1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 26 #include "llvm/CodeGen/LowLevelType.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/StackProtector.h" 36 #include "llvm/CodeGen/TargetFrameLowering.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfo.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GetElementPtrTypeIterator.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/MC/MCContext.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CodeGen.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/LowLevelTypeImpl.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetIntrinsicInfo.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <iterator> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 #define DEBUG_TYPE "irtranslator" 81 82 using namespace llvm; 83 84 static cl::opt<bool> 85 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 86 cl::desc("Should enable CSE in irtranslator"), 87 cl::Optional, cl::init(false)); 88 char IRTranslator::ID = 0; 89 90 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 91 false, false) 92 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 93 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 94 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 95 false, false) 96 97 static void reportTranslationError(MachineFunction &MF, 98 const TargetPassConfig &TPC, 99 OptimizationRemarkEmitter &ORE, 100 OptimizationRemarkMissed &R) { 101 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 102 103 // Print the function name explicitly if we don't have a debug location (which 104 // makes the diagnostic less useful) or if we're going to emit a raw error. 105 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 106 R << (" (in function: " + MF.getName() + ")").str(); 107 108 if (TPC.isGlobalISelAbortEnabled()) 109 report_fatal_error(R.getMsg()); 110 else 111 ORE.emit(R); 112 } 113 114 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } 115 116 #ifndef NDEBUG 117 namespace { 118 /// Verify that every instruction created has the same DILocation as the 119 /// instruction being translated. 120 class DILocationVerifier : public GISelChangeObserver { 121 const Instruction *CurrInst = nullptr; 122 123 public: 124 DILocationVerifier() = default; 125 ~DILocationVerifier() = default; 126 127 const Instruction *getCurrentInst() const { return CurrInst; } 128 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 129 130 void erasingInstr(MachineInstr &MI) override {} 131 void changingInstr(MachineInstr &MI) override {} 132 void changedInstr(MachineInstr &MI) override {} 133 134 void createdInstr(MachineInstr &MI) override { 135 assert(getCurrentInst() && "Inserted instruction without a current MI"); 136 137 // Only print the check message if we're actually checking it. 138 #ifndef NDEBUG 139 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 140 << " was copied to " << MI); 141 #endif 142 // We allow insts in the entry block to have a debug loc line of 0 because 143 // they could have originated from constants, and we don't want a jumpy 144 // debug experience. 145 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 146 MI.getDebugLoc().getLine() == 0) && 147 "Line info was not transferred to all instructions"); 148 } 149 }; 150 } // namespace 151 #endif // ifndef NDEBUG 152 153 154 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 155 AU.addRequired<StackProtector>(); 156 AU.addRequired<TargetPassConfig>(); 157 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 158 getSelectionDAGFallbackAnalysisUsage(AU); 159 MachineFunctionPass::getAnalysisUsage(AU); 160 } 161 162 IRTranslator::ValueToVRegInfo::VRegListT & 163 IRTranslator::allocateVRegs(const Value &Val) { 164 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 165 auto *Regs = VMap.getVRegs(Val); 166 auto *Offsets = VMap.getOffsets(Val); 167 SmallVector<LLT, 4> SplitTys; 168 computeValueLLTs(*DL, *Val.getType(), SplitTys, 169 Offsets->empty() ? Offsets : nullptr); 170 for (unsigned i = 0; i < SplitTys.size(); ++i) 171 Regs->push_back(0); 172 return *Regs; 173 } 174 175 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 176 auto VRegsIt = VMap.findVRegs(Val); 177 if (VRegsIt != VMap.vregs_end()) 178 return *VRegsIt->second; 179 180 if (Val.getType()->isVoidTy()) 181 return *VMap.getVRegs(Val); 182 183 // Create entry for this type. 184 auto *VRegs = VMap.getVRegs(Val); 185 auto *Offsets = VMap.getOffsets(Val); 186 187 assert(Val.getType()->isSized() && 188 "Don't know how to create an empty vreg"); 189 190 SmallVector<LLT, 4> SplitTys; 191 computeValueLLTs(*DL, *Val.getType(), SplitTys, 192 Offsets->empty() ? Offsets : nullptr); 193 194 if (!isa<Constant>(Val)) { 195 for (auto Ty : SplitTys) 196 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 197 return *VRegs; 198 } 199 200 if (Val.getType()->isAggregateType()) { 201 // UndefValue, ConstantAggregateZero 202 auto &C = cast<Constant>(Val); 203 unsigned Idx = 0; 204 while (auto Elt = C.getAggregateElement(Idx++)) { 205 auto EltRegs = getOrCreateVRegs(*Elt); 206 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 207 } 208 } else { 209 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 210 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 211 bool Success = translate(cast<Constant>(Val), VRegs->front()); 212 if (!Success) { 213 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 214 MF->getFunction().getSubprogram(), 215 &MF->getFunction().getEntryBlock()); 216 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 217 reportTranslationError(*MF, *TPC, *ORE, R); 218 return *VRegs; 219 } 220 } 221 222 return *VRegs; 223 } 224 225 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 226 auto MapEntry = FrameIndices.find(&AI); 227 if (MapEntry != FrameIndices.end()) 228 return MapEntry->second; 229 230 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 231 uint64_t Size = 232 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 233 234 // Always allocate at least one byte. 235 Size = std::max<uint64_t>(Size, 1u); 236 237 int &FI = FrameIndices[&AI]; 238 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 239 return FI; 240 } 241 242 Align IRTranslator::getMemOpAlign(const Instruction &I) { 243 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 244 return SI->getAlign(); 245 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 246 return LI->getAlign(); 247 } 248 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 249 // TODO(PR27168): This instruction has no alignment attribute, but unlike 250 // the default alignment for load/store, the default here is to assume 251 // it has NATURAL alignment, not DataLayout-specified alignment. 252 const DataLayout &DL = AI->getModule()->getDataLayout(); 253 return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType())); 254 } 255 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 256 // TODO(PR27168): This instruction has no alignment attribute, but unlike 257 // the default alignment for load/store, the default here is to assume 258 // it has NATURAL alignment, not DataLayout-specified alignment. 259 const DataLayout &DL = AI->getModule()->getDataLayout(); 260 return Align(DL.getTypeStoreSize(AI->getValOperand()->getType())); 261 } 262 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 263 R << "unable to translate memop: " << ore::NV("Opcode", &I); 264 reportTranslationError(*MF, *TPC, *ORE, R); 265 return Align(1); 266 } 267 268 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 269 MachineBasicBlock *&MBB = BBToMBB[&BB]; 270 assert(MBB && "BasicBlock was not encountered before"); 271 return *MBB; 272 } 273 274 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 275 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 276 MachinePreds[Edge].push_back(NewPred); 277 } 278 279 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 280 MachineIRBuilder &MIRBuilder) { 281 // Get or create a virtual register for each value. 282 // Unless the value is a Constant => loadimm cst? 283 // or inline constant each time? 284 // Creation of a virtual register needs to have a size. 285 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 286 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 287 Register Res = getOrCreateVReg(U); 288 uint16_t Flags = 0; 289 if (isa<Instruction>(U)) { 290 const Instruction &I = cast<Instruction>(U); 291 Flags = MachineInstr::copyFlagsFromInstruction(I); 292 } 293 294 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 295 return true; 296 } 297 298 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 299 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 300 Register Res = getOrCreateVReg(U); 301 uint16_t Flags = 0; 302 if (isa<Instruction>(U)) { 303 const Instruction &I = cast<Instruction>(U); 304 Flags = MachineInstr::copyFlagsFromInstruction(I); 305 } 306 MIRBuilder.buildFNeg(Res, Op0, Flags); 307 return true; 308 } 309 310 bool IRTranslator::translateCompare(const User &U, 311 MachineIRBuilder &MIRBuilder) { 312 auto *CI = dyn_cast<CmpInst>(&U); 313 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 314 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 315 Register Res = getOrCreateVReg(U); 316 CmpInst::Predicate Pred = 317 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 318 cast<ConstantExpr>(U).getPredicate()); 319 if (CmpInst::isIntPredicate(Pred)) 320 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 321 else if (Pred == CmpInst::FCMP_FALSE) 322 MIRBuilder.buildCopy( 323 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 324 else if (Pred == CmpInst::FCMP_TRUE) 325 MIRBuilder.buildCopy( 326 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 327 else { 328 assert(CI && "Instruction should be CmpInst"); 329 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, 330 MachineInstr::copyFlagsFromInstruction(*CI)); 331 } 332 333 return true; 334 } 335 336 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 337 const ReturnInst &RI = cast<ReturnInst>(U); 338 const Value *Ret = RI.getReturnValue(); 339 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 340 Ret = nullptr; 341 342 ArrayRef<Register> VRegs; 343 if (Ret) 344 VRegs = getOrCreateVRegs(*Ret); 345 346 Register SwiftErrorVReg = 0; 347 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 348 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 349 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 350 } 351 352 // The target may mess up with the insertion point, but 353 // this is not important as a return is the last instruction 354 // of the block anyway. 355 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 356 } 357 358 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 359 const BranchInst &BrInst = cast<BranchInst>(U); 360 unsigned Succ = 0; 361 if (!BrInst.isUnconditional()) { 362 // We want a G_BRCOND to the true BB followed by an unconditional branch. 363 Register Tst = getOrCreateVReg(*BrInst.getCondition()); 364 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 365 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 366 MIRBuilder.buildBrCond(Tst, TrueBB); 367 } 368 369 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 370 MachineBasicBlock &TgtBB = getMBB(BrTgt); 371 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 372 373 // If the unconditional target is the layout successor, fallthrough. 374 if (!CurBB.isLayoutSuccessor(&TgtBB)) 375 MIRBuilder.buildBr(TgtBB); 376 377 // Link successors. 378 for (const BasicBlock *Succ : successors(&BrInst)) 379 CurBB.addSuccessor(&getMBB(*Succ)); 380 return true; 381 } 382 383 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 384 MachineBasicBlock *Dst, 385 BranchProbability Prob) { 386 if (!FuncInfo.BPI) { 387 Src->addSuccessorWithoutProb(Dst); 388 return; 389 } 390 if (Prob.isUnknown()) 391 Prob = getEdgeProbability(Src, Dst); 392 Src->addSuccessor(Dst, Prob); 393 } 394 395 BranchProbability 396 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 397 const MachineBasicBlock *Dst) const { 398 const BasicBlock *SrcBB = Src->getBasicBlock(); 399 const BasicBlock *DstBB = Dst->getBasicBlock(); 400 if (!FuncInfo.BPI) { 401 // If BPI is not available, set the default probability as 1 / N, where N is 402 // the number of successors. 403 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 404 return BranchProbability(1, SuccSize); 405 } 406 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 407 } 408 409 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 410 using namespace SwitchCG; 411 // Extract cases from the switch. 412 const SwitchInst &SI = cast<SwitchInst>(U); 413 BranchProbabilityInfo *BPI = FuncInfo.BPI; 414 CaseClusterVector Clusters; 415 Clusters.reserve(SI.getNumCases()); 416 for (auto &I : SI.cases()) { 417 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 418 assert(Succ && "Could not find successor mbb in mapping"); 419 const ConstantInt *CaseVal = I.getCaseValue(); 420 BranchProbability Prob = 421 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 422 : BranchProbability(1, SI.getNumCases() + 1); 423 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 424 } 425 426 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 427 428 // Cluster adjacent cases with the same destination. We do this at all 429 // optimization levels because it's cheap to do and will make codegen faster 430 // if there are many clusters. 431 sortAndRangeify(Clusters); 432 433 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 434 435 // If there is only the default destination, jump there directly. 436 if (Clusters.empty()) { 437 SwitchMBB->addSuccessor(DefaultMBB); 438 if (DefaultMBB != SwitchMBB->getNextNode()) 439 MIB.buildBr(*DefaultMBB); 440 return true; 441 } 442 443 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 444 445 LLVM_DEBUG({ 446 dbgs() << "Case clusters: "; 447 for (const CaseCluster &C : Clusters) { 448 if (C.Kind == CC_JumpTable) 449 dbgs() << "JT:"; 450 if (C.Kind == CC_BitTests) 451 dbgs() << "BT:"; 452 453 C.Low->getValue().print(dbgs(), true); 454 if (C.Low != C.High) { 455 dbgs() << '-'; 456 C.High->getValue().print(dbgs(), true); 457 } 458 dbgs() << ' '; 459 } 460 dbgs() << '\n'; 461 }); 462 463 assert(!Clusters.empty()); 464 SwitchWorkList WorkList; 465 CaseClusterIt First = Clusters.begin(); 466 CaseClusterIt Last = Clusters.end() - 1; 467 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 468 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 469 470 // FIXME: At the moment we don't do any splitting optimizations here like 471 // SelectionDAG does, so this worklist only has one entry. 472 while (!WorkList.empty()) { 473 SwitchWorkListItem W = WorkList.back(); 474 WorkList.pop_back(); 475 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 476 return false; 477 } 478 return true; 479 } 480 481 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 482 MachineBasicBlock *MBB) { 483 // Emit the code for the jump table 484 assert(JT.Reg != -1U && "Should lower JT Header first!"); 485 MachineIRBuilder MIB(*MBB->getParent()); 486 MIB.setMBB(*MBB); 487 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 488 489 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 490 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 491 492 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 493 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 494 } 495 496 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 497 SwitchCG::JumpTableHeader &JTH, 498 MachineBasicBlock *HeaderBB) { 499 MachineIRBuilder MIB(*HeaderBB->getParent()); 500 MIB.setMBB(*HeaderBB); 501 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 502 503 const Value &SValue = *JTH.SValue; 504 // Subtract the lowest switch case value from the value being switched on. 505 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 506 Register SwitchOpReg = getOrCreateVReg(SValue); 507 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 508 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 509 510 // This value may be smaller or larger than the target's pointer type, and 511 // therefore require extension or truncating. 512 Type *PtrIRTy = SValue.getType()->getPointerTo(); 513 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 514 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 515 516 JT.Reg = Sub.getReg(0); 517 518 if (JTH.OmitRangeCheck) { 519 if (JT.MBB != HeaderBB->getNextNode()) 520 MIB.buildBr(*JT.MBB); 521 return true; 522 } 523 524 // Emit the range check for the jump table, and branch to the default block 525 // for the switch statement if the value being switched on exceeds the 526 // largest case in the switch. 527 auto Cst = getOrCreateVReg( 528 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 529 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 530 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 531 532 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 533 534 // Avoid emitting unnecessary branches to the next block. 535 if (JT.MBB != HeaderBB->getNextNode()) 536 BrCond = MIB.buildBr(*JT.MBB); 537 return true; 538 } 539 540 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 541 MachineBasicBlock *SwitchBB, 542 MachineIRBuilder &MIB) { 543 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 544 Register Cond; 545 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 546 MIB.setDebugLoc(CB.DbgLoc); 547 MIB.setMBB(*CB.ThisBB); 548 549 if (CB.PredInfo.NoCmp) { 550 // Branch or fall through to TrueBB. 551 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 552 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 553 CB.ThisBB); 554 CB.ThisBB->normalizeSuccProbs(); 555 if (CB.TrueBB != CB.ThisBB->getNextNode()) 556 MIB.buildBr(*CB.TrueBB); 557 MIB.setDebugLoc(OldDbgLoc); 558 return; 559 } 560 561 const LLT i1Ty = LLT::scalar(1); 562 // Build the compare. 563 if (!CB.CmpMHS) { 564 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 565 Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 566 } else { 567 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 568 "Can only handle SLE ranges"); 569 570 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 571 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 572 573 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 574 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 575 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 576 Cond = 577 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 578 } else { 579 const LLT CmpTy = MRI->getType(CmpOpReg); 580 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 581 auto Diff = MIB.buildConstant(CmpTy, High - Low); 582 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 583 } 584 } 585 586 // Update successor info 587 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 588 589 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 590 CB.ThisBB); 591 592 // TrueBB and FalseBB are always different unless the incoming IR is 593 // degenerate. This only happens when running llc on weird IR. 594 if (CB.TrueBB != CB.FalseBB) 595 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 596 CB.ThisBB->normalizeSuccProbs(); 597 598 // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) 599 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 600 CB.ThisBB); 601 602 // If the lhs block is the next block, invert the condition so that we can 603 // fall through to the lhs instead of the rhs block. 604 if (CB.TrueBB == CB.ThisBB->getNextNode()) { 605 std::swap(CB.TrueBB, CB.FalseBB); 606 auto True = MIB.buildConstant(i1Ty, 1); 607 Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0); 608 } 609 610 MIB.buildBrCond(Cond, *CB.TrueBB); 611 MIB.buildBr(*CB.FalseBB); 612 MIB.setDebugLoc(OldDbgLoc); 613 } 614 615 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 616 MachineBasicBlock *SwitchMBB, 617 MachineBasicBlock *CurMBB, 618 MachineBasicBlock *DefaultMBB, 619 MachineIRBuilder &MIB, 620 MachineFunction::iterator BBI, 621 BranchProbability UnhandledProbs, 622 SwitchCG::CaseClusterIt I, 623 MachineBasicBlock *Fallthrough, 624 bool FallthroughUnreachable) { 625 using namespace SwitchCG; 626 MachineFunction *CurMF = SwitchMBB->getParent(); 627 // FIXME: Optimize away range check based on pivot comparisons. 628 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 629 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 630 BranchProbability DefaultProb = W.DefaultProb; 631 632 // The jump block hasn't been inserted yet; insert it here. 633 MachineBasicBlock *JumpMBB = JT->MBB; 634 CurMF->insert(BBI, JumpMBB); 635 636 // Since the jump table block is separate from the switch block, we need 637 // to keep track of it as a machine predecessor to the default block, 638 // otherwise we lose the phi edges. 639 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 640 CurMBB); 641 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 642 JumpMBB); 643 644 auto JumpProb = I->Prob; 645 auto FallthroughProb = UnhandledProbs; 646 647 // If the default statement is a target of the jump table, we evenly 648 // distribute the default probability to successors of CurMBB. Also 649 // update the probability on the edge from JumpMBB to Fallthrough. 650 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 651 SE = JumpMBB->succ_end(); 652 SI != SE; ++SI) { 653 if (*SI == DefaultMBB) { 654 JumpProb += DefaultProb / 2; 655 FallthroughProb -= DefaultProb / 2; 656 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 657 JumpMBB->normalizeSuccProbs(); 658 } else { 659 // Also record edges from the jump table block to it's successors. 660 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 661 JumpMBB); 662 } 663 } 664 665 // Skip the range check if the fallthrough block is unreachable. 666 if (FallthroughUnreachable) 667 JTH->OmitRangeCheck = true; 668 669 if (!JTH->OmitRangeCheck) 670 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 671 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 672 CurMBB->normalizeSuccProbs(); 673 674 // The jump table header will be inserted in our current block, do the 675 // range check, and fall through to our fallthrough block. 676 JTH->HeaderBB = CurMBB; 677 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 678 679 // If we're in the right place, emit the jump table header right now. 680 if (CurMBB == SwitchMBB) { 681 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 682 return false; 683 JTH->Emitted = true; 684 } 685 return true; 686 } 687 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 688 Value *Cond, 689 MachineBasicBlock *Fallthrough, 690 bool FallthroughUnreachable, 691 BranchProbability UnhandledProbs, 692 MachineBasicBlock *CurMBB, 693 MachineIRBuilder &MIB, 694 MachineBasicBlock *SwitchMBB) { 695 using namespace SwitchCG; 696 const Value *RHS, *LHS, *MHS; 697 CmpInst::Predicate Pred; 698 if (I->Low == I->High) { 699 // Check Cond == I->Low. 700 Pred = CmpInst::ICMP_EQ; 701 LHS = Cond; 702 RHS = I->Low; 703 MHS = nullptr; 704 } else { 705 // Check I->Low <= Cond <= I->High. 706 Pred = CmpInst::ICMP_SLE; 707 LHS = I->Low; 708 MHS = Cond; 709 RHS = I->High; 710 } 711 712 // If Fallthrough is unreachable, fold away the comparison. 713 // The false probability is the sum of all unhandled cases. 714 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 715 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 716 717 emitSwitchCase(CB, SwitchMBB, MIB); 718 return true; 719 } 720 721 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 722 Value *Cond, 723 MachineBasicBlock *SwitchMBB, 724 MachineBasicBlock *DefaultMBB, 725 MachineIRBuilder &MIB) { 726 using namespace SwitchCG; 727 MachineFunction *CurMF = FuncInfo.MF; 728 MachineBasicBlock *NextMBB = nullptr; 729 MachineFunction::iterator BBI(W.MBB); 730 if (++BBI != FuncInfo.MF->end()) 731 NextMBB = &*BBI; 732 733 if (EnableOpts) { 734 // Here, we order cases by probability so the most likely case will be 735 // checked first. However, two clusters can have the same probability in 736 // which case their relative ordering is non-deterministic. So we use Low 737 // as a tie-breaker as clusters are guaranteed to never overlap. 738 llvm::sort(W.FirstCluster, W.LastCluster + 1, 739 [](const CaseCluster &a, const CaseCluster &b) { 740 return a.Prob != b.Prob 741 ? a.Prob > b.Prob 742 : a.Low->getValue().slt(b.Low->getValue()); 743 }); 744 745 // Rearrange the case blocks so that the last one falls through if possible 746 // without changing the order of probabilities. 747 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 748 --I; 749 if (I->Prob > W.LastCluster->Prob) 750 break; 751 if (I->Kind == CC_Range && I->MBB == NextMBB) { 752 std::swap(*I, *W.LastCluster); 753 break; 754 } 755 } 756 } 757 758 // Compute total probability. 759 BranchProbability DefaultProb = W.DefaultProb; 760 BranchProbability UnhandledProbs = DefaultProb; 761 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 762 UnhandledProbs += I->Prob; 763 764 MachineBasicBlock *CurMBB = W.MBB; 765 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 766 bool FallthroughUnreachable = false; 767 MachineBasicBlock *Fallthrough; 768 if (I == W.LastCluster) { 769 // For the last cluster, fall through to the default destination. 770 Fallthrough = DefaultMBB; 771 FallthroughUnreachable = isa<UnreachableInst>( 772 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 773 } else { 774 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 775 CurMF->insert(BBI, Fallthrough); 776 } 777 UnhandledProbs -= I->Prob; 778 779 switch (I->Kind) { 780 case CC_BitTests: { 781 LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented"); 782 return false; // Bit tests currently unimplemented. 783 } 784 case CC_JumpTable: { 785 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 786 UnhandledProbs, I, Fallthrough, 787 FallthroughUnreachable)) { 788 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 789 return false; 790 } 791 break; 792 } 793 case CC_Range: { 794 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 795 FallthroughUnreachable, UnhandledProbs, 796 CurMBB, MIB, SwitchMBB)) { 797 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 798 return false; 799 } 800 break; 801 } 802 } 803 CurMBB = Fallthrough; 804 } 805 806 return true; 807 } 808 809 bool IRTranslator::translateIndirectBr(const User &U, 810 MachineIRBuilder &MIRBuilder) { 811 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 812 813 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 814 MIRBuilder.buildBrIndirect(Tgt); 815 816 // Link successors. 817 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 818 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 819 for (const BasicBlock *Succ : successors(&BrInst)) { 820 // It's legal for indirectbr instructions to have duplicate blocks in the 821 // destination list. We don't allow this in MIR. Skip anything that's 822 // already a successor. 823 if (!AddedSuccessors.insert(Succ).second) 824 continue; 825 CurBB.addSuccessor(&getMBB(*Succ)); 826 } 827 828 return true; 829 } 830 831 static bool isSwiftError(const Value *V) { 832 if (auto Arg = dyn_cast<Argument>(V)) 833 return Arg->hasSwiftErrorAttr(); 834 if (auto AI = dyn_cast<AllocaInst>(V)) 835 return AI->isSwiftError(); 836 return false; 837 } 838 839 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 840 const LoadInst &LI = cast<LoadInst>(U); 841 if (DL->getTypeStoreSize(LI.getType()) == 0) 842 return true; 843 844 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 845 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 846 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 847 848 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 849 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 850 851 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 852 assert(Regs.size() == 1 && "swifterror should be single pointer"); 853 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 854 LI.getPointerOperand()); 855 MIRBuilder.buildCopy(Regs[0], VReg); 856 return true; 857 } 858 859 auto &TLI = *MF->getSubtarget().getTargetLowering(); 860 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 861 862 const MDNode *Ranges = 863 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 864 for (unsigned i = 0; i < Regs.size(); ++i) { 865 Register Addr; 866 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 867 868 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 869 Align BaseAlign = getMemOpAlign(LI); 870 AAMDNodes AAMetadata; 871 LI.getAAMetadata(AAMetadata); 872 auto MMO = MF->getMachineMemOperand( 873 Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(), 874 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges, 875 LI.getSyncScopeID(), LI.getOrdering()); 876 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 877 } 878 879 return true; 880 } 881 882 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 883 const StoreInst &SI = cast<StoreInst>(U); 884 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 885 return true; 886 887 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 888 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 889 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 890 891 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 892 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 893 894 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 895 assert(Vals.size() == 1 && "swifterror should be single pointer"); 896 897 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 898 SI.getPointerOperand()); 899 MIRBuilder.buildCopy(VReg, Vals[0]); 900 return true; 901 } 902 903 auto &TLI = *MF->getSubtarget().getTargetLowering(); 904 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 905 906 for (unsigned i = 0; i < Vals.size(); ++i) { 907 Register Addr; 908 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 909 910 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 911 Align BaseAlign = getMemOpAlign(SI); 912 AAMDNodes AAMetadata; 913 SI.getAAMetadata(AAMetadata); 914 auto MMO = MF->getMachineMemOperand( 915 Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(), 916 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr, 917 SI.getSyncScopeID(), SI.getOrdering()); 918 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 919 } 920 return true; 921 } 922 923 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 924 const Value *Src = U.getOperand(0); 925 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 926 927 // getIndexedOffsetInType is designed for GEPs, so the first index is the 928 // usual array element rather than looking into the actual aggregate. 929 SmallVector<Value *, 1> Indices; 930 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 931 932 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 933 for (auto Idx : EVI->indices()) 934 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 935 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 936 for (auto Idx : IVI->indices()) 937 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 938 } else { 939 for (unsigned i = 1; i < U.getNumOperands(); ++i) 940 Indices.push_back(U.getOperand(i)); 941 } 942 943 return 8 * static_cast<uint64_t>( 944 DL.getIndexedOffsetInType(Src->getType(), Indices)); 945 } 946 947 bool IRTranslator::translateExtractValue(const User &U, 948 MachineIRBuilder &MIRBuilder) { 949 const Value *Src = U.getOperand(0); 950 uint64_t Offset = getOffsetFromIndices(U, *DL); 951 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 952 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 953 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 954 auto &DstRegs = allocateVRegs(U); 955 956 for (unsigned i = 0; i < DstRegs.size(); ++i) 957 DstRegs[i] = SrcRegs[Idx++]; 958 959 return true; 960 } 961 962 bool IRTranslator::translateInsertValue(const User &U, 963 MachineIRBuilder &MIRBuilder) { 964 const Value *Src = U.getOperand(0); 965 uint64_t Offset = getOffsetFromIndices(U, *DL); 966 auto &DstRegs = allocateVRegs(U); 967 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 968 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 969 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 970 auto InsertedIt = InsertedRegs.begin(); 971 972 for (unsigned i = 0; i < DstRegs.size(); ++i) { 973 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 974 DstRegs[i] = *InsertedIt++; 975 else 976 DstRegs[i] = SrcRegs[i]; 977 } 978 979 return true; 980 } 981 982 bool IRTranslator::translateSelect(const User &U, 983 MachineIRBuilder &MIRBuilder) { 984 Register Tst = getOrCreateVReg(*U.getOperand(0)); 985 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 986 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 987 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 988 989 uint16_t Flags = 0; 990 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 991 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 992 993 for (unsigned i = 0; i < ResRegs.size(); ++i) { 994 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 995 } 996 997 return true; 998 } 999 1000 bool IRTranslator::translateCopy(const User &U, const Value &V, 1001 MachineIRBuilder &MIRBuilder) { 1002 Register Src = getOrCreateVReg(V); 1003 auto &Regs = *VMap.getVRegs(U); 1004 if (Regs.empty()) { 1005 Regs.push_back(Src); 1006 VMap.getOffsets(U)->push_back(0); 1007 } else { 1008 // If we already assigned a vreg for this instruction, we can't change that. 1009 // Emit a copy to satisfy the users we already emitted. 1010 MIRBuilder.buildCopy(Regs[0], Src); 1011 } 1012 return true; 1013 } 1014 1015 bool IRTranslator::translateBitCast(const User &U, 1016 MachineIRBuilder &MIRBuilder) { 1017 // If we're bitcasting to the source type, we can reuse the source vreg. 1018 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1019 getLLTForType(*U.getType(), *DL)) 1020 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1021 1022 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1023 } 1024 1025 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1026 MachineIRBuilder &MIRBuilder) { 1027 Register Op = getOrCreateVReg(*U.getOperand(0)); 1028 Register Res = getOrCreateVReg(U); 1029 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1030 return true; 1031 } 1032 1033 bool IRTranslator::translateGetElementPtr(const User &U, 1034 MachineIRBuilder &MIRBuilder) { 1035 Value &Op0 = *U.getOperand(0); 1036 Register BaseReg = getOrCreateVReg(Op0); 1037 Type *PtrIRTy = Op0.getType(); 1038 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1039 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1040 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1041 1042 // Normalize Vector GEP - all scalar operands should be converted to the 1043 // splat vector. 1044 unsigned VectorWidth = 0; 1045 if (auto *VT = dyn_cast<VectorType>(U.getType())) 1046 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1047 1048 // We might need to splat the base pointer into a vector if the offsets 1049 // are vectors. 1050 if (VectorWidth && !PtrTy.isVector()) { 1051 BaseReg = 1052 MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg) 1053 .getReg(0); 1054 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1055 PtrTy = getLLTForType(*PtrIRTy, *DL); 1056 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1057 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1058 } 1059 1060 int64_t Offset = 0; 1061 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1062 GTI != E; ++GTI) { 1063 const Value *Idx = GTI.getOperand(); 1064 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1065 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1066 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1067 continue; 1068 } else { 1069 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1070 1071 // If this is a scalar constant or a splat vector of constants, 1072 // handle it quickly. 1073 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1074 Offset += ElementSize * CI->getSExtValue(); 1075 continue; 1076 } 1077 1078 if (Offset != 0) { 1079 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1080 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1081 .getReg(0); 1082 Offset = 0; 1083 } 1084 1085 Register IdxReg = getOrCreateVReg(*Idx); 1086 LLT IdxTy = MRI->getType(IdxReg); 1087 if (IdxTy != OffsetTy) { 1088 if (!IdxTy.isVector() && VectorWidth) { 1089 IdxReg = MIRBuilder.buildSplatVector( 1090 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1091 } 1092 1093 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1094 } 1095 1096 // N = N + Idx * ElementSize; 1097 // Avoid doing it for ElementSize of 1. 1098 Register GepOffsetReg; 1099 if (ElementSize != 1) { 1100 auto ElementSizeMIB = MIRBuilder.buildConstant( 1101 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1102 GepOffsetReg = 1103 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1104 } else 1105 GepOffsetReg = IdxReg; 1106 1107 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1108 } 1109 } 1110 1111 if (Offset != 0) { 1112 auto OffsetMIB = 1113 MIRBuilder.buildConstant(OffsetTy, Offset); 1114 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1115 return true; 1116 } 1117 1118 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1119 return true; 1120 } 1121 1122 bool IRTranslator::translateMemFunc(const CallInst &CI, 1123 MachineIRBuilder &MIRBuilder, 1124 Intrinsic::ID ID) { 1125 1126 // If the source is undef, then just emit a nop. 1127 if (isa<UndefValue>(CI.getArgOperand(1))) 1128 return true; 1129 1130 ArrayRef<Register> Res; 1131 auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true); 1132 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) 1133 ICall.addUse(getOrCreateVReg(**AI)); 1134 1135 Align DstAlign; 1136 Align SrcAlign; 1137 unsigned IsVol = 1138 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1139 ->getZExtValue(); 1140 1141 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1142 DstAlign = MCI->getDestAlign().valueOrOne(); 1143 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1144 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1145 DstAlign = MMI->getDestAlign().valueOrOne(); 1146 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1147 } else { 1148 auto *MSI = cast<MemSetInst>(&CI); 1149 DstAlign = MSI->getDestAlign().valueOrOne(); 1150 } 1151 1152 // We need to propagate the tail call flag from the IR inst as an argument. 1153 // Otherwise, we have to pessimize and assume later that we cannot tail call 1154 // any memory intrinsics. 1155 ICall.addImm(CI.isTailCall() ? 1 : 0); 1156 1157 // Create mem operands to store the alignment and volatile info. 1158 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1159 ICall.addMemOperand(MF->getMachineMemOperand( 1160 MachinePointerInfo(CI.getArgOperand(0)), 1161 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1162 if (ID != Intrinsic::memset) 1163 ICall.addMemOperand(MF->getMachineMemOperand( 1164 MachinePointerInfo(CI.getArgOperand(1)), 1165 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1166 1167 return true; 1168 } 1169 1170 void IRTranslator::getStackGuard(Register DstReg, 1171 MachineIRBuilder &MIRBuilder) { 1172 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1173 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1174 auto MIB = 1175 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1176 1177 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1178 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1179 if (!Global) 1180 return; 1181 1182 MachinePointerInfo MPInfo(Global); 1183 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1184 MachineMemOperand::MODereferenceable; 1185 MachineMemOperand *MemRef = 1186 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 1187 DL->getPointerABIAlignment(0)); 1188 MIB.setMemRefs({MemRef}); 1189 } 1190 1191 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1192 MachineIRBuilder &MIRBuilder) { 1193 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1194 MIRBuilder.buildInstr( 1195 Op, {ResRegs[0], ResRegs[1]}, 1196 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1197 1198 return true; 1199 } 1200 1201 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI, 1202 MachineIRBuilder &MIRBuilder) { 1203 Register Dst = getOrCreateVReg(CI); 1204 Register Src0 = getOrCreateVReg(*CI.getOperand(0)); 1205 Register Src1 = getOrCreateVReg(*CI.getOperand(1)); 1206 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 1207 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale }); 1208 return true; 1209 } 1210 1211 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1212 switch (ID) { 1213 default: 1214 break; 1215 case Intrinsic::bswap: 1216 return TargetOpcode::G_BSWAP; 1217 case Intrinsic::bitreverse: 1218 return TargetOpcode::G_BITREVERSE; 1219 case Intrinsic::fshl: 1220 return TargetOpcode::G_FSHL; 1221 case Intrinsic::fshr: 1222 return TargetOpcode::G_FSHR; 1223 case Intrinsic::ceil: 1224 return TargetOpcode::G_FCEIL; 1225 case Intrinsic::cos: 1226 return TargetOpcode::G_FCOS; 1227 case Intrinsic::ctpop: 1228 return TargetOpcode::G_CTPOP; 1229 case Intrinsic::exp: 1230 return TargetOpcode::G_FEXP; 1231 case Intrinsic::exp2: 1232 return TargetOpcode::G_FEXP2; 1233 case Intrinsic::fabs: 1234 return TargetOpcode::G_FABS; 1235 case Intrinsic::copysign: 1236 return TargetOpcode::G_FCOPYSIGN; 1237 case Intrinsic::minnum: 1238 return TargetOpcode::G_FMINNUM; 1239 case Intrinsic::maxnum: 1240 return TargetOpcode::G_FMAXNUM; 1241 case Intrinsic::minimum: 1242 return TargetOpcode::G_FMINIMUM; 1243 case Intrinsic::maximum: 1244 return TargetOpcode::G_FMAXIMUM; 1245 case Intrinsic::canonicalize: 1246 return TargetOpcode::G_FCANONICALIZE; 1247 case Intrinsic::floor: 1248 return TargetOpcode::G_FFLOOR; 1249 case Intrinsic::fma: 1250 return TargetOpcode::G_FMA; 1251 case Intrinsic::log: 1252 return TargetOpcode::G_FLOG; 1253 case Intrinsic::log2: 1254 return TargetOpcode::G_FLOG2; 1255 case Intrinsic::log10: 1256 return TargetOpcode::G_FLOG10; 1257 case Intrinsic::nearbyint: 1258 return TargetOpcode::G_FNEARBYINT; 1259 case Intrinsic::pow: 1260 return TargetOpcode::G_FPOW; 1261 case Intrinsic::powi: 1262 return TargetOpcode::G_FPOWI; 1263 case Intrinsic::rint: 1264 return TargetOpcode::G_FRINT; 1265 case Intrinsic::round: 1266 return TargetOpcode::G_INTRINSIC_ROUND; 1267 case Intrinsic::roundeven: 1268 return TargetOpcode::G_INTRINSIC_ROUNDEVEN; 1269 case Intrinsic::sin: 1270 return TargetOpcode::G_FSIN; 1271 case Intrinsic::sqrt: 1272 return TargetOpcode::G_FSQRT; 1273 case Intrinsic::trunc: 1274 return TargetOpcode::G_INTRINSIC_TRUNC; 1275 case Intrinsic::readcyclecounter: 1276 return TargetOpcode::G_READCYCLECOUNTER; 1277 case Intrinsic::ptrmask: 1278 return TargetOpcode::G_PTRMASK; 1279 case Intrinsic::lrint: 1280 return TargetOpcode::G_INTRINSIC_LRINT; 1281 } 1282 return Intrinsic::not_intrinsic; 1283 } 1284 1285 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1286 Intrinsic::ID ID, 1287 MachineIRBuilder &MIRBuilder) { 1288 1289 unsigned Op = getSimpleIntrinsicOpcode(ID); 1290 1291 // Is this a simple intrinsic? 1292 if (Op == Intrinsic::not_intrinsic) 1293 return false; 1294 1295 // Yes. Let's translate it. 1296 SmallVector<llvm::SrcOp, 4> VRegs; 1297 for (auto &Arg : CI.arg_operands()) 1298 VRegs.push_back(getOrCreateVReg(*Arg)); 1299 1300 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1301 MachineInstr::copyFlagsFromInstruction(CI)); 1302 return true; 1303 } 1304 1305 // TODO: Include ConstainedOps.def when all strict instructions are defined. 1306 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 1307 switch (ID) { 1308 case Intrinsic::experimental_constrained_fadd: 1309 return TargetOpcode::G_STRICT_FADD; 1310 case Intrinsic::experimental_constrained_fsub: 1311 return TargetOpcode::G_STRICT_FSUB; 1312 case Intrinsic::experimental_constrained_fmul: 1313 return TargetOpcode::G_STRICT_FMUL; 1314 case Intrinsic::experimental_constrained_fdiv: 1315 return TargetOpcode::G_STRICT_FDIV; 1316 case Intrinsic::experimental_constrained_frem: 1317 return TargetOpcode::G_STRICT_FREM; 1318 case Intrinsic::experimental_constrained_fma: 1319 return TargetOpcode::G_STRICT_FMA; 1320 case Intrinsic::experimental_constrained_sqrt: 1321 return TargetOpcode::G_STRICT_FSQRT; 1322 default: 1323 return 0; 1324 } 1325 } 1326 1327 bool IRTranslator::translateConstrainedFPIntrinsic( 1328 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 1329 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 1330 1331 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 1332 if (!Opcode) 1333 return false; 1334 1335 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI); 1336 if (EB == fp::ExceptionBehavior::ebIgnore) 1337 Flags |= MachineInstr::NoFPExcept; 1338 1339 SmallVector<llvm::SrcOp, 4> VRegs; 1340 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0))); 1341 if (!FPI.isUnaryOp()) 1342 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1))); 1343 if (FPI.isTernaryOp()) 1344 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2))); 1345 1346 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 1347 return true; 1348 } 1349 1350 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1351 MachineIRBuilder &MIRBuilder) { 1352 1353 // If this is a simple intrinsic (that is, we just need to add a def of 1354 // a vreg, and uses for each arg operand, then translate it. 1355 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1356 return true; 1357 1358 switch (ID) { 1359 default: 1360 break; 1361 case Intrinsic::lifetime_start: 1362 case Intrinsic::lifetime_end: { 1363 // No stack colouring in O0, discard region information. 1364 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1365 return true; 1366 1367 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1368 : TargetOpcode::LIFETIME_END; 1369 1370 // Get the underlying objects for the location passed on the lifetime 1371 // marker. 1372 SmallVector<const Value *, 4> Allocas; 1373 getUnderlyingObjects(CI.getArgOperand(1), Allocas); 1374 1375 // Iterate over each underlying object, creating lifetime markers for each 1376 // static alloca. Quit if we find a non-static alloca. 1377 for (const Value *V : Allocas) { 1378 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1379 if (!AI) 1380 continue; 1381 1382 if (!AI->isStaticAlloca()) 1383 return true; 1384 1385 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1386 } 1387 return true; 1388 } 1389 case Intrinsic::dbg_declare: { 1390 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1391 assert(DI.getVariable() && "Missing variable"); 1392 1393 const Value *Address = DI.getAddress(); 1394 if (!Address || isa<UndefValue>(Address)) { 1395 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1396 return true; 1397 } 1398 1399 assert(DI.getVariable()->isValidLocationForIntrinsic( 1400 MIRBuilder.getDebugLoc()) && 1401 "Expected inlined-at fields to agree"); 1402 auto AI = dyn_cast<AllocaInst>(Address); 1403 if (AI && AI->isStaticAlloca()) { 1404 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1405 // instructions (in fact, they get ignored if they *do* exist). 1406 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1407 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1408 } else { 1409 // A dbg.declare describes the address of a source variable, so lower it 1410 // into an indirect DBG_VALUE. 1411 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1412 DI.getVariable(), DI.getExpression()); 1413 } 1414 return true; 1415 } 1416 case Intrinsic::dbg_label: { 1417 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1418 assert(DI.getLabel() && "Missing label"); 1419 1420 assert(DI.getLabel()->isValidLocationForIntrinsic( 1421 MIRBuilder.getDebugLoc()) && 1422 "Expected inlined-at fields to agree"); 1423 1424 MIRBuilder.buildDbgLabel(DI.getLabel()); 1425 return true; 1426 } 1427 case Intrinsic::vaend: 1428 // No target I know of cares about va_end. Certainly no in-tree target 1429 // does. Simplest intrinsic ever! 1430 return true; 1431 case Intrinsic::vastart: { 1432 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1433 Value *Ptr = CI.getArgOperand(0); 1434 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1435 1436 // FIXME: Get alignment 1437 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1438 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 1439 MachineMemOperand::MOStore, 1440 ListSize, Align(1))); 1441 return true; 1442 } 1443 case Intrinsic::dbg_value: { 1444 // This form of DBG_VALUE is target-independent. 1445 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1446 const Value *V = DI.getValue(); 1447 assert(DI.getVariable()->isValidLocationForIntrinsic( 1448 MIRBuilder.getDebugLoc()) && 1449 "Expected inlined-at fields to agree"); 1450 if (!V) { 1451 // Currently the optimizer can produce this; insert an undef to 1452 // help debugging. Probably the optimizer should not do this. 1453 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1454 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1455 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1456 } else { 1457 for (Register Reg : getOrCreateVRegs(*V)) { 1458 // FIXME: This does not handle register-indirect values at offset 0. The 1459 // direct/indirect thing shouldn't really be handled by something as 1460 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1461 // pretty baked in right now. 1462 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1463 } 1464 } 1465 return true; 1466 } 1467 case Intrinsic::uadd_with_overflow: 1468 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1469 case Intrinsic::sadd_with_overflow: 1470 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1471 case Intrinsic::usub_with_overflow: 1472 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1473 case Intrinsic::ssub_with_overflow: 1474 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1475 case Intrinsic::umul_with_overflow: 1476 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1477 case Intrinsic::smul_with_overflow: 1478 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1479 case Intrinsic::uadd_sat: 1480 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 1481 case Intrinsic::sadd_sat: 1482 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 1483 case Intrinsic::usub_sat: 1484 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 1485 case Intrinsic::ssub_sat: 1486 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 1487 case Intrinsic::umin: 1488 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder); 1489 case Intrinsic::umax: 1490 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder); 1491 case Intrinsic::smin: 1492 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder); 1493 case Intrinsic::smax: 1494 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder); 1495 case Intrinsic::smul_fix: 1496 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder); 1497 case Intrinsic::umul_fix: 1498 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder); 1499 case Intrinsic::smul_fix_sat: 1500 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder); 1501 case Intrinsic::umul_fix_sat: 1502 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder); 1503 case Intrinsic::sdiv_fix: 1504 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder); 1505 case Intrinsic::udiv_fix: 1506 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder); 1507 case Intrinsic::sdiv_fix_sat: 1508 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder); 1509 case Intrinsic::udiv_fix_sat: 1510 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder); 1511 case Intrinsic::fmuladd: { 1512 const TargetMachine &TM = MF->getTarget(); 1513 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1514 Register Dst = getOrCreateVReg(CI); 1515 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1516 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1517 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1518 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1519 TLI.isFMAFasterThanFMulAndFAdd(*MF, 1520 TLI.getValueType(*DL, CI.getType()))) { 1521 // TODO: Revisit this to see if we should move this part of the 1522 // lowering to the combiner. 1523 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 1524 MachineInstr::copyFlagsFromInstruction(CI)); 1525 } else { 1526 LLT Ty = getLLTForType(*CI.getType(), *DL); 1527 auto FMul = MIRBuilder.buildFMul( 1528 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 1529 MIRBuilder.buildFAdd(Dst, FMul, Op2, 1530 MachineInstr::copyFlagsFromInstruction(CI)); 1531 } 1532 return true; 1533 } 1534 case Intrinsic::convert_from_fp16: 1535 // FIXME: This intrinsic should probably be removed from the IR. 1536 MIRBuilder.buildFPExt(getOrCreateVReg(CI), 1537 getOrCreateVReg(*CI.getArgOperand(0)), 1538 MachineInstr::copyFlagsFromInstruction(CI)); 1539 return true; 1540 case Intrinsic::convert_to_fp16: 1541 // FIXME: This intrinsic should probably be removed from the IR. 1542 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI), 1543 getOrCreateVReg(*CI.getArgOperand(0)), 1544 MachineInstr::copyFlagsFromInstruction(CI)); 1545 return true; 1546 case Intrinsic::memcpy: 1547 case Intrinsic::memmove: 1548 case Intrinsic::memset: 1549 return translateMemFunc(CI, MIRBuilder, ID); 1550 case Intrinsic::eh_typeid_for: { 1551 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1552 Register Reg = getOrCreateVReg(CI); 1553 unsigned TypeID = MF->getTypeIDFor(GV); 1554 MIRBuilder.buildConstant(Reg, TypeID); 1555 return true; 1556 } 1557 case Intrinsic::objectsize: 1558 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1559 1560 case Intrinsic::is_constant: 1561 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1562 1563 case Intrinsic::stackguard: 1564 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1565 return true; 1566 case Intrinsic::stackprotector: { 1567 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1568 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1569 getStackGuard(GuardVal, MIRBuilder); 1570 1571 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1572 int FI = getOrCreateFrameIndex(*Slot); 1573 MF->getFrameInfo().setStackProtectorIndex(FI); 1574 1575 MIRBuilder.buildStore( 1576 GuardVal, getOrCreateVReg(*Slot), 1577 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1578 MachineMemOperand::MOStore | 1579 MachineMemOperand::MOVolatile, 1580 PtrTy.getSizeInBits() / 8, Align(8))); 1581 return true; 1582 } 1583 case Intrinsic::stacksave: { 1584 // Save the stack pointer to the location provided by the intrinsic. 1585 Register Reg = getOrCreateVReg(CI); 1586 Register StackPtr = MF->getSubtarget() 1587 .getTargetLowering() 1588 ->getStackPointerRegisterToSaveRestore(); 1589 1590 // If the target doesn't specify a stack pointer, then fall back. 1591 if (!StackPtr) 1592 return false; 1593 1594 MIRBuilder.buildCopy(Reg, StackPtr); 1595 return true; 1596 } 1597 case Intrinsic::stackrestore: { 1598 // Restore the stack pointer from the location provided by the intrinsic. 1599 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1600 Register StackPtr = MF->getSubtarget() 1601 .getTargetLowering() 1602 ->getStackPointerRegisterToSaveRestore(); 1603 1604 // If the target doesn't specify a stack pointer, then fall back. 1605 if (!StackPtr) 1606 return false; 1607 1608 MIRBuilder.buildCopy(StackPtr, Reg); 1609 return true; 1610 } 1611 case Intrinsic::cttz: 1612 case Intrinsic::ctlz: { 1613 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1614 bool isTrailing = ID == Intrinsic::cttz; 1615 unsigned Opcode = isTrailing 1616 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1617 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1618 : Cst->isZero() ? TargetOpcode::G_CTLZ 1619 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1620 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 1621 {getOrCreateVReg(*CI.getArgOperand(0))}); 1622 return true; 1623 } 1624 case Intrinsic::invariant_start: { 1625 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1626 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 1627 MIRBuilder.buildUndef(Undef); 1628 return true; 1629 } 1630 case Intrinsic::invariant_end: 1631 return true; 1632 case Intrinsic::expect: 1633 case Intrinsic::annotation: 1634 case Intrinsic::ptr_annotation: 1635 case Intrinsic::launder_invariant_group: 1636 case Intrinsic::strip_invariant_group: { 1637 // Drop the intrinsic, but forward the value. 1638 MIRBuilder.buildCopy(getOrCreateVReg(CI), 1639 getOrCreateVReg(*CI.getArgOperand(0))); 1640 return true; 1641 } 1642 case Intrinsic::assume: 1643 case Intrinsic::var_annotation: 1644 case Intrinsic::sideeffect: 1645 // Discard annotate attributes, assumptions, and artificial side-effects. 1646 return true; 1647 case Intrinsic::read_volatile_register: 1648 case Intrinsic::read_register: { 1649 Value *Arg = CI.getArgOperand(0); 1650 MIRBuilder 1651 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 1652 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 1653 return true; 1654 } 1655 case Intrinsic::write_register: { 1656 Value *Arg = CI.getArgOperand(0); 1657 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 1658 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 1659 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 1660 return true; 1661 } 1662 case Intrinsic::localescape: { 1663 MachineBasicBlock &EntryMBB = MF->front(); 1664 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName()); 1665 1666 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 1667 // is the same on all targets. 1668 for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) { 1669 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts(); 1670 if (isa<ConstantPointerNull>(Arg)) 1671 continue; // Skip null pointers. They represent a hole in index space. 1672 1673 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg)); 1674 MCSymbol *FrameAllocSym = 1675 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName, 1676 Idx); 1677 1678 // This should be inserted at the start of the entry block. 1679 auto LocalEscape = 1680 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE) 1681 .addSym(FrameAllocSym) 1682 .addFrameIndex(FI); 1683 1684 EntryMBB.insert(EntryMBB.begin(), LocalEscape); 1685 } 1686 1687 return true; 1688 } 1689 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 1690 case Intrinsic::INTRINSIC: 1691 #include "llvm/IR/ConstrainedOps.def" 1692 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 1693 MIRBuilder); 1694 1695 } 1696 return false; 1697 } 1698 1699 bool IRTranslator::translateInlineAsm(const CallBase &CB, 1700 MachineIRBuilder &MIRBuilder) { 1701 1702 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 1703 1704 if (!ALI) { 1705 LLVM_DEBUG( 1706 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 1707 return false; 1708 } 1709 1710 return ALI->lowerInlineAsm( 1711 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 1712 } 1713 1714 bool IRTranslator::translateCallBase(const CallBase &CB, 1715 MachineIRBuilder &MIRBuilder) { 1716 ArrayRef<Register> Res = getOrCreateVRegs(CB); 1717 1718 SmallVector<ArrayRef<Register>, 8> Args; 1719 Register SwiftInVReg = 0; 1720 Register SwiftErrorVReg = 0; 1721 for (auto &Arg : CB.args()) { 1722 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1723 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 1724 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1725 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 1726 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 1727 &CB, &MIRBuilder.getMBB(), Arg)); 1728 Args.emplace_back(makeArrayRef(SwiftInVReg)); 1729 SwiftErrorVReg = 1730 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 1731 continue; 1732 } 1733 Args.push_back(getOrCreateVRegs(*Arg)); 1734 } 1735 1736 // We don't set HasCalls on MFI here yet because call lowering may decide to 1737 // optimize into tail calls. Instead, we defer that to selection where a final 1738 // scan is done to check if any instructions are calls. 1739 bool Success = 1740 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 1741 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 1742 1743 // Check if we just inserted a tail call. 1744 if (Success) { 1745 assert(!HasTailCall && "Can't tail call return twice from block?"); 1746 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1747 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 1748 } 1749 1750 return Success; 1751 } 1752 1753 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1754 const CallInst &CI = cast<CallInst>(U); 1755 auto TII = MF->getTarget().getIntrinsicInfo(); 1756 const Function *F = CI.getCalledFunction(); 1757 1758 // FIXME: support Windows dllimport function calls. 1759 if (F && (F->hasDLLImportStorageClass() || 1760 (MF->getTarget().getTargetTriple().isOSWindows() && 1761 F->hasExternalWeakLinkage()))) 1762 return false; 1763 1764 // FIXME: support control flow guard targets. 1765 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1766 return false; 1767 1768 if (CI.isInlineAsm()) 1769 return translateInlineAsm(CI, MIRBuilder); 1770 1771 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1772 if (F && F->isIntrinsic()) { 1773 ID = F->getIntrinsicID(); 1774 if (TII && ID == Intrinsic::not_intrinsic) 1775 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1776 } 1777 1778 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 1779 return translateCallBase(CI, MIRBuilder); 1780 1781 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1782 1783 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1784 return true; 1785 1786 ArrayRef<Register> ResultRegs; 1787 if (!CI.getType()->isVoidTy()) 1788 ResultRegs = getOrCreateVRegs(CI); 1789 1790 // Ignore the callsite attributes. Backend code is most likely not expecting 1791 // an intrinsic to sometimes have side effects and sometimes not. 1792 MachineInstrBuilder MIB = 1793 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 1794 if (isa<FPMathOperator>(CI)) 1795 MIB->copyIRFlags(CI); 1796 1797 for (auto &Arg : enumerate(CI.arg_operands())) { 1798 // If this is required to be an immediate, don't materialize it in a 1799 // register. 1800 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 1801 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 1802 // imm arguments are more convenient than cimm (and realistically 1803 // probably sufficient), so use them. 1804 assert(CI->getBitWidth() <= 64 && 1805 "large intrinsic immediates not handled"); 1806 MIB.addImm(CI->getSExtValue()); 1807 } else { 1808 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 1809 } 1810 } else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) { 1811 auto *MDN = dyn_cast<MDNode>(MD->getMetadata()); 1812 if (!MDN) // This was probably an MDString. 1813 return false; 1814 MIB.addMetadata(MDN); 1815 } else { 1816 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 1817 if (VRegs.size() > 1) 1818 return false; 1819 MIB.addUse(VRegs[0]); 1820 } 1821 } 1822 1823 // Add a MachineMemOperand if it is a target mem intrinsic. 1824 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1825 TargetLowering::IntrinsicInfo Info; 1826 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1827 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1828 Align Alignment = Info.align.getValueOr( 1829 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 1830 1831 uint64_t Size = Info.memVT.getStoreSize(); 1832 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1833 Info.flags, Size, Alignment)); 1834 } 1835 1836 return true; 1837 } 1838 1839 bool IRTranslator::translateInvoke(const User &U, 1840 MachineIRBuilder &MIRBuilder) { 1841 const InvokeInst &I = cast<InvokeInst>(U); 1842 MCContext &Context = MF->getContext(); 1843 1844 const BasicBlock *ReturnBB = I.getSuccessor(0); 1845 const BasicBlock *EHPadBB = I.getSuccessor(1); 1846 1847 const Function *Fn = I.getCalledFunction(); 1848 if (I.isInlineAsm()) 1849 return false; 1850 1851 // FIXME: support invoking patchpoint and statepoint intrinsics. 1852 if (Fn && Fn->isIntrinsic()) 1853 return false; 1854 1855 // FIXME: support whatever these are. 1856 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1857 return false; 1858 1859 // FIXME: support control flow guard targets. 1860 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1861 return false; 1862 1863 // FIXME: support Windows exception handling. 1864 if (!isa<LandingPadInst>(EHPadBB->front())) 1865 return false; 1866 1867 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1868 // the region covered by the try. 1869 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1870 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1871 1872 if (!translateCallBase(I, MIRBuilder)) 1873 return false; 1874 1875 MCSymbol *EndSymbol = Context.createTempSymbol(); 1876 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1877 1878 // FIXME: track probabilities. 1879 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1880 &ReturnMBB = getMBB(*ReturnBB); 1881 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1882 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1883 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1884 MIRBuilder.buildBr(ReturnMBB); 1885 1886 return true; 1887 } 1888 1889 bool IRTranslator::translateCallBr(const User &U, 1890 MachineIRBuilder &MIRBuilder) { 1891 // FIXME: Implement this. 1892 return false; 1893 } 1894 1895 bool IRTranslator::translateLandingPad(const User &U, 1896 MachineIRBuilder &MIRBuilder) { 1897 const LandingPadInst &LP = cast<LandingPadInst>(U); 1898 1899 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1900 1901 MBB.setIsEHPad(); 1902 1903 // If there aren't registers to copy the values into (e.g., during SjLj 1904 // exceptions), then don't bother. 1905 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1906 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1907 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1908 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1909 return true; 1910 1911 // If landingpad's return type is token type, we don't create DAG nodes 1912 // for its exception pointer and selector value. The extraction of exception 1913 // pointer or selector value from token type landingpads is not currently 1914 // supported. 1915 if (LP.getType()->isTokenTy()) 1916 return true; 1917 1918 // Add a label to mark the beginning of the landing pad. Deletion of the 1919 // landing pad can thus be detected via the MachineModuleInfo. 1920 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1921 .addSym(MF->addLandingPad(&MBB)); 1922 1923 LLT Ty = getLLTForType(*LP.getType(), *DL); 1924 Register Undef = MRI->createGenericVirtualRegister(Ty); 1925 MIRBuilder.buildUndef(Undef); 1926 1927 SmallVector<LLT, 2> Tys; 1928 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1929 Tys.push_back(getLLTForType(*Ty, *DL)); 1930 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1931 1932 // Mark exception register as live in. 1933 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1934 if (!ExceptionReg) 1935 return false; 1936 1937 MBB.addLiveIn(ExceptionReg); 1938 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 1939 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1940 1941 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1942 if (!SelectorReg) 1943 return false; 1944 1945 MBB.addLiveIn(SelectorReg); 1946 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1947 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1948 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1949 1950 return true; 1951 } 1952 1953 bool IRTranslator::translateAlloca(const User &U, 1954 MachineIRBuilder &MIRBuilder) { 1955 auto &AI = cast<AllocaInst>(U); 1956 1957 if (AI.isSwiftError()) 1958 return true; 1959 1960 if (AI.isStaticAlloca()) { 1961 Register Res = getOrCreateVReg(AI); 1962 int FI = getOrCreateFrameIndex(AI); 1963 MIRBuilder.buildFrameIndex(Res, FI); 1964 return true; 1965 } 1966 1967 // FIXME: support stack probing for Windows. 1968 if (MF->getTarget().getTargetTriple().isOSWindows()) 1969 return false; 1970 1971 // Now we're in the harder dynamic case. 1972 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 1973 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1974 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1975 if (MRI->getType(NumElts) != IntPtrTy) { 1976 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1977 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1978 NumElts = ExtElts; 1979 } 1980 1981 Type *Ty = AI.getAllocatedType(); 1982 1983 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1984 Register TySize = 1985 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 1986 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1987 1988 // Round the size of the allocation up to the stack alignment size 1989 // by add SA-1 to the size. This doesn't overflow because we're computing 1990 // an address inside an alloca. 1991 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 1992 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 1993 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 1994 MachineInstr::NoUWrap); 1995 auto AlignCst = 1996 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 1997 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 1998 1999 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 2000 if (Alignment <= StackAlign) 2001 Alignment = Align(1); 2002 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 2003 2004 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 2005 assert(MF->getFrameInfo().hasVarSizedObjects()); 2006 return true; 2007 } 2008 2009 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 2010 // FIXME: We may need more info about the type. Because of how LLT works, 2011 // we're completely discarding the i64/double distinction here (amongst 2012 // others). Fortunately the ABIs I know of where that matters don't use va_arg 2013 // anyway but that's not guaranteed. 2014 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 2015 {getOrCreateVReg(*U.getOperand(0)), 2016 DL->getABITypeAlign(U.getType()).value()}); 2017 return true; 2018 } 2019 2020 bool IRTranslator::translateInsertElement(const User &U, 2021 MachineIRBuilder &MIRBuilder) { 2022 // If it is a <1 x Ty> vector, use the scalar as it is 2023 // not a legal vector type in LLT. 2024 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1) 2025 return translateCopy(U, *U.getOperand(1), MIRBuilder); 2026 2027 Register Res = getOrCreateVReg(U); 2028 Register Val = getOrCreateVReg(*U.getOperand(0)); 2029 Register Elt = getOrCreateVReg(*U.getOperand(1)); 2030 Register Idx = getOrCreateVReg(*U.getOperand(2)); 2031 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 2032 return true; 2033 } 2034 2035 bool IRTranslator::translateExtractElement(const User &U, 2036 MachineIRBuilder &MIRBuilder) { 2037 // If it is a <1 x Ty> vector, use the scalar as it is 2038 // not a legal vector type in LLT. 2039 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 2040 return translateCopy(U, *U.getOperand(0), MIRBuilder); 2041 2042 Register Res = getOrCreateVReg(U); 2043 Register Val = getOrCreateVReg(*U.getOperand(0)); 2044 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2045 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 2046 Register Idx; 2047 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 2048 if (CI->getBitWidth() != PreferredVecIdxWidth) { 2049 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 2050 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 2051 Idx = getOrCreateVReg(*NewIdxCI); 2052 } 2053 } 2054 if (!Idx) 2055 Idx = getOrCreateVReg(*U.getOperand(1)); 2056 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 2057 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 2058 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0); 2059 } 2060 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 2061 return true; 2062 } 2063 2064 bool IRTranslator::translateShuffleVector(const User &U, 2065 MachineIRBuilder &MIRBuilder) { 2066 ArrayRef<int> Mask; 2067 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 2068 Mask = SVI->getShuffleMask(); 2069 else 2070 Mask = cast<ConstantExpr>(U).getShuffleMask(); 2071 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 2072 MIRBuilder 2073 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 2074 {getOrCreateVReg(*U.getOperand(0)), 2075 getOrCreateVReg(*U.getOperand(1))}) 2076 .addShuffleMask(MaskAlloc); 2077 return true; 2078 } 2079 2080 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 2081 const PHINode &PI = cast<PHINode>(U); 2082 2083 SmallVector<MachineInstr *, 4> Insts; 2084 for (auto Reg : getOrCreateVRegs(PI)) { 2085 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 2086 Insts.push_back(MIB.getInstr()); 2087 } 2088 2089 PendingPHIs.emplace_back(&PI, std::move(Insts)); 2090 return true; 2091 } 2092 2093 bool IRTranslator::translateAtomicCmpXchg(const User &U, 2094 MachineIRBuilder &MIRBuilder) { 2095 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 2096 2097 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2098 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2099 2100 Type *ResType = I.getType(); 2101 Type *ValType = ResType->Type::getStructElementType(0); 2102 2103 auto Res = getOrCreateVRegs(I); 2104 Register OldValRes = Res[0]; 2105 Register SuccessRes = Res[1]; 2106 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2107 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 2108 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 2109 2110 AAMDNodes AAMetadata; 2111 I.getAAMetadata(AAMetadata); 2112 2113 MIRBuilder.buildAtomicCmpXchgWithSuccess( 2114 OldValRes, SuccessRes, Addr, Cmp, NewVal, 2115 *MF->getMachineMemOperand( 2116 MachinePointerInfo(I.getPointerOperand()), Flags, 2117 DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr, 2118 I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering())); 2119 return true; 2120 } 2121 2122 bool IRTranslator::translateAtomicRMW(const User &U, 2123 MachineIRBuilder &MIRBuilder) { 2124 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2125 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2126 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2127 2128 Type *ResType = I.getType(); 2129 2130 Register Res = getOrCreateVReg(I); 2131 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2132 Register Val = getOrCreateVReg(*I.getValOperand()); 2133 2134 unsigned Opcode = 0; 2135 switch (I.getOperation()) { 2136 default: 2137 return false; 2138 case AtomicRMWInst::Xchg: 2139 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2140 break; 2141 case AtomicRMWInst::Add: 2142 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2143 break; 2144 case AtomicRMWInst::Sub: 2145 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2146 break; 2147 case AtomicRMWInst::And: 2148 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2149 break; 2150 case AtomicRMWInst::Nand: 2151 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2152 break; 2153 case AtomicRMWInst::Or: 2154 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2155 break; 2156 case AtomicRMWInst::Xor: 2157 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2158 break; 2159 case AtomicRMWInst::Max: 2160 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2161 break; 2162 case AtomicRMWInst::Min: 2163 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2164 break; 2165 case AtomicRMWInst::UMax: 2166 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2167 break; 2168 case AtomicRMWInst::UMin: 2169 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2170 break; 2171 case AtomicRMWInst::FAdd: 2172 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2173 break; 2174 case AtomicRMWInst::FSub: 2175 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2176 break; 2177 } 2178 2179 AAMDNodes AAMetadata; 2180 I.getAAMetadata(AAMetadata); 2181 2182 MIRBuilder.buildAtomicRMW( 2183 Opcode, Res, Addr, Val, 2184 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2185 Flags, DL->getTypeStoreSize(ResType), 2186 getMemOpAlign(I), AAMetadata, nullptr, 2187 I.getSyncScopeID(), I.getOrdering())); 2188 return true; 2189 } 2190 2191 bool IRTranslator::translateFence(const User &U, 2192 MachineIRBuilder &MIRBuilder) { 2193 const FenceInst &Fence = cast<FenceInst>(U); 2194 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2195 Fence.getSyncScopeID()); 2196 return true; 2197 } 2198 2199 bool IRTranslator::translateFreeze(const User &U, 2200 MachineIRBuilder &MIRBuilder) { 2201 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 2202 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 2203 2204 assert(DstRegs.size() == SrcRegs.size() && 2205 "Freeze with different source and destination type?"); 2206 2207 for (unsigned I = 0; I < DstRegs.size(); ++I) { 2208 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 2209 } 2210 2211 return true; 2212 } 2213 2214 void IRTranslator::finishPendingPhis() { 2215 #ifndef NDEBUG 2216 DILocationVerifier Verifier; 2217 GISelObserverWrapper WrapperObserver(&Verifier); 2218 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2219 #endif // ifndef NDEBUG 2220 for (auto &Phi : PendingPHIs) { 2221 const PHINode *PI = Phi.first; 2222 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2223 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2224 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2225 #ifndef NDEBUG 2226 Verifier.setCurrentInst(PI); 2227 #endif // ifndef NDEBUG 2228 2229 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2230 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2231 auto IRPred = PI->getIncomingBlock(i); 2232 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2233 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2234 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2235 continue; 2236 SeenPreds.insert(Pred); 2237 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2238 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2239 MIB.addUse(ValRegs[j]); 2240 MIB.addMBB(Pred); 2241 } 2242 } 2243 } 2244 } 2245 } 2246 2247 bool IRTranslator::valueIsSplit(const Value &V, 2248 SmallVectorImpl<uint64_t> *Offsets) { 2249 SmallVector<LLT, 4> SplitTys; 2250 if (Offsets && !Offsets->empty()) 2251 Offsets->clear(); 2252 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2253 return SplitTys.size() > 1; 2254 } 2255 2256 bool IRTranslator::translate(const Instruction &Inst) { 2257 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2258 // We only emit constants into the entry block from here. To prevent jumpy 2259 // debug behaviour set the line to 0. 2260 if (const DebugLoc &DL = Inst.getDebugLoc()) 2261 EntryBuilder->setDebugLoc( 2262 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 2263 else 2264 EntryBuilder->setDebugLoc(DebugLoc()); 2265 2266 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2267 if (TLI.fallBackToDAGISel(Inst)) 2268 return false; 2269 2270 switch (Inst.getOpcode()) { 2271 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2272 case Instruction::OPCODE: \ 2273 return translate##OPCODE(Inst, *CurBuilder.get()); 2274 #include "llvm/IR/Instruction.def" 2275 default: 2276 return false; 2277 } 2278 } 2279 2280 bool IRTranslator::translate(const Constant &C, Register Reg) { 2281 if (auto CI = dyn_cast<ConstantInt>(&C)) 2282 EntryBuilder->buildConstant(Reg, *CI); 2283 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2284 EntryBuilder->buildFConstant(Reg, *CF); 2285 else if (isa<UndefValue>(C)) 2286 EntryBuilder->buildUndef(Reg); 2287 else if (isa<ConstantPointerNull>(C)) 2288 EntryBuilder->buildConstant(Reg, 0); 2289 else if (auto GV = dyn_cast<GlobalValue>(&C)) 2290 EntryBuilder->buildGlobalValue(Reg, GV); 2291 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2292 if (!CAZ->getType()->isVectorTy()) 2293 return false; 2294 // Return the scalar if it is a <1 x Ty> vector. 2295 if (CAZ->getNumElements() == 1) 2296 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get()); 2297 SmallVector<Register, 4> Ops; 2298 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 2299 Constant &Elt = *CAZ->getElementValue(i); 2300 Ops.push_back(getOrCreateVReg(Elt)); 2301 } 2302 EntryBuilder->buildBuildVector(Reg, Ops); 2303 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2304 // Return the scalar if it is a <1 x Ty> vector. 2305 if (CV->getNumElements() == 1) 2306 return translateCopy(C, *CV->getElementAsConstant(0), 2307 *EntryBuilder.get()); 2308 SmallVector<Register, 4> Ops; 2309 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2310 Constant &Elt = *CV->getElementAsConstant(i); 2311 Ops.push_back(getOrCreateVReg(Elt)); 2312 } 2313 EntryBuilder->buildBuildVector(Reg, Ops); 2314 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2315 switch(CE->getOpcode()) { 2316 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2317 case Instruction::OPCODE: \ 2318 return translate##OPCODE(*CE, *EntryBuilder.get()); 2319 #include "llvm/IR/Instruction.def" 2320 default: 2321 return false; 2322 } 2323 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2324 if (CV->getNumOperands() == 1) 2325 return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get()); 2326 SmallVector<Register, 4> Ops; 2327 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2328 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2329 } 2330 EntryBuilder->buildBuildVector(Reg, Ops); 2331 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2332 EntryBuilder->buildBlockAddress(Reg, BA); 2333 } else 2334 return false; 2335 2336 return true; 2337 } 2338 2339 void IRTranslator::finalizeBasicBlock() { 2340 for (auto &JTCase : SL->JTCases) { 2341 // Emit header first, if it wasn't already emitted. 2342 if (!JTCase.first.Emitted) 2343 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 2344 2345 emitJumpTable(JTCase.second, JTCase.second.MBB); 2346 } 2347 SL->JTCases.clear(); 2348 } 2349 2350 void IRTranslator::finalizeFunction() { 2351 // Release the memory used by the different maps we 2352 // needed during the translation. 2353 PendingPHIs.clear(); 2354 VMap.reset(); 2355 FrameIndices.clear(); 2356 MachinePreds.clear(); 2357 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 2358 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 2359 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 2360 EntryBuilder.reset(); 2361 CurBuilder.reset(); 2362 FuncInfo.clear(); 2363 } 2364 2365 /// Returns true if a BasicBlock \p BB within a variadic function contains a 2366 /// variadic musttail call. 2367 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 2368 if (!IsVarArg) 2369 return false; 2370 2371 // Walk the block backwards, because tail calls usually only appear at the end 2372 // of a block. 2373 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 2374 const auto *CI = dyn_cast<CallInst>(&I); 2375 return CI && CI->isMustTailCall(); 2376 }); 2377 } 2378 2379 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 2380 MF = &CurMF; 2381 const Function &F = MF->getFunction(); 2382 if (F.empty()) 2383 return false; 2384 GISelCSEAnalysisWrapper &Wrapper = 2385 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 2386 // Set the CSEConfig and run the analysis. 2387 GISelCSEInfo *CSEInfo = nullptr; 2388 TPC = &getAnalysis<TargetPassConfig>(); 2389 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 2390 ? EnableCSEInIRTranslator 2391 : TPC->isGISelCSEEnabled(); 2392 2393 if (EnableCSE) { 2394 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2395 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 2396 EntryBuilder->setCSEInfo(CSEInfo); 2397 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2398 CurBuilder->setCSEInfo(CSEInfo); 2399 } else { 2400 EntryBuilder = std::make_unique<MachineIRBuilder>(); 2401 CurBuilder = std::make_unique<MachineIRBuilder>(); 2402 } 2403 CLI = MF->getSubtarget().getCallLowering(); 2404 CurBuilder->setMF(*MF); 2405 EntryBuilder->setMF(*MF); 2406 MRI = &MF->getRegInfo(); 2407 DL = &F.getParent()->getDataLayout(); 2408 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2409 FuncInfo.MF = MF; 2410 FuncInfo.BPI = nullptr; 2411 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2412 const TargetMachine &TM = MF->getTarget(); 2413 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 2414 SL->init(TLI, TM, *DL); 2415 2416 EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); 2417 2418 assert(PendingPHIs.empty() && "stale PHIs"); 2419 2420 if (!DL->isLittleEndian()) { 2421 // Currently we don't properly handle big endian code. 2422 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2423 F.getSubprogram(), &F.getEntryBlock()); 2424 R << "unable to translate in big endian mode"; 2425 reportTranslationError(*MF, *TPC, *ORE, R); 2426 } 2427 2428 // Release the per-function state when we return, whether we succeeded or not. 2429 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 2430 2431 // Setup a separate basic-block for the arguments and constants 2432 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 2433 MF->push_back(EntryBB); 2434 EntryBuilder->setMBB(*EntryBB); 2435 2436 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 2437 SwiftError.setFunction(CurMF); 2438 SwiftError.createEntriesInEntryBlock(DbgLoc); 2439 2440 bool IsVarArg = F.isVarArg(); 2441 bool HasMustTailInVarArgFn = false; 2442 2443 // Create all blocks, in IR order, to preserve the layout. 2444 for (const BasicBlock &BB: F) { 2445 auto *&MBB = BBToMBB[&BB]; 2446 2447 MBB = MF->CreateMachineBasicBlock(&BB); 2448 MF->push_back(MBB); 2449 2450 if (BB.hasAddressTaken()) 2451 MBB->setHasAddressTaken(); 2452 2453 if (!HasMustTailInVarArgFn) 2454 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 2455 } 2456 2457 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 2458 2459 // Make our arguments/constants entry block fallthrough to the IR entry block. 2460 EntryBB->addSuccessor(&getMBB(F.front())); 2461 2462 if (CLI->fallBackToDAGISel(F)) { 2463 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2464 F.getSubprogram(), &F.getEntryBlock()); 2465 R << "unable to lower function: " << ore::NV("Prototype", F.getType()); 2466 reportTranslationError(*MF, *TPC, *ORE, R); 2467 return false; 2468 } 2469 2470 // Lower the actual args into this basic block. 2471 SmallVector<ArrayRef<Register>, 8> VRegArgs; 2472 for (const Argument &Arg: F.args()) { 2473 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 2474 continue; // Don't handle zero sized types. 2475 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 2476 VRegArgs.push_back(VRegs); 2477 2478 if (Arg.hasSwiftErrorAttr()) { 2479 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 2480 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 2481 } 2482 } 2483 2484 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 2485 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2486 F.getSubprogram(), &F.getEntryBlock()); 2487 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 2488 reportTranslationError(*MF, *TPC, *ORE, R); 2489 return false; 2490 } 2491 2492 // Need to visit defs before uses when translating instructions. 2493 GISelObserverWrapper WrapperObserver; 2494 if (EnableCSE && CSEInfo) 2495 WrapperObserver.addObserver(CSEInfo); 2496 { 2497 ReversePostOrderTraversal<const Function *> RPOT(&F); 2498 #ifndef NDEBUG 2499 DILocationVerifier Verifier; 2500 WrapperObserver.addObserver(&Verifier); 2501 #endif // ifndef NDEBUG 2502 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2503 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 2504 for (const BasicBlock *BB : RPOT) { 2505 MachineBasicBlock &MBB = getMBB(*BB); 2506 // Set the insertion point of all the following translations to 2507 // the end of this basic block. 2508 CurBuilder->setMBB(MBB); 2509 HasTailCall = false; 2510 for (const Instruction &Inst : *BB) { 2511 // If we translated a tail call in the last step, then we know 2512 // everything after the call is either a return, or something that is 2513 // handled by the call itself. (E.g. a lifetime marker or assume 2514 // intrinsic.) In this case, we should stop translating the block and 2515 // move on. 2516 if (HasTailCall) 2517 break; 2518 #ifndef NDEBUG 2519 Verifier.setCurrentInst(&Inst); 2520 #endif // ifndef NDEBUG 2521 if (translate(Inst)) 2522 continue; 2523 2524 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2525 Inst.getDebugLoc(), BB); 2526 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 2527 2528 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 2529 std::string InstStrStorage; 2530 raw_string_ostream InstStr(InstStrStorage); 2531 InstStr << Inst; 2532 2533 R << ": '" << InstStr.str() << "'"; 2534 } 2535 2536 reportTranslationError(*MF, *TPC, *ORE, R); 2537 return false; 2538 } 2539 2540 finalizeBasicBlock(); 2541 } 2542 #ifndef NDEBUG 2543 WrapperObserver.removeObserver(&Verifier); 2544 #endif 2545 } 2546 2547 finishPendingPhis(); 2548 2549 SwiftError.propagateVRegs(); 2550 2551 // Merge the argument lowering and constants block with its single 2552 // successor, the LLVM-IR entry block. We want the basic block to 2553 // be maximal. 2554 assert(EntryBB->succ_size() == 1 && 2555 "Custom BB used for lowering should have only one successor"); 2556 // Get the successor of the current entry block. 2557 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 2558 assert(NewEntryBB.pred_size() == 1 && 2559 "LLVM-IR entry block has a predecessor!?"); 2560 // Move all the instruction from the current entry block to the 2561 // new entry block. 2562 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 2563 EntryBB->end()); 2564 2565 // Update the live-in information for the new entry block. 2566 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 2567 NewEntryBB.addLiveIn(LiveIn); 2568 NewEntryBB.sortUniqueLiveIns(); 2569 2570 // Get rid of the now empty basic block. 2571 EntryBB->removeSuccessor(&NewEntryBB); 2572 MF->remove(EntryBB); 2573 MF->DeleteMachineBasicBlock(EntryBB); 2574 2575 assert(&MF->front() == &NewEntryBB && 2576 "New entry wasn't next in the list of basic block!"); 2577 2578 // Initialize stack protector information. 2579 StackProtector &SP = getAnalysis<StackProtector>(); 2580 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2581 2582 return false; 2583 } 2584