1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/FunctionLoweringInfo.h"
24 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
25 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
26 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
27 #include "llvm/CodeGen/LowLevelType.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/StackProtector.h"
36 #include "llvm/CodeGen/TargetFrameLowering.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfo.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GetElementPtrTypeIterator.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/MCContext.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/LowLevelTypeImpl.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetIntrinsicInfo.h"
72 #include "llvm/Target/TargetMachine.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <iterator>
77 #include <string>
78 #include <utility>
79 #include <vector>
80 
81 #define DEBUG_TYPE "irtranslator"
82 
83 using namespace llvm;
84 
85 static cl::opt<bool>
86     EnableCSEInIRTranslator("enable-cse-in-irtranslator",
87                             cl::desc("Should enable CSE in irtranslator"),
88                             cl::Optional, cl::init(false));
89 char IRTranslator::ID = 0;
90 
91 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
92                 false, false)
93 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
94 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
95 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
96                 false, false)
97 
98 static void reportTranslationError(MachineFunction &MF,
99                                    const TargetPassConfig &TPC,
100                                    OptimizationRemarkEmitter &ORE,
101                                    OptimizationRemarkMissed &R) {
102   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
103 
104   // Print the function name explicitly if we don't have a debug location (which
105   // makes the diagnostic less useful) or if we're going to emit a raw error.
106   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
107     R << (" (in function: " + MF.getName() + ")").str();
108 
109   if (TPC.isGlobalISelAbortEnabled())
110     report_fatal_error(R.getMsg());
111   else
112     ORE.emit(R);
113 }
114 
115 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { }
116 
117 #ifndef NDEBUG
118 namespace {
119 /// Verify that every instruction created has the same DILocation as the
120 /// instruction being translated.
121 class DILocationVerifier : public GISelChangeObserver {
122   const Instruction *CurrInst = nullptr;
123 
124 public:
125   DILocationVerifier() = default;
126   ~DILocationVerifier() = default;
127 
128   const Instruction *getCurrentInst() const { return CurrInst; }
129   void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
130 
131   void erasingInstr(MachineInstr &MI) override {}
132   void changingInstr(MachineInstr &MI) override {}
133   void changedInstr(MachineInstr &MI) override {}
134 
135   void createdInstr(MachineInstr &MI) override {
136     assert(getCurrentInst() && "Inserted instruction without a current MI");
137 
138     // Only print the check message if we're actually checking it.
139 #ifndef NDEBUG
140     LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
141                       << " was copied to " << MI);
142 #endif
143     // We allow insts in the entry block to have a debug loc line of 0 because
144     // they could have originated from constants, and we don't want a jumpy
145     // debug experience.
146     assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
147             MI.getDebugLoc().getLine() == 0) &&
148            "Line info was not transferred to all instructions");
149   }
150 };
151 } // namespace
152 #endif // ifndef NDEBUG
153 
154 
155 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
156   AU.addRequired<StackProtector>();
157   AU.addRequired<TargetPassConfig>();
158   AU.addRequired<GISelCSEAnalysisWrapperPass>();
159   getSelectionDAGFallbackAnalysisUsage(AU);
160   MachineFunctionPass::getAnalysisUsage(AU);
161 }
162 
163 IRTranslator::ValueToVRegInfo::VRegListT &
164 IRTranslator::allocateVRegs(const Value &Val) {
165   assert(!VMap.contains(Val) && "Value already allocated in VMap");
166   auto *Regs = VMap.getVRegs(Val);
167   auto *Offsets = VMap.getOffsets(Val);
168   SmallVector<LLT, 4> SplitTys;
169   computeValueLLTs(*DL, *Val.getType(), SplitTys,
170                    Offsets->empty() ? Offsets : nullptr);
171   for (unsigned i = 0; i < SplitTys.size(); ++i)
172     Regs->push_back(0);
173   return *Regs;
174 }
175 
176 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
177   auto VRegsIt = VMap.findVRegs(Val);
178   if (VRegsIt != VMap.vregs_end())
179     return *VRegsIt->second;
180 
181   if (Val.getType()->isVoidTy())
182     return *VMap.getVRegs(Val);
183 
184   // Create entry for this type.
185   auto *VRegs = VMap.getVRegs(Val);
186   auto *Offsets = VMap.getOffsets(Val);
187 
188   assert(Val.getType()->isSized() &&
189          "Don't know how to create an empty vreg");
190 
191   SmallVector<LLT, 4> SplitTys;
192   computeValueLLTs(*DL, *Val.getType(), SplitTys,
193                    Offsets->empty() ? Offsets : nullptr);
194 
195   if (!isa<Constant>(Val)) {
196     for (auto Ty : SplitTys)
197       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
198     return *VRegs;
199   }
200 
201   if (Val.getType()->isAggregateType()) {
202     // UndefValue, ConstantAggregateZero
203     auto &C = cast<Constant>(Val);
204     unsigned Idx = 0;
205     while (auto Elt = C.getAggregateElement(Idx++)) {
206       auto EltRegs = getOrCreateVRegs(*Elt);
207       llvm::copy(EltRegs, std::back_inserter(*VRegs));
208     }
209   } else {
210     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
211     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
212     bool Success = translate(cast<Constant>(Val), VRegs->front());
213     if (!Success) {
214       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
215                                  MF->getFunction().getSubprogram(),
216                                  &MF->getFunction().getEntryBlock());
217       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
218       reportTranslationError(*MF, *TPC, *ORE, R);
219       return *VRegs;
220     }
221   }
222 
223   return *VRegs;
224 }
225 
226 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
227   if (FrameIndices.find(&AI) != FrameIndices.end())
228     return FrameIndices[&AI];
229 
230   uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
231   uint64_t Size =
232       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
233 
234   // Always allocate at least one byte.
235   Size = std::max<uint64_t>(Size, 1u);
236 
237   unsigned Alignment = AI.getAlignment();
238   if (!Alignment)
239     Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
240 
241   int &FI = FrameIndices[&AI];
242   FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
243   return FI;
244 }
245 
246 Align IRTranslator::getMemOpAlign(const Instruction &I) {
247   if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
248     Type *ValTy = SI->getValueOperand()->getType();
249     return SI->getAlign().getValueOr(DL->getABITypeAlign(ValTy));
250   }
251   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
252     return DL->getValueOrABITypeAlignment(LI->getAlign(), LI->getType());
253   }
254   if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
255     // TODO(PR27168): This instruction has no alignment attribute, but unlike
256     // the default alignment for load/store, the default here is to assume
257     // it has NATURAL alignment, not DataLayout-specified alignment.
258     const DataLayout &DL = AI->getModule()->getDataLayout();
259     return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType()));
260   }
261   if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
262     // TODO(PR27168): This instruction has no alignment attribute, but unlike
263     // the default alignment for load/store, the default here is to assume
264     // it has NATURAL alignment, not DataLayout-specified alignment.
265     const DataLayout &DL = AI->getModule()->getDataLayout();
266     return Align(DL.getTypeStoreSize(AI->getValOperand()->getType()));
267   }
268   OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
269   R << "unable to translate memop: " << ore::NV("Opcode", &I);
270   reportTranslationError(*MF, *TPC, *ORE, R);
271   return Align(1);
272 }
273 
274 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
275   MachineBasicBlock *&MBB = BBToMBB[&BB];
276   assert(MBB && "BasicBlock was not encountered before");
277   return *MBB;
278 }
279 
280 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
281   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
282   MachinePreds[Edge].push_back(NewPred);
283 }
284 
285 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
286                                      MachineIRBuilder &MIRBuilder) {
287   // Get or create a virtual register for each value.
288   // Unless the value is a Constant => loadimm cst?
289   // or inline constant each time?
290   // Creation of a virtual register needs to have a size.
291   Register Op0 = getOrCreateVReg(*U.getOperand(0));
292   Register Op1 = getOrCreateVReg(*U.getOperand(1));
293   Register Res = getOrCreateVReg(U);
294   uint16_t Flags = 0;
295   if (isa<Instruction>(U)) {
296     const Instruction &I = cast<Instruction>(U);
297     Flags = MachineInstr::copyFlagsFromInstruction(I);
298   }
299 
300   MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
301   return true;
302 }
303 
304 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
305   // -0.0 - X --> G_FNEG
306   if (isa<Constant>(U.getOperand(0)) &&
307       U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
308     Register Op1 = getOrCreateVReg(*U.getOperand(1));
309     Register Res = getOrCreateVReg(U);
310     uint16_t Flags = 0;
311     if (isa<Instruction>(U)) {
312       const Instruction &I = cast<Instruction>(U);
313       Flags = MachineInstr::copyFlagsFromInstruction(I);
314     }
315     // Negate the last operand of the FSUB
316     MIRBuilder.buildFNeg(Res, Op1, Flags);
317     return true;
318   }
319   return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
320 }
321 
322 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
323   Register Op0 = getOrCreateVReg(*U.getOperand(0));
324   Register Res = getOrCreateVReg(U);
325   uint16_t Flags = 0;
326   if (isa<Instruction>(U)) {
327     const Instruction &I = cast<Instruction>(U);
328     Flags = MachineInstr::copyFlagsFromInstruction(I);
329   }
330   MIRBuilder.buildFNeg(Res, Op0, Flags);
331   return true;
332 }
333 
334 bool IRTranslator::translateCompare(const User &U,
335                                     MachineIRBuilder &MIRBuilder) {
336   auto *CI = dyn_cast<CmpInst>(&U);
337   Register Op0 = getOrCreateVReg(*U.getOperand(0));
338   Register Op1 = getOrCreateVReg(*U.getOperand(1));
339   Register Res = getOrCreateVReg(U);
340   CmpInst::Predicate Pred =
341       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
342                                     cast<ConstantExpr>(U).getPredicate());
343   if (CmpInst::isIntPredicate(Pred))
344     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
345   else if (Pred == CmpInst::FCMP_FALSE)
346     MIRBuilder.buildCopy(
347         Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
348   else if (Pred == CmpInst::FCMP_TRUE)
349     MIRBuilder.buildCopy(
350         Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
351   else {
352     assert(CI && "Instruction should be CmpInst");
353     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1,
354                          MachineInstr::copyFlagsFromInstruction(*CI));
355   }
356 
357   return true;
358 }
359 
360 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
361   const ReturnInst &RI = cast<ReturnInst>(U);
362   const Value *Ret = RI.getReturnValue();
363   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
364     Ret = nullptr;
365 
366   ArrayRef<Register> VRegs;
367   if (Ret)
368     VRegs = getOrCreateVRegs(*Ret);
369 
370   Register SwiftErrorVReg = 0;
371   if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
372     SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
373         &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
374   }
375 
376   // The target may mess up with the insertion point, but
377   // this is not important as a return is the last instruction
378   // of the block anyway.
379   return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg);
380 }
381 
382 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
383   const BranchInst &BrInst = cast<BranchInst>(U);
384   unsigned Succ = 0;
385   if (!BrInst.isUnconditional()) {
386     // We want a G_BRCOND to the true BB followed by an unconditional branch.
387     Register Tst = getOrCreateVReg(*BrInst.getCondition());
388     const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
389     MachineBasicBlock &TrueBB = getMBB(TrueTgt);
390     MIRBuilder.buildBrCond(Tst, TrueBB);
391   }
392 
393   const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
394   MachineBasicBlock &TgtBB = getMBB(BrTgt);
395   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
396 
397   // If the unconditional target is the layout successor, fallthrough.
398   if (!CurBB.isLayoutSuccessor(&TgtBB))
399     MIRBuilder.buildBr(TgtBB);
400 
401   // Link successors.
402   for (const BasicBlock *Succ : successors(&BrInst))
403     CurBB.addSuccessor(&getMBB(*Succ));
404   return true;
405 }
406 
407 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
408                                         MachineBasicBlock *Dst,
409                                         BranchProbability Prob) {
410   if (!FuncInfo.BPI) {
411     Src->addSuccessorWithoutProb(Dst);
412     return;
413   }
414   if (Prob.isUnknown())
415     Prob = getEdgeProbability(Src, Dst);
416   Src->addSuccessor(Dst, Prob);
417 }
418 
419 BranchProbability
420 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
421                                  const MachineBasicBlock *Dst) const {
422   const BasicBlock *SrcBB = Src->getBasicBlock();
423   const BasicBlock *DstBB = Dst->getBasicBlock();
424   if (!FuncInfo.BPI) {
425     // If BPI is not available, set the default probability as 1 / N, where N is
426     // the number of successors.
427     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
428     return BranchProbability(1, SuccSize);
429   }
430   return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
431 }
432 
433 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
434   using namespace SwitchCG;
435   // Extract cases from the switch.
436   const SwitchInst &SI = cast<SwitchInst>(U);
437   BranchProbabilityInfo *BPI = FuncInfo.BPI;
438   CaseClusterVector Clusters;
439   Clusters.reserve(SI.getNumCases());
440   for (auto &I : SI.cases()) {
441     MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
442     assert(Succ && "Could not find successor mbb in mapping");
443     const ConstantInt *CaseVal = I.getCaseValue();
444     BranchProbability Prob =
445         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
446             : BranchProbability(1, SI.getNumCases() + 1);
447     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
448   }
449 
450   MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
451 
452   // Cluster adjacent cases with the same destination. We do this at all
453   // optimization levels because it's cheap to do and will make codegen faster
454   // if there are many clusters.
455   sortAndRangeify(Clusters);
456 
457   MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
458 
459   // If there is only the default destination, jump there directly.
460   if (Clusters.empty()) {
461     SwitchMBB->addSuccessor(DefaultMBB);
462     if (DefaultMBB != SwitchMBB->getNextNode())
463       MIB.buildBr(*DefaultMBB);
464     return true;
465   }
466 
467   SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
468 
469   LLVM_DEBUG({
470     dbgs() << "Case clusters: ";
471     for (const CaseCluster &C : Clusters) {
472       if (C.Kind == CC_JumpTable)
473         dbgs() << "JT:";
474       if (C.Kind == CC_BitTests)
475         dbgs() << "BT:";
476 
477       C.Low->getValue().print(dbgs(), true);
478       if (C.Low != C.High) {
479         dbgs() << '-';
480         C.High->getValue().print(dbgs(), true);
481       }
482       dbgs() << ' ';
483     }
484     dbgs() << '\n';
485   });
486 
487   assert(!Clusters.empty());
488   SwitchWorkList WorkList;
489   CaseClusterIt First = Clusters.begin();
490   CaseClusterIt Last = Clusters.end() - 1;
491   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
492   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
493 
494   // FIXME: At the moment we don't do any splitting optimizations here like
495   // SelectionDAG does, so this worklist only has one entry.
496   while (!WorkList.empty()) {
497     SwitchWorkListItem W = WorkList.back();
498     WorkList.pop_back();
499     if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
500       return false;
501   }
502   return true;
503 }
504 
505 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
506                                  MachineBasicBlock *MBB) {
507   // Emit the code for the jump table
508   assert(JT.Reg != -1U && "Should lower JT Header first!");
509   MachineIRBuilder MIB(*MBB->getParent());
510   MIB.setMBB(*MBB);
511   MIB.setDebugLoc(CurBuilder->getDebugLoc());
512 
513   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
514   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
515 
516   auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
517   MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
518 }
519 
520 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
521                                        SwitchCG::JumpTableHeader &JTH,
522                                        MachineBasicBlock *HeaderBB) {
523   MachineIRBuilder MIB(*HeaderBB->getParent());
524   MIB.setMBB(*HeaderBB);
525   MIB.setDebugLoc(CurBuilder->getDebugLoc());
526 
527   const Value &SValue = *JTH.SValue;
528   // Subtract the lowest switch case value from the value being switched on.
529   const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
530   Register SwitchOpReg = getOrCreateVReg(SValue);
531   auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
532   auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
533 
534   // This value may be smaller or larger than the target's pointer type, and
535   // therefore require extension or truncating.
536   Type *PtrIRTy = SValue.getType()->getPointerTo();
537   const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
538   Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
539 
540   JT.Reg = Sub.getReg(0);
541 
542   if (JTH.OmitRangeCheck) {
543     if (JT.MBB != HeaderBB->getNextNode())
544       MIB.buildBr(*JT.MBB);
545     return true;
546   }
547 
548   // Emit the range check for the jump table, and branch to the default block
549   // for the switch statement if the value being switched on exceeds the
550   // largest case in the switch.
551   auto Cst = getOrCreateVReg(
552       *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
553   Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
554   auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
555 
556   auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
557 
558   // Avoid emitting unnecessary branches to the next block.
559   if (JT.MBB != HeaderBB->getNextNode())
560     BrCond = MIB.buildBr(*JT.MBB);
561   return true;
562 }
563 
564 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
565                                   MachineBasicBlock *SwitchBB,
566                                   MachineIRBuilder &MIB) {
567   Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
568   Register Cond;
569   DebugLoc OldDbgLoc = MIB.getDebugLoc();
570   MIB.setDebugLoc(CB.DbgLoc);
571   MIB.setMBB(*CB.ThisBB);
572 
573   if (CB.PredInfo.NoCmp) {
574     // Branch or fall through to TrueBB.
575     addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
576     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
577                       CB.ThisBB);
578     CB.ThisBB->normalizeSuccProbs();
579     if (CB.TrueBB != CB.ThisBB->getNextNode())
580       MIB.buildBr(*CB.TrueBB);
581     MIB.setDebugLoc(OldDbgLoc);
582     return;
583   }
584 
585   const LLT i1Ty = LLT::scalar(1);
586   // Build the compare.
587   if (!CB.CmpMHS) {
588     Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
589     Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
590   } else {
591     assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
592            "Can only handle SLE ranges");
593 
594     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
595     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
596 
597     Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
598     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
599       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
600       Cond =
601           MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
602     } else {
603       const LLT CmpTy = MRI->getType(CmpOpReg);
604       auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
605       auto Diff = MIB.buildConstant(CmpTy, High - Low);
606       Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
607     }
608   }
609 
610   // Update successor info
611   addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
612 
613   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
614                     CB.ThisBB);
615 
616   // TrueBB and FalseBB are always different unless the incoming IR is
617   // degenerate. This only happens when running llc on weird IR.
618   if (CB.TrueBB != CB.FalseBB)
619     addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
620   CB.ThisBB->normalizeSuccProbs();
621 
622   //  if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock())
623     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
624                       CB.ThisBB);
625 
626   // If the lhs block is the next block, invert the condition so that we can
627   // fall through to the lhs instead of the rhs block.
628   if (CB.TrueBB == CB.ThisBB->getNextNode()) {
629     std::swap(CB.TrueBB, CB.FalseBB);
630     auto True = MIB.buildConstant(i1Ty, 1);
631     Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0);
632   }
633 
634   MIB.buildBrCond(Cond, *CB.TrueBB);
635   MIB.buildBr(*CB.FalseBB);
636   MIB.setDebugLoc(OldDbgLoc);
637 }
638 
639 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
640                                           MachineBasicBlock *SwitchMBB,
641                                           MachineBasicBlock *CurMBB,
642                                           MachineBasicBlock *DefaultMBB,
643                                           MachineIRBuilder &MIB,
644                                           MachineFunction::iterator BBI,
645                                           BranchProbability UnhandledProbs,
646                                           SwitchCG::CaseClusterIt I,
647                                           MachineBasicBlock *Fallthrough,
648                                           bool FallthroughUnreachable) {
649   using namespace SwitchCG;
650   MachineFunction *CurMF = SwitchMBB->getParent();
651   // FIXME: Optimize away range check based on pivot comparisons.
652   JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
653   SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
654   BranchProbability DefaultProb = W.DefaultProb;
655 
656   // The jump block hasn't been inserted yet; insert it here.
657   MachineBasicBlock *JumpMBB = JT->MBB;
658   CurMF->insert(BBI, JumpMBB);
659 
660   // Since the jump table block is separate from the switch block, we need
661   // to keep track of it as a machine predecessor to the default block,
662   // otherwise we lose the phi edges.
663   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
664                     CurMBB);
665   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
666                     JumpMBB);
667 
668   auto JumpProb = I->Prob;
669   auto FallthroughProb = UnhandledProbs;
670 
671   // If the default statement is a target of the jump table, we evenly
672   // distribute the default probability to successors of CurMBB. Also
673   // update the probability on the edge from JumpMBB to Fallthrough.
674   for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
675                                         SE = JumpMBB->succ_end();
676        SI != SE; ++SI) {
677     if (*SI == DefaultMBB) {
678       JumpProb += DefaultProb / 2;
679       FallthroughProb -= DefaultProb / 2;
680       JumpMBB->setSuccProbability(SI, DefaultProb / 2);
681       JumpMBB->normalizeSuccProbs();
682     } else {
683       // Also record edges from the jump table block to it's successors.
684       addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
685                         JumpMBB);
686     }
687   }
688 
689   // Skip the range check if the fallthrough block is unreachable.
690   if (FallthroughUnreachable)
691     JTH->OmitRangeCheck = true;
692 
693   if (!JTH->OmitRangeCheck)
694     addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
695   addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
696   CurMBB->normalizeSuccProbs();
697 
698   // The jump table header will be inserted in our current block, do the
699   // range check, and fall through to our fallthrough block.
700   JTH->HeaderBB = CurMBB;
701   JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
702 
703   // If we're in the right place, emit the jump table header right now.
704   if (CurMBB == SwitchMBB) {
705     if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
706       return false;
707     JTH->Emitted = true;
708   }
709   return true;
710 }
711 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
712                                             Value *Cond,
713                                             MachineBasicBlock *Fallthrough,
714                                             bool FallthroughUnreachable,
715                                             BranchProbability UnhandledProbs,
716                                             MachineBasicBlock *CurMBB,
717                                             MachineIRBuilder &MIB,
718                                             MachineBasicBlock *SwitchMBB) {
719   using namespace SwitchCG;
720   const Value *RHS, *LHS, *MHS;
721   CmpInst::Predicate Pred;
722   if (I->Low == I->High) {
723     // Check Cond == I->Low.
724     Pred = CmpInst::ICMP_EQ;
725     LHS = Cond;
726     RHS = I->Low;
727     MHS = nullptr;
728   } else {
729     // Check I->Low <= Cond <= I->High.
730     Pred = CmpInst::ICMP_SLE;
731     LHS = I->Low;
732     MHS = Cond;
733     RHS = I->High;
734   }
735 
736   // If Fallthrough is unreachable, fold away the comparison.
737   // The false probability is the sum of all unhandled cases.
738   CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
739                CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
740 
741   emitSwitchCase(CB, SwitchMBB, MIB);
742   return true;
743 }
744 
745 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
746                                        Value *Cond,
747                                        MachineBasicBlock *SwitchMBB,
748                                        MachineBasicBlock *DefaultMBB,
749                                        MachineIRBuilder &MIB) {
750   using namespace SwitchCG;
751   MachineFunction *CurMF = FuncInfo.MF;
752   MachineBasicBlock *NextMBB = nullptr;
753   MachineFunction::iterator BBI(W.MBB);
754   if (++BBI != FuncInfo.MF->end())
755     NextMBB = &*BBI;
756 
757   if (EnableOpts) {
758     // Here, we order cases by probability so the most likely case will be
759     // checked first. However, two clusters can have the same probability in
760     // which case their relative ordering is non-deterministic. So we use Low
761     // as a tie-breaker as clusters are guaranteed to never overlap.
762     llvm::sort(W.FirstCluster, W.LastCluster + 1,
763                [](const CaseCluster &a, const CaseCluster &b) {
764                  return a.Prob != b.Prob
765                             ? a.Prob > b.Prob
766                             : a.Low->getValue().slt(b.Low->getValue());
767                });
768 
769     // Rearrange the case blocks so that the last one falls through if possible
770     // without changing the order of probabilities.
771     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
772       --I;
773       if (I->Prob > W.LastCluster->Prob)
774         break;
775       if (I->Kind == CC_Range && I->MBB == NextMBB) {
776         std::swap(*I, *W.LastCluster);
777         break;
778       }
779     }
780   }
781 
782   // Compute total probability.
783   BranchProbability DefaultProb = W.DefaultProb;
784   BranchProbability UnhandledProbs = DefaultProb;
785   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
786     UnhandledProbs += I->Prob;
787 
788   MachineBasicBlock *CurMBB = W.MBB;
789   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
790     bool FallthroughUnreachable = false;
791     MachineBasicBlock *Fallthrough;
792     if (I == W.LastCluster) {
793       // For the last cluster, fall through to the default destination.
794       Fallthrough = DefaultMBB;
795       FallthroughUnreachable = isa<UnreachableInst>(
796           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
797     } else {
798       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
799       CurMF->insert(BBI, Fallthrough);
800     }
801     UnhandledProbs -= I->Prob;
802 
803     switch (I->Kind) {
804     case CC_BitTests: {
805       LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented");
806       return false; // Bit tests currently unimplemented.
807     }
808     case CC_JumpTable: {
809       if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
810                                   UnhandledProbs, I, Fallthrough,
811                                   FallthroughUnreachable)) {
812         LLVM_DEBUG(dbgs() << "Failed to lower jump table");
813         return false;
814       }
815       break;
816     }
817     case CC_Range: {
818       if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
819                                     FallthroughUnreachable, UnhandledProbs,
820                                     CurMBB, MIB, SwitchMBB)) {
821         LLVM_DEBUG(dbgs() << "Failed to lower switch range");
822         return false;
823       }
824       break;
825     }
826     }
827     CurMBB = Fallthrough;
828   }
829 
830   return true;
831 }
832 
833 bool IRTranslator::translateIndirectBr(const User &U,
834                                        MachineIRBuilder &MIRBuilder) {
835   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
836 
837   const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
838   MIRBuilder.buildBrIndirect(Tgt);
839 
840   // Link successors.
841   SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
842   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
843   for (const BasicBlock *Succ : successors(&BrInst)) {
844     // It's legal for indirectbr instructions to have duplicate blocks in the
845     // destination list. We don't allow this in MIR. Skip anything that's
846     // already a successor.
847     if (!AddedSuccessors.insert(Succ).second)
848       continue;
849     CurBB.addSuccessor(&getMBB(*Succ));
850   }
851 
852   return true;
853 }
854 
855 static bool isSwiftError(const Value *V) {
856   if (auto Arg = dyn_cast<Argument>(V))
857     return Arg->hasSwiftErrorAttr();
858   if (auto AI = dyn_cast<AllocaInst>(V))
859     return AI->isSwiftError();
860   return false;
861 }
862 
863 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
864   const LoadInst &LI = cast<LoadInst>(U);
865   if (DL->getTypeStoreSize(LI.getType()) == 0)
866     return true;
867 
868   ArrayRef<Register> Regs = getOrCreateVRegs(LI);
869   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
870   Register Base = getOrCreateVReg(*LI.getPointerOperand());
871 
872   Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
873   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
874 
875   if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
876     assert(Regs.size() == 1 && "swifterror should be single pointer");
877     Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
878                                                     LI.getPointerOperand());
879     MIRBuilder.buildCopy(Regs[0], VReg);
880     return true;
881   }
882 
883   auto &TLI = *MF->getSubtarget().getTargetLowering();
884   MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
885 
886   const MDNode *Ranges =
887       Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
888   for (unsigned i = 0; i < Regs.size(); ++i) {
889     Register Addr;
890     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
891 
892     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
893     Align BaseAlign = getMemOpAlign(LI);
894     AAMDNodes AAMetadata;
895     LI.getAAMetadata(AAMetadata);
896     auto MMO = MF->getMachineMemOperand(
897         Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(),
898         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges,
899         LI.getSyncScopeID(), LI.getOrdering());
900     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
901   }
902 
903   return true;
904 }
905 
906 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
907   const StoreInst &SI = cast<StoreInst>(U);
908   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
909     return true;
910 
911   ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
912   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
913   Register Base = getOrCreateVReg(*SI.getPointerOperand());
914 
915   Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
916   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
917 
918   if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
919     assert(Vals.size() == 1 && "swifterror should be single pointer");
920 
921     Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
922                                                     SI.getPointerOperand());
923     MIRBuilder.buildCopy(VReg, Vals[0]);
924     return true;
925   }
926 
927   auto &TLI = *MF->getSubtarget().getTargetLowering();
928   MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
929 
930   for (unsigned i = 0; i < Vals.size(); ++i) {
931     Register Addr;
932     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
933 
934     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
935     Align BaseAlign = getMemOpAlign(SI);
936     AAMDNodes AAMetadata;
937     SI.getAAMetadata(AAMetadata);
938     auto MMO = MF->getMachineMemOperand(
939         Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(),
940         commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr,
941         SI.getSyncScopeID(), SI.getOrdering());
942     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
943   }
944   return true;
945 }
946 
947 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
948   const Value *Src = U.getOperand(0);
949   Type *Int32Ty = Type::getInt32Ty(U.getContext());
950 
951   // getIndexedOffsetInType is designed for GEPs, so the first index is the
952   // usual array element rather than looking into the actual aggregate.
953   SmallVector<Value *, 1> Indices;
954   Indices.push_back(ConstantInt::get(Int32Ty, 0));
955 
956   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
957     for (auto Idx : EVI->indices())
958       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
959   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
960     for (auto Idx : IVI->indices())
961       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
962   } else {
963     for (unsigned i = 1; i < U.getNumOperands(); ++i)
964       Indices.push_back(U.getOperand(i));
965   }
966 
967   return 8 * static_cast<uint64_t>(
968                  DL.getIndexedOffsetInType(Src->getType(), Indices));
969 }
970 
971 bool IRTranslator::translateExtractValue(const User &U,
972                                          MachineIRBuilder &MIRBuilder) {
973   const Value *Src = U.getOperand(0);
974   uint64_t Offset = getOffsetFromIndices(U, *DL);
975   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
976   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
977   unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
978   auto &DstRegs = allocateVRegs(U);
979 
980   for (unsigned i = 0; i < DstRegs.size(); ++i)
981     DstRegs[i] = SrcRegs[Idx++];
982 
983   return true;
984 }
985 
986 bool IRTranslator::translateInsertValue(const User &U,
987                                         MachineIRBuilder &MIRBuilder) {
988   const Value *Src = U.getOperand(0);
989   uint64_t Offset = getOffsetFromIndices(U, *DL);
990   auto &DstRegs = allocateVRegs(U);
991   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
992   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
993   ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
994   auto InsertedIt = InsertedRegs.begin();
995 
996   for (unsigned i = 0; i < DstRegs.size(); ++i) {
997     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
998       DstRegs[i] = *InsertedIt++;
999     else
1000       DstRegs[i] = SrcRegs[i];
1001   }
1002 
1003   return true;
1004 }
1005 
1006 bool IRTranslator::translateSelect(const User &U,
1007                                    MachineIRBuilder &MIRBuilder) {
1008   Register Tst = getOrCreateVReg(*U.getOperand(0));
1009   ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1010   ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1011   ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1012 
1013   const SelectInst &SI = cast<SelectInst>(U);
1014   uint16_t Flags = 0;
1015   if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition()))
1016     Flags = MachineInstr::copyFlagsFromInstruction(*Cmp);
1017 
1018   for (unsigned i = 0; i < ResRegs.size(); ++i) {
1019     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1020   }
1021 
1022   return true;
1023 }
1024 
1025 bool IRTranslator::translateCopy(const User &U, const Value &V,
1026                                  MachineIRBuilder &MIRBuilder) {
1027   Register Src = getOrCreateVReg(V);
1028   auto &Regs = *VMap.getVRegs(U);
1029   if (Regs.empty()) {
1030     Regs.push_back(Src);
1031     VMap.getOffsets(U)->push_back(0);
1032   } else {
1033     // If we already assigned a vreg for this instruction, we can't change that.
1034     // Emit a copy to satisfy the users we already emitted.
1035     MIRBuilder.buildCopy(Regs[0], Src);
1036   }
1037   return true;
1038 }
1039 
1040 bool IRTranslator::translateBitCast(const User &U,
1041                                     MachineIRBuilder &MIRBuilder) {
1042   // If we're bitcasting to the source type, we can reuse the source vreg.
1043   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1044       getLLTForType(*U.getType(), *DL))
1045     return translateCopy(U, *U.getOperand(0), MIRBuilder);
1046 
1047   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1048 }
1049 
1050 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1051                                  MachineIRBuilder &MIRBuilder) {
1052   Register Op = getOrCreateVReg(*U.getOperand(0));
1053   Register Res = getOrCreateVReg(U);
1054   MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1055   return true;
1056 }
1057 
1058 bool IRTranslator::translateGetElementPtr(const User &U,
1059                                           MachineIRBuilder &MIRBuilder) {
1060   Value &Op0 = *U.getOperand(0);
1061   Register BaseReg = getOrCreateVReg(Op0);
1062   Type *PtrIRTy = Op0.getType();
1063   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1064   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1065   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1066 
1067   // Normalize Vector GEP - all scalar operands should be converted to the
1068   // splat vector.
1069   unsigned VectorWidth = 0;
1070   if (auto *VT = dyn_cast<VectorType>(U.getType()))
1071     VectorWidth = VT->getNumElements();
1072 
1073   // We might need to splat the base pointer into a vector if the offsets
1074   // are vectors.
1075   if (VectorWidth && !PtrTy.isVector()) {
1076     BaseReg =
1077         MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg)
1078             .getReg(0);
1079     PtrIRTy = VectorType::get(PtrIRTy, VectorWidth);
1080     PtrTy = getLLTForType(*PtrIRTy, *DL);
1081     OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1082     OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1083   }
1084 
1085   int64_t Offset = 0;
1086   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1087        GTI != E; ++GTI) {
1088     const Value *Idx = GTI.getOperand();
1089     if (StructType *StTy = GTI.getStructTypeOrNull()) {
1090       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1091       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1092       continue;
1093     } else {
1094       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1095 
1096       // If this is a scalar constant or a splat vector of constants,
1097       // handle it quickly.
1098       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1099         Offset += ElementSize * CI->getSExtValue();
1100         continue;
1101       }
1102 
1103       if (Offset != 0) {
1104         auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1105         BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1106                       .getReg(0);
1107         Offset = 0;
1108       }
1109 
1110       Register IdxReg = getOrCreateVReg(*Idx);
1111       LLT IdxTy = MRI->getType(IdxReg);
1112       if (IdxTy != OffsetTy) {
1113         if (!IdxTy.isVector() && VectorWidth) {
1114           IdxReg = MIRBuilder.buildSplatVector(
1115             OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1116         }
1117 
1118         IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1119       }
1120 
1121       // N = N + Idx * ElementSize;
1122       // Avoid doing it for ElementSize of 1.
1123       Register GepOffsetReg;
1124       if (ElementSize != 1) {
1125         auto ElementSizeMIB = MIRBuilder.buildConstant(
1126             getLLTForType(*OffsetIRTy, *DL), ElementSize);
1127         GepOffsetReg =
1128             MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1129       } else
1130         GepOffsetReg = IdxReg;
1131 
1132       BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1133     }
1134   }
1135 
1136   if (Offset != 0) {
1137     auto OffsetMIB =
1138         MIRBuilder.buildConstant(OffsetTy, Offset);
1139     MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1140     return true;
1141   }
1142 
1143   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1144   return true;
1145 }
1146 
1147 bool IRTranslator::translateMemFunc(const CallInst &CI,
1148                                     MachineIRBuilder &MIRBuilder,
1149                                     Intrinsic::ID ID) {
1150 
1151   // If the source is undef, then just emit a nop.
1152   if (isa<UndefValue>(CI.getArgOperand(1)))
1153     return true;
1154 
1155   ArrayRef<Register> Res;
1156   auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true);
1157   for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI)
1158     ICall.addUse(getOrCreateVReg(**AI));
1159 
1160   Align DstAlign;
1161   Align SrcAlign;
1162   unsigned IsVol =
1163       cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
1164           ->getZExtValue();
1165 
1166   if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1167     DstAlign = MCI->getDestAlign().valueOrOne();
1168     SrcAlign = MCI->getSourceAlign().valueOrOne();
1169   } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1170     DstAlign = MMI->getDestAlign().valueOrOne();
1171     SrcAlign = MMI->getSourceAlign().valueOrOne();
1172   } else {
1173     auto *MSI = cast<MemSetInst>(&CI);
1174     DstAlign = MSI->getDestAlign().valueOrOne();
1175   }
1176 
1177   // We need to propagate the tail call flag from the IR inst as an argument.
1178   // Otherwise, we have to pessimize and assume later that we cannot tail call
1179   // any memory intrinsics.
1180   ICall.addImm(CI.isTailCall() ? 1 : 0);
1181 
1182   // Create mem operands to store the alignment and volatile info.
1183   auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
1184   ICall.addMemOperand(MF->getMachineMemOperand(
1185       MachinePointerInfo(CI.getArgOperand(0)),
1186       MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
1187   if (ID != Intrinsic::memset)
1188     ICall.addMemOperand(MF->getMachineMemOperand(
1189         MachinePointerInfo(CI.getArgOperand(1)),
1190         MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
1191 
1192   return true;
1193 }
1194 
1195 void IRTranslator::getStackGuard(Register DstReg,
1196                                  MachineIRBuilder &MIRBuilder) {
1197   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1198   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1199   auto MIB =
1200       MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1201 
1202   auto &TLI = *MF->getSubtarget().getTargetLowering();
1203   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1204   if (!Global)
1205     return;
1206 
1207   MachinePointerInfo MPInfo(Global);
1208   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1209                MachineMemOperand::MODereferenceable;
1210   MachineMemOperand *MemRef =
1211       MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
1212                                DL->getPointerABIAlignment(0));
1213   MIB.setMemRefs({MemRef});
1214 }
1215 
1216 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1217                                               MachineIRBuilder &MIRBuilder) {
1218   ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1219   MIRBuilder.buildInstr(
1220       Op, {ResRegs[0], ResRegs[1]},
1221       {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1222 
1223   return true;
1224 }
1225 
1226 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1227   switch (ID) {
1228     default:
1229       break;
1230     case Intrinsic::bswap:
1231       return TargetOpcode::G_BSWAP;
1232     case Intrinsic::bitreverse:
1233       return TargetOpcode::G_BITREVERSE;
1234     case Intrinsic::fshl:
1235       return TargetOpcode::G_FSHL;
1236     case Intrinsic::fshr:
1237       return TargetOpcode::G_FSHR;
1238     case Intrinsic::ceil:
1239       return TargetOpcode::G_FCEIL;
1240     case Intrinsic::cos:
1241       return TargetOpcode::G_FCOS;
1242     case Intrinsic::ctpop:
1243       return TargetOpcode::G_CTPOP;
1244     case Intrinsic::exp:
1245       return TargetOpcode::G_FEXP;
1246     case Intrinsic::exp2:
1247       return TargetOpcode::G_FEXP2;
1248     case Intrinsic::fabs:
1249       return TargetOpcode::G_FABS;
1250     case Intrinsic::copysign:
1251       return TargetOpcode::G_FCOPYSIGN;
1252     case Intrinsic::minnum:
1253       return TargetOpcode::G_FMINNUM;
1254     case Intrinsic::maxnum:
1255       return TargetOpcode::G_FMAXNUM;
1256     case Intrinsic::minimum:
1257       return TargetOpcode::G_FMINIMUM;
1258     case Intrinsic::maximum:
1259       return TargetOpcode::G_FMAXIMUM;
1260     case Intrinsic::canonicalize:
1261       return TargetOpcode::G_FCANONICALIZE;
1262     case Intrinsic::floor:
1263       return TargetOpcode::G_FFLOOR;
1264     case Intrinsic::fma:
1265       return TargetOpcode::G_FMA;
1266     case Intrinsic::log:
1267       return TargetOpcode::G_FLOG;
1268     case Intrinsic::log2:
1269       return TargetOpcode::G_FLOG2;
1270     case Intrinsic::log10:
1271       return TargetOpcode::G_FLOG10;
1272     case Intrinsic::nearbyint:
1273       return TargetOpcode::G_FNEARBYINT;
1274     case Intrinsic::pow:
1275       return TargetOpcode::G_FPOW;
1276     case Intrinsic::rint:
1277       return TargetOpcode::G_FRINT;
1278     case Intrinsic::round:
1279       return TargetOpcode::G_INTRINSIC_ROUND;
1280     case Intrinsic::sin:
1281       return TargetOpcode::G_FSIN;
1282     case Intrinsic::sqrt:
1283       return TargetOpcode::G_FSQRT;
1284     case Intrinsic::trunc:
1285       return TargetOpcode::G_INTRINSIC_TRUNC;
1286     case Intrinsic::readcyclecounter:
1287       return TargetOpcode::G_READCYCLECOUNTER;
1288   }
1289   return Intrinsic::not_intrinsic;
1290 }
1291 
1292 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1293                                             Intrinsic::ID ID,
1294                                             MachineIRBuilder &MIRBuilder) {
1295 
1296   unsigned Op = getSimpleIntrinsicOpcode(ID);
1297 
1298   // Is this a simple intrinsic?
1299   if (Op == Intrinsic::not_intrinsic)
1300     return false;
1301 
1302   // Yes. Let's translate it.
1303   SmallVector<llvm::SrcOp, 4> VRegs;
1304   for (auto &Arg : CI.arg_operands())
1305     VRegs.push_back(getOrCreateVReg(*Arg));
1306 
1307   MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1308                         MachineInstr::copyFlagsFromInstruction(CI));
1309   return true;
1310 }
1311 
1312 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1313                                            MachineIRBuilder &MIRBuilder) {
1314 
1315   // If this is a simple intrinsic (that is, we just need to add a def of
1316   // a vreg, and uses for each arg operand, then translate it.
1317   if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1318     return true;
1319 
1320   switch (ID) {
1321   default:
1322     break;
1323   case Intrinsic::lifetime_start:
1324   case Intrinsic::lifetime_end: {
1325     // No stack colouring in O0, discard region information.
1326     if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1327       return true;
1328 
1329     unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1330                                                   : TargetOpcode::LIFETIME_END;
1331 
1332     // Get the underlying objects for the location passed on the lifetime
1333     // marker.
1334     SmallVector<const Value *, 4> Allocas;
1335     GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL);
1336 
1337     // Iterate over each underlying object, creating lifetime markers for each
1338     // static alloca. Quit if we find a non-static alloca.
1339     for (const Value *V : Allocas) {
1340       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1341       if (!AI)
1342         continue;
1343 
1344       if (!AI->isStaticAlloca())
1345         return true;
1346 
1347       MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1348     }
1349     return true;
1350   }
1351   case Intrinsic::dbg_declare: {
1352     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1353     assert(DI.getVariable() && "Missing variable");
1354 
1355     const Value *Address = DI.getAddress();
1356     if (!Address || isa<UndefValue>(Address)) {
1357       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1358       return true;
1359     }
1360 
1361     assert(DI.getVariable()->isValidLocationForIntrinsic(
1362                MIRBuilder.getDebugLoc()) &&
1363            "Expected inlined-at fields to agree");
1364     auto AI = dyn_cast<AllocaInst>(Address);
1365     if (AI && AI->isStaticAlloca()) {
1366       // Static allocas are tracked at the MF level, no need for DBG_VALUE
1367       // instructions (in fact, they get ignored if they *do* exist).
1368       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1369                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1370     } else {
1371       // A dbg.declare describes the address of a source variable, so lower it
1372       // into an indirect DBG_VALUE.
1373       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1374                                        DI.getVariable(), DI.getExpression());
1375     }
1376     return true;
1377   }
1378   case Intrinsic::dbg_label: {
1379     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1380     assert(DI.getLabel() && "Missing label");
1381 
1382     assert(DI.getLabel()->isValidLocationForIntrinsic(
1383                MIRBuilder.getDebugLoc()) &&
1384            "Expected inlined-at fields to agree");
1385 
1386     MIRBuilder.buildDbgLabel(DI.getLabel());
1387     return true;
1388   }
1389   case Intrinsic::vaend:
1390     // No target I know of cares about va_end. Certainly no in-tree target
1391     // does. Simplest intrinsic ever!
1392     return true;
1393   case Intrinsic::vastart: {
1394     auto &TLI = *MF->getSubtarget().getTargetLowering();
1395     Value *Ptr = CI.getArgOperand(0);
1396     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1397 
1398     // FIXME: Get alignment
1399     MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
1400         .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
1401                                                 MachineMemOperand::MOStore,
1402                                                 ListSize, Align(1)));
1403     return true;
1404   }
1405   case Intrinsic::dbg_value: {
1406     // This form of DBG_VALUE is target-independent.
1407     const DbgValueInst &DI = cast<DbgValueInst>(CI);
1408     const Value *V = DI.getValue();
1409     assert(DI.getVariable()->isValidLocationForIntrinsic(
1410                MIRBuilder.getDebugLoc()) &&
1411            "Expected inlined-at fields to agree");
1412     if (!V) {
1413       // Currently the optimizer can produce this; insert an undef to
1414       // help debugging.  Probably the optimizer should not do this.
1415       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1416     } else if (const auto *CI = dyn_cast<Constant>(V)) {
1417       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1418     } else {
1419       for (Register Reg : getOrCreateVRegs(*V)) {
1420         // FIXME: This does not handle register-indirect values at offset 0. The
1421         // direct/indirect thing shouldn't really be handled by something as
1422         // implicit as reg+noreg vs reg+imm in the first place, but it seems
1423         // pretty baked in right now.
1424         MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
1425       }
1426     }
1427     return true;
1428   }
1429   case Intrinsic::uadd_with_overflow:
1430     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
1431   case Intrinsic::sadd_with_overflow:
1432     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
1433   case Intrinsic::usub_with_overflow:
1434     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
1435   case Intrinsic::ssub_with_overflow:
1436     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
1437   case Intrinsic::umul_with_overflow:
1438     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
1439   case Intrinsic::smul_with_overflow:
1440     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
1441   case Intrinsic::uadd_sat:
1442     return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
1443   case Intrinsic::sadd_sat:
1444     return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
1445   case Intrinsic::usub_sat:
1446     return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
1447   case Intrinsic::ssub_sat:
1448     return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
1449   case Intrinsic::fmuladd: {
1450     const TargetMachine &TM = MF->getTarget();
1451     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1452     Register Dst = getOrCreateVReg(CI);
1453     Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
1454     Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
1455     Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
1456     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
1457         TLI.isFMAFasterThanFMulAndFAdd(*MF,
1458                                        TLI.getValueType(*DL, CI.getType()))) {
1459       // TODO: Revisit this to see if we should move this part of the
1460       // lowering to the combiner.
1461       MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
1462                           MachineInstr::copyFlagsFromInstruction(CI));
1463     } else {
1464       LLT Ty = getLLTForType(*CI.getType(), *DL);
1465       auto FMul = MIRBuilder.buildFMul(
1466           Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
1467       MIRBuilder.buildFAdd(Dst, FMul, Op2,
1468                            MachineInstr::copyFlagsFromInstruction(CI));
1469     }
1470     return true;
1471   }
1472   case Intrinsic::memcpy:
1473   case Intrinsic::memmove:
1474   case Intrinsic::memset:
1475     return translateMemFunc(CI, MIRBuilder, ID);
1476   case Intrinsic::eh_typeid_for: {
1477     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
1478     Register Reg = getOrCreateVReg(CI);
1479     unsigned TypeID = MF->getTypeIDFor(GV);
1480     MIRBuilder.buildConstant(Reg, TypeID);
1481     return true;
1482   }
1483   case Intrinsic::objectsize:
1484     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1485 
1486   case Intrinsic::is_constant:
1487     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1488 
1489   case Intrinsic::stackguard:
1490     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
1491     return true;
1492   case Intrinsic::stackprotector: {
1493     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1494     Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
1495     getStackGuard(GuardVal, MIRBuilder);
1496 
1497     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
1498     int FI = getOrCreateFrameIndex(*Slot);
1499     MF->getFrameInfo().setStackProtectorIndex(FI);
1500 
1501     MIRBuilder.buildStore(
1502         GuardVal, getOrCreateVReg(*Slot),
1503         *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
1504                                   MachineMemOperand::MOStore |
1505                                       MachineMemOperand::MOVolatile,
1506                                   PtrTy.getSizeInBits() / 8, Align(8)));
1507     return true;
1508   }
1509   case Intrinsic::stacksave: {
1510     // Save the stack pointer to the location provided by the intrinsic.
1511     Register Reg = getOrCreateVReg(CI);
1512     Register StackPtr = MF->getSubtarget()
1513                             .getTargetLowering()
1514                             ->getStackPointerRegisterToSaveRestore();
1515 
1516     // If the target doesn't specify a stack pointer, then fall back.
1517     if (!StackPtr)
1518       return false;
1519 
1520     MIRBuilder.buildCopy(Reg, StackPtr);
1521     return true;
1522   }
1523   case Intrinsic::stackrestore: {
1524     // Restore the stack pointer from the location provided by the intrinsic.
1525     Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
1526     Register StackPtr = MF->getSubtarget()
1527                             .getTargetLowering()
1528                             ->getStackPointerRegisterToSaveRestore();
1529 
1530     // If the target doesn't specify a stack pointer, then fall back.
1531     if (!StackPtr)
1532       return false;
1533 
1534     MIRBuilder.buildCopy(StackPtr, Reg);
1535     return true;
1536   }
1537   case Intrinsic::cttz:
1538   case Intrinsic::ctlz: {
1539     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
1540     bool isTrailing = ID == Intrinsic::cttz;
1541     unsigned Opcode = isTrailing
1542                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
1543                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
1544                           : Cst->isZero() ? TargetOpcode::G_CTLZ
1545                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
1546     MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
1547                           {getOrCreateVReg(*CI.getArgOperand(0))});
1548     return true;
1549   }
1550   case Intrinsic::invariant_start: {
1551     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1552     Register Undef = MRI->createGenericVirtualRegister(PtrTy);
1553     MIRBuilder.buildUndef(Undef);
1554     return true;
1555   }
1556   case Intrinsic::invariant_end:
1557     return true;
1558   case Intrinsic::assume:
1559   case Intrinsic::var_annotation:
1560   case Intrinsic::sideeffect:
1561     // Discard annotate attributes, assumptions, and artificial side-effects.
1562     return true;
1563   case Intrinsic::read_register: {
1564     Value *Arg = CI.getArgOperand(0);
1565     MIRBuilder
1566         .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
1567         .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
1568     return true;
1569   }
1570   case Intrinsic::write_register: {
1571     Value *Arg = CI.getArgOperand(0);
1572     MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
1573       .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
1574       .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
1575     return true;
1576   }
1577   }
1578   return false;
1579 }
1580 
1581 bool IRTranslator::translateInlineAsm(const CallBase &CB,
1582                                       MachineIRBuilder &MIRBuilder) {
1583 
1584   const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
1585 
1586   if (!ALI) {
1587     LLVM_DEBUG(
1588         dbgs() << "Inline asm lowering is not supported for this target yet\n");
1589     return false;
1590   }
1591 
1592   return ALI->lowerInlineAsm(
1593       MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
1594 }
1595 
1596 bool IRTranslator::translateCallBase(const CallBase &CB,
1597                                      MachineIRBuilder &MIRBuilder) {
1598   ArrayRef<Register> Res = getOrCreateVRegs(CB);
1599 
1600   SmallVector<ArrayRef<Register>, 8> Args;
1601   Register SwiftInVReg = 0;
1602   Register SwiftErrorVReg = 0;
1603   for (auto &Arg : CB.args()) {
1604     if (CLI->supportSwiftError() && isSwiftError(Arg)) {
1605       assert(SwiftInVReg == 0 && "Expected only one swift error argument");
1606       LLT Ty = getLLTForType(*Arg->getType(), *DL);
1607       SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
1608       MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
1609                                             &CB, &MIRBuilder.getMBB(), Arg));
1610       Args.emplace_back(makeArrayRef(SwiftInVReg));
1611       SwiftErrorVReg =
1612           SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
1613       continue;
1614     }
1615     Args.push_back(getOrCreateVRegs(*Arg));
1616   }
1617 
1618   // We don't set HasCalls on MFI here yet because call lowering may decide to
1619   // optimize into tail calls. Instead, we defer that to selection where a final
1620   // scan is done to check if any instructions are calls.
1621   bool Success =
1622       CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
1623                      [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
1624 
1625   // Check if we just inserted a tail call.
1626   if (Success) {
1627     assert(!HasTailCall && "Can't tail call return twice from block?");
1628     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1629     HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
1630   }
1631 
1632   return Success;
1633 }
1634 
1635 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
1636   const CallInst &CI = cast<CallInst>(U);
1637   auto TII = MF->getTarget().getIntrinsicInfo();
1638   const Function *F = CI.getCalledFunction();
1639 
1640   // FIXME: support Windows dllimport function calls.
1641   if (F && (F->hasDLLImportStorageClass() ||
1642             (MF->getTarget().getTargetTriple().isOSWindows() &&
1643              F->hasExternalWeakLinkage())))
1644     return false;
1645 
1646   // FIXME: support control flow guard targets.
1647   if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
1648     return false;
1649 
1650   if (CI.isInlineAsm())
1651     return translateInlineAsm(CI, MIRBuilder);
1652 
1653   Intrinsic::ID ID = Intrinsic::not_intrinsic;
1654   if (F && F->isIntrinsic()) {
1655     ID = F->getIntrinsicID();
1656     if (TII && ID == Intrinsic::not_intrinsic)
1657       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
1658   }
1659 
1660   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
1661     return translateCallBase(CI, MIRBuilder);
1662 
1663   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
1664 
1665   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
1666     return true;
1667 
1668   ArrayRef<Register> ResultRegs;
1669   if (!CI.getType()->isVoidTy())
1670     ResultRegs = getOrCreateVRegs(CI);
1671 
1672   // Ignore the callsite attributes. Backend code is most likely not expecting
1673   // an intrinsic to sometimes have side effects and sometimes not.
1674   MachineInstrBuilder MIB =
1675       MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
1676   if (isa<FPMathOperator>(CI))
1677     MIB->copyIRFlags(CI);
1678 
1679   for (auto &Arg : enumerate(CI.arg_operands())) {
1680     // Some intrinsics take metadata parameters. Reject them.
1681     if (isa<MetadataAsValue>(Arg.value()))
1682       return false;
1683 
1684     // If this is required to be an immediate, don't materialize it in a
1685     // register.
1686     if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
1687       if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
1688         // imm arguments are more convenient than cimm (and realistically
1689         // probably sufficient), so use them.
1690         assert(CI->getBitWidth() <= 64 &&
1691                "large intrinsic immediates not handled");
1692         MIB.addImm(CI->getSExtValue());
1693       } else {
1694         MIB.addFPImm(cast<ConstantFP>(Arg.value()));
1695       }
1696     } else {
1697       ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
1698       if (VRegs.size() > 1)
1699         return false;
1700       MIB.addUse(VRegs[0]);
1701     }
1702   }
1703 
1704   // Add a MachineMemOperand if it is a target mem intrinsic.
1705   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1706   TargetLowering::IntrinsicInfo Info;
1707   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
1708   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
1709     Align Alignment = Info.align.getValueOr(
1710         DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
1711 
1712     uint64_t Size = Info.memVT.getStoreSize();
1713     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
1714                                                Info.flags, Size, Alignment));
1715   }
1716 
1717   return true;
1718 }
1719 
1720 bool IRTranslator::translateInvoke(const User &U,
1721                                    MachineIRBuilder &MIRBuilder) {
1722   const InvokeInst &I = cast<InvokeInst>(U);
1723   MCContext &Context = MF->getContext();
1724 
1725   const BasicBlock *ReturnBB = I.getSuccessor(0);
1726   const BasicBlock *EHPadBB = I.getSuccessor(1);
1727 
1728   const Function *Fn = I.getCalledFunction();
1729   if (I.isInlineAsm())
1730     return false;
1731 
1732   // FIXME: support invoking patchpoint and statepoint intrinsics.
1733   if (Fn && Fn->isIntrinsic())
1734     return false;
1735 
1736   // FIXME: support whatever these are.
1737   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
1738     return false;
1739 
1740   // FIXME: support control flow guard targets.
1741   if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
1742     return false;
1743 
1744   // FIXME: support Windows exception handling.
1745   if (!isa<LandingPadInst>(EHPadBB->front()))
1746     return false;
1747 
1748   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
1749   // the region covered by the try.
1750   MCSymbol *BeginSymbol = Context.createTempSymbol();
1751   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
1752 
1753   if (!translateCallBase(I, MIRBuilder))
1754     return false;
1755 
1756   MCSymbol *EndSymbol = Context.createTempSymbol();
1757   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
1758 
1759   // FIXME: track probabilities.
1760   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
1761                     &ReturnMBB = getMBB(*ReturnBB);
1762   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
1763   MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
1764   MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
1765   MIRBuilder.buildBr(ReturnMBB);
1766 
1767   return true;
1768 }
1769 
1770 bool IRTranslator::translateCallBr(const User &U,
1771                                    MachineIRBuilder &MIRBuilder) {
1772   // FIXME: Implement this.
1773   return false;
1774 }
1775 
1776 bool IRTranslator::translateLandingPad(const User &U,
1777                                        MachineIRBuilder &MIRBuilder) {
1778   const LandingPadInst &LP = cast<LandingPadInst>(U);
1779 
1780   MachineBasicBlock &MBB = MIRBuilder.getMBB();
1781 
1782   MBB.setIsEHPad();
1783 
1784   // If there aren't registers to copy the values into (e.g., during SjLj
1785   // exceptions), then don't bother.
1786   auto &TLI = *MF->getSubtarget().getTargetLowering();
1787   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
1788   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
1789       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
1790     return true;
1791 
1792   // If landingpad's return type is token type, we don't create DAG nodes
1793   // for its exception pointer and selector value. The extraction of exception
1794   // pointer or selector value from token type landingpads is not currently
1795   // supported.
1796   if (LP.getType()->isTokenTy())
1797     return true;
1798 
1799   // Add a label to mark the beginning of the landing pad.  Deletion of the
1800   // landing pad can thus be detected via the MachineModuleInfo.
1801   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
1802     .addSym(MF->addLandingPad(&MBB));
1803 
1804   LLT Ty = getLLTForType(*LP.getType(), *DL);
1805   Register Undef = MRI->createGenericVirtualRegister(Ty);
1806   MIRBuilder.buildUndef(Undef);
1807 
1808   SmallVector<LLT, 2> Tys;
1809   for (Type *Ty : cast<StructType>(LP.getType())->elements())
1810     Tys.push_back(getLLTForType(*Ty, *DL));
1811   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
1812 
1813   // Mark exception register as live in.
1814   Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
1815   if (!ExceptionReg)
1816     return false;
1817 
1818   MBB.addLiveIn(ExceptionReg);
1819   ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
1820   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
1821 
1822   Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
1823   if (!SelectorReg)
1824     return false;
1825 
1826   MBB.addLiveIn(SelectorReg);
1827   Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
1828   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
1829   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
1830 
1831   return true;
1832 }
1833 
1834 bool IRTranslator::translateAlloca(const User &U,
1835                                    MachineIRBuilder &MIRBuilder) {
1836   auto &AI = cast<AllocaInst>(U);
1837 
1838   if (AI.isSwiftError())
1839     return true;
1840 
1841   if (AI.isStaticAlloca()) {
1842     Register Res = getOrCreateVReg(AI);
1843     int FI = getOrCreateFrameIndex(AI);
1844     MIRBuilder.buildFrameIndex(Res, FI);
1845     return true;
1846   }
1847 
1848   // FIXME: support stack probing for Windows.
1849   if (MF->getTarget().getTargetTriple().isOSWindows())
1850     return false;
1851 
1852   // Now we're in the harder dynamic case.
1853   Register NumElts = getOrCreateVReg(*AI.getArraySize());
1854   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
1855   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
1856   if (MRI->getType(NumElts) != IntPtrTy) {
1857     Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
1858     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
1859     NumElts = ExtElts;
1860   }
1861 
1862   Type *Ty = AI.getAllocatedType();
1863 
1864   Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
1865   Register TySize =
1866       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
1867   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
1868 
1869   // Round the size of the allocation up to the stack alignment size
1870   // by add SA-1 to the size. This doesn't overflow because we're computing
1871   // an address inside an alloca.
1872   Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
1873   auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
1874   auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
1875                                       MachineInstr::NoUWrap);
1876   auto AlignCst =
1877       MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
1878   auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
1879 
1880   Align Alignment = max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
1881   if (Alignment <= StackAlign)
1882     Alignment = Align(1);
1883   MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
1884 
1885   MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
1886   assert(MF->getFrameInfo().hasVarSizedObjects());
1887   return true;
1888 }
1889 
1890 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
1891   // FIXME: We may need more info about the type. Because of how LLT works,
1892   // we're completely discarding the i64/double distinction here (amongst
1893   // others). Fortunately the ABIs I know of where that matters don't use va_arg
1894   // anyway but that's not guaranteed.
1895   MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
1896                         {getOrCreateVReg(*U.getOperand(0)),
1897                          uint64_t(DL->getABITypeAlignment(U.getType()))});
1898   return true;
1899 }
1900 
1901 bool IRTranslator::translateInsertElement(const User &U,
1902                                           MachineIRBuilder &MIRBuilder) {
1903   // If it is a <1 x Ty> vector, use the scalar as it is
1904   // not a legal vector type in LLT.
1905   if (cast<VectorType>(U.getType())->getNumElements() == 1)
1906     return translateCopy(U, *U.getOperand(1), MIRBuilder);
1907 
1908   Register Res = getOrCreateVReg(U);
1909   Register Val = getOrCreateVReg(*U.getOperand(0));
1910   Register Elt = getOrCreateVReg(*U.getOperand(1));
1911   Register Idx = getOrCreateVReg(*U.getOperand(2));
1912   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
1913   return true;
1914 }
1915 
1916 bool IRTranslator::translateExtractElement(const User &U,
1917                                            MachineIRBuilder &MIRBuilder) {
1918   // If it is a <1 x Ty> vector, use the scalar as it is
1919   // not a legal vector type in LLT.
1920   if (cast<VectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
1921     return translateCopy(U, *U.getOperand(0), MIRBuilder);
1922 
1923   Register Res = getOrCreateVReg(U);
1924   Register Val = getOrCreateVReg(*U.getOperand(0));
1925   const auto &TLI = *MF->getSubtarget().getTargetLowering();
1926   unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
1927   Register Idx;
1928   if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
1929     if (CI->getBitWidth() != PreferredVecIdxWidth) {
1930       APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
1931       auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
1932       Idx = getOrCreateVReg(*NewIdxCI);
1933     }
1934   }
1935   if (!Idx)
1936     Idx = getOrCreateVReg(*U.getOperand(1));
1937   if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
1938     const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
1939     Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
1940   }
1941   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
1942   return true;
1943 }
1944 
1945 bool IRTranslator::translateShuffleVector(const User &U,
1946                                           MachineIRBuilder &MIRBuilder) {
1947   ArrayRef<int> Mask;
1948   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
1949     Mask = SVI->getShuffleMask();
1950   else
1951     Mask = cast<ConstantExpr>(U).getShuffleMask();
1952   ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
1953   MIRBuilder
1954       .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
1955                   {getOrCreateVReg(*U.getOperand(0)),
1956                    getOrCreateVReg(*U.getOperand(1))})
1957       .addShuffleMask(MaskAlloc);
1958   return true;
1959 }
1960 
1961 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
1962   const PHINode &PI = cast<PHINode>(U);
1963 
1964   SmallVector<MachineInstr *, 4> Insts;
1965   for (auto Reg : getOrCreateVRegs(PI)) {
1966     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
1967     Insts.push_back(MIB.getInstr());
1968   }
1969 
1970   PendingPHIs.emplace_back(&PI, std::move(Insts));
1971   return true;
1972 }
1973 
1974 bool IRTranslator::translateAtomicCmpXchg(const User &U,
1975                                           MachineIRBuilder &MIRBuilder) {
1976   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
1977 
1978   if (I.isWeak())
1979     return false;
1980 
1981   auto &TLI = *MF->getSubtarget().getTargetLowering();
1982   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
1983 
1984   Type *ResType = I.getType();
1985   Type *ValType = ResType->Type::getStructElementType(0);
1986 
1987   auto Res = getOrCreateVRegs(I);
1988   Register OldValRes = Res[0];
1989   Register SuccessRes = Res[1];
1990   Register Addr = getOrCreateVReg(*I.getPointerOperand());
1991   Register Cmp = getOrCreateVReg(*I.getCompareOperand());
1992   Register NewVal = getOrCreateVReg(*I.getNewValOperand());
1993 
1994   AAMDNodes AAMetadata;
1995   I.getAAMetadata(AAMetadata);
1996 
1997   MIRBuilder.buildAtomicCmpXchgWithSuccess(
1998       OldValRes, SuccessRes, Addr, Cmp, NewVal,
1999       *MF->getMachineMemOperand(
2000           MachinePointerInfo(I.getPointerOperand()), Flags,
2001           DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr,
2002           I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering()));
2003   return true;
2004 }
2005 
2006 bool IRTranslator::translateAtomicRMW(const User &U,
2007                                       MachineIRBuilder &MIRBuilder) {
2008   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
2009   auto &TLI = *MF->getSubtarget().getTargetLowering();
2010   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
2011 
2012   Type *ResType = I.getType();
2013 
2014   Register Res = getOrCreateVReg(I);
2015   Register Addr = getOrCreateVReg(*I.getPointerOperand());
2016   Register Val = getOrCreateVReg(*I.getValOperand());
2017 
2018   unsigned Opcode = 0;
2019   switch (I.getOperation()) {
2020   default:
2021     return false;
2022   case AtomicRMWInst::Xchg:
2023     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
2024     break;
2025   case AtomicRMWInst::Add:
2026     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2027     break;
2028   case AtomicRMWInst::Sub:
2029     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2030     break;
2031   case AtomicRMWInst::And:
2032     Opcode = TargetOpcode::G_ATOMICRMW_AND;
2033     break;
2034   case AtomicRMWInst::Nand:
2035     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2036     break;
2037   case AtomicRMWInst::Or:
2038     Opcode = TargetOpcode::G_ATOMICRMW_OR;
2039     break;
2040   case AtomicRMWInst::Xor:
2041     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2042     break;
2043   case AtomicRMWInst::Max:
2044     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2045     break;
2046   case AtomicRMWInst::Min:
2047     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2048     break;
2049   case AtomicRMWInst::UMax:
2050     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2051     break;
2052   case AtomicRMWInst::UMin:
2053     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2054     break;
2055   case AtomicRMWInst::FAdd:
2056     Opcode = TargetOpcode::G_ATOMICRMW_FADD;
2057     break;
2058   case AtomicRMWInst::FSub:
2059     Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
2060     break;
2061   }
2062 
2063   AAMDNodes AAMetadata;
2064   I.getAAMetadata(AAMetadata);
2065 
2066   MIRBuilder.buildAtomicRMW(
2067       Opcode, Res, Addr, Val,
2068       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2069                                 Flags, DL->getTypeStoreSize(ResType),
2070                                 getMemOpAlign(I), AAMetadata, nullptr,
2071                                 I.getSyncScopeID(), I.getOrdering()));
2072   return true;
2073 }
2074 
2075 bool IRTranslator::translateFence(const User &U,
2076                                   MachineIRBuilder &MIRBuilder) {
2077   const FenceInst &Fence = cast<FenceInst>(U);
2078   MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2079                         Fence.getSyncScopeID());
2080   return true;
2081 }
2082 
2083 bool IRTranslator::translateFreeze(const User &U,
2084                                    MachineIRBuilder &MIRBuilder) {
2085   const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
2086   const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
2087 
2088   assert(DstRegs.size() == SrcRegs.size() &&
2089          "Freeze with different source and destination type?");
2090 
2091   for (unsigned I = 0; I < DstRegs.size(); ++I) {
2092     MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
2093   }
2094 
2095   return true;
2096 }
2097 
2098 void IRTranslator::finishPendingPhis() {
2099 #ifndef NDEBUG
2100   DILocationVerifier Verifier;
2101   GISelObserverWrapper WrapperObserver(&Verifier);
2102   RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2103 #endif // ifndef NDEBUG
2104   for (auto &Phi : PendingPHIs) {
2105     const PHINode *PI = Phi.first;
2106     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
2107     MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
2108     EntryBuilder->setDebugLoc(PI->getDebugLoc());
2109 #ifndef NDEBUG
2110     Verifier.setCurrentInst(PI);
2111 #endif // ifndef NDEBUG
2112 
2113     SmallSet<const MachineBasicBlock *, 16> SeenPreds;
2114     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
2115       auto IRPred = PI->getIncomingBlock(i);
2116       ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
2117       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
2118         if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
2119           continue;
2120         SeenPreds.insert(Pred);
2121         for (unsigned j = 0; j < ValRegs.size(); ++j) {
2122           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
2123           MIB.addUse(ValRegs[j]);
2124           MIB.addMBB(Pred);
2125         }
2126       }
2127     }
2128   }
2129 }
2130 
2131 bool IRTranslator::valueIsSplit(const Value &V,
2132                                 SmallVectorImpl<uint64_t> *Offsets) {
2133   SmallVector<LLT, 4> SplitTys;
2134   if (Offsets && !Offsets->empty())
2135     Offsets->clear();
2136   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
2137   return SplitTys.size() > 1;
2138 }
2139 
2140 bool IRTranslator::translate(const Instruction &Inst) {
2141   CurBuilder->setDebugLoc(Inst.getDebugLoc());
2142   // We only emit constants into the entry block from here. To prevent jumpy
2143   // debug behaviour set the line to 0.
2144   if (const DebugLoc &DL = Inst.getDebugLoc())
2145     EntryBuilder->setDebugLoc(
2146         DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
2147   else
2148     EntryBuilder->setDebugLoc(DebugLoc());
2149 
2150   switch (Inst.getOpcode()) {
2151 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2152   case Instruction::OPCODE:                                                    \
2153     return translate##OPCODE(Inst, *CurBuilder.get());
2154 #include "llvm/IR/Instruction.def"
2155   default:
2156     return false;
2157   }
2158 }
2159 
2160 bool IRTranslator::translate(const Constant &C, Register Reg) {
2161   if (auto CI = dyn_cast<ConstantInt>(&C))
2162     EntryBuilder->buildConstant(Reg, *CI);
2163   else if (auto CF = dyn_cast<ConstantFP>(&C))
2164     EntryBuilder->buildFConstant(Reg, *CF);
2165   else if (isa<UndefValue>(C))
2166     EntryBuilder->buildUndef(Reg);
2167   else if (isa<ConstantPointerNull>(C))
2168     EntryBuilder->buildConstant(Reg, 0);
2169   else if (auto GV = dyn_cast<GlobalValue>(&C))
2170     EntryBuilder->buildGlobalValue(Reg, GV);
2171   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
2172     if (!CAZ->getType()->isVectorTy())
2173       return false;
2174     // Return the scalar if it is a <1 x Ty> vector.
2175     if (CAZ->getNumElements() == 1)
2176       return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get());
2177     SmallVector<Register, 4> Ops;
2178     for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
2179       Constant &Elt = *CAZ->getElementValue(i);
2180       Ops.push_back(getOrCreateVReg(Elt));
2181     }
2182     EntryBuilder->buildBuildVector(Reg, Ops);
2183   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
2184     // Return the scalar if it is a <1 x Ty> vector.
2185     if (CV->getNumElements() == 1)
2186       return translateCopy(C, *CV->getElementAsConstant(0),
2187                            *EntryBuilder.get());
2188     SmallVector<Register, 4> Ops;
2189     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
2190       Constant &Elt = *CV->getElementAsConstant(i);
2191       Ops.push_back(getOrCreateVReg(Elt));
2192     }
2193     EntryBuilder->buildBuildVector(Reg, Ops);
2194   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
2195     switch(CE->getOpcode()) {
2196 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2197   case Instruction::OPCODE:                                                    \
2198     return translate##OPCODE(*CE, *EntryBuilder.get());
2199 #include "llvm/IR/Instruction.def"
2200     default:
2201       return false;
2202     }
2203   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
2204     if (CV->getNumOperands() == 1)
2205       return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get());
2206     SmallVector<Register, 4> Ops;
2207     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
2208       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
2209     }
2210     EntryBuilder->buildBuildVector(Reg, Ops);
2211   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
2212     EntryBuilder->buildBlockAddress(Reg, BA);
2213   } else
2214     return false;
2215 
2216   return true;
2217 }
2218 
2219 void IRTranslator::finalizeBasicBlock() {
2220   for (auto &JTCase : SL->JTCases) {
2221     // Emit header first, if it wasn't already emitted.
2222     if (!JTCase.first.Emitted)
2223       emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
2224 
2225     emitJumpTable(JTCase.second, JTCase.second.MBB);
2226   }
2227   SL->JTCases.clear();
2228 }
2229 
2230 void IRTranslator::finalizeFunction() {
2231   // Release the memory used by the different maps we
2232   // needed during the translation.
2233   PendingPHIs.clear();
2234   VMap.reset();
2235   FrameIndices.clear();
2236   MachinePreds.clear();
2237   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
2238   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
2239   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
2240   EntryBuilder.reset();
2241   CurBuilder.reset();
2242   FuncInfo.clear();
2243 }
2244 
2245 /// Returns true if a BasicBlock \p BB within a variadic function contains a
2246 /// variadic musttail call.
2247 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
2248   if (!IsVarArg)
2249     return false;
2250 
2251   // Walk the block backwards, because tail calls usually only appear at the end
2252   // of a block.
2253   return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
2254     const auto *CI = dyn_cast<CallInst>(&I);
2255     return CI && CI->isMustTailCall();
2256   });
2257 }
2258 
2259 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
2260   MF = &CurMF;
2261   const Function &F = MF->getFunction();
2262   if (F.empty())
2263     return false;
2264   GISelCSEAnalysisWrapper &Wrapper =
2265       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
2266   // Set the CSEConfig and run the analysis.
2267   GISelCSEInfo *CSEInfo = nullptr;
2268   TPC = &getAnalysis<TargetPassConfig>();
2269   bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
2270                        ? EnableCSEInIRTranslator
2271                        : TPC->isGISelCSEEnabled();
2272 
2273   if (EnableCSE) {
2274     EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
2275     CSEInfo = &Wrapper.get(TPC->getCSEConfig());
2276     EntryBuilder->setCSEInfo(CSEInfo);
2277     CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
2278     CurBuilder->setCSEInfo(CSEInfo);
2279   } else {
2280     EntryBuilder = std::make_unique<MachineIRBuilder>();
2281     CurBuilder = std::make_unique<MachineIRBuilder>();
2282   }
2283   CLI = MF->getSubtarget().getCallLowering();
2284   CurBuilder->setMF(*MF);
2285   EntryBuilder->setMF(*MF);
2286   MRI = &MF->getRegInfo();
2287   DL = &F.getParent()->getDataLayout();
2288   ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
2289   FuncInfo.MF = MF;
2290   FuncInfo.BPI = nullptr;
2291   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2292   const TargetMachine &TM = MF->getTarget();
2293   SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
2294   SL->init(TLI, TM, *DL);
2295 
2296   EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F);
2297 
2298   assert(PendingPHIs.empty() && "stale PHIs");
2299 
2300   if (!DL->isLittleEndian()) {
2301     // Currently we don't properly handle big endian code.
2302     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2303                                F.getSubprogram(), &F.getEntryBlock());
2304     R << "unable to translate in big endian mode";
2305     reportTranslationError(*MF, *TPC, *ORE, R);
2306   }
2307 
2308   // Release the per-function state when we return, whether we succeeded or not.
2309   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
2310 
2311   // Setup a separate basic-block for the arguments and constants
2312   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
2313   MF->push_back(EntryBB);
2314   EntryBuilder->setMBB(*EntryBB);
2315 
2316   DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
2317   SwiftError.setFunction(CurMF);
2318   SwiftError.createEntriesInEntryBlock(DbgLoc);
2319 
2320   bool IsVarArg = F.isVarArg();
2321   bool HasMustTailInVarArgFn = false;
2322 
2323   // Create all blocks, in IR order, to preserve the layout.
2324   for (const BasicBlock &BB: F) {
2325     auto *&MBB = BBToMBB[&BB];
2326 
2327     MBB = MF->CreateMachineBasicBlock(&BB);
2328     MF->push_back(MBB);
2329 
2330     if (BB.hasAddressTaken())
2331       MBB->setHasAddressTaken();
2332 
2333     if (!HasMustTailInVarArgFn)
2334       HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
2335   }
2336 
2337   MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
2338 
2339   // Make our arguments/constants entry block fallthrough to the IR entry block.
2340   EntryBB->addSuccessor(&getMBB(F.front()));
2341 
2342   // Lower the actual args into this basic block.
2343   SmallVector<ArrayRef<Register>, 8> VRegArgs;
2344   for (const Argument &Arg: F.args()) {
2345     if (DL->getTypeStoreSize(Arg.getType()) == 0)
2346       continue; // Don't handle zero sized types.
2347     ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
2348     VRegArgs.push_back(VRegs);
2349 
2350     if (Arg.hasSwiftErrorAttr()) {
2351       assert(VRegs.size() == 1 && "Too many vregs for Swift error");
2352       SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
2353     }
2354   }
2355 
2356   if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) {
2357     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2358                                F.getSubprogram(), &F.getEntryBlock());
2359     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
2360     reportTranslationError(*MF, *TPC, *ORE, R);
2361     return false;
2362   }
2363 
2364   // Need to visit defs before uses when translating instructions.
2365   GISelObserverWrapper WrapperObserver;
2366   if (EnableCSE && CSEInfo)
2367     WrapperObserver.addObserver(CSEInfo);
2368   {
2369     ReversePostOrderTraversal<const Function *> RPOT(&F);
2370 #ifndef NDEBUG
2371     DILocationVerifier Verifier;
2372     WrapperObserver.addObserver(&Verifier);
2373 #endif // ifndef NDEBUG
2374     RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2375     RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
2376     for (const BasicBlock *BB : RPOT) {
2377       MachineBasicBlock &MBB = getMBB(*BB);
2378       // Set the insertion point of all the following translations to
2379       // the end of this basic block.
2380       CurBuilder->setMBB(MBB);
2381       HasTailCall = false;
2382       for (const Instruction &Inst : *BB) {
2383         // If we translated a tail call in the last step, then we know
2384         // everything after the call is either a return, or something that is
2385         // handled by the call itself. (E.g. a lifetime marker or assume
2386         // intrinsic.) In this case, we should stop translating the block and
2387         // move on.
2388         if (HasTailCall)
2389           break;
2390 #ifndef NDEBUG
2391         Verifier.setCurrentInst(&Inst);
2392 #endif // ifndef NDEBUG
2393         if (translate(Inst))
2394           continue;
2395 
2396         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2397                                    Inst.getDebugLoc(), BB);
2398         R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
2399 
2400         if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
2401           std::string InstStrStorage;
2402           raw_string_ostream InstStr(InstStrStorage);
2403           InstStr << Inst;
2404 
2405           R << ": '" << InstStr.str() << "'";
2406         }
2407 
2408         reportTranslationError(*MF, *TPC, *ORE, R);
2409         return false;
2410       }
2411 
2412       finalizeBasicBlock();
2413     }
2414 #ifndef NDEBUG
2415     WrapperObserver.removeObserver(&Verifier);
2416 #endif
2417   }
2418 
2419   finishPendingPhis();
2420 
2421   SwiftError.propagateVRegs();
2422 
2423   // Merge the argument lowering and constants block with its single
2424   // successor, the LLVM-IR entry block.  We want the basic block to
2425   // be maximal.
2426   assert(EntryBB->succ_size() == 1 &&
2427          "Custom BB used for lowering should have only one successor");
2428   // Get the successor of the current entry block.
2429   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
2430   assert(NewEntryBB.pred_size() == 1 &&
2431          "LLVM-IR entry block has a predecessor!?");
2432   // Move all the instruction from the current entry block to the
2433   // new entry block.
2434   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
2435                     EntryBB->end());
2436 
2437   // Update the live-in information for the new entry block.
2438   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
2439     NewEntryBB.addLiveIn(LiveIn);
2440   NewEntryBB.sortUniqueLiveIns();
2441 
2442   // Get rid of the now empty basic block.
2443   EntryBB->removeSuccessor(&NewEntryBB);
2444   MF->remove(EntryBB);
2445   MF->DeleteMachineBasicBlock(EntryBB);
2446 
2447   assert(&MF->front() == &NewEntryBB &&
2448          "New entry wasn't next in the list of basic block!");
2449 
2450   // Initialize stack protector information.
2451   StackProtector &SP = getAnalysis<StackProtector>();
2452   SP.copyToMachineFrameInfo(MF->getFrameInfo());
2453 
2454   return false;
2455 }
2456