1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
26 #include "llvm/CodeGen/LowLevelType.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/StackProtector.h"
36 #include "llvm/CodeGen/TargetFrameLowering.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfo.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GetElementPtrTypeIterator.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/MC/MCContext.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CodeGen.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/LowLevelTypeImpl.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetIntrinsicInfo.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <iterator>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 #define DEBUG_TYPE "irtranslator"
81 
82 using namespace llvm;
83 
84 static cl::opt<bool>
85     EnableCSEInIRTranslator("enable-cse-in-irtranslator",
86                             cl::desc("Should enable CSE in irtranslator"),
87                             cl::Optional, cl::init(false));
88 char IRTranslator::ID = 0;
89 
90 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
91                 false, false)
92 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
93 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
94 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
95                 false, false)
96 
97 static void reportTranslationError(MachineFunction &MF,
98                                    const TargetPassConfig &TPC,
99                                    OptimizationRemarkEmitter &ORE,
100                                    OptimizationRemarkMissed &R) {
101   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
102 
103   // Print the function name explicitly if we don't have a debug location (which
104   // makes the diagnostic less useful) or if we're going to emit a raw error.
105   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
106     R << (" (in function: " + MF.getName() + ")").str();
107 
108   if (TPC.isGlobalISelAbortEnabled())
109     report_fatal_error(R.getMsg());
110   else
111     ORE.emit(R);
112 }
113 
114 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { }
115 
116 #ifndef NDEBUG
117 namespace {
118 /// Verify that every instruction created has the same DILocation as the
119 /// instruction being translated.
120 class DILocationVerifier : public GISelChangeObserver {
121   const Instruction *CurrInst = nullptr;
122 
123 public:
124   DILocationVerifier() = default;
125   ~DILocationVerifier() = default;
126 
127   const Instruction *getCurrentInst() const { return CurrInst; }
128   void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
129 
130   void erasingInstr(MachineInstr &MI) override {}
131   void changingInstr(MachineInstr &MI) override {}
132   void changedInstr(MachineInstr &MI) override {}
133 
134   void createdInstr(MachineInstr &MI) override {
135     assert(getCurrentInst() && "Inserted instruction without a current MI");
136 
137     // Only print the check message if we're actually checking it.
138 #ifndef NDEBUG
139     LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
140                       << " was copied to " << MI);
141 #endif
142     // We allow insts in the entry block to have a debug loc line of 0 because
143     // they could have originated from constants, and we don't want a jumpy
144     // debug experience.
145     assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
146             MI.getDebugLoc().getLine() == 0) &&
147            "Line info was not transferred to all instructions");
148   }
149 };
150 } // namespace
151 #endif // ifndef NDEBUG
152 
153 
154 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
155   AU.addRequired<StackProtector>();
156   AU.addRequired<TargetPassConfig>();
157   AU.addRequired<GISelCSEAnalysisWrapperPass>();
158   getSelectionDAGFallbackAnalysisUsage(AU);
159   MachineFunctionPass::getAnalysisUsage(AU);
160 }
161 
162 IRTranslator::ValueToVRegInfo::VRegListT &
163 IRTranslator::allocateVRegs(const Value &Val) {
164   assert(!VMap.contains(Val) && "Value already allocated in VMap");
165   auto *Regs = VMap.getVRegs(Val);
166   auto *Offsets = VMap.getOffsets(Val);
167   SmallVector<LLT, 4> SplitTys;
168   computeValueLLTs(*DL, *Val.getType(), SplitTys,
169                    Offsets->empty() ? Offsets : nullptr);
170   for (unsigned i = 0; i < SplitTys.size(); ++i)
171     Regs->push_back(0);
172   return *Regs;
173 }
174 
175 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
176   auto VRegsIt = VMap.findVRegs(Val);
177   if (VRegsIt != VMap.vregs_end())
178     return *VRegsIt->second;
179 
180   if (Val.getType()->isVoidTy())
181     return *VMap.getVRegs(Val);
182 
183   // Create entry for this type.
184   auto *VRegs = VMap.getVRegs(Val);
185   auto *Offsets = VMap.getOffsets(Val);
186 
187   assert(Val.getType()->isSized() &&
188          "Don't know how to create an empty vreg");
189 
190   SmallVector<LLT, 4> SplitTys;
191   computeValueLLTs(*DL, *Val.getType(), SplitTys,
192                    Offsets->empty() ? Offsets : nullptr);
193 
194   if (!isa<Constant>(Val)) {
195     for (auto Ty : SplitTys)
196       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
197     return *VRegs;
198   }
199 
200   if (Val.getType()->isAggregateType()) {
201     // UndefValue, ConstantAggregateZero
202     auto &C = cast<Constant>(Val);
203     unsigned Idx = 0;
204     while (auto Elt = C.getAggregateElement(Idx++)) {
205       auto EltRegs = getOrCreateVRegs(*Elt);
206       llvm::copy(EltRegs, std::back_inserter(*VRegs));
207     }
208   } else {
209     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
210     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
211     bool Success = translate(cast<Constant>(Val), VRegs->front());
212     if (!Success) {
213       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
214                                  MF->getFunction().getSubprogram(),
215                                  &MF->getFunction().getEntryBlock());
216       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
217       reportTranslationError(*MF, *TPC, *ORE, R);
218       return *VRegs;
219     }
220   }
221 
222   return *VRegs;
223 }
224 
225 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
226   auto MapEntry = FrameIndices.find(&AI);
227   if (MapEntry != FrameIndices.end())
228     return MapEntry->second;
229 
230   uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
231   uint64_t Size =
232       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
233 
234   // Always allocate at least one byte.
235   Size = std::max<uint64_t>(Size, 1u);
236 
237   int &FI = FrameIndices[&AI];
238   FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
239   return FI;
240 }
241 
242 Align IRTranslator::getMemOpAlign(const Instruction &I) {
243   if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
244     return SI->getAlign();
245   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
246     return LI->getAlign();
247   }
248   if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
249     // TODO(PR27168): This instruction has no alignment attribute, but unlike
250     // the default alignment for load/store, the default here is to assume
251     // it has NATURAL alignment, not DataLayout-specified alignment.
252     const DataLayout &DL = AI->getModule()->getDataLayout();
253     return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType()));
254   }
255   if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
256     // TODO(PR27168): This instruction has no alignment attribute, but unlike
257     // the default alignment for load/store, the default here is to assume
258     // it has NATURAL alignment, not DataLayout-specified alignment.
259     const DataLayout &DL = AI->getModule()->getDataLayout();
260     return Align(DL.getTypeStoreSize(AI->getValOperand()->getType()));
261   }
262   OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
263   R << "unable to translate memop: " << ore::NV("Opcode", &I);
264   reportTranslationError(*MF, *TPC, *ORE, R);
265   return Align(1);
266 }
267 
268 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
269   MachineBasicBlock *&MBB = BBToMBB[&BB];
270   assert(MBB && "BasicBlock was not encountered before");
271   return *MBB;
272 }
273 
274 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
275   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
276   MachinePreds[Edge].push_back(NewPred);
277 }
278 
279 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
280                                      MachineIRBuilder &MIRBuilder) {
281   // Get or create a virtual register for each value.
282   // Unless the value is a Constant => loadimm cst?
283   // or inline constant each time?
284   // Creation of a virtual register needs to have a size.
285   Register Op0 = getOrCreateVReg(*U.getOperand(0));
286   Register Op1 = getOrCreateVReg(*U.getOperand(1));
287   Register Res = getOrCreateVReg(U);
288   uint16_t Flags = 0;
289   if (isa<Instruction>(U)) {
290     const Instruction &I = cast<Instruction>(U);
291     Flags = MachineInstr::copyFlagsFromInstruction(I);
292   }
293 
294   MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
295   return true;
296 }
297 
298 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
299   Register Op0 = getOrCreateVReg(*U.getOperand(0));
300   Register Res = getOrCreateVReg(U);
301   uint16_t Flags = 0;
302   if (isa<Instruction>(U)) {
303     const Instruction &I = cast<Instruction>(U);
304     Flags = MachineInstr::copyFlagsFromInstruction(I);
305   }
306   MIRBuilder.buildFNeg(Res, Op0, Flags);
307   return true;
308 }
309 
310 bool IRTranslator::translateCompare(const User &U,
311                                     MachineIRBuilder &MIRBuilder) {
312   auto *CI = dyn_cast<CmpInst>(&U);
313   Register Op0 = getOrCreateVReg(*U.getOperand(0));
314   Register Op1 = getOrCreateVReg(*U.getOperand(1));
315   Register Res = getOrCreateVReg(U);
316   CmpInst::Predicate Pred =
317       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
318                                     cast<ConstantExpr>(U).getPredicate());
319   if (CmpInst::isIntPredicate(Pred))
320     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
321   else if (Pred == CmpInst::FCMP_FALSE)
322     MIRBuilder.buildCopy(
323         Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
324   else if (Pred == CmpInst::FCMP_TRUE)
325     MIRBuilder.buildCopy(
326         Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
327   else {
328     assert(CI && "Instruction should be CmpInst");
329     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1,
330                          MachineInstr::copyFlagsFromInstruction(*CI));
331   }
332 
333   return true;
334 }
335 
336 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
337   const ReturnInst &RI = cast<ReturnInst>(U);
338   const Value *Ret = RI.getReturnValue();
339   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
340     Ret = nullptr;
341 
342   ArrayRef<Register> VRegs;
343   if (Ret)
344     VRegs = getOrCreateVRegs(*Ret);
345 
346   Register SwiftErrorVReg = 0;
347   if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
348     SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
349         &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
350   }
351 
352   // The target may mess up with the insertion point, but
353   // this is not important as a return is the last instruction
354   // of the block anyway.
355   return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg);
356 }
357 
358 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
359   const BranchInst &BrInst = cast<BranchInst>(U);
360   unsigned Succ = 0;
361   if (!BrInst.isUnconditional()) {
362     // We want a G_BRCOND to the true BB followed by an unconditional branch.
363     Register Tst = getOrCreateVReg(*BrInst.getCondition());
364     const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
365     MachineBasicBlock &TrueBB = getMBB(TrueTgt);
366     MIRBuilder.buildBrCond(Tst, TrueBB);
367   }
368 
369   const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
370   MachineBasicBlock &TgtBB = getMBB(BrTgt);
371   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
372 
373   // If the unconditional target is the layout successor, fallthrough.
374   if (!CurBB.isLayoutSuccessor(&TgtBB))
375     MIRBuilder.buildBr(TgtBB);
376 
377   // Link successors.
378   for (const BasicBlock *Succ : successors(&BrInst))
379     CurBB.addSuccessor(&getMBB(*Succ));
380   return true;
381 }
382 
383 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
384                                         MachineBasicBlock *Dst,
385                                         BranchProbability Prob) {
386   if (!FuncInfo.BPI) {
387     Src->addSuccessorWithoutProb(Dst);
388     return;
389   }
390   if (Prob.isUnknown())
391     Prob = getEdgeProbability(Src, Dst);
392   Src->addSuccessor(Dst, Prob);
393 }
394 
395 BranchProbability
396 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
397                                  const MachineBasicBlock *Dst) const {
398   const BasicBlock *SrcBB = Src->getBasicBlock();
399   const BasicBlock *DstBB = Dst->getBasicBlock();
400   if (!FuncInfo.BPI) {
401     // If BPI is not available, set the default probability as 1 / N, where N is
402     // the number of successors.
403     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
404     return BranchProbability(1, SuccSize);
405   }
406   return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
407 }
408 
409 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
410   using namespace SwitchCG;
411   // Extract cases from the switch.
412   const SwitchInst &SI = cast<SwitchInst>(U);
413   BranchProbabilityInfo *BPI = FuncInfo.BPI;
414   CaseClusterVector Clusters;
415   Clusters.reserve(SI.getNumCases());
416   for (auto &I : SI.cases()) {
417     MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
418     assert(Succ && "Could not find successor mbb in mapping");
419     const ConstantInt *CaseVal = I.getCaseValue();
420     BranchProbability Prob =
421         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
422             : BranchProbability(1, SI.getNumCases() + 1);
423     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
424   }
425 
426   MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
427 
428   // Cluster adjacent cases with the same destination. We do this at all
429   // optimization levels because it's cheap to do and will make codegen faster
430   // if there are many clusters.
431   sortAndRangeify(Clusters);
432 
433   MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
434 
435   // If there is only the default destination, jump there directly.
436   if (Clusters.empty()) {
437     SwitchMBB->addSuccessor(DefaultMBB);
438     if (DefaultMBB != SwitchMBB->getNextNode())
439       MIB.buildBr(*DefaultMBB);
440     return true;
441   }
442 
443   SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
444 
445   LLVM_DEBUG({
446     dbgs() << "Case clusters: ";
447     for (const CaseCluster &C : Clusters) {
448       if (C.Kind == CC_JumpTable)
449         dbgs() << "JT:";
450       if (C.Kind == CC_BitTests)
451         dbgs() << "BT:";
452 
453       C.Low->getValue().print(dbgs(), true);
454       if (C.Low != C.High) {
455         dbgs() << '-';
456         C.High->getValue().print(dbgs(), true);
457       }
458       dbgs() << ' ';
459     }
460     dbgs() << '\n';
461   });
462 
463   assert(!Clusters.empty());
464   SwitchWorkList WorkList;
465   CaseClusterIt First = Clusters.begin();
466   CaseClusterIt Last = Clusters.end() - 1;
467   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
468   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
469 
470   // FIXME: At the moment we don't do any splitting optimizations here like
471   // SelectionDAG does, so this worklist only has one entry.
472   while (!WorkList.empty()) {
473     SwitchWorkListItem W = WorkList.back();
474     WorkList.pop_back();
475     if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
476       return false;
477   }
478   return true;
479 }
480 
481 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
482                                  MachineBasicBlock *MBB) {
483   // Emit the code for the jump table
484   assert(JT.Reg != -1U && "Should lower JT Header first!");
485   MachineIRBuilder MIB(*MBB->getParent());
486   MIB.setMBB(*MBB);
487   MIB.setDebugLoc(CurBuilder->getDebugLoc());
488 
489   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
490   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
491 
492   auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
493   MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
494 }
495 
496 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
497                                        SwitchCG::JumpTableHeader &JTH,
498                                        MachineBasicBlock *HeaderBB) {
499   MachineIRBuilder MIB(*HeaderBB->getParent());
500   MIB.setMBB(*HeaderBB);
501   MIB.setDebugLoc(CurBuilder->getDebugLoc());
502 
503   const Value &SValue = *JTH.SValue;
504   // Subtract the lowest switch case value from the value being switched on.
505   const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
506   Register SwitchOpReg = getOrCreateVReg(SValue);
507   auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
508   auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
509 
510   // This value may be smaller or larger than the target's pointer type, and
511   // therefore require extension or truncating.
512   Type *PtrIRTy = SValue.getType()->getPointerTo();
513   const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
514   Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
515 
516   JT.Reg = Sub.getReg(0);
517 
518   if (JTH.OmitRangeCheck) {
519     if (JT.MBB != HeaderBB->getNextNode())
520       MIB.buildBr(*JT.MBB);
521     return true;
522   }
523 
524   // Emit the range check for the jump table, and branch to the default block
525   // for the switch statement if the value being switched on exceeds the
526   // largest case in the switch.
527   auto Cst = getOrCreateVReg(
528       *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
529   Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
530   auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
531 
532   auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
533 
534   // Avoid emitting unnecessary branches to the next block.
535   if (JT.MBB != HeaderBB->getNextNode())
536     BrCond = MIB.buildBr(*JT.MBB);
537   return true;
538 }
539 
540 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
541                                   MachineBasicBlock *SwitchBB,
542                                   MachineIRBuilder &MIB) {
543   Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
544   Register Cond;
545   DebugLoc OldDbgLoc = MIB.getDebugLoc();
546   MIB.setDebugLoc(CB.DbgLoc);
547   MIB.setMBB(*CB.ThisBB);
548 
549   if (CB.PredInfo.NoCmp) {
550     // Branch or fall through to TrueBB.
551     addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
552     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
553                       CB.ThisBB);
554     CB.ThisBB->normalizeSuccProbs();
555     if (CB.TrueBB != CB.ThisBB->getNextNode())
556       MIB.buildBr(*CB.TrueBB);
557     MIB.setDebugLoc(OldDbgLoc);
558     return;
559   }
560 
561   const LLT i1Ty = LLT::scalar(1);
562   // Build the compare.
563   if (!CB.CmpMHS) {
564     Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
565     Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
566   } else {
567     assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
568            "Can only handle SLE ranges");
569 
570     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
571     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
572 
573     Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
574     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
575       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
576       Cond =
577           MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
578     } else {
579       const LLT CmpTy = MRI->getType(CmpOpReg);
580       auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
581       auto Diff = MIB.buildConstant(CmpTy, High - Low);
582       Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
583     }
584   }
585 
586   // Update successor info
587   addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
588 
589   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
590                     CB.ThisBB);
591 
592   // TrueBB and FalseBB are always different unless the incoming IR is
593   // degenerate. This only happens when running llc on weird IR.
594   if (CB.TrueBB != CB.FalseBB)
595     addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
596   CB.ThisBB->normalizeSuccProbs();
597 
598   //  if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock())
599     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
600                       CB.ThisBB);
601 
602   // If the lhs block is the next block, invert the condition so that we can
603   // fall through to the lhs instead of the rhs block.
604   if (CB.TrueBB == CB.ThisBB->getNextNode()) {
605     std::swap(CB.TrueBB, CB.FalseBB);
606     auto True = MIB.buildConstant(i1Ty, 1);
607     Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0);
608   }
609 
610   MIB.buildBrCond(Cond, *CB.TrueBB);
611   MIB.buildBr(*CB.FalseBB);
612   MIB.setDebugLoc(OldDbgLoc);
613 }
614 
615 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
616                                           MachineBasicBlock *SwitchMBB,
617                                           MachineBasicBlock *CurMBB,
618                                           MachineBasicBlock *DefaultMBB,
619                                           MachineIRBuilder &MIB,
620                                           MachineFunction::iterator BBI,
621                                           BranchProbability UnhandledProbs,
622                                           SwitchCG::CaseClusterIt I,
623                                           MachineBasicBlock *Fallthrough,
624                                           bool FallthroughUnreachable) {
625   using namespace SwitchCG;
626   MachineFunction *CurMF = SwitchMBB->getParent();
627   // FIXME: Optimize away range check based on pivot comparisons.
628   JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
629   SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
630   BranchProbability DefaultProb = W.DefaultProb;
631 
632   // The jump block hasn't been inserted yet; insert it here.
633   MachineBasicBlock *JumpMBB = JT->MBB;
634   CurMF->insert(BBI, JumpMBB);
635 
636   // Since the jump table block is separate from the switch block, we need
637   // to keep track of it as a machine predecessor to the default block,
638   // otherwise we lose the phi edges.
639   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
640                     CurMBB);
641   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
642                     JumpMBB);
643 
644   auto JumpProb = I->Prob;
645   auto FallthroughProb = UnhandledProbs;
646 
647   // If the default statement is a target of the jump table, we evenly
648   // distribute the default probability to successors of CurMBB. Also
649   // update the probability on the edge from JumpMBB to Fallthrough.
650   for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
651                                         SE = JumpMBB->succ_end();
652        SI != SE; ++SI) {
653     if (*SI == DefaultMBB) {
654       JumpProb += DefaultProb / 2;
655       FallthroughProb -= DefaultProb / 2;
656       JumpMBB->setSuccProbability(SI, DefaultProb / 2);
657       JumpMBB->normalizeSuccProbs();
658     } else {
659       // Also record edges from the jump table block to it's successors.
660       addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
661                         JumpMBB);
662     }
663   }
664 
665   // Skip the range check if the fallthrough block is unreachable.
666   if (FallthroughUnreachable)
667     JTH->OmitRangeCheck = true;
668 
669   if (!JTH->OmitRangeCheck)
670     addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
671   addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
672   CurMBB->normalizeSuccProbs();
673 
674   // The jump table header will be inserted in our current block, do the
675   // range check, and fall through to our fallthrough block.
676   JTH->HeaderBB = CurMBB;
677   JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
678 
679   // If we're in the right place, emit the jump table header right now.
680   if (CurMBB == SwitchMBB) {
681     if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
682       return false;
683     JTH->Emitted = true;
684   }
685   return true;
686 }
687 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
688                                             Value *Cond,
689                                             MachineBasicBlock *Fallthrough,
690                                             bool FallthroughUnreachable,
691                                             BranchProbability UnhandledProbs,
692                                             MachineBasicBlock *CurMBB,
693                                             MachineIRBuilder &MIB,
694                                             MachineBasicBlock *SwitchMBB) {
695   using namespace SwitchCG;
696   const Value *RHS, *LHS, *MHS;
697   CmpInst::Predicate Pred;
698   if (I->Low == I->High) {
699     // Check Cond == I->Low.
700     Pred = CmpInst::ICMP_EQ;
701     LHS = Cond;
702     RHS = I->Low;
703     MHS = nullptr;
704   } else {
705     // Check I->Low <= Cond <= I->High.
706     Pred = CmpInst::ICMP_SLE;
707     LHS = I->Low;
708     MHS = Cond;
709     RHS = I->High;
710   }
711 
712   // If Fallthrough is unreachable, fold away the comparison.
713   // The false probability is the sum of all unhandled cases.
714   CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
715                CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
716 
717   emitSwitchCase(CB, SwitchMBB, MIB);
718   return true;
719 }
720 
721 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
722                                        Value *Cond,
723                                        MachineBasicBlock *SwitchMBB,
724                                        MachineBasicBlock *DefaultMBB,
725                                        MachineIRBuilder &MIB) {
726   using namespace SwitchCG;
727   MachineFunction *CurMF = FuncInfo.MF;
728   MachineBasicBlock *NextMBB = nullptr;
729   MachineFunction::iterator BBI(W.MBB);
730   if (++BBI != FuncInfo.MF->end())
731     NextMBB = &*BBI;
732 
733   if (EnableOpts) {
734     // Here, we order cases by probability so the most likely case will be
735     // checked first. However, two clusters can have the same probability in
736     // which case their relative ordering is non-deterministic. So we use Low
737     // as a tie-breaker as clusters are guaranteed to never overlap.
738     llvm::sort(W.FirstCluster, W.LastCluster + 1,
739                [](const CaseCluster &a, const CaseCluster &b) {
740                  return a.Prob != b.Prob
741                             ? a.Prob > b.Prob
742                             : a.Low->getValue().slt(b.Low->getValue());
743                });
744 
745     // Rearrange the case blocks so that the last one falls through if possible
746     // without changing the order of probabilities.
747     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
748       --I;
749       if (I->Prob > W.LastCluster->Prob)
750         break;
751       if (I->Kind == CC_Range && I->MBB == NextMBB) {
752         std::swap(*I, *W.LastCluster);
753         break;
754       }
755     }
756   }
757 
758   // Compute total probability.
759   BranchProbability DefaultProb = W.DefaultProb;
760   BranchProbability UnhandledProbs = DefaultProb;
761   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
762     UnhandledProbs += I->Prob;
763 
764   MachineBasicBlock *CurMBB = W.MBB;
765   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
766     bool FallthroughUnreachable = false;
767     MachineBasicBlock *Fallthrough;
768     if (I == W.LastCluster) {
769       // For the last cluster, fall through to the default destination.
770       Fallthrough = DefaultMBB;
771       FallthroughUnreachable = isa<UnreachableInst>(
772           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
773     } else {
774       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
775       CurMF->insert(BBI, Fallthrough);
776     }
777     UnhandledProbs -= I->Prob;
778 
779     switch (I->Kind) {
780     case CC_BitTests: {
781       LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented");
782       return false; // Bit tests currently unimplemented.
783     }
784     case CC_JumpTable: {
785       if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
786                                   UnhandledProbs, I, Fallthrough,
787                                   FallthroughUnreachable)) {
788         LLVM_DEBUG(dbgs() << "Failed to lower jump table");
789         return false;
790       }
791       break;
792     }
793     case CC_Range: {
794       if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
795                                     FallthroughUnreachable, UnhandledProbs,
796                                     CurMBB, MIB, SwitchMBB)) {
797         LLVM_DEBUG(dbgs() << "Failed to lower switch range");
798         return false;
799       }
800       break;
801     }
802     }
803     CurMBB = Fallthrough;
804   }
805 
806   return true;
807 }
808 
809 bool IRTranslator::translateIndirectBr(const User &U,
810                                        MachineIRBuilder &MIRBuilder) {
811   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
812 
813   const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
814   MIRBuilder.buildBrIndirect(Tgt);
815 
816   // Link successors.
817   SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
818   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
819   for (const BasicBlock *Succ : successors(&BrInst)) {
820     // It's legal for indirectbr instructions to have duplicate blocks in the
821     // destination list. We don't allow this in MIR. Skip anything that's
822     // already a successor.
823     if (!AddedSuccessors.insert(Succ).second)
824       continue;
825     CurBB.addSuccessor(&getMBB(*Succ));
826   }
827 
828   return true;
829 }
830 
831 static bool isSwiftError(const Value *V) {
832   if (auto Arg = dyn_cast<Argument>(V))
833     return Arg->hasSwiftErrorAttr();
834   if (auto AI = dyn_cast<AllocaInst>(V))
835     return AI->isSwiftError();
836   return false;
837 }
838 
839 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
840   const LoadInst &LI = cast<LoadInst>(U);
841   if (DL->getTypeStoreSize(LI.getType()) == 0)
842     return true;
843 
844   ArrayRef<Register> Regs = getOrCreateVRegs(LI);
845   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
846   Register Base = getOrCreateVReg(*LI.getPointerOperand());
847 
848   Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
849   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
850 
851   if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
852     assert(Regs.size() == 1 && "swifterror should be single pointer");
853     Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
854                                                     LI.getPointerOperand());
855     MIRBuilder.buildCopy(Regs[0], VReg);
856     return true;
857   }
858 
859   auto &TLI = *MF->getSubtarget().getTargetLowering();
860   MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
861 
862   const MDNode *Ranges =
863       Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
864   for (unsigned i = 0; i < Regs.size(); ++i) {
865     Register Addr;
866     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
867 
868     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
869     Align BaseAlign = getMemOpAlign(LI);
870     AAMDNodes AAMetadata;
871     LI.getAAMetadata(AAMetadata);
872     auto MMO = MF->getMachineMemOperand(
873         Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(),
874         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges,
875         LI.getSyncScopeID(), LI.getOrdering());
876     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
877   }
878 
879   return true;
880 }
881 
882 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
883   const StoreInst &SI = cast<StoreInst>(U);
884   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
885     return true;
886 
887   ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
888   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
889   Register Base = getOrCreateVReg(*SI.getPointerOperand());
890 
891   Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
892   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
893 
894   if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
895     assert(Vals.size() == 1 && "swifterror should be single pointer");
896 
897     Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
898                                                     SI.getPointerOperand());
899     MIRBuilder.buildCopy(VReg, Vals[0]);
900     return true;
901   }
902 
903   auto &TLI = *MF->getSubtarget().getTargetLowering();
904   MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
905 
906   for (unsigned i = 0; i < Vals.size(); ++i) {
907     Register Addr;
908     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
909 
910     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
911     Align BaseAlign = getMemOpAlign(SI);
912     AAMDNodes AAMetadata;
913     SI.getAAMetadata(AAMetadata);
914     auto MMO = MF->getMachineMemOperand(
915         Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(),
916         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr,
917         SI.getSyncScopeID(), SI.getOrdering());
918     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
919   }
920   return true;
921 }
922 
923 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
924   const Value *Src = U.getOperand(0);
925   Type *Int32Ty = Type::getInt32Ty(U.getContext());
926 
927   // getIndexedOffsetInType is designed for GEPs, so the first index is the
928   // usual array element rather than looking into the actual aggregate.
929   SmallVector<Value *, 1> Indices;
930   Indices.push_back(ConstantInt::get(Int32Ty, 0));
931 
932   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
933     for (auto Idx : EVI->indices())
934       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
935   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
936     for (auto Idx : IVI->indices())
937       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
938   } else {
939     for (unsigned i = 1; i < U.getNumOperands(); ++i)
940       Indices.push_back(U.getOperand(i));
941   }
942 
943   return 8 * static_cast<uint64_t>(
944                  DL.getIndexedOffsetInType(Src->getType(), Indices));
945 }
946 
947 bool IRTranslator::translateExtractValue(const User &U,
948                                          MachineIRBuilder &MIRBuilder) {
949   const Value *Src = U.getOperand(0);
950   uint64_t Offset = getOffsetFromIndices(U, *DL);
951   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
952   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
953   unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
954   auto &DstRegs = allocateVRegs(U);
955 
956   for (unsigned i = 0; i < DstRegs.size(); ++i)
957     DstRegs[i] = SrcRegs[Idx++];
958 
959   return true;
960 }
961 
962 bool IRTranslator::translateInsertValue(const User &U,
963                                         MachineIRBuilder &MIRBuilder) {
964   const Value *Src = U.getOperand(0);
965   uint64_t Offset = getOffsetFromIndices(U, *DL);
966   auto &DstRegs = allocateVRegs(U);
967   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
968   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
969   ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
970   auto InsertedIt = InsertedRegs.begin();
971 
972   for (unsigned i = 0; i < DstRegs.size(); ++i) {
973     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
974       DstRegs[i] = *InsertedIt++;
975     else
976       DstRegs[i] = SrcRegs[i];
977   }
978 
979   return true;
980 }
981 
982 bool IRTranslator::translateSelect(const User &U,
983                                    MachineIRBuilder &MIRBuilder) {
984   Register Tst = getOrCreateVReg(*U.getOperand(0));
985   ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
986   ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
987   ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
988 
989   uint16_t Flags = 0;
990   if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
991     Flags = MachineInstr::copyFlagsFromInstruction(*SI);
992 
993   for (unsigned i = 0; i < ResRegs.size(); ++i) {
994     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
995   }
996 
997   return true;
998 }
999 
1000 bool IRTranslator::translateCopy(const User &U, const Value &V,
1001                                  MachineIRBuilder &MIRBuilder) {
1002   Register Src = getOrCreateVReg(V);
1003   auto &Regs = *VMap.getVRegs(U);
1004   if (Regs.empty()) {
1005     Regs.push_back(Src);
1006     VMap.getOffsets(U)->push_back(0);
1007   } else {
1008     // If we already assigned a vreg for this instruction, we can't change that.
1009     // Emit a copy to satisfy the users we already emitted.
1010     MIRBuilder.buildCopy(Regs[0], Src);
1011   }
1012   return true;
1013 }
1014 
1015 bool IRTranslator::translateBitCast(const User &U,
1016                                     MachineIRBuilder &MIRBuilder) {
1017   // If we're bitcasting to the source type, we can reuse the source vreg.
1018   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1019       getLLTForType(*U.getType(), *DL))
1020     return translateCopy(U, *U.getOperand(0), MIRBuilder);
1021 
1022   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1023 }
1024 
1025 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1026                                  MachineIRBuilder &MIRBuilder) {
1027   Register Op = getOrCreateVReg(*U.getOperand(0));
1028   Register Res = getOrCreateVReg(U);
1029   MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1030   return true;
1031 }
1032 
1033 bool IRTranslator::translateGetElementPtr(const User &U,
1034                                           MachineIRBuilder &MIRBuilder) {
1035   Value &Op0 = *U.getOperand(0);
1036   Register BaseReg = getOrCreateVReg(Op0);
1037   Type *PtrIRTy = Op0.getType();
1038   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1039   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1040   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1041 
1042   // Normalize Vector GEP - all scalar operands should be converted to the
1043   // splat vector.
1044   unsigned VectorWidth = 0;
1045   if (auto *VT = dyn_cast<VectorType>(U.getType()))
1046     VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1047 
1048   // We might need to splat the base pointer into a vector if the offsets
1049   // are vectors.
1050   if (VectorWidth && !PtrTy.isVector()) {
1051     BaseReg =
1052         MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg)
1053             .getReg(0);
1054     PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1055     PtrTy = getLLTForType(*PtrIRTy, *DL);
1056     OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1057     OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1058   }
1059 
1060   int64_t Offset = 0;
1061   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1062        GTI != E; ++GTI) {
1063     const Value *Idx = GTI.getOperand();
1064     if (StructType *StTy = GTI.getStructTypeOrNull()) {
1065       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1066       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1067       continue;
1068     } else {
1069       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1070 
1071       // If this is a scalar constant or a splat vector of constants,
1072       // handle it quickly.
1073       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1074         Offset += ElementSize * CI->getSExtValue();
1075         continue;
1076       }
1077 
1078       if (Offset != 0) {
1079         auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1080         BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1081                       .getReg(0);
1082         Offset = 0;
1083       }
1084 
1085       Register IdxReg = getOrCreateVReg(*Idx);
1086       LLT IdxTy = MRI->getType(IdxReg);
1087       if (IdxTy != OffsetTy) {
1088         if (!IdxTy.isVector() && VectorWidth) {
1089           IdxReg = MIRBuilder.buildSplatVector(
1090             OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1091         }
1092 
1093         IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1094       }
1095 
1096       // N = N + Idx * ElementSize;
1097       // Avoid doing it for ElementSize of 1.
1098       Register GepOffsetReg;
1099       if (ElementSize != 1) {
1100         auto ElementSizeMIB = MIRBuilder.buildConstant(
1101             getLLTForType(*OffsetIRTy, *DL), ElementSize);
1102         GepOffsetReg =
1103             MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1104       } else
1105         GepOffsetReg = IdxReg;
1106 
1107       BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1108     }
1109   }
1110 
1111   if (Offset != 0) {
1112     auto OffsetMIB =
1113         MIRBuilder.buildConstant(OffsetTy, Offset);
1114     MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1115     return true;
1116   }
1117 
1118   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1119   return true;
1120 }
1121 
1122 bool IRTranslator::translateMemFunc(const CallInst &CI,
1123                                     MachineIRBuilder &MIRBuilder,
1124                                     Intrinsic::ID ID) {
1125 
1126   // If the source is undef, then just emit a nop.
1127   if (isa<UndefValue>(CI.getArgOperand(1)))
1128     return true;
1129 
1130   ArrayRef<Register> Res;
1131   auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true);
1132   for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI)
1133     ICall.addUse(getOrCreateVReg(**AI));
1134 
1135   Align DstAlign;
1136   Align SrcAlign;
1137   unsigned IsVol =
1138       cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
1139           ->getZExtValue();
1140 
1141   if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1142     DstAlign = MCI->getDestAlign().valueOrOne();
1143     SrcAlign = MCI->getSourceAlign().valueOrOne();
1144   } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1145     DstAlign = MMI->getDestAlign().valueOrOne();
1146     SrcAlign = MMI->getSourceAlign().valueOrOne();
1147   } else {
1148     auto *MSI = cast<MemSetInst>(&CI);
1149     DstAlign = MSI->getDestAlign().valueOrOne();
1150   }
1151 
1152   // We need to propagate the tail call flag from the IR inst as an argument.
1153   // Otherwise, we have to pessimize and assume later that we cannot tail call
1154   // any memory intrinsics.
1155   ICall.addImm(CI.isTailCall() ? 1 : 0);
1156 
1157   // Create mem operands to store the alignment and volatile info.
1158   auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
1159   ICall.addMemOperand(MF->getMachineMemOperand(
1160       MachinePointerInfo(CI.getArgOperand(0)),
1161       MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
1162   if (ID != Intrinsic::memset)
1163     ICall.addMemOperand(MF->getMachineMemOperand(
1164         MachinePointerInfo(CI.getArgOperand(1)),
1165         MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
1166 
1167   return true;
1168 }
1169 
1170 void IRTranslator::getStackGuard(Register DstReg,
1171                                  MachineIRBuilder &MIRBuilder) {
1172   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1173   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1174   auto MIB =
1175       MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1176 
1177   auto &TLI = *MF->getSubtarget().getTargetLowering();
1178   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1179   if (!Global)
1180     return;
1181 
1182   MachinePointerInfo MPInfo(Global);
1183   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1184                MachineMemOperand::MODereferenceable;
1185   MachineMemOperand *MemRef =
1186       MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
1187                                DL->getPointerABIAlignment(0));
1188   MIB.setMemRefs({MemRef});
1189 }
1190 
1191 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1192                                               MachineIRBuilder &MIRBuilder) {
1193   ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1194   MIRBuilder.buildInstr(
1195       Op, {ResRegs[0], ResRegs[1]},
1196       {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1197 
1198   return true;
1199 }
1200 
1201 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1202                                                 MachineIRBuilder &MIRBuilder) {
1203   Register Dst = getOrCreateVReg(CI);
1204   Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1205   Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1206   uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1207   MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1208   return true;
1209 }
1210 
1211 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1212   switch (ID) {
1213     default:
1214       break;
1215     case Intrinsic::bswap:
1216       return TargetOpcode::G_BSWAP;
1217     case Intrinsic::bitreverse:
1218       return TargetOpcode::G_BITREVERSE;
1219     case Intrinsic::fshl:
1220       return TargetOpcode::G_FSHL;
1221     case Intrinsic::fshr:
1222       return TargetOpcode::G_FSHR;
1223     case Intrinsic::ceil:
1224       return TargetOpcode::G_FCEIL;
1225     case Intrinsic::cos:
1226       return TargetOpcode::G_FCOS;
1227     case Intrinsic::ctpop:
1228       return TargetOpcode::G_CTPOP;
1229     case Intrinsic::exp:
1230       return TargetOpcode::G_FEXP;
1231     case Intrinsic::exp2:
1232       return TargetOpcode::G_FEXP2;
1233     case Intrinsic::fabs:
1234       return TargetOpcode::G_FABS;
1235     case Intrinsic::copysign:
1236       return TargetOpcode::G_FCOPYSIGN;
1237     case Intrinsic::minnum:
1238       return TargetOpcode::G_FMINNUM;
1239     case Intrinsic::maxnum:
1240       return TargetOpcode::G_FMAXNUM;
1241     case Intrinsic::minimum:
1242       return TargetOpcode::G_FMINIMUM;
1243     case Intrinsic::maximum:
1244       return TargetOpcode::G_FMAXIMUM;
1245     case Intrinsic::canonicalize:
1246       return TargetOpcode::G_FCANONICALIZE;
1247     case Intrinsic::floor:
1248       return TargetOpcode::G_FFLOOR;
1249     case Intrinsic::fma:
1250       return TargetOpcode::G_FMA;
1251     case Intrinsic::log:
1252       return TargetOpcode::G_FLOG;
1253     case Intrinsic::log2:
1254       return TargetOpcode::G_FLOG2;
1255     case Intrinsic::log10:
1256       return TargetOpcode::G_FLOG10;
1257     case Intrinsic::nearbyint:
1258       return TargetOpcode::G_FNEARBYINT;
1259     case Intrinsic::pow:
1260       return TargetOpcode::G_FPOW;
1261     case Intrinsic::powi:
1262       return TargetOpcode::G_FPOWI;
1263     case Intrinsic::rint:
1264       return TargetOpcode::G_FRINT;
1265     case Intrinsic::round:
1266       return TargetOpcode::G_INTRINSIC_ROUND;
1267     case Intrinsic::roundeven:
1268       return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1269     case Intrinsic::sin:
1270       return TargetOpcode::G_FSIN;
1271     case Intrinsic::sqrt:
1272       return TargetOpcode::G_FSQRT;
1273     case Intrinsic::trunc:
1274       return TargetOpcode::G_INTRINSIC_TRUNC;
1275     case Intrinsic::readcyclecounter:
1276       return TargetOpcode::G_READCYCLECOUNTER;
1277     case Intrinsic::ptrmask:
1278       return TargetOpcode::G_PTRMASK;
1279     case Intrinsic::lrint:
1280       return TargetOpcode::G_INTRINSIC_LRINT;
1281   }
1282   return Intrinsic::not_intrinsic;
1283 }
1284 
1285 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1286                                             Intrinsic::ID ID,
1287                                             MachineIRBuilder &MIRBuilder) {
1288 
1289   unsigned Op = getSimpleIntrinsicOpcode(ID);
1290 
1291   // Is this a simple intrinsic?
1292   if (Op == Intrinsic::not_intrinsic)
1293     return false;
1294 
1295   // Yes. Let's translate it.
1296   SmallVector<llvm::SrcOp, 4> VRegs;
1297   for (auto &Arg : CI.arg_operands())
1298     VRegs.push_back(getOrCreateVReg(*Arg));
1299 
1300   MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1301                         MachineInstr::copyFlagsFromInstruction(CI));
1302   return true;
1303 }
1304 
1305 // TODO: Include ConstainedOps.def when all strict instructions are defined.
1306 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1307   switch (ID) {
1308   case Intrinsic::experimental_constrained_fadd:
1309     return TargetOpcode::G_STRICT_FADD;
1310   case Intrinsic::experimental_constrained_fsub:
1311     return TargetOpcode::G_STRICT_FSUB;
1312   case Intrinsic::experimental_constrained_fmul:
1313     return TargetOpcode::G_STRICT_FMUL;
1314   case Intrinsic::experimental_constrained_fdiv:
1315     return TargetOpcode::G_STRICT_FDIV;
1316   case Intrinsic::experimental_constrained_frem:
1317     return TargetOpcode::G_STRICT_FREM;
1318   case Intrinsic::experimental_constrained_fma:
1319     return TargetOpcode::G_STRICT_FMA;
1320   case Intrinsic::experimental_constrained_sqrt:
1321     return TargetOpcode::G_STRICT_FSQRT;
1322   default:
1323     return 0;
1324   }
1325 }
1326 
1327 bool IRTranslator::translateConstrainedFPIntrinsic(
1328   const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1329   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
1330 
1331   unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1332   if (!Opcode)
1333     return false;
1334 
1335   unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1336   if (EB == fp::ExceptionBehavior::ebIgnore)
1337     Flags |= MachineInstr::NoFPExcept;
1338 
1339   SmallVector<llvm::SrcOp, 4> VRegs;
1340   VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1341   if (!FPI.isUnaryOp())
1342     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1343   if (FPI.isTernaryOp())
1344     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1345 
1346   MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1347   return true;
1348 }
1349 
1350 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1351                                            MachineIRBuilder &MIRBuilder) {
1352 
1353   // If this is a simple intrinsic (that is, we just need to add a def of
1354   // a vreg, and uses for each arg operand, then translate it.
1355   if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1356     return true;
1357 
1358   switch (ID) {
1359   default:
1360     break;
1361   case Intrinsic::lifetime_start:
1362   case Intrinsic::lifetime_end: {
1363     // No stack colouring in O0, discard region information.
1364     if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1365       return true;
1366 
1367     unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1368                                                   : TargetOpcode::LIFETIME_END;
1369 
1370     // Get the underlying objects for the location passed on the lifetime
1371     // marker.
1372     SmallVector<const Value *, 4> Allocas;
1373     getUnderlyingObjects(CI.getArgOperand(1), Allocas);
1374 
1375     // Iterate over each underlying object, creating lifetime markers for each
1376     // static alloca. Quit if we find a non-static alloca.
1377     for (const Value *V : Allocas) {
1378       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1379       if (!AI)
1380         continue;
1381 
1382       if (!AI->isStaticAlloca())
1383         return true;
1384 
1385       MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1386     }
1387     return true;
1388   }
1389   case Intrinsic::dbg_declare: {
1390     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1391     assert(DI.getVariable() && "Missing variable");
1392 
1393     const Value *Address = DI.getAddress();
1394     if (!Address || isa<UndefValue>(Address)) {
1395       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1396       return true;
1397     }
1398 
1399     assert(DI.getVariable()->isValidLocationForIntrinsic(
1400                MIRBuilder.getDebugLoc()) &&
1401            "Expected inlined-at fields to agree");
1402     auto AI = dyn_cast<AllocaInst>(Address);
1403     if (AI && AI->isStaticAlloca()) {
1404       // Static allocas are tracked at the MF level, no need for DBG_VALUE
1405       // instructions (in fact, they get ignored if they *do* exist).
1406       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1407                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1408     } else {
1409       // A dbg.declare describes the address of a source variable, so lower it
1410       // into an indirect DBG_VALUE.
1411       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1412                                        DI.getVariable(), DI.getExpression());
1413     }
1414     return true;
1415   }
1416   case Intrinsic::dbg_label: {
1417     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1418     assert(DI.getLabel() && "Missing label");
1419 
1420     assert(DI.getLabel()->isValidLocationForIntrinsic(
1421                MIRBuilder.getDebugLoc()) &&
1422            "Expected inlined-at fields to agree");
1423 
1424     MIRBuilder.buildDbgLabel(DI.getLabel());
1425     return true;
1426   }
1427   case Intrinsic::vaend:
1428     // No target I know of cares about va_end. Certainly no in-tree target
1429     // does. Simplest intrinsic ever!
1430     return true;
1431   case Intrinsic::vastart: {
1432     auto &TLI = *MF->getSubtarget().getTargetLowering();
1433     Value *Ptr = CI.getArgOperand(0);
1434     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1435 
1436     // FIXME: Get alignment
1437     MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
1438         .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
1439                                                 MachineMemOperand::MOStore,
1440                                                 ListSize, Align(1)));
1441     return true;
1442   }
1443   case Intrinsic::dbg_value: {
1444     // This form of DBG_VALUE is target-independent.
1445     const DbgValueInst &DI = cast<DbgValueInst>(CI);
1446     const Value *V = DI.getValue();
1447     assert(DI.getVariable()->isValidLocationForIntrinsic(
1448                MIRBuilder.getDebugLoc()) &&
1449            "Expected inlined-at fields to agree");
1450     if (!V) {
1451       // Currently the optimizer can produce this; insert an undef to
1452       // help debugging.  Probably the optimizer should not do this.
1453       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1454     } else if (const auto *CI = dyn_cast<Constant>(V)) {
1455       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1456     } else {
1457       for (Register Reg : getOrCreateVRegs(*V)) {
1458         // FIXME: This does not handle register-indirect values at offset 0. The
1459         // direct/indirect thing shouldn't really be handled by something as
1460         // implicit as reg+noreg vs reg+imm in the first place, but it seems
1461         // pretty baked in right now.
1462         MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
1463       }
1464     }
1465     return true;
1466   }
1467   case Intrinsic::uadd_with_overflow:
1468     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
1469   case Intrinsic::sadd_with_overflow:
1470     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
1471   case Intrinsic::usub_with_overflow:
1472     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
1473   case Intrinsic::ssub_with_overflow:
1474     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
1475   case Intrinsic::umul_with_overflow:
1476     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
1477   case Intrinsic::smul_with_overflow:
1478     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
1479   case Intrinsic::uadd_sat:
1480     return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
1481   case Intrinsic::sadd_sat:
1482     return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
1483   case Intrinsic::usub_sat:
1484     return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
1485   case Intrinsic::ssub_sat:
1486     return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
1487   case Intrinsic::umin:
1488     return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
1489   case Intrinsic::umax:
1490     return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
1491   case Intrinsic::smin:
1492     return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
1493   case Intrinsic::smax:
1494     return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
1495   case Intrinsic::smul_fix:
1496     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
1497   case Intrinsic::umul_fix:
1498     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
1499   case Intrinsic::smul_fix_sat:
1500     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
1501   case Intrinsic::umul_fix_sat:
1502     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
1503   case Intrinsic::sdiv_fix:
1504     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
1505   case Intrinsic::udiv_fix:
1506     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
1507   case Intrinsic::sdiv_fix_sat:
1508     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
1509   case Intrinsic::udiv_fix_sat:
1510     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
1511   case Intrinsic::fmuladd: {
1512     const TargetMachine &TM = MF->getTarget();
1513     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1514     Register Dst = getOrCreateVReg(CI);
1515     Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
1516     Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
1517     Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
1518     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
1519         TLI.isFMAFasterThanFMulAndFAdd(*MF,
1520                                        TLI.getValueType(*DL, CI.getType()))) {
1521       // TODO: Revisit this to see if we should move this part of the
1522       // lowering to the combiner.
1523       MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
1524                           MachineInstr::copyFlagsFromInstruction(CI));
1525     } else {
1526       LLT Ty = getLLTForType(*CI.getType(), *DL);
1527       auto FMul = MIRBuilder.buildFMul(
1528           Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
1529       MIRBuilder.buildFAdd(Dst, FMul, Op2,
1530                            MachineInstr::copyFlagsFromInstruction(CI));
1531     }
1532     return true;
1533   }
1534   case Intrinsic::convert_from_fp16:
1535     // FIXME: This intrinsic should probably be removed from the IR.
1536     MIRBuilder.buildFPExt(getOrCreateVReg(CI),
1537                           getOrCreateVReg(*CI.getArgOperand(0)),
1538                           MachineInstr::copyFlagsFromInstruction(CI));
1539     return true;
1540   case Intrinsic::convert_to_fp16:
1541     // FIXME: This intrinsic should probably be removed from the IR.
1542     MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
1543                             getOrCreateVReg(*CI.getArgOperand(0)),
1544                             MachineInstr::copyFlagsFromInstruction(CI));
1545     return true;
1546   case Intrinsic::memcpy:
1547   case Intrinsic::memmove:
1548   case Intrinsic::memset:
1549     return translateMemFunc(CI, MIRBuilder, ID);
1550   case Intrinsic::eh_typeid_for: {
1551     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
1552     Register Reg = getOrCreateVReg(CI);
1553     unsigned TypeID = MF->getTypeIDFor(GV);
1554     MIRBuilder.buildConstant(Reg, TypeID);
1555     return true;
1556   }
1557   case Intrinsic::objectsize:
1558     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1559 
1560   case Intrinsic::is_constant:
1561     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1562 
1563   case Intrinsic::stackguard:
1564     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
1565     return true;
1566   case Intrinsic::stackprotector: {
1567     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1568     Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
1569     getStackGuard(GuardVal, MIRBuilder);
1570 
1571     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
1572     int FI = getOrCreateFrameIndex(*Slot);
1573     MF->getFrameInfo().setStackProtectorIndex(FI);
1574 
1575     MIRBuilder.buildStore(
1576         GuardVal, getOrCreateVReg(*Slot),
1577         *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
1578                                   MachineMemOperand::MOStore |
1579                                       MachineMemOperand::MOVolatile,
1580                                   PtrTy.getSizeInBits() / 8, Align(8)));
1581     return true;
1582   }
1583   case Intrinsic::stacksave: {
1584     // Save the stack pointer to the location provided by the intrinsic.
1585     Register Reg = getOrCreateVReg(CI);
1586     Register StackPtr = MF->getSubtarget()
1587                             .getTargetLowering()
1588                             ->getStackPointerRegisterToSaveRestore();
1589 
1590     // If the target doesn't specify a stack pointer, then fall back.
1591     if (!StackPtr)
1592       return false;
1593 
1594     MIRBuilder.buildCopy(Reg, StackPtr);
1595     return true;
1596   }
1597   case Intrinsic::stackrestore: {
1598     // Restore the stack pointer from the location provided by the intrinsic.
1599     Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
1600     Register StackPtr = MF->getSubtarget()
1601                             .getTargetLowering()
1602                             ->getStackPointerRegisterToSaveRestore();
1603 
1604     // If the target doesn't specify a stack pointer, then fall back.
1605     if (!StackPtr)
1606       return false;
1607 
1608     MIRBuilder.buildCopy(StackPtr, Reg);
1609     return true;
1610   }
1611   case Intrinsic::cttz:
1612   case Intrinsic::ctlz: {
1613     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
1614     bool isTrailing = ID == Intrinsic::cttz;
1615     unsigned Opcode = isTrailing
1616                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
1617                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
1618                           : Cst->isZero() ? TargetOpcode::G_CTLZ
1619                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
1620     MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
1621                           {getOrCreateVReg(*CI.getArgOperand(0))});
1622     return true;
1623   }
1624   case Intrinsic::invariant_start: {
1625     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1626     Register Undef = MRI->createGenericVirtualRegister(PtrTy);
1627     MIRBuilder.buildUndef(Undef);
1628     return true;
1629   }
1630   case Intrinsic::invariant_end:
1631     return true;
1632   case Intrinsic::expect:
1633   case Intrinsic::annotation:
1634   case Intrinsic::ptr_annotation:
1635   case Intrinsic::launder_invariant_group:
1636   case Intrinsic::strip_invariant_group: {
1637     // Drop the intrinsic, but forward the value.
1638     MIRBuilder.buildCopy(getOrCreateVReg(CI),
1639                          getOrCreateVReg(*CI.getArgOperand(0)));
1640     return true;
1641   }
1642   case Intrinsic::assume:
1643   case Intrinsic::var_annotation:
1644   case Intrinsic::sideeffect:
1645     // Discard annotate attributes, assumptions, and artificial side-effects.
1646     return true;
1647   case Intrinsic::read_volatile_register:
1648   case Intrinsic::read_register: {
1649     Value *Arg = CI.getArgOperand(0);
1650     MIRBuilder
1651         .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
1652         .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
1653     return true;
1654   }
1655   case Intrinsic::write_register: {
1656     Value *Arg = CI.getArgOperand(0);
1657     MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
1658       .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
1659       .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
1660     return true;
1661   }
1662   case Intrinsic::localescape: {
1663     MachineBasicBlock &EntryMBB = MF->front();
1664     StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
1665 
1666     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
1667     // is the same on all targets.
1668     for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) {
1669       Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
1670       if (isa<ConstantPointerNull>(Arg))
1671         continue; // Skip null pointers. They represent a hole in index space.
1672 
1673       int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
1674       MCSymbol *FrameAllocSym =
1675           MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
1676                                                                 Idx);
1677 
1678       // This should be inserted at the start of the entry block.
1679       auto LocalEscape =
1680           MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
1681               .addSym(FrameAllocSym)
1682               .addFrameIndex(FI);
1683 
1684       EntryMBB.insert(EntryMBB.begin(), LocalEscape);
1685     }
1686 
1687     return true;
1688   }
1689 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)  \
1690   case Intrinsic::INTRINSIC:
1691 #include "llvm/IR/ConstrainedOps.def"
1692     return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
1693                                            MIRBuilder);
1694 
1695   }
1696   return false;
1697 }
1698 
1699 bool IRTranslator::translateInlineAsm(const CallBase &CB,
1700                                       MachineIRBuilder &MIRBuilder) {
1701 
1702   const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
1703 
1704   if (!ALI) {
1705     LLVM_DEBUG(
1706         dbgs() << "Inline asm lowering is not supported for this target yet\n");
1707     return false;
1708   }
1709 
1710   return ALI->lowerInlineAsm(
1711       MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
1712 }
1713 
1714 bool IRTranslator::translateCallBase(const CallBase &CB,
1715                                      MachineIRBuilder &MIRBuilder) {
1716   ArrayRef<Register> Res = getOrCreateVRegs(CB);
1717 
1718   SmallVector<ArrayRef<Register>, 8> Args;
1719   Register SwiftInVReg = 0;
1720   Register SwiftErrorVReg = 0;
1721   for (auto &Arg : CB.args()) {
1722     if (CLI->supportSwiftError() && isSwiftError(Arg)) {
1723       assert(SwiftInVReg == 0 && "Expected only one swift error argument");
1724       LLT Ty = getLLTForType(*Arg->getType(), *DL);
1725       SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
1726       MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
1727                                             &CB, &MIRBuilder.getMBB(), Arg));
1728       Args.emplace_back(makeArrayRef(SwiftInVReg));
1729       SwiftErrorVReg =
1730           SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
1731       continue;
1732     }
1733     Args.push_back(getOrCreateVRegs(*Arg));
1734   }
1735 
1736   // We don't set HasCalls on MFI here yet because call lowering may decide to
1737   // optimize into tail calls. Instead, we defer that to selection where a final
1738   // scan is done to check if any instructions are calls.
1739   bool Success =
1740       CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
1741                      [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
1742 
1743   // Check if we just inserted a tail call.
1744   if (Success) {
1745     assert(!HasTailCall && "Can't tail call return twice from block?");
1746     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1747     HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
1748   }
1749 
1750   return Success;
1751 }
1752 
1753 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
1754   const CallInst &CI = cast<CallInst>(U);
1755   auto TII = MF->getTarget().getIntrinsicInfo();
1756   const Function *F = CI.getCalledFunction();
1757 
1758   // FIXME: support Windows dllimport function calls.
1759   if (F && (F->hasDLLImportStorageClass() ||
1760             (MF->getTarget().getTargetTriple().isOSWindows() &&
1761              F->hasExternalWeakLinkage())))
1762     return false;
1763 
1764   // FIXME: support control flow guard targets.
1765   if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
1766     return false;
1767 
1768   if (CI.isInlineAsm())
1769     return translateInlineAsm(CI, MIRBuilder);
1770 
1771   Intrinsic::ID ID = Intrinsic::not_intrinsic;
1772   if (F && F->isIntrinsic()) {
1773     ID = F->getIntrinsicID();
1774     if (TII && ID == Intrinsic::not_intrinsic)
1775       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
1776   }
1777 
1778   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
1779     return translateCallBase(CI, MIRBuilder);
1780 
1781   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
1782 
1783   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
1784     return true;
1785 
1786   ArrayRef<Register> ResultRegs;
1787   if (!CI.getType()->isVoidTy())
1788     ResultRegs = getOrCreateVRegs(CI);
1789 
1790   // Ignore the callsite attributes. Backend code is most likely not expecting
1791   // an intrinsic to sometimes have side effects and sometimes not.
1792   MachineInstrBuilder MIB =
1793       MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
1794   if (isa<FPMathOperator>(CI))
1795     MIB->copyIRFlags(CI);
1796 
1797   for (auto &Arg : enumerate(CI.arg_operands())) {
1798     // If this is required to be an immediate, don't materialize it in a
1799     // register.
1800     if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
1801       if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
1802         // imm arguments are more convenient than cimm (and realistically
1803         // probably sufficient), so use them.
1804         assert(CI->getBitWidth() <= 64 &&
1805                "large intrinsic immediates not handled");
1806         MIB.addImm(CI->getSExtValue());
1807       } else {
1808         MIB.addFPImm(cast<ConstantFP>(Arg.value()));
1809       }
1810     } else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) {
1811       auto *MDN = dyn_cast<MDNode>(MD->getMetadata());
1812       if (!MDN) // This was probably an MDString.
1813         return false;
1814       MIB.addMetadata(MDN);
1815     } else {
1816       ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
1817       if (VRegs.size() > 1)
1818         return false;
1819       MIB.addUse(VRegs[0]);
1820     }
1821   }
1822 
1823   // Add a MachineMemOperand if it is a target mem intrinsic.
1824   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1825   TargetLowering::IntrinsicInfo Info;
1826   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
1827   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
1828     Align Alignment = Info.align.getValueOr(
1829         DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
1830 
1831     uint64_t Size = Info.memVT.getStoreSize();
1832     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
1833                                                Info.flags, Size, Alignment));
1834   }
1835 
1836   return true;
1837 }
1838 
1839 bool IRTranslator::translateInvoke(const User &U,
1840                                    MachineIRBuilder &MIRBuilder) {
1841   const InvokeInst &I = cast<InvokeInst>(U);
1842   MCContext &Context = MF->getContext();
1843 
1844   const BasicBlock *ReturnBB = I.getSuccessor(0);
1845   const BasicBlock *EHPadBB = I.getSuccessor(1);
1846 
1847   const Function *Fn = I.getCalledFunction();
1848   if (I.isInlineAsm())
1849     return false;
1850 
1851   // FIXME: support invoking patchpoint and statepoint intrinsics.
1852   if (Fn && Fn->isIntrinsic())
1853     return false;
1854 
1855   // FIXME: support whatever these are.
1856   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
1857     return false;
1858 
1859   // FIXME: support control flow guard targets.
1860   if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
1861     return false;
1862 
1863   // FIXME: support Windows exception handling.
1864   if (!isa<LandingPadInst>(EHPadBB->front()))
1865     return false;
1866 
1867   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
1868   // the region covered by the try.
1869   MCSymbol *BeginSymbol = Context.createTempSymbol();
1870   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
1871 
1872   if (!translateCallBase(I, MIRBuilder))
1873     return false;
1874 
1875   MCSymbol *EndSymbol = Context.createTempSymbol();
1876   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
1877 
1878   // FIXME: track probabilities.
1879   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
1880                     &ReturnMBB = getMBB(*ReturnBB);
1881   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
1882   MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
1883   MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
1884   MIRBuilder.buildBr(ReturnMBB);
1885 
1886   return true;
1887 }
1888 
1889 bool IRTranslator::translateCallBr(const User &U,
1890                                    MachineIRBuilder &MIRBuilder) {
1891   // FIXME: Implement this.
1892   return false;
1893 }
1894 
1895 bool IRTranslator::translateLandingPad(const User &U,
1896                                        MachineIRBuilder &MIRBuilder) {
1897   const LandingPadInst &LP = cast<LandingPadInst>(U);
1898 
1899   MachineBasicBlock &MBB = MIRBuilder.getMBB();
1900 
1901   MBB.setIsEHPad();
1902 
1903   // If there aren't registers to copy the values into (e.g., during SjLj
1904   // exceptions), then don't bother.
1905   auto &TLI = *MF->getSubtarget().getTargetLowering();
1906   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
1907   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
1908       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
1909     return true;
1910 
1911   // If landingpad's return type is token type, we don't create DAG nodes
1912   // for its exception pointer and selector value. The extraction of exception
1913   // pointer or selector value from token type landingpads is not currently
1914   // supported.
1915   if (LP.getType()->isTokenTy())
1916     return true;
1917 
1918   // Add a label to mark the beginning of the landing pad.  Deletion of the
1919   // landing pad can thus be detected via the MachineModuleInfo.
1920   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
1921     .addSym(MF->addLandingPad(&MBB));
1922 
1923   LLT Ty = getLLTForType(*LP.getType(), *DL);
1924   Register Undef = MRI->createGenericVirtualRegister(Ty);
1925   MIRBuilder.buildUndef(Undef);
1926 
1927   SmallVector<LLT, 2> Tys;
1928   for (Type *Ty : cast<StructType>(LP.getType())->elements())
1929     Tys.push_back(getLLTForType(*Ty, *DL));
1930   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
1931 
1932   // Mark exception register as live in.
1933   Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
1934   if (!ExceptionReg)
1935     return false;
1936 
1937   MBB.addLiveIn(ExceptionReg);
1938   ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
1939   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
1940 
1941   Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
1942   if (!SelectorReg)
1943     return false;
1944 
1945   MBB.addLiveIn(SelectorReg);
1946   Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
1947   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
1948   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
1949 
1950   return true;
1951 }
1952 
1953 bool IRTranslator::translateAlloca(const User &U,
1954                                    MachineIRBuilder &MIRBuilder) {
1955   auto &AI = cast<AllocaInst>(U);
1956 
1957   if (AI.isSwiftError())
1958     return true;
1959 
1960   if (AI.isStaticAlloca()) {
1961     Register Res = getOrCreateVReg(AI);
1962     int FI = getOrCreateFrameIndex(AI);
1963     MIRBuilder.buildFrameIndex(Res, FI);
1964     return true;
1965   }
1966 
1967   // FIXME: support stack probing for Windows.
1968   if (MF->getTarget().getTargetTriple().isOSWindows())
1969     return false;
1970 
1971   // Now we're in the harder dynamic case.
1972   Register NumElts = getOrCreateVReg(*AI.getArraySize());
1973   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
1974   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
1975   if (MRI->getType(NumElts) != IntPtrTy) {
1976     Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
1977     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
1978     NumElts = ExtElts;
1979   }
1980 
1981   Type *Ty = AI.getAllocatedType();
1982 
1983   Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
1984   Register TySize =
1985       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
1986   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
1987 
1988   // Round the size of the allocation up to the stack alignment size
1989   // by add SA-1 to the size. This doesn't overflow because we're computing
1990   // an address inside an alloca.
1991   Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
1992   auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
1993   auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
1994                                       MachineInstr::NoUWrap);
1995   auto AlignCst =
1996       MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
1997   auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
1998 
1999   Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
2000   if (Alignment <= StackAlign)
2001     Alignment = Align(1);
2002   MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
2003 
2004   MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
2005   assert(MF->getFrameInfo().hasVarSizedObjects());
2006   return true;
2007 }
2008 
2009 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
2010   // FIXME: We may need more info about the type. Because of how LLT works,
2011   // we're completely discarding the i64/double distinction here (amongst
2012   // others). Fortunately the ABIs I know of where that matters don't use va_arg
2013   // anyway but that's not guaranteed.
2014   MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
2015                         {getOrCreateVReg(*U.getOperand(0)),
2016                          DL->getABITypeAlign(U.getType()).value()});
2017   return true;
2018 }
2019 
2020 bool IRTranslator::translateInsertElement(const User &U,
2021                                           MachineIRBuilder &MIRBuilder) {
2022   // If it is a <1 x Ty> vector, use the scalar as it is
2023   // not a legal vector type in LLT.
2024   if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
2025     return translateCopy(U, *U.getOperand(1), MIRBuilder);
2026 
2027   Register Res = getOrCreateVReg(U);
2028   Register Val = getOrCreateVReg(*U.getOperand(0));
2029   Register Elt = getOrCreateVReg(*U.getOperand(1));
2030   Register Idx = getOrCreateVReg(*U.getOperand(2));
2031   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
2032   return true;
2033 }
2034 
2035 bool IRTranslator::translateExtractElement(const User &U,
2036                                            MachineIRBuilder &MIRBuilder) {
2037   // If it is a <1 x Ty> vector, use the scalar as it is
2038   // not a legal vector type in LLT.
2039   if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
2040     return translateCopy(U, *U.getOperand(0), MIRBuilder);
2041 
2042   Register Res = getOrCreateVReg(U);
2043   Register Val = getOrCreateVReg(*U.getOperand(0));
2044   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2045   unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
2046   Register Idx;
2047   if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
2048     if (CI->getBitWidth() != PreferredVecIdxWidth) {
2049       APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
2050       auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
2051       Idx = getOrCreateVReg(*NewIdxCI);
2052     }
2053   }
2054   if (!Idx)
2055     Idx = getOrCreateVReg(*U.getOperand(1));
2056   if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
2057     const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
2058     Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
2059   }
2060   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
2061   return true;
2062 }
2063 
2064 bool IRTranslator::translateShuffleVector(const User &U,
2065                                           MachineIRBuilder &MIRBuilder) {
2066   ArrayRef<int> Mask;
2067   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
2068     Mask = SVI->getShuffleMask();
2069   else
2070     Mask = cast<ConstantExpr>(U).getShuffleMask();
2071   ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
2072   MIRBuilder
2073       .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
2074                   {getOrCreateVReg(*U.getOperand(0)),
2075                    getOrCreateVReg(*U.getOperand(1))})
2076       .addShuffleMask(MaskAlloc);
2077   return true;
2078 }
2079 
2080 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
2081   const PHINode &PI = cast<PHINode>(U);
2082 
2083   SmallVector<MachineInstr *, 4> Insts;
2084   for (auto Reg : getOrCreateVRegs(PI)) {
2085     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
2086     Insts.push_back(MIB.getInstr());
2087   }
2088 
2089   PendingPHIs.emplace_back(&PI, std::move(Insts));
2090   return true;
2091 }
2092 
2093 bool IRTranslator::translateAtomicCmpXchg(const User &U,
2094                                           MachineIRBuilder &MIRBuilder) {
2095   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
2096 
2097   auto &TLI = *MF->getSubtarget().getTargetLowering();
2098   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2099 
2100   Type *ResType = I.getType();
2101   Type *ValType = ResType->Type::getStructElementType(0);
2102 
2103   auto Res = getOrCreateVRegs(I);
2104   Register OldValRes = Res[0];
2105   Register SuccessRes = Res[1];
2106   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2107   Register Cmp = getOrCreateVReg(*I.getCompareOperand());
2108   Register NewVal = getOrCreateVReg(*I.getNewValOperand());
2109 
2110   AAMDNodes AAMetadata;
2111   I.getAAMetadata(AAMetadata);
2112 
2113   MIRBuilder.buildAtomicCmpXchgWithSuccess(
2114       OldValRes, SuccessRes, Addr, Cmp, NewVal,
2115       *MF->getMachineMemOperand(
2116           MachinePointerInfo(I.getPointerOperand()), Flags,
2117           DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr,
2118           I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering()));
2119   return true;
2120 }
2121 
2122 bool IRTranslator::translateAtomicRMW(const User &U,
2123                                       MachineIRBuilder &MIRBuilder) {
2124   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2125   auto &TLI = *MF->getSubtarget().getTargetLowering();
2126   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2127 
2128   Type *ResType = I.getType();
2129 
2130   Register Res = getOrCreateVReg(I);
2131   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2132   Register Val = getOrCreateVReg(*I.getValOperand());
2133 
2134   unsigned Opcode = 0;
2135   switch (I.getOperation()) {
2136   default:
2137     return false;
2138   case AtomicRMWInst::Xchg:
2139     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
2140     break;
2141   case AtomicRMWInst::Add:
2142     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2143     break;
2144   case AtomicRMWInst::Sub:
2145     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2146     break;
2147   case AtomicRMWInst::And:
2148     Opcode = TargetOpcode::G_ATOMICRMW_AND;
2149     break;
2150   case AtomicRMWInst::Nand:
2151     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2152     break;
2153   case AtomicRMWInst::Or:
2154     Opcode = TargetOpcode::G_ATOMICRMW_OR;
2155     break;
2156   case AtomicRMWInst::Xor:
2157     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2158     break;
2159   case AtomicRMWInst::Max:
2160     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2161     break;
2162   case AtomicRMWInst::Min:
2163     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2164     break;
2165   case AtomicRMWInst::UMax:
2166     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2167     break;
2168   case AtomicRMWInst::UMin:
2169     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2170     break;
2171   case AtomicRMWInst::FAdd:
2172     Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2173     break;
2174   case AtomicRMWInst::FSub:
2175     Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2176     break;
2177   }
2178 
2179   AAMDNodes AAMetadata;
2180   I.getAAMetadata(AAMetadata);
2181 
2182   MIRBuilder.buildAtomicRMW(
2183       Opcode, Res, Addr, Val,
2184       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2185                                 Flags, DL->getTypeStoreSize(ResType),
2186                                 getMemOpAlign(I), AAMetadata, nullptr,
2187                                 I.getSyncScopeID(), I.getOrdering()));
2188   return true;
2189 }
2190 
2191 bool IRTranslator::translateFence(const User &U,
2192                                   MachineIRBuilder &MIRBuilder) {
2193   const FenceInst &Fence = cast<FenceInst>(U);
2194   MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2195                         Fence.getSyncScopeID());
2196   return true;
2197 }
2198 
2199 bool IRTranslator::translateFreeze(const User &U,
2200                                    MachineIRBuilder &MIRBuilder) {
2201   const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
2202   const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
2203 
2204   assert(DstRegs.size() == SrcRegs.size() &&
2205          "Freeze with different source and destination type?");
2206 
2207   for (unsigned I = 0; I < DstRegs.size(); ++I) {
2208     MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
2209   }
2210 
2211   return true;
2212 }
2213 
2214 void IRTranslator::finishPendingPhis() {
2215 #ifndef NDEBUG
2216   DILocationVerifier Verifier;
2217   GISelObserverWrapper WrapperObserver(&Verifier);
2218   RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2219 #endif // ifndef NDEBUG
2220   for (auto &Phi : PendingPHIs) {
2221     const PHINode *PI = Phi.first;
2222     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
2223     MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
2224     EntryBuilder->setDebugLoc(PI->getDebugLoc());
2225 #ifndef NDEBUG
2226     Verifier.setCurrentInst(PI);
2227 #endif // ifndef NDEBUG
2228 
2229     SmallSet<const MachineBasicBlock *, 16> SeenPreds;
2230     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
2231       auto IRPred = PI->getIncomingBlock(i);
2232       ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
2233       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
2234         if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
2235           continue;
2236         SeenPreds.insert(Pred);
2237         for (unsigned j = 0; j < ValRegs.size(); ++j) {
2238           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
2239           MIB.addUse(ValRegs[j]);
2240           MIB.addMBB(Pred);
2241         }
2242       }
2243     }
2244   }
2245 }
2246 
2247 bool IRTranslator::valueIsSplit(const Value &V,
2248                                 SmallVectorImpl<uint64_t> *Offsets) {
2249   SmallVector<LLT, 4> SplitTys;
2250   if (Offsets && !Offsets->empty())
2251     Offsets->clear();
2252   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
2253   return SplitTys.size() > 1;
2254 }
2255 
2256 bool IRTranslator::translate(const Instruction &Inst) {
2257   CurBuilder->setDebugLoc(Inst.getDebugLoc());
2258   // We only emit constants into the entry block from here. To prevent jumpy
2259   // debug behaviour set the line to 0.
2260   if (const DebugLoc &DL = Inst.getDebugLoc())
2261     EntryBuilder->setDebugLoc(
2262         DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
2263   else
2264     EntryBuilder->setDebugLoc(DebugLoc());
2265 
2266   auto &TLI = *MF->getSubtarget().getTargetLowering();
2267   if (TLI.fallBackToDAGISel(Inst))
2268     return false;
2269 
2270   switch (Inst.getOpcode()) {
2271 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2272   case Instruction::OPCODE:                                                    \
2273     return translate##OPCODE(Inst, *CurBuilder.get());
2274 #include "llvm/IR/Instruction.def"
2275   default:
2276     return false;
2277   }
2278 }
2279 
2280 bool IRTranslator::translate(const Constant &C, Register Reg) {
2281   if (auto CI = dyn_cast<ConstantInt>(&C))
2282     EntryBuilder->buildConstant(Reg, *CI);
2283   else if (auto CF = dyn_cast<ConstantFP>(&C))
2284     EntryBuilder->buildFConstant(Reg, *CF);
2285   else if (isa<UndefValue>(C))
2286     EntryBuilder->buildUndef(Reg);
2287   else if (isa<ConstantPointerNull>(C))
2288     EntryBuilder->buildConstant(Reg, 0);
2289   else if (auto GV = dyn_cast<GlobalValue>(&C))
2290     EntryBuilder->buildGlobalValue(Reg, GV);
2291   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
2292     if (!CAZ->getType()->isVectorTy())
2293       return false;
2294     // Return the scalar if it is a <1 x Ty> vector.
2295     if (CAZ->getNumElements() == 1)
2296       return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get());
2297     SmallVector<Register, 4> Ops;
2298     for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
2299       Constant &Elt = *CAZ->getElementValue(i);
2300       Ops.push_back(getOrCreateVReg(Elt));
2301     }
2302     EntryBuilder->buildBuildVector(Reg, Ops);
2303   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
2304     // Return the scalar if it is a <1 x Ty> vector.
2305     if (CV->getNumElements() == 1)
2306       return translateCopy(C, *CV->getElementAsConstant(0),
2307                            *EntryBuilder.get());
2308     SmallVector<Register, 4> Ops;
2309     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
2310       Constant &Elt = *CV->getElementAsConstant(i);
2311       Ops.push_back(getOrCreateVReg(Elt));
2312     }
2313     EntryBuilder->buildBuildVector(Reg, Ops);
2314   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
2315     switch(CE->getOpcode()) {
2316 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2317   case Instruction::OPCODE:                                                    \
2318     return translate##OPCODE(*CE, *EntryBuilder.get());
2319 #include "llvm/IR/Instruction.def"
2320     default:
2321       return false;
2322     }
2323   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
2324     if (CV->getNumOperands() == 1)
2325       return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get());
2326     SmallVector<Register, 4> Ops;
2327     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
2328       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
2329     }
2330     EntryBuilder->buildBuildVector(Reg, Ops);
2331   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
2332     EntryBuilder->buildBlockAddress(Reg, BA);
2333   } else
2334     return false;
2335 
2336   return true;
2337 }
2338 
2339 void IRTranslator::finalizeBasicBlock() {
2340   for (auto &JTCase : SL->JTCases) {
2341     // Emit header first, if it wasn't already emitted.
2342     if (!JTCase.first.Emitted)
2343       emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
2344 
2345     emitJumpTable(JTCase.second, JTCase.second.MBB);
2346   }
2347   SL->JTCases.clear();
2348 }
2349 
2350 void IRTranslator::finalizeFunction() {
2351   // Release the memory used by the different maps we
2352   // needed during the translation.
2353   PendingPHIs.clear();
2354   VMap.reset();
2355   FrameIndices.clear();
2356   MachinePreds.clear();
2357   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
2358   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
2359   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
2360   EntryBuilder.reset();
2361   CurBuilder.reset();
2362   FuncInfo.clear();
2363 }
2364 
2365 /// Returns true if a BasicBlock \p BB within a variadic function contains a
2366 /// variadic musttail call.
2367 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
2368   if (!IsVarArg)
2369     return false;
2370 
2371   // Walk the block backwards, because tail calls usually only appear at the end
2372   // of a block.
2373   return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
2374     const auto *CI = dyn_cast<CallInst>(&I);
2375     return CI && CI->isMustTailCall();
2376   });
2377 }
2378 
2379 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
2380   MF = &CurMF;
2381   const Function &F = MF->getFunction();
2382   if (F.empty())
2383     return false;
2384   GISelCSEAnalysisWrapper &Wrapper =
2385       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
2386   // Set the CSEConfig and run the analysis.
2387   GISelCSEInfo *CSEInfo = nullptr;
2388   TPC = &getAnalysis<TargetPassConfig>();
2389   bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
2390                        ? EnableCSEInIRTranslator
2391                        : TPC->isGISelCSEEnabled();
2392 
2393   if (EnableCSE) {
2394     EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
2395     CSEInfo = &Wrapper.get(TPC->getCSEConfig());
2396     EntryBuilder->setCSEInfo(CSEInfo);
2397     CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
2398     CurBuilder->setCSEInfo(CSEInfo);
2399   } else {
2400     EntryBuilder = std::make_unique<MachineIRBuilder>();
2401     CurBuilder = std::make_unique<MachineIRBuilder>();
2402   }
2403   CLI = MF->getSubtarget().getCallLowering();
2404   CurBuilder->setMF(*MF);
2405   EntryBuilder->setMF(*MF);
2406   MRI = &MF->getRegInfo();
2407   DL = &F.getParent()->getDataLayout();
2408   ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
2409   FuncInfo.MF = MF;
2410   FuncInfo.BPI = nullptr;
2411   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2412   const TargetMachine &TM = MF->getTarget();
2413   SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
2414   SL->init(TLI, TM, *DL);
2415 
2416   EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F);
2417 
2418   assert(PendingPHIs.empty() && "stale PHIs");
2419 
2420   if (!DL->isLittleEndian()) {
2421     // Currently we don't properly handle big endian code.
2422     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2423                                F.getSubprogram(), &F.getEntryBlock());
2424     R << "unable to translate in big endian mode";
2425     reportTranslationError(*MF, *TPC, *ORE, R);
2426   }
2427 
2428   // Release the per-function state when we return, whether we succeeded or not.
2429   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
2430 
2431   // Setup a separate basic-block for the arguments and constants
2432   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
2433   MF->push_back(EntryBB);
2434   EntryBuilder->setMBB(*EntryBB);
2435 
2436   DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
2437   SwiftError.setFunction(CurMF);
2438   SwiftError.createEntriesInEntryBlock(DbgLoc);
2439 
2440   bool IsVarArg = F.isVarArg();
2441   bool HasMustTailInVarArgFn = false;
2442 
2443   // Create all blocks, in IR order, to preserve the layout.
2444   for (const BasicBlock &BB: F) {
2445     auto *&MBB = BBToMBB[&BB];
2446 
2447     MBB = MF->CreateMachineBasicBlock(&BB);
2448     MF->push_back(MBB);
2449 
2450     if (BB.hasAddressTaken())
2451       MBB->setHasAddressTaken();
2452 
2453     if (!HasMustTailInVarArgFn)
2454       HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
2455   }
2456 
2457   MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
2458 
2459   // Make our arguments/constants entry block fallthrough to the IR entry block.
2460   EntryBB->addSuccessor(&getMBB(F.front()));
2461 
2462   if (CLI->fallBackToDAGISel(F)) {
2463     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2464                                F.getSubprogram(), &F.getEntryBlock());
2465     R << "unable to lower function: " << ore::NV("Prototype", F.getType());
2466     reportTranslationError(*MF, *TPC, *ORE, R);
2467     return false;
2468   }
2469 
2470   // Lower the actual args into this basic block.
2471   SmallVector<ArrayRef<Register>, 8> VRegArgs;
2472   for (const Argument &Arg: F.args()) {
2473     if (DL->getTypeStoreSize(Arg.getType()).isZero())
2474       continue; // Don't handle zero sized types.
2475     ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
2476     VRegArgs.push_back(VRegs);
2477 
2478     if (Arg.hasSwiftErrorAttr()) {
2479       assert(VRegs.size() == 1 && "Too many vregs for Swift error");
2480       SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
2481     }
2482   }
2483 
2484   if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) {
2485     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2486                                F.getSubprogram(), &F.getEntryBlock());
2487     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
2488     reportTranslationError(*MF, *TPC, *ORE, R);
2489     return false;
2490   }
2491 
2492   // Need to visit defs before uses when translating instructions.
2493   GISelObserverWrapper WrapperObserver;
2494   if (EnableCSE && CSEInfo)
2495     WrapperObserver.addObserver(CSEInfo);
2496   {
2497     ReversePostOrderTraversal<const Function *> RPOT(&F);
2498 #ifndef NDEBUG
2499     DILocationVerifier Verifier;
2500     WrapperObserver.addObserver(&Verifier);
2501 #endif // ifndef NDEBUG
2502     RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2503     RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
2504     for (const BasicBlock *BB : RPOT) {
2505       MachineBasicBlock &MBB = getMBB(*BB);
2506       // Set the insertion point of all the following translations to
2507       // the end of this basic block.
2508       CurBuilder->setMBB(MBB);
2509       HasTailCall = false;
2510       for (const Instruction &Inst : *BB) {
2511         // If we translated a tail call in the last step, then we know
2512         // everything after the call is either a return, or something that is
2513         // handled by the call itself. (E.g. a lifetime marker or assume
2514         // intrinsic.) In this case, we should stop translating the block and
2515         // move on.
2516         if (HasTailCall)
2517           break;
2518 #ifndef NDEBUG
2519         Verifier.setCurrentInst(&Inst);
2520 #endif // ifndef NDEBUG
2521         if (translate(Inst))
2522           continue;
2523 
2524         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2525                                    Inst.getDebugLoc(), BB);
2526         R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
2527 
2528         if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
2529           std::string InstStrStorage;
2530           raw_string_ostream InstStr(InstStrStorage);
2531           InstStr << Inst;
2532 
2533           R << ": '" << InstStr.str() << "'";
2534         }
2535 
2536         reportTranslationError(*MF, *TPC, *ORE, R);
2537         return false;
2538       }
2539 
2540       finalizeBasicBlock();
2541     }
2542 #ifndef NDEBUG
2543     WrapperObserver.removeObserver(&Verifier);
2544 #endif
2545   }
2546 
2547   finishPendingPhis();
2548 
2549   SwiftError.propagateVRegs();
2550 
2551   // Merge the argument lowering and constants block with its single
2552   // successor, the LLVM-IR entry block.  We want the basic block to
2553   // be maximal.
2554   assert(EntryBB->succ_size() == 1 &&
2555          "Custom BB used for lowering should have only one successor");
2556   // Get the successor of the current entry block.
2557   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
2558   assert(NewEntryBB.pred_size() == 1 &&
2559          "LLVM-IR entry block has a predecessor!?");
2560   // Move all the instruction from the current entry block to the
2561   // new entry block.
2562   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
2563                     EntryBB->end());
2564 
2565   // Update the live-in information for the new entry block.
2566   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
2567     NewEntryBB.addLiveIn(LiveIn);
2568   NewEntryBB.sortUniqueLiveIns();
2569 
2570   // Get rid of the now empty basic block.
2571   EntryBB->removeSuccessor(&NewEntryBB);
2572   MF->remove(EntryBB);
2573   MF->DeleteMachineBasicBlock(EntryBB);
2574 
2575   assert(&MF->front() == &NewEntryBB &&
2576          "New entry wasn't next in the list of basic block!");
2577 
2578   // Initialize stack protector information.
2579   StackProtector &SP = getAnalysis<StackProtector>();
2580   SP.copyToMachineFrameInfo(MF->getFrameInfo());
2581 
2582   return false;
2583 }
2584