1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/LowLevelType.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/StackProtector.h" 34 #include "llvm/CodeGen/TargetFrameLowering.h" 35 #include "llvm/CodeGen/TargetInstrInfo.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfo.h" 46 #include "llvm/IR/DerivedTypes.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/GetElementPtrTypeIterator.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/InitializePasses.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CodeGen.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/LowLevelTypeImpl.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 #define DEBUG_TYPE "irtranslator" 80 81 using namespace llvm; 82 83 static cl::opt<bool> 84 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 85 cl::desc("Should enable CSE in irtranslator"), 86 cl::Optional, cl::init(false)); 87 char IRTranslator::ID = 0; 88 89 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 90 false, false) 91 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 92 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 93 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 94 false, false) 95 96 static void reportTranslationError(MachineFunction &MF, 97 const TargetPassConfig &TPC, 98 OptimizationRemarkEmitter &ORE, 99 OptimizationRemarkMissed &R) { 100 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 101 102 // Print the function name explicitly if we don't have a debug location (which 103 // makes the diagnostic less useful) or if we're going to emit a raw error. 104 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 105 R << (" (in function: " + MF.getName() + ")").str(); 106 107 if (TPC.isGlobalISelAbortEnabled()) 108 report_fatal_error(R.getMsg()); 109 else 110 ORE.emit(R); 111 } 112 113 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } 114 115 #ifndef NDEBUG 116 namespace { 117 /// Verify that every instruction created has the same DILocation as the 118 /// instruction being translated. 119 class DILocationVerifier : public GISelChangeObserver { 120 const Instruction *CurrInst = nullptr; 121 122 public: 123 DILocationVerifier() = default; 124 ~DILocationVerifier() = default; 125 126 const Instruction *getCurrentInst() const { return CurrInst; } 127 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 128 129 void erasingInstr(MachineInstr &MI) override {} 130 void changingInstr(MachineInstr &MI) override {} 131 void changedInstr(MachineInstr &MI) override {} 132 133 void createdInstr(MachineInstr &MI) override { 134 assert(getCurrentInst() && "Inserted instruction without a current MI"); 135 136 // Only print the check message if we're actually checking it. 137 #ifndef NDEBUG 138 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 139 << " was copied to " << MI); 140 #endif 141 // We allow insts in the entry block to have a debug loc line of 0 because 142 // they could have originated from constants, and we don't want a jumpy 143 // debug experience. 144 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 145 MI.getDebugLoc().getLine() == 0) && 146 "Line info was not transferred to all instructions"); 147 } 148 }; 149 } // namespace 150 #endif // ifndef NDEBUG 151 152 153 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 154 AU.addRequired<StackProtector>(); 155 AU.addRequired<TargetPassConfig>(); 156 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 157 getSelectionDAGFallbackAnalysisUsage(AU); 158 MachineFunctionPass::getAnalysisUsage(AU); 159 } 160 161 IRTranslator::ValueToVRegInfo::VRegListT & 162 IRTranslator::allocateVRegs(const Value &Val) { 163 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 164 auto *Regs = VMap.getVRegs(Val); 165 auto *Offsets = VMap.getOffsets(Val); 166 SmallVector<LLT, 4> SplitTys; 167 computeValueLLTs(*DL, *Val.getType(), SplitTys, 168 Offsets->empty() ? Offsets : nullptr); 169 for (unsigned i = 0; i < SplitTys.size(); ++i) 170 Regs->push_back(0); 171 return *Regs; 172 } 173 174 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 175 auto VRegsIt = VMap.findVRegs(Val); 176 if (VRegsIt != VMap.vregs_end()) 177 return *VRegsIt->second; 178 179 if (Val.getType()->isVoidTy()) 180 return *VMap.getVRegs(Val); 181 182 // Create entry for this type. 183 auto *VRegs = VMap.getVRegs(Val); 184 auto *Offsets = VMap.getOffsets(Val); 185 186 assert(Val.getType()->isSized() && 187 "Don't know how to create an empty vreg"); 188 189 SmallVector<LLT, 4> SplitTys; 190 computeValueLLTs(*DL, *Val.getType(), SplitTys, 191 Offsets->empty() ? Offsets : nullptr); 192 193 if (!isa<Constant>(Val)) { 194 for (auto Ty : SplitTys) 195 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 196 return *VRegs; 197 } 198 199 if (Val.getType()->isAggregateType()) { 200 // UndefValue, ConstantAggregateZero 201 auto &C = cast<Constant>(Val); 202 unsigned Idx = 0; 203 while (auto Elt = C.getAggregateElement(Idx++)) { 204 auto EltRegs = getOrCreateVRegs(*Elt); 205 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 206 } 207 } else { 208 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 209 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 210 bool Success = translate(cast<Constant>(Val), VRegs->front()); 211 if (!Success) { 212 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 213 MF->getFunction().getSubprogram(), 214 &MF->getFunction().getEntryBlock()); 215 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 216 reportTranslationError(*MF, *TPC, *ORE, R); 217 return *VRegs; 218 } 219 } 220 221 return *VRegs; 222 } 223 224 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 225 if (FrameIndices.find(&AI) != FrameIndices.end()) 226 return FrameIndices[&AI]; 227 228 unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 229 unsigned Size = 230 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 231 232 // Always allocate at least one byte. 233 Size = std::max(Size, 1u); 234 235 unsigned Alignment = AI.getAlignment(); 236 if (!Alignment) 237 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 238 239 int &FI = FrameIndices[&AI]; 240 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 241 return FI; 242 } 243 244 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 245 unsigned Alignment = 0; 246 Type *ValTy = nullptr; 247 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 248 Alignment = SI->getAlignment(); 249 ValTy = SI->getValueOperand()->getType(); 250 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 251 Alignment = LI->getAlignment(); 252 ValTy = LI->getType(); 253 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 254 // TODO(PR27168): This instruction has no alignment attribute, but unlike 255 // the default alignment for load/store, the default here is to assume 256 // it has NATURAL alignment, not DataLayout-specified alignment. 257 const DataLayout &DL = AI->getModule()->getDataLayout(); 258 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 259 ValTy = AI->getCompareOperand()->getType(); 260 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 261 // TODO(PR27168): This instruction has no alignment attribute, but unlike 262 // the default alignment for load/store, the default here is to assume 263 // it has NATURAL alignment, not DataLayout-specified alignment. 264 const DataLayout &DL = AI->getModule()->getDataLayout(); 265 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 266 ValTy = AI->getType(); 267 } else { 268 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 269 R << "unable to translate memop: " << ore::NV("Opcode", &I); 270 reportTranslationError(*MF, *TPC, *ORE, R); 271 return 1; 272 } 273 274 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 275 } 276 277 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 278 MachineBasicBlock *&MBB = BBToMBB[&BB]; 279 assert(MBB && "BasicBlock was not encountered before"); 280 return *MBB; 281 } 282 283 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 284 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 285 MachinePreds[Edge].push_back(NewPred); 286 } 287 288 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 289 MachineIRBuilder &MIRBuilder) { 290 // Get or create a virtual register for each value. 291 // Unless the value is a Constant => loadimm cst? 292 // or inline constant each time? 293 // Creation of a virtual register needs to have a size. 294 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 295 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 296 Register Res = getOrCreateVReg(U); 297 uint16_t Flags = 0; 298 if (isa<Instruction>(U)) { 299 const Instruction &I = cast<Instruction>(U); 300 Flags = MachineInstr::copyFlagsFromInstruction(I); 301 } 302 303 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 304 return true; 305 } 306 307 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 308 // -0.0 - X --> G_FNEG 309 if (isa<Constant>(U.getOperand(0)) && 310 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 311 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 312 Register Res = getOrCreateVReg(U); 313 uint16_t Flags = 0; 314 if (isa<Instruction>(U)) { 315 const Instruction &I = cast<Instruction>(U); 316 Flags = MachineInstr::copyFlagsFromInstruction(I); 317 } 318 // Negate the last operand of the FSUB 319 MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op1}, Flags); 320 return true; 321 } 322 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 323 } 324 325 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 326 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 327 Register Res = getOrCreateVReg(U); 328 uint16_t Flags = 0; 329 if (isa<Instruction>(U)) { 330 const Instruction &I = cast<Instruction>(U); 331 Flags = MachineInstr::copyFlagsFromInstruction(I); 332 } 333 MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op0}, Flags); 334 return true; 335 } 336 337 bool IRTranslator::translateCompare(const User &U, 338 MachineIRBuilder &MIRBuilder) { 339 auto *CI = dyn_cast<CmpInst>(&U); 340 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 341 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 342 Register Res = getOrCreateVReg(U); 343 CmpInst::Predicate Pred = 344 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 345 cast<ConstantExpr>(U).getPredicate()); 346 if (CmpInst::isIntPredicate(Pred)) 347 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 348 else if (Pred == CmpInst::FCMP_FALSE) 349 MIRBuilder.buildCopy( 350 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 351 else if (Pred == CmpInst::FCMP_TRUE) 352 MIRBuilder.buildCopy( 353 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 354 else { 355 assert(CI && "Instruction should be CmpInst"); 356 MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1}, 357 MachineInstr::copyFlagsFromInstruction(*CI)); 358 } 359 360 return true; 361 } 362 363 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 364 const ReturnInst &RI = cast<ReturnInst>(U); 365 const Value *Ret = RI.getReturnValue(); 366 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 367 Ret = nullptr; 368 369 ArrayRef<Register> VRegs; 370 if (Ret) 371 VRegs = getOrCreateVRegs(*Ret); 372 373 Register SwiftErrorVReg = 0; 374 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 375 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 376 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 377 } 378 379 // The target may mess up with the insertion point, but 380 // this is not important as a return is the last instruction 381 // of the block anyway. 382 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 383 } 384 385 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 386 const BranchInst &BrInst = cast<BranchInst>(U); 387 unsigned Succ = 0; 388 if (!BrInst.isUnconditional()) { 389 // We want a G_BRCOND to the true BB followed by an unconditional branch. 390 Register Tst = getOrCreateVReg(*BrInst.getCondition()); 391 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 392 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 393 MIRBuilder.buildBrCond(Tst, TrueBB); 394 } 395 396 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 397 MachineBasicBlock &TgtBB = getMBB(BrTgt); 398 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 399 400 // If the unconditional target is the layout successor, fallthrough. 401 if (!CurBB.isLayoutSuccessor(&TgtBB)) 402 MIRBuilder.buildBr(TgtBB); 403 404 // Link successors. 405 for (const BasicBlock *Succ : successors(&BrInst)) 406 CurBB.addSuccessor(&getMBB(*Succ)); 407 return true; 408 } 409 410 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 411 MachineBasicBlock *Dst, 412 BranchProbability Prob) { 413 if (!FuncInfo.BPI) { 414 Src->addSuccessorWithoutProb(Dst); 415 return; 416 } 417 if (Prob.isUnknown()) 418 Prob = getEdgeProbability(Src, Dst); 419 Src->addSuccessor(Dst, Prob); 420 } 421 422 BranchProbability 423 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 424 const MachineBasicBlock *Dst) const { 425 const BasicBlock *SrcBB = Src->getBasicBlock(); 426 const BasicBlock *DstBB = Dst->getBasicBlock(); 427 if (!FuncInfo.BPI) { 428 // If BPI is not available, set the default probability as 1 / N, where N is 429 // the number of successors. 430 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 431 return BranchProbability(1, SuccSize); 432 } 433 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 434 } 435 436 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 437 using namespace SwitchCG; 438 // Extract cases from the switch. 439 const SwitchInst &SI = cast<SwitchInst>(U); 440 BranchProbabilityInfo *BPI = FuncInfo.BPI; 441 CaseClusterVector Clusters; 442 Clusters.reserve(SI.getNumCases()); 443 for (auto &I : SI.cases()) { 444 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 445 assert(Succ && "Could not find successor mbb in mapping"); 446 const ConstantInt *CaseVal = I.getCaseValue(); 447 BranchProbability Prob = 448 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 449 : BranchProbability(1, SI.getNumCases() + 1); 450 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 451 } 452 453 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 454 455 // Cluster adjacent cases with the same destination. We do this at all 456 // optimization levels because it's cheap to do and will make codegen faster 457 // if there are many clusters. 458 sortAndRangeify(Clusters); 459 460 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 461 462 // If there is only the default destination, jump there directly. 463 if (Clusters.empty()) { 464 SwitchMBB->addSuccessor(DefaultMBB); 465 if (DefaultMBB != SwitchMBB->getNextNode()) 466 MIB.buildBr(*DefaultMBB); 467 return true; 468 } 469 470 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 471 472 LLVM_DEBUG({ 473 dbgs() << "Case clusters: "; 474 for (const CaseCluster &C : Clusters) { 475 if (C.Kind == CC_JumpTable) 476 dbgs() << "JT:"; 477 if (C.Kind == CC_BitTests) 478 dbgs() << "BT:"; 479 480 C.Low->getValue().print(dbgs(), true); 481 if (C.Low != C.High) { 482 dbgs() << '-'; 483 C.High->getValue().print(dbgs(), true); 484 } 485 dbgs() << ' '; 486 } 487 dbgs() << '\n'; 488 }); 489 490 assert(!Clusters.empty()); 491 SwitchWorkList WorkList; 492 CaseClusterIt First = Clusters.begin(); 493 CaseClusterIt Last = Clusters.end() - 1; 494 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 495 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 496 497 // FIXME: At the moment we don't do any splitting optimizations here like 498 // SelectionDAG does, so this worklist only has one entry. 499 while (!WorkList.empty()) { 500 SwitchWorkListItem W = WorkList.back(); 501 WorkList.pop_back(); 502 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 503 return false; 504 } 505 return true; 506 } 507 508 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 509 MachineBasicBlock *MBB) { 510 // Emit the code for the jump table 511 assert(JT.Reg != -1U && "Should lower JT Header first!"); 512 MachineIRBuilder MIB(*MBB->getParent()); 513 MIB.setMBB(*MBB); 514 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 515 516 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 517 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 518 519 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 520 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 521 } 522 523 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 524 SwitchCG::JumpTableHeader &JTH, 525 MachineBasicBlock *HeaderBB) { 526 MachineIRBuilder MIB(*HeaderBB->getParent()); 527 MIB.setMBB(*HeaderBB); 528 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 529 530 const Value &SValue = *JTH.SValue; 531 // Subtract the lowest switch case value from the value being switched on. 532 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 533 Register SwitchOpReg = getOrCreateVReg(SValue); 534 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 535 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 536 537 // This value may be smaller or larger than the target's pointer type, and 538 // therefore require extension or truncating. 539 Type *PtrIRTy = SValue.getType()->getPointerTo(); 540 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 541 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 542 543 JT.Reg = Sub.getReg(0); 544 545 if (JTH.OmitRangeCheck) { 546 if (JT.MBB != HeaderBB->getNextNode()) 547 MIB.buildBr(*JT.MBB); 548 return true; 549 } 550 551 // Emit the range check for the jump table, and branch to the default block 552 // for the switch statement if the value being switched on exceeds the 553 // largest case in the switch. 554 auto Cst = getOrCreateVReg( 555 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 556 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 557 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 558 559 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 560 561 // Avoid emitting unnecessary branches to the next block. 562 if (JT.MBB != HeaderBB->getNextNode()) 563 BrCond = MIB.buildBr(*JT.MBB); 564 return true; 565 } 566 567 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 568 MachineBasicBlock *SwitchBB, 569 MachineIRBuilder &MIB) { 570 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 571 Register Cond; 572 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 573 MIB.setDebugLoc(CB.DbgLoc); 574 MIB.setMBB(*CB.ThisBB); 575 576 if (CB.PredInfo.NoCmp) { 577 // Branch or fall through to TrueBB. 578 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 579 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 580 CB.ThisBB); 581 CB.ThisBB->normalizeSuccProbs(); 582 if (CB.TrueBB != CB.ThisBB->getNextNode()) 583 MIB.buildBr(*CB.TrueBB); 584 MIB.setDebugLoc(OldDbgLoc); 585 return; 586 } 587 588 const LLT i1Ty = LLT::scalar(1); 589 // Build the compare. 590 if (!CB.CmpMHS) { 591 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 592 Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 593 } else { 594 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 595 "Can only handle SLE ranges"); 596 597 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 598 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 599 600 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 601 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 602 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 603 Cond = 604 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 605 } else { 606 const LLT &CmpTy = MRI->getType(CmpOpReg); 607 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 608 auto Diff = MIB.buildConstant(CmpTy, High - Low); 609 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 610 } 611 } 612 613 // Update successor info 614 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 615 616 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 617 CB.ThisBB); 618 619 // TrueBB and FalseBB are always different unless the incoming IR is 620 // degenerate. This only happens when running llc on weird IR. 621 if (CB.TrueBB != CB.FalseBB) 622 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 623 CB.ThisBB->normalizeSuccProbs(); 624 625 // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) 626 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 627 CB.ThisBB); 628 629 // If the lhs block is the next block, invert the condition so that we can 630 // fall through to the lhs instead of the rhs block. 631 if (CB.TrueBB == CB.ThisBB->getNextNode()) { 632 std::swap(CB.TrueBB, CB.FalseBB); 633 auto True = MIB.buildConstant(i1Ty, 1); 634 Cond = MIB.buildInstr(TargetOpcode::G_XOR, {i1Ty}, {Cond, True}, None) 635 .getReg(0); 636 } 637 638 MIB.buildBrCond(Cond, *CB.TrueBB); 639 MIB.buildBr(*CB.FalseBB); 640 MIB.setDebugLoc(OldDbgLoc); 641 } 642 643 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 644 MachineBasicBlock *SwitchMBB, 645 MachineBasicBlock *CurMBB, 646 MachineBasicBlock *DefaultMBB, 647 MachineIRBuilder &MIB, 648 MachineFunction::iterator BBI, 649 BranchProbability UnhandledProbs, 650 SwitchCG::CaseClusterIt I, 651 MachineBasicBlock *Fallthrough, 652 bool FallthroughUnreachable) { 653 using namespace SwitchCG; 654 MachineFunction *CurMF = SwitchMBB->getParent(); 655 // FIXME: Optimize away range check based on pivot comparisons. 656 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 657 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 658 BranchProbability DefaultProb = W.DefaultProb; 659 660 // The jump block hasn't been inserted yet; insert it here. 661 MachineBasicBlock *JumpMBB = JT->MBB; 662 CurMF->insert(BBI, JumpMBB); 663 664 // Since the jump table block is separate from the switch block, we need 665 // to keep track of it as a machine predecessor to the default block, 666 // otherwise we lose the phi edges. 667 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 668 CurMBB); 669 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 670 JumpMBB); 671 672 auto JumpProb = I->Prob; 673 auto FallthroughProb = UnhandledProbs; 674 675 // If the default statement is a target of the jump table, we evenly 676 // distribute the default probability to successors of CurMBB. Also 677 // update the probability on the edge from JumpMBB to Fallthrough. 678 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 679 SE = JumpMBB->succ_end(); 680 SI != SE; ++SI) { 681 if (*SI == DefaultMBB) { 682 JumpProb += DefaultProb / 2; 683 FallthroughProb -= DefaultProb / 2; 684 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 685 JumpMBB->normalizeSuccProbs(); 686 } else { 687 // Also record edges from the jump table block to it's successors. 688 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 689 JumpMBB); 690 } 691 } 692 693 // Skip the range check if the fallthrough block is unreachable. 694 if (FallthroughUnreachable) 695 JTH->OmitRangeCheck = true; 696 697 if (!JTH->OmitRangeCheck) 698 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 699 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 700 CurMBB->normalizeSuccProbs(); 701 702 // The jump table header will be inserted in our current block, do the 703 // range check, and fall through to our fallthrough block. 704 JTH->HeaderBB = CurMBB; 705 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 706 707 // If we're in the right place, emit the jump table header right now. 708 if (CurMBB == SwitchMBB) { 709 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 710 return false; 711 JTH->Emitted = true; 712 } 713 return true; 714 } 715 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 716 Value *Cond, 717 MachineBasicBlock *Fallthrough, 718 bool FallthroughUnreachable, 719 BranchProbability UnhandledProbs, 720 MachineBasicBlock *CurMBB, 721 MachineIRBuilder &MIB, 722 MachineBasicBlock *SwitchMBB) { 723 using namespace SwitchCG; 724 const Value *RHS, *LHS, *MHS; 725 CmpInst::Predicate Pred; 726 if (I->Low == I->High) { 727 // Check Cond == I->Low. 728 Pred = CmpInst::ICMP_EQ; 729 LHS = Cond; 730 RHS = I->Low; 731 MHS = nullptr; 732 } else { 733 // Check I->Low <= Cond <= I->High. 734 Pred = CmpInst::ICMP_SLE; 735 LHS = I->Low; 736 MHS = Cond; 737 RHS = I->High; 738 } 739 740 // If Fallthrough is unreachable, fold away the comparison. 741 // The false probability is the sum of all unhandled cases. 742 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 743 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 744 745 emitSwitchCase(CB, SwitchMBB, MIB); 746 return true; 747 } 748 749 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 750 Value *Cond, 751 MachineBasicBlock *SwitchMBB, 752 MachineBasicBlock *DefaultMBB, 753 MachineIRBuilder &MIB) { 754 using namespace SwitchCG; 755 MachineFunction *CurMF = FuncInfo.MF; 756 MachineBasicBlock *NextMBB = nullptr; 757 MachineFunction::iterator BBI(W.MBB); 758 if (++BBI != FuncInfo.MF->end()) 759 NextMBB = &*BBI; 760 761 if (EnableOpts) { 762 // Here, we order cases by probability so the most likely case will be 763 // checked first. However, two clusters can have the same probability in 764 // which case their relative ordering is non-deterministic. So we use Low 765 // as a tie-breaker as clusters are guaranteed to never overlap. 766 llvm::sort(W.FirstCluster, W.LastCluster + 1, 767 [](const CaseCluster &a, const CaseCluster &b) { 768 return a.Prob != b.Prob 769 ? a.Prob > b.Prob 770 : a.Low->getValue().slt(b.Low->getValue()); 771 }); 772 773 // Rearrange the case blocks so that the last one falls through if possible 774 // without changing the order of probabilities. 775 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 776 --I; 777 if (I->Prob > W.LastCluster->Prob) 778 break; 779 if (I->Kind == CC_Range && I->MBB == NextMBB) { 780 std::swap(*I, *W.LastCluster); 781 break; 782 } 783 } 784 } 785 786 // Compute total probability. 787 BranchProbability DefaultProb = W.DefaultProb; 788 BranchProbability UnhandledProbs = DefaultProb; 789 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 790 UnhandledProbs += I->Prob; 791 792 MachineBasicBlock *CurMBB = W.MBB; 793 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 794 bool FallthroughUnreachable = false; 795 MachineBasicBlock *Fallthrough; 796 if (I == W.LastCluster) { 797 // For the last cluster, fall through to the default destination. 798 Fallthrough = DefaultMBB; 799 FallthroughUnreachable = isa<UnreachableInst>( 800 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 801 } else { 802 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 803 CurMF->insert(BBI, Fallthrough); 804 } 805 UnhandledProbs -= I->Prob; 806 807 switch (I->Kind) { 808 case CC_BitTests: { 809 LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented"); 810 return false; // Bit tests currently unimplemented. 811 } 812 case CC_JumpTable: { 813 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 814 UnhandledProbs, I, Fallthrough, 815 FallthroughUnreachable)) { 816 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 817 return false; 818 } 819 break; 820 } 821 case CC_Range: { 822 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 823 FallthroughUnreachable, UnhandledProbs, 824 CurMBB, MIB, SwitchMBB)) { 825 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 826 return false; 827 } 828 break; 829 } 830 } 831 CurMBB = Fallthrough; 832 } 833 834 return true; 835 } 836 837 bool IRTranslator::translateIndirectBr(const User &U, 838 MachineIRBuilder &MIRBuilder) { 839 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 840 841 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 842 MIRBuilder.buildBrIndirect(Tgt); 843 844 // Link successors. 845 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 846 for (const BasicBlock *Succ : successors(&BrInst)) 847 CurBB.addSuccessor(&getMBB(*Succ)); 848 849 return true; 850 } 851 852 static bool isSwiftError(const Value *V) { 853 if (auto Arg = dyn_cast<Argument>(V)) 854 return Arg->hasSwiftErrorAttr(); 855 if (auto AI = dyn_cast<AllocaInst>(V)) 856 return AI->isSwiftError(); 857 return false; 858 } 859 860 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 861 const LoadInst &LI = cast<LoadInst>(U); 862 863 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 864 : MachineMemOperand::MONone; 865 Flags |= MachineMemOperand::MOLoad; 866 867 if (DL->getTypeStoreSize(LI.getType()) == 0) 868 return true; 869 870 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 871 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 872 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 873 874 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 875 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 876 877 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 878 assert(Regs.size() == 1 && "swifterror should be single pointer"); 879 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 880 LI.getPointerOperand()); 881 MIRBuilder.buildCopy(Regs[0], VReg); 882 return true; 883 } 884 885 const MDNode *Ranges = 886 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 887 for (unsigned i = 0; i < Regs.size(); ++i) { 888 Register Addr; 889 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 890 891 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 892 unsigned BaseAlign = getMemOpAlignment(LI); 893 AAMDNodes AAMetadata; 894 LI.getAAMetadata(AAMetadata); 895 auto MMO = MF->getMachineMemOperand( 896 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 897 MinAlign(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges, 898 LI.getSyncScopeID(), LI.getOrdering()); 899 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 900 } 901 902 return true; 903 } 904 905 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 906 const StoreInst &SI = cast<StoreInst>(U); 907 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 908 : MachineMemOperand::MONone; 909 Flags |= MachineMemOperand::MOStore; 910 911 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 912 return true; 913 914 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 915 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 916 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 917 918 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 919 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 920 921 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 922 assert(Vals.size() == 1 && "swifterror should be single pointer"); 923 924 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 925 SI.getPointerOperand()); 926 MIRBuilder.buildCopy(VReg, Vals[0]); 927 return true; 928 } 929 930 for (unsigned i = 0; i < Vals.size(); ++i) { 931 Register Addr; 932 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 933 934 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 935 unsigned BaseAlign = getMemOpAlignment(SI); 936 AAMDNodes AAMetadata; 937 SI.getAAMetadata(AAMetadata); 938 auto MMO = MF->getMachineMemOperand( 939 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 940 MinAlign(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr, 941 SI.getSyncScopeID(), SI.getOrdering()); 942 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 943 } 944 return true; 945 } 946 947 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 948 const Value *Src = U.getOperand(0); 949 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 950 951 // getIndexedOffsetInType is designed for GEPs, so the first index is the 952 // usual array element rather than looking into the actual aggregate. 953 SmallVector<Value *, 1> Indices; 954 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 955 956 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 957 for (auto Idx : EVI->indices()) 958 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 959 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 960 for (auto Idx : IVI->indices()) 961 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 962 } else { 963 for (unsigned i = 1; i < U.getNumOperands(); ++i) 964 Indices.push_back(U.getOperand(i)); 965 } 966 967 return 8 * static_cast<uint64_t>( 968 DL.getIndexedOffsetInType(Src->getType(), Indices)); 969 } 970 971 bool IRTranslator::translateExtractValue(const User &U, 972 MachineIRBuilder &MIRBuilder) { 973 const Value *Src = U.getOperand(0); 974 uint64_t Offset = getOffsetFromIndices(U, *DL); 975 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 976 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 977 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 978 auto &DstRegs = allocateVRegs(U); 979 980 for (unsigned i = 0; i < DstRegs.size(); ++i) 981 DstRegs[i] = SrcRegs[Idx++]; 982 983 return true; 984 } 985 986 bool IRTranslator::translateInsertValue(const User &U, 987 MachineIRBuilder &MIRBuilder) { 988 const Value *Src = U.getOperand(0); 989 uint64_t Offset = getOffsetFromIndices(U, *DL); 990 auto &DstRegs = allocateVRegs(U); 991 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 992 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 993 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 994 auto InsertedIt = InsertedRegs.begin(); 995 996 for (unsigned i = 0; i < DstRegs.size(); ++i) { 997 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 998 DstRegs[i] = *InsertedIt++; 999 else 1000 DstRegs[i] = SrcRegs[i]; 1001 } 1002 1003 return true; 1004 } 1005 1006 bool IRTranslator::translateSelect(const User &U, 1007 MachineIRBuilder &MIRBuilder) { 1008 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1009 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1010 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1011 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1012 1013 const SelectInst &SI = cast<SelectInst>(U); 1014 uint16_t Flags = 0; 1015 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 1016 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 1017 1018 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1019 MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]}, 1020 {Tst, Op0Regs[i], Op1Regs[i]}, Flags); 1021 } 1022 1023 return true; 1024 } 1025 1026 bool IRTranslator::translateBitCast(const User &U, 1027 MachineIRBuilder &MIRBuilder) { 1028 // If we're bitcasting to the source type, we can reuse the source vreg. 1029 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1030 getLLTForType(*U.getType(), *DL)) { 1031 Register SrcReg = getOrCreateVReg(*U.getOperand(0)); 1032 auto &Regs = *VMap.getVRegs(U); 1033 // If we already assigned a vreg for this bitcast, we can't change that. 1034 // Emit a copy to satisfy the users we already emitted. 1035 if (!Regs.empty()) 1036 MIRBuilder.buildCopy(Regs[0], SrcReg); 1037 else { 1038 Regs.push_back(SrcReg); 1039 VMap.getOffsets(U)->push_back(0); 1040 } 1041 return true; 1042 } 1043 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1044 } 1045 1046 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1047 MachineIRBuilder &MIRBuilder) { 1048 Register Op = getOrCreateVReg(*U.getOperand(0)); 1049 Register Res = getOrCreateVReg(U); 1050 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1051 return true; 1052 } 1053 1054 bool IRTranslator::translateGetElementPtr(const User &U, 1055 MachineIRBuilder &MIRBuilder) { 1056 // FIXME: support vector GEPs. 1057 if (U.getType()->isVectorTy()) 1058 return false; 1059 1060 Value &Op0 = *U.getOperand(0); 1061 Register BaseReg = getOrCreateVReg(Op0); 1062 Type *PtrIRTy = Op0.getType(); 1063 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1064 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1065 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1066 1067 int64_t Offset = 0; 1068 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1069 GTI != E; ++GTI) { 1070 const Value *Idx = GTI.getOperand(); 1071 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1072 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1073 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1074 continue; 1075 } else { 1076 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1077 1078 // If this is a scalar constant or a splat vector of constants, 1079 // handle it quickly. 1080 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1081 Offset += ElementSize * CI->getSExtValue(); 1082 continue; 1083 } 1084 1085 if (Offset != 0) { 1086 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1087 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1088 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1089 .getReg(0); 1090 Offset = 0; 1091 } 1092 1093 Register IdxReg = getOrCreateVReg(*Idx); 1094 if (MRI->getType(IdxReg) != OffsetTy) 1095 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1096 1097 // N = N + Idx * ElementSize; 1098 // Avoid doing it for ElementSize of 1. 1099 Register GepOffsetReg; 1100 if (ElementSize != 1) { 1101 auto ElementSizeMIB = MIRBuilder.buildConstant( 1102 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1103 GepOffsetReg = 1104 MIRBuilder.buildMul(OffsetTy, ElementSizeMIB, IdxReg).getReg(0); 1105 } else 1106 GepOffsetReg = IdxReg; 1107 1108 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1109 } 1110 } 1111 1112 if (Offset != 0) { 1113 auto OffsetMIB = 1114 MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset); 1115 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1116 return true; 1117 } 1118 1119 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1120 return true; 1121 } 1122 1123 bool IRTranslator::translateMemFunc(const CallInst &CI, 1124 MachineIRBuilder &MIRBuilder, 1125 Intrinsic::ID ID) { 1126 1127 // If the source is undef, then just emit a nop. 1128 if (isa<UndefValue>(CI.getArgOperand(1))) 1129 return true; 1130 1131 ArrayRef<Register> Res; 1132 auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true); 1133 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) 1134 ICall.addUse(getOrCreateVReg(**AI)); 1135 1136 unsigned DstAlign = 0, SrcAlign = 0; 1137 unsigned IsVol = 1138 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1139 ->getZExtValue(); 1140 1141 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1142 DstAlign = std::max<unsigned>(MCI->getDestAlignment(), 1); 1143 SrcAlign = std::max<unsigned>(MCI->getSourceAlignment(), 1); 1144 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1145 DstAlign = std::max<unsigned>(MMI->getDestAlignment(), 1); 1146 SrcAlign = std::max<unsigned>(MMI->getSourceAlignment(), 1); 1147 } else { 1148 auto *MSI = cast<MemSetInst>(&CI); 1149 DstAlign = std::max<unsigned>(MSI->getDestAlignment(), 1); 1150 } 1151 1152 // We need to propagate the tail call flag from the IR inst as an argument. 1153 // Otherwise, we have to pessimize and assume later that we cannot tail call 1154 // any memory intrinsics. 1155 ICall.addImm(CI.isTailCall() ? 1 : 0); 1156 1157 // Create mem operands to store the alignment and volatile info. 1158 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1159 ICall.addMemOperand(MF->getMachineMemOperand( 1160 MachinePointerInfo(CI.getArgOperand(0)), 1161 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1162 if (ID != Intrinsic::memset) 1163 ICall.addMemOperand(MF->getMachineMemOperand( 1164 MachinePointerInfo(CI.getArgOperand(1)), 1165 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1166 1167 return true; 1168 } 1169 1170 void IRTranslator::getStackGuard(Register DstReg, 1171 MachineIRBuilder &MIRBuilder) { 1172 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1173 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1174 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 1175 MIB.addDef(DstReg); 1176 1177 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1178 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1179 if (!Global) 1180 return; 1181 1182 MachinePointerInfo MPInfo(Global); 1183 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1184 MachineMemOperand::MODereferenceable; 1185 MachineMemOperand *MemRef = 1186 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 1187 DL->getPointerABIAlignment(0).value()); 1188 MIB.setMemRefs({MemRef}); 1189 } 1190 1191 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1192 MachineIRBuilder &MIRBuilder) { 1193 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1194 MIRBuilder.buildInstr(Op) 1195 .addDef(ResRegs[0]) 1196 .addDef(ResRegs[1]) 1197 .addUse(getOrCreateVReg(*CI.getOperand(0))) 1198 .addUse(getOrCreateVReg(*CI.getOperand(1))); 1199 1200 return true; 1201 } 1202 1203 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1204 switch (ID) { 1205 default: 1206 break; 1207 case Intrinsic::bswap: 1208 return TargetOpcode::G_BSWAP; 1209 case Intrinsic::bitreverse: 1210 return TargetOpcode::G_BITREVERSE; 1211 case Intrinsic::ceil: 1212 return TargetOpcode::G_FCEIL; 1213 case Intrinsic::cos: 1214 return TargetOpcode::G_FCOS; 1215 case Intrinsic::ctpop: 1216 return TargetOpcode::G_CTPOP; 1217 case Intrinsic::exp: 1218 return TargetOpcode::G_FEXP; 1219 case Intrinsic::exp2: 1220 return TargetOpcode::G_FEXP2; 1221 case Intrinsic::fabs: 1222 return TargetOpcode::G_FABS; 1223 case Intrinsic::copysign: 1224 return TargetOpcode::G_FCOPYSIGN; 1225 case Intrinsic::minnum: 1226 return TargetOpcode::G_FMINNUM; 1227 case Intrinsic::maxnum: 1228 return TargetOpcode::G_FMAXNUM; 1229 case Intrinsic::minimum: 1230 return TargetOpcode::G_FMINIMUM; 1231 case Intrinsic::maximum: 1232 return TargetOpcode::G_FMAXIMUM; 1233 case Intrinsic::canonicalize: 1234 return TargetOpcode::G_FCANONICALIZE; 1235 case Intrinsic::floor: 1236 return TargetOpcode::G_FFLOOR; 1237 case Intrinsic::fma: 1238 return TargetOpcode::G_FMA; 1239 case Intrinsic::log: 1240 return TargetOpcode::G_FLOG; 1241 case Intrinsic::log2: 1242 return TargetOpcode::G_FLOG2; 1243 case Intrinsic::log10: 1244 return TargetOpcode::G_FLOG10; 1245 case Intrinsic::nearbyint: 1246 return TargetOpcode::G_FNEARBYINT; 1247 case Intrinsic::pow: 1248 return TargetOpcode::G_FPOW; 1249 case Intrinsic::rint: 1250 return TargetOpcode::G_FRINT; 1251 case Intrinsic::round: 1252 return TargetOpcode::G_INTRINSIC_ROUND; 1253 case Intrinsic::sin: 1254 return TargetOpcode::G_FSIN; 1255 case Intrinsic::sqrt: 1256 return TargetOpcode::G_FSQRT; 1257 case Intrinsic::trunc: 1258 return TargetOpcode::G_INTRINSIC_TRUNC; 1259 } 1260 return Intrinsic::not_intrinsic; 1261 } 1262 1263 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1264 Intrinsic::ID ID, 1265 MachineIRBuilder &MIRBuilder) { 1266 1267 unsigned Op = getSimpleIntrinsicOpcode(ID); 1268 1269 // Is this a simple intrinsic? 1270 if (Op == Intrinsic::not_intrinsic) 1271 return false; 1272 1273 // Yes. Let's translate it. 1274 SmallVector<llvm::SrcOp, 4> VRegs; 1275 for (auto &Arg : CI.arg_operands()) 1276 VRegs.push_back(getOrCreateVReg(*Arg)); 1277 1278 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1279 MachineInstr::copyFlagsFromInstruction(CI)); 1280 return true; 1281 } 1282 1283 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1284 MachineIRBuilder &MIRBuilder) { 1285 1286 // If this is a simple intrinsic (that is, we just need to add a def of 1287 // a vreg, and uses for each arg operand, then translate it. 1288 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1289 return true; 1290 1291 switch (ID) { 1292 default: 1293 break; 1294 case Intrinsic::lifetime_start: 1295 case Intrinsic::lifetime_end: { 1296 // No stack colouring in O0, discard region information. 1297 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1298 return true; 1299 1300 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1301 : TargetOpcode::LIFETIME_END; 1302 1303 // Get the underlying objects for the location passed on the lifetime 1304 // marker. 1305 SmallVector<const Value *, 4> Allocas; 1306 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 1307 1308 // Iterate over each underlying object, creating lifetime markers for each 1309 // static alloca. Quit if we find a non-static alloca. 1310 for (const Value *V : Allocas) { 1311 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1312 if (!AI) 1313 continue; 1314 1315 if (!AI->isStaticAlloca()) 1316 return true; 1317 1318 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1319 } 1320 return true; 1321 } 1322 case Intrinsic::dbg_declare: { 1323 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1324 assert(DI.getVariable() && "Missing variable"); 1325 1326 const Value *Address = DI.getAddress(); 1327 if (!Address || isa<UndefValue>(Address)) { 1328 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1329 return true; 1330 } 1331 1332 assert(DI.getVariable()->isValidLocationForIntrinsic( 1333 MIRBuilder.getDebugLoc()) && 1334 "Expected inlined-at fields to agree"); 1335 auto AI = dyn_cast<AllocaInst>(Address); 1336 if (AI && AI->isStaticAlloca()) { 1337 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1338 // instructions (in fact, they get ignored if they *do* exist). 1339 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1340 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1341 } else { 1342 // A dbg.declare describes the address of a source variable, so lower it 1343 // into an indirect DBG_VALUE. 1344 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1345 DI.getVariable(), DI.getExpression()); 1346 } 1347 return true; 1348 } 1349 case Intrinsic::dbg_label: { 1350 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1351 assert(DI.getLabel() && "Missing label"); 1352 1353 assert(DI.getLabel()->isValidLocationForIntrinsic( 1354 MIRBuilder.getDebugLoc()) && 1355 "Expected inlined-at fields to agree"); 1356 1357 MIRBuilder.buildDbgLabel(DI.getLabel()); 1358 return true; 1359 } 1360 case Intrinsic::vaend: 1361 // No target I know of cares about va_end. Certainly no in-tree target 1362 // does. Simplest intrinsic ever! 1363 return true; 1364 case Intrinsic::vastart: { 1365 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1366 Value *Ptr = CI.getArgOperand(0); 1367 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1368 1369 // FIXME: Get alignment 1370 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 1371 .addUse(getOrCreateVReg(*Ptr)) 1372 .addMemOperand(MF->getMachineMemOperand( 1373 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); 1374 return true; 1375 } 1376 case Intrinsic::dbg_value: { 1377 // This form of DBG_VALUE is target-independent. 1378 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1379 const Value *V = DI.getValue(); 1380 assert(DI.getVariable()->isValidLocationForIntrinsic( 1381 MIRBuilder.getDebugLoc()) && 1382 "Expected inlined-at fields to agree"); 1383 if (!V) { 1384 // Currently the optimizer can produce this; insert an undef to 1385 // help debugging. Probably the optimizer should not do this. 1386 MIRBuilder.buildDirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1387 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1388 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1389 } else { 1390 for (Register Reg : getOrCreateVRegs(*V)) { 1391 // FIXME: This does not handle register-indirect values at offset 0. The 1392 // direct/indirect thing shouldn't really be handled by something as 1393 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1394 // pretty baked in right now. 1395 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1396 } 1397 } 1398 return true; 1399 } 1400 case Intrinsic::uadd_with_overflow: 1401 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1402 case Intrinsic::sadd_with_overflow: 1403 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1404 case Intrinsic::usub_with_overflow: 1405 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1406 case Intrinsic::ssub_with_overflow: 1407 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1408 case Intrinsic::umul_with_overflow: 1409 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1410 case Intrinsic::smul_with_overflow: 1411 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1412 case Intrinsic::fmuladd: { 1413 const TargetMachine &TM = MF->getTarget(); 1414 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1415 Register Dst = getOrCreateVReg(CI); 1416 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1417 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1418 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1419 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1420 TLI.isFMAFasterThanFMulAndFAdd(*MF, 1421 TLI.getValueType(*DL, CI.getType()))) { 1422 // TODO: Revisit this to see if we should move this part of the 1423 // lowering to the combiner. 1424 MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2}, 1425 MachineInstr::copyFlagsFromInstruction(CI)); 1426 } else { 1427 LLT Ty = getLLTForType(*CI.getType(), *DL); 1428 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1}, 1429 MachineInstr::copyFlagsFromInstruction(CI)); 1430 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2}, 1431 MachineInstr::copyFlagsFromInstruction(CI)); 1432 } 1433 return true; 1434 } 1435 case Intrinsic::memcpy: 1436 case Intrinsic::memmove: 1437 case Intrinsic::memset: 1438 return translateMemFunc(CI, MIRBuilder, ID); 1439 case Intrinsic::eh_typeid_for: { 1440 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1441 Register Reg = getOrCreateVReg(CI); 1442 unsigned TypeID = MF->getTypeIDFor(GV); 1443 MIRBuilder.buildConstant(Reg, TypeID); 1444 return true; 1445 } 1446 case Intrinsic::objectsize: 1447 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1448 1449 case Intrinsic::is_constant: 1450 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1451 1452 case Intrinsic::stackguard: 1453 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1454 return true; 1455 case Intrinsic::stackprotector: { 1456 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1457 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1458 getStackGuard(GuardVal, MIRBuilder); 1459 1460 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1461 int FI = getOrCreateFrameIndex(*Slot); 1462 MF->getFrameInfo().setStackProtectorIndex(FI); 1463 1464 MIRBuilder.buildStore( 1465 GuardVal, getOrCreateVReg(*Slot), 1466 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1467 MachineMemOperand::MOStore | 1468 MachineMemOperand::MOVolatile, 1469 PtrTy.getSizeInBits() / 8, 8)); 1470 return true; 1471 } 1472 case Intrinsic::stacksave: { 1473 // Save the stack pointer to the location provided by the intrinsic. 1474 Register Reg = getOrCreateVReg(CI); 1475 Register StackPtr = MF->getSubtarget() 1476 .getTargetLowering() 1477 ->getStackPointerRegisterToSaveRestore(); 1478 1479 // If the target doesn't specify a stack pointer, then fall back. 1480 if (!StackPtr) 1481 return false; 1482 1483 MIRBuilder.buildCopy(Reg, StackPtr); 1484 return true; 1485 } 1486 case Intrinsic::stackrestore: { 1487 // Restore the stack pointer from the location provided by the intrinsic. 1488 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1489 Register StackPtr = MF->getSubtarget() 1490 .getTargetLowering() 1491 ->getStackPointerRegisterToSaveRestore(); 1492 1493 // If the target doesn't specify a stack pointer, then fall back. 1494 if (!StackPtr) 1495 return false; 1496 1497 MIRBuilder.buildCopy(StackPtr, Reg); 1498 return true; 1499 } 1500 case Intrinsic::cttz: 1501 case Intrinsic::ctlz: { 1502 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1503 bool isTrailing = ID == Intrinsic::cttz; 1504 unsigned Opcode = isTrailing 1505 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1506 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1507 : Cst->isZero() ? TargetOpcode::G_CTLZ 1508 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1509 MIRBuilder.buildInstr(Opcode) 1510 .addDef(getOrCreateVReg(CI)) 1511 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 1512 return true; 1513 } 1514 case Intrinsic::invariant_start: { 1515 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1516 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 1517 MIRBuilder.buildUndef(Undef); 1518 return true; 1519 } 1520 case Intrinsic::invariant_end: 1521 return true; 1522 case Intrinsic::assume: 1523 case Intrinsic::var_annotation: 1524 case Intrinsic::sideeffect: 1525 // Discard annotate attributes, assumptions, and artificial side-effects. 1526 return true; 1527 } 1528 return false; 1529 } 1530 1531 bool IRTranslator::translateInlineAsm(const CallInst &CI, 1532 MachineIRBuilder &MIRBuilder) { 1533 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 1534 if (!IA.getConstraintString().empty()) 1535 return false; 1536 1537 unsigned ExtraInfo = 0; 1538 if (IA.hasSideEffects()) 1539 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1540 if (IA.getDialect() == InlineAsm::AD_Intel) 1541 ExtraInfo |= InlineAsm::Extra_AsmDialect; 1542 1543 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 1544 .addExternalSymbol(IA.getAsmString().c_str()) 1545 .addImm(ExtraInfo); 1546 1547 return true; 1548 } 1549 1550 bool IRTranslator::translateCallSite(const ImmutableCallSite &CS, 1551 MachineIRBuilder &MIRBuilder) { 1552 const Instruction &I = *CS.getInstruction(); 1553 ArrayRef<Register> Res = getOrCreateVRegs(I); 1554 1555 SmallVector<ArrayRef<Register>, 8> Args; 1556 Register SwiftInVReg = 0; 1557 Register SwiftErrorVReg = 0; 1558 for (auto &Arg : CS.args()) { 1559 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1560 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 1561 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1562 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 1563 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 1564 &I, &MIRBuilder.getMBB(), Arg)); 1565 Args.emplace_back(makeArrayRef(SwiftInVReg)); 1566 SwiftErrorVReg = 1567 SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg); 1568 continue; 1569 } 1570 Args.push_back(getOrCreateVRegs(*Arg)); 1571 } 1572 1573 // We don't set HasCalls on MFI here yet because call lowering may decide to 1574 // optimize into tail calls. Instead, we defer that to selection where a final 1575 // scan is done to check if any instructions are calls. 1576 bool Success = 1577 CLI->lowerCall(MIRBuilder, CS, Res, Args, SwiftErrorVReg, 1578 [&]() { return getOrCreateVReg(*CS.getCalledValue()); }); 1579 1580 // Check if we just inserted a tail call. 1581 if (Success) { 1582 assert(!HasTailCall && "Can't tail call return twice from block?"); 1583 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1584 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 1585 } 1586 1587 return Success; 1588 } 1589 1590 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1591 const CallInst &CI = cast<CallInst>(U); 1592 auto TII = MF->getTarget().getIntrinsicInfo(); 1593 const Function *F = CI.getCalledFunction(); 1594 1595 // FIXME: support Windows dllimport function calls. 1596 if (F && F->hasDLLImportStorageClass()) 1597 return false; 1598 1599 // FIXME: support control flow guard targets. 1600 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1601 return false; 1602 1603 if (CI.isInlineAsm()) 1604 return translateInlineAsm(CI, MIRBuilder); 1605 1606 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1607 if (F && F->isIntrinsic()) { 1608 ID = F->getIntrinsicID(); 1609 if (TII && ID == Intrinsic::not_intrinsic) 1610 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1611 } 1612 1613 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 1614 return translateCallSite(&CI, MIRBuilder); 1615 1616 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1617 1618 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1619 return true; 1620 1621 ArrayRef<Register> ResultRegs; 1622 if (!CI.getType()->isVoidTy()) 1623 ResultRegs = getOrCreateVRegs(CI); 1624 1625 // Ignore the callsite attributes. Backend code is most likely not expecting 1626 // an intrinsic to sometimes have side effects and sometimes not. 1627 MachineInstrBuilder MIB = 1628 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 1629 if (isa<FPMathOperator>(CI)) 1630 MIB->copyIRFlags(CI); 1631 1632 for (auto &Arg : enumerate(CI.arg_operands())) { 1633 // Some intrinsics take metadata parameters. Reject them. 1634 if (isa<MetadataAsValue>(Arg.value())) 1635 return false; 1636 1637 // If this is required to be an immediate, don't materialize it in a 1638 // register. 1639 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 1640 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 1641 // imm arguments are more convenient than cimm (and realistically 1642 // probably sufficient), so use them. 1643 assert(CI->getBitWidth() <= 64 && 1644 "large intrinsic immediates not handled"); 1645 MIB.addImm(CI->getSExtValue()); 1646 } else { 1647 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 1648 } 1649 } else { 1650 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 1651 if (VRegs.size() > 1) 1652 return false; 1653 MIB.addUse(VRegs[0]); 1654 } 1655 } 1656 1657 // Add a MachineMemOperand if it is a target mem intrinsic. 1658 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1659 TargetLowering::IntrinsicInfo Info; 1660 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1661 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1662 MaybeAlign Align = Info.align; 1663 if (!Align) 1664 Align = MaybeAlign( 1665 DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext()))); 1666 1667 uint64_t Size = Info.memVT.getStoreSize(); 1668 MIB.addMemOperand(MF->getMachineMemOperand( 1669 MachinePointerInfo(Info.ptrVal), Info.flags, Size, Align->value())); 1670 } 1671 1672 return true; 1673 } 1674 1675 bool IRTranslator::translateInvoke(const User &U, 1676 MachineIRBuilder &MIRBuilder) { 1677 const InvokeInst &I = cast<InvokeInst>(U); 1678 MCContext &Context = MF->getContext(); 1679 1680 const BasicBlock *ReturnBB = I.getSuccessor(0); 1681 const BasicBlock *EHPadBB = I.getSuccessor(1); 1682 1683 const Value *Callee = I.getCalledValue(); 1684 const Function *Fn = dyn_cast<Function>(Callee); 1685 if (isa<InlineAsm>(Callee)) 1686 return false; 1687 1688 // FIXME: support invoking patchpoint and statepoint intrinsics. 1689 if (Fn && Fn->isIntrinsic()) 1690 return false; 1691 1692 // FIXME: support whatever these are. 1693 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1694 return false; 1695 1696 // FIXME: support control flow guard targets. 1697 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1698 return false; 1699 1700 // FIXME: support Windows exception handling. 1701 if (!isa<LandingPadInst>(EHPadBB->front())) 1702 return false; 1703 1704 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1705 // the region covered by the try. 1706 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1707 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1708 1709 if (!translateCallSite(&I, MIRBuilder)) 1710 return false; 1711 1712 MCSymbol *EndSymbol = Context.createTempSymbol(); 1713 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1714 1715 // FIXME: track probabilities. 1716 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1717 &ReturnMBB = getMBB(*ReturnBB); 1718 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1719 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1720 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1721 MIRBuilder.buildBr(ReturnMBB); 1722 1723 return true; 1724 } 1725 1726 bool IRTranslator::translateCallBr(const User &U, 1727 MachineIRBuilder &MIRBuilder) { 1728 // FIXME: Implement this. 1729 return false; 1730 } 1731 1732 bool IRTranslator::translateLandingPad(const User &U, 1733 MachineIRBuilder &MIRBuilder) { 1734 const LandingPadInst &LP = cast<LandingPadInst>(U); 1735 1736 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1737 1738 MBB.setIsEHPad(); 1739 1740 // If there aren't registers to copy the values into (e.g., during SjLj 1741 // exceptions), then don't bother. 1742 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1743 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1744 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1745 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1746 return true; 1747 1748 // If landingpad's return type is token type, we don't create DAG nodes 1749 // for its exception pointer and selector value. The extraction of exception 1750 // pointer or selector value from token type landingpads is not currently 1751 // supported. 1752 if (LP.getType()->isTokenTy()) 1753 return true; 1754 1755 // Add a label to mark the beginning of the landing pad. Deletion of the 1756 // landing pad can thus be detected via the MachineModuleInfo. 1757 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1758 .addSym(MF->addLandingPad(&MBB)); 1759 1760 LLT Ty = getLLTForType(*LP.getType(), *DL); 1761 Register Undef = MRI->createGenericVirtualRegister(Ty); 1762 MIRBuilder.buildUndef(Undef); 1763 1764 SmallVector<LLT, 2> Tys; 1765 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1766 Tys.push_back(getLLTForType(*Ty, *DL)); 1767 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1768 1769 // Mark exception register as live in. 1770 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1771 if (!ExceptionReg) 1772 return false; 1773 1774 MBB.addLiveIn(ExceptionReg); 1775 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 1776 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1777 1778 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1779 if (!SelectorReg) 1780 return false; 1781 1782 MBB.addLiveIn(SelectorReg); 1783 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1784 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1785 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1786 1787 return true; 1788 } 1789 1790 bool IRTranslator::translateAlloca(const User &U, 1791 MachineIRBuilder &MIRBuilder) { 1792 auto &AI = cast<AllocaInst>(U); 1793 1794 if (AI.isSwiftError()) 1795 return true; 1796 1797 if (AI.isStaticAlloca()) { 1798 Register Res = getOrCreateVReg(AI); 1799 int FI = getOrCreateFrameIndex(AI); 1800 MIRBuilder.buildFrameIndex(Res, FI); 1801 return true; 1802 } 1803 1804 // FIXME: support stack probing for Windows. 1805 if (MF->getTarget().getTargetTriple().isOSWindows()) 1806 return false; 1807 1808 // Now we're in the harder dynamic case. 1809 Type *Ty = AI.getAllocatedType(); 1810 unsigned Align = 1811 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1812 1813 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 1814 1815 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1816 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1817 if (MRI->getType(NumElts) != IntPtrTy) { 1818 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1819 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1820 NumElts = ExtElts; 1821 } 1822 1823 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1824 Register TySize = 1825 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 1826 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1827 1828 unsigned StackAlign = 1829 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1830 if (Align <= StackAlign) 1831 Align = 0; 1832 1833 // Round the size of the allocation up to the stack alignment size 1834 // by add SA-1 to the size. This doesn't overflow because we're computing 1835 // an address inside an alloca. 1836 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign - 1); 1837 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 1838 MachineInstr::NoUWrap); 1839 auto AlignCst = 1840 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign - 1)); 1841 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 1842 1843 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Align); 1844 1845 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1846 assert(MF->getFrameInfo().hasVarSizedObjects()); 1847 return true; 1848 } 1849 1850 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1851 // FIXME: We may need more info about the type. Because of how LLT works, 1852 // we're completely discarding the i64/double distinction here (amongst 1853 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1854 // anyway but that's not guaranteed. 1855 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1856 .addDef(getOrCreateVReg(U)) 1857 .addUse(getOrCreateVReg(*U.getOperand(0))) 1858 .addImm(DL->getABITypeAlignment(U.getType())); 1859 return true; 1860 } 1861 1862 bool IRTranslator::translateInsertElement(const User &U, 1863 MachineIRBuilder &MIRBuilder) { 1864 // If it is a <1 x Ty> vector, use the scalar as it is 1865 // not a legal vector type in LLT. 1866 if (U.getType()->getVectorNumElements() == 1) { 1867 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1868 auto &Regs = *VMap.getVRegs(U); 1869 if (Regs.empty()) { 1870 Regs.push_back(Elt); 1871 VMap.getOffsets(U)->push_back(0); 1872 } else { 1873 MIRBuilder.buildCopy(Regs[0], Elt); 1874 } 1875 return true; 1876 } 1877 1878 Register Res = getOrCreateVReg(U); 1879 Register Val = getOrCreateVReg(*U.getOperand(0)); 1880 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1881 Register Idx = getOrCreateVReg(*U.getOperand(2)); 1882 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1883 return true; 1884 } 1885 1886 bool IRTranslator::translateExtractElement(const User &U, 1887 MachineIRBuilder &MIRBuilder) { 1888 // If it is a <1 x Ty> vector, use the scalar as it is 1889 // not a legal vector type in LLT. 1890 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1891 Register Elt = getOrCreateVReg(*U.getOperand(0)); 1892 auto &Regs = *VMap.getVRegs(U); 1893 if (Regs.empty()) { 1894 Regs.push_back(Elt); 1895 VMap.getOffsets(U)->push_back(0); 1896 } else { 1897 MIRBuilder.buildCopy(Regs[0], Elt); 1898 } 1899 return true; 1900 } 1901 Register Res = getOrCreateVReg(U); 1902 Register Val = getOrCreateVReg(*U.getOperand(0)); 1903 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1904 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1905 Register Idx; 1906 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1907 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1908 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1909 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1910 Idx = getOrCreateVReg(*NewIdxCI); 1911 } 1912 } 1913 if (!Idx) 1914 Idx = getOrCreateVReg(*U.getOperand(1)); 1915 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1916 const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1917 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); 1918 } 1919 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1920 return true; 1921 } 1922 1923 bool IRTranslator::translateShuffleVector(const User &U, 1924 MachineIRBuilder &MIRBuilder) { 1925 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1926 .addDef(getOrCreateVReg(U)) 1927 .addUse(getOrCreateVReg(*U.getOperand(0))) 1928 .addUse(getOrCreateVReg(*U.getOperand(1))) 1929 .addShuffleMask(cast<Constant>(U.getOperand(2))); 1930 return true; 1931 } 1932 1933 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1934 const PHINode &PI = cast<PHINode>(U); 1935 1936 SmallVector<MachineInstr *, 4> Insts; 1937 for (auto Reg : getOrCreateVRegs(PI)) { 1938 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1939 Insts.push_back(MIB.getInstr()); 1940 } 1941 1942 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1943 return true; 1944 } 1945 1946 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1947 MachineIRBuilder &MIRBuilder) { 1948 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1949 1950 if (I.isWeak()) 1951 return false; 1952 1953 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1954 : MachineMemOperand::MONone; 1955 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1956 1957 Type *ResType = I.getType(); 1958 Type *ValType = ResType->Type::getStructElementType(0); 1959 1960 auto Res = getOrCreateVRegs(I); 1961 Register OldValRes = Res[0]; 1962 Register SuccessRes = Res[1]; 1963 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 1964 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 1965 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 1966 1967 AAMDNodes AAMetadata; 1968 I.getAAMetadata(AAMetadata); 1969 1970 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1971 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1972 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1973 Flags, DL->getTypeStoreSize(ValType), 1974 getMemOpAlignment(I), AAMetadata, nullptr, 1975 I.getSyncScopeID(), I.getSuccessOrdering(), 1976 I.getFailureOrdering())); 1977 return true; 1978 } 1979 1980 bool IRTranslator::translateAtomicRMW(const User &U, 1981 MachineIRBuilder &MIRBuilder) { 1982 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1983 1984 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1985 : MachineMemOperand::MONone; 1986 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1987 1988 Type *ResType = I.getType(); 1989 1990 Register Res = getOrCreateVReg(I); 1991 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 1992 Register Val = getOrCreateVReg(*I.getValOperand()); 1993 1994 unsigned Opcode = 0; 1995 switch (I.getOperation()) { 1996 default: 1997 return false; 1998 case AtomicRMWInst::Xchg: 1999 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2000 break; 2001 case AtomicRMWInst::Add: 2002 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2003 break; 2004 case AtomicRMWInst::Sub: 2005 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2006 break; 2007 case AtomicRMWInst::And: 2008 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2009 break; 2010 case AtomicRMWInst::Nand: 2011 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2012 break; 2013 case AtomicRMWInst::Or: 2014 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2015 break; 2016 case AtomicRMWInst::Xor: 2017 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2018 break; 2019 case AtomicRMWInst::Max: 2020 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2021 break; 2022 case AtomicRMWInst::Min: 2023 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2024 break; 2025 case AtomicRMWInst::UMax: 2026 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2027 break; 2028 case AtomicRMWInst::UMin: 2029 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2030 break; 2031 case AtomicRMWInst::FAdd: 2032 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2033 break; 2034 case AtomicRMWInst::FSub: 2035 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2036 break; 2037 } 2038 2039 AAMDNodes AAMetadata; 2040 I.getAAMetadata(AAMetadata); 2041 2042 MIRBuilder.buildAtomicRMW( 2043 Opcode, Res, Addr, Val, 2044 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2045 Flags, DL->getTypeStoreSize(ResType), 2046 getMemOpAlignment(I), AAMetadata, 2047 nullptr, I.getSyncScopeID(), I.getOrdering())); 2048 return true; 2049 } 2050 2051 bool IRTranslator::translateFence(const User &U, 2052 MachineIRBuilder &MIRBuilder) { 2053 const FenceInst &Fence = cast<FenceInst>(U); 2054 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2055 Fence.getSyncScopeID()); 2056 return true; 2057 } 2058 2059 void IRTranslator::finishPendingPhis() { 2060 #ifndef NDEBUG 2061 DILocationVerifier Verifier; 2062 GISelObserverWrapper WrapperObserver(&Verifier); 2063 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2064 #endif // ifndef NDEBUG 2065 for (auto &Phi : PendingPHIs) { 2066 const PHINode *PI = Phi.first; 2067 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2068 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2069 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2070 #ifndef NDEBUG 2071 Verifier.setCurrentInst(PI); 2072 #endif // ifndef NDEBUG 2073 2074 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2075 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2076 auto IRPred = PI->getIncomingBlock(i); 2077 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2078 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2079 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2080 continue; 2081 SeenPreds.insert(Pred); 2082 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2083 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2084 MIB.addUse(ValRegs[j]); 2085 MIB.addMBB(Pred); 2086 } 2087 } 2088 } 2089 } 2090 } 2091 2092 bool IRTranslator::valueIsSplit(const Value &V, 2093 SmallVectorImpl<uint64_t> *Offsets) { 2094 SmallVector<LLT, 4> SplitTys; 2095 if (Offsets && !Offsets->empty()) 2096 Offsets->clear(); 2097 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2098 return SplitTys.size() > 1; 2099 } 2100 2101 bool IRTranslator::translate(const Instruction &Inst) { 2102 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2103 // We only emit constants into the entry block from here. To prevent jumpy 2104 // debug behaviour set the line to 0. 2105 if (const DebugLoc &DL = Inst.getDebugLoc()) 2106 EntryBuilder->setDebugLoc( 2107 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 2108 else 2109 EntryBuilder->setDebugLoc(DebugLoc()); 2110 2111 switch (Inst.getOpcode()) { 2112 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2113 case Instruction::OPCODE: \ 2114 return translate##OPCODE(Inst, *CurBuilder.get()); 2115 #include "llvm/IR/Instruction.def" 2116 default: 2117 return false; 2118 } 2119 } 2120 2121 bool IRTranslator::translate(const Constant &C, Register Reg) { 2122 if (auto CI = dyn_cast<ConstantInt>(&C)) 2123 EntryBuilder->buildConstant(Reg, *CI); 2124 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2125 EntryBuilder->buildFConstant(Reg, *CF); 2126 else if (isa<UndefValue>(C)) 2127 EntryBuilder->buildUndef(Reg); 2128 else if (isa<ConstantPointerNull>(C)) { 2129 // As we are trying to build a constant val of 0 into a pointer, 2130 // insert a cast to make them correct with respect to types. 2131 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 2132 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 2133 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 2134 Register ZeroReg = getOrCreateVReg(*ZeroVal); 2135 EntryBuilder->buildCast(Reg, ZeroReg); 2136 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 2137 EntryBuilder->buildGlobalValue(Reg, GV); 2138 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2139 if (!CAZ->getType()->isVectorTy()) 2140 return false; 2141 // Return the scalar if it is a <1 x Ty> vector. 2142 if (CAZ->getNumElements() == 1) 2143 return translate(*CAZ->getElementValue(0u), Reg); 2144 SmallVector<Register, 4> Ops; 2145 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 2146 Constant &Elt = *CAZ->getElementValue(i); 2147 Ops.push_back(getOrCreateVReg(Elt)); 2148 } 2149 EntryBuilder->buildBuildVector(Reg, Ops); 2150 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2151 // Return the scalar if it is a <1 x Ty> vector. 2152 if (CV->getNumElements() == 1) 2153 return translate(*CV->getElementAsConstant(0), Reg); 2154 SmallVector<Register, 4> Ops; 2155 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2156 Constant &Elt = *CV->getElementAsConstant(i); 2157 Ops.push_back(getOrCreateVReg(Elt)); 2158 } 2159 EntryBuilder->buildBuildVector(Reg, Ops); 2160 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2161 switch(CE->getOpcode()) { 2162 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2163 case Instruction::OPCODE: \ 2164 return translate##OPCODE(*CE, *EntryBuilder.get()); 2165 #include "llvm/IR/Instruction.def" 2166 default: 2167 return false; 2168 } 2169 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2170 if (CV->getNumOperands() == 1) 2171 return translate(*CV->getOperand(0), Reg); 2172 SmallVector<Register, 4> Ops; 2173 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2174 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2175 } 2176 EntryBuilder->buildBuildVector(Reg, Ops); 2177 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2178 EntryBuilder->buildBlockAddress(Reg, BA); 2179 } else 2180 return false; 2181 2182 return true; 2183 } 2184 2185 void IRTranslator::finalizeBasicBlock() { 2186 for (auto &JTCase : SL->JTCases) { 2187 // Emit header first, if it wasn't already emitted. 2188 if (!JTCase.first.Emitted) 2189 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 2190 2191 emitJumpTable(JTCase.second, JTCase.second.MBB); 2192 } 2193 SL->JTCases.clear(); 2194 } 2195 2196 void IRTranslator::finalizeFunction() { 2197 // Release the memory used by the different maps we 2198 // needed during the translation. 2199 PendingPHIs.clear(); 2200 VMap.reset(); 2201 FrameIndices.clear(); 2202 MachinePreds.clear(); 2203 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 2204 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 2205 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 2206 EntryBuilder.reset(); 2207 CurBuilder.reset(); 2208 FuncInfo.clear(); 2209 } 2210 2211 /// Returns true if a BasicBlock \p BB within a variadic function contains a 2212 /// variadic musttail call. 2213 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 2214 if (!IsVarArg) 2215 return false; 2216 2217 // Walk the block backwards, because tail calls usually only appear at the end 2218 // of a block. 2219 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 2220 const auto *CI = dyn_cast<CallInst>(&I); 2221 return CI && CI->isMustTailCall(); 2222 }); 2223 } 2224 2225 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 2226 MF = &CurMF; 2227 const Function &F = MF->getFunction(); 2228 if (F.empty()) 2229 return false; 2230 GISelCSEAnalysisWrapper &Wrapper = 2231 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 2232 // Set the CSEConfig and run the analysis. 2233 GISelCSEInfo *CSEInfo = nullptr; 2234 TPC = &getAnalysis<TargetPassConfig>(); 2235 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 2236 ? EnableCSEInIRTranslator 2237 : TPC->isGISelCSEEnabled(); 2238 2239 if (EnableCSE) { 2240 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2241 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 2242 EntryBuilder->setCSEInfo(CSEInfo); 2243 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2244 CurBuilder->setCSEInfo(CSEInfo); 2245 } else { 2246 EntryBuilder = std::make_unique<MachineIRBuilder>(); 2247 CurBuilder = std::make_unique<MachineIRBuilder>(); 2248 } 2249 CLI = MF->getSubtarget().getCallLowering(); 2250 CurBuilder->setMF(*MF); 2251 EntryBuilder->setMF(*MF); 2252 MRI = &MF->getRegInfo(); 2253 DL = &F.getParent()->getDataLayout(); 2254 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2255 FuncInfo.MF = MF; 2256 FuncInfo.BPI = nullptr; 2257 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2258 const TargetMachine &TM = MF->getTarget(); 2259 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 2260 SL->init(TLI, TM, *DL); 2261 2262 EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); 2263 2264 assert(PendingPHIs.empty() && "stale PHIs"); 2265 2266 if (!DL->isLittleEndian()) { 2267 // Currently we don't properly handle big endian code. 2268 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2269 F.getSubprogram(), &F.getEntryBlock()); 2270 R << "unable to translate in big endian mode"; 2271 reportTranslationError(*MF, *TPC, *ORE, R); 2272 } 2273 2274 // Release the per-function state when we return, whether we succeeded or not. 2275 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 2276 2277 // Setup a separate basic-block for the arguments and constants 2278 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 2279 MF->push_back(EntryBB); 2280 EntryBuilder->setMBB(*EntryBB); 2281 2282 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 2283 SwiftError.setFunction(CurMF); 2284 SwiftError.createEntriesInEntryBlock(DbgLoc); 2285 2286 bool IsVarArg = F.isVarArg(); 2287 bool HasMustTailInVarArgFn = false; 2288 2289 // Create all blocks, in IR order, to preserve the layout. 2290 for (const BasicBlock &BB: F) { 2291 auto *&MBB = BBToMBB[&BB]; 2292 2293 MBB = MF->CreateMachineBasicBlock(&BB); 2294 MF->push_back(MBB); 2295 2296 if (BB.hasAddressTaken()) 2297 MBB->setHasAddressTaken(); 2298 2299 if (!HasMustTailInVarArgFn) 2300 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 2301 } 2302 2303 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 2304 2305 // Make our arguments/constants entry block fallthrough to the IR entry block. 2306 EntryBB->addSuccessor(&getMBB(F.front())); 2307 2308 // Lower the actual args into this basic block. 2309 SmallVector<ArrayRef<Register>, 8> VRegArgs; 2310 for (const Argument &Arg: F.args()) { 2311 if (DL->getTypeStoreSize(Arg.getType()) == 0) 2312 continue; // Don't handle zero sized types. 2313 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 2314 VRegArgs.push_back(VRegs); 2315 2316 if (Arg.hasSwiftErrorAttr()) { 2317 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 2318 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 2319 } 2320 } 2321 2322 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 2323 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2324 F.getSubprogram(), &F.getEntryBlock()); 2325 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 2326 reportTranslationError(*MF, *TPC, *ORE, R); 2327 return false; 2328 } 2329 2330 // Need to visit defs before uses when translating instructions. 2331 GISelObserverWrapper WrapperObserver; 2332 if (EnableCSE && CSEInfo) 2333 WrapperObserver.addObserver(CSEInfo); 2334 { 2335 ReversePostOrderTraversal<const Function *> RPOT(&F); 2336 #ifndef NDEBUG 2337 DILocationVerifier Verifier; 2338 WrapperObserver.addObserver(&Verifier); 2339 #endif // ifndef NDEBUG 2340 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2341 for (const BasicBlock *BB : RPOT) { 2342 MachineBasicBlock &MBB = getMBB(*BB); 2343 // Set the insertion point of all the following translations to 2344 // the end of this basic block. 2345 CurBuilder->setMBB(MBB); 2346 HasTailCall = false; 2347 for (const Instruction &Inst : *BB) { 2348 // If we translated a tail call in the last step, then we know 2349 // everything after the call is either a return, or something that is 2350 // handled by the call itself. (E.g. a lifetime marker or assume 2351 // intrinsic.) In this case, we should stop translating the block and 2352 // move on. 2353 if (HasTailCall) 2354 break; 2355 #ifndef NDEBUG 2356 Verifier.setCurrentInst(&Inst); 2357 #endif // ifndef NDEBUG 2358 if (translate(Inst)) 2359 continue; 2360 2361 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2362 Inst.getDebugLoc(), BB); 2363 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 2364 2365 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 2366 std::string InstStrStorage; 2367 raw_string_ostream InstStr(InstStrStorage); 2368 InstStr << Inst; 2369 2370 R << ": '" << InstStr.str() << "'"; 2371 } 2372 2373 reportTranslationError(*MF, *TPC, *ORE, R); 2374 return false; 2375 } 2376 2377 finalizeBasicBlock(); 2378 } 2379 #ifndef NDEBUG 2380 WrapperObserver.removeObserver(&Verifier); 2381 #endif 2382 } 2383 2384 finishPendingPhis(); 2385 2386 SwiftError.propagateVRegs(); 2387 2388 // Merge the argument lowering and constants block with its single 2389 // successor, the LLVM-IR entry block. We want the basic block to 2390 // be maximal. 2391 assert(EntryBB->succ_size() == 1 && 2392 "Custom BB used for lowering should have only one successor"); 2393 // Get the successor of the current entry block. 2394 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 2395 assert(NewEntryBB.pred_size() == 1 && 2396 "LLVM-IR entry block has a predecessor!?"); 2397 // Move all the instruction from the current entry block to the 2398 // new entry block. 2399 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 2400 EntryBB->end()); 2401 2402 // Update the live-in information for the new entry block. 2403 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 2404 NewEntryBB.addLiveIn(LiveIn); 2405 NewEntryBB.sortUniqueLiveIns(); 2406 2407 // Get rid of the now empty basic block. 2408 EntryBB->removeSuccessor(&NewEntryBB); 2409 MF->remove(EntryBB); 2410 MF->DeleteMachineBasicBlock(EntryBB); 2411 2412 assert(&MF->front() == &NewEntryBB && 2413 "New entry wasn't next in the list of basic block!"); 2414 2415 // Initialize stack protector information. 2416 StackProtector &SP = getAnalysis<StackProtector>(); 2417 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2418 2419 return false; 2420 } 2421