1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 26 #include "llvm/CodeGen/LowLevelType.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/StackProtector.h" 36 #include "llvm/CodeGen/TargetFrameLowering.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfo.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GetElementPtrTypeIterator.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/MC/MCContext.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CodeGen.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/LowLevelTypeImpl.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetIntrinsicInfo.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <iterator> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 #define DEBUG_TYPE "irtranslator" 81 82 using namespace llvm; 83 84 static cl::opt<bool> 85 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 86 cl::desc("Should enable CSE in irtranslator"), 87 cl::Optional, cl::init(false)); 88 char IRTranslator::ID = 0; 89 90 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 91 false, false) 92 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 93 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 94 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 95 false, false) 96 97 static void reportTranslationError(MachineFunction &MF, 98 const TargetPassConfig &TPC, 99 OptimizationRemarkEmitter &ORE, 100 OptimizationRemarkMissed &R) { 101 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 102 103 // Print the function name explicitly if we don't have a debug location (which 104 // makes the diagnostic less useful) or if we're going to emit a raw error. 105 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 106 R << (" (in function: " + MF.getName() + ")").str(); 107 108 if (TPC.isGlobalISelAbortEnabled()) 109 report_fatal_error(R.getMsg()); 110 else 111 ORE.emit(R); 112 } 113 114 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } 115 116 #ifndef NDEBUG 117 namespace { 118 /// Verify that every instruction created has the same DILocation as the 119 /// instruction being translated. 120 class DILocationVerifier : public GISelChangeObserver { 121 const Instruction *CurrInst = nullptr; 122 123 public: 124 DILocationVerifier() = default; 125 ~DILocationVerifier() = default; 126 127 const Instruction *getCurrentInst() const { return CurrInst; } 128 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 129 130 void erasingInstr(MachineInstr &MI) override {} 131 void changingInstr(MachineInstr &MI) override {} 132 void changedInstr(MachineInstr &MI) override {} 133 134 void createdInstr(MachineInstr &MI) override { 135 assert(getCurrentInst() && "Inserted instruction without a current MI"); 136 137 // Only print the check message if we're actually checking it. 138 #ifndef NDEBUG 139 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 140 << " was copied to " << MI); 141 #endif 142 // We allow insts in the entry block to have a debug loc line of 0 because 143 // they could have originated from constants, and we don't want a jumpy 144 // debug experience. 145 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 146 MI.getDebugLoc().getLine() == 0) && 147 "Line info was not transferred to all instructions"); 148 } 149 }; 150 } // namespace 151 #endif // ifndef NDEBUG 152 153 154 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 155 AU.addRequired<StackProtector>(); 156 AU.addRequired<TargetPassConfig>(); 157 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 158 getSelectionDAGFallbackAnalysisUsage(AU); 159 MachineFunctionPass::getAnalysisUsage(AU); 160 } 161 162 IRTranslator::ValueToVRegInfo::VRegListT & 163 IRTranslator::allocateVRegs(const Value &Val) { 164 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 165 auto *Regs = VMap.getVRegs(Val); 166 auto *Offsets = VMap.getOffsets(Val); 167 SmallVector<LLT, 4> SplitTys; 168 computeValueLLTs(*DL, *Val.getType(), SplitTys, 169 Offsets->empty() ? Offsets : nullptr); 170 for (unsigned i = 0; i < SplitTys.size(); ++i) 171 Regs->push_back(0); 172 return *Regs; 173 } 174 175 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 176 auto VRegsIt = VMap.findVRegs(Val); 177 if (VRegsIt != VMap.vregs_end()) 178 return *VRegsIt->second; 179 180 if (Val.getType()->isVoidTy()) 181 return *VMap.getVRegs(Val); 182 183 // Create entry for this type. 184 auto *VRegs = VMap.getVRegs(Val); 185 auto *Offsets = VMap.getOffsets(Val); 186 187 assert(Val.getType()->isSized() && 188 "Don't know how to create an empty vreg"); 189 190 SmallVector<LLT, 4> SplitTys; 191 computeValueLLTs(*DL, *Val.getType(), SplitTys, 192 Offsets->empty() ? Offsets : nullptr); 193 194 if (!isa<Constant>(Val)) { 195 for (auto Ty : SplitTys) 196 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 197 return *VRegs; 198 } 199 200 if (Val.getType()->isAggregateType()) { 201 // UndefValue, ConstantAggregateZero 202 auto &C = cast<Constant>(Val); 203 unsigned Idx = 0; 204 while (auto Elt = C.getAggregateElement(Idx++)) { 205 auto EltRegs = getOrCreateVRegs(*Elt); 206 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 207 } 208 } else { 209 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 210 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 211 bool Success = translate(cast<Constant>(Val), VRegs->front()); 212 if (!Success) { 213 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 214 MF->getFunction().getSubprogram(), 215 &MF->getFunction().getEntryBlock()); 216 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 217 reportTranslationError(*MF, *TPC, *ORE, R); 218 return *VRegs; 219 } 220 } 221 222 return *VRegs; 223 } 224 225 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 226 auto MapEntry = FrameIndices.find(&AI); 227 if (MapEntry != FrameIndices.end()) 228 return MapEntry->second; 229 230 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 231 uint64_t Size = 232 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 233 234 // Always allocate at least one byte. 235 Size = std::max<uint64_t>(Size, 1u); 236 237 int &FI = FrameIndices[&AI]; 238 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 239 return FI; 240 } 241 242 Align IRTranslator::getMemOpAlign(const Instruction &I) { 243 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 244 return SI->getAlign(); 245 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 246 return LI->getAlign(); 247 } 248 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 249 // TODO(PR27168): This instruction has no alignment attribute, but unlike 250 // the default alignment for load/store, the default here is to assume 251 // it has NATURAL alignment, not DataLayout-specified alignment. 252 const DataLayout &DL = AI->getModule()->getDataLayout(); 253 return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType())); 254 } 255 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 256 // TODO(PR27168): This instruction has no alignment attribute, but unlike 257 // the default alignment for load/store, the default here is to assume 258 // it has NATURAL alignment, not DataLayout-specified alignment. 259 const DataLayout &DL = AI->getModule()->getDataLayout(); 260 return Align(DL.getTypeStoreSize(AI->getValOperand()->getType())); 261 } 262 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 263 R << "unable to translate memop: " << ore::NV("Opcode", &I); 264 reportTranslationError(*MF, *TPC, *ORE, R); 265 return Align(1); 266 } 267 268 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 269 MachineBasicBlock *&MBB = BBToMBB[&BB]; 270 assert(MBB && "BasicBlock was not encountered before"); 271 return *MBB; 272 } 273 274 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 275 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 276 MachinePreds[Edge].push_back(NewPred); 277 } 278 279 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 280 MachineIRBuilder &MIRBuilder) { 281 // Get or create a virtual register for each value. 282 // Unless the value is a Constant => loadimm cst? 283 // or inline constant each time? 284 // Creation of a virtual register needs to have a size. 285 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 286 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 287 Register Res = getOrCreateVReg(U); 288 uint16_t Flags = 0; 289 if (isa<Instruction>(U)) { 290 const Instruction &I = cast<Instruction>(U); 291 Flags = MachineInstr::copyFlagsFromInstruction(I); 292 } 293 294 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 295 return true; 296 } 297 298 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U, 299 MachineIRBuilder &MIRBuilder) { 300 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 301 Register Res = getOrCreateVReg(U); 302 uint16_t Flags = 0; 303 if (isa<Instruction>(U)) { 304 const Instruction &I = cast<Instruction>(U); 305 Flags = MachineInstr::copyFlagsFromInstruction(I); 306 } 307 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags); 308 return true; 309 } 310 311 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 312 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder); 313 } 314 315 bool IRTranslator::translateCompare(const User &U, 316 MachineIRBuilder &MIRBuilder) { 317 auto *CI = dyn_cast<CmpInst>(&U); 318 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 319 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 320 Register Res = getOrCreateVReg(U); 321 CmpInst::Predicate Pred = 322 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 323 cast<ConstantExpr>(U).getPredicate()); 324 if (CmpInst::isIntPredicate(Pred)) 325 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 326 else if (Pred == CmpInst::FCMP_FALSE) 327 MIRBuilder.buildCopy( 328 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 329 else if (Pred == CmpInst::FCMP_TRUE) 330 MIRBuilder.buildCopy( 331 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 332 else { 333 assert(CI && "Instruction should be CmpInst"); 334 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, 335 MachineInstr::copyFlagsFromInstruction(*CI)); 336 } 337 338 return true; 339 } 340 341 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 342 const ReturnInst &RI = cast<ReturnInst>(U); 343 const Value *Ret = RI.getReturnValue(); 344 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 345 Ret = nullptr; 346 347 ArrayRef<Register> VRegs; 348 if (Ret) 349 VRegs = getOrCreateVRegs(*Ret); 350 351 Register SwiftErrorVReg = 0; 352 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 353 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 354 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 355 } 356 357 // The target may mess up with the insertion point, but 358 // this is not important as a return is the last instruction 359 // of the block anyway. 360 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 361 } 362 363 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 364 const BranchInst &BrInst = cast<BranchInst>(U); 365 unsigned Succ = 0; 366 if (!BrInst.isUnconditional()) { 367 // We want a G_BRCOND to the true BB followed by an unconditional branch. 368 Register Tst = getOrCreateVReg(*BrInst.getCondition()); 369 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 370 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 371 MIRBuilder.buildBrCond(Tst, TrueBB); 372 } 373 374 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 375 MachineBasicBlock &TgtBB = getMBB(BrTgt); 376 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 377 378 // If the unconditional target is the layout successor, fallthrough. 379 if (!CurBB.isLayoutSuccessor(&TgtBB)) 380 MIRBuilder.buildBr(TgtBB); 381 382 // Link successors. 383 for (const BasicBlock *Succ : successors(&BrInst)) 384 CurBB.addSuccessor(&getMBB(*Succ)); 385 return true; 386 } 387 388 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 389 MachineBasicBlock *Dst, 390 BranchProbability Prob) { 391 if (!FuncInfo.BPI) { 392 Src->addSuccessorWithoutProb(Dst); 393 return; 394 } 395 if (Prob.isUnknown()) 396 Prob = getEdgeProbability(Src, Dst); 397 Src->addSuccessor(Dst, Prob); 398 } 399 400 BranchProbability 401 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 402 const MachineBasicBlock *Dst) const { 403 const BasicBlock *SrcBB = Src->getBasicBlock(); 404 const BasicBlock *DstBB = Dst->getBasicBlock(); 405 if (!FuncInfo.BPI) { 406 // If BPI is not available, set the default probability as 1 / N, where N is 407 // the number of successors. 408 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 409 return BranchProbability(1, SuccSize); 410 } 411 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 412 } 413 414 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 415 using namespace SwitchCG; 416 // Extract cases from the switch. 417 const SwitchInst &SI = cast<SwitchInst>(U); 418 BranchProbabilityInfo *BPI = FuncInfo.BPI; 419 CaseClusterVector Clusters; 420 Clusters.reserve(SI.getNumCases()); 421 for (auto &I : SI.cases()) { 422 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 423 assert(Succ && "Could not find successor mbb in mapping"); 424 const ConstantInt *CaseVal = I.getCaseValue(); 425 BranchProbability Prob = 426 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 427 : BranchProbability(1, SI.getNumCases() + 1); 428 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 429 } 430 431 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 432 433 // Cluster adjacent cases with the same destination. We do this at all 434 // optimization levels because it's cheap to do and will make codegen faster 435 // if there are many clusters. 436 sortAndRangeify(Clusters); 437 438 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 439 440 // If there is only the default destination, jump there directly. 441 if (Clusters.empty()) { 442 SwitchMBB->addSuccessor(DefaultMBB); 443 if (DefaultMBB != SwitchMBB->getNextNode()) 444 MIB.buildBr(*DefaultMBB); 445 return true; 446 } 447 448 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 449 450 LLVM_DEBUG({ 451 dbgs() << "Case clusters: "; 452 for (const CaseCluster &C : Clusters) { 453 if (C.Kind == CC_JumpTable) 454 dbgs() << "JT:"; 455 if (C.Kind == CC_BitTests) 456 dbgs() << "BT:"; 457 458 C.Low->getValue().print(dbgs(), true); 459 if (C.Low != C.High) { 460 dbgs() << '-'; 461 C.High->getValue().print(dbgs(), true); 462 } 463 dbgs() << ' '; 464 } 465 dbgs() << '\n'; 466 }); 467 468 assert(!Clusters.empty()); 469 SwitchWorkList WorkList; 470 CaseClusterIt First = Clusters.begin(); 471 CaseClusterIt Last = Clusters.end() - 1; 472 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 473 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 474 475 // FIXME: At the moment we don't do any splitting optimizations here like 476 // SelectionDAG does, so this worklist only has one entry. 477 while (!WorkList.empty()) { 478 SwitchWorkListItem W = WorkList.back(); 479 WorkList.pop_back(); 480 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 481 return false; 482 } 483 return true; 484 } 485 486 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 487 MachineBasicBlock *MBB) { 488 // Emit the code for the jump table 489 assert(JT.Reg != -1U && "Should lower JT Header first!"); 490 MachineIRBuilder MIB(*MBB->getParent()); 491 MIB.setMBB(*MBB); 492 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 493 494 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 495 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 496 497 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 498 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 499 } 500 501 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 502 SwitchCG::JumpTableHeader &JTH, 503 MachineBasicBlock *HeaderBB) { 504 MachineIRBuilder MIB(*HeaderBB->getParent()); 505 MIB.setMBB(*HeaderBB); 506 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 507 508 const Value &SValue = *JTH.SValue; 509 // Subtract the lowest switch case value from the value being switched on. 510 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 511 Register SwitchOpReg = getOrCreateVReg(SValue); 512 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 513 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 514 515 // This value may be smaller or larger than the target's pointer type, and 516 // therefore require extension or truncating. 517 Type *PtrIRTy = SValue.getType()->getPointerTo(); 518 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 519 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 520 521 JT.Reg = Sub.getReg(0); 522 523 if (JTH.OmitRangeCheck) { 524 if (JT.MBB != HeaderBB->getNextNode()) 525 MIB.buildBr(*JT.MBB); 526 return true; 527 } 528 529 // Emit the range check for the jump table, and branch to the default block 530 // for the switch statement if the value being switched on exceeds the 531 // largest case in the switch. 532 auto Cst = getOrCreateVReg( 533 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 534 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 535 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 536 537 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 538 539 // Avoid emitting unnecessary branches to the next block. 540 if (JT.MBB != HeaderBB->getNextNode()) 541 BrCond = MIB.buildBr(*JT.MBB); 542 return true; 543 } 544 545 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 546 MachineBasicBlock *SwitchBB, 547 MachineIRBuilder &MIB) { 548 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 549 Register Cond; 550 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 551 MIB.setDebugLoc(CB.DbgLoc); 552 MIB.setMBB(*CB.ThisBB); 553 554 if (CB.PredInfo.NoCmp) { 555 // Branch or fall through to TrueBB. 556 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 557 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 558 CB.ThisBB); 559 CB.ThisBB->normalizeSuccProbs(); 560 if (CB.TrueBB != CB.ThisBB->getNextNode()) 561 MIB.buildBr(*CB.TrueBB); 562 MIB.setDebugLoc(OldDbgLoc); 563 return; 564 } 565 566 const LLT i1Ty = LLT::scalar(1); 567 // Build the compare. 568 if (!CB.CmpMHS) { 569 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 570 Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 571 } else { 572 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 573 "Can only handle SLE ranges"); 574 575 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 576 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 577 578 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 579 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 580 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 581 Cond = 582 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 583 } else { 584 const LLT CmpTy = MRI->getType(CmpOpReg); 585 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 586 auto Diff = MIB.buildConstant(CmpTy, High - Low); 587 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 588 } 589 } 590 591 // Update successor info 592 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 593 594 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 595 CB.ThisBB); 596 597 // TrueBB and FalseBB are always different unless the incoming IR is 598 // degenerate. This only happens when running llc on weird IR. 599 if (CB.TrueBB != CB.FalseBB) 600 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 601 CB.ThisBB->normalizeSuccProbs(); 602 603 // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) 604 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 605 CB.ThisBB); 606 607 // If the lhs block is the next block, invert the condition so that we can 608 // fall through to the lhs instead of the rhs block. 609 if (CB.TrueBB == CB.ThisBB->getNextNode()) { 610 std::swap(CB.TrueBB, CB.FalseBB); 611 auto True = MIB.buildConstant(i1Ty, 1); 612 Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0); 613 } 614 615 MIB.buildBrCond(Cond, *CB.TrueBB); 616 MIB.buildBr(*CB.FalseBB); 617 MIB.setDebugLoc(OldDbgLoc); 618 } 619 620 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 621 MachineBasicBlock *SwitchMBB, 622 MachineBasicBlock *CurMBB, 623 MachineBasicBlock *DefaultMBB, 624 MachineIRBuilder &MIB, 625 MachineFunction::iterator BBI, 626 BranchProbability UnhandledProbs, 627 SwitchCG::CaseClusterIt I, 628 MachineBasicBlock *Fallthrough, 629 bool FallthroughUnreachable) { 630 using namespace SwitchCG; 631 MachineFunction *CurMF = SwitchMBB->getParent(); 632 // FIXME: Optimize away range check based on pivot comparisons. 633 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 634 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 635 BranchProbability DefaultProb = W.DefaultProb; 636 637 // The jump block hasn't been inserted yet; insert it here. 638 MachineBasicBlock *JumpMBB = JT->MBB; 639 CurMF->insert(BBI, JumpMBB); 640 641 // Since the jump table block is separate from the switch block, we need 642 // to keep track of it as a machine predecessor to the default block, 643 // otherwise we lose the phi edges. 644 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 645 CurMBB); 646 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 647 JumpMBB); 648 649 auto JumpProb = I->Prob; 650 auto FallthroughProb = UnhandledProbs; 651 652 // If the default statement is a target of the jump table, we evenly 653 // distribute the default probability to successors of CurMBB. Also 654 // update the probability on the edge from JumpMBB to Fallthrough. 655 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 656 SE = JumpMBB->succ_end(); 657 SI != SE; ++SI) { 658 if (*SI == DefaultMBB) { 659 JumpProb += DefaultProb / 2; 660 FallthroughProb -= DefaultProb / 2; 661 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 662 JumpMBB->normalizeSuccProbs(); 663 } else { 664 // Also record edges from the jump table block to it's successors. 665 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 666 JumpMBB); 667 } 668 } 669 670 // Skip the range check if the fallthrough block is unreachable. 671 if (FallthroughUnreachable) 672 JTH->OmitRangeCheck = true; 673 674 if (!JTH->OmitRangeCheck) 675 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 676 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 677 CurMBB->normalizeSuccProbs(); 678 679 // The jump table header will be inserted in our current block, do the 680 // range check, and fall through to our fallthrough block. 681 JTH->HeaderBB = CurMBB; 682 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 683 684 // If we're in the right place, emit the jump table header right now. 685 if (CurMBB == SwitchMBB) { 686 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 687 return false; 688 JTH->Emitted = true; 689 } 690 return true; 691 } 692 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 693 Value *Cond, 694 MachineBasicBlock *Fallthrough, 695 bool FallthroughUnreachable, 696 BranchProbability UnhandledProbs, 697 MachineBasicBlock *CurMBB, 698 MachineIRBuilder &MIB, 699 MachineBasicBlock *SwitchMBB) { 700 using namespace SwitchCG; 701 const Value *RHS, *LHS, *MHS; 702 CmpInst::Predicate Pred; 703 if (I->Low == I->High) { 704 // Check Cond == I->Low. 705 Pred = CmpInst::ICMP_EQ; 706 LHS = Cond; 707 RHS = I->Low; 708 MHS = nullptr; 709 } else { 710 // Check I->Low <= Cond <= I->High. 711 Pred = CmpInst::ICMP_SLE; 712 LHS = I->Low; 713 MHS = Cond; 714 RHS = I->High; 715 } 716 717 // If Fallthrough is unreachable, fold away the comparison. 718 // The false probability is the sum of all unhandled cases. 719 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 720 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 721 722 emitSwitchCase(CB, SwitchMBB, MIB); 723 return true; 724 } 725 726 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 727 Value *Cond, 728 MachineBasicBlock *SwitchMBB, 729 MachineBasicBlock *DefaultMBB, 730 MachineIRBuilder &MIB) { 731 using namespace SwitchCG; 732 MachineFunction *CurMF = FuncInfo.MF; 733 MachineBasicBlock *NextMBB = nullptr; 734 MachineFunction::iterator BBI(W.MBB); 735 if (++BBI != FuncInfo.MF->end()) 736 NextMBB = &*BBI; 737 738 if (EnableOpts) { 739 // Here, we order cases by probability so the most likely case will be 740 // checked first. However, two clusters can have the same probability in 741 // which case their relative ordering is non-deterministic. So we use Low 742 // as a tie-breaker as clusters are guaranteed to never overlap. 743 llvm::sort(W.FirstCluster, W.LastCluster + 1, 744 [](const CaseCluster &a, const CaseCluster &b) { 745 return a.Prob != b.Prob 746 ? a.Prob > b.Prob 747 : a.Low->getValue().slt(b.Low->getValue()); 748 }); 749 750 // Rearrange the case blocks so that the last one falls through if possible 751 // without changing the order of probabilities. 752 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 753 --I; 754 if (I->Prob > W.LastCluster->Prob) 755 break; 756 if (I->Kind == CC_Range && I->MBB == NextMBB) { 757 std::swap(*I, *W.LastCluster); 758 break; 759 } 760 } 761 } 762 763 // Compute total probability. 764 BranchProbability DefaultProb = W.DefaultProb; 765 BranchProbability UnhandledProbs = DefaultProb; 766 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 767 UnhandledProbs += I->Prob; 768 769 MachineBasicBlock *CurMBB = W.MBB; 770 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 771 bool FallthroughUnreachable = false; 772 MachineBasicBlock *Fallthrough; 773 if (I == W.LastCluster) { 774 // For the last cluster, fall through to the default destination. 775 Fallthrough = DefaultMBB; 776 FallthroughUnreachable = isa<UnreachableInst>( 777 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 778 } else { 779 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 780 CurMF->insert(BBI, Fallthrough); 781 } 782 UnhandledProbs -= I->Prob; 783 784 switch (I->Kind) { 785 case CC_BitTests: { 786 LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented"); 787 return false; // Bit tests currently unimplemented. 788 } 789 case CC_JumpTable: { 790 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 791 UnhandledProbs, I, Fallthrough, 792 FallthroughUnreachable)) { 793 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 794 return false; 795 } 796 break; 797 } 798 case CC_Range: { 799 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 800 FallthroughUnreachable, UnhandledProbs, 801 CurMBB, MIB, SwitchMBB)) { 802 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 803 return false; 804 } 805 break; 806 } 807 } 808 CurMBB = Fallthrough; 809 } 810 811 return true; 812 } 813 814 bool IRTranslator::translateIndirectBr(const User &U, 815 MachineIRBuilder &MIRBuilder) { 816 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 817 818 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 819 MIRBuilder.buildBrIndirect(Tgt); 820 821 // Link successors. 822 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 823 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 824 for (const BasicBlock *Succ : successors(&BrInst)) { 825 // It's legal for indirectbr instructions to have duplicate blocks in the 826 // destination list. We don't allow this in MIR. Skip anything that's 827 // already a successor. 828 if (!AddedSuccessors.insert(Succ).second) 829 continue; 830 CurBB.addSuccessor(&getMBB(*Succ)); 831 } 832 833 return true; 834 } 835 836 static bool isSwiftError(const Value *V) { 837 if (auto Arg = dyn_cast<Argument>(V)) 838 return Arg->hasSwiftErrorAttr(); 839 if (auto AI = dyn_cast<AllocaInst>(V)) 840 return AI->isSwiftError(); 841 return false; 842 } 843 844 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 845 const LoadInst &LI = cast<LoadInst>(U); 846 if (DL->getTypeStoreSize(LI.getType()) == 0) 847 return true; 848 849 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 850 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 851 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 852 853 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 854 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 855 856 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 857 assert(Regs.size() == 1 && "swifterror should be single pointer"); 858 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 859 LI.getPointerOperand()); 860 MIRBuilder.buildCopy(Regs[0], VReg); 861 return true; 862 } 863 864 auto &TLI = *MF->getSubtarget().getTargetLowering(); 865 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 866 867 const MDNode *Ranges = 868 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 869 for (unsigned i = 0; i < Regs.size(); ++i) { 870 Register Addr; 871 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 872 873 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 874 Align BaseAlign = getMemOpAlign(LI); 875 AAMDNodes AAMetadata; 876 LI.getAAMetadata(AAMetadata); 877 auto MMO = MF->getMachineMemOperand( 878 Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(), 879 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges, 880 LI.getSyncScopeID(), LI.getOrdering()); 881 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 882 } 883 884 return true; 885 } 886 887 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 888 const StoreInst &SI = cast<StoreInst>(U); 889 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 890 return true; 891 892 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 893 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 894 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 895 896 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 897 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 898 899 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 900 assert(Vals.size() == 1 && "swifterror should be single pointer"); 901 902 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 903 SI.getPointerOperand()); 904 MIRBuilder.buildCopy(VReg, Vals[0]); 905 return true; 906 } 907 908 auto &TLI = *MF->getSubtarget().getTargetLowering(); 909 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 910 911 for (unsigned i = 0; i < Vals.size(); ++i) { 912 Register Addr; 913 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 914 915 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 916 Align BaseAlign = getMemOpAlign(SI); 917 AAMDNodes AAMetadata; 918 SI.getAAMetadata(AAMetadata); 919 auto MMO = MF->getMachineMemOperand( 920 Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(), 921 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr, 922 SI.getSyncScopeID(), SI.getOrdering()); 923 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 924 } 925 return true; 926 } 927 928 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 929 const Value *Src = U.getOperand(0); 930 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 931 932 // getIndexedOffsetInType is designed for GEPs, so the first index is the 933 // usual array element rather than looking into the actual aggregate. 934 SmallVector<Value *, 1> Indices; 935 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 936 937 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 938 for (auto Idx : EVI->indices()) 939 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 940 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 941 for (auto Idx : IVI->indices()) 942 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 943 } else { 944 for (unsigned i = 1; i < U.getNumOperands(); ++i) 945 Indices.push_back(U.getOperand(i)); 946 } 947 948 return 8 * static_cast<uint64_t>( 949 DL.getIndexedOffsetInType(Src->getType(), Indices)); 950 } 951 952 bool IRTranslator::translateExtractValue(const User &U, 953 MachineIRBuilder &MIRBuilder) { 954 const Value *Src = U.getOperand(0); 955 uint64_t Offset = getOffsetFromIndices(U, *DL); 956 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 957 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 958 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 959 auto &DstRegs = allocateVRegs(U); 960 961 for (unsigned i = 0; i < DstRegs.size(); ++i) 962 DstRegs[i] = SrcRegs[Idx++]; 963 964 return true; 965 } 966 967 bool IRTranslator::translateInsertValue(const User &U, 968 MachineIRBuilder &MIRBuilder) { 969 const Value *Src = U.getOperand(0); 970 uint64_t Offset = getOffsetFromIndices(U, *DL); 971 auto &DstRegs = allocateVRegs(U); 972 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 973 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 974 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 975 auto InsertedIt = InsertedRegs.begin(); 976 977 for (unsigned i = 0; i < DstRegs.size(); ++i) { 978 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 979 DstRegs[i] = *InsertedIt++; 980 else 981 DstRegs[i] = SrcRegs[i]; 982 } 983 984 return true; 985 } 986 987 bool IRTranslator::translateSelect(const User &U, 988 MachineIRBuilder &MIRBuilder) { 989 Register Tst = getOrCreateVReg(*U.getOperand(0)); 990 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 991 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 992 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 993 994 uint16_t Flags = 0; 995 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 996 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 997 998 for (unsigned i = 0; i < ResRegs.size(); ++i) { 999 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1000 } 1001 1002 return true; 1003 } 1004 1005 bool IRTranslator::translateCopy(const User &U, const Value &V, 1006 MachineIRBuilder &MIRBuilder) { 1007 Register Src = getOrCreateVReg(V); 1008 auto &Regs = *VMap.getVRegs(U); 1009 if (Regs.empty()) { 1010 Regs.push_back(Src); 1011 VMap.getOffsets(U)->push_back(0); 1012 } else { 1013 // If we already assigned a vreg for this instruction, we can't change that. 1014 // Emit a copy to satisfy the users we already emitted. 1015 MIRBuilder.buildCopy(Regs[0], Src); 1016 } 1017 return true; 1018 } 1019 1020 bool IRTranslator::translateBitCast(const User &U, 1021 MachineIRBuilder &MIRBuilder) { 1022 // If we're bitcasting to the source type, we can reuse the source vreg. 1023 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1024 getLLTForType(*U.getType(), *DL)) 1025 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1026 1027 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1028 } 1029 1030 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1031 MachineIRBuilder &MIRBuilder) { 1032 Register Op = getOrCreateVReg(*U.getOperand(0)); 1033 Register Res = getOrCreateVReg(U); 1034 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1035 return true; 1036 } 1037 1038 bool IRTranslator::translateGetElementPtr(const User &U, 1039 MachineIRBuilder &MIRBuilder) { 1040 Value &Op0 = *U.getOperand(0); 1041 Register BaseReg = getOrCreateVReg(Op0); 1042 Type *PtrIRTy = Op0.getType(); 1043 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1044 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1045 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1046 1047 // Normalize Vector GEP - all scalar operands should be converted to the 1048 // splat vector. 1049 unsigned VectorWidth = 0; 1050 if (auto *VT = dyn_cast<VectorType>(U.getType())) 1051 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1052 1053 // We might need to splat the base pointer into a vector if the offsets 1054 // are vectors. 1055 if (VectorWidth && !PtrTy.isVector()) { 1056 BaseReg = 1057 MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg) 1058 .getReg(0); 1059 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1060 PtrTy = getLLTForType(*PtrIRTy, *DL); 1061 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1062 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1063 } 1064 1065 int64_t Offset = 0; 1066 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1067 GTI != E; ++GTI) { 1068 const Value *Idx = GTI.getOperand(); 1069 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1070 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1071 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1072 continue; 1073 } else { 1074 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1075 1076 // If this is a scalar constant or a splat vector of constants, 1077 // handle it quickly. 1078 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1079 Offset += ElementSize * CI->getSExtValue(); 1080 continue; 1081 } 1082 1083 if (Offset != 0) { 1084 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1085 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1086 .getReg(0); 1087 Offset = 0; 1088 } 1089 1090 Register IdxReg = getOrCreateVReg(*Idx); 1091 LLT IdxTy = MRI->getType(IdxReg); 1092 if (IdxTy != OffsetTy) { 1093 if (!IdxTy.isVector() && VectorWidth) { 1094 IdxReg = MIRBuilder.buildSplatVector( 1095 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1096 } 1097 1098 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1099 } 1100 1101 // N = N + Idx * ElementSize; 1102 // Avoid doing it for ElementSize of 1. 1103 Register GepOffsetReg; 1104 if (ElementSize != 1) { 1105 auto ElementSizeMIB = MIRBuilder.buildConstant( 1106 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1107 GepOffsetReg = 1108 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1109 } else 1110 GepOffsetReg = IdxReg; 1111 1112 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1113 } 1114 } 1115 1116 if (Offset != 0) { 1117 auto OffsetMIB = 1118 MIRBuilder.buildConstant(OffsetTy, Offset); 1119 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1120 return true; 1121 } 1122 1123 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1124 return true; 1125 } 1126 1127 bool IRTranslator::translateMemFunc(const CallInst &CI, 1128 MachineIRBuilder &MIRBuilder, 1129 Intrinsic::ID ID) { 1130 1131 // If the source is undef, then just emit a nop. 1132 if (isa<UndefValue>(CI.getArgOperand(1))) 1133 return true; 1134 1135 ArrayRef<Register> Res; 1136 auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true); 1137 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) 1138 ICall.addUse(getOrCreateVReg(**AI)); 1139 1140 Align DstAlign; 1141 Align SrcAlign; 1142 unsigned IsVol = 1143 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1144 ->getZExtValue(); 1145 1146 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1147 DstAlign = MCI->getDestAlign().valueOrOne(); 1148 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1149 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1150 DstAlign = MMI->getDestAlign().valueOrOne(); 1151 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1152 } else { 1153 auto *MSI = cast<MemSetInst>(&CI); 1154 DstAlign = MSI->getDestAlign().valueOrOne(); 1155 } 1156 1157 // We need to propagate the tail call flag from the IR inst as an argument. 1158 // Otherwise, we have to pessimize and assume later that we cannot tail call 1159 // any memory intrinsics. 1160 ICall.addImm(CI.isTailCall() ? 1 : 0); 1161 1162 // Create mem operands to store the alignment and volatile info. 1163 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1164 ICall.addMemOperand(MF->getMachineMemOperand( 1165 MachinePointerInfo(CI.getArgOperand(0)), 1166 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1167 if (ID != Intrinsic::memset) 1168 ICall.addMemOperand(MF->getMachineMemOperand( 1169 MachinePointerInfo(CI.getArgOperand(1)), 1170 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1171 1172 return true; 1173 } 1174 1175 void IRTranslator::getStackGuard(Register DstReg, 1176 MachineIRBuilder &MIRBuilder) { 1177 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1178 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1179 auto MIB = 1180 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1181 1182 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1183 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1184 if (!Global) 1185 return; 1186 1187 MachinePointerInfo MPInfo(Global); 1188 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1189 MachineMemOperand::MODereferenceable; 1190 MachineMemOperand *MemRef = 1191 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 1192 DL->getPointerABIAlignment(0)); 1193 MIB.setMemRefs({MemRef}); 1194 } 1195 1196 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1197 MachineIRBuilder &MIRBuilder) { 1198 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1199 MIRBuilder.buildInstr( 1200 Op, {ResRegs[0], ResRegs[1]}, 1201 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1202 1203 return true; 1204 } 1205 1206 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI, 1207 MachineIRBuilder &MIRBuilder) { 1208 Register Dst = getOrCreateVReg(CI); 1209 Register Src0 = getOrCreateVReg(*CI.getOperand(0)); 1210 Register Src1 = getOrCreateVReg(*CI.getOperand(1)); 1211 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 1212 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale }); 1213 return true; 1214 } 1215 1216 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1217 switch (ID) { 1218 default: 1219 break; 1220 case Intrinsic::bswap: 1221 return TargetOpcode::G_BSWAP; 1222 case Intrinsic::bitreverse: 1223 return TargetOpcode::G_BITREVERSE; 1224 case Intrinsic::fshl: 1225 return TargetOpcode::G_FSHL; 1226 case Intrinsic::fshr: 1227 return TargetOpcode::G_FSHR; 1228 case Intrinsic::ceil: 1229 return TargetOpcode::G_FCEIL; 1230 case Intrinsic::cos: 1231 return TargetOpcode::G_FCOS; 1232 case Intrinsic::ctpop: 1233 return TargetOpcode::G_CTPOP; 1234 case Intrinsic::exp: 1235 return TargetOpcode::G_FEXP; 1236 case Intrinsic::exp2: 1237 return TargetOpcode::G_FEXP2; 1238 case Intrinsic::fabs: 1239 return TargetOpcode::G_FABS; 1240 case Intrinsic::copysign: 1241 return TargetOpcode::G_FCOPYSIGN; 1242 case Intrinsic::minnum: 1243 return TargetOpcode::G_FMINNUM; 1244 case Intrinsic::maxnum: 1245 return TargetOpcode::G_FMAXNUM; 1246 case Intrinsic::minimum: 1247 return TargetOpcode::G_FMINIMUM; 1248 case Intrinsic::maximum: 1249 return TargetOpcode::G_FMAXIMUM; 1250 case Intrinsic::canonicalize: 1251 return TargetOpcode::G_FCANONICALIZE; 1252 case Intrinsic::floor: 1253 return TargetOpcode::G_FFLOOR; 1254 case Intrinsic::fma: 1255 return TargetOpcode::G_FMA; 1256 case Intrinsic::log: 1257 return TargetOpcode::G_FLOG; 1258 case Intrinsic::log2: 1259 return TargetOpcode::G_FLOG2; 1260 case Intrinsic::log10: 1261 return TargetOpcode::G_FLOG10; 1262 case Intrinsic::nearbyint: 1263 return TargetOpcode::G_FNEARBYINT; 1264 case Intrinsic::pow: 1265 return TargetOpcode::G_FPOW; 1266 case Intrinsic::powi: 1267 return TargetOpcode::G_FPOWI; 1268 case Intrinsic::rint: 1269 return TargetOpcode::G_FRINT; 1270 case Intrinsic::round: 1271 return TargetOpcode::G_INTRINSIC_ROUND; 1272 case Intrinsic::roundeven: 1273 return TargetOpcode::G_INTRINSIC_ROUNDEVEN; 1274 case Intrinsic::sin: 1275 return TargetOpcode::G_FSIN; 1276 case Intrinsic::sqrt: 1277 return TargetOpcode::G_FSQRT; 1278 case Intrinsic::trunc: 1279 return TargetOpcode::G_INTRINSIC_TRUNC; 1280 case Intrinsic::readcyclecounter: 1281 return TargetOpcode::G_READCYCLECOUNTER; 1282 case Intrinsic::ptrmask: 1283 return TargetOpcode::G_PTRMASK; 1284 case Intrinsic::lrint: 1285 return TargetOpcode::G_INTRINSIC_LRINT; 1286 } 1287 return Intrinsic::not_intrinsic; 1288 } 1289 1290 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1291 Intrinsic::ID ID, 1292 MachineIRBuilder &MIRBuilder) { 1293 1294 unsigned Op = getSimpleIntrinsicOpcode(ID); 1295 1296 // Is this a simple intrinsic? 1297 if (Op == Intrinsic::not_intrinsic) 1298 return false; 1299 1300 // Yes. Let's translate it. 1301 SmallVector<llvm::SrcOp, 4> VRegs; 1302 for (auto &Arg : CI.arg_operands()) 1303 VRegs.push_back(getOrCreateVReg(*Arg)); 1304 1305 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1306 MachineInstr::copyFlagsFromInstruction(CI)); 1307 return true; 1308 } 1309 1310 // TODO: Include ConstainedOps.def when all strict instructions are defined. 1311 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 1312 switch (ID) { 1313 case Intrinsic::experimental_constrained_fadd: 1314 return TargetOpcode::G_STRICT_FADD; 1315 case Intrinsic::experimental_constrained_fsub: 1316 return TargetOpcode::G_STRICT_FSUB; 1317 case Intrinsic::experimental_constrained_fmul: 1318 return TargetOpcode::G_STRICT_FMUL; 1319 case Intrinsic::experimental_constrained_fdiv: 1320 return TargetOpcode::G_STRICT_FDIV; 1321 case Intrinsic::experimental_constrained_frem: 1322 return TargetOpcode::G_STRICT_FREM; 1323 case Intrinsic::experimental_constrained_fma: 1324 return TargetOpcode::G_STRICT_FMA; 1325 case Intrinsic::experimental_constrained_sqrt: 1326 return TargetOpcode::G_STRICT_FSQRT; 1327 default: 1328 return 0; 1329 } 1330 } 1331 1332 bool IRTranslator::translateConstrainedFPIntrinsic( 1333 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 1334 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 1335 1336 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 1337 if (!Opcode) 1338 return false; 1339 1340 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI); 1341 if (EB == fp::ExceptionBehavior::ebIgnore) 1342 Flags |= MachineInstr::NoFPExcept; 1343 1344 SmallVector<llvm::SrcOp, 4> VRegs; 1345 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0))); 1346 if (!FPI.isUnaryOp()) 1347 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1))); 1348 if (FPI.isTernaryOp()) 1349 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2))); 1350 1351 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 1352 return true; 1353 } 1354 1355 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1356 MachineIRBuilder &MIRBuilder) { 1357 1358 // If this is a simple intrinsic (that is, we just need to add a def of 1359 // a vreg, and uses for each arg operand, then translate it. 1360 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1361 return true; 1362 1363 switch (ID) { 1364 default: 1365 break; 1366 case Intrinsic::lifetime_start: 1367 case Intrinsic::lifetime_end: { 1368 // No stack colouring in O0, discard region information. 1369 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1370 return true; 1371 1372 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1373 : TargetOpcode::LIFETIME_END; 1374 1375 // Get the underlying objects for the location passed on the lifetime 1376 // marker. 1377 SmallVector<const Value *, 4> Allocas; 1378 getUnderlyingObjects(CI.getArgOperand(1), Allocas); 1379 1380 // Iterate over each underlying object, creating lifetime markers for each 1381 // static alloca. Quit if we find a non-static alloca. 1382 for (const Value *V : Allocas) { 1383 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1384 if (!AI) 1385 continue; 1386 1387 if (!AI->isStaticAlloca()) 1388 return true; 1389 1390 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1391 } 1392 return true; 1393 } 1394 case Intrinsic::dbg_declare: { 1395 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1396 assert(DI.getVariable() && "Missing variable"); 1397 1398 const Value *Address = DI.getAddress(); 1399 if (!Address || isa<UndefValue>(Address)) { 1400 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1401 return true; 1402 } 1403 1404 assert(DI.getVariable()->isValidLocationForIntrinsic( 1405 MIRBuilder.getDebugLoc()) && 1406 "Expected inlined-at fields to agree"); 1407 auto AI = dyn_cast<AllocaInst>(Address); 1408 if (AI && AI->isStaticAlloca()) { 1409 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1410 // instructions (in fact, they get ignored if they *do* exist). 1411 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1412 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1413 } else { 1414 // A dbg.declare describes the address of a source variable, so lower it 1415 // into an indirect DBG_VALUE. 1416 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1417 DI.getVariable(), DI.getExpression()); 1418 } 1419 return true; 1420 } 1421 case Intrinsic::dbg_label: { 1422 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1423 assert(DI.getLabel() && "Missing label"); 1424 1425 assert(DI.getLabel()->isValidLocationForIntrinsic( 1426 MIRBuilder.getDebugLoc()) && 1427 "Expected inlined-at fields to agree"); 1428 1429 MIRBuilder.buildDbgLabel(DI.getLabel()); 1430 return true; 1431 } 1432 case Intrinsic::vaend: 1433 // No target I know of cares about va_end. Certainly no in-tree target 1434 // does. Simplest intrinsic ever! 1435 return true; 1436 case Intrinsic::vastart: { 1437 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1438 Value *Ptr = CI.getArgOperand(0); 1439 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1440 1441 // FIXME: Get alignment 1442 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1443 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 1444 MachineMemOperand::MOStore, 1445 ListSize, Align(1))); 1446 return true; 1447 } 1448 case Intrinsic::dbg_value: { 1449 // This form of DBG_VALUE is target-independent. 1450 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1451 const Value *V = DI.getValue(); 1452 assert(DI.getVariable()->isValidLocationForIntrinsic( 1453 MIRBuilder.getDebugLoc()) && 1454 "Expected inlined-at fields to agree"); 1455 if (!V) { 1456 // Currently the optimizer can produce this; insert an undef to 1457 // help debugging. Probably the optimizer should not do this. 1458 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1459 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1460 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1461 } else { 1462 for (Register Reg : getOrCreateVRegs(*V)) { 1463 // FIXME: This does not handle register-indirect values at offset 0. The 1464 // direct/indirect thing shouldn't really be handled by something as 1465 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1466 // pretty baked in right now. 1467 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1468 } 1469 } 1470 return true; 1471 } 1472 case Intrinsic::uadd_with_overflow: 1473 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1474 case Intrinsic::sadd_with_overflow: 1475 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1476 case Intrinsic::usub_with_overflow: 1477 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1478 case Intrinsic::ssub_with_overflow: 1479 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1480 case Intrinsic::umul_with_overflow: 1481 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1482 case Intrinsic::smul_with_overflow: 1483 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1484 case Intrinsic::uadd_sat: 1485 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 1486 case Intrinsic::sadd_sat: 1487 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 1488 case Intrinsic::usub_sat: 1489 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 1490 case Intrinsic::ssub_sat: 1491 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 1492 case Intrinsic::ushl_sat: 1493 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder); 1494 case Intrinsic::sshl_sat: 1495 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder); 1496 case Intrinsic::umin: 1497 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder); 1498 case Intrinsic::umax: 1499 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder); 1500 case Intrinsic::smin: 1501 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder); 1502 case Intrinsic::smax: 1503 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder); 1504 case Intrinsic::abs: 1505 // TODO: Preserve "int min is poison" arg in GMIR? 1506 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder); 1507 case Intrinsic::smul_fix: 1508 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder); 1509 case Intrinsic::umul_fix: 1510 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder); 1511 case Intrinsic::smul_fix_sat: 1512 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder); 1513 case Intrinsic::umul_fix_sat: 1514 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder); 1515 case Intrinsic::sdiv_fix: 1516 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder); 1517 case Intrinsic::udiv_fix: 1518 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder); 1519 case Intrinsic::sdiv_fix_sat: 1520 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder); 1521 case Intrinsic::udiv_fix_sat: 1522 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder); 1523 case Intrinsic::fmuladd: { 1524 const TargetMachine &TM = MF->getTarget(); 1525 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1526 Register Dst = getOrCreateVReg(CI); 1527 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1528 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1529 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1530 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1531 TLI.isFMAFasterThanFMulAndFAdd(*MF, 1532 TLI.getValueType(*DL, CI.getType()))) { 1533 // TODO: Revisit this to see if we should move this part of the 1534 // lowering to the combiner. 1535 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 1536 MachineInstr::copyFlagsFromInstruction(CI)); 1537 } else { 1538 LLT Ty = getLLTForType(*CI.getType(), *DL); 1539 auto FMul = MIRBuilder.buildFMul( 1540 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 1541 MIRBuilder.buildFAdd(Dst, FMul, Op2, 1542 MachineInstr::copyFlagsFromInstruction(CI)); 1543 } 1544 return true; 1545 } 1546 case Intrinsic::convert_from_fp16: 1547 // FIXME: This intrinsic should probably be removed from the IR. 1548 MIRBuilder.buildFPExt(getOrCreateVReg(CI), 1549 getOrCreateVReg(*CI.getArgOperand(0)), 1550 MachineInstr::copyFlagsFromInstruction(CI)); 1551 return true; 1552 case Intrinsic::convert_to_fp16: 1553 // FIXME: This intrinsic should probably be removed from the IR. 1554 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI), 1555 getOrCreateVReg(*CI.getArgOperand(0)), 1556 MachineInstr::copyFlagsFromInstruction(CI)); 1557 return true; 1558 case Intrinsic::memcpy: 1559 case Intrinsic::memmove: 1560 case Intrinsic::memset: 1561 return translateMemFunc(CI, MIRBuilder, ID); 1562 case Intrinsic::eh_typeid_for: { 1563 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1564 Register Reg = getOrCreateVReg(CI); 1565 unsigned TypeID = MF->getTypeIDFor(GV); 1566 MIRBuilder.buildConstant(Reg, TypeID); 1567 return true; 1568 } 1569 case Intrinsic::objectsize: 1570 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1571 1572 case Intrinsic::is_constant: 1573 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1574 1575 case Intrinsic::stackguard: 1576 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1577 return true; 1578 case Intrinsic::stackprotector: { 1579 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1580 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1581 getStackGuard(GuardVal, MIRBuilder); 1582 1583 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1584 int FI = getOrCreateFrameIndex(*Slot); 1585 MF->getFrameInfo().setStackProtectorIndex(FI); 1586 1587 MIRBuilder.buildStore( 1588 GuardVal, getOrCreateVReg(*Slot), 1589 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1590 MachineMemOperand::MOStore | 1591 MachineMemOperand::MOVolatile, 1592 PtrTy.getSizeInBits() / 8, Align(8))); 1593 return true; 1594 } 1595 case Intrinsic::stacksave: { 1596 // Save the stack pointer to the location provided by the intrinsic. 1597 Register Reg = getOrCreateVReg(CI); 1598 Register StackPtr = MF->getSubtarget() 1599 .getTargetLowering() 1600 ->getStackPointerRegisterToSaveRestore(); 1601 1602 // If the target doesn't specify a stack pointer, then fall back. 1603 if (!StackPtr) 1604 return false; 1605 1606 MIRBuilder.buildCopy(Reg, StackPtr); 1607 return true; 1608 } 1609 case Intrinsic::stackrestore: { 1610 // Restore the stack pointer from the location provided by the intrinsic. 1611 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1612 Register StackPtr = MF->getSubtarget() 1613 .getTargetLowering() 1614 ->getStackPointerRegisterToSaveRestore(); 1615 1616 // If the target doesn't specify a stack pointer, then fall back. 1617 if (!StackPtr) 1618 return false; 1619 1620 MIRBuilder.buildCopy(StackPtr, Reg); 1621 return true; 1622 } 1623 case Intrinsic::cttz: 1624 case Intrinsic::ctlz: { 1625 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1626 bool isTrailing = ID == Intrinsic::cttz; 1627 unsigned Opcode = isTrailing 1628 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1629 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1630 : Cst->isZero() ? TargetOpcode::G_CTLZ 1631 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1632 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 1633 {getOrCreateVReg(*CI.getArgOperand(0))}); 1634 return true; 1635 } 1636 case Intrinsic::invariant_start: { 1637 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1638 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 1639 MIRBuilder.buildUndef(Undef); 1640 return true; 1641 } 1642 case Intrinsic::invariant_end: 1643 return true; 1644 case Intrinsic::expect: 1645 case Intrinsic::annotation: 1646 case Intrinsic::ptr_annotation: 1647 case Intrinsic::launder_invariant_group: 1648 case Intrinsic::strip_invariant_group: { 1649 // Drop the intrinsic, but forward the value. 1650 MIRBuilder.buildCopy(getOrCreateVReg(CI), 1651 getOrCreateVReg(*CI.getArgOperand(0))); 1652 return true; 1653 } 1654 case Intrinsic::assume: 1655 case Intrinsic::var_annotation: 1656 case Intrinsic::sideeffect: 1657 // Discard annotate attributes, assumptions, and artificial side-effects. 1658 return true; 1659 case Intrinsic::read_volatile_register: 1660 case Intrinsic::read_register: { 1661 Value *Arg = CI.getArgOperand(0); 1662 MIRBuilder 1663 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 1664 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 1665 return true; 1666 } 1667 case Intrinsic::write_register: { 1668 Value *Arg = CI.getArgOperand(0); 1669 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 1670 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 1671 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 1672 return true; 1673 } 1674 case Intrinsic::localescape: { 1675 MachineBasicBlock &EntryMBB = MF->front(); 1676 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName()); 1677 1678 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 1679 // is the same on all targets. 1680 for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) { 1681 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts(); 1682 if (isa<ConstantPointerNull>(Arg)) 1683 continue; // Skip null pointers. They represent a hole in index space. 1684 1685 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg)); 1686 MCSymbol *FrameAllocSym = 1687 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName, 1688 Idx); 1689 1690 // This should be inserted at the start of the entry block. 1691 auto LocalEscape = 1692 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE) 1693 .addSym(FrameAllocSym) 1694 .addFrameIndex(FI); 1695 1696 EntryMBB.insert(EntryMBB.begin(), LocalEscape); 1697 } 1698 1699 return true; 1700 } 1701 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 1702 case Intrinsic::INTRINSIC: 1703 #include "llvm/IR/ConstrainedOps.def" 1704 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 1705 MIRBuilder); 1706 1707 } 1708 return false; 1709 } 1710 1711 bool IRTranslator::translateInlineAsm(const CallBase &CB, 1712 MachineIRBuilder &MIRBuilder) { 1713 1714 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 1715 1716 if (!ALI) { 1717 LLVM_DEBUG( 1718 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 1719 return false; 1720 } 1721 1722 return ALI->lowerInlineAsm( 1723 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 1724 } 1725 1726 bool IRTranslator::translateCallBase(const CallBase &CB, 1727 MachineIRBuilder &MIRBuilder) { 1728 ArrayRef<Register> Res = getOrCreateVRegs(CB); 1729 1730 SmallVector<ArrayRef<Register>, 8> Args; 1731 Register SwiftInVReg = 0; 1732 Register SwiftErrorVReg = 0; 1733 for (auto &Arg : CB.args()) { 1734 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1735 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 1736 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1737 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 1738 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 1739 &CB, &MIRBuilder.getMBB(), Arg)); 1740 Args.emplace_back(makeArrayRef(SwiftInVReg)); 1741 SwiftErrorVReg = 1742 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 1743 continue; 1744 } 1745 Args.push_back(getOrCreateVRegs(*Arg)); 1746 } 1747 1748 // We don't set HasCalls on MFI here yet because call lowering may decide to 1749 // optimize into tail calls. Instead, we defer that to selection where a final 1750 // scan is done to check if any instructions are calls. 1751 bool Success = 1752 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 1753 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 1754 1755 // Check if we just inserted a tail call. 1756 if (Success) { 1757 assert(!HasTailCall && "Can't tail call return twice from block?"); 1758 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1759 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 1760 } 1761 1762 return Success; 1763 } 1764 1765 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1766 const CallInst &CI = cast<CallInst>(U); 1767 auto TII = MF->getTarget().getIntrinsicInfo(); 1768 const Function *F = CI.getCalledFunction(); 1769 1770 // FIXME: support Windows dllimport function calls. 1771 if (F && (F->hasDLLImportStorageClass() || 1772 (MF->getTarget().getTargetTriple().isOSWindows() && 1773 F->hasExternalWeakLinkage()))) 1774 return false; 1775 1776 // FIXME: support control flow guard targets. 1777 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1778 return false; 1779 1780 if (CI.isInlineAsm()) 1781 return translateInlineAsm(CI, MIRBuilder); 1782 1783 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1784 if (F && F->isIntrinsic()) { 1785 ID = F->getIntrinsicID(); 1786 if (TII && ID == Intrinsic::not_intrinsic) 1787 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1788 } 1789 1790 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 1791 return translateCallBase(CI, MIRBuilder); 1792 1793 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1794 1795 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1796 return true; 1797 1798 ArrayRef<Register> ResultRegs; 1799 if (!CI.getType()->isVoidTy()) 1800 ResultRegs = getOrCreateVRegs(CI); 1801 1802 // Ignore the callsite attributes. Backend code is most likely not expecting 1803 // an intrinsic to sometimes have side effects and sometimes not. 1804 MachineInstrBuilder MIB = 1805 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 1806 if (isa<FPMathOperator>(CI)) 1807 MIB->copyIRFlags(CI); 1808 1809 for (auto &Arg : enumerate(CI.arg_operands())) { 1810 // If this is required to be an immediate, don't materialize it in a 1811 // register. 1812 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 1813 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 1814 // imm arguments are more convenient than cimm (and realistically 1815 // probably sufficient), so use them. 1816 assert(CI->getBitWidth() <= 64 && 1817 "large intrinsic immediates not handled"); 1818 MIB.addImm(CI->getSExtValue()); 1819 } else { 1820 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 1821 } 1822 } else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) { 1823 auto *MDN = dyn_cast<MDNode>(MD->getMetadata()); 1824 if (!MDN) // This was probably an MDString. 1825 return false; 1826 MIB.addMetadata(MDN); 1827 } else { 1828 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 1829 if (VRegs.size() > 1) 1830 return false; 1831 MIB.addUse(VRegs[0]); 1832 } 1833 } 1834 1835 // Add a MachineMemOperand if it is a target mem intrinsic. 1836 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1837 TargetLowering::IntrinsicInfo Info; 1838 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1839 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1840 Align Alignment = Info.align.getValueOr( 1841 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 1842 1843 uint64_t Size = Info.memVT.getStoreSize(); 1844 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1845 Info.flags, Size, Alignment)); 1846 } 1847 1848 return true; 1849 } 1850 1851 bool IRTranslator::translateInvoke(const User &U, 1852 MachineIRBuilder &MIRBuilder) { 1853 const InvokeInst &I = cast<InvokeInst>(U); 1854 MCContext &Context = MF->getContext(); 1855 1856 const BasicBlock *ReturnBB = I.getSuccessor(0); 1857 const BasicBlock *EHPadBB = I.getSuccessor(1); 1858 1859 const Function *Fn = I.getCalledFunction(); 1860 if (I.isInlineAsm()) 1861 return false; 1862 1863 // FIXME: support invoking patchpoint and statepoint intrinsics. 1864 if (Fn && Fn->isIntrinsic()) 1865 return false; 1866 1867 // FIXME: support whatever these are. 1868 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1869 return false; 1870 1871 // FIXME: support control flow guard targets. 1872 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1873 return false; 1874 1875 // FIXME: support Windows exception handling. 1876 if (!isa<LandingPadInst>(EHPadBB->front())) 1877 return false; 1878 1879 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1880 // the region covered by the try. 1881 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1882 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1883 1884 if (!translateCallBase(I, MIRBuilder)) 1885 return false; 1886 1887 MCSymbol *EndSymbol = Context.createTempSymbol(); 1888 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1889 1890 // FIXME: track probabilities. 1891 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1892 &ReturnMBB = getMBB(*ReturnBB); 1893 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1894 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1895 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1896 MIRBuilder.buildBr(ReturnMBB); 1897 1898 return true; 1899 } 1900 1901 bool IRTranslator::translateCallBr(const User &U, 1902 MachineIRBuilder &MIRBuilder) { 1903 // FIXME: Implement this. 1904 return false; 1905 } 1906 1907 bool IRTranslator::translateLandingPad(const User &U, 1908 MachineIRBuilder &MIRBuilder) { 1909 const LandingPadInst &LP = cast<LandingPadInst>(U); 1910 1911 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1912 1913 MBB.setIsEHPad(); 1914 1915 // If there aren't registers to copy the values into (e.g., during SjLj 1916 // exceptions), then don't bother. 1917 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1918 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1919 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1920 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1921 return true; 1922 1923 // If landingpad's return type is token type, we don't create DAG nodes 1924 // for its exception pointer and selector value. The extraction of exception 1925 // pointer or selector value from token type landingpads is not currently 1926 // supported. 1927 if (LP.getType()->isTokenTy()) 1928 return true; 1929 1930 // Add a label to mark the beginning of the landing pad. Deletion of the 1931 // landing pad can thus be detected via the MachineModuleInfo. 1932 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1933 .addSym(MF->addLandingPad(&MBB)); 1934 1935 LLT Ty = getLLTForType(*LP.getType(), *DL); 1936 Register Undef = MRI->createGenericVirtualRegister(Ty); 1937 MIRBuilder.buildUndef(Undef); 1938 1939 SmallVector<LLT, 2> Tys; 1940 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1941 Tys.push_back(getLLTForType(*Ty, *DL)); 1942 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1943 1944 // Mark exception register as live in. 1945 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1946 if (!ExceptionReg) 1947 return false; 1948 1949 MBB.addLiveIn(ExceptionReg); 1950 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 1951 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1952 1953 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1954 if (!SelectorReg) 1955 return false; 1956 1957 MBB.addLiveIn(SelectorReg); 1958 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1959 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1960 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1961 1962 return true; 1963 } 1964 1965 bool IRTranslator::translateAlloca(const User &U, 1966 MachineIRBuilder &MIRBuilder) { 1967 auto &AI = cast<AllocaInst>(U); 1968 1969 if (AI.isSwiftError()) 1970 return true; 1971 1972 if (AI.isStaticAlloca()) { 1973 Register Res = getOrCreateVReg(AI); 1974 int FI = getOrCreateFrameIndex(AI); 1975 MIRBuilder.buildFrameIndex(Res, FI); 1976 return true; 1977 } 1978 1979 // FIXME: support stack probing for Windows. 1980 if (MF->getTarget().getTargetTriple().isOSWindows()) 1981 return false; 1982 1983 // Now we're in the harder dynamic case. 1984 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 1985 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1986 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1987 if (MRI->getType(NumElts) != IntPtrTy) { 1988 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1989 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1990 NumElts = ExtElts; 1991 } 1992 1993 Type *Ty = AI.getAllocatedType(); 1994 1995 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1996 Register TySize = 1997 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 1998 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1999 2000 // Round the size of the allocation up to the stack alignment size 2001 // by add SA-1 to the size. This doesn't overflow because we're computing 2002 // an address inside an alloca. 2003 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 2004 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 2005 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 2006 MachineInstr::NoUWrap); 2007 auto AlignCst = 2008 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 2009 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 2010 2011 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 2012 if (Alignment <= StackAlign) 2013 Alignment = Align(1); 2014 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 2015 2016 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 2017 assert(MF->getFrameInfo().hasVarSizedObjects()); 2018 return true; 2019 } 2020 2021 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 2022 // FIXME: We may need more info about the type. Because of how LLT works, 2023 // we're completely discarding the i64/double distinction here (amongst 2024 // others). Fortunately the ABIs I know of where that matters don't use va_arg 2025 // anyway but that's not guaranteed. 2026 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 2027 {getOrCreateVReg(*U.getOperand(0)), 2028 DL->getABITypeAlign(U.getType()).value()}); 2029 return true; 2030 } 2031 2032 bool IRTranslator::translateInsertElement(const User &U, 2033 MachineIRBuilder &MIRBuilder) { 2034 // If it is a <1 x Ty> vector, use the scalar as it is 2035 // not a legal vector type in LLT. 2036 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1) 2037 return translateCopy(U, *U.getOperand(1), MIRBuilder); 2038 2039 Register Res = getOrCreateVReg(U); 2040 Register Val = getOrCreateVReg(*U.getOperand(0)); 2041 Register Elt = getOrCreateVReg(*U.getOperand(1)); 2042 Register Idx = getOrCreateVReg(*U.getOperand(2)); 2043 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 2044 return true; 2045 } 2046 2047 bool IRTranslator::translateExtractElement(const User &U, 2048 MachineIRBuilder &MIRBuilder) { 2049 // If it is a <1 x Ty> vector, use the scalar as it is 2050 // not a legal vector type in LLT. 2051 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 2052 return translateCopy(U, *U.getOperand(0), MIRBuilder); 2053 2054 Register Res = getOrCreateVReg(U); 2055 Register Val = getOrCreateVReg(*U.getOperand(0)); 2056 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2057 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 2058 Register Idx; 2059 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 2060 if (CI->getBitWidth() != PreferredVecIdxWidth) { 2061 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 2062 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 2063 Idx = getOrCreateVReg(*NewIdxCI); 2064 } 2065 } 2066 if (!Idx) 2067 Idx = getOrCreateVReg(*U.getOperand(1)); 2068 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 2069 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 2070 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0); 2071 } 2072 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 2073 return true; 2074 } 2075 2076 bool IRTranslator::translateShuffleVector(const User &U, 2077 MachineIRBuilder &MIRBuilder) { 2078 ArrayRef<int> Mask; 2079 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 2080 Mask = SVI->getShuffleMask(); 2081 else 2082 Mask = cast<ConstantExpr>(U).getShuffleMask(); 2083 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 2084 MIRBuilder 2085 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 2086 {getOrCreateVReg(*U.getOperand(0)), 2087 getOrCreateVReg(*U.getOperand(1))}) 2088 .addShuffleMask(MaskAlloc); 2089 return true; 2090 } 2091 2092 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 2093 const PHINode &PI = cast<PHINode>(U); 2094 2095 SmallVector<MachineInstr *, 4> Insts; 2096 for (auto Reg : getOrCreateVRegs(PI)) { 2097 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 2098 Insts.push_back(MIB.getInstr()); 2099 } 2100 2101 PendingPHIs.emplace_back(&PI, std::move(Insts)); 2102 return true; 2103 } 2104 2105 bool IRTranslator::translateAtomicCmpXchg(const User &U, 2106 MachineIRBuilder &MIRBuilder) { 2107 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 2108 2109 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2110 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2111 2112 Type *ResType = I.getType(); 2113 Type *ValType = ResType->Type::getStructElementType(0); 2114 2115 auto Res = getOrCreateVRegs(I); 2116 Register OldValRes = Res[0]; 2117 Register SuccessRes = Res[1]; 2118 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2119 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 2120 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 2121 2122 AAMDNodes AAMetadata; 2123 I.getAAMetadata(AAMetadata); 2124 2125 MIRBuilder.buildAtomicCmpXchgWithSuccess( 2126 OldValRes, SuccessRes, Addr, Cmp, NewVal, 2127 *MF->getMachineMemOperand( 2128 MachinePointerInfo(I.getPointerOperand()), Flags, 2129 DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr, 2130 I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering())); 2131 return true; 2132 } 2133 2134 bool IRTranslator::translateAtomicRMW(const User &U, 2135 MachineIRBuilder &MIRBuilder) { 2136 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2137 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2138 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2139 2140 Type *ResType = I.getType(); 2141 2142 Register Res = getOrCreateVReg(I); 2143 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2144 Register Val = getOrCreateVReg(*I.getValOperand()); 2145 2146 unsigned Opcode = 0; 2147 switch (I.getOperation()) { 2148 default: 2149 return false; 2150 case AtomicRMWInst::Xchg: 2151 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2152 break; 2153 case AtomicRMWInst::Add: 2154 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2155 break; 2156 case AtomicRMWInst::Sub: 2157 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2158 break; 2159 case AtomicRMWInst::And: 2160 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2161 break; 2162 case AtomicRMWInst::Nand: 2163 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2164 break; 2165 case AtomicRMWInst::Or: 2166 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2167 break; 2168 case AtomicRMWInst::Xor: 2169 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2170 break; 2171 case AtomicRMWInst::Max: 2172 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2173 break; 2174 case AtomicRMWInst::Min: 2175 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2176 break; 2177 case AtomicRMWInst::UMax: 2178 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2179 break; 2180 case AtomicRMWInst::UMin: 2181 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2182 break; 2183 case AtomicRMWInst::FAdd: 2184 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2185 break; 2186 case AtomicRMWInst::FSub: 2187 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2188 break; 2189 } 2190 2191 AAMDNodes AAMetadata; 2192 I.getAAMetadata(AAMetadata); 2193 2194 MIRBuilder.buildAtomicRMW( 2195 Opcode, Res, Addr, Val, 2196 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2197 Flags, DL->getTypeStoreSize(ResType), 2198 getMemOpAlign(I), AAMetadata, nullptr, 2199 I.getSyncScopeID(), I.getOrdering())); 2200 return true; 2201 } 2202 2203 bool IRTranslator::translateFence(const User &U, 2204 MachineIRBuilder &MIRBuilder) { 2205 const FenceInst &Fence = cast<FenceInst>(U); 2206 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2207 Fence.getSyncScopeID()); 2208 return true; 2209 } 2210 2211 bool IRTranslator::translateFreeze(const User &U, 2212 MachineIRBuilder &MIRBuilder) { 2213 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 2214 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 2215 2216 assert(DstRegs.size() == SrcRegs.size() && 2217 "Freeze with different source and destination type?"); 2218 2219 for (unsigned I = 0; I < DstRegs.size(); ++I) { 2220 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 2221 } 2222 2223 return true; 2224 } 2225 2226 void IRTranslator::finishPendingPhis() { 2227 #ifndef NDEBUG 2228 DILocationVerifier Verifier; 2229 GISelObserverWrapper WrapperObserver(&Verifier); 2230 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2231 #endif // ifndef NDEBUG 2232 for (auto &Phi : PendingPHIs) { 2233 const PHINode *PI = Phi.first; 2234 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2235 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2236 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2237 #ifndef NDEBUG 2238 Verifier.setCurrentInst(PI); 2239 #endif // ifndef NDEBUG 2240 2241 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2242 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2243 auto IRPred = PI->getIncomingBlock(i); 2244 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2245 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2246 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2247 continue; 2248 SeenPreds.insert(Pred); 2249 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2250 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2251 MIB.addUse(ValRegs[j]); 2252 MIB.addMBB(Pred); 2253 } 2254 } 2255 } 2256 } 2257 } 2258 2259 bool IRTranslator::valueIsSplit(const Value &V, 2260 SmallVectorImpl<uint64_t> *Offsets) { 2261 SmallVector<LLT, 4> SplitTys; 2262 if (Offsets && !Offsets->empty()) 2263 Offsets->clear(); 2264 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2265 return SplitTys.size() > 1; 2266 } 2267 2268 bool IRTranslator::translate(const Instruction &Inst) { 2269 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2270 // We only emit constants into the entry block from here. To prevent jumpy 2271 // debug behaviour set the line to 0. 2272 if (const DebugLoc &DL = Inst.getDebugLoc()) 2273 EntryBuilder->setDebugLoc( 2274 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 2275 else 2276 EntryBuilder->setDebugLoc(DebugLoc()); 2277 2278 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2279 if (TLI.fallBackToDAGISel(Inst)) 2280 return false; 2281 2282 switch (Inst.getOpcode()) { 2283 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2284 case Instruction::OPCODE: \ 2285 return translate##OPCODE(Inst, *CurBuilder.get()); 2286 #include "llvm/IR/Instruction.def" 2287 default: 2288 return false; 2289 } 2290 } 2291 2292 bool IRTranslator::translate(const Constant &C, Register Reg) { 2293 if (auto CI = dyn_cast<ConstantInt>(&C)) 2294 EntryBuilder->buildConstant(Reg, *CI); 2295 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2296 EntryBuilder->buildFConstant(Reg, *CF); 2297 else if (isa<UndefValue>(C)) 2298 EntryBuilder->buildUndef(Reg); 2299 else if (isa<ConstantPointerNull>(C)) 2300 EntryBuilder->buildConstant(Reg, 0); 2301 else if (auto GV = dyn_cast<GlobalValue>(&C)) 2302 EntryBuilder->buildGlobalValue(Reg, GV); 2303 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2304 if (!CAZ->getType()->isVectorTy()) 2305 return false; 2306 // Return the scalar if it is a <1 x Ty> vector. 2307 if (CAZ->getNumElements() == 1) 2308 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get()); 2309 SmallVector<Register, 4> Ops; 2310 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 2311 Constant &Elt = *CAZ->getElementValue(i); 2312 Ops.push_back(getOrCreateVReg(Elt)); 2313 } 2314 EntryBuilder->buildBuildVector(Reg, Ops); 2315 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2316 // Return the scalar if it is a <1 x Ty> vector. 2317 if (CV->getNumElements() == 1) 2318 return translateCopy(C, *CV->getElementAsConstant(0), 2319 *EntryBuilder.get()); 2320 SmallVector<Register, 4> Ops; 2321 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2322 Constant &Elt = *CV->getElementAsConstant(i); 2323 Ops.push_back(getOrCreateVReg(Elt)); 2324 } 2325 EntryBuilder->buildBuildVector(Reg, Ops); 2326 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2327 switch(CE->getOpcode()) { 2328 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2329 case Instruction::OPCODE: \ 2330 return translate##OPCODE(*CE, *EntryBuilder.get()); 2331 #include "llvm/IR/Instruction.def" 2332 default: 2333 return false; 2334 } 2335 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2336 if (CV->getNumOperands() == 1) 2337 return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get()); 2338 SmallVector<Register, 4> Ops; 2339 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2340 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2341 } 2342 EntryBuilder->buildBuildVector(Reg, Ops); 2343 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2344 EntryBuilder->buildBlockAddress(Reg, BA); 2345 } else 2346 return false; 2347 2348 return true; 2349 } 2350 2351 void IRTranslator::finalizeBasicBlock() { 2352 for (auto &JTCase : SL->JTCases) { 2353 // Emit header first, if it wasn't already emitted. 2354 if (!JTCase.first.Emitted) 2355 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 2356 2357 emitJumpTable(JTCase.second, JTCase.second.MBB); 2358 } 2359 SL->JTCases.clear(); 2360 } 2361 2362 void IRTranslator::finalizeFunction() { 2363 // Release the memory used by the different maps we 2364 // needed during the translation. 2365 PendingPHIs.clear(); 2366 VMap.reset(); 2367 FrameIndices.clear(); 2368 MachinePreds.clear(); 2369 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 2370 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 2371 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 2372 EntryBuilder.reset(); 2373 CurBuilder.reset(); 2374 FuncInfo.clear(); 2375 } 2376 2377 /// Returns true if a BasicBlock \p BB within a variadic function contains a 2378 /// variadic musttail call. 2379 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 2380 if (!IsVarArg) 2381 return false; 2382 2383 // Walk the block backwards, because tail calls usually only appear at the end 2384 // of a block. 2385 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 2386 const auto *CI = dyn_cast<CallInst>(&I); 2387 return CI && CI->isMustTailCall(); 2388 }); 2389 } 2390 2391 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 2392 MF = &CurMF; 2393 const Function &F = MF->getFunction(); 2394 if (F.empty()) 2395 return false; 2396 GISelCSEAnalysisWrapper &Wrapper = 2397 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 2398 // Set the CSEConfig and run the analysis. 2399 GISelCSEInfo *CSEInfo = nullptr; 2400 TPC = &getAnalysis<TargetPassConfig>(); 2401 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 2402 ? EnableCSEInIRTranslator 2403 : TPC->isGISelCSEEnabled(); 2404 2405 if (EnableCSE) { 2406 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2407 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 2408 EntryBuilder->setCSEInfo(CSEInfo); 2409 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2410 CurBuilder->setCSEInfo(CSEInfo); 2411 } else { 2412 EntryBuilder = std::make_unique<MachineIRBuilder>(); 2413 CurBuilder = std::make_unique<MachineIRBuilder>(); 2414 } 2415 CLI = MF->getSubtarget().getCallLowering(); 2416 CurBuilder->setMF(*MF); 2417 EntryBuilder->setMF(*MF); 2418 MRI = &MF->getRegInfo(); 2419 DL = &F.getParent()->getDataLayout(); 2420 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2421 FuncInfo.MF = MF; 2422 FuncInfo.BPI = nullptr; 2423 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2424 const TargetMachine &TM = MF->getTarget(); 2425 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 2426 SL->init(TLI, TM, *DL); 2427 2428 EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); 2429 2430 assert(PendingPHIs.empty() && "stale PHIs"); 2431 2432 if (!DL->isLittleEndian()) { 2433 // Currently we don't properly handle big endian code. 2434 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2435 F.getSubprogram(), &F.getEntryBlock()); 2436 R << "unable to translate in big endian mode"; 2437 reportTranslationError(*MF, *TPC, *ORE, R); 2438 } 2439 2440 // Release the per-function state when we return, whether we succeeded or not. 2441 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 2442 2443 // Setup a separate basic-block for the arguments and constants 2444 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 2445 MF->push_back(EntryBB); 2446 EntryBuilder->setMBB(*EntryBB); 2447 2448 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 2449 SwiftError.setFunction(CurMF); 2450 SwiftError.createEntriesInEntryBlock(DbgLoc); 2451 2452 bool IsVarArg = F.isVarArg(); 2453 bool HasMustTailInVarArgFn = false; 2454 2455 // Create all blocks, in IR order, to preserve the layout. 2456 for (const BasicBlock &BB: F) { 2457 auto *&MBB = BBToMBB[&BB]; 2458 2459 MBB = MF->CreateMachineBasicBlock(&BB); 2460 MF->push_back(MBB); 2461 2462 if (BB.hasAddressTaken()) 2463 MBB->setHasAddressTaken(); 2464 2465 if (!HasMustTailInVarArgFn) 2466 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 2467 } 2468 2469 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 2470 2471 // Make our arguments/constants entry block fallthrough to the IR entry block. 2472 EntryBB->addSuccessor(&getMBB(F.front())); 2473 2474 if (CLI->fallBackToDAGISel(F)) { 2475 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2476 F.getSubprogram(), &F.getEntryBlock()); 2477 R << "unable to lower function: " << ore::NV("Prototype", F.getType()); 2478 reportTranslationError(*MF, *TPC, *ORE, R); 2479 return false; 2480 } 2481 2482 // Lower the actual args into this basic block. 2483 SmallVector<ArrayRef<Register>, 8> VRegArgs; 2484 for (const Argument &Arg: F.args()) { 2485 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 2486 continue; // Don't handle zero sized types. 2487 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 2488 VRegArgs.push_back(VRegs); 2489 2490 if (Arg.hasSwiftErrorAttr()) { 2491 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 2492 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 2493 } 2494 } 2495 2496 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 2497 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2498 F.getSubprogram(), &F.getEntryBlock()); 2499 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 2500 reportTranslationError(*MF, *TPC, *ORE, R); 2501 return false; 2502 } 2503 2504 // Need to visit defs before uses when translating instructions. 2505 GISelObserverWrapper WrapperObserver; 2506 if (EnableCSE && CSEInfo) 2507 WrapperObserver.addObserver(CSEInfo); 2508 { 2509 ReversePostOrderTraversal<const Function *> RPOT(&F); 2510 #ifndef NDEBUG 2511 DILocationVerifier Verifier; 2512 WrapperObserver.addObserver(&Verifier); 2513 #endif // ifndef NDEBUG 2514 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2515 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 2516 for (const BasicBlock *BB : RPOT) { 2517 MachineBasicBlock &MBB = getMBB(*BB); 2518 // Set the insertion point of all the following translations to 2519 // the end of this basic block. 2520 CurBuilder->setMBB(MBB); 2521 HasTailCall = false; 2522 for (const Instruction &Inst : *BB) { 2523 // If we translated a tail call in the last step, then we know 2524 // everything after the call is either a return, or something that is 2525 // handled by the call itself. (E.g. a lifetime marker or assume 2526 // intrinsic.) In this case, we should stop translating the block and 2527 // move on. 2528 if (HasTailCall) 2529 break; 2530 #ifndef NDEBUG 2531 Verifier.setCurrentInst(&Inst); 2532 #endif // ifndef NDEBUG 2533 if (translate(Inst)) 2534 continue; 2535 2536 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2537 Inst.getDebugLoc(), BB); 2538 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 2539 2540 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 2541 std::string InstStrStorage; 2542 raw_string_ostream InstStr(InstStrStorage); 2543 InstStr << Inst; 2544 2545 R << ": '" << InstStr.str() << "'"; 2546 } 2547 2548 reportTranslationError(*MF, *TPC, *ORE, R); 2549 return false; 2550 } 2551 2552 finalizeBasicBlock(); 2553 } 2554 #ifndef NDEBUG 2555 WrapperObserver.removeObserver(&Verifier); 2556 #endif 2557 } 2558 2559 finishPendingPhis(); 2560 2561 SwiftError.propagateVRegs(); 2562 2563 // Merge the argument lowering and constants block with its single 2564 // successor, the LLVM-IR entry block. We want the basic block to 2565 // be maximal. 2566 assert(EntryBB->succ_size() == 1 && 2567 "Custom BB used for lowering should have only one successor"); 2568 // Get the successor of the current entry block. 2569 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 2570 assert(NewEntryBB.pred_size() == 1 && 2571 "LLVM-IR entry block has a predecessor!?"); 2572 // Move all the instruction from the current entry block to the 2573 // new entry block. 2574 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 2575 EntryBB->end()); 2576 2577 // Update the live-in information for the new entry block. 2578 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 2579 NewEntryBB.addLiveIn(LiveIn); 2580 NewEntryBB.sortUniqueLiveIns(); 2581 2582 // Get rid of the now empty basic block. 2583 EntryBB->removeSuccessor(&NewEntryBB); 2584 MF->remove(EntryBB); 2585 MF->DeleteMachineBasicBlock(EntryBB); 2586 2587 assert(&MF->front() == &NewEntryBB && 2588 "New entry wasn't next in the list of basic block!"); 2589 2590 // Initialize stack protector information. 2591 StackProtector &SP = getAnalysis<StackProtector>(); 2592 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2593 2594 return false; 2595 } 2596