1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 22 #include "llvm/CodeGen/LowLevelType.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/StackProtector.h" 31 #include "llvm/CodeGen/TargetFrameLowering.h" 32 #include "llvm/CodeGen/TargetLowering.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GetElementPtrTypeIterator.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/LowLevelTypeImpl.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetIntrinsicInfo.h" 65 #include "llvm/Target/TargetMachine.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <iterator> 70 #include <string> 71 #include <utility> 72 #include <vector> 73 74 #define DEBUG_TYPE "irtranslator" 75 76 using namespace llvm; 77 78 char IRTranslator::ID = 0; 79 80 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 81 false, false) 82 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 83 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 84 false, false) 85 86 static void reportTranslationError(MachineFunction &MF, 87 const TargetPassConfig &TPC, 88 OptimizationRemarkEmitter &ORE, 89 OptimizationRemarkMissed &R) { 90 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 91 92 // Print the function name explicitly if we don't have a debug location (which 93 // makes the diagnostic less useful) or if we're going to emit a raw error. 94 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 95 R << (" (in function: " + MF.getName() + ")").str(); 96 97 if (TPC.isGlobalISelAbortEnabled()) 98 report_fatal_error(R.getMsg()); 99 else 100 ORE.emit(R); 101 } 102 103 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { 104 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 105 } 106 107 #ifndef NDEBUG 108 /// Verify that every instruction created has the same DILocation as the 109 /// instruction being translated. 110 class DILocationVerifier : MachineFunction::Delegate { 111 MachineFunction &MF; 112 const Instruction *CurrInst = nullptr; 113 114 public: 115 DILocationVerifier(MachineFunction &MF) : MF(MF) { MF.setDelegate(this); } 116 ~DILocationVerifier() { MF.resetDelegate(this); } 117 118 const Instruction *getCurrentInst() const { return CurrInst; } 119 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 120 121 void MF_HandleInsertion(const MachineInstr &MI) override { 122 assert(getCurrentInst() && "Inserted instruction without a current MI"); 123 124 // Only print the check message if we're actually checking it. 125 #ifndef NDEBUG 126 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 127 << " was copied to " << MI); 128 #endif 129 assert(CurrInst->getDebugLoc() == MI.getDebugLoc() && 130 "Line info was not transferred to all instructions"); 131 } 132 void MF_HandleRemoval(const MachineInstr &MI) override {} 133 }; 134 #endif // ifndef NDEBUG 135 136 137 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 138 AU.addRequired<StackProtector>(); 139 AU.addRequired<TargetPassConfig>(); 140 getSelectionDAGFallbackAnalysisUsage(AU); 141 MachineFunctionPass::getAnalysisUsage(AU); 142 } 143 144 static void computeValueLLTs(const DataLayout &DL, Type &Ty, 145 SmallVectorImpl<LLT> &ValueTys, 146 SmallVectorImpl<uint64_t> *Offsets = nullptr, 147 uint64_t StartingOffset = 0) { 148 // Given a struct type, recursively traverse the elements. 149 if (StructType *STy = dyn_cast<StructType>(&Ty)) { 150 const StructLayout *SL = DL.getStructLayout(STy); 151 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) 152 computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, 153 StartingOffset + SL->getElementOffset(I)); 154 return; 155 } 156 // Given an array type, recursively traverse the elements. 157 if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { 158 Type *EltTy = ATy->getElementType(); 159 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 160 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 161 computeValueLLTs(DL, *EltTy, ValueTys, Offsets, 162 StartingOffset + i * EltSize); 163 return; 164 } 165 // Interpret void as zero return values. 166 if (Ty.isVoidTy()) 167 return; 168 // Base case: we can get an LLT for this LLVM IR type. 169 ValueTys.push_back(getLLTForType(Ty, DL)); 170 if (Offsets != nullptr) 171 Offsets->push_back(StartingOffset * 8); 172 } 173 174 IRTranslator::ValueToVRegInfo::VRegListT & 175 IRTranslator::allocateVRegs(const Value &Val) { 176 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 177 auto *Regs = VMap.getVRegs(Val); 178 auto *Offsets = VMap.getOffsets(Val); 179 SmallVector<LLT, 4> SplitTys; 180 computeValueLLTs(*DL, *Val.getType(), SplitTys, 181 Offsets->empty() ? Offsets : nullptr); 182 for (unsigned i = 0; i < SplitTys.size(); ++i) 183 Regs->push_back(0); 184 return *Regs; 185 } 186 187 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) { 188 auto VRegsIt = VMap.findVRegs(Val); 189 if (VRegsIt != VMap.vregs_end()) 190 return *VRegsIt->second; 191 192 if (Val.getType()->isVoidTy()) 193 return *VMap.getVRegs(Val); 194 195 // Create entry for this type. 196 auto *VRegs = VMap.getVRegs(Val); 197 auto *Offsets = VMap.getOffsets(Val); 198 199 assert(Val.getType()->isSized() && 200 "Don't know how to create an empty vreg"); 201 202 SmallVector<LLT, 4> SplitTys; 203 computeValueLLTs(*DL, *Val.getType(), SplitTys, 204 Offsets->empty() ? Offsets : nullptr); 205 206 if (!isa<Constant>(Val)) { 207 for (auto Ty : SplitTys) 208 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 209 return *VRegs; 210 } 211 212 if (Val.getType()->isAggregateType()) { 213 // UndefValue, ConstantAggregateZero 214 auto &C = cast<Constant>(Val); 215 unsigned Idx = 0; 216 while (auto Elt = C.getAggregateElement(Idx++)) { 217 auto EltRegs = getOrCreateVRegs(*Elt); 218 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 219 } 220 } else { 221 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 222 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 223 bool Success = translate(cast<Constant>(Val), VRegs->front()); 224 if (!Success) { 225 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 226 MF->getFunction().getSubprogram(), 227 &MF->getFunction().getEntryBlock()); 228 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 229 reportTranslationError(*MF, *TPC, *ORE, R); 230 return *VRegs; 231 } 232 } 233 234 return *VRegs; 235 } 236 237 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 238 if (FrameIndices.find(&AI) != FrameIndices.end()) 239 return FrameIndices[&AI]; 240 241 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 242 unsigned Size = 243 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 244 245 // Always allocate at least one byte. 246 Size = std::max(Size, 1u); 247 248 unsigned Alignment = AI.getAlignment(); 249 if (!Alignment) 250 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 251 252 int &FI = FrameIndices[&AI]; 253 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 254 return FI; 255 } 256 257 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 258 unsigned Alignment = 0; 259 Type *ValTy = nullptr; 260 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 261 Alignment = SI->getAlignment(); 262 ValTy = SI->getValueOperand()->getType(); 263 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 264 Alignment = LI->getAlignment(); 265 ValTy = LI->getType(); 266 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 267 // TODO(PR27168): This instruction has no alignment attribute, but unlike 268 // the default alignment for load/store, the default here is to assume 269 // it has NATURAL alignment, not DataLayout-specified alignment. 270 const DataLayout &DL = AI->getModule()->getDataLayout(); 271 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 272 ValTy = AI->getCompareOperand()->getType(); 273 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 274 // TODO(PR27168): This instruction has no alignment attribute, but unlike 275 // the default alignment for load/store, the default here is to assume 276 // it has NATURAL alignment, not DataLayout-specified alignment. 277 const DataLayout &DL = AI->getModule()->getDataLayout(); 278 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 279 ValTy = AI->getType(); 280 } else { 281 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 282 R << "unable to translate memop: " << ore::NV("Opcode", &I); 283 reportTranslationError(*MF, *TPC, *ORE, R); 284 return 1; 285 } 286 287 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 288 } 289 290 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 291 MachineBasicBlock *&MBB = BBToMBB[&BB]; 292 assert(MBB && "BasicBlock was not encountered before"); 293 return *MBB; 294 } 295 296 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 297 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 298 MachinePreds[Edge].push_back(NewPred); 299 } 300 301 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 302 MachineIRBuilder &MIRBuilder) { 303 // FIXME: handle signed/unsigned wrapping flags. 304 305 // Get or create a virtual register for each value. 306 // Unless the value is a Constant => loadimm cst? 307 // or inline constant each time? 308 // Creation of a virtual register needs to have a size. 309 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 310 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 311 unsigned Res = getOrCreateVReg(U); 312 auto FBinOp = MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); 313 if (isa<Instruction>(U)) { 314 MachineInstr *FBinOpMI = FBinOp.getInstr(); 315 const Instruction &I = cast<Instruction>(U); 316 FBinOpMI->copyIRFlags(I); 317 } 318 return true; 319 } 320 321 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 322 // -0.0 - X --> G_FNEG 323 if (isa<Constant>(U.getOperand(0)) && 324 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 325 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 326 .addDef(getOrCreateVReg(U)) 327 .addUse(getOrCreateVReg(*U.getOperand(1))); 328 return true; 329 } 330 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 331 } 332 333 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 334 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 335 .addDef(getOrCreateVReg(U)) 336 .addUse(getOrCreateVReg(*U.getOperand(1))); 337 return true; 338 } 339 340 bool IRTranslator::translateCompare(const User &U, 341 MachineIRBuilder &MIRBuilder) { 342 const CmpInst *CI = dyn_cast<CmpInst>(&U); 343 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 344 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 345 unsigned Res = getOrCreateVReg(U); 346 CmpInst::Predicate Pred = 347 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 348 cast<ConstantExpr>(U).getPredicate()); 349 if (CmpInst::isIntPredicate(Pred)) 350 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 351 else if (Pred == CmpInst::FCMP_FALSE) 352 MIRBuilder.buildCopy( 353 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 354 else if (Pred == CmpInst::FCMP_TRUE) 355 MIRBuilder.buildCopy( 356 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 357 else { 358 auto FCmp = MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); 359 FCmp->copyIRFlags(*CI); 360 } 361 362 return true; 363 } 364 365 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 366 const ReturnInst &RI = cast<ReturnInst>(U); 367 const Value *Ret = RI.getReturnValue(); 368 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 369 Ret = nullptr; 370 371 ArrayRef<unsigned> VRegs; 372 if (Ret) 373 VRegs = getOrCreateVRegs(*Ret); 374 375 // The target may mess up with the insertion point, but 376 // this is not important as a return is the last instruction 377 // of the block anyway. 378 379 return CLI->lowerReturn(MIRBuilder, Ret, VRegs); 380 } 381 382 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 383 const BranchInst &BrInst = cast<BranchInst>(U); 384 unsigned Succ = 0; 385 if (!BrInst.isUnconditional()) { 386 // We want a G_BRCOND to the true BB followed by an unconditional branch. 387 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 388 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 389 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 390 MIRBuilder.buildBrCond(Tst, TrueBB); 391 } 392 393 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 394 MachineBasicBlock &TgtBB = getMBB(BrTgt); 395 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 396 397 // If the unconditional target is the layout successor, fallthrough. 398 if (!CurBB.isLayoutSuccessor(&TgtBB)) 399 MIRBuilder.buildBr(TgtBB); 400 401 // Link successors. 402 for (const BasicBlock *Succ : successors(&BrInst)) 403 CurBB.addSuccessor(&getMBB(*Succ)); 404 return true; 405 } 406 407 bool IRTranslator::translateSwitch(const User &U, 408 MachineIRBuilder &MIRBuilder) { 409 // For now, just translate as a chain of conditional branches. 410 // FIXME: could we share most of the logic/code in 411 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 412 // At first sight, it seems most of the logic in there is independent of 413 // SelectionDAG-specifics and a lot of work went in to optimize switch 414 // lowering in there. 415 416 const SwitchInst &SwInst = cast<SwitchInst>(U); 417 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 418 const BasicBlock *OrigBB = SwInst.getParent(); 419 420 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 421 for (auto &CaseIt : SwInst.cases()) { 422 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 423 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 424 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 425 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 426 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 427 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 428 429 MIRBuilder.buildBrCond(Tst, TrueMBB); 430 CurMBB.addSuccessor(&TrueMBB); 431 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 432 433 MachineBasicBlock *FalseMBB = 434 MF->CreateMachineBasicBlock(SwInst.getParent()); 435 // Insert the comparison blocks one after the other. 436 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 437 MIRBuilder.buildBr(*FalseMBB); 438 CurMBB.addSuccessor(FalseMBB); 439 440 MIRBuilder.setMBB(*FalseMBB); 441 } 442 // handle default case 443 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 444 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 445 MIRBuilder.buildBr(DefaultMBB); 446 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 447 CurMBB.addSuccessor(&DefaultMBB); 448 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 449 450 return true; 451 } 452 453 bool IRTranslator::translateIndirectBr(const User &U, 454 MachineIRBuilder &MIRBuilder) { 455 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 456 457 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 458 MIRBuilder.buildBrIndirect(Tgt); 459 460 // Link successors. 461 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 462 for (const BasicBlock *Succ : successors(&BrInst)) 463 CurBB.addSuccessor(&getMBB(*Succ)); 464 465 return true; 466 } 467 468 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 469 const LoadInst &LI = cast<LoadInst>(U); 470 471 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 472 : MachineMemOperand::MONone; 473 Flags |= MachineMemOperand::MOLoad; 474 475 if (DL->getTypeStoreSize(LI.getType()) == 0) 476 return true; 477 478 ArrayRef<unsigned> Regs = getOrCreateVRegs(LI); 479 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 480 unsigned Base = getOrCreateVReg(*LI.getPointerOperand()); 481 482 for (unsigned i = 0; i < Regs.size(); ++i) { 483 unsigned Addr = 0; 484 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); 485 486 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 487 unsigned BaseAlign = getMemOpAlignment(LI); 488 auto MMO = MF->getMachineMemOperand( 489 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 490 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 491 LI.getSyncScopeID(), LI.getOrdering()); 492 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 493 } 494 495 return true; 496 } 497 498 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 499 const StoreInst &SI = cast<StoreInst>(U); 500 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 501 : MachineMemOperand::MONone; 502 Flags |= MachineMemOperand::MOStore; 503 504 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 505 return true; 506 507 ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand()); 508 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 509 unsigned Base = getOrCreateVReg(*SI.getPointerOperand()); 510 511 for (unsigned i = 0; i < Vals.size(); ++i) { 512 unsigned Addr = 0; 513 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); 514 515 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 516 unsigned BaseAlign = getMemOpAlignment(SI); 517 auto MMO = MF->getMachineMemOperand( 518 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 519 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 520 SI.getSyncScopeID(), SI.getOrdering()); 521 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 522 } 523 return true; 524 } 525 526 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 527 const Value *Src = U.getOperand(0); 528 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 529 530 // getIndexedOffsetInType is designed for GEPs, so the first index is the 531 // usual array element rather than looking into the actual aggregate. 532 SmallVector<Value *, 1> Indices; 533 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 534 535 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 536 for (auto Idx : EVI->indices()) 537 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 538 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 539 for (auto Idx : IVI->indices()) 540 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 541 } else { 542 for (unsigned i = 1; i < U.getNumOperands(); ++i) 543 Indices.push_back(U.getOperand(i)); 544 } 545 546 return 8 * static_cast<uint64_t>( 547 DL.getIndexedOffsetInType(Src->getType(), Indices)); 548 } 549 550 bool IRTranslator::translateExtractValue(const User &U, 551 MachineIRBuilder &MIRBuilder) { 552 const Value *Src = U.getOperand(0); 553 uint64_t Offset = getOffsetFromIndices(U, *DL); 554 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 555 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 556 unsigned Idx = std::lower_bound(Offsets.begin(), Offsets.end(), Offset) - 557 Offsets.begin(); 558 auto &DstRegs = allocateVRegs(U); 559 560 for (unsigned i = 0; i < DstRegs.size(); ++i) 561 DstRegs[i] = SrcRegs[Idx++]; 562 563 return true; 564 } 565 566 bool IRTranslator::translateInsertValue(const User &U, 567 MachineIRBuilder &MIRBuilder) { 568 const Value *Src = U.getOperand(0); 569 uint64_t Offset = getOffsetFromIndices(U, *DL); 570 auto &DstRegs = allocateVRegs(U); 571 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 572 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 573 ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 574 auto InsertedIt = InsertedRegs.begin(); 575 576 for (unsigned i = 0; i < DstRegs.size(); ++i) { 577 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 578 DstRegs[i] = *InsertedIt++; 579 else 580 DstRegs[i] = SrcRegs[i]; 581 } 582 583 return true; 584 } 585 586 bool IRTranslator::translateSelect(const User &U, 587 MachineIRBuilder &MIRBuilder) { 588 unsigned Tst = getOrCreateVReg(*U.getOperand(0)); 589 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U); 590 ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 591 ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 592 593 const SelectInst &SI = cast<SelectInst>(U); 594 const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition()); 595 for (unsigned i = 0; i < ResRegs.size(); ++i) { 596 auto Select = 597 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i]); 598 if (Cmp && isa<FPMathOperator>(Cmp)) { 599 Select->copyIRFlags(*Cmp); 600 } 601 } 602 603 return true; 604 } 605 606 bool IRTranslator::translateBitCast(const User &U, 607 MachineIRBuilder &MIRBuilder) { 608 // If we're bitcasting to the source type, we can reuse the source vreg. 609 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 610 getLLTForType(*U.getType(), *DL)) { 611 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 612 auto &Regs = *VMap.getVRegs(U); 613 // If we already assigned a vreg for this bitcast, we can't change that. 614 // Emit a copy to satisfy the users we already emitted. 615 if (!Regs.empty()) 616 MIRBuilder.buildCopy(Regs[0], SrcReg); 617 else { 618 Regs.push_back(SrcReg); 619 VMap.getOffsets(U)->push_back(0); 620 } 621 return true; 622 } 623 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 624 } 625 626 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 627 MachineIRBuilder &MIRBuilder) { 628 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 629 unsigned Res = getOrCreateVReg(U); 630 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 631 return true; 632 } 633 634 bool IRTranslator::translateGetElementPtr(const User &U, 635 MachineIRBuilder &MIRBuilder) { 636 // FIXME: support vector GEPs. 637 if (U.getType()->isVectorTy()) 638 return false; 639 640 Value &Op0 = *U.getOperand(0); 641 unsigned BaseReg = getOrCreateVReg(Op0); 642 Type *PtrIRTy = Op0.getType(); 643 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 644 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 645 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 646 647 int64_t Offset = 0; 648 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 649 GTI != E; ++GTI) { 650 const Value *Idx = GTI.getOperand(); 651 if (StructType *StTy = GTI.getStructTypeOrNull()) { 652 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 653 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 654 continue; 655 } else { 656 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 657 658 // If this is a scalar constant or a splat vector of constants, 659 // handle it quickly. 660 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 661 Offset += ElementSize * CI->getSExtValue(); 662 continue; 663 } 664 665 if (Offset != 0) { 666 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 667 unsigned OffsetReg = 668 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 669 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 670 671 BaseReg = NewBaseReg; 672 Offset = 0; 673 } 674 675 unsigned IdxReg = getOrCreateVReg(*Idx); 676 if (MRI->getType(IdxReg) != OffsetTy) { 677 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 678 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 679 IdxReg = NewIdxReg; 680 } 681 682 // N = N + Idx * ElementSize; 683 // Avoid doing it for ElementSize of 1. 684 unsigned GepOffsetReg; 685 if (ElementSize != 1) { 686 unsigned ElementSizeReg = 687 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize)); 688 689 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 690 MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg); 691 } else 692 GepOffsetReg = IdxReg; 693 694 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 695 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); 696 BaseReg = NewBaseReg; 697 } 698 } 699 700 if (Offset != 0) { 701 unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 702 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 703 return true; 704 } 705 706 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 707 return true; 708 } 709 710 bool IRTranslator::translateMemfunc(const CallInst &CI, 711 MachineIRBuilder &MIRBuilder, 712 unsigned ID) { 713 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 714 Type *DstTy = CI.getArgOperand(0)->getType(); 715 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 716 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 717 return false; 718 719 SmallVector<CallLowering::ArgInfo, 8> Args; 720 for (int i = 0; i < 3; ++i) { 721 const auto &Arg = CI.getArgOperand(i); 722 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 723 } 724 725 const char *Callee; 726 switch (ID) { 727 case Intrinsic::memmove: 728 case Intrinsic::memcpy: { 729 Type *SrcTy = CI.getArgOperand(1)->getType(); 730 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 731 return false; 732 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 733 break; 734 } 735 case Intrinsic::memset: 736 Callee = "memset"; 737 break; 738 default: 739 return false; 740 } 741 742 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 743 MachineOperand::CreateES(Callee), 744 CallLowering::ArgInfo(0, CI.getType()), Args); 745 } 746 747 void IRTranslator::getStackGuard(unsigned DstReg, 748 MachineIRBuilder &MIRBuilder) { 749 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 750 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 751 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 752 MIB.addDef(DstReg); 753 754 auto &TLI = *MF->getSubtarget().getTargetLowering(); 755 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 756 if (!Global) 757 return; 758 759 MachinePointerInfo MPInfo(Global); 760 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 761 MachineMemOperand::MODereferenceable; 762 MachineMemOperand *MemRef = 763 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 764 DL->getPointerABIAlignment(0)); 765 MIB.setMemRefs({MemRef}); 766 } 767 768 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 769 MachineIRBuilder &MIRBuilder) { 770 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI); 771 MIRBuilder.buildInstr(Op) 772 .addDef(ResRegs[0]) 773 .addDef(ResRegs[1]) 774 .addUse(getOrCreateVReg(*CI.getOperand(0))) 775 .addUse(getOrCreateVReg(*CI.getOperand(1))); 776 777 return true; 778 } 779 780 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 781 MachineIRBuilder &MIRBuilder) { 782 switch (ID) { 783 default: 784 break; 785 case Intrinsic::lifetime_start: 786 case Intrinsic::lifetime_end: 787 // Stack coloring is not enabled in O0 (which we care about now) so we can 788 // drop these. Make sure someone notices when we start compiling at higher 789 // opts though. 790 if (MF->getTarget().getOptLevel() != CodeGenOpt::None) 791 return false; 792 return true; 793 case Intrinsic::dbg_declare: { 794 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 795 assert(DI.getVariable() && "Missing variable"); 796 797 const Value *Address = DI.getAddress(); 798 if (!Address || isa<UndefValue>(Address)) { 799 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 800 return true; 801 } 802 803 assert(DI.getVariable()->isValidLocationForIntrinsic( 804 MIRBuilder.getDebugLoc()) && 805 "Expected inlined-at fields to agree"); 806 auto AI = dyn_cast<AllocaInst>(Address); 807 if (AI && AI->isStaticAlloca()) { 808 // Static allocas are tracked at the MF level, no need for DBG_VALUE 809 // instructions (in fact, they get ignored if they *do* exist). 810 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 811 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 812 } else { 813 // A dbg.declare describes the address of a source variable, so lower it 814 // into an indirect DBG_VALUE. 815 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 816 DI.getVariable(), DI.getExpression()); 817 } 818 return true; 819 } 820 case Intrinsic::dbg_label: { 821 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 822 assert(DI.getLabel() && "Missing label"); 823 824 assert(DI.getLabel()->isValidLocationForIntrinsic( 825 MIRBuilder.getDebugLoc()) && 826 "Expected inlined-at fields to agree"); 827 828 MIRBuilder.buildDbgLabel(DI.getLabel()); 829 return true; 830 } 831 case Intrinsic::vaend: 832 // No target I know of cares about va_end. Certainly no in-tree target 833 // does. Simplest intrinsic ever! 834 return true; 835 case Intrinsic::vastart: { 836 auto &TLI = *MF->getSubtarget().getTargetLowering(); 837 Value *Ptr = CI.getArgOperand(0); 838 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 839 840 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 841 .addUse(getOrCreateVReg(*Ptr)) 842 .addMemOperand(MF->getMachineMemOperand( 843 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0)); 844 return true; 845 } 846 case Intrinsic::dbg_value: { 847 // This form of DBG_VALUE is target-independent. 848 const DbgValueInst &DI = cast<DbgValueInst>(CI); 849 const Value *V = DI.getValue(); 850 assert(DI.getVariable()->isValidLocationForIntrinsic( 851 MIRBuilder.getDebugLoc()) && 852 "Expected inlined-at fields to agree"); 853 if (!V) { 854 // Currently the optimizer can produce this; insert an undef to 855 // help debugging. Probably the optimizer should not do this. 856 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 857 } else if (const auto *CI = dyn_cast<Constant>(V)) { 858 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 859 } else { 860 unsigned Reg = getOrCreateVReg(*V); 861 // FIXME: This does not handle register-indirect values at offset 0. The 862 // direct/indirect thing shouldn't really be handled by something as 863 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 864 // pretty baked in right now. 865 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 866 } 867 return true; 868 } 869 case Intrinsic::uadd_with_overflow: 870 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 871 case Intrinsic::sadd_with_overflow: 872 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 873 case Intrinsic::usub_with_overflow: 874 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 875 case Intrinsic::ssub_with_overflow: 876 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 877 case Intrinsic::umul_with_overflow: 878 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 879 case Intrinsic::smul_with_overflow: 880 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 881 case Intrinsic::pow: { 882 auto Pow = MIRBuilder.buildInstr(TargetOpcode::G_FPOW) 883 .addDef(getOrCreateVReg(CI)) 884 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 885 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 886 Pow->copyIRFlags(CI); 887 return true; 888 } 889 case Intrinsic::exp: { 890 auto Exp = MIRBuilder.buildInstr(TargetOpcode::G_FEXP) 891 .addDef(getOrCreateVReg(CI)) 892 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 893 Exp->copyIRFlags(CI); 894 return true; 895 } 896 case Intrinsic::exp2: { 897 auto Exp2 = MIRBuilder.buildInstr(TargetOpcode::G_FEXP2) 898 .addDef(getOrCreateVReg(CI)) 899 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 900 Exp2->copyIRFlags(CI); 901 return true; 902 } 903 case Intrinsic::log: { 904 auto Log = MIRBuilder.buildInstr(TargetOpcode::G_FLOG) 905 .addDef(getOrCreateVReg(CI)) 906 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 907 Log->copyIRFlags(CI); 908 return true; 909 } 910 case Intrinsic::log2: { 911 auto Log2 = MIRBuilder.buildInstr(TargetOpcode::G_FLOG2) 912 .addDef(getOrCreateVReg(CI)) 913 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 914 Log2->copyIRFlags(CI); 915 return true; 916 } 917 case Intrinsic::log10: { 918 auto Log10 = MIRBuilder.buildInstr(TargetOpcode::G_FLOG10) 919 .addDef(getOrCreateVReg(CI)) 920 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 921 Log10->copyIRFlags(CI); 922 return true; 923 } 924 case Intrinsic::fabs: { 925 auto Fabs = MIRBuilder.buildInstr(TargetOpcode::G_FABS) 926 .addDef(getOrCreateVReg(CI)) 927 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 928 Fabs->copyIRFlags(CI); 929 return true; 930 } 931 case Intrinsic::trunc: 932 MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_TRUNC) 933 .addDef(getOrCreateVReg(CI)) 934 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 935 return true; 936 case Intrinsic::round: 937 MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_ROUND) 938 .addDef(getOrCreateVReg(CI)) 939 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 940 return true; 941 case Intrinsic::fma: { 942 auto FMA = MIRBuilder.buildInstr(TargetOpcode::G_FMA) 943 .addDef(getOrCreateVReg(CI)) 944 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 945 .addUse(getOrCreateVReg(*CI.getArgOperand(1))) 946 .addUse(getOrCreateVReg(*CI.getArgOperand(2))); 947 FMA->copyIRFlags(CI); 948 return true; 949 } 950 case Intrinsic::fmuladd: { 951 const TargetMachine &TM = MF->getTarget(); 952 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 953 unsigned Dst = getOrCreateVReg(CI); 954 unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 955 unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 956 unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 957 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 958 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 959 // TODO: Revisit this to see if we should move this part of the 960 // lowering to the combiner. 961 auto FMA = MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2}); 962 FMA->copyIRFlags(CI); 963 } else { 964 LLT Ty = getLLTForType(*CI.getType(), *DL); 965 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1}); 966 FMul->copyIRFlags(CI); 967 auto FAdd = MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2}); 968 FAdd->copyIRFlags(CI); 969 } 970 return true; 971 } 972 case Intrinsic::memcpy: 973 case Intrinsic::memmove: 974 case Intrinsic::memset: 975 return translateMemfunc(CI, MIRBuilder, ID); 976 case Intrinsic::eh_typeid_for: { 977 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 978 unsigned Reg = getOrCreateVReg(CI); 979 unsigned TypeID = MF->getTypeIDFor(GV); 980 MIRBuilder.buildConstant(Reg, TypeID); 981 return true; 982 } 983 case Intrinsic::objectsize: { 984 // If we don't know by now, we're never going to know. 985 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 986 987 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 988 return true; 989 } 990 case Intrinsic::is_constant: 991 // If this wasn't constant-folded away by now, then it's not a 992 // constant. 993 MIRBuilder.buildConstant(getOrCreateVReg(CI), 0); 994 return true; 995 case Intrinsic::stackguard: 996 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 997 return true; 998 case Intrinsic::stackprotector: { 999 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1000 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1001 getStackGuard(GuardVal, MIRBuilder); 1002 1003 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1004 int FI = getOrCreateFrameIndex(*Slot); 1005 MF->getFrameInfo().setStackProtectorIndex(FI); 1006 1007 MIRBuilder.buildStore( 1008 GuardVal, getOrCreateVReg(*Slot), 1009 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1010 MachineMemOperand::MOStore | 1011 MachineMemOperand::MOVolatile, 1012 PtrTy.getSizeInBits() / 8, 8)); 1013 return true; 1014 } 1015 case Intrinsic::cttz: 1016 case Intrinsic::ctlz: { 1017 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1018 bool isTrailing = ID == Intrinsic::cttz; 1019 unsigned Opcode = isTrailing 1020 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1021 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1022 : Cst->isZero() ? TargetOpcode::G_CTLZ 1023 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1024 MIRBuilder.buildInstr(Opcode) 1025 .addDef(getOrCreateVReg(CI)) 1026 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 1027 return true; 1028 } 1029 case Intrinsic::ctpop: { 1030 MIRBuilder.buildInstr(TargetOpcode::G_CTPOP) 1031 .addDef(getOrCreateVReg(CI)) 1032 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 1033 return true; 1034 } 1035 case Intrinsic::invariant_start: { 1036 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1037 unsigned Undef = MRI->createGenericVirtualRegister(PtrTy); 1038 MIRBuilder.buildUndef(Undef); 1039 return true; 1040 } 1041 case Intrinsic::invariant_end: 1042 return true; 1043 case Intrinsic::ceil: 1044 MIRBuilder.buildInstr(TargetOpcode::G_FCEIL) 1045 .addDef(getOrCreateVReg(CI)) 1046 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 1047 return true; 1048 } 1049 return false; 1050 } 1051 1052 bool IRTranslator::translateInlineAsm(const CallInst &CI, 1053 MachineIRBuilder &MIRBuilder) { 1054 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 1055 if (!IA.getConstraintString().empty()) 1056 return false; 1057 1058 unsigned ExtraInfo = 0; 1059 if (IA.hasSideEffects()) 1060 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1061 if (IA.getDialect() == InlineAsm::AD_Intel) 1062 ExtraInfo |= InlineAsm::Extra_AsmDialect; 1063 1064 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 1065 .addExternalSymbol(IA.getAsmString().c_str()) 1066 .addImm(ExtraInfo); 1067 1068 return true; 1069 } 1070 1071 unsigned IRTranslator::packRegs(const Value &V, 1072 MachineIRBuilder &MIRBuilder) { 1073 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1074 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1075 LLT BigTy = getLLTForType(*V.getType(), *DL); 1076 1077 if (Regs.size() == 1) 1078 return Regs[0]; 1079 1080 unsigned Dst = MRI->createGenericVirtualRegister(BigTy); 1081 MIRBuilder.buildUndef(Dst); 1082 for (unsigned i = 0; i < Regs.size(); ++i) { 1083 unsigned NewDst = MRI->createGenericVirtualRegister(BigTy); 1084 MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]); 1085 Dst = NewDst; 1086 } 1087 return Dst; 1088 } 1089 1090 void IRTranslator::unpackRegs(const Value &V, unsigned Src, 1091 MachineIRBuilder &MIRBuilder) { 1092 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1093 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1094 1095 for (unsigned i = 0; i < Regs.size(); ++i) 1096 MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]); 1097 } 1098 1099 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1100 const CallInst &CI = cast<CallInst>(U); 1101 auto TII = MF->getTarget().getIntrinsicInfo(); 1102 const Function *F = CI.getCalledFunction(); 1103 1104 // FIXME: support Windows dllimport function calls. 1105 if (F && F->hasDLLImportStorageClass()) 1106 return false; 1107 1108 if (CI.isInlineAsm()) 1109 return translateInlineAsm(CI, MIRBuilder); 1110 1111 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1112 if (F && F->isIntrinsic()) { 1113 ID = F->getIntrinsicID(); 1114 if (TII && ID == Intrinsic::not_intrinsic) 1115 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1116 } 1117 1118 bool IsSplitType = valueIsSplit(CI); 1119 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { 1120 unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister( 1121 getLLTForType(*CI.getType(), *DL)) 1122 : getOrCreateVReg(CI); 1123 1124 SmallVector<unsigned, 8> Args; 1125 for (auto &Arg: CI.arg_operands()) 1126 Args.push_back(packRegs(*Arg, MIRBuilder)); 1127 1128 MF->getFrameInfo().setHasCalls(true); 1129 bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() { 1130 return getOrCreateVReg(*CI.getCalledValue()); 1131 }); 1132 1133 if (IsSplitType) 1134 unpackRegs(CI, Res, MIRBuilder); 1135 return Success; 1136 } 1137 1138 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1139 1140 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1141 return true; 1142 1143 unsigned Res = 0; 1144 if (!CI.getType()->isVoidTy()) { 1145 if (IsSplitType) 1146 Res = 1147 MRI->createGenericVirtualRegister(getLLTForType(*CI.getType(), *DL)); 1148 else 1149 Res = getOrCreateVReg(CI); 1150 } 1151 MachineInstrBuilder MIB = 1152 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 1153 1154 for (auto &Arg : CI.arg_operands()) { 1155 // Some intrinsics take metadata parameters. Reject them. 1156 if (isa<MetadataAsValue>(Arg)) 1157 return false; 1158 MIB.addUse(packRegs(*Arg, MIRBuilder)); 1159 } 1160 1161 if (IsSplitType) 1162 unpackRegs(CI, Res, MIRBuilder); 1163 1164 // Add a MachineMemOperand if it is a target mem intrinsic. 1165 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1166 TargetLowering::IntrinsicInfo Info; 1167 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1168 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1169 uint64_t Size = Info.memVT.getStoreSize(); 1170 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1171 Info.flags, Size, Info.align)); 1172 } 1173 1174 return true; 1175 } 1176 1177 bool IRTranslator::translateInvoke(const User &U, 1178 MachineIRBuilder &MIRBuilder) { 1179 const InvokeInst &I = cast<InvokeInst>(U); 1180 MCContext &Context = MF->getContext(); 1181 1182 const BasicBlock *ReturnBB = I.getSuccessor(0); 1183 const BasicBlock *EHPadBB = I.getSuccessor(1); 1184 1185 const Value *Callee = I.getCalledValue(); 1186 const Function *Fn = dyn_cast<Function>(Callee); 1187 if (isa<InlineAsm>(Callee)) 1188 return false; 1189 1190 // FIXME: support invoking patchpoint and statepoint intrinsics. 1191 if (Fn && Fn->isIntrinsic()) 1192 return false; 1193 1194 // FIXME: support whatever these are. 1195 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1196 return false; 1197 1198 // FIXME: support Windows exception handling. 1199 if (!isa<LandingPadInst>(EHPadBB->front())) 1200 return false; 1201 1202 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1203 // the region covered by the try. 1204 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1205 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1206 1207 unsigned Res = 1208 MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL)); 1209 SmallVector<unsigned, 8> Args; 1210 for (auto &Arg: I.arg_operands()) 1211 Args.push_back(packRegs(*Arg, MIRBuilder)); 1212 1213 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, 1214 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 1215 return false; 1216 1217 unpackRegs(I, Res, MIRBuilder); 1218 1219 MCSymbol *EndSymbol = Context.createTempSymbol(); 1220 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1221 1222 // FIXME: track probabilities. 1223 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1224 &ReturnMBB = getMBB(*ReturnBB); 1225 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1226 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1227 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1228 MIRBuilder.buildBr(ReturnMBB); 1229 1230 return true; 1231 } 1232 1233 bool IRTranslator::translateLandingPad(const User &U, 1234 MachineIRBuilder &MIRBuilder) { 1235 const LandingPadInst &LP = cast<LandingPadInst>(U); 1236 1237 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1238 1239 MBB.setIsEHPad(); 1240 1241 // If there aren't registers to copy the values into (e.g., during SjLj 1242 // exceptions), then don't bother. 1243 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1244 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1245 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1246 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1247 return true; 1248 1249 // If landingpad's return type is token type, we don't create DAG nodes 1250 // for its exception pointer and selector value. The extraction of exception 1251 // pointer or selector value from token type landingpads is not currently 1252 // supported. 1253 if (LP.getType()->isTokenTy()) 1254 return true; 1255 1256 // Add a label to mark the beginning of the landing pad. Deletion of the 1257 // landing pad can thus be detected via the MachineModuleInfo. 1258 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1259 .addSym(MF->addLandingPad(&MBB)); 1260 1261 LLT Ty = getLLTForType(*LP.getType(), *DL); 1262 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 1263 MIRBuilder.buildUndef(Undef); 1264 1265 SmallVector<LLT, 2> Tys; 1266 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1267 Tys.push_back(getLLTForType(*Ty, *DL)); 1268 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1269 1270 // Mark exception register as live in. 1271 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1272 if (!ExceptionReg) 1273 return false; 1274 1275 MBB.addLiveIn(ExceptionReg); 1276 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP); 1277 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1278 1279 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1280 if (!SelectorReg) 1281 return false; 1282 1283 MBB.addLiveIn(SelectorReg); 1284 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1285 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1286 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1287 1288 return true; 1289 } 1290 1291 bool IRTranslator::translateAlloca(const User &U, 1292 MachineIRBuilder &MIRBuilder) { 1293 auto &AI = cast<AllocaInst>(U); 1294 1295 if (AI.isSwiftError()) 1296 return false; 1297 1298 if (AI.isStaticAlloca()) { 1299 unsigned Res = getOrCreateVReg(AI); 1300 int FI = getOrCreateFrameIndex(AI); 1301 MIRBuilder.buildFrameIndex(Res, FI); 1302 return true; 1303 } 1304 1305 // FIXME: support stack probing for Windows. 1306 if (MF->getTarget().getTargetTriple().isOSWindows()) 1307 return false; 1308 1309 // Now we're in the harder dynamic case. 1310 Type *Ty = AI.getAllocatedType(); 1311 unsigned Align = 1312 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1313 1314 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 1315 1316 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1317 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1318 if (MRI->getType(NumElts) != IntPtrTy) { 1319 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1320 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1321 NumElts = ExtElts; 1322 } 1323 1324 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1325 unsigned TySize = 1326 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1327 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1328 1329 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1330 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1331 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1332 1333 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1334 MIRBuilder.buildCopy(SPTmp, SPReg); 1335 1336 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1337 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1338 1339 // Handle alignment. We have to realign if the allocation granule was smaller 1340 // than stack alignment, or the specific alloca requires more than stack 1341 // alignment. 1342 unsigned StackAlign = 1343 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1344 Align = std::max(Align, StackAlign); 1345 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1346 // Round the size of the allocation up to the stack alignment size 1347 // by add SA-1 to the size. This doesn't overflow because we're computing 1348 // an address inside an alloca. 1349 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1350 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1351 AllocTmp = AlignedAlloc; 1352 } 1353 1354 MIRBuilder.buildCopy(SPReg, AllocTmp); 1355 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1356 1357 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1358 assert(MF->getFrameInfo().hasVarSizedObjects()); 1359 return true; 1360 } 1361 1362 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1363 // FIXME: We may need more info about the type. Because of how LLT works, 1364 // we're completely discarding the i64/double distinction here (amongst 1365 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1366 // anyway but that's not guaranteed. 1367 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1368 .addDef(getOrCreateVReg(U)) 1369 .addUse(getOrCreateVReg(*U.getOperand(0))) 1370 .addImm(DL->getABITypeAlignment(U.getType())); 1371 return true; 1372 } 1373 1374 bool IRTranslator::translateInsertElement(const User &U, 1375 MachineIRBuilder &MIRBuilder) { 1376 // If it is a <1 x Ty> vector, use the scalar as it is 1377 // not a legal vector type in LLT. 1378 if (U.getType()->getVectorNumElements() == 1) { 1379 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1380 auto &Regs = *VMap.getVRegs(U); 1381 if (Regs.empty()) { 1382 Regs.push_back(Elt); 1383 VMap.getOffsets(U)->push_back(0); 1384 } else { 1385 MIRBuilder.buildCopy(Regs[0], Elt); 1386 } 1387 return true; 1388 } 1389 1390 unsigned Res = getOrCreateVReg(U); 1391 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1392 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1393 unsigned Idx = getOrCreateVReg(*U.getOperand(2)); 1394 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1395 return true; 1396 } 1397 1398 bool IRTranslator::translateExtractElement(const User &U, 1399 MachineIRBuilder &MIRBuilder) { 1400 // If it is a <1 x Ty> vector, use the scalar as it is 1401 // not a legal vector type in LLT. 1402 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1403 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1404 auto &Regs = *VMap.getVRegs(U); 1405 if (Regs.empty()) { 1406 Regs.push_back(Elt); 1407 VMap.getOffsets(U)->push_back(0); 1408 } else { 1409 MIRBuilder.buildCopy(Regs[0], Elt); 1410 } 1411 return true; 1412 } 1413 unsigned Res = getOrCreateVReg(U); 1414 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1415 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1416 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1417 unsigned Idx = 0; 1418 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1419 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1420 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1421 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1422 Idx = getOrCreateVReg(*NewIdxCI); 1423 } 1424 } 1425 if (!Idx) 1426 Idx = getOrCreateVReg(*U.getOperand(1)); 1427 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1428 const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1429 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); 1430 } 1431 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1432 return true; 1433 } 1434 1435 bool IRTranslator::translateShuffleVector(const User &U, 1436 MachineIRBuilder &MIRBuilder) { 1437 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1438 .addDef(getOrCreateVReg(U)) 1439 .addUse(getOrCreateVReg(*U.getOperand(0))) 1440 .addUse(getOrCreateVReg(*U.getOperand(1))) 1441 .addUse(getOrCreateVReg(*U.getOperand(2))); 1442 return true; 1443 } 1444 1445 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1446 const PHINode &PI = cast<PHINode>(U); 1447 1448 SmallVector<MachineInstr *, 4> Insts; 1449 for (auto Reg : getOrCreateVRegs(PI)) { 1450 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1451 Insts.push_back(MIB.getInstr()); 1452 } 1453 1454 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1455 return true; 1456 } 1457 1458 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1459 MachineIRBuilder &MIRBuilder) { 1460 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1461 1462 if (I.isWeak()) 1463 return false; 1464 1465 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1466 : MachineMemOperand::MONone; 1467 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1468 1469 Type *ResType = I.getType(); 1470 Type *ValType = ResType->Type::getStructElementType(0); 1471 1472 auto Res = getOrCreateVRegs(I); 1473 unsigned OldValRes = Res[0]; 1474 unsigned SuccessRes = Res[1]; 1475 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1476 unsigned Cmp = getOrCreateVReg(*I.getCompareOperand()); 1477 unsigned NewVal = getOrCreateVReg(*I.getNewValOperand()); 1478 1479 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1480 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1481 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1482 Flags, DL->getTypeStoreSize(ValType), 1483 getMemOpAlignment(I), AAMDNodes(), nullptr, 1484 I.getSyncScopeID(), I.getSuccessOrdering(), 1485 I.getFailureOrdering())); 1486 return true; 1487 } 1488 1489 bool IRTranslator::translateAtomicRMW(const User &U, 1490 MachineIRBuilder &MIRBuilder) { 1491 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1492 1493 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1494 : MachineMemOperand::MONone; 1495 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1496 1497 Type *ResType = I.getType(); 1498 1499 unsigned Res = getOrCreateVReg(I); 1500 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1501 unsigned Val = getOrCreateVReg(*I.getValOperand()); 1502 1503 unsigned Opcode = 0; 1504 switch (I.getOperation()) { 1505 default: 1506 llvm_unreachable("Unknown atomicrmw op"); 1507 return false; 1508 case AtomicRMWInst::Xchg: 1509 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 1510 break; 1511 case AtomicRMWInst::Add: 1512 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 1513 break; 1514 case AtomicRMWInst::Sub: 1515 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 1516 break; 1517 case AtomicRMWInst::And: 1518 Opcode = TargetOpcode::G_ATOMICRMW_AND; 1519 break; 1520 case AtomicRMWInst::Nand: 1521 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 1522 break; 1523 case AtomicRMWInst::Or: 1524 Opcode = TargetOpcode::G_ATOMICRMW_OR; 1525 break; 1526 case AtomicRMWInst::Xor: 1527 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 1528 break; 1529 case AtomicRMWInst::Max: 1530 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 1531 break; 1532 case AtomicRMWInst::Min: 1533 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 1534 break; 1535 case AtomicRMWInst::UMax: 1536 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 1537 break; 1538 case AtomicRMWInst::UMin: 1539 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 1540 break; 1541 } 1542 1543 MIRBuilder.buildAtomicRMW( 1544 Opcode, Res, Addr, Val, 1545 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1546 Flags, DL->getTypeStoreSize(ResType), 1547 getMemOpAlignment(I), AAMDNodes(), nullptr, 1548 I.getSyncScopeID(), I.getOrdering())); 1549 return true; 1550 } 1551 1552 void IRTranslator::finishPendingPhis() { 1553 #ifndef NDEBUG 1554 DILocationVerifier Verifier(*MF); 1555 #endif // ifndef NDEBUG 1556 for (auto &Phi : PendingPHIs) { 1557 const PHINode *PI = Phi.first; 1558 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 1559 EntryBuilder.setDebugLoc(PI->getDebugLoc()); 1560 #ifndef NDEBUG 1561 Verifier.setCurrentInst(PI); 1562 #endif // ifndef NDEBUG 1563 1564 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1565 // won't create extra control flow here, otherwise we need to find the 1566 // dominating predecessor here (or perhaps force the weirder IRTranslators 1567 // to provide a simple boundary). 1568 SmallSet<const BasicBlock *, 4> HandledPreds; 1569 1570 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1571 auto IRPred = PI->getIncomingBlock(i); 1572 if (HandledPreds.count(IRPred)) 1573 continue; 1574 1575 HandledPreds.insert(IRPred); 1576 ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 1577 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1578 assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) && 1579 "incorrect CFG at MachineBasicBlock level"); 1580 for (unsigned j = 0; j < ValRegs.size(); ++j) { 1581 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 1582 MIB.addUse(ValRegs[j]); 1583 MIB.addMBB(Pred); 1584 } 1585 } 1586 } 1587 } 1588 } 1589 1590 bool IRTranslator::valueIsSplit(const Value &V, 1591 SmallVectorImpl<uint64_t> *Offsets) { 1592 SmallVector<LLT, 4> SplitTys; 1593 if (Offsets && !Offsets->empty()) 1594 Offsets->clear(); 1595 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 1596 return SplitTys.size() > 1; 1597 } 1598 1599 bool IRTranslator::translate(const Instruction &Inst) { 1600 CurBuilder.setDebugLoc(Inst.getDebugLoc()); 1601 EntryBuilder.setDebugLoc(Inst.getDebugLoc()); 1602 switch(Inst.getOpcode()) { 1603 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1604 case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder); 1605 #include "llvm/IR/Instruction.def" 1606 default: 1607 return false; 1608 } 1609 } 1610 1611 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1612 if (auto CI = dyn_cast<ConstantInt>(&C)) 1613 EntryBuilder.buildConstant(Reg, *CI); 1614 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1615 EntryBuilder.buildFConstant(Reg, *CF); 1616 else if (isa<UndefValue>(C)) 1617 EntryBuilder.buildUndef(Reg); 1618 else if (isa<ConstantPointerNull>(C)) { 1619 // As we are trying to build a constant val of 0 into a pointer, 1620 // insert a cast to make them correct with respect to types. 1621 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 1622 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 1623 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 1624 unsigned ZeroReg = getOrCreateVReg(*ZeroVal); 1625 EntryBuilder.buildCast(Reg, ZeroReg); 1626 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 1627 EntryBuilder.buildGlobalValue(Reg, GV); 1628 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1629 if (!CAZ->getType()->isVectorTy()) 1630 return false; 1631 // Return the scalar if it is a <1 x Ty> vector. 1632 if (CAZ->getNumElements() == 1) 1633 return translate(*CAZ->getElementValue(0u), Reg); 1634 SmallVector<unsigned, 4> Ops; 1635 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1636 Constant &Elt = *CAZ->getElementValue(i); 1637 Ops.push_back(getOrCreateVReg(Elt)); 1638 } 1639 EntryBuilder.buildBuildVector(Reg, Ops); 1640 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1641 // Return the scalar if it is a <1 x Ty> vector. 1642 if (CV->getNumElements() == 1) 1643 return translate(*CV->getElementAsConstant(0), Reg); 1644 SmallVector<unsigned, 4> Ops; 1645 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1646 Constant &Elt = *CV->getElementAsConstant(i); 1647 Ops.push_back(getOrCreateVReg(Elt)); 1648 } 1649 EntryBuilder.buildBuildVector(Reg, Ops); 1650 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1651 switch(CE->getOpcode()) { 1652 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1653 case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder); 1654 #include "llvm/IR/Instruction.def" 1655 default: 1656 return false; 1657 } 1658 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 1659 if (CV->getNumOperands() == 1) 1660 return translate(*CV->getOperand(0), Reg); 1661 SmallVector<unsigned, 4> Ops; 1662 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 1663 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 1664 } 1665 EntryBuilder.buildBuildVector(Reg, Ops); 1666 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 1667 EntryBuilder.buildBlockAddress(Reg, BA); 1668 } else 1669 return false; 1670 1671 return true; 1672 } 1673 1674 void IRTranslator::finalizeFunction() { 1675 // Release the memory used by the different maps we 1676 // needed during the translation. 1677 PendingPHIs.clear(); 1678 VMap.reset(); 1679 FrameIndices.clear(); 1680 MachinePreds.clear(); 1681 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 1682 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 1683 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 1684 EntryBuilder = MachineIRBuilder(); 1685 CurBuilder = MachineIRBuilder(); 1686 } 1687 1688 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1689 MF = &CurMF; 1690 const Function &F = MF->getFunction(); 1691 if (F.empty()) 1692 return false; 1693 CLI = MF->getSubtarget().getCallLowering(); 1694 CurBuilder.setMF(*MF); 1695 EntryBuilder.setMF(*MF); 1696 MRI = &MF->getRegInfo(); 1697 DL = &F.getParent()->getDataLayout(); 1698 TPC = &getAnalysis<TargetPassConfig>(); 1699 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 1700 1701 assert(PendingPHIs.empty() && "stale PHIs"); 1702 1703 if (!DL->isLittleEndian()) { 1704 // Currently we don't properly handle big endian code. 1705 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1706 F.getSubprogram(), &F.getEntryBlock()); 1707 R << "unable to translate in big endian mode"; 1708 reportTranslationError(*MF, *TPC, *ORE, R); 1709 } 1710 1711 // Release the per-function state when we return, whether we succeeded or not. 1712 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1713 1714 // Setup a separate basic-block for the arguments and constants 1715 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1716 MF->push_back(EntryBB); 1717 EntryBuilder.setMBB(*EntryBB); 1718 1719 // Create all blocks, in IR order, to preserve the layout. 1720 for (const BasicBlock &BB: F) { 1721 auto *&MBB = BBToMBB[&BB]; 1722 1723 MBB = MF->CreateMachineBasicBlock(&BB); 1724 MF->push_back(MBB); 1725 1726 if (BB.hasAddressTaken()) 1727 MBB->setHasAddressTaken(); 1728 } 1729 1730 // Make our arguments/constants entry block fallthrough to the IR entry block. 1731 EntryBB->addSuccessor(&getMBB(F.front())); 1732 1733 // Lower the actual args into this basic block. 1734 SmallVector<unsigned, 8> VRegArgs; 1735 for (const Argument &Arg: F.args()) { 1736 if (DL->getTypeStoreSize(Arg.getType()) == 0) 1737 continue; // Don't handle zero sized types. 1738 VRegArgs.push_back( 1739 MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL))); 1740 } 1741 1742 // We don't currently support translating swifterror or swiftself functions. 1743 for (auto &Arg : F.args()) { 1744 if (Arg.hasSwiftErrorAttr() || Arg.hasSwiftSelfAttr()) { 1745 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1746 F.getSubprogram(), &F.getEntryBlock()); 1747 R << "unable to lower arguments due to swifterror/swiftself: " 1748 << ore::NV("Prototype", F.getType()); 1749 reportTranslationError(*MF, *TPC, *ORE, R); 1750 return false; 1751 } 1752 } 1753 1754 if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) { 1755 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1756 F.getSubprogram(), &F.getEntryBlock()); 1757 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1758 reportTranslationError(*MF, *TPC, *ORE, R); 1759 return false; 1760 } 1761 1762 auto ArgIt = F.arg_begin(); 1763 for (auto &VArg : VRegArgs) { 1764 // If the argument is an unsplit scalar then don't use unpackRegs to avoid 1765 // creating redundant copies. 1766 if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) { 1767 auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt)); 1768 assert(VRegs.empty() && "VRegs already populated?"); 1769 VRegs.push_back(VArg); 1770 } else { 1771 unpackRegs(*ArgIt, VArg, EntryBuilder); 1772 } 1773 ArgIt++; 1774 } 1775 1776 // Need to visit defs before uses when translating instructions. 1777 { 1778 ReversePostOrderTraversal<const Function *> RPOT(&F); 1779 #ifndef NDEBUG 1780 DILocationVerifier Verifier(*MF); 1781 #endif // ifndef NDEBUG 1782 for (const BasicBlock *BB : RPOT) { 1783 MachineBasicBlock &MBB = getMBB(*BB); 1784 // Set the insertion point of all the following translations to 1785 // the end of this basic block. 1786 CurBuilder.setMBB(MBB); 1787 1788 for (const Instruction &Inst : *BB) { 1789 #ifndef NDEBUG 1790 Verifier.setCurrentInst(&Inst); 1791 #endif // ifndef NDEBUG 1792 if (translate(Inst)) 1793 continue; 1794 1795 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1796 Inst.getDebugLoc(), BB); 1797 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 1798 1799 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 1800 std::string InstStrStorage; 1801 raw_string_ostream InstStr(InstStrStorage); 1802 InstStr << Inst; 1803 1804 R << ": '" << InstStr.str() << "'"; 1805 } 1806 1807 reportTranslationError(*MF, *TPC, *ORE, R); 1808 return false; 1809 } 1810 } 1811 } 1812 1813 finishPendingPhis(); 1814 1815 // Merge the argument lowering and constants block with its single 1816 // successor, the LLVM-IR entry block. We want the basic block to 1817 // be maximal. 1818 assert(EntryBB->succ_size() == 1 && 1819 "Custom BB used for lowering should have only one successor"); 1820 // Get the successor of the current entry block. 1821 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1822 assert(NewEntryBB.pred_size() == 1 && 1823 "LLVM-IR entry block has a predecessor!?"); 1824 // Move all the instruction from the current entry block to the 1825 // new entry block. 1826 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1827 EntryBB->end()); 1828 1829 // Update the live-in information for the new entry block. 1830 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1831 NewEntryBB.addLiveIn(LiveIn); 1832 NewEntryBB.sortUniqueLiveIns(); 1833 1834 // Get rid of the now empty basic block. 1835 EntryBB->removeSuccessor(&NewEntryBB); 1836 MF->remove(EntryBB); 1837 MF->DeleteMachineBasicBlock(EntryBB); 1838 1839 assert(&MF->front() == &NewEntryBB && 1840 "New entry wasn't next in the list of basic block!"); 1841 1842 // Initialize stack protector information. 1843 StackProtector &SP = getAnalysis<StackProtector>(); 1844 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1845 1846 return false; 1847 } 1848