1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 26 #include "llvm/CodeGen/LowLevelType.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/StackProtector.h" 36 #include "llvm/CodeGen/TargetFrameLowering.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfo.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GetElementPtrTypeIterator.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/MC/MCContext.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CodeGen.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/LowLevelTypeImpl.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetIntrinsicInfo.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <iterator> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 #define DEBUG_TYPE "irtranslator" 81 82 using namespace llvm; 83 84 static cl::opt<bool> 85 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 86 cl::desc("Should enable CSE in irtranslator"), 87 cl::Optional, cl::init(false)); 88 char IRTranslator::ID = 0; 89 90 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 91 false, false) 92 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 93 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 94 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 95 false, false) 96 97 static void reportTranslationError(MachineFunction &MF, 98 const TargetPassConfig &TPC, 99 OptimizationRemarkEmitter &ORE, 100 OptimizationRemarkMissed &R) { 101 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 102 103 // Print the function name explicitly if we don't have a debug location (which 104 // makes the diagnostic less useful) or if we're going to emit a raw error. 105 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 106 R << (" (in function: " + MF.getName() + ")").str(); 107 108 if (TPC.isGlobalISelAbortEnabled()) 109 report_fatal_error(R.getMsg()); 110 else 111 ORE.emit(R); 112 } 113 114 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } 115 116 #ifndef NDEBUG 117 namespace { 118 /// Verify that every instruction created has the same DILocation as the 119 /// instruction being translated. 120 class DILocationVerifier : public GISelChangeObserver { 121 const Instruction *CurrInst = nullptr; 122 123 public: 124 DILocationVerifier() = default; 125 ~DILocationVerifier() = default; 126 127 const Instruction *getCurrentInst() const { return CurrInst; } 128 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 129 130 void erasingInstr(MachineInstr &MI) override {} 131 void changingInstr(MachineInstr &MI) override {} 132 void changedInstr(MachineInstr &MI) override {} 133 134 void createdInstr(MachineInstr &MI) override { 135 assert(getCurrentInst() && "Inserted instruction without a current MI"); 136 137 // Only print the check message if we're actually checking it. 138 #ifndef NDEBUG 139 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 140 << " was copied to " << MI); 141 #endif 142 // We allow insts in the entry block to have a debug loc line of 0 because 143 // they could have originated from constants, and we don't want a jumpy 144 // debug experience. 145 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 146 MI.getDebugLoc().getLine() == 0) && 147 "Line info was not transferred to all instructions"); 148 } 149 }; 150 } // namespace 151 #endif // ifndef NDEBUG 152 153 154 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 155 AU.addRequired<StackProtector>(); 156 AU.addRequired<TargetPassConfig>(); 157 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 158 getSelectionDAGFallbackAnalysisUsage(AU); 159 MachineFunctionPass::getAnalysisUsage(AU); 160 } 161 162 IRTranslator::ValueToVRegInfo::VRegListT & 163 IRTranslator::allocateVRegs(const Value &Val) { 164 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 165 auto *Regs = VMap.getVRegs(Val); 166 auto *Offsets = VMap.getOffsets(Val); 167 SmallVector<LLT, 4> SplitTys; 168 computeValueLLTs(*DL, *Val.getType(), SplitTys, 169 Offsets->empty() ? Offsets : nullptr); 170 for (unsigned i = 0; i < SplitTys.size(); ++i) 171 Regs->push_back(0); 172 return *Regs; 173 } 174 175 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 176 auto VRegsIt = VMap.findVRegs(Val); 177 if (VRegsIt != VMap.vregs_end()) 178 return *VRegsIt->second; 179 180 if (Val.getType()->isVoidTy()) 181 return *VMap.getVRegs(Val); 182 183 // Create entry for this type. 184 auto *VRegs = VMap.getVRegs(Val); 185 auto *Offsets = VMap.getOffsets(Val); 186 187 assert(Val.getType()->isSized() && 188 "Don't know how to create an empty vreg"); 189 190 SmallVector<LLT, 4> SplitTys; 191 computeValueLLTs(*DL, *Val.getType(), SplitTys, 192 Offsets->empty() ? Offsets : nullptr); 193 194 if (!isa<Constant>(Val)) { 195 for (auto Ty : SplitTys) 196 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 197 return *VRegs; 198 } 199 200 if (Val.getType()->isAggregateType()) { 201 // UndefValue, ConstantAggregateZero 202 auto &C = cast<Constant>(Val); 203 unsigned Idx = 0; 204 while (auto Elt = C.getAggregateElement(Idx++)) { 205 auto EltRegs = getOrCreateVRegs(*Elt); 206 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 207 } 208 } else { 209 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 210 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 211 bool Success = translate(cast<Constant>(Val), VRegs->front()); 212 if (!Success) { 213 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 214 MF->getFunction().getSubprogram(), 215 &MF->getFunction().getEntryBlock()); 216 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 217 reportTranslationError(*MF, *TPC, *ORE, R); 218 return *VRegs; 219 } 220 } 221 222 return *VRegs; 223 } 224 225 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 226 auto MapEntry = FrameIndices.find(&AI); 227 if (MapEntry != FrameIndices.end()) 228 return MapEntry->second; 229 230 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 231 uint64_t Size = 232 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 233 234 // Always allocate at least one byte. 235 Size = std::max<uint64_t>(Size, 1u); 236 237 int &FI = FrameIndices[&AI]; 238 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 239 return FI; 240 } 241 242 Align IRTranslator::getMemOpAlign(const Instruction &I) { 243 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 244 return SI->getAlign(); 245 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 246 return LI->getAlign(); 247 } 248 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 249 // TODO(PR27168): This instruction has no alignment attribute, but unlike 250 // the default alignment for load/store, the default here is to assume 251 // it has NATURAL alignment, not DataLayout-specified alignment. 252 const DataLayout &DL = AI->getModule()->getDataLayout(); 253 return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType())); 254 } 255 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 256 // TODO(PR27168): This instruction has no alignment attribute, but unlike 257 // the default alignment for load/store, the default here is to assume 258 // it has NATURAL alignment, not DataLayout-specified alignment. 259 const DataLayout &DL = AI->getModule()->getDataLayout(); 260 return Align(DL.getTypeStoreSize(AI->getValOperand()->getType())); 261 } 262 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 263 R << "unable to translate memop: " << ore::NV("Opcode", &I); 264 reportTranslationError(*MF, *TPC, *ORE, R); 265 return Align(1); 266 } 267 268 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 269 MachineBasicBlock *&MBB = BBToMBB[&BB]; 270 assert(MBB && "BasicBlock was not encountered before"); 271 return *MBB; 272 } 273 274 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 275 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 276 MachinePreds[Edge].push_back(NewPred); 277 } 278 279 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 280 MachineIRBuilder &MIRBuilder) { 281 // Get or create a virtual register for each value. 282 // Unless the value is a Constant => loadimm cst? 283 // or inline constant each time? 284 // Creation of a virtual register needs to have a size. 285 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 286 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 287 Register Res = getOrCreateVReg(U); 288 uint16_t Flags = 0; 289 if (isa<Instruction>(U)) { 290 const Instruction &I = cast<Instruction>(U); 291 Flags = MachineInstr::copyFlagsFromInstruction(I); 292 } 293 294 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 295 return true; 296 } 297 298 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U, 299 MachineIRBuilder &MIRBuilder) { 300 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 301 Register Res = getOrCreateVReg(U); 302 uint16_t Flags = 0; 303 if (isa<Instruction>(U)) { 304 const Instruction &I = cast<Instruction>(U); 305 Flags = MachineInstr::copyFlagsFromInstruction(I); 306 } 307 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags); 308 return true; 309 } 310 311 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 312 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder); 313 } 314 315 bool IRTranslator::translateCompare(const User &U, 316 MachineIRBuilder &MIRBuilder) { 317 auto *CI = dyn_cast<CmpInst>(&U); 318 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 319 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 320 Register Res = getOrCreateVReg(U); 321 CmpInst::Predicate Pred = 322 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 323 cast<ConstantExpr>(U).getPredicate()); 324 if (CmpInst::isIntPredicate(Pred)) 325 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 326 else if (Pred == CmpInst::FCMP_FALSE) 327 MIRBuilder.buildCopy( 328 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 329 else if (Pred == CmpInst::FCMP_TRUE) 330 MIRBuilder.buildCopy( 331 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 332 else { 333 assert(CI && "Instruction should be CmpInst"); 334 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, 335 MachineInstr::copyFlagsFromInstruction(*CI)); 336 } 337 338 return true; 339 } 340 341 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 342 const ReturnInst &RI = cast<ReturnInst>(U); 343 const Value *Ret = RI.getReturnValue(); 344 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 345 Ret = nullptr; 346 347 ArrayRef<Register> VRegs; 348 if (Ret) 349 VRegs = getOrCreateVRegs(*Ret); 350 351 Register SwiftErrorVReg = 0; 352 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 353 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 354 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 355 } 356 357 // The target may mess up with the insertion point, but 358 // this is not important as a return is the last instruction 359 // of the block anyway. 360 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 361 } 362 363 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 364 const BranchInst &BrInst = cast<BranchInst>(U); 365 unsigned Succ = 0; 366 if (!BrInst.isUnconditional()) { 367 // We want a G_BRCOND to the true BB followed by an unconditional branch. 368 Register Tst = getOrCreateVReg(*BrInst.getCondition()); 369 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 370 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 371 MIRBuilder.buildBrCond(Tst, TrueBB); 372 } 373 374 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 375 MachineBasicBlock &TgtBB = getMBB(BrTgt); 376 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 377 378 // If the unconditional target is the layout successor, fallthrough. 379 if (!CurBB.isLayoutSuccessor(&TgtBB)) 380 MIRBuilder.buildBr(TgtBB); 381 382 // Link successors. 383 for (const BasicBlock *Succ : successors(&BrInst)) 384 CurBB.addSuccessor(&getMBB(*Succ)); 385 return true; 386 } 387 388 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 389 MachineBasicBlock *Dst, 390 BranchProbability Prob) { 391 if (!FuncInfo.BPI) { 392 Src->addSuccessorWithoutProb(Dst); 393 return; 394 } 395 if (Prob.isUnknown()) 396 Prob = getEdgeProbability(Src, Dst); 397 Src->addSuccessor(Dst, Prob); 398 } 399 400 BranchProbability 401 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 402 const MachineBasicBlock *Dst) const { 403 const BasicBlock *SrcBB = Src->getBasicBlock(); 404 const BasicBlock *DstBB = Dst->getBasicBlock(); 405 if (!FuncInfo.BPI) { 406 // If BPI is not available, set the default probability as 1 / N, where N is 407 // the number of successors. 408 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 409 return BranchProbability(1, SuccSize); 410 } 411 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 412 } 413 414 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 415 using namespace SwitchCG; 416 // Extract cases from the switch. 417 const SwitchInst &SI = cast<SwitchInst>(U); 418 BranchProbabilityInfo *BPI = FuncInfo.BPI; 419 CaseClusterVector Clusters; 420 Clusters.reserve(SI.getNumCases()); 421 for (auto &I : SI.cases()) { 422 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 423 assert(Succ && "Could not find successor mbb in mapping"); 424 const ConstantInt *CaseVal = I.getCaseValue(); 425 BranchProbability Prob = 426 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 427 : BranchProbability(1, SI.getNumCases() + 1); 428 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 429 } 430 431 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 432 433 // Cluster adjacent cases with the same destination. We do this at all 434 // optimization levels because it's cheap to do and will make codegen faster 435 // if there are many clusters. 436 sortAndRangeify(Clusters); 437 438 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 439 440 // If there is only the default destination, jump there directly. 441 if (Clusters.empty()) { 442 SwitchMBB->addSuccessor(DefaultMBB); 443 if (DefaultMBB != SwitchMBB->getNextNode()) 444 MIB.buildBr(*DefaultMBB); 445 return true; 446 } 447 448 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 449 SL->findBitTestClusters(Clusters, &SI); 450 451 LLVM_DEBUG({ 452 dbgs() << "Case clusters: "; 453 for (const CaseCluster &C : Clusters) { 454 if (C.Kind == CC_JumpTable) 455 dbgs() << "JT:"; 456 if (C.Kind == CC_BitTests) 457 dbgs() << "BT:"; 458 459 C.Low->getValue().print(dbgs(), true); 460 if (C.Low != C.High) { 461 dbgs() << '-'; 462 C.High->getValue().print(dbgs(), true); 463 } 464 dbgs() << ' '; 465 } 466 dbgs() << '\n'; 467 }); 468 469 assert(!Clusters.empty()); 470 SwitchWorkList WorkList; 471 CaseClusterIt First = Clusters.begin(); 472 CaseClusterIt Last = Clusters.end() - 1; 473 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 474 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 475 476 // FIXME: At the moment we don't do any splitting optimizations here like 477 // SelectionDAG does, so this worklist only has one entry. 478 while (!WorkList.empty()) { 479 SwitchWorkListItem W = WorkList.back(); 480 WorkList.pop_back(); 481 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 482 return false; 483 } 484 return true; 485 } 486 487 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 488 MachineBasicBlock *MBB) { 489 // Emit the code for the jump table 490 assert(JT.Reg != -1U && "Should lower JT Header first!"); 491 MachineIRBuilder MIB(*MBB->getParent()); 492 MIB.setMBB(*MBB); 493 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 494 495 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 496 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 497 498 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 499 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 500 } 501 502 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 503 SwitchCG::JumpTableHeader &JTH, 504 MachineBasicBlock *HeaderBB) { 505 MachineIRBuilder MIB(*HeaderBB->getParent()); 506 MIB.setMBB(*HeaderBB); 507 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 508 509 const Value &SValue = *JTH.SValue; 510 // Subtract the lowest switch case value from the value being switched on. 511 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 512 Register SwitchOpReg = getOrCreateVReg(SValue); 513 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 514 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 515 516 // This value may be smaller or larger than the target's pointer type, and 517 // therefore require extension or truncating. 518 Type *PtrIRTy = SValue.getType()->getPointerTo(); 519 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 520 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 521 522 JT.Reg = Sub.getReg(0); 523 524 if (JTH.OmitRangeCheck) { 525 if (JT.MBB != HeaderBB->getNextNode()) 526 MIB.buildBr(*JT.MBB); 527 return true; 528 } 529 530 // Emit the range check for the jump table, and branch to the default block 531 // for the switch statement if the value being switched on exceeds the 532 // largest case in the switch. 533 auto Cst = getOrCreateVReg( 534 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 535 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 536 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 537 538 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 539 540 // Avoid emitting unnecessary branches to the next block. 541 if (JT.MBB != HeaderBB->getNextNode()) 542 BrCond = MIB.buildBr(*JT.MBB); 543 return true; 544 } 545 546 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 547 MachineBasicBlock *SwitchBB, 548 MachineIRBuilder &MIB) { 549 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 550 Register Cond; 551 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 552 MIB.setDebugLoc(CB.DbgLoc); 553 MIB.setMBB(*CB.ThisBB); 554 555 if (CB.PredInfo.NoCmp) { 556 // Branch or fall through to TrueBB. 557 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 558 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 559 CB.ThisBB); 560 CB.ThisBB->normalizeSuccProbs(); 561 if (CB.TrueBB != CB.ThisBB->getNextNode()) 562 MIB.buildBr(*CB.TrueBB); 563 MIB.setDebugLoc(OldDbgLoc); 564 return; 565 } 566 567 const LLT i1Ty = LLT::scalar(1); 568 // Build the compare. 569 if (!CB.CmpMHS) { 570 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 571 Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 572 } else { 573 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 574 "Can only handle SLE ranges"); 575 576 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 577 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 578 579 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 580 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 581 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 582 Cond = 583 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 584 } else { 585 const LLT CmpTy = MRI->getType(CmpOpReg); 586 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 587 auto Diff = MIB.buildConstant(CmpTy, High - Low); 588 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 589 } 590 } 591 592 // Update successor info 593 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 594 595 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 596 CB.ThisBB); 597 598 // TrueBB and FalseBB are always different unless the incoming IR is 599 // degenerate. This only happens when running llc on weird IR. 600 if (CB.TrueBB != CB.FalseBB) 601 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 602 CB.ThisBB->normalizeSuccProbs(); 603 604 // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) 605 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 606 CB.ThisBB); 607 608 // If the lhs block is the next block, invert the condition so that we can 609 // fall through to the lhs instead of the rhs block. 610 if (CB.TrueBB == CB.ThisBB->getNextNode()) { 611 std::swap(CB.TrueBB, CB.FalseBB); 612 auto True = MIB.buildConstant(i1Ty, 1); 613 Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0); 614 } 615 616 MIB.buildBrCond(Cond, *CB.TrueBB); 617 MIB.buildBr(*CB.FalseBB); 618 MIB.setDebugLoc(OldDbgLoc); 619 } 620 621 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 622 MachineBasicBlock *SwitchMBB, 623 MachineBasicBlock *CurMBB, 624 MachineBasicBlock *DefaultMBB, 625 MachineIRBuilder &MIB, 626 MachineFunction::iterator BBI, 627 BranchProbability UnhandledProbs, 628 SwitchCG::CaseClusterIt I, 629 MachineBasicBlock *Fallthrough, 630 bool FallthroughUnreachable) { 631 using namespace SwitchCG; 632 MachineFunction *CurMF = SwitchMBB->getParent(); 633 // FIXME: Optimize away range check based on pivot comparisons. 634 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 635 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 636 BranchProbability DefaultProb = W.DefaultProb; 637 638 // The jump block hasn't been inserted yet; insert it here. 639 MachineBasicBlock *JumpMBB = JT->MBB; 640 CurMF->insert(BBI, JumpMBB); 641 642 // Since the jump table block is separate from the switch block, we need 643 // to keep track of it as a machine predecessor to the default block, 644 // otherwise we lose the phi edges. 645 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 646 CurMBB); 647 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 648 JumpMBB); 649 650 auto JumpProb = I->Prob; 651 auto FallthroughProb = UnhandledProbs; 652 653 // If the default statement is a target of the jump table, we evenly 654 // distribute the default probability to successors of CurMBB. Also 655 // update the probability on the edge from JumpMBB to Fallthrough. 656 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 657 SE = JumpMBB->succ_end(); 658 SI != SE; ++SI) { 659 if (*SI == DefaultMBB) { 660 JumpProb += DefaultProb / 2; 661 FallthroughProb -= DefaultProb / 2; 662 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 663 JumpMBB->normalizeSuccProbs(); 664 } else { 665 // Also record edges from the jump table block to it's successors. 666 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 667 JumpMBB); 668 } 669 } 670 671 // Skip the range check if the fallthrough block is unreachable. 672 if (FallthroughUnreachable) 673 JTH->OmitRangeCheck = true; 674 675 if (!JTH->OmitRangeCheck) 676 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 677 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 678 CurMBB->normalizeSuccProbs(); 679 680 // The jump table header will be inserted in our current block, do the 681 // range check, and fall through to our fallthrough block. 682 JTH->HeaderBB = CurMBB; 683 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 684 685 // If we're in the right place, emit the jump table header right now. 686 if (CurMBB == SwitchMBB) { 687 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 688 return false; 689 JTH->Emitted = true; 690 } 691 return true; 692 } 693 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 694 Value *Cond, 695 MachineBasicBlock *Fallthrough, 696 bool FallthroughUnreachable, 697 BranchProbability UnhandledProbs, 698 MachineBasicBlock *CurMBB, 699 MachineIRBuilder &MIB, 700 MachineBasicBlock *SwitchMBB) { 701 using namespace SwitchCG; 702 const Value *RHS, *LHS, *MHS; 703 CmpInst::Predicate Pred; 704 if (I->Low == I->High) { 705 // Check Cond == I->Low. 706 Pred = CmpInst::ICMP_EQ; 707 LHS = Cond; 708 RHS = I->Low; 709 MHS = nullptr; 710 } else { 711 // Check I->Low <= Cond <= I->High. 712 Pred = CmpInst::ICMP_SLE; 713 LHS = I->Low; 714 MHS = Cond; 715 RHS = I->High; 716 } 717 718 // If Fallthrough is unreachable, fold away the comparison. 719 // The false probability is the sum of all unhandled cases. 720 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 721 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 722 723 emitSwitchCase(CB, SwitchMBB, MIB); 724 return true; 725 } 726 727 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B, 728 MachineBasicBlock *SwitchBB) { 729 MachineIRBuilder &MIB = *CurBuilder; 730 MIB.setMBB(*SwitchBB); 731 732 // Subtract the minimum value. 733 Register SwitchOpReg = getOrCreateVReg(*B.SValue); 734 735 LLT SwitchOpTy = MRI->getType(SwitchOpReg); 736 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0); 737 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg); 738 739 // Ensure that the type will fit the mask value. 740 LLT MaskTy = SwitchOpTy; 741 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) { 742 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) { 743 // Switch table case range are encoded into series of masks. 744 // Just use pointer type, it's guaranteed to fit. 745 MaskTy = LLT::scalar(64); 746 break; 747 } 748 } 749 Register SubReg = RangeSub.getReg(0); 750 if (SwitchOpTy != MaskTy) 751 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0); 752 753 B.RegVT = getMVTForLLT(MaskTy); 754 B.Reg = SubReg; 755 756 MachineBasicBlock *MBB = B.Cases[0].ThisBB; 757 758 if (!B.OmitRangeCheck) 759 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 760 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 761 762 SwitchBB->normalizeSuccProbs(); 763 764 if (!B.OmitRangeCheck) { 765 // Conditional branch to the default block. 766 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range); 767 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1), 768 RangeSub, RangeCst); 769 MIB.buildBrCond(RangeCmp, *B.Default); 770 } 771 772 // Avoid emitting unnecessary branches to the next block. 773 if (MBB != SwitchBB->getNextNode()) 774 MIB.buildBr(*MBB); 775 } 776 777 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB, 778 MachineBasicBlock *NextMBB, 779 BranchProbability BranchProbToNext, 780 Register Reg, SwitchCG::BitTestCase &B, 781 MachineBasicBlock *SwitchBB) { 782 MachineIRBuilder &MIB = *CurBuilder; 783 MIB.setMBB(*SwitchBB); 784 785 LLT SwitchTy = getLLTForMVT(BB.RegVT); 786 Register Cmp; 787 unsigned PopCount = countPopulation(B.Mask); 788 if (PopCount == 1) { 789 // Testing for a single bit; just compare the shift count with what it 790 // would need to be to shift a 1 bit in that position. 791 auto MaskTrailingZeros = 792 MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask)); 793 Cmp = 794 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros) 795 .getReg(0); 796 } else if (PopCount == BB.Range) { 797 // There is only one zero bit in the range, test for it directly. 798 auto MaskTrailingOnes = 799 MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask)); 800 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes) 801 .getReg(0); 802 } else { 803 // Make desired shift. 804 auto CstOne = MIB.buildConstant(SwitchTy, 1); 805 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg); 806 807 // Emit bit tests and jumps. 808 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask); 809 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask); 810 auto CstZero = MIB.buildConstant(SwitchTy, 0); 811 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero) 812 .getReg(0); 813 } 814 815 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 816 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 817 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 818 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 819 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 820 // one as they are relative probabilities (and thus work more like weights), 821 // and hence we need to normalize them to let the sum of them become one. 822 SwitchBB->normalizeSuccProbs(); 823 824 // Record the fact that the IR edge from the header to the bit test target 825 // will go through our new block. Neeeded for PHIs to have nodes added. 826 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()}, 827 SwitchBB); 828 829 MIB.buildBrCond(Cmp, *B.TargetBB); 830 831 // Avoid emitting unnecessary branches to the next block. 832 if (NextMBB != SwitchBB->getNextNode()) 833 MIB.buildBr(*NextMBB); 834 } 835 836 bool IRTranslator::lowerBitTestWorkItem( 837 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB, 838 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB, 839 MachineIRBuilder &MIB, MachineFunction::iterator BBI, 840 BranchProbability DefaultProb, BranchProbability UnhandledProbs, 841 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough, 842 bool FallthroughUnreachable) { 843 using namespace SwitchCG; 844 MachineFunction *CurMF = SwitchMBB->getParent(); 845 // FIXME: Optimize away range check based on pivot comparisons. 846 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 847 // The bit test blocks haven't been inserted yet; insert them here. 848 for (BitTestCase &BTC : BTB->Cases) 849 CurMF->insert(BBI, BTC.ThisBB); 850 851 // Fill in fields of the BitTestBlock. 852 BTB->Parent = CurMBB; 853 BTB->Default = Fallthrough; 854 855 BTB->DefaultProb = UnhandledProbs; 856 // If the cases in bit test don't form a contiguous range, we evenly 857 // distribute the probability on the edge to Fallthrough to two 858 // successors of CurMBB. 859 if (!BTB->ContiguousRange) { 860 BTB->Prob += DefaultProb / 2; 861 BTB->DefaultProb -= DefaultProb / 2; 862 } 863 864 if (FallthroughUnreachable) { 865 // Skip the range check if the fallthrough block is unreachable. 866 BTB->OmitRangeCheck = true; 867 } 868 869 // If we're in the right place, emit the bit test header right now. 870 if (CurMBB == SwitchMBB) { 871 emitBitTestHeader(*BTB, SwitchMBB); 872 BTB->Emitted = true; 873 } 874 return true; 875 } 876 877 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 878 Value *Cond, 879 MachineBasicBlock *SwitchMBB, 880 MachineBasicBlock *DefaultMBB, 881 MachineIRBuilder &MIB) { 882 using namespace SwitchCG; 883 MachineFunction *CurMF = FuncInfo.MF; 884 MachineBasicBlock *NextMBB = nullptr; 885 MachineFunction::iterator BBI(W.MBB); 886 if (++BBI != FuncInfo.MF->end()) 887 NextMBB = &*BBI; 888 889 if (EnableOpts) { 890 // Here, we order cases by probability so the most likely case will be 891 // checked first. However, two clusters can have the same probability in 892 // which case their relative ordering is non-deterministic. So we use Low 893 // as a tie-breaker as clusters are guaranteed to never overlap. 894 llvm::sort(W.FirstCluster, W.LastCluster + 1, 895 [](const CaseCluster &a, const CaseCluster &b) { 896 return a.Prob != b.Prob 897 ? a.Prob > b.Prob 898 : a.Low->getValue().slt(b.Low->getValue()); 899 }); 900 901 // Rearrange the case blocks so that the last one falls through if possible 902 // without changing the order of probabilities. 903 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 904 --I; 905 if (I->Prob > W.LastCluster->Prob) 906 break; 907 if (I->Kind == CC_Range && I->MBB == NextMBB) { 908 std::swap(*I, *W.LastCluster); 909 break; 910 } 911 } 912 } 913 914 // Compute total probability. 915 BranchProbability DefaultProb = W.DefaultProb; 916 BranchProbability UnhandledProbs = DefaultProb; 917 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 918 UnhandledProbs += I->Prob; 919 920 MachineBasicBlock *CurMBB = W.MBB; 921 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 922 bool FallthroughUnreachable = false; 923 MachineBasicBlock *Fallthrough; 924 if (I == W.LastCluster) { 925 // For the last cluster, fall through to the default destination. 926 Fallthrough = DefaultMBB; 927 FallthroughUnreachable = isa<UnreachableInst>( 928 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 929 } else { 930 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 931 CurMF->insert(BBI, Fallthrough); 932 } 933 UnhandledProbs -= I->Prob; 934 935 switch (I->Kind) { 936 case CC_BitTests: { 937 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 938 DefaultProb, UnhandledProbs, I, Fallthrough, 939 FallthroughUnreachable)) { 940 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch"); 941 return false; 942 } 943 break; 944 } 945 946 case CC_JumpTable: { 947 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 948 UnhandledProbs, I, Fallthrough, 949 FallthroughUnreachable)) { 950 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 951 return false; 952 } 953 break; 954 } 955 case CC_Range: { 956 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 957 FallthroughUnreachable, UnhandledProbs, 958 CurMBB, MIB, SwitchMBB)) { 959 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 960 return false; 961 } 962 break; 963 } 964 } 965 CurMBB = Fallthrough; 966 } 967 968 return true; 969 } 970 971 bool IRTranslator::translateIndirectBr(const User &U, 972 MachineIRBuilder &MIRBuilder) { 973 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 974 975 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 976 MIRBuilder.buildBrIndirect(Tgt); 977 978 // Link successors. 979 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 980 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 981 for (const BasicBlock *Succ : successors(&BrInst)) { 982 // It's legal for indirectbr instructions to have duplicate blocks in the 983 // destination list. We don't allow this in MIR. Skip anything that's 984 // already a successor. 985 if (!AddedSuccessors.insert(Succ).second) 986 continue; 987 CurBB.addSuccessor(&getMBB(*Succ)); 988 } 989 990 return true; 991 } 992 993 static bool isSwiftError(const Value *V) { 994 if (auto Arg = dyn_cast<Argument>(V)) 995 return Arg->hasSwiftErrorAttr(); 996 if (auto AI = dyn_cast<AllocaInst>(V)) 997 return AI->isSwiftError(); 998 return false; 999 } 1000 1001 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 1002 const LoadInst &LI = cast<LoadInst>(U); 1003 if (DL->getTypeStoreSize(LI.getType()) == 0) 1004 return true; 1005 1006 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 1007 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 1008 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 1009 1010 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 1011 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1012 1013 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 1014 assert(Regs.size() == 1 && "swifterror should be single pointer"); 1015 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 1016 LI.getPointerOperand()); 1017 MIRBuilder.buildCopy(Regs[0], VReg); 1018 return true; 1019 } 1020 1021 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1022 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 1023 1024 const MDNode *Ranges = 1025 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 1026 for (unsigned i = 0; i < Regs.size(); ++i) { 1027 Register Addr; 1028 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1029 1030 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 1031 Align BaseAlign = getMemOpAlign(LI); 1032 AAMDNodes AAMetadata; 1033 LI.getAAMetadata(AAMetadata); 1034 auto MMO = MF->getMachineMemOperand( 1035 Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(), 1036 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges, 1037 LI.getSyncScopeID(), LI.getOrdering()); 1038 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 1039 } 1040 1041 return true; 1042 } 1043 1044 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 1045 const StoreInst &SI = cast<StoreInst>(U); 1046 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 1047 return true; 1048 1049 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 1050 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 1051 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 1052 1053 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 1054 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1055 1056 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 1057 assert(Vals.size() == 1 && "swifterror should be single pointer"); 1058 1059 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 1060 SI.getPointerOperand()); 1061 MIRBuilder.buildCopy(VReg, Vals[0]); 1062 return true; 1063 } 1064 1065 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1066 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 1067 1068 for (unsigned i = 0; i < Vals.size(); ++i) { 1069 Register Addr; 1070 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1071 1072 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 1073 Align BaseAlign = getMemOpAlign(SI); 1074 AAMDNodes AAMetadata; 1075 SI.getAAMetadata(AAMetadata); 1076 auto MMO = MF->getMachineMemOperand( 1077 Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(), 1078 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr, 1079 SI.getSyncScopeID(), SI.getOrdering()); 1080 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 1081 } 1082 return true; 1083 } 1084 1085 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 1086 const Value *Src = U.getOperand(0); 1087 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 1088 1089 // getIndexedOffsetInType is designed for GEPs, so the first index is the 1090 // usual array element rather than looking into the actual aggregate. 1091 SmallVector<Value *, 1> Indices; 1092 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 1093 1094 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 1095 for (auto Idx : EVI->indices()) 1096 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1097 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 1098 for (auto Idx : IVI->indices()) 1099 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1100 } else { 1101 for (unsigned i = 1; i < U.getNumOperands(); ++i) 1102 Indices.push_back(U.getOperand(i)); 1103 } 1104 1105 return 8 * static_cast<uint64_t>( 1106 DL.getIndexedOffsetInType(Src->getType(), Indices)); 1107 } 1108 1109 bool IRTranslator::translateExtractValue(const User &U, 1110 MachineIRBuilder &MIRBuilder) { 1111 const Value *Src = U.getOperand(0); 1112 uint64_t Offset = getOffsetFromIndices(U, *DL); 1113 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1114 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 1115 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 1116 auto &DstRegs = allocateVRegs(U); 1117 1118 for (unsigned i = 0; i < DstRegs.size(); ++i) 1119 DstRegs[i] = SrcRegs[Idx++]; 1120 1121 return true; 1122 } 1123 1124 bool IRTranslator::translateInsertValue(const User &U, 1125 MachineIRBuilder &MIRBuilder) { 1126 const Value *Src = U.getOperand(0); 1127 uint64_t Offset = getOffsetFromIndices(U, *DL); 1128 auto &DstRegs = allocateVRegs(U); 1129 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 1130 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1131 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 1132 auto InsertedIt = InsertedRegs.begin(); 1133 1134 for (unsigned i = 0; i < DstRegs.size(); ++i) { 1135 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 1136 DstRegs[i] = *InsertedIt++; 1137 else 1138 DstRegs[i] = SrcRegs[i]; 1139 } 1140 1141 return true; 1142 } 1143 1144 bool IRTranslator::translateSelect(const User &U, 1145 MachineIRBuilder &MIRBuilder) { 1146 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1147 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1148 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1149 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1150 1151 uint16_t Flags = 0; 1152 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 1153 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 1154 1155 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1156 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1157 } 1158 1159 return true; 1160 } 1161 1162 bool IRTranslator::translateCopy(const User &U, const Value &V, 1163 MachineIRBuilder &MIRBuilder) { 1164 Register Src = getOrCreateVReg(V); 1165 auto &Regs = *VMap.getVRegs(U); 1166 if (Regs.empty()) { 1167 Regs.push_back(Src); 1168 VMap.getOffsets(U)->push_back(0); 1169 } else { 1170 // If we already assigned a vreg for this instruction, we can't change that. 1171 // Emit a copy to satisfy the users we already emitted. 1172 MIRBuilder.buildCopy(Regs[0], Src); 1173 } 1174 return true; 1175 } 1176 1177 bool IRTranslator::translateBitCast(const User &U, 1178 MachineIRBuilder &MIRBuilder) { 1179 // If we're bitcasting to the source type, we can reuse the source vreg. 1180 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1181 getLLTForType(*U.getType(), *DL)) 1182 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1183 1184 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1185 } 1186 1187 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1188 MachineIRBuilder &MIRBuilder) { 1189 Register Op = getOrCreateVReg(*U.getOperand(0)); 1190 Register Res = getOrCreateVReg(U); 1191 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1192 return true; 1193 } 1194 1195 bool IRTranslator::translateGetElementPtr(const User &U, 1196 MachineIRBuilder &MIRBuilder) { 1197 Value &Op0 = *U.getOperand(0); 1198 Register BaseReg = getOrCreateVReg(Op0); 1199 Type *PtrIRTy = Op0.getType(); 1200 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1201 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1202 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1203 1204 // Normalize Vector GEP - all scalar operands should be converted to the 1205 // splat vector. 1206 unsigned VectorWidth = 0; 1207 if (auto *VT = dyn_cast<VectorType>(U.getType())) 1208 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1209 1210 // We might need to splat the base pointer into a vector if the offsets 1211 // are vectors. 1212 if (VectorWidth && !PtrTy.isVector()) { 1213 BaseReg = 1214 MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg) 1215 .getReg(0); 1216 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1217 PtrTy = getLLTForType(*PtrIRTy, *DL); 1218 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1219 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1220 } 1221 1222 int64_t Offset = 0; 1223 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1224 GTI != E; ++GTI) { 1225 const Value *Idx = GTI.getOperand(); 1226 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1227 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1228 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1229 continue; 1230 } else { 1231 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1232 1233 // If this is a scalar constant or a splat vector of constants, 1234 // handle it quickly. 1235 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1236 Offset += ElementSize * CI->getSExtValue(); 1237 continue; 1238 } 1239 1240 if (Offset != 0) { 1241 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1242 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1243 .getReg(0); 1244 Offset = 0; 1245 } 1246 1247 Register IdxReg = getOrCreateVReg(*Idx); 1248 LLT IdxTy = MRI->getType(IdxReg); 1249 if (IdxTy != OffsetTy) { 1250 if (!IdxTy.isVector() && VectorWidth) { 1251 IdxReg = MIRBuilder.buildSplatVector( 1252 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1253 } 1254 1255 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1256 } 1257 1258 // N = N + Idx * ElementSize; 1259 // Avoid doing it for ElementSize of 1. 1260 Register GepOffsetReg; 1261 if (ElementSize != 1) { 1262 auto ElementSizeMIB = MIRBuilder.buildConstant( 1263 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1264 GepOffsetReg = 1265 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1266 } else 1267 GepOffsetReg = IdxReg; 1268 1269 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1270 } 1271 } 1272 1273 if (Offset != 0) { 1274 auto OffsetMIB = 1275 MIRBuilder.buildConstant(OffsetTy, Offset); 1276 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1277 return true; 1278 } 1279 1280 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1281 return true; 1282 } 1283 1284 bool IRTranslator::translateMemFunc(const CallInst &CI, 1285 MachineIRBuilder &MIRBuilder, 1286 unsigned Opcode) { 1287 1288 // If the source is undef, then just emit a nop. 1289 if (isa<UndefValue>(CI.getArgOperand(1))) 1290 return true; 1291 1292 SmallVector<Register, 3> SrcRegs; 1293 1294 unsigned MinPtrSize = UINT_MAX; 1295 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) { 1296 Register SrcReg = getOrCreateVReg(**AI); 1297 LLT SrcTy = MRI->getType(SrcReg); 1298 if (SrcTy.isPointer()) 1299 MinPtrSize = std::min(SrcTy.getSizeInBits(), MinPtrSize); 1300 SrcRegs.push_back(SrcReg); 1301 } 1302 1303 LLT SizeTy = LLT::scalar(MinPtrSize); 1304 1305 // The size operand should be the minimum of the pointer sizes. 1306 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1]; 1307 if (MRI->getType(SizeOpReg) != SizeTy) 1308 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0); 1309 1310 auto ICall = MIRBuilder.buildInstr(Opcode); 1311 for (Register SrcReg : SrcRegs) 1312 ICall.addUse(SrcReg); 1313 1314 Align DstAlign; 1315 Align SrcAlign; 1316 unsigned IsVol = 1317 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1318 ->getZExtValue(); 1319 1320 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1321 DstAlign = MCI->getDestAlign().valueOrOne(); 1322 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1323 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1324 DstAlign = MMI->getDestAlign().valueOrOne(); 1325 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1326 } else { 1327 auto *MSI = cast<MemSetInst>(&CI); 1328 DstAlign = MSI->getDestAlign().valueOrOne(); 1329 } 1330 1331 // We need to propagate the tail call flag from the IR inst as an argument. 1332 // Otherwise, we have to pessimize and assume later that we cannot tail call 1333 // any memory intrinsics. 1334 ICall.addImm(CI.isTailCall() ? 1 : 0); 1335 1336 // Create mem operands to store the alignment and volatile info. 1337 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1338 ICall.addMemOperand(MF->getMachineMemOperand( 1339 MachinePointerInfo(CI.getArgOperand(0)), 1340 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1341 if (Opcode != TargetOpcode::G_MEMSET) 1342 ICall.addMemOperand(MF->getMachineMemOperand( 1343 MachinePointerInfo(CI.getArgOperand(1)), 1344 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1345 1346 return true; 1347 } 1348 1349 void IRTranslator::getStackGuard(Register DstReg, 1350 MachineIRBuilder &MIRBuilder) { 1351 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1352 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1353 auto MIB = 1354 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1355 1356 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1357 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1358 if (!Global) 1359 return; 1360 1361 MachinePointerInfo MPInfo(Global); 1362 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1363 MachineMemOperand::MODereferenceable; 1364 MachineMemOperand *MemRef = 1365 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 1366 DL->getPointerABIAlignment(0)); 1367 MIB.setMemRefs({MemRef}); 1368 } 1369 1370 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1371 MachineIRBuilder &MIRBuilder) { 1372 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1373 MIRBuilder.buildInstr( 1374 Op, {ResRegs[0], ResRegs[1]}, 1375 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1376 1377 return true; 1378 } 1379 1380 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI, 1381 MachineIRBuilder &MIRBuilder) { 1382 Register Dst = getOrCreateVReg(CI); 1383 Register Src0 = getOrCreateVReg(*CI.getOperand(0)); 1384 Register Src1 = getOrCreateVReg(*CI.getOperand(1)); 1385 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 1386 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale }); 1387 return true; 1388 } 1389 1390 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1391 switch (ID) { 1392 default: 1393 break; 1394 case Intrinsic::bswap: 1395 return TargetOpcode::G_BSWAP; 1396 case Intrinsic::bitreverse: 1397 return TargetOpcode::G_BITREVERSE; 1398 case Intrinsic::fshl: 1399 return TargetOpcode::G_FSHL; 1400 case Intrinsic::fshr: 1401 return TargetOpcode::G_FSHR; 1402 case Intrinsic::ceil: 1403 return TargetOpcode::G_FCEIL; 1404 case Intrinsic::cos: 1405 return TargetOpcode::G_FCOS; 1406 case Intrinsic::ctpop: 1407 return TargetOpcode::G_CTPOP; 1408 case Intrinsic::exp: 1409 return TargetOpcode::G_FEXP; 1410 case Intrinsic::exp2: 1411 return TargetOpcode::G_FEXP2; 1412 case Intrinsic::fabs: 1413 return TargetOpcode::G_FABS; 1414 case Intrinsic::copysign: 1415 return TargetOpcode::G_FCOPYSIGN; 1416 case Intrinsic::minnum: 1417 return TargetOpcode::G_FMINNUM; 1418 case Intrinsic::maxnum: 1419 return TargetOpcode::G_FMAXNUM; 1420 case Intrinsic::minimum: 1421 return TargetOpcode::G_FMINIMUM; 1422 case Intrinsic::maximum: 1423 return TargetOpcode::G_FMAXIMUM; 1424 case Intrinsic::canonicalize: 1425 return TargetOpcode::G_FCANONICALIZE; 1426 case Intrinsic::floor: 1427 return TargetOpcode::G_FFLOOR; 1428 case Intrinsic::fma: 1429 return TargetOpcode::G_FMA; 1430 case Intrinsic::log: 1431 return TargetOpcode::G_FLOG; 1432 case Intrinsic::log2: 1433 return TargetOpcode::G_FLOG2; 1434 case Intrinsic::log10: 1435 return TargetOpcode::G_FLOG10; 1436 case Intrinsic::nearbyint: 1437 return TargetOpcode::G_FNEARBYINT; 1438 case Intrinsic::pow: 1439 return TargetOpcode::G_FPOW; 1440 case Intrinsic::powi: 1441 return TargetOpcode::G_FPOWI; 1442 case Intrinsic::rint: 1443 return TargetOpcode::G_FRINT; 1444 case Intrinsic::round: 1445 return TargetOpcode::G_INTRINSIC_ROUND; 1446 case Intrinsic::roundeven: 1447 return TargetOpcode::G_INTRINSIC_ROUNDEVEN; 1448 case Intrinsic::sin: 1449 return TargetOpcode::G_FSIN; 1450 case Intrinsic::sqrt: 1451 return TargetOpcode::G_FSQRT; 1452 case Intrinsic::trunc: 1453 return TargetOpcode::G_INTRINSIC_TRUNC; 1454 case Intrinsic::readcyclecounter: 1455 return TargetOpcode::G_READCYCLECOUNTER; 1456 case Intrinsic::ptrmask: 1457 return TargetOpcode::G_PTRMASK; 1458 case Intrinsic::lrint: 1459 return TargetOpcode::G_INTRINSIC_LRINT; 1460 } 1461 return Intrinsic::not_intrinsic; 1462 } 1463 1464 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1465 Intrinsic::ID ID, 1466 MachineIRBuilder &MIRBuilder) { 1467 1468 unsigned Op = getSimpleIntrinsicOpcode(ID); 1469 1470 // Is this a simple intrinsic? 1471 if (Op == Intrinsic::not_intrinsic) 1472 return false; 1473 1474 // Yes. Let's translate it. 1475 SmallVector<llvm::SrcOp, 4> VRegs; 1476 for (auto &Arg : CI.arg_operands()) 1477 VRegs.push_back(getOrCreateVReg(*Arg)); 1478 1479 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1480 MachineInstr::copyFlagsFromInstruction(CI)); 1481 return true; 1482 } 1483 1484 // TODO: Include ConstainedOps.def when all strict instructions are defined. 1485 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 1486 switch (ID) { 1487 case Intrinsic::experimental_constrained_fadd: 1488 return TargetOpcode::G_STRICT_FADD; 1489 case Intrinsic::experimental_constrained_fsub: 1490 return TargetOpcode::G_STRICT_FSUB; 1491 case Intrinsic::experimental_constrained_fmul: 1492 return TargetOpcode::G_STRICT_FMUL; 1493 case Intrinsic::experimental_constrained_fdiv: 1494 return TargetOpcode::G_STRICT_FDIV; 1495 case Intrinsic::experimental_constrained_frem: 1496 return TargetOpcode::G_STRICT_FREM; 1497 case Intrinsic::experimental_constrained_fma: 1498 return TargetOpcode::G_STRICT_FMA; 1499 case Intrinsic::experimental_constrained_sqrt: 1500 return TargetOpcode::G_STRICT_FSQRT; 1501 default: 1502 return 0; 1503 } 1504 } 1505 1506 bool IRTranslator::translateConstrainedFPIntrinsic( 1507 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 1508 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 1509 1510 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 1511 if (!Opcode) 1512 return false; 1513 1514 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI); 1515 if (EB == fp::ExceptionBehavior::ebIgnore) 1516 Flags |= MachineInstr::NoFPExcept; 1517 1518 SmallVector<llvm::SrcOp, 4> VRegs; 1519 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0))); 1520 if (!FPI.isUnaryOp()) 1521 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1))); 1522 if (FPI.isTernaryOp()) 1523 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2))); 1524 1525 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 1526 return true; 1527 } 1528 1529 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1530 MachineIRBuilder &MIRBuilder) { 1531 1532 // If this is a simple intrinsic (that is, we just need to add a def of 1533 // a vreg, and uses for each arg operand, then translate it. 1534 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1535 return true; 1536 1537 switch (ID) { 1538 default: 1539 break; 1540 case Intrinsic::lifetime_start: 1541 case Intrinsic::lifetime_end: { 1542 // No stack colouring in O0, discard region information. 1543 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1544 return true; 1545 1546 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1547 : TargetOpcode::LIFETIME_END; 1548 1549 // Get the underlying objects for the location passed on the lifetime 1550 // marker. 1551 SmallVector<const Value *, 4> Allocas; 1552 getUnderlyingObjects(CI.getArgOperand(1), Allocas); 1553 1554 // Iterate over each underlying object, creating lifetime markers for each 1555 // static alloca. Quit if we find a non-static alloca. 1556 for (const Value *V : Allocas) { 1557 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1558 if (!AI) 1559 continue; 1560 1561 if (!AI->isStaticAlloca()) 1562 return true; 1563 1564 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1565 } 1566 return true; 1567 } 1568 case Intrinsic::dbg_declare: { 1569 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1570 assert(DI.getVariable() && "Missing variable"); 1571 1572 const Value *Address = DI.getAddress(); 1573 if (!Address || isa<UndefValue>(Address)) { 1574 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1575 return true; 1576 } 1577 1578 assert(DI.getVariable()->isValidLocationForIntrinsic( 1579 MIRBuilder.getDebugLoc()) && 1580 "Expected inlined-at fields to agree"); 1581 auto AI = dyn_cast<AllocaInst>(Address); 1582 if (AI && AI->isStaticAlloca()) { 1583 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1584 // instructions (in fact, they get ignored if they *do* exist). 1585 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1586 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1587 } else { 1588 // A dbg.declare describes the address of a source variable, so lower it 1589 // into an indirect DBG_VALUE. 1590 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1591 DI.getVariable(), DI.getExpression()); 1592 } 1593 return true; 1594 } 1595 case Intrinsic::dbg_label: { 1596 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1597 assert(DI.getLabel() && "Missing label"); 1598 1599 assert(DI.getLabel()->isValidLocationForIntrinsic( 1600 MIRBuilder.getDebugLoc()) && 1601 "Expected inlined-at fields to agree"); 1602 1603 MIRBuilder.buildDbgLabel(DI.getLabel()); 1604 return true; 1605 } 1606 case Intrinsic::vaend: 1607 // No target I know of cares about va_end. Certainly no in-tree target 1608 // does. Simplest intrinsic ever! 1609 return true; 1610 case Intrinsic::vastart: { 1611 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1612 Value *Ptr = CI.getArgOperand(0); 1613 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1614 1615 // FIXME: Get alignment 1616 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1617 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 1618 MachineMemOperand::MOStore, 1619 ListSize, Align(1))); 1620 return true; 1621 } 1622 case Intrinsic::dbg_value: { 1623 // This form of DBG_VALUE is target-independent. 1624 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1625 const Value *V = DI.getValue(); 1626 assert(DI.getVariable()->isValidLocationForIntrinsic( 1627 MIRBuilder.getDebugLoc()) && 1628 "Expected inlined-at fields to agree"); 1629 if (!V) { 1630 // Currently the optimizer can produce this; insert an undef to 1631 // help debugging. Probably the optimizer should not do this. 1632 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1633 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1634 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1635 } else { 1636 for (Register Reg : getOrCreateVRegs(*V)) { 1637 // FIXME: This does not handle register-indirect values at offset 0. The 1638 // direct/indirect thing shouldn't really be handled by something as 1639 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1640 // pretty baked in right now. 1641 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1642 } 1643 } 1644 return true; 1645 } 1646 case Intrinsic::uadd_with_overflow: 1647 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1648 case Intrinsic::sadd_with_overflow: 1649 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1650 case Intrinsic::usub_with_overflow: 1651 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1652 case Intrinsic::ssub_with_overflow: 1653 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1654 case Intrinsic::umul_with_overflow: 1655 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1656 case Intrinsic::smul_with_overflow: 1657 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1658 case Intrinsic::uadd_sat: 1659 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 1660 case Intrinsic::sadd_sat: 1661 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 1662 case Intrinsic::usub_sat: 1663 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 1664 case Intrinsic::ssub_sat: 1665 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 1666 case Intrinsic::ushl_sat: 1667 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder); 1668 case Intrinsic::sshl_sat: 1669 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder); 1670 case Intrinsic::umin: 1671 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder); 1672 case Intrinsic::umax: 1673 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder); 1674 case Intrinsic::smin: 1675 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder); 1676 case Intrinsic::smax: 1677 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder); 1678 case Intrinsic::abs: 1679 // TODO: Preserve "int min is poison" arg in GMIR? 1680 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder); 1681 case Intrinsic::smul_fix: 1682 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder); 1683 case Intrinsic::umul_fix: 1684 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder); 1685 case Intrinsic::smul_fix_sat: 1686 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder); 1687 case Intrinsic::umul_fix_sat: 1688 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder); 1689 case Intrinsic::sdiv_fix: 1690 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder); 1691 case Intrinsic::udiv_fix: 1692 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder); 1693 case Intrinsic::sdiv_fix_sat: 1694 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder); 1695 case Intrinsic::udiv_fix_sat: 1696 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder); 1697 case Intrinsic::fmuladd: { 1698 const TargetMachine &TM = MF->getTarget(); 1699 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1700 Register Dst = getOrCreateVReg(CI); 1701 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1702 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1703 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1704 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1705 TLI.isFMAFasterThanFMulAndFAdd(*MF, 1706 TLI.getValueType(*DL, CI.getType()))) { 1707 // TODO: Revisit this to see if we should move this part of the 1708 // lowering to the combiner. 1709 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 1710 MachineInstr::copyFlagsFromInstruction(CI)); 1711 } else { 1712 LLT Ty = getLLTForType(*CI.getType(), *DL); 1713 auto FMul = MIRBuilder.buildFMul( 1714 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 1715 MIRBuilder.buildFAdd(Dst, FMul, Op2, 1716 MachineInstr::copyFlagsFromInstruction(CI)); 1717 } 1718 return true; 1719 } 1720 case Intrinsic::convert_from_fp16: 1721 // FIXME: This intrinsic should probably be removed from the IR. 1722 MIRBuilder.buildFPExt(getOrCreateVReg(CI), 1723 getOrCreateVReg(*CI.getArgOperand(0)), 1724 MachineInstr::copyFlagsFromInstruction(CI)); 1725 return true; 1726 case Intrinsic::convert_to_fp16: 1727 // FIXME: This intrinsic should probably be removed from the IR. 1728 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI), 1729 getOrCreateVReg(*CI.getArgOperand(0)), 1730 MachineInstr::copyFlagsFromInstruction(CI)); 1731 return true; 1732 case Intrinsic::memcpy: 1733 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY); 1734 case Intrinsic::memmove: 1735 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE); 1736 case Intrinsic::memset: 1737 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET); 1738 case Intrinsic::eh_typeid_for: { 1739 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1740 Register Reg = getOrCreateVReg(CI); 1741 unsigned TypeID = MF->getTypeIDFor(GV); 1742 MIRBuilder.buildConstant(Reg, TypeID); 1743 return true; 1744 } 1745 case Intrinsic::objectsize: 1746 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1747 1748 case Intrinsic::is_constant: 1749 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1750 1751 case Intrinsic::stackguard: 1752 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1753 return true; 1754 case Intrinsic::stackprotector: { 1755 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1756 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1757 getStackGuard(GuardVal, MIRBuilder); 1758 1759 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1760 int FI = getOrCreateFrameIndex(*Slot); 1761 MF->getFrameInfo().setStackProtectorIndex(FI); 1762 1763 MIRBuilder.buildStore( 1764 GuardVal, getOrCreateVReg(*Slot), 1765 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1766 MachineMemOperand::MOStore | 1767 MachineMemOperand::MOVolatile, 1768 PtrTy.getSizeInBits() / 8, Align(8))); 1769 return true; 1770 } 1771 case Intrinsic::stacksave: { 1772 // Save the stack pointer to the location provided by the intrinsic. 1773 Register Reg = getOrCreateVReg(CI); 1774 Register StackPtr = MF->getSubtarget() 1775 .getTargetLowering() 1776 ->getStackPointerRegisterToSaveRestore(); 1777 1778 // If the target doesn't specify a stack pointer, then fall back. 1779 if (!StackPtr) 1780 return false; 1781 1782 MIRBuilder.buildCopy(Reg, StackPtr); 1783 return true; 1784 } 1785 case Intrinsic::stackrestore: { 1786 // Restore the stack pointer from the location provided by the intrinsic. 1787 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1788 Register StackPtr = MF->getSubtarget() 1789 .getTargetLowering() 1790 ->getStackPointerRegisterToSaveRestore(); 1791 1792 // If the target doesn't specify a stack pointer, then fall back. 1793 if (!StackPtr) 1794 return false; 1795 1796 MIRBuilder.buildCopy(StackPtr, Reg); 1797 return true; 1798 } 1799 case Intrinsic::cttz: 1800 case Intrinsic::ctlz: { 1801 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1802 bool isTrailing = ID == Intrinsic::cttz; 1803 unsigned Opcode = isTrailing 1804 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1805 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1806 : Cst->isZero() ? TargetOpcode::G_CTLZ 1807 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1808 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 1809 {getOrCreateVReg(*CI.getArgOperand(0))}); 1810 return true; 1811 } 1812 case Intrinsic::invariant_start: { 1813 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1814 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 1815 MIRBuilder.buildUndef(Undef); 1816 return true; 1817 } 1818 case Intrinsic::invariant_end: 1819 return true; 1820 case Intrinsic::expect: 1821 case Intrinsic::annotation: 1822 case Intrinsic::ptr_annotation: 1823 case Intrinsic::launder_invariant_group: 1824 case Intrinsic::strip_invariant_group: { 1825 // Drop the intrinsic, but forward the value. 1826 MIRBuilder.buildCopy(getOrCreateVReg(CI), 1827 getOrCreateVReg(*CI.getArgOperand(0))); 1828 return true; 1829 } 1830 case Intrinsic::assume: 1831 case Intrinsic::var_annotation: 1832 case Intrinsic::sideeffect: 1833 // Discard annotate attributes, assumptions, and artificial side-effects. 1834 return true; 1835 case Intrinsic::read_volatile_register: 1836 case Intrinsic::read_register: { 1837 Value *Arg = CI.getArgOperand(0); 1838 MIRBuilder 1839 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 1840 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 1841 return true; 1842 } 1843 case Intrinsic::write_register: { 1844 Value *Arg = CI.getArgOperand(0); 1845 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 1846 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 1847 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 1848 return true; 1849 } 1850 case Intrinsic::localescape: { 1851 MachineBasicBlock &EntryMBB = MF->front(); 1852 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName()); 1853 1854 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 1855 // is the same on all targets. 1856 for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) { 1857 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts(); 1858 if (isa<ConstantPointerNull>(Arg)) 1859 continue; // Skip null pointers. They represent a hole in index space. 1860 1861 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg)); 1862 MCSymbol *FrameAllocSym = 1863 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName, 1864 Idx); 1865 1866 // This should be inserted at the start of the entry block. 1867 auto LocalEscape = 1868 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE) 1869 .addSym(FrameAllocSym) 1870 .addFrameIndex(FI); 1871 1872 EntryMBB.insert(EntryMBB.begin(), LocalEscape); 1873 } 1874 1875 return true; 1876 } 1877 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 1878 case Intrinsic::INTRINSIC: 1879 #include "llvm/IR/ConstrainedOps.def" 1880 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 1881 MIRBuilder); 1882 1883 } 1884 return false; 1885 } 1886 1887 bool IRTranslator::translateInlineAsm(const CallBase &CB, 1888 MachineIRBuilder &MIRBuilder) { 1889 1890 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 1891 1892 if (!ALI) { 1893 LLVM_DEBUG( 1894 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 1895 return false; 1896 } 1897 1898 return ALI->lowerInlineAsm( 1899 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 1900 } 1901 1902 bool IRTranslator::translateCallBase(const CallBase &CB, 1903 MachineIRBuilder &MIRBuilder) { 1904 ArrayRef<Register> Res = getOrCreateVRegs(CB); 1905 1906 SmallVector<ArrayRef<Register>, 8> Args; 1907 Register SwiftInVReg = 0; 1908 Register SwiftErrorVReg = 0; 1909 for (auto &Arg : CB.args()) { 1910 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1911 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 1912 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1913 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 1914 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 1915 &CB, &MIRBuilder.getMBB(), Arg)); 1916 Args.emplace_back(makeArrayRef(SwiftInVReg)); 1917 SwiftErrorVReg = 1918 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 1919 continue; 1920 } 1921 Args.push_back(getOrCreateVRegs(*Arg)); 1922 } 1923 1924 // We don't set HasCalls on MFI here yet because call lowering may decide to 1925 // optimize into tail calls. Instead, we defer that to selection where a final 1926 // scan is done to check if any instructions are calls. 1927 bool Success = 1928 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 1929 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 1930 1931 // Check if we just inserted a tail call. 1932 if (Success) { 1933 assert(!HasTailCall && "Can't tail call return twice from block?"); 1934 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1935 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 1936 } 1937 1938 return Success; 1939 } 1940 1941 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1942 const CallInst &CI = cast<CallInst>(U); 1943 auto TII = MF->getTarget().getIntrinsicInfo(); 1944 const Function *F = CI.getCalledFunction(); 1945 1946 // FIXME: support Windows dllimport function calls. 1947 if (F && (F->hasDLLImportStorageClass() || 1948 (MF->getTarget().getTargetTriple().isOSWindows() && 1949 F->hasExternalWeakLinkage()))) 1950 return false; 1951 1952 // FIXME: support control flow guard targets. 1953 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1954 return false; 1955 1956 if (CI.isInlineAsm()) 1957 return translateInlineAsm(CI, MIRBuilder); 1958 1959 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1960 if (F && F->isIntrinsic()) { 1961 ID = F->getIntrinsicID(); 1962 if (TII && ID == Intrinsic::not_intrinsic) 1963 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1964 } 1965 1966 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 1967 return translateCallBase(CI, MIRBuilder); 1968 1969 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1970 1971 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1972 return true; 1973 1974 ArrayRef<Register> ResultRegs; 1975 if (!CI.getType()->isVoidTy()) 1976 ResultRegs = getOrCreateVRegs(CI); 1977 1978 // Ignore the callsite attributes. Backend code is most likely not expecting 1979 // an intrinsic to sometimes have side effects and sometimes not. 1980 MachineInstrBuilder MIB = 1981 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 1982 if (isa<FPMathOperator>(CI)) 1983 MIB->copyIRFlags(CI); 1984 1985 for (auto &Arg : enumerate(CI.arg_operands())) { 1986 // If this is required to be an immediate, don't materialize it in a 1987 // register. 1988 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 1989 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 1990 // imm arguments are more convenient than cimm (and realistically 1991 // probably sufficient), so use them. 1992 assert(CI->getBitWidth() <= 64 && 1993 "large intrinsic immediates not handled"); 1994 MIB.addImm(CI->getSExtValue()); 1995 } else { 1996 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 1997 } 1998 } else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) { 1999 auto *MDN = dyn_cast<MDNode>(MD->getMetadata()); 2000 if (!MDN) // This was probably an MDString. 2001 return false; 2002 MIB.addMetadata(MDN); 2003 } else { 2004 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 2005 if (VRegs.size() > 1) 2006 return false; 2007 MIB.addUse(VRegs[0]); 2008 } 2009 } 2010 2011 // Add a MachineMemOperand if it is a target mem intrinsic. 2012 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2013 TargetLowering::IntrinsicInfo Info; 2014 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 2015 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 2016 Align Alignment = Info.align.getValueOr( 2017 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 2018 2019 uint64_t Size = Info.memVT.getStoreSize(); 2020 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 2021 Info.flags, Size, Alignment)); 2022 } 2023 2024 return true; 2025 } 2026 2027 bool IRTranslator::translateInvoke(const User &U, 2028 MachineIRBuilder &MIRBuilder) { 2029 const InvokeInst &I = cast<InvokeInst>(U); 2030 MCContext &Context = MF->getContext(); 2031 2032 const BasicBlock *ReturnBB = I.getSuccessor(0); 2033 const BasicBlock *EHPadBB = I.getSuccessor(1); 2034 2035 const Function *Fn = I.getCalledFunction(); 2036 if (I.isInlineAsm()) 2037 return false; 2038 2039 // FIXME: support invoking patchpoint and statepoint intrinsics. 2040 if (Fn && Fn->isIntrinsic()) 2041 return false; 2042 2043 // FIXME: support whatever these are. 2044 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 2045 return false; 2046 2047 // FIXME: support control flow guard targets. 2048 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2049 return false; 2050 2051 // FIXME: support Windows exception handling. 2052 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI())) 2053 return false; 2054 2055 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 2056 // the region covered by the try. 2057 MCSymbol *BeginSymbol = Context.createTempSymbol(); 2058 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 2059 2060 if (!translateCallBase(I, MIRBuilder)) 2061 return false; 2062 2063 MCSymbol *EndSymbol = Context.createTempSymbol(); 2064 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 2065 2066 // FIXME: track probabilities. 2067 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 2068 &ReturnMBB = getMBB(*ReturnBB); 2069 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 2070 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 2071 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 2072 MIRBuilder.buildBr(ReturnMBB); 2073 2074 return true; 2075 } 2076 2077 bool IRTranslator::translateCallBr(const User &U, 2078 MachineIRBuilder &MIRBuilder) { 2079 // FIXME: Implement this. 2080 return false; 2081 } 2082 2083 bool IRTranslator::translateLandingPad(const User &U, 2084 MachineIRBuilder &MIRBuilder) { 2085 const LandingPadInst &LP = cast<LandingPadInst>(U); 2086 2087 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 2088 2089 MBB.setIsEHPad(); 2090 2091 // If there aren't registers to copy the values into (e.g., during SjLj 2092 // exceptions), then don't bother. 2093 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2094 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 2095 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2096 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2097 return true; 2098 2099 // If landingpad's return type is token type, we don't create DAG nodes 2100 // for its exception pointer and selector value. The extraction of exception 2101 // pointer or selector value from token type landingpads is not currently 2102 // supported. 2103 if (LP.getType()->isTokenTy()) 2104 return true; 2105 2106 // Add a label to mark the beginning of the landing pad. Deletion of the 2107 // landing pad can thus be detected via the MachineModuleInfo. 2108 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 2109 .addSym(MF->addLandingPad(&MBB)); 2110 2111 // If the unwinder does not preserve all registers, ensure that the 2112 // function marks the clobbered registers as used. 2113 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 2114 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 2115 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 2116 2117 LLT Ty = getLLTForType(*LP.getType(), *DL); 2118 Register Undef = MRI->createGenericVirtualRegister(Ty); 2119 MIRBuilder.buildUndef(Undef); 2120 2121 SmallVector<LLT, 2> Tys; 2122 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 2123 Tys.push_back(getLLTForType(*Ty, *DL)); 2124 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 2125 2126 // Mark exception register as live in. 2127 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 2128 if (!ExceptionReg) 2129 return false; 2130 2131 MBB.addLiveIn(ExceptionReg); 2132 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 2133 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 2134 2135 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 2136 if (!SelectorReg) 2137 return false; 2138 2139 MBB.addLiveIn(SelectorReg); 2140 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 2141 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 2142 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 2143 2144 return true; 2145 } 2146 2147 bool IRTranslator::translateAlloca(const User &U, 2148 MachineIRBuilder &MIRBuilder) { 2149 auto &AI = cast<AllocaInst>(U); 2150 2151 if (AI.isSwiftError()) 2152 return true; 2153 2154 if (AI.isStaticAlloca()) { 2155 Register Res = getOrCreateVReg(AI); 2156 int FI = getOrCreateFrameIndex(AI); 2157 MIRBuilder.buildFrameIndex(Res, FI); 2158 return true; 2159 } 2160 2161 // FIXME: support stack probing for Windows. 2162 if (MF->getTarget().getTargetTriple().isOSWindows()) 2163 return false; 2164 2165 // Now we're in the harder dynamic case. 2166 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 2167 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 2168 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 2169 if (MRI->getType(NumElts) != IntPtrTy) { 2170 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 2171 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 2172 NumElts = ExtElts; 2173 } 2174 2175 Type *Ty = AI.getAllocatedType(); 2176 2177 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 2178 Register TySize = 2179 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 2180 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 2181 2182 // Round the size of the allocation up to the stack alignment size 2183 // by add SA-1 to the size. This doesn't overflow because we're computing 2184 // an address inside an alloca. 2185 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 2186 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 2187 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 2188 MachineInstr::NoUWrap); 2189 auto AlignCst = 2190 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 2191 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 2192 2193 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 2194 if (Alignment <= StackAlign) 2195 Alignment = Align(1); 2196 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 2197 2198 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 2199 assert(MF->getFrameInfo().hasVarSizedObjects()); 2200 return true; 2201 } 2202 2203 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 2204 // FIXME: We may need more info about the type. Because of how LLT works, 2205 // we're completely discarding the i64/double distinction here (amongst 2206 // others). Fortunately the ABIs I know of where that matters don't use va_arg 2207 // anyway but that's not guaranteed. 2208 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 2209 {getOrCreateVReg(*U.getOperand(0)), 2210 DL->getABITypeAlign(U.getType()).value()}); 2211 return true; 2212 } 2213 2214 bool IRTranslator::translateInsertElement(const User &U, 2215 MachineIRBuilder &MIRBuilder) { 2216 // If it is a <1 x Ty> vector, use the scalar as it is 2217 // not a legal vector type in LLT. 2218 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1) 2219 return translateCopy(U, *U.getOperand(1), MIRBuilder); 2220 2221 Register Res = getOrCreateVReg(U); 2222 Register Val = getOrCreateVReg(*U.getOperand(0)); 2223 Register Elt = getOrCreateVReg(*U.getOperand(1)); 2224 Register Idx = getOrCreateVReg(*U.getOperand(2)); 2225 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 2226 return true; 2227 } 2228 2229 bool IRTranslator::translateExtractElement(const User &U, 2230 MachineIRBuilder &MIRBuilder) { 2231 // If it is a <1 x Ty> vector, use the scalar as it is 2232 // not a legal vector type in LLT. 2233 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 2234 return translateCopy(U, *U.getOperand(0), MIRBuilder); 2235 2236 Register Res = getOrCreateVReg(U); 2237 Register Val = getOrCreateVReg(*U.getOperand(0)); 2238 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2239 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 2240 Register Idx; 2241 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 2242 if (CI->getBitWidth() != PreferredVecIdxWidth) { 2243 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 2244 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 2245 Idx = getOrCreateVReg(*NewIdxCI); 2246 } 2247 } 2248 if (!Idx) 2249 Idx = getOrCreateVReg(*U.getOperand(1)); 2250 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 2251 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 2252 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0); 2253 } 2254 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 2255 return true; 2256 } 2257 2258 bool IRTranslator::translateShuffleVector(const User &U, 2259 MachineIRBuilder &MIRBuilder) { 2260 ArrayRef<int> Mask; 2261 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 2262 Mask = SVI->getShuffleMask(); 2263 else 2264 Mask = cast<ConstantExpr>(U).getShuffleMask(); 2265 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 2266 MIRBuilder 2267 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 2268 {getOrCreateVReg(*U.getOperand(0)), 2269 getOrCreateVReg(*U.getOperand(1))}) 2270 .addShuffleMask(MaskAlloc); 2271 return true; 2272 } 2273 2274 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 2275 const PHINode &PI = cast<PHINode>(U); 2276 2277 SmallVector<MachineInstr *, 4> Insts; 2278 for (auto Reg : getOrCreateVRegs(PI)) { 2279 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 2280 Insts.push_back(MIB.getInstr()); 2281 } 2282 2283 PendingPHIs.emplace_back(&PI, std::move(Insts)); 2284 return true; 2285 } 2286 2287 bool IRTranslator::translateAtomicCmpXchg(const User &U, 2288 MachineIRBuilder &MIRBuilder) { 2289 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 2290 2291 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2292 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2293 2294 Type *ResType = I.getType(); 2295 Type *ValType = ResType->Type::getStructElementType(0); 2296 2297 auto Res = getOrCreateVRegs(I); 2298 Register OldValRes = Res[0]; 2299 Register SuccessRes = Res[1]; 2300 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2301 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 2302 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 2303 2304 AAMDNodes AAMetadata; 2305 I.getAAMetadata(AAMetadata); 2306 2307 MIRBuilder.buildAtomicCmpXchgWithSuccess( 2308 OldValRes, SuccessRes, Addr, Cmp, NewVal, 2309 *MF->getMachineMemOperand( 2310 MachinePointerInfo(I.getPointerOperand()), Flags, 2311 DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr, 2312 I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering())); 2313 return true; 2314 } 2315 2316 bool IRTranslator::translateAtomicRMW(const User &U, 2317 MachineIRBuilder &MIRBuilder) { 2318 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2319 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2320 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2321 2322 Type *ResType = I.getType(); 2323 2324 Register Res = getOrCreateVReg(I); 2325 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2326 Register Val = getOrCreateVReg(*I.getValOperand()); 2327 2328 unsigned Opcode = 0; 2329 switch (I.getOperation()) { 2330 default: 2331 return false; 2332 case AtomicRMWInst::Xchg: 2333 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2334 break; 2335 case AtomicRMWInst::Add: 2336 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2337 break; 2338 case AtomicRMWInst::Sub: 2339 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2340 break; 2341 case AtomicRMWInst::And: 2342 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2343 break; 2344 case AtomicRMWInst::Nand: 2345 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2346 break; 2347 case AtomicRMWInst::Or: 2348 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2349 break; 2350 case AtomicRMWInst::Xor: 2351 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2352 break; 2353 case AtomicRMWInst::Max: 2354 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2355 break; 2356 case AtomicRMWInst::Min: 2357 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2358 break; 2359 case AtomicRMWInst::UMax: 2360 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2361 break; 2362 case AtomicRMWInst::UMin: 2363 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2364 break; 2365 case AtomicRMWInst::FAdd: 2366 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2367 break; 2368 case AtomicRMWInst::FSub: 2369 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2370 break; 2371 } 2372 2373 AAMDNodes AAMetadata; 2374 I.getAAMetadata(AAMetadata); 2375 2376 MIRBuilder.buildAtomicRMW( 2377 Opcode, Res, Addr, Val, 2378 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2379 Flags, DL->getTypeStoreSize(ResType), 2380 getMemOpAlign(I), AAMetadata, nullptr, 2381 I.getSyncScopeID(), I.getOrdering())); 2382 return true; 2383 } 2384 2385 bool IRTranslator::translateFence(const User &U, 2386 MachineIRBuilder &MIRBuilder) { 2387 const FenceInst &Fence = cast<FenceInst>(U); 2388 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2389 Fence.getSyncScopeID()); 2390 return true; 2391 } 2392 2393 bool IRTranslator::translateFreeze(const User &U, 2394 MachineIRBuilder &MIRBuilder) { 2395 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 2396 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 2397 2398 assert(DstRegs.size() == SrcRegs.size() && 2399 "Freeze with different source and destination type?"); 2400 2401 for (unsigned I = 0; I < DstRegs.size(); ++I) { 2402 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 2403 } 2404 2405 return true; 2406 } 2407 2408 void IRTranslator::finishPendingPhis() { 2409 #ifndef NDEBUG 2410 DILocationVerifier Verifier; 2411 GISelObserverWrapper WrapperObserver(&Verifier); 2412 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2413 #endif // ifndef NDEBUG 2414 for (auto &Phi : PendingPHIs) { 2415 const PHINode *PI = Phi.first; 2416 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2417 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2418 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2419 #ifndef NDEBUG 2420 Verifier.setCurrentInst(PI); 2421 #endif // ifndef NDEBUG 2422 2423 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2424 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2425 auto IRPred = PI->getIncomingBlock(i); 2426 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2427 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2428 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2429 continue; 2430 SeenPreds.insert(Pred); 2431 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2432 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2433 MIB.addUse(ValRegs[j]); 2434 MIB.addMBB(Pred); 2435 } 2436 } 2437 } 2438 } 2439 } 2440 2441 bool IRTranslator::valueIsSplit(const Value &V, 2442 SmallVectorImpl<uint64_t> *Offsets) { 2443 SmallVector<LLT, 4> SplitTys; 2444 if (Offsets && !Offsets->empty()) 2445 Offsets->clear(); 2446 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2447 return SplitTys.size() > 1; 2448 } 2449 2450 bool IRTranslator::translate(const Instruction &Inst) { 2451 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2452 // We only emit constants into the entry block from here. To prevent jumpy 2453 // debug behaviour set the line to 0. 2454 if (const DebugLoc &DL = Inst.getDebugLoc()) 2455 EntryBuilder->setDebugLoc( 2456 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 2457 else 2458 EntryBuilder->setDebugLoc(DebugLoc()); 2459 2460 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2461 if (TLI.fallBackToDAGISel(Inst)) 2462 return false; 2463 2464 switch (Inst.getOpcode()) { 2465 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2466 case Instruction::OPCODE: \ 2467 return translate##OPCODE(Inst, *CurBuilder.get()); 2468 #include "llvm/IR/Instruction.def" 2469 default: 2470 return false; 2471 } 2472 } 2473 2474 bool IRTranslator::translate(const Constant &C, Register Reg) { 2475 if (auto CI = dyn_cast<ConstantInt>(&C)) 2476 EntryBuilder->buildConstant(Reg, *CI); 2477 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2478 EntryBuilder->buildFConstant(Reg, *CF); 2479 else if (isa<UndefValue>(C)) 2480 EntryBuilder->buildUndef(Reg); 2481 else if (isa<ConstantPointerNull>(C)) 2482 EntryBuilder->buildConstant(Reg, 0); 2483 else if (auto GV = dyn_cast<GlobalValue>(&C)) 2484 EntryBuilder->buildGlobalValue(Reg, GV); 2485 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2486 if (!CAZ->getType()->isVectorTy()) 2487 return false; 2488 // Return the scalar if it is a <1 x Ty> vector. 2489 if (CAZ->getNumElements() == 1) 2490 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get()); 2491 SmallVector<Register, 4> Ops; 2492 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 2493 Constant &Elt = *CAZ->getElementValue(i); 2494 Ops.push_back(getOrCreateVReg(Elt)); 2495 } 2496 EntryBuilder->buildBuildVector(Reg, Ops); 2497 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2498 // Return the scalar if it is a <1 x Ty> vector. 2499 if (CV->getNumElements() == 1) 2500 return translateCopy(C, *CV->getElementAsConstant(0), 2501 *EntryBuilder.get()); 2502 SmallVector<Register, 4> Ops; 2503 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2504 Constant &Elt = *CV->getElementAsConstant(i); 2505 Ops.push_back(getOrCreateVReg(Elt)); 2506 } 2507 EntryBuilder->buildBuildVector(Reg, Ops); 2508 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2509 switch(CE->getOpcode()) { 2510 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2511 case Instruction::OPCODE: \ 2512 return translate##OPCODE(*CE, *EntryBuilder.get()); 2513 #include "llvm/IR/Instruction.def" 2514 default: 2515 return false; 2516 } 2517 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2518 if (CV->getNumOperands() == 1) 2519 return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get()); 2520 SmallVector<Register, 4> Ops; 2521 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2522 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2523 } 2524 EntryBuilder->buildBuildVector(Reg, Ops); 2525 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2526 EntryBuilder->buildBlockAddress(Reg, BA); 2527 } else 2528 return false; 2529 2530 return true; 2531 } 2532 2533 void IRTranslator::finalizeBasicBlock() { 2534 for (auto &BTB : SL->BitTestCases) { 2535 // Emit header first, if it wasn't already emitted. 2536 if (!BTB.Emitted) 2537 emitBitTestHeader(BTB, BTB.Parent); 2538 2539 BranchProbability UnhandledProb = BTB.Prob; 2540 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 2541 UnhandledProb -= BTB.Cases[j].ExtraProb; 2542 // Set the current basic block to the mbb we wish to insert the code into 2543 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB; 2544 // If all cases cover a contiguous range, it is not necessary to jump to 2545 // the default block after the last bit test fails. This is because the 2546 // range check during bit test header creation has guaranteed that every 2547 // case here doesn't go outside the range. In this case, there is no need 2548 // to perform the last bit test, as it will always be true. Instead, make 2549 // the second-to-last bit-test fall through to the target of the last bit 2550 // test, and delete the last bit test. 2551 2552 MachineBasicBlock *NextMBB; 2553 if (BTB.ContiguousRange && j + 2 == ej) { 2554 // Second-to-last bit-test with contiguous range: fall through to the 2555 // target of the final bit test. 2556 NextMBB = BTB.Cases[j + 1].TargetBB; 2557 } else if (j + 1 == ej) { 2558 // For the last bit test, fall through to Default. 2559 NextMBB = BTB.Default; 2560 } else { 2561 // Otherwise, fall through to the next bit test. 2562 NextMBB = BTB.Cases[j + 1].ThisBB; 2563 } 2564 2565 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB); 2566 2567 // FIXME delete this block below? 2568 if (BTB.ContiguousRange && j + 2 == ej) { 2569 // Since we're not going to use the final bit test, remove it. 2570 BTB.Cases.pop_back(); 2571 break; 2572 } 2573 } 2574 // This is "default" BB. We have two jumps to it. From "header" BB and from 2575 // last "case" BB, unless the latter was skipped. 2576 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(), 2577 BTB.Default->getBasicBlock()}; 2578 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent); 2579 if (!BTB.ContiguousRange) { 2580 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB); 2581 } 2582 } 2583 SL->BitTestCases.clear(); 2584 2585 for (auto &JTCase : SL->JTCases) { 2586 // Emit header first, if it wasn't already emitted. 2587 if (!JTCase.first.Emitted) 2588 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 2589 2590 emitJumpTable(JTCase.second, JTCase.second.MBB); 2591 } 2592 SL->JTCases.clear(); 2593 } 2594 2595 void IRTranslator::finalizeFunction() { 2596 // Release the memory used by the different maps we 2597 // needed during the translation. 2598 PendingPHIs.clear(); 2599 VMap.reset(); 2600 FrameIndices.clear(); 2601 MachinePreds.clear(); 2602 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 2603 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 2604 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 2605 EntryBuilder.reset(); 2606 CurBuilder.reset(); 2607 FuncInfo.clear(); 2608 } 2609 2610 /// Returns true if a BasicBlock \p BB within a variadic function contains a 2611 /// variadic musttail call. 2612 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 2613 if (!IsVarArg) 2614 return false; 2615 2616 // Walk the block backwards, because tail calls usually only appear at the end 2617 // of a block. 2618 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 2619 const auto *CI = dyn_cast<CallInst>(&I); 2620 return CI && CI->isMustTailCall(); 2621 }); 2622 } 2623 2624 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 2625 MF = &CurMF; 2626 const Function &F = MF->getFunction(); 2627 if (F.empty()) 2628 return false; 2629 GISelCSEAnalysisWrapper &Wrapper = 2630 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 2631 // Set the CSEConfig and run the analysis. 2632 GISelCSEInfo *CSEInfo = nullptr; 2633 TPC = &getAnalysis<TargetPassConfig>(); 2634 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 2635 ? EnableCSEInIRTranslator 2636 : TPC->isGISelCSEEnabled(); 2637 2638 if (EnableCSE) { 2639 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2640 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 2641 EntryBuilder->setCSEInfo(CSEInfo); 2642 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2643 CurBuilder->setCSEInfo(CSEInfo); 2644 } else { 2645 EntryBuilder = std::make_unique<MachineIRBuilder>(); 2646 CurBuilder = std::make_unique<MachineIRBuilder>(); 2647 } 2648 CLI = MF->getSubtarget().getCallLowering(); 2649 CurBuilder->setMF(*MF); 2650 EntryBuilder->setMF(*MF); 2651 MRI = &MF->getRegInfo(); 2652 DL = &F.getParent()->getDataLayout(); 2653 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2654 FuncInfo.MF = MF; 2655 FuncInfo.BPI = nullptr; 2656 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2657 const TargetMachine &TM = MF->getTarget(); 2658 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 2659 SL->init(TLI, TM, *DL); 2660 2661 EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); 2662 2663 assert(PendingPHIs.empty() && "stale PHIs"); 2664 2665 if (!DL->isLittleEndian()) { 2666 // Currently we don't properly handle big endian code. 2667 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2668 F.getSubprogram(), &F.getEntryBlock()); 2669 R << "unable to translate in big endian mode"; 2670 reportTranslationError(*MF, *TPC, *ORE, R); 2671 } 2672 2673 // Release the per-function state when we return, whether we succeeded or not. 2674 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 2675 2676 // Setup a separate basic-block for the arguments and constants 2677 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 2678 MF->push_back(EntryBB); 2679 EntryBuilder->setMBB(*EntryBB); 2680 2681 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 2682 SwiftError.setFunction(CurMF); 2683 SwiftError.createEntriesInEntryBlock(DbgLoc); 2684 2685 bool IsVarArg = F.isVarArg(); 2686 bool HasMustTailInVarArgFn = false; 2687 2688 // Create all blocks, in IR order, to preserve the layout. 2689 for (const BasicBlock &BB: F) { 2690 auto *&MBB = BBToMBB[&BB]; 2691 2692 MBB = MF->CreateMachineBasicBlock(&BB); 2693 MF->push_back(MBB); 2694 2695 if (BB.hasAddressTaken()) 2696 MBB->setHasAddressTaken(); 2697 2698 if (!HasMustTailInVarArgFn) 2699 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 2700 } 2701 2702 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 2703 2704 // Make our arguments/constants entry block fallthrough to the IR entry block. 2705 EntryBB->addSuccessor(&getMBB(F.front())); 2706 2707 if (CLI->fallBackToDAGISel(F)) { 2708 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2709 F.getSubprogram(), &F.getEntryBlock()); 2710 R << "unable to lower function: " << ore::NV("Prototype", F.getType()); 2711 reportTranslationError(*MF, *TPC, *ORE, R); 2712 return false; 2713 } 2714 2715 // Lower the actual args into this basic block. 2716 SmallVector<ArrayRef<Register>, 8> VRegArgs; 2717 for (const Argument &Arg: F.args()) { 2718 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 2719 continue; // Don't handle zero sized types. 2720 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 2721 VRegArgs.push_back(VRegs); 2722 2723 if (Arg.hasSwiftErrorAttr()) { 2724 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 2725 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 2726 } 2727 } 2728 2729 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 2730 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2731 F.getSubprogram(), &F.getEntryBlock()); 2732 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 2733 reportTranslationError(*MF, *TPC, *ORE, R); 2734 return false; 2735 } 2736 2737 // Need to visit defs before uses when translating instructions. 2738 GISelObserverWrapper WrapperObserver; 2739 if (EnableCSE && CSEInfo) 2740 WrapperObserver.addObserver(CSEInfo); 2741 { 2742 ReversePostOrderTraversal<const Function *> RPOT(&F); 2743 #ifndef NDEBUG 2744 DILocationVerifier Verifier; 2745 WrapperObserver.addObserver(&Verifier); 2746 #endif // ifndef NDEBUG 2747 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2748 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 2749 for (const BasicBlock *BB : RPOT) { 2750 MachineBasicBlock &MBB = getMBB(*BB); 2751 // Set the insertion point of all the following translations to 2752 // the end of this basic block. 2753 CurBuilder->setMBB(MBB); 2754 HasTailCall = false; 2755 for (const Instruction &Inst : *BB) { 2756 // If we translated a tail call in the last step, then we know 2757 // everything after the call is either a return, or something that is 2758 // handled by the call itself. (E.g. a lifetime marker or assume 2759 // intrinsic.) In this case, we should stop translating the block and 2760 // move on. 2761 if (HasTailCall) 2762 break; 2763 #ifndef NDEBUG 2764 Verifier.setCurrentInst(&Inst); 2765 #endif // ifndef NDEBUG 2766 if (translate(Inst)) 2767 continue; 2768 2769 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2770 Inst.getDebugLoc(), BB); 2771 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 2772 2773 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 2774 std::string InstStrStorage; 2775 raw_string_ostream InstStr(InstStrStorage); 2776 InstStr << Inst; 2777 2778 R << ": '" << InstStr.str() << "'"; 2779 } 2780 2781 reportTranslationError(*MF, *TPC, *ORE, R); 2782 return false; 2783 } 2784 2785 finalizeBasicBlock(); 2786 } 2787 #ifndef NDEBUG 2788 WrapperObserver.removeObserver(&Verifier); 2789 #endif 2790 } 2791 2792 finishPendingPhis(); 2793 2794 SwiftError.propagateVRegs(); 2795 2796 // Merge the argument lowering and constants block with its single 2797 // successor, the LLVM-IR entry block. We want the basic block to 2798 // be maximal. 2799 assert(EntryBB->succ_size() == 1 && 2800 "Custom BB used for lowering should have only one successor"); 2801 // Get the successor of the current entry block. 2802 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 2803 assert(NewEntryBB.pred_size() == 1 && 2804 "LLVM-IR entry block has a predecessor!?"); 2805 // Move all the instruction from the current entry block to the 2806 // new entry block. 2807 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 2808 EntryBB->end()); 2809 2810 // Update the live-in information for the new entry block. 2811 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 2812 NewEntryBB.addLiveIn(LiveIn); 2813 NewEntryBB.sortUniqueLiveIns(); 2814 2815 // Get rid of the now empty basic block. 2816 EntryBB->removeSuccessor(&NewEntryBB); 2817 MF->remove(EntryBB); 2818 MF->DeleteMachineBasicBlock(EntryBB); 2819 2820 assert(&MF->front() == &NewEntryBB && 2821 "New entry wasn't next in the list of basic block!"); 2822 2823 // Initialize stack protector information. 2824 StackProtector &SP = getAnalysis<StackProtector>(); 2825 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2826 2827 return false; 2828 } 2829