1 //===-- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator --*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 15 #include "llvm/ADT/SmallSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 18 #include "llvm/CodeGen/Analysis.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GetElementPtrTypeIterator.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Target/TargetIntrinsicInfo.h" 32 #include "llvm/Target/TargetLowering.h" 33 34 #define DEBUG_TYPE "irtranslator" 35 36 using namespace llvm; 37 38 char IRTranslator::ID = 0; 39 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 40 false, false) 41 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 42 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 43 false, false) 44 45 static void reportTranslationError(const Value &V, const Twine &Message) { 46 std::string ErrStorage; 47 raw_string_ostream Err(ErrStorage); 48 Err << Message << ": " << V << '\n'; 49 report_fatal_error(Err.str()); 50 } 51 52 IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) { 53 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 54 } 55 56 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 57 AU.addRequired<TargetPassConfig>(); 58 MachineFunctionPass::getAnalysisUsage(AU); 59 } 60 61 62 unsigned IRTranslator::getOrCreateVReg(const Value &Val) { 63 unsigned &ValReg = ValToVReg[&Val]; 64 65 if (ValReg) 66 return ValReg; 67 68 // Fill ValRegsSequence with the sequence of registers 69 // we need to concat together to produce the value. 70 assert(Val.getType()->isSized() && 71 "Don't know how to create an empty vreg"); 72 unsigned VReg = MRI->createGenericVirtualRegister(LLT{*Val.getType(), *DL}); 73 ValReg = VReg; 74 75 if (auto CV = dyn_cast<Constant>(&Val)) { 76 bool Success = translate(*CV, VReg); 77 if (!Success) { 78 if (!TPC->isGlobalISelAbortEnabled()) { 79 MF->getProperties().set( 80 MachineFunctionProperties::Property::FailedISel); 81 return VReg; 82 } 83 reportTranslationError(Val, "unable to translate constant"); 84 } 85 } 86 87 return VReg; 88 } 89 90 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 91 if (FrameIndices.find(&AI) != FrameIndices.end()) 92 return FrameIndices[&AI]; 93 94 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 95 unsigned Size = 96 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 97 98 // Always allocate at least one byte. 99 Size = std::max(Size, 1u); 100 101 unsigned Alignment = AI.getAlignment(); 102 if (!Alignment) 103 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 104 105 int &FI = FrameIndices[&AI]; 106 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 107 return FI; 108 } 109 110 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 111 unsigned Alignment = 0; 112 Type *ValTy = nullptr; 113 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 114 Alignment = SI->getAlignment(); 115 ValTy = SI->getValueOperand()->getType(); 116 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 117 Alignment = LI->getAlignment(); 118 ValTy = LI->getType(); 119 } else if (!TPC->isGlobalISelAbortEnabled()) { 120 MF->getProperties().set( 121 MachineFunctionProperties::Property::FailedISel); 122 return 1; 123 } else 124 llvm_unreachable("unhandled memory instruction"); 125 126 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 127 } 128 129 MachineBasicBlock &IRTranslator::getOrCreateBB(const BasicBlock &BB) { 130 MachineBasicBlock *&MBB = BBToMBB[&BB]; 131 if (!MBB) { 132 MBB = MF->CreateMachineBasicBlock(&BB); 133 MF->push_back(MBB); 134 135 if (BB.hasAddressTaken()) 136 MBB->setHasAddressTaken(); 137 } 138 return *MBB; 139 } 140 141 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 142 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 143 MachinePreds[Edge].push_back(NewPred); 144 } 145 146 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 147 MachineIRBuilder &MIRBuilder) { 148 // FIXME: handle signed/unsigned wrapping flags. 149 150 // Get or create a virtual register for each value. 151 // Unless the value is a Constant => loadimm cst? 152 // or inline constant each time? 153 // Creation of a virtual register needs to have a size. 154 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 155 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 156 unsigned Res = getOrCreateVReg(U); 157 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); 158 return true; 159 } 160 161 bool IRTranslator::translateCompare(const User &U, 162 MachineIRBuilder &MIRBuilder) { 163 const CmpInst *CI = dyn_cast<CmpInst>(&U); 164 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 165 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 166 unsigned Res = getOrCreateVReg(U); 167 CmpInst::Predicate Pred = 168 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 169 cast<ConstantExpr>(U).getPredicate()); 170 171 if (CmpInst::isIntPredicate(Pred)) 172 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 173 else 174 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); 175 176 return true; 177 } 178 179 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 180 const ReturnInst &RI = cast<ReturnInst>(U); 181 const Value *Ret = RI.getReturnValue(); 182 // The target may mess up with the insertion point, but 183 // this is not important as a return is the last instruction 184 // of the block anyway. 185 return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret)); 186 } 187 188 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 189 const BranchInst &BrInst = cast<BranchInst>(U); 190 unsigned Succ = 0; 191 if (!BrInst.isUnconditional()) { 192 // We want a G_BRCOND to the true BB followed by an unconditional branch. 193 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 194 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 195 MachineBasicBlock &TrueBB = getOrCreateBB(TrueTgt); 196 MIRBuilder.buildBrCond(Tst, TrueBB); 197 } 198 199 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 200 MachineBasicBlock &TgtBB = getOrCreateBB(BrTgt); 201 MIRBuilder.buildBr(TgtBB); 202 203 // Link successors. 204 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 205 for (const BasicBlock *Succ : BrInst.successors()) 206 CurBB.addSuccessor(&getOrCreateBB(*Succ)); 207 return true; 208 } 209 210 bool IRTranslator::translateSwitch(const User &U, 211 MachineIRBuilder &MIRBuilder) { 212 // For now, just translate as a chain of conditional branches. 213 // FIXME: could we share most of the logic/code in 214 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 215 // At first sight, it seems most of the logic in there is independent of 216 // SelectionDAG-specifics and a lot of work went in to optimize switch 217 // lowering in there. 218 219 const SwitchInst &SwInst = cast<SwitchInst>(U); 220 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 221 const BasicBlock *OrigBB = SwInst.getParent(); 222 223 LLT LLTi1 = LLT(*Type::getInt1Ty(U.getContext()), *DL); 224 for (auto &CaseIt : SwInst.cases()) { 225 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 226 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 227 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 228 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 229 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 230 MachineBasicBlock &TrueMBB = getOrCreateBB(*TrueBB); 231 232 MIRBuilder.buildBrCond(Tst, TrueMBB); 233 CurMBB.addSuccessor(&TrueMBB); 234 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 235 236 MachineBasicBlock *FalseMBB = 237 MF->CreateMachineBasicBlock(SwInst.getParent()); 238 MF->push_back(FalseMBB); 239 MIRBuilder.buildBr(*FalseMBB); 240 CurMBB.addSuccessor(FalseMBB); 241 242 MIRBuilder.setMBB(*FalseMBB); 243 } 244 // handle default case 245 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 246 MachineBasicBlock &DefaultMBB = getOrCreateBB(*DefaultBB); 247 MIRBuilder.buildBr(DefaultMBB); 248 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 249 CurMBB.addSuccessor(&DefaultMBB); 250 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 251 252 return true; 253 } 254 255 bool IRTranslator::translateIndirectBr(const User &U, 256 MachineIRBuilder &MIRBuilder) { 257 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 258 259 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 260 MIRBuilder.buildBrIndirect(Tgt); 261 262 // Link successors. 263 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 264 for (const BasicBlock *Succ : BrInst.successors()) 265 CurBB.addSuccessor(&getOrCreateBB(*Succ)); 266 267 return true; 268 } 269 270 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 271 const LoadInst &LI = cast<LoadInst>(U); 272 273 if (!TPC->isGlobalISelAbortEnabled() && LI.isAtomic()) 274 return false; 275 276 assert(!LI.isAtomic() && "only non-atomic loads are supported at the moment"); 277 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 278 : MachineMemOperand::MONone; 279 Flags |= MachineMemOperand::MOLoad; 280 281 unsigned Res = getOrCreateVReg(LI); 282 unsigned Addr = getOrCreateVReg(*LI.getPointerOperand()); 283 LLT VTy{*LI.getType(), *DL}, PTy{*LI.getPointerOperand()->getType(), *DL}; 284 MIRBuilder.buildLoad( 285 Res, Addr, 286 *MF->getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()), 287 Flags, DL->getTypeStoreSize(LI.getType()), 288 getMemOpAlignment(LI))); 289 return true; 290 } 291 292 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 293 const StoreInst &SI = cast<StoreInst>(U); 294 295 if (!TPC->isGlobalISelAbortEnabled() && SI.isAtomic()) 296 return false; 297 298 assert(!SI.isAtomic() && "only non-atomic stores supported at the moment"); 299 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 300 : MachineMemOperand::MONone; 301 Flags |= MachineMemOperand::MOStore; 302 303 unsigned Val = getOrCreateVReg(*SI.getValueOperand()); 304 unsigned Addr = getOrCreateVReg(*SI.getPointerOperand()); 305 LLT VTy{*SI.getValueOperand()->getType(), *DL}, 306 PTy{*SI.getPointerOperand()->getType(), *DL}; 307 308 MIRBuilder.buildStore( 309 Val, Addr, 310 *MF->getMachineMemOperand( 311 MachinePointerInfo(SI.getPointerOperand()), Flags, 312 DL->getTypeStoreSize(SI.getValueOperand()->getType()), 313 getMemOpAlignment(SI))); 314 return true; 315 } 316 317 bool IRTranslator::translateExtractValue(const User &U, 318 MachineIRBuilder &MIRBuilder) { 319 const Value *Src = U.getOperand(0); 320 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 321 SmallVector<Value *, 1> Indices; 322 323 // getIndexedOffsetInType is designed for GEPs, so the first index is the 324 // usual array element rather than looking into the actual aggregate. 325 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 326 327 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 328 for (auto Idx : EVI->indices()) 329 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 330 } else { 331 for (unsigned i = 1; i < U.getNumOperands(); ++i) 332 Indices.push_back(U.getOperand(i)); 333 } 334 335 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 336 337 unsigned Res = getOrCreateVReg(U); 338 MIRBuilder.buildExtract(Res, Offset, getOrCreateVReg(*Src)); 339 340 return true; 341 } 342 343 bool IRTranslator::translateInsertValue(const User &U, 344 MachineIRBuilder &MIRBuilder) { 345 const Value *Src = U.getOperand(0); 346 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 347 SmallVector<Value *, 1> Indices; 348 349 // getIndexedOffsetInType is designed for GEPs, so the first index is the 350 // usual array element rather than looking into the actual aggregate. 351 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 352 353 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 354 for (auto Idx : IVI->indices()) 355 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 356 } else { 357 for (unsigned i = 2; i < U.getNumOperands(); ++i) 358 Indices.push_back(U.getOperand(i)); 359 } 360 361 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 362 363 unsigned Res = getOrCreateVReg(U); 364 const Value &Inserted = *U.getOperand(1); 365 MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), getOrCreateVReg(Inserted), 366 Offset); 367 368 return true; 369 } 370 371 bool IRTranslator::translateSelect(const User &U, 372 MachineIRBuilder &MIRBuilder) { 373 MIRBuilder.buildSelect(getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)), 374 getOrCreateVReg(*U.getOperand(1)), 375 getOrCreateVReg(*U.getOperand(2))); 376 return true; 377 } 378 379 bool IRTranslator::translateBitCast(const User &U, 380 MachineIRBuilder &MIRBuilder) { 381 if (LLT{*U.getOperand(0)->getType(), *DL} == LLT{*U.getType(), *DL}) { 382 unsigned &Reg = ValToVReg[&U]; 383 if (Reg) 384 MIRBuilder.buildCopy(Reg, getOrCreateVReg(*U.getOperand(0))); 385 else 386 Reg = getOrCreateVReg(*U.getOperand(0)); 387 return true; 388 } 389 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 390 } 391 392 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 393 MachineIRBuilder &MIRBuilder) { 394 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 395 unsigned Res = getOrCreateVReg(U); 396 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 397 return true; 398 } 399 400 bool IRTranslator::translateGetElementPtr(const User &U, 401 MachineIRBuilder &MIRBuilder) { 402 // FIXME: support vector GEPs. 403 if (U.getType()->isVectorTy()) 404 return false; 405 406 Value &Op0 = *U.getOperand(0); 407 unsigned BaseReg = getOrCreateVReg(Op0); 408 LLT PtrTy{*Op0.getType(), *DL}; 409 unsigned PtrSize = DL->getPointerSizeInBits(PtrTy.getAddressSpace()); 410 LLT OffsetTy = LLT::scalar(PtrSize); 411 412 int64_t Offset = 0; 413 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 414 GTI != E; ++GTI) { 415 const Value *Idx = GTI.getOperand(); 416 if (StructType *StTy = GTI.getStructTypeOrNull()) { 417 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 418 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 419 continue; 420 } else { 421 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 422 423 // If this is a scalar constant or a splat vector of constants, 424 // handle it quickly. 425 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 426 Offset += ElementSize * CI->getSExtValue(); 427 continue; 428 } 429 430 if (Offset != 0) { 431 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 432 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 433 MIRBuilder.buildConstant(OffsetReg, Offset); 434 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 435 436 BaseReg = NewBaseReg; 437 Offset = 0; 438 } 439 440 // N = N + Idx * ElementSize; 441 unsigned ElementSizeReg = MRI->createGenericVirtualRegister(OffsetTy); 442 MIRBuilder.buildConstant(ElementSizeReg, ElementSize); 443 444 unsigned IdxReg = getOrCreateVReg(*Idx); 445 if (MRI->getType(IdxReg) != OffsetTy) { 446 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 447 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 448 IdxReg = NewIdxReg; 449 } 450 451 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 452 MIRBuilder.buildMul(OffsetReg, ElementSizeReg, IdxReg); 453 454 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 455 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 456 BaseReg = NewBaseReg; 457 } 458 } 459 460 if (Offset != 0) { 461 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 462 MIRBuilder.buildConstant(OffsetReg, Offset); 463 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 464 return true; 465 } 466 467 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 468 return true; 469 } 470 471 bool IRTranslator::translateMemfunc(const CallInst &CI, 472 MachineIRBuilder &MIRBuilder, 473 unsigned ID) { 474 LLT SizeTy{*CI.getArgOperand(2)->getType(), *DL}; 475 Type *DstTy = CI.getArgOperand(0)->getType(); 476 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 477 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 478 return false; 479 480 SmallVector<CallLowering::ArgInfo, 8> Args; 481 for (int i = 0; i < 3; ++i) { 482 const auto &Arg = CI.getArgOperand(i); 483 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 484 } 485 486 const char *Callee; 487 switch (ID) { 488 case Intrinsic::memmove: 489 case Intrinsic::memcpy: { 490 Type *SrcTy = CI.getArgOperand(1)->getType(); 491 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 492 return false; 493 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 494 break; 495 } 496 case Intrinsic::memset: 497 Callee = "memset"; 498 break; 499 default: 500 return false; 501 } 502 503 return CLI->lowerCall(MIRBuilder, MachineOperand::CreateES(Callee), 504 CallLowering::ArgInfo(0, CI.getType()), Args); 505 } 506 507 void IRTranslator::getStackGuard(unsigned DstReg, 508 MachineIRBuilder &MIRBuilder) { 509 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 510 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 511 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 512 MIB.addDef(DstReg); 513 514 auto &TLI = *MF->getSubtarget().getTargetLowering(); 515 Value *Global = TLI.getSDagStackGuard(*MF->getFunction()->getParent()); 516 if (!Global) 517 return; 518 519 MachinePointerInfo MPInfo(Global); 520 MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1); 521 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 522 MachineMemOperand::MODereferenceable; 523 *MemRefs = 524 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 525 DL->getPointerABIAlignment()); 526 MIB.setMemRefs(MemRefs, MemRefs + 1); 527 } 528 529 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 530 MachineIRBuilder &MIRBuilder) { 531 LLT Ty{*CI.getOperand(0)->getType(), *DL}; 532 LLT s1 = LLT::scalar(1); 533 unsigned Width = Ty.getSizeInBits(); 534 unsigned Res = MRI->createGenericVirtualRegister(Ty); 535 unsigned Overflow = MRI->createGenericVirtualRegister(s1); 536 auto MIB = MIRBuilder.buildInstr(Op) 537 .addDef(Res) 538 .addDef(Overflow) 539 .addUse(getOrCreateVReg(*CI.getOperand(0))) 540 .addUse(getOrCreateVReg(*CI.getOperand(1))); 541 542 if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) { 543 unsigned Zero = MRI->createGenericVirtualRegister(s1); 544 EntryBuilder.buildConstant(Zero, 0); 545 MIB.addUse(Zero); 546 } 547 548 MIRBuilder.buildSequence(getOrCreateVReg(CI), Res, 0, Overflow, Width); 549 return true; 550 } 551 552 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 553 MachineIRBuilder &MIRBuilder) { 554 switch (ID) { 555 default: 556 break; 557 case Intrinsic::dbg_declare: { 558 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 559 assert(DI.getVariable() && "Missing variable"); 560 561 const Value *Address = DI.getAddress(); 562 if (!Address || isa<UndefValue>(Address)) { 563 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 564 return true; 565 } 566 567 unsigned Reg = getOrCreateVReg(*Address); 568 auto RegDef = MRI->def_instr_begin(Reg); 569 assert(DI.getVariable()->isValidLocationForIntrinsic( 570 MIRBuilder.getDebugLoc()) && 571 "Expected inlined-at fields to agree"); 572 573 if (RegDef != MRI->def_instr_end() && 574 RegDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 575 MIRBuilder.buildFIDbgValue(RegDef->getOperand(1).getIndex(), 576 DI.getVariable(), DI.getExpression()); 577 } else 578 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 579 return true; 580 } 581 case Intrinsic::dbg_value: { 582 // This form of DBG_VALUE is target-independent. 583 const DbgValueInst &DI = cast<DbgValueInst>(CI); 584 const Value *V = DI.getValue(); 585 assert(DI.getVariable()->isValidLocationForIntrinsic( 586 MIRBuilder.getDebugLoc()) && 587 "Expected inlined-at fields to agree"); 588 if (!V) { 589 // Currently the optimizer can produce this; insert an undef to 590 // help debugging. Probably the optimizer should not do this. 591 MIRBuilder.buildIndirectDbgValue(0, DI.getOffset(), DI.getVariable(), 592 DI.getExpression()); 593 } else if (const auto *CI = dyn_cast<Constant>(V)) { 594 MIRBuilder.buildConstDbgValue(*CI, DI.getOffset(), DI.getVariable(), 595 DI.getExpression()); 596 } else { 597 unsigned Reg = getOrCreateVReg(*V); 598 // FIXME: This does not handle register-indirect values at offset 0. The 599 // direct/indirect thing shouldn't really be handled by something as 600 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 601 // pretty baked in right now. 602 if (DI.getOffset() != 0) 603 MIRBuilder.buildIndirectDbgValue(Reg, DI.getOffset(), DI.getVariable(), 604 DI.getExpression()); 605 else 606 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), 607 DI.getExpression()); 608 } 609 return true; 610 } 611 case Intrinsic::uadd_with_overflow: 612 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder); 613 case Intrinsic::sadd_with_overflow: 614 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 615 case Intrinsic::usub_with_overflow: 616 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder); 617 case Intrinsic::ssub_with_overflow: 618 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 619 case Intrinsic::umul_with_overflow: 620 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 621 case Intrinsic::smul_with_overflow: 622 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 623 case Intrinsic::memcpy: 624 case Intrinsic::memmove: 625 case Intrinsic::memset: 626 return translateMemfunc(CI, MIRBuilder, ID); 627 case Intrinsic::eh_typeid_for: { 628 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 629 unsigned Reg = getOrCreateVReg(CI); 630 unsigned TypeID = MF->getTypeIDFor(GV); 631 MIRBuilder.buildConstant(Reg, TypeID); 632 return true; 633 } 634 case Intrinsic::objectsize: { 635 // If we don't know by now, we're never going to know. 636 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 637 638 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 639 return true; 640 } 641 case Intrinsic::stackguard: 642 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 643 return true; 644 case Intrinsic::stackprotector: { 645 LLT PtrTy{*CI.getArgOperand(0)->getType(), *DL}; 646 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 647 getStackGuard(GuardVal, MIRBuilder); 648 649 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 650 MIRBuilder.buildStore( 651 GuardVal, getOrCreateVReg(*Slot), 652 *MF->getMachineMemOperand( 653 MachinePointerInfo::getFixedStack(*MF, 654 getOrCreateFrameIndex(*Slot)), 655 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 656 PtrTy.getSizeInBits() / 8, 8)); 657 return true; 658 } 659 } 660 return false; 661 } 662 663 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 664 const CallInst &CI = cast<CallInst>(U); 665 auto TII = MF->getTarget().getIntrinsicInfo(); 666 const Function *F = CI.getCalledFunction(); 667 668 if (CI.isInlineAsm()) 669 return false; 670 671 if (!F || !F->isIntrinsic()) { 672 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 673 SmallVector<unsigned, 8> Args; 674 for (auto &Arg: CI.arg_operands()) 675 Args.push_back(getOrCreateVReg(*Arg)); 676 677 return CLI->lowerCall(MIRBuilder, CI, Res, Args, [&]() { 678 return getOrCreateVReg(*CI.getCalledValue()); 679 }); 680 } 681 682 Intrinsic::ID ID = F->getIntrinsicID(); 683 if (TII && ID == Intrinsic::not_intrinsic) 684 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 685 686 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 687 688 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 689 return true; 690 691 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 692 MachineInstrBuilder MIB = 693 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 694 695 for (auto &Arg : CI.arg_operands()) { 696 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) 697 MIB.addImm(CI->getSExtValue()); 698 else 699 MIB.addUse(getOrCreateVReg(*Arg)); 700 } 701 return true; 702 } 703 704 bool IRTranslator::translateInvoke(const User &U, 705 MachineIRBuilder &MIRBuilder) { 706 const InvokeInst &I = cast<InvokeInst>(U); 707 MCContext &Context = MF->getContext(); 708 709 const BasicBlock *ReturnBB = I.getSuccessor(0); 710 const BasicBlock *EHPadBB = I.getSuccessor(1); 711 712 const Value *Callee(I.getCalledValue()); 713 const Function *Fn = dyn_cast<Function>(Callee); 714 if (isa<InlineAsm>(Callee)) 715 return false; 716 717 // FIXME: support invoking patchpoint and statepoint intrinsics. 718 if (Fn && Fn->isIntrinsic()) 719 return false; 720 721 // FIXME: support whatever these are. 722 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 723 return false; 724 725 // FIXME: support Windows exception handling. 726 if (!isa<LandingPadInst>(EHPadBB->front())) 727 return false; 728 729 730 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 731 // the region covered by the try. 732 MCSymbol *BeginSymbol = Context.createTempSymbol(); 733 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 734 735 unsigned Res = I.getType()->isVoidTy() ? 0 : getOrCreateVReg(I); 736 SmallVector<unsigned, 8> Args; 737 for (auto &Arg: I.arg_operands()) 738 Args.push_back(getOrCreateVReg(*Arg)); 739 740 CLI->lowerCall(MIRBuilder, I, Res, Args, 741 [&]() { return getOrCreateVReg(*I.getCalledValue()); }); 742 743 MCSymbol *EndSymbol = Context.createTempSymbol(); 744 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 745 746 // FIXME: track probabilities. 747 MachineBasicBlock &EHPadMBB = getOrCreateBB(*EHPadBB), 748 &ReturnMBB = getOrCreateBB(*ReturnBB); 749 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 750 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 751 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 752 MIRBuilder.buildBr(ReturnMBB); 753 754 return true; 755 } 756 757 bool IRTranslator::translateLandingPad(const User &U, 758 MachineIRBuilder &MIRBuilder) { 759 const LandingPadInst &LP = cast<LandingPadInst>(U); 760 761 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 762 addLandingPadInfo(LP, MBB); 763 764 MBB.setIsEHPad(); 765 766 // If there aren't registers to copy the values into (e.g., during SjLj 767 // exceptions), then don't bother. 768 auto &TLI = *MF->getSubtarget().getTargetLowering(); 769 const Constant *PersonalityFn = MF->getFunction()->getPersonalityFn(); 770 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 771 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 772 return true; 773 774 // If landingpad's return type is token type, we don't create DAG nodes 775 // for its exception pointer and selector value. The extraction of exception 776 // pointer or selector value from token type landingpads is not currently 777 // supported. 778 if (LP.getType()->isTokenTy()) 779 return true; 780 781 // Add a label to mark the beginning of the landing pad. Deletion of the 782 // landing pad can thus be detected via the MachineModuleInfo. 783 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 784 .addSym(MF->addLandingPad(&MBB)); 785 786 SmallVector<LLT, 2> Tys; 787 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 788 Tys.push_back(LLT{*Ty, *DL}); 789 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 790 791 // Mark exception register as live in. 792 SmallVector<unsigned, 2> Regs; 793 SmallVector<uint64_t, 2> Offsets; 794 if (unsigned Reg = TLI.getExceptionPointerRegister(PersonalityFn)) { 795 MBB.addLiveIn(Reg); 796 unsigned VReg = MRI->createGenericVirtualRegister(Tys[0]); 797 MIRBuilder.buildCopy(VReg, Reg); 798 Regs.push_back(VReg); 799 Offsets.push_back(0); 800 } 801 802 if (unsigned Reg = TLI.getExceptionSelectorRegister(PersonalityFn)) { 803 MBB.addLiveIn(Reg); 804 805 // N.b. the exception selector register always has pointer type and may not 806 // match the actual IR-level type in the landingpad so an extra cast is 807 // needed. 808 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 809 MIRBuilder.buildCopy(PtrVReg, Reg); 810 811 unsigned VReg = MRI->createGenericVirtualRegister(Tys[1]); 812 MIRBuilder.buildInstr(TargetOpcode::G_PTRTOINT) 813 .addDef(VReg) 814 .addUse(PtrVReg); 815 Regs.push_back(VReg); 816 Offsets.push_back(Tys[0].getSizeInBits()); 817 } 818 819 MIRBuilder.buildSequence(getOrCreateVReg(LP), Regs, Offsets); 820 return true; 821 } 822 823 bool IRTranslator::translateStaticAlloca(const AllocaInst &AI, 824 MachineIRBuilder &MIRBuilder) { 825 if (!TPC->isGlobalISelAbortEnabled() && !AI.isStaticAlloca()) 826 return false; 827 828 assert(AI.isStaticAlloca() && "only handle static allocas now"); 829 unsigned Res = getOrCreateVReg(AI); 830 int FI = getOrCreateFrameIndex(AI); 831 MIRBuilder.buildFrameIndex(Res, FI); 832 return true; 833 } 834 835 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 836 const PHINode &PI = cast<PHINode>(U); 837 auto MIB = MIRBuilder.buildInstr(TargetOpcode::PHI); 838 MIB.addDef(getOrCreateVReg(PI)); 839 840 PendingPHIs.emplace_back(&PI, MIB.getInstr()); 841 return true; 842 } 843 844 void IRTranslator::finishPendingPhis() { 845 for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) { 846 const PHINode *PI = Phi.first; 847 MachineInstrBuilder MIB(*MF, Phi.second); 848 849 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 850 // won't create extra control flow here, otherwise we need to find the 851 // dominating predecessor here (or perhaps force the weirder IRTranslators 852 // to provide a simple boundary). 853 SmallSet<const BasicBlock *, 4> HandledPreds; 854 855 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 856 auto IRPred = PI->getIncomingBlock(i); 857 if (HandledPreds.count(IRPred)) 858 continue; 859 860 HandledPreds.insert(IRPred); 861 unsigned ValReg = getOrCreateVReg(*PI->getIncomingValue(i)); 862 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 863 assert(Pred->isSuccessor(MIB->getParent()) && 864 "incorrect CFG at MachineBasicBlock level"); 865 MIB.addUse(ValReg); 866 MIB.addMBB(Pred); 867 } 868 } 869 } 870 } 871 872 bool IRTranslator::translate(const Instruction &Inst) { 873 CurBuilder.setDebugLoc(Inst.getDebugLoc()); 874 switch(Inst.getOpcode()) { 875 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 876 case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder); 877 #include "llvm/IR/Instruction.def" 878 default: 879 if (!TPC->isGlobalISelAbortEnabled()) 880 return false; 881 llvm_unreachable("unknown opcode"); 882 } 883 } 884 885 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 886 if (auto CI = dyn_cast<ConstantInt>(&C)) 887 EntryBuilder.buildConstant(Reg, *CI); 888 else if (auto CF = dyn_cast<ConstantFP>(&C)) 889 EntryBuilder.buildFConstant(Reg, *CF); 890 else if (isa<UndefValue>(C)) 891 EntryBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF).addDef(Reg); 892 else if (isa<ConstantPointerNull>(C)) 893 EntryBuilder.buildConstant(Reg, 0); 894 else if (auto GV = dyn_cast<GlobalValue>(&C)) 895 EntryBuilder.buildGlobalValue(Reg, GV); 896 else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 897 switch(CE->getOpcode()) { 898 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 899 case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder); 900 #include "llvm/IR/Instruction.def" 901 default: 902 if (!TPC->isGlobalISelAbortEnabled()) 903 return false; 904 llvm_unreachable("unknown opcode"); 905 } 906 } else if (!TPC->isGlobalISelAbortEnabled()) 907 return false; 908 else 909 llvm_unreachable("unhandled constant kind"); 910 911 return true; 912 } 913 914 void IRTranslator::finalizeFunction() { 915 // Release the memory used by the different maps we 916 // needed during the translation. 917 PendingPHIs.clear(); 918 ValToVReg.clear(); 919 FrameIndices.clear(); 920 Constants.clear(); 921 MachinePreds.clear(); 922 } 923 924 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 925 MF = &CurMF; 926 const Function &F = *MF->getFunction(); 927 if (F.empty()) 928 return false; 929 CLI = MF->getSubtarget().getCallLowering(); 930 CurBuilder.setMF(*MF); 931 EntryBuilder.setMF(*MF); 932 MRI = &MF->getRegInfo(); 933 DL = &F.getParent()->getDataLayout(); 934 TPC = &getAnalysis<TargetPassConfig>(); 935 936 assert(PendingPHIs.empty() && "stale PHIs"); 937 938 // Setup a separate basic-block for the arguments and constants, falling 939 // through to the IR-level Function's entry block. 940 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 941 MF->push_back(EntryBB); 942 EntryBB->addSuccessor(&getOrCreateBB(F.front())); 943 EntryBuilder.setMBB(*EntryBB); 944 945 // Lower the actual args into this basic block. 946 SmallVector<unsigned, 8> VRegArgs; 947 for (const Argument &Arg: F.args()) 948 VRegArgs.push_back(getOrCreateVReg(Arg)); 949 bool Succeeded = CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs); 950 if (!Succeeded) { 951 if (!TPC->isGlobalISelAbortEnabled()) { 952 MF->getProperties().set( 953 MachineFunctionProperties::Property::FailedISel); 954 finalizeFunction(); 955 return false; 956 } 957 report_fatal_error("Unable to lower arguments"); 958 } 959 960 // And translate the function! 961 for (const BasicBlock &BB: F) { 962 MachineBasicBlock &MBB = getOrCreateBB(BB); 963 // Set the insertion point of all the following translations to 964 // the end of this basic block. 965 CurBuilder.setMBB(MBB); 966 967 for (const Instruction &Inst: BB) { 968 Succeeded &= translate(Inst); 969 if (!Succeeded) { 970 if (TPC->isGlobalISelAbortEnabled()) 971 reportTranslationError(Inst, "unable to translate instruction"); 972 MF->getProperties().set( 973 MachineFunctionProperties::Property::FailedISel); 974 break; 975 } 976 } 977 } 978 979 if (Succeeded) { 980 finishPendingPhis(); 981 982 // Now that the MachineFrameInfo has been configured, no further changes to 983 // the reserved registers are possible. 984 MRI->freezeReservedRegs(*MF); 985 986 // Merge the argument lowering and constants block with its single 987 // successor, the LLVM-IR entry block. We want the basic block to 988 // be maximal. 989 assert(EntryBB->succ_size() == 1 && 990 "Custom BB used for lowering should have only one successor"); 991 // Get the successor of the current entry block. 992 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 993 assert(NewEntryBB.pred_size() == 1 && 994 "LLVM-IR entry block has a predecessor!?"); 995 // Move all the instruction from the current entry block to the 996 // new entry block. 997 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 998 EntryBB->end()); 999 1000 // Update the live-in information for the new entry block. 1001 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1002 NewEntryBB.addLiveIn(LiveIn); 1003 NewEntryBB.sortUniqueLiveIns(); 1004 1005 // Get rid of the now empty basic block. 1006 EntryBB->removeSuccessor(&NewEntryBB); 1007 MF->remove(EntryBB); 1008 MF->DeleteMachineBasicBlock(EntryBB); 1009 1010 assert(&MF->front() == &NewEntryBB && 1011 "New entry wasn't next in the list of basic block!"); 1012 } 1013 1014 finalizeFunction(); 1015 1016 return false; 1017 } 1018