1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetLowering.h" 31 #include "llvm/CodeGen/TargetPassConfig.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DebugInfo.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/InlineAsm.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/MC/MCContext.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/LowLevelTypeImpl.h" 59 #include "llvm/Support/MathExtras.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetMachine.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstdint> 66 #include <iterator> 67 #include <string> 68 #include <utility> 69 #include <vector> 70 71 #define DEBUG_TYPE "irtranslator" 72 73 using namespace llvm; 74 75 char IRTranslator::ID = 0; 76 77 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 78 false, false) 79 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 80 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 81 false, false) 82 83 static void reportTranslationError(MachineFunction &MF, 84 const TargetPassConfig &TPC, 85 OptimizationRemarkEmitter &ORE, 86 OptimizationRemarkMissed &R) { 87 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 88 89 // Print the function name explicitly if we don't have a debug location (which 90 // makes the diagnostic less useful) or if we're going to emit a raw error. 91 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 92 R << (" (in function: " + MF.getName() + ")").str(); 93 94 if (TPC.isGlobalISelAbortEnabled()) 95 report_fatal_error(R.getMsg()); 96 else 97 ORE.emit(R); 98 } 99 100 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { 101 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 102 } 103 104 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 105 AU.addRequired<TargetPassConfig>(); 106 MachineFunctionPass::getAnalysisUsage(AU); 107 } 108 109 unsigned IRTranslator::getOrCreateVReg(const Value &Val) { 110 unsigned &ValReg = ValToVReg[&Val]; 111 112 if (ValReg) 113 return ValReg; 114 115 // Fill ValRegsSequence with the sequence of registers 116 // we need to concat together to produce the value. 117 assert(Val.getType()->isSized() && 118 "Don't know how to create an empty vreg"); 119 unsigned VReg = 120 MRI->createGenericVirtualRegister(getLLTForType(*Val.getType(), *DL)); 121 ValReg = VReg; 122 123 if (auto CV = dyn_cast<Constant>(&Val)) { 124 bool Success = translate(*CV, VReg); 125 if (!Success) { 126 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 127 MF->getFunction().getSubprogram(), 128 &MF->getFunction().getEntryBlock()); 129 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 130 reportTranslationError(*MF, *TPC, *ORE, R); 131 return VReg; 132 } 133 } 134 135 return VReg; 136 } 137 138 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 139 if (FrameIndices.find(&AI) != FrameIndices.end()) 140 return FrameIndices[&AI]; 141 142 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 143 unsigned Size = 144 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 145 146 // Always allocate at least one byte. 147 Size = std::max(Size, 1u); 148 149 unsigned Alignment = AI.getAlignment(); 150 if (!Alignment) 151 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 152 153 int &FI = FrameIndices[&AI]; 154 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 155 return FI; 156 } 157 158 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 159 unsigned Alignment = 0; 160 Type *ValTy = nullptr; 161 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 162 Alignment = SI->getAlignment(); 163 ValTy = SI->getValueOperand()->getType(); 164 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 165 Alignment = LI->getAlignment(); 166 ValTy = LI->getType(); 167 } else { 168 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 169 R << "unable to translate memop: " << ore::NV("Opcode", &I); 170 reportTranslationError(*MF, *TPC, *ORE, R); 171 return 1; 172 } 173 174 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 175 } 176 177 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 178 MachineBasicBlock *&MBB = BBToMBB[&BB]; 179 assert(MBB && "BasicBlock was not encountered before"); 180 return *MBB; 181 } 182 183 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 184 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 185 MachinePreds[Edge].push_back(NewPred); 186 } 187 188 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 189 MachineIRBuilder &MIRBuilder) { 190 // FIXME: handle signed/unsigned wrapping flags. 191 192 // Get or create a virtual register for each value. 193 // Unless the value is a Constant => loadimm cst? 194 // or inline constant each time? 195 // Creation of a virtual register needs to have a size. 196 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 197 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 198 unsigned Res = getOrCreateVReg(U); 199 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); 200 return true; 201 } 202 203 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 204 // -0.0 - X --> G_FNEG 205 if (isa<Constant>(U.getOperand(0)) && 206 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 207 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 208 .addDef(getOrCreateVReg(U)) 209 .addUse(getOrCreateVReg(*U.getOperand(1))); 210 return true; 211 } 212 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 213 } 214 215 bool IRTranslator::translateCompare(const User &U, 216 MachineIRBuilder &MIRBuilder) { 217 const CmpInst *CI = dyn_cast<CmpInst>(&U); 218 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 219 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 220 unsigned Res = getOrCreateVReg(U); 221 CmpInst::Predicate Pred = 222 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 223 cast<ConstantExpr>(U).getPredicate()); 224 if (CmpInst::isIntPredicate(Pred)) 225 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 226 else if (Pred == CmpInst::FCMP_FALSE) 227 MIRBuilder.buildCopy( 228 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 229 else if (Pred == CmpInst::FCMP_TRUE) 230 MIRBuilder.buildCopy( 231 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 232 else 233 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); 234 235 return true; 236 } 237 238 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 239 const ReturnInst &RI = cast<ReturnInst>(U); 240 const Value *Ret = RI.getReturnValue(); 241 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 242 Ret = nullptr; 243 // The target may mess up with the insertion point, but 244 // this is not important as a return is the last instruction 245 // of the block anyway. 246 return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret)); 247 } 248 249 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 250 const BranchInst &BrInst = cast<BranchInst>(U); 251 unsigned Succ = 0; 252 if (!BrInst.isUnconditional()) { 253 // We want a G_BRCOND to the true BB followed by an unconditional branch. 254 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 255 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 256 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 257 MIRBuilder.buildBrCond(Tst, TrueBB); 258 } 259 260 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 261 MachineBasicBlock &TgtBB = getMBB(BrTgt); 262 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 263 264 // If the unconditional target is the layout successor, fallthrough. 265 if (!CurBB.isLayoutSuccessor(&TgtBB)) 266 MIRBuilder.buildBr(TgtBB); 267 268 // Link successors. 269 for (const BasicBlock *Succ : BrInst.successors()) 270 CurBB.addSuccessor(&getMBB(*Succ)); 271 return true; 272 } 273 274 bool IRTranslator::translateSwitch(const User &U, 275 MachineIRBuilder &MIRBuilder) { 276 // For now, just translate as a chain of conditional branches. 277 // FIXME: could we share most of the logic/code in 278 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 279 // At first sight, it seems most of the logic in there is independent of 280 // SelectionDAG-specifics and a lot of work went in to optimize switch 281 // lowering in there. 282 283 const SwitchInst &SwInst = cast<SwitchInst>(U); 284 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 285 const BasicBlock *OrigBB = SwInst.getParent(); 286 287 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 288 for (auto &CaseIt : SwInst.cases()) { 289 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 290 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 291 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 292 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 293 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 294 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 295 296 MIRBuilder.buildBrCond(Tst, TrueMBB); 297 CurMBB.addSuccessor(&TrueMBB); 298 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 299 300 MachineBasicBlock *FalseMBB = 301 MF->CreateMachineBasicBlock(SwInst.getParent()); 302 // Insert the comparison blocks one after the other. 303 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 304 MIRBuilder.buildBr(*FalseMBB); 305 CurMBB.addSuccessor(FalseMBB); 306 307 MIRBuilder.setMBB(*FalseMBB); 308 } 309 // handle default case 310 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 311 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 312 MIRBuilder.buildBr(DefaultMBB); 313 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 314 CurMBB.addSuccessor(&DefaultMBB); 315 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 316 317 return true; 318 } 319 320 bool IRTranslator::translateIndirectBr(const User &U, 321 MachineIRBuilder &MIRBuilder) { 322 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 323 324 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 325 MIRBuilder.buildBrIndirect(Tgt); 326 327 // Link successors. 328 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 329 for (const BasicBlock *Succ : BrInst.successors()) 330 CurBB.addSuccessor(&getMBB(*Succ)); 331 332 return true; 333 } 334 335 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 336 const LoadInst &LI = cast<LoadInst>(U); 337 338 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 339 : MachineMemOperand::MONone; 340 Flags |= MachineMemOperand::MOLoad; 341 342 if (DL->getTypeStoreSize(LI.getType()) == 0) 343 return true; 344 345 unsigned Res = getOrCreateVReg(LI); 346 unsigned Addr = getOrCreateVReg(*LI.getPointerOperand()); 347 348 MIRBuilder.buildLoad( 349 Res, Addr, 350 *MF->getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()), 351 Flags, DL->getTypeStoreSize(LI.getType()), 352 getMemOpAlignment(LI), AAMDNodes(), nullptr, 353 LI.getSyncScopeID(), LI.getOrdering())); 354 return true; 355 } 356 357 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 358 const StoreInst &SI = cast<StoreInst>(U); 359 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 360 : MachineMemOperand::MONone; 361 Flags |= MachineMemOperand::MOStore; 362 363 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 364 return true; 365 366 unsigned Val = getOrCreateVReg(*SI.getValueOperand()); 367 unsigned Addr = getOrCreateVReg(*SI.getPointerOperand()); 368 369 MIRBuilder.buildStore( 370 Val, Addr, 371 *MF->getMachineMemOperand( 372 MachinePointerInfo(SI.getPointerOperand()), Flags, 373 DL->getTypeStoreSize(SI.getValueOperand()->getType()), 374 getMemOpAlignment(SI), AAMDNodes(), nullptr, SI.getSyncScopeID(), 375 SI.getOrdering())); 376 return true; 377 } 378 379 bool IRTranslator::translateExtractValue(const User &U, 380 MachineIRBuilder &MIRBuilder) { 381 const Value *Src = U.getOperand(0); 382 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 383 SmallVector<Value *, 1> Indices; 384 385 // If Src is a single element ConstantStruct, translate extractvalue 386 // to that element to avoid inserting a cast instruction. 387 if (auto CS = dyn_cast<ConstantStruct>(Src)) 388 if (CS->getNumOperands() == 1) { 389 unsigned Res = getOrCreateVReg(*CS->getOperand(0)); 390 ValToVReg[&U] = Res; 391 return true; 392 } 393 394 // getIndexedOffsetInType is designed for GEPs, so the first index is the 395 // usual array element rather than looking into the actual aggregate. 396 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 397 398 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 399 for (auto Idx : EVI->indices()) 400 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 401 } else { 402 for (unsigned i = 1; i < U.getNumOperands(); ++i) 403 Indices.push_back(U.getOperand(i)); 404 } 405 406 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 407 408 unsigned Res = getOrCreateVReg(U); 409 MIRBuilder.buildExtract(Res, getOrCreateVReg(*Src), Offset); 410 411 return true; 412 } 413 414 bool IRTranslator::translateInsertValue(const User &U, 415 MachineIRBuilder &MIRBuilder) { 416 const Value *Src = U.getOperand(0); 417 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 418 SmallVector<Value *, 1> Indices; 419 420 // getIndexedOffsetInType is designed for GEPs, so the first index is the 421 // usual array element rather than looking into the actual aggregate. 422 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 423 424 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 425 for (auto Idx : IVI->indices()) 426 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 427 } else { 428 for (unsigned i = 2; i < U.getNumOperands(); ++i) 429 Indices.push_back(U.getOperand(i)); 430 } 431 432 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 433 434 unsigned Res = getOrCreateVReg(U); 435 unsigned Inserted = getOrCreateVReg(*U.getOperand(1)); 436 MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), Inserted, Offset); 437 438 return true; 439 } 440 441 bool IRTranslator::translateSelect(const User &U, 442 MachineIRBuilder &MIRBuilder) { 443 unsigned Res = getOrCreateVReg(U); 444 unsigned Tst = getOrCreateVReg(*U.getOperand(0)); 445 unsigned Op0 = getOrCreateVReg(*U.getOperand(1)); 446 unsigned Op1 = getOrCreateVReg(*U.getOperand(2)); 447 MIRBuilder.buildSelect(Res, Tst, Op0, Op1); 448 return true; 449 } 450 451 bool IRTranslator::translateBitCast(const User &U, 452 MachineIRBuilder &MIRBuilder) { 453 // If we're bitcasting to the source type, we can reuse the source vreg. 454 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 455 getLLTForType(*U.getType(), *DL)) { 456 // Get the source vreg now, to avoid invalidating ValToVReg. 457 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 458 unsigned &Reg = ValToVReg[&U]; 459 // If we already assigned a vreg for this bitcast, we can't change that. 460 // Emit a copy to satisfy the users we already emitted. 461 if (Reg) 462 MIRBuilder.buildCopy(Reg, SrcReg); 463 else 464 Reg = SrcReg; 465 return true; 466 } 467 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 468 } 469 470 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 471 MachineIRBuilder &MIRBuilder) { 472 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 473 unsigned Res = getOrCreateVReg(U); 474 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 475 return true; 476 } 477 478 bool IRTranslator::translateGetElementPtr(const User &U, 479 MachineIRBuilder &MIRBuilder) { 480 // FIXME: support vector GEPs. 481 if (U.getType()->isVectorTy()) 482 return false; 483 484 Value &Op0 = *U.getOperand(0); 485 unsigned BaseReg = getOrCreateVReg(Op0); 486 Type *PtrIRTy = Op0.getType(); 487 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 488 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 489 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 490 491 int64_t Offset = 0; 492 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 493 GTI != E; ++GTI) { 494 const Value *Idx = GTI.getOperand(); 495 if (StructType *StTy = GTI.getStructTypeOrNull()) { 496 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 497 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 498 continue; 499 } else { 500 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 501 502 // If this is a scalar constant or a splat vector of constants, 503 // handle it quickly. 504 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 505 Offset += ElementSize * CI->getSExtValue(); 506 continue; 507 } 508 509 if (Offset != 0) { 510 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 511 unsigned OffsetReg = 512 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 513 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 514 515 BaseReg = NewBaseReg; 516 Offset = 0; 517 } 518 519 unsigned IdxReg = getOrCreateVReg(*Idx); 520 if (MRI->getType(IdxReg) != OffsetTy) { 521 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 522 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 523 IdxReg = NewIdxReg; 524 } 525 526 // N = N + Idx * ElementSize; 527 // Avoid doing it for ElementSize of 1. 528 unsigned GepOffsetReg; 529 if (ElementSize != 1) { 530 unsigned ElementSizeReg = 531 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize)); 532 533 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 534 MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg); 535 } else 536 GepOffsetReg = IdxReg; 537 538 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 539 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); 540 BaseReg = NewBaseReg; 541 } 542 } 543 544 if (Offset != 0) { 545 unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 546 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 547 return true; 548 } 549 550 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 551 return true; 552 } 553 554 bool IRTranslator::translateMemfunc(const CallInst &CI, 555 MachineIRBuilder &MIRBuilder, 556 unsigned ID) { 557 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 558 Type *DstTy = CI.getArgOperand(0)->getType(); 559 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 560 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 561 return false; 562 563 SmallVector<CallLowering::ArgInfo, 8> Args; 564 for (int i = 0; i < 3; ++i) { 565 const auto &Arg = CI.getArgOperand(i); 566 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 567 } 568 569 const char *Callee; 570 switch (ID) { 571 case Intrinsic::memmove: 572 case Intrinsic::memcpy: { 573 Type *SrcTy = CI.getArgOperand(1)->getType(); 574 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 575 return false; 576 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 577 break; 578 } 579 case Intrinsic::memset: 580 Callee = "memset"; 581 break; 582 default: 583 return false; 584 } 585 586 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 587 MachineOperand::CreateES(Callee), 588 CallLowering::ArgInfo(0, CI.getType()), Args); 589 } 590 591 void IRTranslator::getStackGuard(unsigned DstReg, 592 MachineIRBuilder &MIRBuilder) { 593 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 594 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 595 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 596 MIB.addDef(DstReg); 597 598 auto &TLI = *MF->getSubtarget().getTargetLowering(); 599 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 600 if (!Global) 601 return; 602 603 MachinePointerInfo MPInfo(Global); 604 MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1); 605 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 606 MachineMemOperand::MODereferenceable; 607 *MemRefs = 608 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 609 DL->getPointerABIAlignment(0)); 610 MIB.setMemRefs(MemRefs, MemRefs + 1); 611 } 612 613 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 614 MachineIRBuilder &MIRBuilder) { 615 LLT Ty = getLLTForType(*CI.getOperand(0)->getType(), *DL); 616 LLT s1 = LLT::scalar(1); 617 unsigned Width = Ty.getSizeInBits(); 618 unsigned Res = MRI->createGenericVirtualRegister(Ty); 619 unsigned Overflow = MRI->createGenericVirtualRegister(s1); 620 auto MIB = MIRBuilder.buildInstr(Op) 621 .addDef(Res) 622 .addDef(Overflow) 623 .addUse(getOrCreateVReg(*CI.getOperand(0))) 624 .addUse(getOrCreateVReg(*CI.getOperand(1))); 625 626 if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) { 627 unsigned Zero = getOrCreateVReg( 628 *Constant::getNullValue(Type::getInt1Ty(CI.getContext()))); 629 MIB.addUse(Zero); 630 } 631 632 MIRBuilder.buildSequence(getOrCreateVReg(CI), {Res, Overflow}, {0, Width}); 633 return true; 634 } 635 636 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 637 MachineIRBuilder &MIRBuilder) { 638 switch (ID) { 639 default: 640 break; 641 case Intrinsic::lifetime_start: 642 case Intrinsic::lifetime_end: 643 // Stack coloring is not enabled in O0 (which we care about now) so we can 644 // drop these. Make sure someone notices when we start compiling at higher 645 // opts though. 646 if (MF->getTarget().getOptLevel() != CodeGenOpt::None) 647 return false; 648 return true; 649 case Intrinsic::dbg_declare: { 650 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 651 assert(DI.getVariable() && "Missing variable"); 652 653 const Value *Address = DI.getAddress(); 654 if (!Address || isa<UndefValue>(Address)) { 655 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 656 return true; 657 } 658 659 assert(DI.getVariable()->isValidLocationForIntrinsic( 660 MIRBuilder.getDebugLoc()) && 661 "Expected inlined-at fields to agree"); 662 auto AI = dyn_cast<AllocaInst>(Address); 663 if (AI && AI->isStaticAlloca()) { 664 // Static allocas are tracked at the MF level, no need for DBG_VALUE 665 // instructions (in fact, they get ignored if they *do* exist). 666 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 667 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 668 } else 669 MIRBuilder.buildDirectDbgValue(getOrCreateVReg(*Address), 670 DI.getVariable(), DI.getExpression()); 671 return true; 672 } 673 case Intrinsic::vaend: 674 // No target I know of cares about va_end. Certainly no in-tree target 675 // does. Simplest intrinsic ever! 676 return true; 677 case Intrinsic::vastart: { 678 auto &TLI = *MF->getSubtarget().getTargetLowering(); 679 Value *Ptr = CI.getArgOperand(0); 680 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 681 682 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 683 .addUse(getOrCreateVReg(*Ptr)) 684 .addMemOperand(MF->getMachineMemOperand( 685 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0)); 686 return true; 687 } 688 case Intrinsic::dbg_value: { 689 // This form of DBG_VALUE is target-independent. 690 const DbgValueInst &DI = cast<DbgValueInst>(CI); 691 const Value *V = DI.getValue(); 692 assert(DI.getVariable()->isValidLocationForIntrinsic( 693 MIRBuilder.getDebugLoc()) && 694 "Expected inlined-at fields to agree"); 695 if (!V) { 696 // Currently the optimizer can produce this; insert an undef to 697 // help debugging. Probably the optimizer should not do this. 698 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 699 } else if (const auto *CI = dyn_cast<Constant>(V)) { 700 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 701 } else { 702 unsigned Reg = getOrCreateVReg(*V); 703 // FIXME: This does not handle register-indirect values at offset 0. The 704 // direct/indirect thing shouldn't really be handled by something as 705 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 706 // pretty baked in right now. 707 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 708 } 709 return true; 710 } 711 case Intrinsic::uadd_with_overflow: 712 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder); 713 case Intrinsic::sadd_with_overflow: 714 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 715 case Intrinsic::usub_with_overflow: 716 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder); 717 case Intrinsic::ssub_with_overflow: 718 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 719 case Intrinsic::umul_with_overflow: 720 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 721 case Intrinsic::smul_with_overflow: 722 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 723 case Intrinsic::pow: 724 MIRBuilder.buildInstr(TargetOpcode::G_FPOW) 725 .addDef(getOrCreateVReg(CI)) 726 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 727 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 728 return true; 729 case Intrinsic::exp: 730 MIRBuilder.buildInstr(TargetOpcode::G_FEXP) 731 .addDef(getOrCreateVReg(CI)) 732 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 733 return true; 734 case Intrinsic::exp2: 735 MIRBuilder.buildInstr(TargetOpcode::G_FEXP2) 736 .addDef(getOrCreateVReg(CI)) 737 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 738 return true; 739 case Intrinsic::log: 740 MIRBuilder.buildInstr(TargetOpcode::G_FLOG) 741 .addDef(getOrCreateVReg(CI)) 742 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 743 return true; 744 case Intrinsic::log2: 745 MIRBuilder.buildInstr(TargetOpcode::G_FLOG2) 746 .addDef(getOrCreateVReg(CI)) 747 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 748 return true; 749 case Intrinsic::fma: 750 MIRBuilder.buildInstr(TargetOpcode::G_FMA) 751 .addDef(getOrCreateVReg(CI)) 752 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 753 .addUse(getOrCreateVReg(*CI.getArgOperand(1))) 754 .addUse(getOrCreateVReg(*CI.getArgOperand(2))); 755 return true; 756 case Intrinsic::memcpy: 757 case Intrinsic::memmove: 758 case Intrinsic::memset: 759 return translateMemfunc(CI, MIRBuilder, ID); 760 case Intrinsic::eh_typeid_for: { 761 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 762 unsigned Reg = getOrCreateVReg(CI); 763 unsigned TypeID = MF->getTypeIDFor(GV); 764 MIRBuilder.buildConstant(Reg, TypeID); 765 return true; 766 } 767 case Intrinsic::objectsize: { 768 // If we don't know by now, we're never going to know. 769 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 770 771 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 772 return true; 773 } 774 case Intrinsic::stackguard: 775 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 776 return true; 777 case Intrinsic::stackprotector: { 778 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 779 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 780 getStackGuard(GuardVal, MIRBuilder); 781 782 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 783 MIRBuilder.buildStore( 784 GuardVal, getOrCreateVReg(*Slot), 785 *MF->getMachineMemOperand( 786 MachinePointerInfo::getFixedStack(*MF, 787 getOrCreateFrameIndex(*Slot)), 788 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 789 PtrTy.getSizeInBits() / 8, 8)); 790 return true; 791 } 792 } 793 return false; 794 } 795 796 bool IRTranslator::translateInlineAsm(const CallInst &CI, 797 MachineIRBuilder &MIRBuilder) { 798 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 799 if (!IA.getConstraintString().empty()) 800 return false; 801 802 unsigned ExtraInfo = 0; 803 if (IA.hasSideEffects()) 804 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 805 if (IA.getDialect() == InlineAsm::AD_Intel) 806 ExtraInfo |= InlineAsm::Extra_AsmDialect; 807 808 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 809 .addExternalSymbol(IA.getAsmString().c_str()) 810 .addImm(ExtraInfo); 811 812 return true; 813 } 814 815 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 816 const CallInst &CI = cast<CallInst>(U); 817 auto TII = MF->getTarget().getIntrinsicInfo(); 818 const Function *F = CI.getCalledFunction(); 819 820 if (CI.isInlineAsm()) 821 return translateInlineAsm(CI, MIRBuilder); 822 823 Intrinsic::ID ID = Intrinsic::not_intrinsic; 824 if (F && F->isIntrinsic()) { 825 ID = F->getIntrinsicID(); 826 if (TII && ID == Intrinsic::not_intrinsic) 827 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 828 } 829 830 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { 831 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 832 SmallVector<unsigned, 8> Args; 833 for (auto &Arg: CI.arg_operands()) 834 Args.push_back(getOrCreateVReg(*Arg)); 835 836 MF->getFrameInfo().setHasCalls(true); 837 return CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() { 838 return getOrCreateVReg(*CI.getCalledValue()); 839 }); 840 } 841 842 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 843 844 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 845 return true; 846 847 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 848 MachineInstrBuilder MIB = 849 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 850 851 for (auto &Arg : CI.arg_operands()) { 852 // Some intrinsics take metadata parameters. Reject them. 853 if (isa<MetadataAsValue>(Arg)) 854 return false; 855 MIB.addUse(getOrCreateVReg(*Arg)); 856 } 857 858 // Add a MachineMemOperand if it is a target mem intrinsic. 859 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 860 TargetLowering::IntrinsicInfo Info; 861 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 862 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 863 uint64_t Size = Info.memVT.getStoreSize(); 864 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 865 Info.flags, Size, Info.align)); 866 } 867 868 return true; 869 } 870 871 bool IRTranslator::translateInvoke(const User &U, 872 MachineIRBuilder &MIRBuilder) { 873 const InvokeInst &I = cast<InvokeInst>(U); 874 MCContext &Context = MF->getContext(); 875 876 const BasicBlock *ReturnBB = I.getSuccessor(0); 877 const BasicBlock *EHPadBB = I.getSuccessor(1); 878 879 const Value *Callee = I.getCalledValue(); 880 const Function *Fn = dyn_cast<Function>(Callee); 881 if (isa<InlineAsm>(Callee)) 882 return false; 883 884 // FIXME: support invoking patchpoint and statepoint intrinsics. 885 if (Fn && Fn->isIntrinsic()) 886 return false; 887 888 // FIXME: support whatever these are. 889 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 890 return false; 891 892 // FIXME: support Windows exception handling. 893 if (!isa<LandingPadInst>(EHPadBB->front())) 894 return false; 895 896 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 897 // the region covered by the try. 898 MCSymbol *BeginSymbol = Context.createTempSymbol(); 899 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 900 901 unsigned Res = I.getType()->isVoidTy() ? 0 : getOrCreateVReg(I); 902 SmallVector<unsigned, 8> Args; 903 for (auto &Arg: I.arg_operands()) 904 Args.push_back(getOrCreateVReg(*Arg)); 905 906 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, 907 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 908 return false; 909 910 MCSymbol *EndSymbol = Context.createTempSymbol(); 911 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 912 913 // FIXME: track probabilities. 914 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 915 &ReturnMBB = getMBB(*ReturnBB); 916 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 917 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 918 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 919 MIRBuilder.buildBr(ReturnMBB); 920 921 return true; 922 } 923 924 bool IRTranslator::translateLandingPad(const User &U, 925 MachineIRBuilder &MIRBuilder) { 926 const LandingPadInst &LP = cast<LandingPadInst>(U); 927 928 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 929 addLandingPadInfo(LP, MBB); 930 931 MBB.setIsEHPad(); 932 933 // If there aren't registers to copy the values into (e.g., during SjLj 934 // exceptions), then don't bother. 935 auto &TLI = *MF->getSubtarget().getTargetLowering(); 936 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 937 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 938 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 939 return true; 940 941 // If landingpad's return type is token type, we don't create DAG nodes 942 // for its exception pointer and selector value. The extraction of exception 943 // pointer or selector value from token type landingpads is not currently 944 // supported. 945 if (LP.getType()->isTokenTy()) 946 return true; 947 948 // Add a label to mark the beginning of the landing pad. Deletion of the 949 // landing pad can thus be detected via the MachineModuleInfo. 950 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 951 .addSym(MF->addLandingPad(&MBB)); 952 953 LLT Ty = getLLTForType(*LP.getType(), *DL); 954 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 955 MIRBuilder.buildUndef(Undef); 956 957 SmallVector<LLT, 2> Tys; 958 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 959 Tys.push_back(getLLTForType(*Ty, *DL)); 960 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 961 962 // Mark exception register as live in. 963 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 964 if (!ExceptionReg) 965 return false; 966 967 MBB.addLiveIn(ExceptionReg); 968 unsigned VReg = MRI->createGenericVirtualRegister(Tys[0]), 969 Tmp = MRI->createGenericVirtualRegister(Ty); 970 MIRBuilder.buildCopy(VReg, ExceptionReg); 971 MIRBuilder.buildInsert(Tmp, Undef, VReg, 0); 972 973 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 974 if (!SelectorReg) 975 return false; 976 977 MBB.addLiveIn(SelectorReg); 978 979 // N.b. the exception selector register always has pointer type and may not 980 // match the actual IR-level type in the landingpad so an extra cast is 981 // needed. 982 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 983 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 984 985 VReg = MRI->createGenericVirtualRegister(Tys[1]); 986 MIRBuilder.buildInstr(TargetOpcode::G_PTRTOINT).addDef(VReg).addUse(PtrVReg); 987 MIRBuilder.buildInsert(getOrCreateVReg(LP), Tmp, VReg, 988 Tys[0].getSizeInBits()); 989 return true; 990 } 991 992 bool IRTranslator::translateAlloca(const User &U, 993 MachineIRBuilder &MIRBuilder) { 994 auto &AI = cast<AllocaInst>(U); 995 996 if (AI.isStaticAlloca()) { 997 unsigned Res = getOrCreateVReg(AI); 998 int FI = getOrCreateFrameIndex(AI); 999 MIRBuilder.buildFrameIndex(Res, FI); 1000 return true; 1001 } 1002 1003 // Now we're in the harder dynamic case. 1004 Type *Ty = AI.getAllocatedType(); 1005 unsigned Align = 1006 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1007 1008 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 1009 1010 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1011 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1012 if (MRI->getType(NumElts) != IntPtrTy) { 1013 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1014 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1015 NumElts = ExtElts; 1016 } 1017 1018 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1019 unsigned TySize = 1020 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1021 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1022 1023 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1024 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1025 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1026 1027 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1028 MIRBuilder.buildCopy(SPTmp, SPReg); 1029 1030 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1031 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1032 1033 // Handle alignment. We have to realign if the allocation granule was smaller 1034 // than stack alignment, or the specific alloca requires more than stack 1035 // alignment. 1036 unsigned StackAlign = 1037 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1038 Align = std::max(Align, StackAlign); 1039 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1040 // Round the size of the allocation up to the stack alignment size 1041 // by add SA-1 to the size. This doesn't overflow because we're computing 1042 // an address inside an alloca. 1043 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1044 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1045 AllocTmp = AlignedAlloc; 1046 } 1047 1048 MIRBuilder.buildCopy(SPReg, AllocTmp); 1049 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1050 1051 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1052 assert(MF->getFrameInfo().hasVarSizedObjects()); 1053 return true; 1054 } 1055 1056 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1057 // FIXME: We may need more info about the type. Because of how LLT works, 1058 // we're completely discarding the i64/double distinction here (amongst 1059 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1060 // anyway but that's not guaranteed. 1061 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1062 .addDef(getOrCreateVReg(U)) 1063 .addUse(getOrCreateVReg(*U.getOperand(0))) 1064 .addImm(DL->getABITypeAlignment(U.getType())); 1065 return true; 1066 } 1067 1068 bool IRTranslator::translateInsertElement(const User &U, 1069 MachineIRBuilder &MIRBuilder) { 1070 // If it is a <1 x Ty> vector, use the scalar as it is 1071 // not a legal vector type in LLT. 1072 if (U.getType()->getVectorNumElements() == 1) { 1073 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1074 ValToVReg[&U] = Elt; 1075 return true; 1076 } 1077 unsigned Res = getOrCreateVReg(U); 1078 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1079 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1080 unsigned Idx = getOrCreateVReg(*U.getOperand(2)); 1081 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1082 return true; 1083 } 1084 1085 bool IRTranslator::translateExtractElement(const User &U, 1086 MachineIRBuilder &MIRBuilder) { 1087 // If it is a <1 x Ty> vector, use the scalar as it is 1088 // not a legal vector type in LLT. 1089 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1090 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1091 ValToVReg[&U] = Elt; 1092 return true; 1093 } 1094 unsigned Res = getOrCreateVReg(U); 1095 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1096 unsigned Idx = getOrCreateVReg(*U.getOperand(1)); 1097 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1098 return true; 1099 } 1100 1101 bool IRTranslator::translateShuffleVector(const User &U, 1102 MachineIRBuilder &MIRBuilder) { 1103 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1104 .addDef(getOrCreateVReg(U)) 1105 .addUse(getOrCreateVReg(*U.getOperand(0))) 1106 .addUse(getOrCreateVReg(*U.getOperand(1))) 1107 .addUse(getOrCreateVReg(*U.getOperand(2))); 1108 return true; 1109 } 1110 1111 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1112 const PHINode &PI = cast<PHINode>(U); 1113 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI); 1114 MIB.addDef(getOrCreateVReg(PI)); 1115 1116 PendingPHIs.emplace_back(&PI, MIB.getInstr()); 1117 return true; 1118 } 1119 1120 void IRTranslator::finishPendingPhis() { 1121 for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) { 1122 const PHINode *PI = Phi.first; 1123 MachineInstrBuilder MIB(*MF, Phi.second); 1124 1125 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1126 // won't create extra control flow here, otherwise we need to find the 1127 // dominating predecessor here (or perhaps force the weirder IRTranslators 1128 // to provide a simple boundary). 1129 SmallSet<const BasicBlock *, 4> HandledPreds; 1130 1131 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1132 auto IRPred = PI->getIncomingBlock(i); 1133 if (HandledPreds.count(IRPred)) 1134 continue; 1135 1136 HandledPreds.insert(IRPred); 1137 unsigned ValReg = getOrCreateVReg(*PI->getIncomingValue(i)); 1138 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1139 assert(Pred->isSuccessor(MIB->getParent()) && 1140 "incorrect CFG at MachineBasicBlock level"); 1141 MIB.addUse(ValReg); 1142 MIB.addMBB(Pred); 1143 } 1144 } 1145 } 1146 } 1147 1148 bool IRTranslator::translate(const Instruction &Inst) { 1149 CurBuilder.setDebugLoc(Inst.getDebugLoc()); 1150 switch(Inst.getOpcode()) { 1151 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1152 case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder); 1153 #include "llvm/IR/Instruction.def" 1154 default: 1155 return false; 1156 } 1157 } 1158 1159 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1160 if (auto CI = dyn_cast<ConstantInt>(&C)) 1161 EntryBuilder.buildConstant(Reg, *CI); 1162 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1163 EntryBuilder.buildFConstant(Reg, *CF); 1164 else if (isa<UndefValue>(C)) 1165 EntryBuilder.buildUndef(Reg); 1166 else if (isa<ConstantPointerNull>(C)) 1167 EntryBuilder.buildConstant(Reg, 0); 1168 else if (auto GV = dyn_cast<GlobalValue>(&C)) 1169 EntryBuilder.buildGlobalValue(Reg, GV); 1170 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1171 if (!CAZ->getType()->isVectorTy()) 1172 return false; 1173 // Return the scalar if it is a <1 x Ty> vector. 1174 if (CAZ->getNumElements() == 1) 1175 return translate(*CAZ->getElementValue(0u), Reg); 1176 std::vector<unsigned> Ops; 1177 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1178 Constant &Elt = *CAZ->getElementValue(i); 1179 Ops.push_back(getOrCreateVReg(Elt)); 1180 } 1181 EntryBuilder.buildMerge(Reg, Ops); 1182 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1183 // Return the scalar if it is a <1 x Ty> vector. 1184 if (CV->getNumElements() == 1) 1185 return translate(*CV->getElementAsConstant(0), Reg); 1186 std::vector<unsigned> Ops; 1187 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1188 Constant &Elt = *CV->getElementAsConstant(i); 1189 Ops.push_back(getOrCreateVReg(Elt)); 1190 } 1191 EntryBuilder.buildMerge(Reg, Ops); 1192 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1193 switch(CE->getOpcode()) { 1194 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1195 case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder); 1196 #include "llvm/IR/Instruction.def" 1197 default: 1198 return false; 1199 } 1200 } else if (auto CS = dyn_cast<ConstantStruct>(&C)) { 1201 // Return the element if it is a single element ConstantStruct. 1202 if (CS->getNumOperands() == 1) { 1203 unsigned EltReg = getOrCreateVReg(*CS->getOperand(0)); 1204 EntryBuilder.buildCast(Reg, EltReg); 1205 return true; 1206 } 1207 SmallVector<unsigned, 4> Ops; 1208 SmallVector<uint64_t, 4> Indices; 1209 uint64_t Offset = 0; 1210 for (unsigned i = 0; i < CS->getNumOperands(); ++i) { 1211 unsigned OpReg = getOrCreateVReg(*CS->getOperand(i)); 1212 Ops.push_back(OpReg); 1213 Indices.push_back(Offset); 1214 Offset += MRI->getType(OpReg).getSizeInBits(); 1215 } 1216 EntryBuilder.buildSequence(Reg, Ops, Indices); 1217 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 1218 if (CV->getNumOperands() == 1) 1219 return translate(*CV->getOperand(0), Reg); 1220 SmallVector<unsigned, 4> Ops; 1221 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 1222 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 1223 } 1224 EntryBuilder.buildMerge(Reg, Ops); 1225 } else 1226 return false; 1227 1228 return true; 1229 } 1230 1231 void IRTranslator::finalizeFunction() { 1232 // Release the memory used by the different maps we 1233 // needed during the translation. 1234 PendingPHIs.clear(); 1235 ValToVReg.clear(); 1236 FrameIndices.clear(); 1237 MachinePreds.clear(); 1238 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 1239 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 1240 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 1241 EntryBuilder = MachineIRBuilder(); 1242 CurBuilder = MachineIRBuilder(); 1243 } 1244 1245 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1246 MF = &CurMF; 1247 const Function &F = MF->getFunction(); 1248 if (F.empty()) 1249 return false; 1250 CLI = MF->getSubtarget().getCallLowering(); 1251 CurBuilder.setMF(*MF); 1252 EntryBuilder.setMF(*MF); 1253 MRI = &MF->getRegInfo(); 1254 DL = &F.getParent()->getDataLayout(); 1255 TPC = &getAnalysis<TargetPassConfig>(); 1256 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 1257 1258 assert(PendingPHIs.empty() && "stale PHIs"); 1259 1260 if (!DL->isLittleEndian()) { 1261 // Currently we don't properly handle big endian code. 1262 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1263 F.getSubprogram(), &F.getEntryBlock()); 1264 R << "unable to translate in big endian mode"; 1265 reportTranslationError(*MF, *TPC, *ORE, R); 1266 } 1267 1268 // Release the per-function state when we return, whether we succeeded or not. 1269 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1270 1271 // Setup a separate basic-block for the arguments and constants 1272 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1273 MF->push_back(EntryBB); 1274 EntryBuilder.setMBB(*EntryBB); 1275 1276 // Create all blocks, in IR order, to preserve the layout. 1277 for (const BasicBlock &BB: F) { 1278 auto *&MBB = BBToMBB[&BB]; 1279 1280 MBB = MF->CreateMachineBasicBlock(&BB); 1281 MF->push_back(MBB); 1282 1283 if (BB.hasAddressTaken()) 1284 MBB->setHasAddressTaken(); 1285 } 1286 1287 // Make our arguments/constants entry block fallthrough to the IR entry block. 1288 EntryBB->addSuccessor(&getMBB(F.front())); 1289 1290 // Lower the actual args into this basic block. 1291 SmallVector<unsigned, 8> VRegArgs; 1292 for (const Argument &Arg: F.args()) { 1293 if (DL->getTypeStoreSize(Arg.getType()) == 0) 1294 continue; // Don't handle zero sized types. 1295 VRegArgs.push_back(getOrCreateVReg(Arg)); 1296 } 1297 if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) { 1298 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1299 F.getSubprogram(), &F.getEntryBlock()); 1300 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1301 reportTranslationError(*MF, *TPC, *ORE, R); 1302 return false; 1303 } 1304 1305 // And translate the function! 1306 for (const BasicBlock &BB: F) { 1307 MachineBasicBlock &MBB = getMBB(BB); 1308 // Set the insertion point of all the following translations to 1309 // the end of this basic block. 1310 CurBuilder.setMBB(MBB); 1311 1312 for (const Instruction &Inst: BB) { 1313 if (translate(Inst)) 1314 continue; 1315 1316 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1317 Inst.getDebugLoc(), &BB); 1318 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 1319 1320 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 1321 std::string InstStrStorage; 1322 raw_string_ostream InstStr(InstStrStorage); 1323 InstStr << Inst; 1324 1325 R << ": '" << InstStr.str() << "'"; 1326 } 1327 1328 reportTranslationError(*MF, *TPC, *ORE, R); 1329 return false; 1330 } 1331 } 1332 1333 finishPendingPhis(); 1334 1335 // Merge the argument lowering and constants block with its single 1336 // successor, the LLVM-IR entry block. We want the basic block to 1337 // be maximal. 1338 assert(EntryBB->succ_size() == 1 && 1339 "Custom BB used for lowering should have only one successor"); 1340 // Get the successor of the current entry block. 1341 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1342 assert(NewEntryBB.pred_size() == 1 && 1343 "LLVM-IR entry block has a predecessor!?"); 1344 // Move all the instruction from the current entry block to the 1345 // new entry block. 1346 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1347 EntryBB->end()); 1348 1349 // Update the live-in information for the new entry block. 1350 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1351 NewEntryBB.addLiveIn(LiveIn); 1352 NewEntryBB.sortUniqueLiveIns(); 1353 1354 // Get rid of the now empty basic block. 1355 EntryBB->removeSuccessor(&NewEntryBB); 1356 MF->remove(EntryBB); 1357 MF->DeleteMachineBasicBlock(EntryBB); 1358 1359 assert(&MF->front() == &NewEntryBB && 1360 "New entry wasn't next in the list of basic block!"); 1361 1362 return false; 1363 } 1364