1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
26 #include "llvm/CodeGen/LowLevelType.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/StackProtector.h"
36 #include "llvm/CodeGen/TargetFrameLowering.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfo.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GetElementPtrTypeIterator.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/MC/MCContext.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CodeGen.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/LowLevelTypeImpl.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetIntrinsicInfo.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <iterator>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 #define DEBUG_TYPE "irtranslator"
81 
82 using namespace llvm;
83 
84 static cl::opt<bool>
85     EnableCSEInIRTranslator("enable-cse-in-irtranslator",
86                             cl::desc("Should enable CSE in irtranslator"),
87                             cl::Optional, cl::init(false));
88 char IRTranslator::ID = 0;
89 
90 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
91                 false, false)
92 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
93 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
94 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
95                 false, false)
96 
97 static void reportTranslationError(MachineFunction &MF,
98                                    const TargetPassConfig &TPC,
99                                    OptimizationRemarkEmitter &ORE,
100                                    OptimizationRemarkMissed &R) {
101   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
102 
103   // Print the function name explicitly if we don't have a debug location (which
104   // makes the diagnostic less useful) or if we're going to emit a raw error.
105   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
106     R << (" (in function: " + MF.getName() + ")").str();
107 
108   if (TPC.isGlobalISelAbortEnabled())
109     report_fatal_error(R.getMsg());
110   else
111     ORE.emit(R);
112 }
113 
114 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { }
115 
116 #ifndef NDEBUG
117 namespace {
118 /// Verify that every instruction created has the same DILocation as the
119 /// instruction being translated.
120 class DILocationVerifier : public GISelChangeObserver {
121   const Instruction *CurrInst = nullptr;
122 
123 public:
124   DILocationVerifier() = default;
125   ~DILocationVerifier() = default;
126 
127   const Instruction *getCurrentInst() const { return CurrInst; }
128   void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
129 
130   void erasingInstr(MachineInstr &MI) override {}
131   void changingInstr(MachineInstr &MI) override {}
132   void changedInstr(MachineInstr &MI) override {}
133 
134   void createdInstr(MachineInstr &MI) override {
135     assert(getCurrentInst() && "Inserted instruction without a current MI");
136 
137     // Only print the check message if we're actually checking it.
138 #ifndef NDEBUG
139     LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
140                       << " was copied to " << MI);
141 #endif
142     // We allow insts in the entry block to have a debug loc line of 0 because
143     // they could have originated from constants, and we don't want a jumpy
144     // debug experience.
145     assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
146             MI.getDebugLoc().getLine() == 0) &&
147            "Line info was not transferred to all instructions");
148   }
149 };
150 } // namespace
151 #endif // ifndef NDEBUG
152 
153 
154 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
155   AU.addRequired<StackProtector>();
156   AU.addRequired<TargetPassConfig>();
157   AU.addRequired<GISelCSEAnalysisWrapperPass>();
158   getSelectionDAGFallbackAnalysisUsage(AU);
159   MachineFunctionPass::getAnalysisUsage(AU);
160 }
161 
162 IRTranslator::ValueToVRegInfo::VRegListT &
163 IRTranslator::allocateVRegs(const Value &Val) {
164   assert(!VMap.contains(Val) && "Value already allocated in VMap");
165   auto *Regs = VMap.getVRegs(Val);
166   auto *Offsets = VMap.getOffsets(Val);
167   SmallVector<LLT, 4> SplitTys;
168   computeValueLLTs(*DL, *Val.getType(), SplitTys,
169                    Offsets->empty() ? Offsets : nullptr);
170   for (unsigned i = 0; i < SplitTys.size(); ++i)
171     Regs->push_back(0);
172   return *Regs;
173 }
174 
175 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
176   auto VRegsIt = VMap.findVRegs(Val);
177   if (VRegsIt != VMap.vregs_end())
178     return *VRegsIt->second;
179 
180   if (Val.getType()->isVoidTy())
181     return *VMap.getVRegs(Val);
182 
183   // Create entry for this type.
184   auto *VRegs = VMap.getVRegs(Val);
185   auto *Offsets = VMap.getOffsets(Val);
186 
187   assert(Val.getType()->isSized() &&
188          "Don't know how to create an empty vreg");
189 
190   SmallVector<LLT, 4> SplitTys;
191   computeValueLLTs(*DL, *Val.getType(), SplitTys,
192                    Offsets->empty() ? Offsets : nullptr);
193 
194   if (!isa<Constant>(Val)) {
195     for (auto Ty : SplitTys)
196       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
197     return *VRegs;
198   }
199 
200   if (Val.getType()->isAggregateType()) {
201     // UndefValue, ConstantAggregateZero
202     auto &C = cast<Constant>(Val);
203     unsigned Idx = 0;
204     while (auto Elt = C.getAggregateElement(Idx++)) {
205       auto EltRegs = getOrCreateVRegs(*Elt);
206       llvm::copy(EltRegs, std::back_inserter(*VRegs));
207     }
208   } else {
209     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
210     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
211     bool Success = translate(cast<Constant>(Val), VRegs->front());
212     if (!Success) {
213       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
214                                  MF->getFunction().getSubprogram(),
215                                  &MF->getFunction().getEntryBlock());
216       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
217       reportTranslationError(*MF, *TPC, *ORE, R);
218       return *VRegs;
219     }
220   }
221 
222   return *VRegs;
223 }
224 
225 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
226   auto MapEntry = FrameIndices.find(&AI);
227   if (MapEntry != FrameIndices.end())
228     return MapEntry->second;
229 
230   uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
231   uint64_t Size =
232       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
233 
234   // Always allocate at least one byte.
235   Size = std::max<uint64_t>(Size, 1u);
236 
237   int &FI = FrameIndices[&AI];
238   FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
239   return FI;
240 }
241 
242 Align IRTranslator::getMemOpAlign(const Instruction &I) {
243   if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
244     return SI->getAlign();
245   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
246     return LI->getAlign();
247   }
248   if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
249     // TODO(PR27168): This instruction has no alignment attribute, but unlike
250     // the default alignment for load/store, the default here is to assume
251     // it has NATURAL alignment, not DataLayout-specified alignment.
252     const DataLayout &DL = AI->getModule()->getDataLayout();
253     return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType()));
254   }
255   if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
256     // TODO(PR27168): This instruction has no alignment attribute, but unlike
257     // the default alignment for load/store, the default here is to assume
258     // it has NATURAL alignment, not DataLayout-specified alignment.
259     const DataLayout &DL = AI->getModule()->getDataLayout();
260     return Align(DL.getTypeStoreSize(AI->getValOperand()->getType()));
261   }
262   OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
263   R << "unable to translate memop: " << ore::NV("Opcode", &I);
264   reportTranslationError(*MF, *TPC, *ORE, R);
265   return Align(1);
266 }
267 
268 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
269   MachineBasicBlock *&MBB = BBToMBB[&BB];
270   assert(MBB && "BasicBlock was not encountered before");
271   return *MBB;
272 }
273 
274 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
275   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
276   MachinePreds[Edge].push_back(NewPred);
277 }
278 
279 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
280                                      MachineIRBuilder &MIRBuilder) {
281   // Get or create a virtual register for each value.
282   // Unless the value is a Constant => loadimm cst?
283   // or inline constant each time?
284   // Creation of a virtual register needs to have a size.
285   Register Op0 = getOrCreateVReg(*U.getOperand(0));
286   Register Op1 = getOrCreateVReg(*U.getOperand(1));
287   Register Res = getOrCreateVReg(U);
288   uint16_t Flags = 0;
289   if (isa<Instruction>(U)) {
290     const Instruction &I = cast<Instruction>(U);
291     Flags = MachineInstr::copyFlagsFromInstruction(I);
292   }
293 
294   MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
295   return true;
296 }
297 
298 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
299                                     MachineIRBuilder &MIRBuilder) {
300   Register Op0 = getOrCreateVReg(*U.getOperand(0));
301   Register Res = getOrCreateVReg(U);
302   uint16_t Flags = 0;
303   if (isa<Instruction>(U)) {
304     const Instruction &I = cast<Instruction>(U);
305     Flags = MachineInstr::copyFlagsFromInstruction(I);
306   }
307   MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
308   return true;
309 }
310 
311 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
312   return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
313 }
314 
315 bool IRTranslator::translateCompare(const User &U,
316                                     MachineIRBuilder &MIRBuilder) {
317   auto *CI = dyn_cast<CmpInst>(&U);
318   Register Op0 = getOrCreateVReg(*U.getOperand(0));
319   Register Op1 = getOrCreateVReg(*U.getOperand(1));
320   Register Res = getOrCreateVReg(U);
321   CmpInst::Predicate Pred =
322       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
323                                     cast<ConstantExpr>(U).getPredicate());
324   if (CmpInst::isIntPredicate(Pred))
325     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
326   else if (Pred == CmpInst::FCMP_FALSE)
327     MIRBuilder.buildCopy(
328         Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
329   else if (Pred == CmpInst::FCMP_TRUE)
330     MIRBuilder.buildCopy(
331         Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
332   else {
333     assert(CI && "Instruction should be CmpInst");
334     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1,
335                          MachineInstr::copyFlagsFromInstruction(*CI));
336   }
337 
338   return true;
339 }
340 
341 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
342   const ReturnInst &RI = cast<ReturnInst>(U);
343   const Value *Ret = RI.getReturnValue();
344   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
345     Ret = nullptr;
346 
347   ArrayRef<Register> VRegs;
348   if (Ret)
349     VRegs = getOrCreateVRegs(*Ret);
350 
351   Register SwiftErrorVReg = 0;
352   if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
353     SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
354         &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
355   }
356 
357   // The target may mess up with the insertion point, but
358   // this is not important as a return is the last instruction
359   // of the block anyway.
360   return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg);
361 }
362 
363 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
364   const BranchInst &BrInst = cast<BranchInst>(U);
365   unsigned Succ = 0;
366   if (!BrInst.isUnconditional()) {
367     // We want a G_BRCOND to the true BB followed by an unconditional branch.
368     Register Tst = getOrCreateVReg(*BrInst.getCondition());
369     const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
370     MachineBasicBlock &TrueBB = getMBB(TrueTgt);
371     MIRBuilder.buildBrCond(Tst, TrueBB);
372   }
373 
374   const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
375   MachineBasicBlock &TgtBB = getMBB(BrTgt);
376   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
377 
378   // If the unconditional target is the layout successor, fallthrough.
379   if (!CurBB.isLayoutSuccessor(&TgtBB))
380     MIRBuilder.buildBr(TgtBB);
381 
382   // Link successors.
383   for (const BasicBlock *Succ : successors(&BrInst))
384     CurBB.addSuccessor(&getMBB(*Succ));
385   return true;
386 }
387 
388 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
389                                         MachineBasicBlock *Dst,
390                                         BranchProbability Prob) {
391   if (!FuncInfo.BPI) {
392     Src->addSuccessorWithoutProb(Dst);
393     return;
394   }
395   if (Prob.isUnknown())
396     Prob = getEdgeProbability(Src, Dst);
397   Src->addSuccessor(Dst, Prob);
398 }
399 
400 BranchProbability
401 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
402                                  const MachineBasicBlock *Dst) const {
403   const BasicBlock *SrcBB = Src->getBasicBlock();
404   const BasicBlock *DstBB = Dst->getBasicBlock();
405   if (!FuncInfo.BPI) {
406     // If BPI is not available, set the default probability as 1 / N, where N is
407     // the number of successors.
408     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
409     return BranchProbability(1, SuccSize);
410   }
411   return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
412 }
413 
414 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
415   using namespace SwitchCG;
416   // Extract cases from the switch.
417   const SwitchInst &SI = cast<SwitchInst>(U);
418   BranchProbabilityInfo *BPI = FuncInfo.BPI;
419   CaseClusterVector Clusters;
420   Clusters.reserve(SI.getNumCases());
421   for (auto &I : SI.cases()) {
422     MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
423     assert(Succ && "Could not find successor mbb in mapping");
424     const ConstantInt *CaseVal = I.getCaseValue();
425     BranchProbability Prob =
426         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
427             : BranchProbability(1, SI.getNumCases() + 1);
428     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
429   }
430 
431   MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
432 
433   // Cluster adjacent cases with the same destination. We do this at all
434   // optimization levels because it's cheap to do and will make codegen faster
435   // if there are many clusters.
436   sortAndRangeify(Clusters);
437 
438   MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
439 
440   // If there is only the default destination, jump there directly.
441   if (Clusters.empty()) {
442     SwitchMBB->addSuccessor(DefaultMBB);
443     if (DefaultMBB != SwitchMBB->getNextNode())
444       MIB.buildBr(*DefaultMBB);
445     return true;
446   }
447 
448   SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
449 
450   LLVM_DEBUG({
451     dbgs() << "Case clusters: ";
452     for (const CaseCluster &C : Clusters) {
453       if (C.Kind == CC_JumpTable)
454         dbgs() << "JT:";
455       if (C.Kind == CC_BitTests)
456         dbgs() << "BT:";
457 
458       C.Low->getValue().print(dbgs(), true);
459       if (C.Low != C.High) {
460         dbgs() << '-';
461         C.High->getValue().print(dbgs(), true);
462       }
463       dbgs() << ' ';
464     }
465     dbgs() << '\n';
466   });
467 
468   assert(!Clusters.empty());
469   SwitchWorkList WorkList;
470   CaseClusterIt First = Clusters.begin();
471   CaseClusterIt Last = Clusters.end() - 1;
472   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
473   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
474 
475   // FIXME: At the moment we don't do any splitting optimizations here like
476   // SelectionDAG does, so this worklist only has one entry.
477   while (!WorkList.empty()) {
478     SwitchWorkListItem W = WorkList.back();
479     WorkList.pop_back();
480     if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
481       return false;
482   }
483   return true;
484 }
485 
486 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
487                                  MachineBasicBlock *MBB) {
488   // Emit the code for the jump table
489   assert(JT.Reg != -1U && "Should lower JT Header first!");
490   MachineIRBuilder MIB(*MBB->getParent());
491   MIB.setMBB(*MBB);
492   MIB.setDebugLoc(CurBuilder->getDebugLoc());
493 
494   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
495   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
496 
497   auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
498   MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
499 }
500 
501 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
502                                        SwitchCG::JumpTableHeader &JTH,
503                                        MachineBasicBlock *HeaderBB) {
504   MachineIRBuilder MIB(*HeaderBB->getParent());
505   MIB.setMBB(*HeaderBB);
506   MIB.setDebugLoc(CurBuilder->getDebugLoc());
507 
508   const Value &SValue = *JTH.SValue;
509   // Subtract the lowest switch case value from the value being switched on.
510   const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
511   Register SwitchOpReg = getOrCreateVReg(SValue);
512   auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
513   auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
514 
515   // This value may be smaller or larger than the target's pointer type, and
516   // therefore require extension or truncating.
517   Type *PtrIRTy = SValue.getType()->getPointerTo();
518   const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
519   Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
520 
521   JT.Reg = Sub.getReg(0);
522 
523   if (JTH.OmitRangeCheck) {
524     if (JT.MBB != HeaderBB->getNextNode())
525       MIB.buildBr(*JT.MBB);
526     return true;
527   }
528 
529   // Emit the range check for the jump table, and branch to the default block
530   // for the switch statement if the value being switched on exceeds the
531   // largest case in the switch.
532   auto Cst = getOrCreateVReg(
533       *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
534   Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
535   auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
536 
537   auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
538 
539   // Avoid emitting unnecessary branches to the next block.
540   if (JT.MBB != HeaderBB->getNextNode())
541     BrCond = MIB.buildBr(*JT.MBB);
542   return true;
543 }
544 
545 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
546                                   MachineBasicBlock *SwitchBB,
547                                   MachineIRBuilder &MIB) {
548   Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
549   Register Cond;
550   DebugLoc OldDbgLoc = MIB.getDebugLoc();
551   MIB.setDebugLoc(CB.DbgLoc);
552   MIB.setMBB(*CB.ThisBB);
553 
554   if (CB.PredInfo.NoCmp) {
555     // Branch or fall through to TrueBB.
556     addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
557     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
558                       CB.ThisBB);
559     CB.ThisBB->normalizeSuccProbs();
560     if (CB.TrueBB != CB.ThisBB->getNextNode())
561       MIB.buildBr(*CB.TrueBB);
562     MIB.setDebugLoc(OldDbgLoc);
563     return;
564   }
565 
566   const LLT i1Ty = LLT::scalar(1);
567   // Build the compare.
568   if (!CB.CmpMHS) {
569     Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
570     Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
571   } else {
572     assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
573            "Can only handle SLE ranges");
574 
575     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
576     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
577 
578     Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
579     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
580       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
581       Cond =
582           MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
583     } else {
584       const LLT CmpTy = MRI->getType(CmpOpReg);
585       auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
586       auto Diff = MIB.buildConstant(CmpTy, High - Low);
587       Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
588     }
589   }
590 
591   // Update successor info
592   addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
593 
594   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
595                     CB.ThisBB);
596 
597   // TrueBB and FalseBB are always different unless the incoming IR is
598   // degenerate. This only happens when running llc on weird IR.
599   if (CB.TrueBB != CB.FalseBB)
600     addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
601   CB.ThisBB->normalizeSuccProbs();
602 
603   //  if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock())
604     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
605                       CB.ThisBB);
606 
607   // If the lhs block is the next block, invert the condition so that we can
608   // fall through to the lhs instead of the rhs block.
609   if (CB.TrueBB == CB.ThisBB->getNextNode()) {
610     std::swap(CB.TrueBB, CB.FalseBB);
611     auto True = MIB.buildConstant(i1Ty, 1);
612     Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0);
613   }
614 
615   MIB.buildBrCond(Cond, *CB.TrueBB);
616   MIB.buildBr(*CB.FalseBB);
617   MIB.setDebugLoc(OldDbgLoc);
618 }
619 
620 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
621                                           MachineBasicBlock *SwitchMBB,
622                                           MachineBasicBlock *CurMBB,
623                                           MachineBasicBlock *DefaultMBB,
624                                           MachineIRBuilder &MIB,
625                                           MachineFunction::iterator BBI,
626                                           BranchProbability UnhandledProbs,
627                                           SwitchCG::CaseClusterIt I,
628                                           MachineBasicBlock *Fallthrough,
629                                           bool FallthroughUnreachable) {
630   using namespace SwitchCG;
631   MachineFunction *CurMF = SwitchMBB->getParent();
632   // FIXME: Optimize away range check based on pivot comparisons.
633   JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
634   SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
635   BranchProbability DefaultProb = W.DefaultProb;
636 
637   // The jump block hasn't been inserted yet; insert it here.
638   MachineBasicBlock *JumpMBB = JT->MBB;
639   CurMF->insert(BBI, JumpMBB);
640 
641   // Since the jump table block is separate from the switch block, we need
642   // to keep track of it as a machine predecessor to the default block,
643   // otherwise we lose the phi edges.
644   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
645                     CurMBB);
646   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
647                     JumpMBB);
648 
649   auto JumpProb = I->Prob;
650   auto FallthroughProb = UnhandledProbs;
651 
652   // If the default statement is a target of the jump table, we evenly
653   // distribute the default probability to successors of CurMBB. Also
654   // update the probability on the edge from JumpMBB to Fallthrough.
655   for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
656                                         SE = JumpMBB->succ_end();
657        SI != SE; ++SI) {
658     if (*SI == DefaultMBB) {
659       JumpProb += DefaultProb / 2;
660       FallthroughProb -= DefaultProb / 2;
661       JumpMBB->setSuccProbability(SI, DefaultProb / 2);
662       JumpMBB->normalizeSuccProbs();
663     } else {
664       // Also record edges from the jump table block to it's successors.
665       addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
666                         JumpMBB);
667     }
668   }
669 
670   // Skip the range check if the fallthrough block is unreachable.
671   if (FallthroughUnreachable)
672     JTH->OmitRangeCheck = true;
673 
674   if (!JTH->OmitRangeCheck)
675     addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
676   addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
677   CurMBB->normalizeSuccProbs();
678 
679   // The jump table header will be inserted in our current block, do the
680   // range check, and fall through to our fallthrough block.
681   JTH->HeaderBB = CurMBB;
682   JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
683 
684   // If we're in the right place, emit the jump table header right now.
685   if (CurMBB == SwitchMBB) {
686     if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
687       return false;
688     JTH->Emitted = true;
689   }
690   return true;
691 }
692 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
693                                             Value *Cond,
694                                             MachineBasicBlock *Fallthrough,
695                                             bool FallthroughUnreachable,
696                                             BranchProbability UnhandledProbs,
697                                             MachineBasicBlock *CurMBB,
698                                             MachineIRBuilder &MIB,
699                                             MachineBasicBlock *SwitchMBB) {
700   using namespace SwitchCG;
701   const Value *RHS, *LHS, *MHS;
702   CmpInst::Predicate Pred;
703   if (I->Low == I->High) {
704     // Check Cond == I->Low.
705     Pred = CmpInst::ICMP_EQ;
706     LHS = Cond;
707     RHS = I->Low;
708     MHS = nullptr;
709   } else {
710     // Check I->Low <= Cond <= I->High.
711     Pred = CmpInst::ICMP_SLE;
712     LHS = I->Low;
713     MHS = Cond;
714     RHS = I->High;
715   }
716 
717   // If Fallthrough is unreachable, fold away the comparison.
718   // The false probability is the sum of all unhandled cases.
719   CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
720                CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
721 
722   emitSwitchCase(CB, SwitchMBB, MIB);
723   return true;
724 }
725 
726 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
727                                        Value *Cond,
728                                        MachineBasicBlock *SwitchMBB,
729                                        MachineBasicBlock *DefaultMBB,
730                                        MachineIRBuilder &MIB) {
731   using namespace SwitchCG;
732   MachineFunction *CurMF = FuncInfo.MF;
733   MachineBasicBlock *NextMBB = nullptr;
734   MachineFunction::iterator BBI(W.MBB);
735   if (++BBI != FuncInfo.MF->end())
736     NextMBB = &*BBI;
737 
738   if (EnableOpts) {
739     // Here, we order cases by probability so the most likely case will be
740     // checked first. However, two clusters can have the same probability in
741     // which case their relative ordering is non-deterministic. So we use Low
742     // as a tie-breaker as clusters are guaranteed to never overlap.
743     llvm::sort(W.FirstCluster, W.LastCluster + 1,
744                [](const CaseCluster &a, const CaseCluster &b) {
745                  return a.Prob != b.Prob
746                             ? a.Prob > b.Prob
747                             : a.Low->getValue().slt(b.Low->getValue());
748                });
749 
750     // Rearrange the case blocks so that the last one falls through if possible
751     // without changing the order of probabilities.
752     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
753       --I;
754       if (I->Prob > W.LastCluster->Prob)
755         break;
756       if (I->Kind == CC_Range && I->MBB == NextMBB) {
757         std::swap(*I, *W.LastCluster);
758         break;
759       }
760     }
761   }
762 
763   // Compute total probability.
764   BranchProbability DefaultProb = W.DefaultProb;
765   BranchProbability UnhandledProbs = DefaultProb;
766   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
767     UnhandledProbs += I->Prob;
768 
769   MachineBasicBlock *CurMBB = W.MBB;
770   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
771     bool FallthroughUnreachable = false;
772     MachineBasicBlock *Fallthrough;
773     if (I == W.LastCluster) {
774       // For the last cluster, fall through to the default destination.
775       Fallthrough = DefaultMBB;
776       FallthroughUnreachable = isa<UnreachableInst>(
777           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
778     } else {
779       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
780       CurMF->insert(BBI, Fallthrough);
781     }
782     UnhandledProbs -= I->Prob;
783 
784     switch (I->Kind) {
785     case CC_BitTests: {
786       LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented");
787       return false; // Bit tests currently unimplemented.
788     }
789     case CC_JumpTable: {
790       if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
791                                   UnhandledProbs, I, Fallthrough,
792                                   FallthroughUnreachable)) {
793         LLVM_DEBUG(dbgs() << "Failed to lower jump table");
794         return false;
795       }
796       break;
797     }
798     case CC_Range: {
799       if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
800                                     FallthroughUnreachable, UnhandledProbs,
801                                     CurMBB, MIB, SwitchMBB)) {
802         LLVM_DEBUG(dbgs() << "Failed to lower switch range");
803         return false;
804       }
805       break;
806     }
807     }
808     CurMBB = Fallthrough;
809   }
810 
811   return true;
812 }
813 
814 bool IRTranslator::translateIndirectBr(const User &U,
815                                        MachineIRBuilder &MIRBuilder) {
816   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
817 
818   const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
819   MIRBuilder.buildBrIndirect(Tgt);
820 
821   // Link successors.
822   SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
823   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
824   for (const BasicBlock *Succ : successors(&BrInst)) {
825     // It's legal for indirectbr instructions to have duplicate blocks in the
826     // destination list. We don't allow this in MIR. Skip anything that's
827     // already a successor.
828     if (!AddedSuccessors.insert(Succ).second)
829       continue;
830     CurBB.addSuccessor(&getMBB(*Succ));
831   }
832 
833   return true;
834 }
835 
836 static bool isSwiftError(const Value *V) {
837   if (auto Arg = dyn_cast<Argument>(V))
838     return Arg->hasSwiftErrorAttr();
839   if (auto AI = dyn_cast<AllocaInst>(V))
840     return AI->isSwiftError();
841   return false;
842 }
843 
844 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
845   const LoadInst &LI = cast<LoadInst>(U);
846   if (DL->getTypeStoreSize(LI.getType()) == 0)
847     return true;
848 
849   ArrayRef<Register> Regs = getOrCreateVRegs(LI);
850   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
851   Register Base = getOrCreateVReg(*LI.getPointerOperand());
852 
853   Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
854   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
855 
856   if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
857     assert(Regs.size() == 1 && "swifterror should be single pointer");
858     Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
859                                                     LI.getPointerOperand());
860     MIRBuilder.buildCopy(Regs[0], VReg);
861     return true;
862   }
863 
864   auto &TLI = *MF->getSubtarget().getTargetLowering();
865   MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
866 
867   const MDNode *Ranges =
868       Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
869   for (unsigned i = 0; i < Regs.size(); ++i) {
870     Register Addr;
871     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
872 
873     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
874     Align BaseAlign = getMemOpAlign(LI);
875     AAMDNodes AAMetadata;
876     LI.getAAMetadata(AAMetadata);
877     auto MMO = MF->getMachineMemOperand(
878         Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(),
879         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges,
880         LI.getSyncScopeID(), LI.getOrdering());
881     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
882   }
883 
884   return true;
885 }
886 
887 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
888   const StoreInst &SI = cast<StoreInst>(U);
889   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
890     return true;
891 
892   ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
893   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
894   Register Base = getOrCreateVReg(*SI.getPointerOperand());
895 
896   Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
897   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
898 
899   if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
900     assert(Vals.size() == 1 && "swifterror should be single pointer");
901 
902     Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
903                                                     SI.getPointerOperand());
904     MIRBuilder.buildCopy(VReg, Vals[0]);
905     return true;
906   }
907 
908   auto &TLI = *MF->getSubtarget().getTargetLowering();
909   MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
910 
911   for (unsigned i = 0; i < Vals.size(); ++i) {
912     Register Addr;
913     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
914 
915     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
916     Align BaseAlign = getMemOpAlign(SI);
917     AAMDNodes AAMetadata;
918     SI.getAAMetadata(AAMetadata);
919     auto MMO = MF->getMachineMemOperand(
920         Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(),
921         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr,
922         SI.getSyncScopeID(), SI.getOrdering());
923     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
924   }
925   return true;
926 }
927 
928 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
929   const Value *Src = U.getOperand(0);
930   Type *Int32Ty = Type::getInt32Ty(U.getContext());
931 
932   // getIndexedOffsetInType is designed for GEPs, so the first index is the
933   // usual array element rather than looking into the actual aggregate.
934   SmallVector<Value *, 1> Indices;
935   Indices.push_back(ConstantInt::get(Int32Ty, 0));
936 
937   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
938     for (auto Idx : EVI->indices())
939       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
940   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
941     for (auto Idx : IVI->indices())
942       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
943   } else {
944     for (unsigned i = 1; i < U.getNumOperands(); ++i)
945       Indices.push_back(U.getOperand(i));
946   }
947 
948   return 8 * static_cast<uint64_t>(
949                  DL.getIndexedOffsetInType(Src->getType(), Indices));
950 }
951 
952 bool IRTranslator::translateExtractValue(const User &U,
953                                          MachineIRBuilder &MIRBuilder) {
954   const Value *Src = U.getOperand(0);
955   uint64_t Offset = getOffsetFromIndices(U, *DL);
956   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
957   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
958   unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
959   auto &DstRegs = allocateVRegs(U);
960 
961   for (unsigned i = 0; i < DstRegs.size(); ++i)
962     DstRegs[i] = SrcRegs[Idx++];
963 
964   return true;
965 }
966 
967 bool IRTranslator::translateInsertValue(const User &U,
968                                         MachineIRBuilder &MIRBuilder) {
969   const Value *Src = U.getOperand(0);
970   uint64_t Offset = getOffsetFromIndices(U, *DL);
971   auto &DstRegs = allocateVRegs(U);
972   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
973   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
974   ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
975   auto InsertedIt = InsertedRegs.begin();
976 
977   for (unsigned i = 0; i < DstRegs.size(); ++i) {
978     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
979       DstRegs[i] = *InsertedIt++;
980     else
981       DstRegs[i] = SrcRegs[i];
982   }
983 
984   return true;
985 }
986 
987 bool IRTranslator::translateSelect(const User &U,
988                                    MachineIRBuilder &MIRBuilder) {
989   Register Tst = getOrCreateVReg(*U.getOperand(0));
990   ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
991   ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
992   ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
993 
994   uint16_t Flags = 0;
995   if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
996     Flags = MachineInstr::copyFlagsFromInstruction(*SI);
997 
998   for (unsigned i = 0; i < ResRegs.size(); ++i) {
999     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1000   }
1001 
1002   return true;
1003 }
1004 
1005 bool IRTranslator::translateCopy(const User &U, const Value &V,
1006                                  MachineIRBuilder &MIRBuilder) {
1007   Register Src = getOrCreateVReg(V);
1008   auto &Regs = *VMap.getVRegs(U);
1009   if (Regs.empty()) {
1010     Regs.push_back(Src);
1011     VMap.getOffsets(U)->push_back(0);
1012   } else {
1013     // If we already assigned a vreg for this instruction, we can't change that.
1014     // Emit a copy to satisfy the users we already emitted.
1015     MIRBuilder.buildCopy(Regs[0], Src);
1016   }
1017   return true;
1018 }
1019 
1020 bool IRTranslator::translateBitCast(const User &U,
1021                                     MachineIRBuilder &MIRBuilder) {
1022   // If we're bitcasting to the source type, we can reuse the source vreg.
1023   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1024       getLLTForType(*U.getType(), *DL))
1025     return translateCopy(U, *U.getOperand(0), MIRBuilder);
1026 
1027   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1028 }
1029 
1030 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1031                                  MachineIRBuilder &MIRBuilder) {
1032   Register Op = getOrCreateVReg(*U.getOperand(0));
1033   Register Res = getOrCreateVReg(U);
1034   MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1035   return true;
1036 }
1037 
1038 bool IRTranslator::translateGetElementPtr(const User &U,
1039                                           MachineIRBuilder &MIRBuilder) {
1040   Value &Op0 = *U.getOperand(0);
1041   Register BaseReg = getOrCreateVReg(Op0);
1042   Type *PtrIRTy = Op0.getType();
1043   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1044   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1045   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1046 
1047   // Normalize Vector GEP - all scalar operands should be converted to the
1048   // splat vector.
1049   unsigned VectorWidth = 0;
1050   if (auto *VT = dyn_cast<VectorType>(U.getType()))
1051     VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1052 
1053   // We might need to splat the base pointer into a vector if the offsets
1054   // are vectors.
1055   if (VectorWidth && !PtrTy.isVector()) {
1056     BaseReg =
1057         MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg)
1058             .getReg(0);
1059     PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1060     PtrTy = getLLTForType(*PtrIRTy, *DL);
1061     OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1062     OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1063   }
1064 
1065   int64_t Offset = 0;
1066   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1067        GTI != E; ++GTI) {
1068     const Value *Idx = GTI.getOperand();
1069     if (StructType *StTy = GTI.getStructTypeOrNull()) {
1070       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1071       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1072       continue;
1073     } else {
1074       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1075 
1076       // If this is a scalar constant or a splat vector of constants,
1077       // handle it quickly.
1078       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1079         Offset += ElementSize * CI->getSExtValue();
1080         continue;
1081       }
1082 
1083       if (Offset != 0) {
1084         auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1085         BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1086                       .getReg(0);
1087         Offset = 0;
1088       }
1089 
1090       Register IdxReg = getOrCreateVReg(*Idx);
1091       LLT IdxTy = MRI->getType(IdxReg);
1092       if (IdxTy != OffsetTy) {
1093         if (!IdxTy.isVector() && VectorWidth) {
1094           IdxReg = MIRBuilder.buildSplatVector(
1095             OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1096         }
1097 
1098         IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1099       }
1100 
1101       // N = N + Idx * ElementSize;
1102       // Avoid doing it for ElementSize of 1.
1103       Register GepOffsetReg;
1104       if (ElementSize != 1) {
1105         auto ElementSizeMIB = MIRBuilder.buildConstant(
1106             getLLTForType(*OffsetIRTy, *DL), ElementSize);
1107         GepOffsetReg =
1108             MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1109       } else
1110         GepOffsetReg = IdxReg;
1111 
1112       BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1113     }
1114   }
1115 
1116   if (Offset != 0) {
1117     auto OffsetMIB =
1118         MIRBuilder.buildConstant(OffsetTy, Offset);
1119     MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1120     return true;
1121   }
1122 
1123   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1124   return true;
1125 }
1126 
1127 bool IRTranslator::translateMemFunc(const CallInst &CI,
1128                                     MachineIRBuilder &MIRBuilder,
1129                                     Intrinsic::ID ID) {
1130 
1131   // If the source is undef, then just emit a nop.
1132   if (isa<UndefValue>(CI.getArgOperand(1)))
1133     return true;
1134 
1135   ArrayRef<Register> Res;
1136   auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true);
1137   for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI)
1138     ICall.addUse(getOrCreateVReg(**AI));
1139 
1140   Align DstAlign;
1141   Align SrcAlign;
1142   unsigned IsVol =
1143       cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
1144           ->getZExtValue();
1145 
1146   if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1147     DstAlign = MCI->getDestAlign().valueOrOne();
1148     SrcAlign = MCI->getSourceAlign().valueOrOne();
1149   } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1150     DstAlign = MMI->getDestAlign().valueOrOne();
1151     SrcAlign = MMI->getSourceAlign().valueOrOne();
1152   } else {
1153     auto *MSI = cast<MemSetInst>(&CI);
1154     DstAlign = MSI->getDestAlign().valueOrOne();
1155   }
1156 
1157   // We need to propagate the tail call flag from the IR inst as an argument.
1158   // Otherwise, we have to pessimize and assume later that we cannot tail call
1159   // any memory intrinsics.
1160   ICall.addImm(CI.isTailCall() ? 1 : 0);
1161 
1162   // Create mem operands to store the alignment and volatile info.
1163   auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
1164   ICall.addMemOperand(MF->getMachineMemOperand(
1165       MachinePointerInfo(CI.getArgOperand(0)),
1166       MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
1167   if (ID != Intrinsic::memset)
1168     ICall.addMemOperand(MF->getMachineMemOperand(
1169         MachinePointerInfo(CI.getArgOperand(1)),
1170         MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
1171 
1172   return true;
1173 }
1174 
1175 void IRTranslator::getStackGuard(Register DstReg,
1176                                  MachineIRBuilder &MIRBuilder) {
1177   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1178   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1179   auto MIB =
1180       MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1181 
1182   auto &TLI = *MF->getSubtarget().getTargetLowering();
1183   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1184   if (!Global)
1185     return;
1186 
1187   MachinePointerInfo MPInfo(Global);
1188   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1189                MachineMemOperand::MODereferenceable;
1190   MachineMemOperand *MemRef =
1191       MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
1192                                DL->getPointerABIAlignment(0));
1193   MIB.setMemRefs({MemRef});
1194 }
1195 
1196 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1197                                               MachineIRBuilder &MIRBuilder) {
1198   ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1199   MIRBuilder.buildInstr(
1200       Op, {ResRegs[0], ResRegs[1]},
1201       {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1202 
1203   return true;
1204 }
1205 
1206 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1207                                                 MachineIRBuilder &MIRBuilder) {
1208   Register Dst = getOrCreateVReg(CI);
1209   Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1210   Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1211   uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1212   MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1213   return true;
1214 }
1215 
1216 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1217   switch (ID) {
1218     default:
1219       break;
1220     case Intrinsic::bswap:
1221       return TargetOpcode::G_BSWAP;
1222     case Intrinsic::bitreverse:
1223       return TargetOpcode::G_BITREVERSE;
1224     case Intrinsic::fshl:
1225       return TargetOpcode::G_FSHL;
1226     case Intrinsic::fshr:
1227       return TargetOpcode::G_FSHR;
1228     case Intrinsic::ceil:
1229       return TargetOpcode::G_FCEIL;
1230     case Intrinsic::cos:
1231       return TargetOpcode::G_FCOS;
1232     case Intrinsic::ctpop:
1233       return TargetOpcode::G_CTPOP;
1234     case Intrinsic::exp:
1235       return TargetOpcode::G_FEXP;
1236     case Intrinsic::exp2:
1237       return TargetOpcode::G_FEXP2;
1238     case Intrinsic::fabs:
1239       return TargetOpcode::G_FABS;
1240     case Intrinsic::copysign:
1241       return TargetOpcode::G_FCOPYSIGN;
1242     case Intrinsic::minnum:
1243       return TargetOpcode::G_FMINNUM;
1244     case Intrinsic::maxnum:
1245       return TargetOpcode::G_FMAXNUM;
1246     case Intrinsic::minimum:
1247       return TargetOpcode::G_FMINIMUM;
1248     case Intrinsic::maximum:
1249       return TargetOpcode::G_FMAXIMUM;
1250     case Intrinsic::canonicalize:
1251       return TargetOpcode::G_FCANONICALIZE;
1252     case Intrinsic::floor:
1253       return TargetOpcode::G_FFLOOR;
1254     case Intrinsic::fma:
1255       return TargetOpcode::G_FMA;
1256     case Intrinsic::log:
1257       return TargetOpcode::G_FLOG;
1258     case Intrinsic::log2:
1259       return TargetOpcode::G_FLOG2;
1260     case Intrinsic::log10:
1261       return TargetOpcode::G_FLOG10;
1262     case Intrinsic::nearbyint:
1263       return TargetOpcode::G_FNEARBYINT;
1264     case Intrinsic::pow:
1265       return TargetOpcode::G_FPOW;
1266     case Intrinsic::powi:
1267       return TargetOpcode::G_FPOWI;
1268     case Intrinsic::rint:
1269       return TargetOpcode::G_FRINT;
1270     case Intrinsic::round:
1271       return TargetOpcode::G_INTRINSIC_ROUND;
1272     case Intrinsic::roundeven:
1273       return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1274     case Intrinsic::sin:
1275       return TargetOpcode::G_FSIN;
1276     case Intrinsic::sqrt:
1277       return TargetOpcode::G_FSQRT;
1278     case Intrinsic::trunc:
1279       return TargetOpcode::G_INTRINSIC_TRUNC;
1280     case Intrinsic::readcyclecounter:
1281       return TargetOpcode::G_READCYCLECOUNTER;
1282     case Intrinsic::ptrmask:
1283       return TargetOpcode::G_PTRMASK;
1284     case Intrinsic::lrint:
1285       return TargetOpcode::G_INTRINSIC_LRINT;
1286   }
1287   return Intrinsic::not_intrinsic;
1288 }
1289 
1290 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1291                                             Intrinsic::ID ID,
1292                                             MachineIRBuilder &MIRBuilder) {
1293 
1294   unsigned Op = getSimpleIntrinsicOpcode(ID);
1295 
1296   // Is this a simple intrinsic?
1297   if (Op == Intrinsic::not_intrinsic)
1298     return false;
1299 
1300   // Yes. Let's translate it.
1301   SmallVector<llvm::SrcOp, 4> VRegs;
1302   for (auto &Arg : CI.arg_operands())
1303     VRegs.push_back(getOrCreateVReg(*Arg));
1304 
1305   MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1306                         MachineInstr::copyFlagsFromInstruction(CI));
1307   return true;
1308 }
1309 
1310 // TODO: Include ConstainedOps.def when all strict instructions are defined.
1311 static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1312   switch (ID) {
1313   case Intrinsic::experimental_constrained_fadd:
1314     return TargetOpcode::G_STRICT_FADD;
1315   case Intrinsic::experimental_constrained_fsub:
1316     return TargetOpcode::G_STRICT_FSUB;
1317   case Intrinsic::experimental_constrained_fmul:
1318     return TargetOpcode::G_STRICT_FMUL;
1319   case Intrinsic::experimental_constrained_fdiv:
1320     return TargetOpcode::G_STRICT_FDIV;
1321   case Intrinsic::experimental_constrained_frem:
1322     return TargetOpcode::G_STRICT_FREM;
1323   case Intrinsic::experimental_constrained_fma:
1324     return TargetOpcode::G_STRICT_FMA;
1325   case Intrinsic::experimental_constrained_sqrt:
1326     return TargetOpcode::G_STRICT_FSQRT;
1327   default:
1328     return 0;
1329   }
1330 }
1331 
1332 bool IRTranslator::translateConstrainedFPIntrinsic(
1333   const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1334   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
1335 
1336   unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1337   if (!Opcode)
1338     return false;
1339 
1340   unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1341   if (EB == fp::ExceptionBehavior::ebIgnore)
1342     Flags |= MachineInstr::NoFPExcept;
1343 
1344   SmallVector<llvm::SrcOp, 4> VRegs;
1345   VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1346   if (!FPI.isUnaryOp())
1347     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1348   if (FPI.isTernaryOp())
1349     VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1350 
1351   MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1352   return true;
1353 }
1354 
1355 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1356                                            MachineIRBuilder &MIRBuilder) {
1357 
1358   // If this is a simple intrinsic (that is, we just need to add a def of
1359   // a vreg, and uses for each arg operand, then translate it.
1360   if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1361     return true;
1362 
1363   switch (ID) {
1364   default:
1365     break;
1366   case Intrinsic::lifetime_start:
1367   case Intrinsic::lifetime_end: {
1368     // No stack colouring in O0, discard region information.
1369     if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1370       return true;
1371 
1372     unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1373                                                   : TargetOpcode::LIFETIME_END;
1374 
1375     // Get the underlying objects for the location passed on the lifetime
1376     // marker.
1377     SmallVector<const Value *, 4> Allocas;
1378     getUnderlyingObjects(CI.getArgOperand(1), Allocas);
1379 
1380     // Iterate over each underlying object, creating lifetime markers for each
1381     // static alloca. Quit if we find a non-static alloca.
1382     for (const Value *V : Allocas) {
1383       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1384       if (!AI)
1385         continue;
1386 
1387       if (!AI->isStaticAlloca())
1388         return true;
1389 
1390       MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1391     }
1392     return true;
1393   }
1394   case Intrinsic::dbg_declare: {
1395     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1396     assert(DI.getVariable() && "Missing variable");
1397 
1398     const Value *Address = DI.getAddress();
1399     if (!Address || isa<UndefValue>(Address)) {
1400       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1401       return true;
1402     }
1403 
1404     assert(DI.getVariable()->isValidLocationForIntrinsic(
1405                MIRBuilder.getDebugLoc()) &&
1406            "Expected inlined-at fields to agree");
1407     auto AI = dyn_cast<AllocaInst>(Address);
1408     if (AI && AI->isStaticAlloca()) {
1409       // Static allocas are tracked at the MF level, no need for DBG_VALUE
1410       // instructions (in fact, they get ignored if they *do* exist).
1411       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1412                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1413     } else {
1414       // A dbg.declare describes the address of a source variable, so lower it
1415       // into an indirect DBG_VALUE.
1416       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1417                                        DI.getVariable(), DI.getExpression());
1418     }
1419     return true;
1420   }
1421   case Intrinsic::dbg_label: {
1422     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1423     assert(DI.getLabel() && "Missing label");
1424 
1425     assert(DI.getLabel()->isValidLocationForIntrinsic(
1426                MIRBuilder.getDebugLoc()) &&
1427            "Expected inlined-at fields to agree");
1428 
1429     MIRBuilder.buildDbgLabel(DI.getLabel());
1430     return true;
1431   }
1432   case Intrinsic::vaend:
1433     // No target I know of cares about va_end. Certainly no in-tree target
1434     // does. Simplest intrinsic ever!
1435     return true;
1436   case Intrinsic::vastart: {
1437     auto &TLI = *MF->getSubtarget().getTargetLowering();
1438     Value *Ptr = CI.getArgOperand(0);
1439     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1440 
1441     // FIXME: Get alignment
1442     MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
1443         .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
1444                                                 MachineMemOperand::MOStore,
1445                                                 ListSize, Align(1)));
1446     return true;
1447   }
1448   case Intrinsic::dbg_value: {
1449     // This form of DBG_VALUE is target-independent.
1450     const DbgValueInst &DI = cast<DbgValueInst>(CI);
1451     const Value *V = DI.getValue();
1452     assert(DI.getVariable()->isValidLocationForIntrinsic(
1453                MIRBuilder.getDebugLoc()) &&
1454            "Expected inlined-at fields to agree");
1455     if (!V) {
1456       // Currently the optimizer can produce this; insert an undef to
1457       // help debugging.  Probably the optimizer should not do this.
1458       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1459     } else if (const auto *CI = dyn_cast<Constant>(V)) {
1460       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1461     } else {
1462       for (Register Reg : getOrCreateVRegs(*V)) {
1463         // FIXME: This does not handle register-indirect values at offset 0. The
1464         // direct/indirect thing shouldn't really be handled by something as
1465         // implicit as reg+noreg vs reg+imm in the first place, but it seems
1466         // pretty baked in right now.
1467         MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
1468       }
1469     }
1470     return true;
1471   }
1472   case Intrinsic::uadd_with_overflow:
1473     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
1474   case Intrinsic::sadd_with_overflow:
1475     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
1476   case Intrinsic::usub_with_overflow:
1477     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
1478   case Intrinsic::ssub_with_overflow:
1479     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
1480   case Intrinsic::umul_with_overflow:
1481     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
1482   case Intrinsic::smul_with_overflow:
1483     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
1484   case Intrinsic::uadd_sat:
1485     return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
1486   case Intrinsic::sadd_sat:
1487     return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
1488   case Intrinsic::usub_sat:
1489     return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
1490   case Intrinsic::ssub_sat:
1491     return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
1492   case Intrinsic::ushl_sat:
1493     return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
1494   case Intrinsic::sshl_sat:
1495     return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
1496   case Intrinsic::umin:
1497     return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
1498   case Intrinsic::umax:
1499     return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
1500   case Intrinsic::smin:
1501     return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
1502   case Intrinsic::smax:
1503     return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
1504   case Intrinsic::abs:
1505     // TODO: Preserve "int min is poison" arg in GMIR?
1506     return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
1507   case Intrinsic::smul_fix:
1508     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
1509   case Intrinsic::umul_fix:
1510     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
1511   case Intrinsic::smul_fix_sat:
1512     return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
1513   case Intrinsic::umul_fix_sat:
1514     return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
1515   case Intrinsic::sdiv_fix:
1516     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
1517   case Intrinsic::udiv_fix:
1518     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
1519   case Intrinsic::sdiv_fix_sat:
1520     return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
1521   case Intrinsic::udiv_fix_sat:
1522     return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
1523   case Intrinsic::fmuladd: {
1524     const TargetMachine &TM = MF->getTarget();
1525     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1526     Register Dst = getOrCreateVReg(CI);
1527     Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
1528     Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
1529     Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
1530     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
1531         TLI.isFMAFasterThanFMulAndFAdd(*MF,
1532                                        TLI.getValueType(*DL, CI.getType()))) {
1533       // TODO: Revisit this to see if we should move this part of the
1534       // lowering to the combiner.
1535       MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
1536                           MachineInstr::copyFlagsFromInstruction(CI));
1537     } else {
1538       LLT Ty = getLLTForType(*CI.getType(), *DL);
1539       auto FMul = MIRBuilder.buildFMul(
1540           Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
1541       MIRBuilder.buildFAdd(Dst, FMul, Op2,
1542                            MachineInstr::copyFlagsFromInstruction(CI));
1543     }
1544     return true;
1545   }
1546   case Intrinsic::convert_from_fp16:
1547     // FIXME: This intrinsic should probably be removed from the IR.
1548     MIRBuilder.buildFPExt(getOrCreateVReg(CI),
1549                           getOrCreateVReg(*CI.getArgOperand(0)),
1550                           MachineInstr::copyFlagsFromInstruction(CI));
1551     return true;
1552   case Intrinsic::convert_to_fp16:
1553     // FIXME: This intrinsic should probably be removed from the IR.
1554     MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
1555                             getOrCreateVReg(*CI.getArgOperand(0)),
1556                             MachineInstr::copyFlagsFromInstruction(CI));
1557     return true;
1558   case Intrinsic::memcpy:
1559   case Intrinsic::memmove:
1560   case Intrinsic::memset:
1561     return translateMemFunc(CI, MIRBuilder, ID);
1562   case Intrinsic::eh_typeid_for: {
1563     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
1564     Register Reg = getOrCreateVReg(CI);
1565     unsigned TypeID = MF->getTypeIDFor(GV);
1566     MIRBuilder.buildConstant(Reg, TypeID);
1567     return true;
1568   }
1569   case Intrinsic::objectsize:
1570     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1571 
1572   case Intrinsic::is_constant:
1573     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1574 
1575   case Intrinsic::stackguard:
1576     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
1577     return true;
1578   case Intrinsic::stackprotector: {
1579     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1580     Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
1581     getStackGuard(GuardVal, MIRBuilder);
1582 
1583     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
1584     int FI = getOrCreateFrameIndex(*Slot);
1585     MF->getFrameInfo().setStackProtectorIndex(FI);
1586 
1587     MIRBuilder.buildStore(
1588         GuardVal, getOrCreateVReg(*Slot),
1589         *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
1590                                   MachineMemOperand::MOStore |
1591                                       MachineMemOperand::MOVolatile,
1592                                   PtrTy.getSizeInBits() / 8, Align(8)));
1593     return true;
1594   }
1595   case Intrinsic::stacksave: {
1596     // Save the stack pointer to the location provided by the intrinsic.
1597     Register Reg = getOrCreateVReg(CI);
1598     Register StackPtr = MF->getSubtarget()
1599                             .getTargetLowering()
1600                             ->getStackPointerRegisterToSaveRestore();
1601 
1602     // If the target doesn't specify a stack pointer, then fall back.
1603     if (!StackPtr)
1604       return false;
1605 
1606     MIRBuilder.buildCopy(Reg, StackPtr);
1607     return true;
1608   }
1609   case Intrinsic::stackrestore: {
1610     // Restore the stack pointer from the location provided by the intrinsic.
1611     Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
1612     Register StackPtr = MF->getSubtarget()
1613                             .getTargetLowering()
1614                             ->getStackPointerRegisterToSaveRestore();
1615 
1616     // If the target doesn't specify a stack pointer, then fall back.
1617     if (!StackPtr)
1618       return false;
1619 
1620     MIRBuilder.buildCopy(StackPtr, Reg);
1621     return true;
1622   }
1623   case Intrinsic::cttz:
1624   case Intrinsic::ctlz: {
1625     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
1626     bool isTrailing = ID == Intrinsic::cttz;
1627     unsigned Opcode = isTrailing
1628                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
1629                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
1630                           : Cst->isZero() ? TargetOpcode::G_CTLZ
1631                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
1632     MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
1633                           {getOrCreateVReg(*CI.getArgOperand(0))});
1634     return true;
1635   }
1636   case Intrinsic::invariant_start: {
1637     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1638     Register Undef = MRI->createGenericVirtualRegister(PtrTy);
1639     MIRBuilder.buildUndef(Undef);
1640     return true;
1641   }
1642   case Intrinsic::invariant_end:
1643     return true;
1644   case Intrinsic::expect:
1645   case Intrinsic::annotation:
1646   case Intrinsic::ptr_annotation:
1647   case Intrinsic::launder_invariant_group:
1648   case Intrinsic::strip_invariant_group: {
1649     // Drop the intrinsic, but forward the value.
1650     MIRBuilder.buildCopy(getOrCreateVReg(CI),
1651                          getOrCreateVReg(*CI.getArgOperand(0)));
1652     return true;
1653   }
1654   case Intrinsic::assume:
1655   case Intrinsic::var_annotation:
1656   case Intrinsic::sideeffect:
1657     // Discard annotate attributes, assumptions, and artificial side-effects.
1658     return true;
1659   case Intrinsic::read_volatile_register:
1660   case Intrinsic::read_register: {
1661     Value *Arg = CI.getArgOperand(0);
1662     MIRBuilder
1663         .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
1664         .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
1665     return true;
1666   }
1667   case Intrinsic::write_register: {
1668     Value *Arg = CI.getArgOperand(0);
1669     MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
1670       .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
1671       .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
1672     return true;
1673   }
1674   case Intrinsic::localescape: {
1675     MachineBasicBlock &EntryMBB = MF->front();
1676     StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
1677 
1678     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
1679     // is the same on all targets.
1680     for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) {
1681       Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
1682       if (isa<ConstantPointerNull>(Arg))
1683         continue; // Skip null pointers. They represent a hole in index space.
1684 
1685       int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
1686       MCSymbol *FrameAllocSym =
1687           MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
1688                                                                 Idx);
1689 
1690       // This should be inserted at the start of the entry block.
1691       auto LocalEscape =
1692           MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
1693               .addSym(FrameAllocSym)
1694               .addFrameIndex(FI);
1695 
1696       EntryMBB.insert(EntryMBB.begin(), LocalEscape);
1697     }
1698 
1699     return true;
1700   }
1701 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)  \
1702   case Intrinsic::INTRINSIC:
1703 #include "llvm/IR/ConstrainedOps.def"
1704     return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
1705                                            MIRBuilder);
1706 
1707   }
1708   return false;
1709 }
1710 
1711 bool IRTranslator::translateInlineAsm(const CallBase &CB,
1712                                       MachineIRBuilder &MIRBuilder) {
1713 
1714   const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
1715 
1716   if (!ALI) {
1717     LLVM_DEBUG(
1718         dbgs() << "Inline asm lowering is not supported for this target yet\n");
1719     return false;
1720   }
1721 
1722   return ALI->lowerInlineAsm(
1723       MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
1724 }
1725 
1726 bool IRTranslator::translateCallBase(const CallBase &CB,
1727                                      MachineIRBuilder &MIRBuilder) {
1728   ArrayRef<Register> Res = getOrCreateVRegs(CB);
1729 
1730   SmallVector<ArrayRef<Register>, 8> Args;
1731   Register SwiftInVReg = 0;
1732   Register SwiftErrorVReg = 0;
1733   for (auto &Arg : CB.args()) {
1734     if (CLI->supportSwiftError() && isSwiftError(Arg)) {
1735       assert(SwiftInVReg == 0 && "Expected only one swift error argument");
1736       LLT Ty = getLLTForType(*Arg->getType(), *DL);
1737       SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
1738       MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
1739                                             &CB, &MIRBuilder.getMBB(), Arg));
1740       Args.emplace_back(makeArrayRef(SwiftInVReg));
1741       SwiftErrorVReg =
1742           SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
1743       continue;
1744     }
1745     Args.push_back(getOrCreateVRegs(*Arg));
1746   }
1747 
1748   // We don't set HasCalls on MFI here yet because call lowering may decide to
1749   // optimize into tail calls. Instead, we defer that to selection where a final
1750   // scan is done to check if any instructions are calls.
1751   bool Success =
1752       CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
1753                      [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
1754 
1755   // Check if we just inserted a tail call.
1756   if (Success) {
1757     assert(!HasTailCall && "Can't tail call return twice from block?");
1758     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1759     HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
1760   }
1761 
1762   return Success;
1763 }
1764 
1765 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
1766   const CallInst &CI = cast<CallInst>(U);
1767   auto TII = MF->getTarget().getIntrinsicInfo();
1768   const Function *F = CI.getCalledFunction();
1769 
1770   // FIXME: support Windows dllimport function calls.
1771   if (F && (F->hasDLLImportStorageClass() ||
1772             (MF->getTarget().getTargetTriple().isOSWindows() &&
1773              F->hasExternalWeakLinkage())))
1774     return false;
1775 
1776   // FIXME: support control flow guard targets.
1777   if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
1778     return false;
1779 
1780   if (CI.isInlineAsm())
1781     return translateInlineAsm(CI, MIRBuilder);
1782 
1783   Intrinsic::ID ID = Intrinsic::not_intrinsic;
1784   if (F && F->isIntrinsic()) {
1785     ID = F->getIntrinsicID();
1786     if (TII && ID == Intrinsic::not_intrinsic)
1787       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
1788   }
1789 
1790   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
1791     return translateCallBase(CI, MIRBuilder);
1792 
1793   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
1794 
1795   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
1796     return true;
1797 
1798   ArrayRef<Register> ResultRegs;
1799   if (!CI.getType()->isVoidTy())
1800     ResultRegs = getOrCreateVRegs(CI);
1801 
1802   // Ignore the callsite attributes. Backend code is most likely not expecting
1803   // an intrinsic to sometimes have side effects and sometimes not.
1804   MachineInstrBuilder MIB =
1805       MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
1806   if (isa<FPMathOperator>(CI))
1807     MIB->copyIRFlags(CI);
1808 
1809   for (auto &Arg : enumerate(CI.arg_operands())) {
1810     // If this is required to be an immediate, don't materialize it in a
1811     // register.
1812     if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
1813       if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
1814         // imm arguments are more convenient than cimm (and realistically
1815         // probably sufficient), so use them.
1816         assert(CI->getBitWidth() <= 64 &&
1817                "large intrinsic immediates not handled");
1818         MIB.addImm(CI->getSExtValue());
1819       } else {
1820         MIB.addFPImm(cast<ConstantFP>(Arg.value()));
1821       }
1822     } else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) {
1823       auto *MDN = dyn_cast<MDNode>(MD->getMetadata());
1824       if (!MDN) // This was probably an MDString.
1825         return false;
1826       MIB.addMetadata(MDN);
1827     } else {
1828       ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
1829       if (VRegs.size() > 1)
1830         return false;
1831       MIB.addUse(VRegs[0]);
1832     }
1833   }
1834 
1835   // Add a MachineMemOperand if it is a target mem intrinsic.
1836   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1837   TargetLowering::IntrinsicInfo Info;
1838   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
1839   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
1840     Align Alignment = Info.align.getValueOr(
1841         DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
1842 
1843     uint64_t Size = Info.memVT.getStoreSize();
1844     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
1845                                                Info.flags, Size, Alignment));
1846   }
1847 
1848   return true;
1849 }
1850 
1851 bool IRTranslator::translateInvoke(const User &U,
1852                                    MachineIRBuilder &MIRBuilder) {
1853   const InvokeInst &I = cast<InvokeInst>(U);
1854   MCContext &Context = MF->getContext();
1855 
1856   const BasicBlock *ReturnBB = I.getSuccessor(0);
1857   const BasicBlock *EHPadBB = I.getSuccessor(1);
1858 
1859   const Function *Fn = I.getCalledFunction();
1860   if (I.isInlineAsm())
1861     return false;
1862 
1863   // FIXME: support invoking patchpoint and statepoint intrinsics.
1864   if (Fn && Fn->isIntrinsic())
1865     return false;
1866 
1867   // FIXME: support whatever these are.
1868   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
1869     return false;
1870 
1871   // FIXME: support control flow guard targets.
1872   if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
1873     return false;
1874 
1875   // FIXME: support Windows exception handling.
1876   if (!isa<LandingPadInst>(EHPadBB->front()))
1877     return false;
1878 
1879   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
1880   // the region covered by the try.
1881   MCSymbol *BeginSymbol = Context.createTempSymbol();
1882   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
1883 
1884   if (!translateCallBase(I, MIRBuilder))
1885     return false;
1886 
1887   MCSymbol *EndSymbol = Context.createTempSymbol();
1888   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
1889 
1890   // FIXME: track probabilities.
1891   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
1892                     &ReturnMBB = getMBB(*ReturnBB);
1893   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
1894   MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
1895   MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
1896   MIRBuilder.buildBr(ReturnMBB);
1897 
1898   return true;
1899 }
1900 
1901 bool IRTranslator::translateCallBr(const User &U,
1902                                    MachineIRBuilder &MIRBuilder) {
1903   // FIXME: Implement this.
1904   return false;
1905 }
1906 
1907 bool IRTranslator::translateLandingPad(const User &U,
1908                                        MachineIRBuilder &MIRBuilder) {
1909   const LandingPadInst &LP = cast<LandingPadInst>(U);
1910 
1911   MachineBasicBlock &MBB = MIRBuilder.getMBB();
1912 
1913   MBB.setIsEHPad();
1914 
1915   // If there aren't registers to copy the values into (e.g., during SjLj
1916   // exceptions), then don't bother.
1917   auto &TLI = *MF->getSubtarget().getTargetLowering();
1918   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
1919   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
1920       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
1921     return true;
1922 
1923   // If landingpad's return type is token type, we don't create DAG nodes
1924   // for its exception pointer and selector value. The extraction of exception
1925   // pointer or selector value from token type landingpads is not currently
1926   // supported.
1927   if (LP.getType()->isTokenTy())
1928     return true;
1929 
1930   // Add a label to mark the beginning of the landing pad.  Deletion of the
1931   // landing pad can thus be detected via the MachineModuleInfo.
1932   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
1933     .addSym(MF->addLandingPad(&MBB));
1934 
1935   LLT Ty = getLLTForType(*LP.getType(), *DL);
1936   Register Undef = MRI->createGenericVirtualRegister(Ty);
1937   MIRBuilder.buildUndef(Undef);
1938 
1939   SmallVector<LLT, 2> Tys;
1940   for (Type *Ty : cast<StructType>(LP.getType())->elements())
1941     Tys.push_back(getLLTForType(*Ty, *DL));
1942   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
1943 
1944   // Mark exception register as live in.
1945   Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
1946   if (!ExceptionReg)
1947     return false;
1948 
1949   MBB.addLiveIn(ExceptionReg);
1950   ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
1951   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
1952 
1953   Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
1954   if (!SelectorReg)
1955     return false;
1956 
1957   MBB.addLiveIn(SelectorReg);
1958   Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
1959   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
1960   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
1961 
1962   return true;
1963 }
1964 
1965 bool IRTranslator::translateAlloca(const User &U,
1966                                    MachineIRBuilder &MIRBuilder) {
1967   auto &AI = cast<AllocaInst>(U);
1968 
1969   if (AI.isSwiftError())
1970     return true;
1971 
1972   if (AI.isStaticAlloca()) {
1973     Register Res = getOrCreateVReg(AI);
1974     int FI = getOrCreateFrameIndex(AI);
1975     MIRBuilder.buildFrameIndex(Res, FI);
1976     return true;
1977   }
1978 
1979   // FIXME: support stack probing for Windows.
1980   if (MF->getTarget().getTargetTriple().isOSWindows())
1981     return false;
1982 
1983   // Now we're in the harder dynamic case.
1984   Register NumElts = getOrCreateVReg(*AI.getArraySize());
1985   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
1986   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
1987   if (MRI->getType(NumElts) != IntPtrTy) {
1988     Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
1989     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
1990     NumElts = ExtElts;
1991   }
1992 
1993   Type *Ty = AI.getAllocatedType();
1994 
1995   Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
1996   Register TySize =
1997       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
1998   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
1999 
2000   // Round the size of the allocation up to the stack alignment size
2001   // by add SA-1 to the size. This doesn't overflow because we're computing
2002   // an address inside an alloca.
2003   Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
2004   auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
2005   auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
2006                                       MachineInstr::NoUWrap);
2007   auto AlignCst =
2008       MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
2009   auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
2010 
2011   Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
2012   if (Alignment <= StackAlign)
2013     Alignment = Align(1);
2014   MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
2015 
2016   MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
2017   assert(MF->getFrameInfo().hasVarSizedObjects());
2018   return true;
2019 }
2020 
2021 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
2022   // FIXME: We may need more info about the type. Because of how LLT works,
2023   // we're completely discarding the i64/double distinction here (amongst
2024   // others). Fortunately the ABIs I know of where that matters don't use va_arg
2025   // anyway but that's not guaranteed.
2026   MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
2027                         {getOrCreateVReg(*U.getOperand(0)),
2028                          DL->getABITypeAlign(U.getType()).value()});
2029   return true;
2030 }
2031 
2032 bool IRTranslator::translateInsertElement(const User &U,
2033                                           MachineIRBuilder &MIRBuilder) {
2034   // If it is a <1 x Ty> vector, use the scalar as it is
2035   // not a legal vector type in LLT.
2036   if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
2037     return translateCopy(U, *U.getOperand(1), MIRBuilder);
2038 
2039   Register Res = getOrCreateVReg(U);
2040   Register Val = getOrCreateVReg(*U.getOperand(0));
2041   Register Elt = getOrCreateVReg(*U.getOperand(1));
2042   Register Idx = getOrCreateVReg(*U.getOperand(2));
2043   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
2044   return true;
2045 }
2046 
2047 bool IRTranslator::translateExtractElement(const User &U,
2048                                            MachineIRBuilder &MIRBuilder) {
2049   // If it is a <1 x Ty> vector, use the scalar as it is
2050   // not a legal vector type in LLT.
2051   if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
2052     return translateCopy(U, *U.getOperand(0), MIRBuilder);
2053 
2054   Register Res = getOrCreateVReg(U);
2055   Register Val = getOrCreateVReg(*U.getOperand(0));
2056   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2057   unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
2058   Register Idx;
2059   if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
2060     if (CI->getBitWidth() != PreferredVecIdxWidth) {
2061       APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
2062       auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
2063       Idx = getOrCreateVReg(*NewIdxCI);
2064     }
2065   }
2066   if (!Idx)
2067     Idx = getOrCreateVReg(*U.getOperand(1));
2068   if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
2069     const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
2070     Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
2071   }
2072   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
2073   return true;
2074 }
2075 
2076 bool IRTranslator::translateShuffleVector(const User &U,
2077                                           MachineIRBuilder &MIRBuilder) {
2078   ArrayRef<int> Mask;
2079   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
2080     Mask = SVI->getShuffleMask();
2081   else
2082     Mask = cast<ConstantExpr>(U).getShuffleMask();
2083   ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
2084   MIRBuilder
2085       .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
2086                   {getOrCreateVReg(*U.getOperand(0)),
2087                    getOrCreateVReg(*U.getOperand(1))})
2088       .addShuffleMask(MaskAlloc);
2089   return true;
2090 }
2091 
2092 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
2093   const PHINode &PI = cast<PHINode>(U);
2094 
2095   SmallVector<MachineInstr *, 4> Insts;
2096   for (auto Reg : getOrCreateVRegs(PI)) {
2097     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
2098     Insts.push_back(MIB.getInstr());
2099   }
2100 
2101   PendingPHIs.emplace_back(&PI, std::move(Insts));
2102   return true;
2103 }
2104 
2105 bool IRTranslator::translateAtomicCmpXchg(const User &U,
2106                                           MachineIRBuilder &MIRBuilder) {
2107   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
2108 
2109   auto &TLI = *MF->getSubtarget().getTargetLowering();
2110   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2111 
2112   Type *ResType = I.getType();
2113   Type *ValType = ResType->Type::getStructElementType(0);
2114 
2115   auto Res = getOrCreateVRegs(I);
2116   Register OldValRes = Res[0];
2117   Register SuccessRes = Res[1];
2118   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2119   Register Cmp = getOrCreateVReg(*I.getCompareOperand());
2120   Register NewVal = getOrCreateVReg(*I.getNewValOperand());
2121 
2122   AAMDNodes AAMetadata;
2123   I.getAAMetadata(AAMetadata);
2124 
2125   MIRBuilder.buildAtomicCmpXchgWithSuccess(
2126       OldValRes, SuccessRes, Addr, Cmp, NewVal,
2127       *MF->getMachineMemOperand(
2128           MachinePointerInfo(I.getPointerOperand()), Flags,
2129           DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr,
2130           I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering()));
2131   return true;
2132 }
2133 
2134 bool IRTranslator::translateAtomicRMW(const User &U,
2135                                       MachineIRBuilder &MIRBuilder) {
2136   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2137   auto &TLI = *MF->getSubtarget().getTargetLowering();
2138   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2139 
2140   Type *ResType = I.getType();
2141 
2142   Register Res = getOrCreateVReg(I);
2143   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2144   Register Val = getOrCreateVReg(*I.getValOperand());
2145 
2146   unsigned Opcode = 0;
2147   switch (I.getOperation()) {
2148   default:
2149     return false;
2150   case AtomicRMWInst::Xchg:
2151     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
2152     break;
2153   case AtomicRMWInst::Add:
2154     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2155     break;
2156   case AtomicRMWInst::Sub:
2157     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2158     break;
2159   case AtomicRMWInst::And:
2160     Opcode = TargetOpcode::G_ATOMICRMW_AND;
2161     break;
2162   case AtomicRMWInst::Nand:
2163     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2164     break;
2165   case AtomicRMWInst::Or:
2166     Opcode = TargetOpcode::G_ATOMICRMW_OR;
2167     break;
2168   case AtomicRMWInst::Xor:
2169     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2170     break;
2171   case AtomicRMWInst::Max:
2172     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2173     break;
2174   case AtomicRMWInst::Min:
2175     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2176     break;
2177   case AtomicRMWInst::UMax:
2178     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2179     break;
2180   case AtomicRMWInst::UMin:
2181     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2182     break;
2183   case AtomicRMWInst::FAdd:
2184     Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2185     break;
2186   case AtomicRMWInst::FSub:
2187     Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2188     break;
2189   }
2190 
2191   AAMDNodes AAMetadata;
2192   I.getAAMetadata(AAMetadata);
2193 
2194   MIRBuilder.buildAtomicRMW(
2195       Opcode, Res, Addr, Val,
2196       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2197                                 Flags, DL->getTypeStoreSize(ResType),
2198                                 getMemOpAlign(I), AAMetadata, nullptr,
2199                                 I.getSyncScopeID(), I.getOrdering()));
2200   return true;
2201 }
2202 
2203 bool IRTranslator::translateFence(const User &U,
2204                                   MachineIRBuilder &MIRBuilder) {
2205   const FenceInst &Fence = cast<FenceInst>(U);
2206   MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2207                         Fence.getSyncScopeID());
2208   return true;
2209 }
2210 
2211 bool IRTranslator::translateFreeze(const User &U,
2212                                    MachineIRBuilder &MIRBuilder) {
2213   const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
2214   const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
2215 
2216   assert(DstRegs.size() == SrcRegs.size() &&
2217          "Freeze with different source and destination type?");
2218 
2219   for (unsigned I = 0; I < DstRegs.size(); ++I) {
2220     MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
2221   }
2222 
2223   return true;
2224 }
2225 
2226 void IRTranslator::finishPendingPhis() {
2227 #ifndef NDEBUG
2228   DILocationVerifier Verifier;
2229   GISelObserverWrapper WrapperObserver(&Verifier);
2230   RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2231 #endif // ifndef NDEBUG
2232   for (auto &Phi : PendingPHIs) {
2233     const PHINode *PI = Phi.first;
2234     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
2235     MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
2236     EntryBuilder->setDebugLoc(PI->getDebugLoc());
2237 #ifndef NDEBUG
2238     Verifier.setCurrentInst(PI);
2239 #endif // ifndef NDEBUG
2240 
2241     SmallSet<const MachineBasicBlock *, 16> SeenPreds;
2242     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
2243       auto IRPred = PI->getIncomingBlock(i);
2244       ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
2245       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
2246         if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
2247           continue;
2248         SeenPreds.insert(Pred);
2249         for (unsigned j = 0; j < ValRegs.size(); ++j) {
2250           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
2251           MIB.addUse(ValRegs[j]);
2252           MIB.addMBB(Pred);
2253         }
2254       }
2255     }
2256   }
2257 }
2258 
2259 bool IRTranslator::valueIsSplit(const Value &V,
2260                                 SmallVectorImpl<uint64_t> *Offsets) {
2261   SmallVector<LLT, 4> SplitTys;
2262   if (Offsets && !Offsets->empty())
2263     Offsets->clear();
2264   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
2265   return SplitTys.size() > 1;
2266 }
2267 
2268 bool IRTranslator::translate(const Instruction &Inst) {
2269   CurBuilder->setDebugLoc(Inst.getDebugLoc());
2270   // We only emit constants into the entry block from here. To prevent jumpy
2271   // debug behaviour set the line to 0.
2272   if (const DebugLoc &DL = Inst.getDebugLoc())
2273     EntryBuilder->setDebugLoc(
2274         DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
2275   else
2276     EntryBuilder->setDebugLoc(DebugLoc());
2277 
2278   auto &TLI = *MF->getSubtarget().getTargetLowering();
2279   if (TLI.fallBackToDAGISel(Inst))
2280     return false;
2281 
2282   switch (Inst.getOpcode()) {
2283 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2284   case Instruction::OPCODE:                                                    \
2285     return translate##OPCODE(Inst, *CurBuilder.get());
2286 #include "llvm/IR/Instruction.def"
2287   default:
2288     return false;
2289   }
2290 }
2291 
2292 bool IRTranslator::translate(const Constant &C, Register Reg) {
2293   if (auto CI = dyn_cast<ConstantInt>(&C))
2294     EntryBuilder->buildConstant(Reg, *CI);
2295   else if (auto CF = dyn_cast<ConstantFP>(&C))
2296     EntryBuilder->buildFConstant(Reg, *CF);
2297   else if (isa<UndefValue>(C))
2298     EntryBuilder->buildUndef(Reg);
2299   else if (isa<ConstantPointerNull>(C))
2300     EntryBuilder->buildConstant(Reg, 0);
2301   else if (auto GV = dyn_cast<GlobalValue>(&C))
2302     EntryBuilder->buildGlobalValue(Reg, GV);
2303   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
2304     if (!CAZ->getType()->isVectorTy())
2305       return false;
2306     // Return the scalar if it is a <1 x Ty> vector.
2307     if (CAZ->getNumElements() == 1)
2308       return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get());
2309     SmallVector<Register, 4> Ops;
2310     for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
2311       Constant &Elt = *CAZ->getElementValue(i);
2312       Ops.push_back(getOrCreateVReg(Elt));
2313     }
2314     EntryBuilder->buildBuildVector(Reg, Ops);
2315   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
2316     // Return the scalar if it is a <1 x Ty> vector.
2317     if (CV->getNumElements() == 1)
2318       return translateCopy(C, *CV->getElementAsConstant(0),
2319                            *EntryBuilder.get());
2320     SmallVector<Register, 4> Ops;
2321     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
2322       Constant &Elt = *CV->getElementAsConstant(i);
2323       Ops.push_back(getOrCreateVReg(Elt));
2324     }
2325     EntryBuilder->buildBuildVector(Reg, Ops);
2326   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
2327     switch(CE->getOpcode()) {
2328 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2329   case Instruction::OPCODE:                                                    \
2330     return translate##OPCODE(*CE, *EntryBuilder.get());
2331 #include "llvm/IR/Instruction.def"
2332     default:
2333       return false;
2334     }
2335   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
2336     if (CV->getNumOperands() == 1)
2337       return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get());
2338     SmallVector<Register, 4> Ops;
2339     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
2340       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
2341     }
2342     EntryBuilder->buildBuildVector(Reg, Ops);
2343   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
2344     EntryBuilder->buildBlockAddress(Reg, BA);
2345   } else
2346     return false;
2347 
2348   return true;
2349 }
2350 
2351 void IRTranslator::finalizeBasicBlock() {
2352   for (auto &JTCase : SL->JTCases) {
2353     // Emit header first, if it wasn't already emitted.
2354     if (!JTCase.first.Emitted)
2355       emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
2356 
2357     emitJumpTable(JTCase.second, JTCase.second.MBB);
2358   }
2359   SL->JTCases.clear();
2360 }
2361 
2362 void IRTranslator::finalizeFunction() {
2363   // Release the memory used by the different maps we
2364   // needed during the translation.
2365   PendingPHIs.clear();
2366   VMap.reset();
2367   FrameIndices.clear();
2368   MachinePreds.clear();
2369   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
2370   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
2371   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
2372   EntryBuilder.reset();
2373   CurBuilder.reset();
2374   FuncInfo.clear();
2375 }
2376 
2377 /// Returns true if a BasicBlock \p BB within a variadic function contains a
2378 /// variadic musttail call.
2379 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
2380   if (!IsVarArg)
2381     return false;
2382 
2383   // Walk the block backwards, because tail calls usually only appear at the end
2384   // of a block.
2385   return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
2386     const auto *CI = dyn_cast<CallInst>(&I);
2387     return CI && CI->isMustTailCall();
2388   });
2389 }
2390 
2391 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
2392   MF = &CurMF;
2393   const Function &F = MF->getFunction();
2394   if (F.empty())
2395     return false;
2396   GISelCSEAnalysisWrapper &Wrapper =
2397       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
2398   // Set the CSEConfig and run the analysis.
2399   GISelCSEInfo *CSEInfo = nullptr;
2400   TPC = &getAnalysis<TargetPassConfig>();
2401   bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
2402                        ? EnableCSEInIRTranslator
2403                        : TPC->isGISelCSEEnabled();
2404 
2405   if (EnableCSE) {
2406     EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
2407     CSEInfo = &Wrapper.get(TPC->getCSEConfig());
2408     EntryBuilder->setCSEInfo(CSEInfo);
2409     CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
2410     CurBuilder->setCSEInfo(CSEInfo);
2411   } else {
2412     EntryBuilder = std::make_unique<MachineIRBuilder>();
2413     CurBuilder = std::make_unique<MachineIRBuilder>();
2414   }
2415   CLI = MF->getSubtarget().getCallLowering();
2416   CurBuilder->setMF(*MF);
2417   EntryBuilder->setMF(*MF);
2418   MRI = &MF->getRegInfo();
2419   DL = &F.getParent()->getDataLayout();
2420   ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
2421   FuncInfo.MF = MF;
2422   FuncInfo.BPI = nullptr;
2423   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2424   const TargetMachine &TM = MF->getTarget();
2425   SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
2426   SL->init(TLI, TM, *DL);
2427 
2428   EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F);
2429 
2430   assert(PendingPHIs.empty() && "stale PHIs");
2431 
2432   if (!DL->isLittleEndian()) {
2433     // Currently we don't properly handle big endian code.
2434     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2435                                F.getSubprogram(), &F.getEntryBlock());
2436     R << "unable to translate in big endian mode";
2437     reportTranslationError(*MF, *TPC, *ORE, R);
2438   }
2439 
2440   // Release the per-function state when we return, whether we succeeded or not.
2441   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
2442 
2443   // Setup a separate basic-block for the arguments and constants
2444   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
2445   MF->push_back(EntryBB);
2446   EntryBuilder->setMBB(*EntryBB);
2447 
2448   DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
2449   SwiftError.setFunction(CurMF);
2450   SwiftError.createEntriesInEntryBlock(DbgLoc);
2451 
2452   bool IsVarArg = F.isVarArg();
2453   bool HasMustTailInVarArgFn = false;
2454 
2455   // Create all blocks, in IR order, to preserve the layout.
2456   for (const BasicBlock &BB: F) {
2457     auto *&MBB = BBToMBB[&BB];
2458 
2459     MBB = MF->CreateMachineBasicBlock(&BB);
2460     MF->push_back(MBB);
2461 
2462     if (BB.hasAddressTaken())
2463       MBB->setHasAddressTaken();
2464 
2465     if (!HasMustTailInVarArgFn)
2466       HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
2467   }
2468 
2469   MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
2470 
2471   // Make our arguments/constants entry block fallthrough to the IR entry block.
2472   EntryBB->addSuccessor(&getMBB(F.front()));
2473 
2474   if (CLI->fallBackToDAGISel(F)) {
2475     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2476                                F.getSubprogram(), &F.getEntryBlock());
2477     R << "unable to lower function: " << ore::NV("Prototype", F.getType());
2478     reportTranslationError(*MF, *TPC, *ORE, R);
2479     return false;
2480   }
2481 
2482   // Lower the actual args into this basic block.
2483   SmallVector<ArrayRef<Register>, 8> VRegArgs;
2484   for (const Argument &Arg: F.args()) {
2485     if (DL->getTypeStoreSize(Arg.getType()).isZero())
2486       continue; // Don't handle zero sized types.
2487     ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
2488     VRegArgs.push_back(VRegs);
2489 
2490     if (Arg.hasSwiftErrorAttr()) {
2491       assert(VRegs.size() == 1 && "Too many vregs for Swift error");
2492       SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
2493     }
2494   }
2495 
2496   if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) {
2497     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2498                                F.getSubprogram(), &F.getEntryBlock());
2499     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
2500     reportTranslationError(*MF, *TPC, *ORE, R);
2501     return false;
2502   }
2503 
2504   // Need to visit defs before uses when translating instructions.
2505   GISelObserverWrapper WrapperObserver;
2506   if (EnableCSE && CSEInfo)
2507     WrapperObserver.addObserver(CSEInfo);
2508   {
2509     ReversePostOrderTraversal<const Function *> RPOT(&F);
2510 #ifndef NDEBUG
2511     DILocationVerifier Verifier;
2512     WrapperObserver.addObserver(&Verifier);
2513 #endif // ifndef NDEBUG
2514     RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2515     RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
2516     for (const BasicBlock *BB : RPOT) {
2517       MachineBasicBlock &MBB = getMBB(*BB);
2518       // Set the insertion point of all the following translations to
2519       // the end of this basic block.
2520       CurBuilder->setMBB(MBB);
2521       HasTailCall = false;
2522       for (const Instruction &Inst : *BB) {
2523         // If we translated a tail call in the last step, then we know
2524         // everything after the call is either a return, or something that is
2525         // handled by the call itself. (E.g. a lifetime marker or assume
2526         // intrinsic.) In this case, we should stop translating the block and
2527         // move on.
2528         if (HasTailCall)
2529           break;
2530 #ifndef NDEBUG
2531         Verifier.setCurrentInst(&Inst);
2532 #endif // ifndef NDEBUG
2533         if (translate(Inst))
2534           continue;
2535 
2536         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2537                                    Inst.getDebugLoc(), BB);
2538         R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
2539 
2540         if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
2541           std::string InstStrStorage;
2542           raw_string_ostream InstStr(InstStrStorage);
2543           InstStr << Inst;
2544 
2545           R << ": '" << InstStr.str() << "'";
2546         }
2547 
2548         reportTranslationError(*MF, *TPC, *ORE, R);
2549         return false;
2550       }
2551 
2552       finalizeBasicBlock();
2553     }
2554 #ifndef NDEBUG
2555     WrapperObserver.removeObserver(&Verifier);
2556 #endif
2557   }
2558 
2559   finishPendingPhis();
2560 
2561   SwiftError.propagateVRegs();
2562 
2563   // Merge the argument lowering and constants block with its single
2564   // successor, the LLVM-IR entry block.  We want the basic block to
2565   // be maximal.
2566   assert(EntryBB->succ_size() == 1 &&
2567          "Custom BB used for lowering should have only one successor");
2568   // Get the successor of the current entry block.
2569   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
2570   assert(NewEntryBB.pred_size() == 1 &&
2571          "LLVM-IR entry block has a predecessor!?");
2572   // Move all the instruction from the current entry block to the
2573   // new entry block.
2574   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
2575                     EntryBB->end());
2576 
2577   // Update the live-in information for the new entry block.
2578   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
2579     NewEntryBB.addLiveIn(LiveIn);
2580   NewEntryBB.sortUniqueLiveIns();
2581 
2582   // Get rid of the now empty basic block.
2583   EntryBB->removeSuccessor(&NewEntryBB);
2584   MF->remove(EntryBB);
2585   MF->DeleteMachineBasicBlock(EntryBB);
2586 
2587   assert(&MF->front() == &NewEntryBB &&
2588          "New entry wasn't next in the list of basic block!");
2589 
2590   // Initialize stack protector information.
2591   StackProtector &SP = getAnalysis<StackProtector>();
2592   SP.copyToMachineFrameInfo(MF->getFrameInfo());
2593 
2594   return false;
2595 }
2596