1263 } 1264 1265 MIRBuilder.buildCopy(SPReg, AllocTmp); 1266 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1267 1268 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1269 assert(MF->getFrameInfo().hasVarSizedObjects()); 1270 return true; 1271 } 1272 1273 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1274 // FIXME: We may need more info about the type. Because of how LLT works, 1275 // we're completely discarding the i64/double distinction here (amongst 1276 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1277 // anyway but that's not guaranteed. 1278 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1279 .addDef(getOrCreateVReg(U)) 1280 .addUse(getOrCreateVReg(*U.getOperand(0))) 1281 .addImm(DL->getABITypeAlignment(U.getType())); 1282 return true; 1283 } 1284 1285 bool IRTranslator::translateInsertElement(const User &U, 1286 MachineIRBuilder &MIRBuilder) { 1287 // If it is a <1 x Ty> vector, use the scalar as it is 1288 // not a legal vector type in LLT. 1289 if (U.getType()->getVectorNumElements() == 1) { 1290 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1291 auto &Regs = *VMap.getVRegs(U); 1292 if (Regs.empty()) { 1293 Regs.push_back(Elt); 1294 VMap.getOffsets(U)->push_back(0); 1295 } else { 1296 MIRBuilder.buildCopy(Regs[0], Elt); 1297 } 1298 return true; 1299 } 1300 1301 unsigned Res = getOrCreateVReg(U); 1302 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1303 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1304 unsigned Idx = getOrCreateVReg(*U.getOperand(2)); 1305 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1306 return true; 1307 } 1308 1309 bool IRTranslator::translateExtractElement(const User &U, 1310 MachineIRBuilder &MIRBuilder) { 1311 // If it is a <1 x Ty> vector, use the scalar as it is 1312 // not a legal vector type in LLT. 1313 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1314 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1315 auto &Regs = *VMap.getVRegs(U); 1316 if (Regs.empty()) { 1317 Regs.push_back(Elt); 1318 VMap.getOffsets(U)->push_back(0); 1319 } else { 1320 MIRBuilder.buildCopy(Regs[0], Elt); 1321 } 1322 return true; 1323 } 1324 unsigned Res = getOrCreateVReg(U); 1325 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1326 unsigned Idx = getOrCreateVReg(*U.getOperand(1)); 1327 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1328 return true; 1329 } 1330 1331 bool IRTranslator::translateShuffleVector(const User &U, 1332 MachineIRBuilder &MIRBuilder) { 1333 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1334 .addDef(getOrCreateVReg(U)) 1335 .addUse(getOrCreateVReg(*U.getOperand(0))) 1336 .addUse(getOrCreateVReg(*U.getOperand(1))) 1337 .addUse(getOrCreateVReg(*U.getOperand(2))); 1338 return true; 1339 } 1340 1341 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1342 const PHINode &PI = cast<PHINode>(U); 1343 1344 SmallVector<MachineInstr *, 4> Insts; 1345 for (auto Reg : getOrCreateVRegs(PI)) { 1346 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, Reg); 1347 Insts.push_back(MIB.getInstr()); 1348 } 1349 1350 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1351 return true; 1352 } 1353 1354 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1355 MachineIRBuilder &MIRBuilder) { 1356 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1357 1358 if (I.isWeak()) 1359 return false; 1360 1361 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1362 : MachineMemOperand::MONone; 1363 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1364 1365 Type *ResType = I.getType(); 1366 Type *ValType = ResType->Type::getStructElementType(0); 1367 1368 auto Res = getOrCreateVRegs(I); 1369 unsigned OldValRes = Res[0]; 1370 unsigned SuccessRes = Res[1]; 1371 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1372 unsigned Cmp = getOrCreateVReg(*I.getCompareOperand()); 1373 unsigned NewVal = getOrCreateVReg(*I.getNewValOperand()); 1374 1375 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1376 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1377 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1378 Flags, DL->getTypeStoreSize(ValType), 1379 getMemOpAlignment(I), AAMDNodes(), nullptr, 1380 I.getSyncScopeID(), I.getSuccessOrdering(), 1381 I.getFailureOrdering())); 1382 return true; 1383 } 1384 1385 bool IRTranslator::translateAtomicRMW(const User &U, 1386 MachineIRBuilder &MIRBuilder) { 1387 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1388 1389 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1390 : MachineMemOperand::MONone; 1391 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1392 1393 Type *ResType = I.getType(); 1394 1395 unsigned Res = getOrCreateVReg(I); 1396 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1397 unsigned Val = getOrCreateVReg(*I.getValOperand()); 1398 1399 unsigned Opcode = 0; 1400 switch (I.getOperation()) { 1401 default: 1402 llvm_unreachable("Unknown atomicrmw op"); 1403 return false; 1404 case AtomicRMWInst::Xchg: 1405 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 1406 break; 1407 case AtomicRMWInst::Add: 1408 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 1409 break; 1410 case AtomicRMWInst::Sub: 1411 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 1412 break; 1413 case AtomicRMWInst::And: 1414 Opcode = TargetOpcode::G_ATOMICRMW_AND; 1415 break; 1416 case AtomicRMWInst::Nand: 1417 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 1418 break; 1419 case AtomicRMWInst::Or: 1420 Opcode = TargetOpcode::G_ATOMICRMW_OR; 1421 break; 1422 case AtomicRMWInst::Xor: 1423 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 1424 break; 1425 case AtomicRMWInst::Max: 1426 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 1427 break; 1428 case AtomicRMWInst::Min: 1429 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 1430 break; 1431 case AtomicRMWInst::UMax: 1432 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 1433 break; 1434 case AtomicRMWInst::UMin: 1435 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 1436 break; 1437 } 1438 1439 MIRBuilder.buildAtomicRMW( 1440 Opcode, Res, Addr, Val, 1441 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1442 Flags, DL->getTypeStoreSize(ResType), 1443 getMemOpAlignment(I), AAMDNodes(), nullptr, 1444 I.getSyncScopeID(), I.getOrdering())); 1445 return true; 1446 } 1447 1448 void IRTranslator::finishPendingPhis() { 1449 for (auto &Phi : PendingPHIs) { 1450 const PHINode *PI = Phi.first; 1451 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 1452 1453 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1454 // won't create extra control flow here, otherwise we need to find the 1455 // dominating predecessor here (or perhaps force the weirder IRTranslators 1456 // to provide a simple boundary). 1457 SmallSet<const BasicBlock *, 4> HandledPreds; 1458 1459 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1460 auto IRPred = PI->getIncomingBlock(i); 1461 if (HandledPreds.count(IRPred)) 1462 continue; 1463 1464 HandledPreds.insert(IRPred); 1465 ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 1466 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1467 assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) && 1468 "incorrect CFG at MachineBasicBlock level"); 1469 for (unsigned j = 0; j < ValRegs.size(); ++j) { 1470 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 1471 MIB.addUse(ValRegs[j]); 1472 MIB.addMBB(Pred); 1473 } 1474 } 1475 } 1476 } 1477 } 1478 1479 bool IRTranslator::valueIsSplit(const Value &V, 1480 SmallVectorImpl<uint64_t> *Offsets) { 1481 SmallVector<LLT, 4> SplitTys; 1482 if (Offsets && !Offsets->empty()) 1483 Offsets->clear(); 1484 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 1485 return SplitTys.size() > 1; 1486 } 1487 1488 bool IRTranslator::translate(const Instruction &Inst) { 1489 CurBuilder.setDebugLoc(Inst.getDebugLoc()); 1490 switch(Inst.getOpcode()) { 1491 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1492 case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder); 1493 #include "llvm/IR/Instruction.def" 1494 default: 1495 return false; 1496 } 1497 } 1498 1499 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1500 if (auto CI = dyn_cast<ConstantInt>(&C)) 1501 EntryBuilder.buildConstant(Reg, *CI); 1502 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1503 EntryBuilder.buildFConstant(Reg, *CF); 1504 else if (isa<UndefValue>(C)) 1505 EntryBuilder.buildUndef(Reg); 1506 else if (isa<ConstantPointerNull>(C)) { 1507 // As we are trying to build a constant val of 0 into a pointer, 1508 // insert a cast to make them correct with respect to types. 1509 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 1510 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 1511 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 1512 unsigned ZeroReg = getOrCreateVReg(*ZeroVal); 1513 EntryBuilder.buildCast(Reg, ZeroReg); 1514 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 1515 EntryBuilder.buildGlobalValue(Reg, GV); 1516 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1517 if (!CAZ->getType()->isVectorTy()) 1518 return false; 1519 // Return the scalar if it is a <1 x Ty> vector. 1520 if (CAZ->getNumElements() == 1) 1521 return translate(*CAZ->getElementValue(0u), Reg); 1522 std::vector<unsigned> Ops; 1523 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1524 Constant &Elt = *CAZ->getElementValue(i); 1525 Ops.push_back(getOrCreateVReg(Elt)); 1526 } 1527 EntryBuilder.buildMerge(Reg, Ops); 1528 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1529 // Return the scalar if it is a <1 x Ty> vector. 1530 if (CV->getNumElements() == 1) 1531 return translate(*CV->getElementAsConstant(0), Reg); 1532 std::vector<unsigned> Ops; 1533 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1534 Constant &Elt = *CV->getElementAsConstant(i); 1535 Ops.push_back(getOrCreateVReg(Elt)); 1536 } 1537 EntryBuilder.buildMerge(Reg, Ops); 1538 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1539 switch(CE->getOpcode()) { 1540 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1541 case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder); 1542 #include "llvm/IR/Instruction.def" 1543 default: 1544 return false; 1545 } 1546 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 1547 if (CV->getNumOperands() == 1) 1548 return translate(*CV->getOperand(0), Reg); 1549 SmallVector<unsigned, 4> Ops; 1550 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 1551 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 1552 } 1553 EntryBuilder.buildMerge(Reg, Ops); 1554 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 1555 EntryBuilder.buildBlockAddress(Reg, BA); 1556 } else 1557 return false; 1558 1559 return true; 1560 } 1561 1562 void IRTranslator::finalizeFunction() { 1563 // Release the memory used by the different maps we 1564 // needed during the translation. 1565 PendingPHIs.clear(); 1566 VMap.reset(); 1567 FrameIndices.clear(); 1568 MachinePreds.clear(); 1569 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 1570 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 1571 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 1572 EntryBuilder = MachineIRBuilder(); 1573 CurBuilder = MachineIRBuilder(); 1574 } 1575 1576 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1577 MF = &CurMF; 1578 const Function &F = MF->getFunction(); 1579 if (F.empty()) 1580 return false; 1581 CLI = MF->getSubtarget().getCallLowering(); 1582 CurBuilder.setMF(*MF); 1583 EntryBuilder.setMF(*MF); 1584 MRI = &MF->getRegInfo(); 1585 DL = &F.getParent()->getDataLayout(); 1586 TPC = &getAnalysis<TargetPassConfig>(); 1587 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 1588 1589 assert(PendingPHIs.empty() && "stale PHIs"); 1590 1591 if (!DL->isLittleEndian()) { 1592 // Currently we don't properly handle big endian code. 1593 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1594 F.getSubprogram(), &F.getEntryBlock()); 1595 R << "unable to translate in big endian mode"; 1596 reportTranslationError(*MF, *TPC, *ORE, R); 1597 } 1598 1599 // Release the per-function state when we return, whether we succeeded or not. 1600 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1601 1602 // Setup a separate basic-block for the arguments and constants 1603 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1604 MF->push_back(EntryBB); 1605 EntryBuilder.setMBB(*EntryBB); 1606 1607 // Create all blocks, in IR order, to preserve the layout. 1608 for (const BasicBlock &BB: F) { 1609 auto *&MBB = BBToMBB[&BB]; 1610 1611 MBB = MF->CreateMachineBasicBlock(&BB); 1612 MF->push_back(MBB); 1613 1614 if (BB.hasAddressTaken()) 1615 MBB->setHasAddressTaken(); 1616 } 1617 1618 // Make our arguments/constants entry block fallthrough to the IR entry block. 1619 EntryBB->addSuccessor(&getMBB(F.front())); 1620 1621 // Lower the actual args into this basic block. 1622 SmallVector<unsigned, 8> VRegArgs; 1623 for (const Argument &Arg: F.args()) { 1624 if (DL->getTypeStoreSize(Arg.getType()) == 0) 1625 continue; // Don't handle zero sized types. 1626 VRegArgs.push_back( 1627 MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL))); 1628 } 1629 1630 // We don't currently support translating swifterror or swiftself functions. 1631 for (auto &Arg : F.args()) { 1632 if (Arg.hasSwiftErrorAttr() || Arg.hasSwiftSelfAttr()) { 1633 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1634 F.getSubprogram(), &F.getEntryBlock()); 1635 R << "unable to lower arguments due to swifterror/swiftself: " 1636 << ore::NV("Prototype", F.getType()); 1637 reportTranslationError(*MF, *TPC, *ORE, R); 1638 return false; 1639 } 1640 } 1641 1642 if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) { 1643 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1644 F.getSubprogram(), &F.getEntryBlock()); 1645 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1646 reportTranslationError(*MF, *TPC, *ORE, R); 1647 return false; 1648 } 1649 1650 auto ArgIt = F.arg_begin(); 1651 for (auto &VArg : VRegArgs) { 1652 // If the argument is an unsplit scalar then don't use unpackRegs to avoid 1653 // creating redundant copies. 1654 if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) { 1655 auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt)); 1656 assert(VRegs.empty() && "VRegs already populated?"); 1657 VRegs.push_back(VArg); 1658 } else { 1659 unpackRegs(*ArgIt, VArg, EntryBuilder); 1660 } 1661 ArgIt++; 1662 } 1663 1664 // Need to visit defs before uses when translating instructions. 1665 ReversePostOrderTraversal<const Function *> RPOT(&F); 1666 for (const BasicBlock *BB : RPOT) { 1667 MachineBasicBlock &MBB = getMBB(*BB); 1668 // Set the insertion point of all the following translations to 1669 // the end of this basic block. 1670 CurBuilder.setMBB(MBB); 1671 1672 for (const Instruction &Inst : *BB) { 1673 if (translate(Inst)) 1674 continue; 1675 1676 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1677 Inst.getDebugLoc(), BB); 1678 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 1679 1680 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 1681 std::string InstStrStorage; 1682 raw_string_ostream InstStr(InstStrStorage); 1683 InstStr << Inst; 1684 1685 R << ": '" << InstStr.str() << "'"; 1686 } 1687 1688 reportTranslationError(*MF, *TPC, *ORE, R); 1689 return false; 1690 } 1691 } 1692 1693 finishPendingPhis(); 1694 1695 // Merge the argument lowering and constants block with its single 1696 // successor, the LLVM-IR entry block. We want the basic block to 1697 // be maximal. 1698 assert(EntryBB->succ_size() == 1 && 1699 "Custom BB used for lowering should have only one successor"); 1700 // Get the successor of the current entry block. 1701 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1702 assert(NewEntryBB.pred_size() == 1 && 1703 "LLVM-IR entry block has a predecessor!?"); 1704 // Move all the instruction from the current entry block to the 1705 // new entry block. 1706 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1707 EntryBB->end()); 1708 1709 // Update the live-in information for the new entry block. 1710 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1711 NewEntryBB.addLiveIn(LiveIn); 1712 NewEntryBB.sortUniqueLiveIns(); 1713 1714 // Get rid of the now empty basic block. 1715 EntryBB->removeSuccessor(&NewEntryBB); 1716 MF->remove(EntryBB); 1717 MF->DeleteMachineBasicBlock(EntryBB); 1718 1719 assert(&MF->front() == &NewEntryBB && 1720 "New entry wasn't next in the list of basic block!"); 1721 1722 // Initialize stack protector information. 1723 StackProtector &SP = getAnalysis<StackProtector>(); 1724 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1725 1726 return false; 1727 } 1728