1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/FunctionLoweringInfo.h" 24 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 25 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 26 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 27 #include "llvm/CodeGen/LowLevelType.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/StackProtector.h" 36 #include "llvm/CodeGen/TargetFrameLowering.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/Constant.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfo.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GetElementPtrTypeIterator.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/MCContext.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/LowLevelTypeImpl.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetIntrinsicInfo.h" 72 #include "llvm/Target/TargetMachine.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <iterator> 77 #include <string> 78 #include <utility> 79 #include <vector> 80 81 #define DEBUG_TYPE "irtranslator" 82 83 using namespace llvm; 84 85 static cl::opt<bool> 86 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 87 cl::desc("Should enable CSE in irtranslator"), 88 cl::Optional, cl::init(false)); 89 char IRTranslator::ID = 0; 90 91 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 92 false, false) 93 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 94 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 95 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 96 false, false) 97 98 static void reportTranslationError(MachineFunction &MF, 99 const TargetPassConfig &TPC, 100 OptimizationRemarkEmitter &ORE, 101 OptimizationRemarkMissed &R) { 102 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 103 104 // Print the function name explicitly if we don't have a debug location (which 105 // makes the diagnostic less useful) or if we're going to emit a raw error. 106 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 107 R << (" (in function: " + MF.getName() + ")").str(); 108 109 if (TPC.isGlobalISelAbortEnabled()) 110 report_fatal_error(R.getMsg()); 111 else 112 ORE.emit(R); 113 } 114 115 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } 116 117 #ifndef NDEBUG 118 namespace { 119 /// Verify that every instruction created has the same DILocation as the 120 /// instruction being translated. 121 class DILocationVerifier : public GISelChangeObserver { 122 const Instruction *CurrInst = nullptr; 123 124 public: 125 DILocationVerifier() = default; 126 ~DILocationVerifier() = default; 127 128 const Instruction *getCurrentInst() const { return CurrInst; } 129 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 130 131 void erasingInstr(MachineInstr &MI) override {} 132 void changingInstr(MachineInstr &MI) override {} 133 void changedInstr(MachineInstr &MI) override {} 134 135 void createdInstr(MachineInstr &MI) override { 136 assert(getCurrentInst() && "Inserted instruction without a current MI"); 137 138 // Only print the check message if we're actually checking it. 139 #ifndef NDEBUG 140 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 141 << " was copied to " << MI); 142 #endif 143 // We allow insts in the entry block to have a debug loc line of 0 because 144 // they could have originated from constants, and we don't want a jumpy 145 // debug experience. 146 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 147 MI.getDebugLoc().getLine() == 0) && 148 "Line info was not transferred to all instructions"); 149 } 150 }; 151 } // namespace 152 #endif // ifndef NDEBUG 153 154 155 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 156 AU.addRequired<StackProtector>(); 157 AU.addRequired<TargetPassConfig>(); 158 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 159 getSelectionDAGFallbackAnalysisUsage(AU); 160 MachineFunctionPass::getAnalysisUsage(AU); 161 } 162 163 IRTranslator::ValueToVRegInfo::VRegListT & 164 IRTranslator::allocateVRegs(const Value &Val) { 165 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 166 auto *Regs = VMap.getVRegs(Val); 167 auto *Offsets = VMap.getOffsets(Val); 168 SmallVector<LLT, 4> SplitTys; 169 computeValueLLTs(*DL, *Val.getType(), SplitTys, 170 Offsets->empty() ? Offsets : nullptr); 171 for (unsigned i = 0; i < SplitTys.size(); ++i) 172 Regs->push_back(0); 173 return *Regs; 174 } 175 176 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 177 auto VRegsIt = VMap.findVRegs(Val); 178 if (VRegsIt != VMap.vregs_end()) 179 return *VRegsIt->second; 180 181 if (Val.getType()->isVoidTy()) 182 return *VMap.getVRegs(Val); 183 184 // Create entry for this type. 185 auto *VRegs = VMap.getVRegs(Val); 186 auto *Offsets = VMap.getOffsets(Val); 187 188 assert(Val.getType()->isSized() && 189 "Don't know how to create an empty vreg"); 190 191 SmallVector<LLT, 4> SplitTys; 192 computeValueLLTs(*DL, *Val.getType(), SplitTys, 193 Offsets->empty() ? Offsets : nullptr); 194 195 if (!isa<Constant>(Val)) { 196 for (auto Ty : SplitTys) 197 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 198 return *VRegs; 199 } 200 201 if (Val.getType()->isAggregateType()) { 202 // UndefValue, ConstantAggregateZero 203 auto &C = cast<Constant>(Val); 204 unsigned Idx = 0; 205 while (auto Elt = C.getAggregateElement(Idx++)) { 206 auto EltRegs = getOrCreateVRegs(*Elt); 207 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 208 } 209 } else { 210 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 211 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 212 bool Success = translate(cast<Constant>(Val), VRegs->front()); 213 if (!Success) { 214 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 215 MF->getFunction().getSubprogram(), 216 &MF->getFunction().getEntryBlock()); 217 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 218 reportTranslationError(*MF, *TPC, *ORE, R); 219 return *VRegs; 220 } 221 } 222 223 return *VRegs; 224 } 225 226 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 227 if (FrameIndices.find(&AI) != FrameIndices.end()) 228 return FrameIndices[&AI]; 229 230 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 231 uint64_t Size = 232 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 233 234 // Always allocate at least one byte. 235 Size = std::max<uint64_t>(Size, 1u); 236 237 unsigned Alignment = AI.getAlignment(); 238 if (!Alignment) 239 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 240 241 int &FI = FrameIndices[&AI]; 242 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 243 return FI; 244 } 245 246 Align IRTranslator::getMemOpAlign(const Instruction &I) { 247 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 248 Type *ValTy = SI->getValueOperand()->getType(); 249 return SI->getAlign().getValueOr(DL->getABITypeAlign(ValTy)); 250 } 251 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 252 return DL->getValueOrABITypeAlignment(LI->getAlign(), LI->getType()); 253 } 254 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 255 // TODO(PR27168): This instruction has no alignment attribute, but unlike 256 // the default alignment for load/store, the default here is to assume 257 // it has NATURAL alignment, not DataLayout-specified alignment. 258 const DataLayout &DL = AI->getModule()->getDataLayout(); 259 return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType())); 260 } 261 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 262 // TODO(PR27168): This instruction has no alignment attribute, but unlike 263 // the default alignment for load/store, the default here is to assume 264 // it has NATURAL alignment, not DataLayout-specified alignment. 265 const DataLayout &DL = AI->getModule()->getDataLayout(); 266 return Align(DL.getTypeStoreSize(AI->getValOperand()->getType())); 267 } 268 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 269 R << "unable to translate memop: " << ore::NV("Opcode", &I); 270 reportTranslationError(*MF, *TPC, *ORE, R); 271 return Align(1); 272 } 273 274 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 275 MachineBasicBlock *&MBB = BBToMBB[&BB]; 276 assert(MBB && "BasicBlock was not encountered before"); 277 return *MBB; 278 } 279 280 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 281 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 282 MachinePreds[Edge].push_back(NewPred); 283 } 284 285 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 286 MachineIRBuilder &MIRBuilder) { 287 // Get or create a virtual register for each value. 288 // Unless the value is a Constant => loadimm cst? 289 // or inline constant each time? 290 // Creation of a virtual register needs to have a size. 291 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 292 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 293 Register Res = getOrCreateVReg(U); 294 uint16_t Flags = 0; 295 if (isa<Instruction>(U)) { 296 const Instruction &I = cast<Instruction>(U); 297 Flags = MachineInstr::copyFlagsFromInstruction(I); 298 } 299 300 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 301 return true; 302 } 303 304 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 305 // -0.0 - X --> G_FNEG 306 if (isa<Constant>(U.getOperand(0)) && 307 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 308 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 309 Register Res = getOrCreateVReg(U); 310 uint16_t Flags = 0; 311 if (isa<Instruction>(U)) { 312 const Instruction &I = cast<Instruction>(U); 313 Flags = MachineInstr::copyFlagsFromInstruction(I); 314 } 315 // Negate the last operand of the FSUB 316 MIRBuilder.buildFNeg(Res, Op1, Flags); 317 return true; 318 } 319 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 320 } 321 322 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 323 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 324 Register Res = getOrCreateVReg(U); 325 uint16_t Flags = 0; 326 if (isa<Instruction>(U)) { 327 const Instruction &I = cast<Instruction>(U); 328 Flags = MachineInstr::copyFlagsFromInstruction(I); 329 } 330 MIRBuilder.buildFNeg(Res, Op0, Flags); 331 return true; 332 } 333 334 bool IRTranslator::translateCompare(const User &U, 335 MachineIRBuilder &MIRBuilder) { 336 auto *CI = dyn_cast<CmpInst>(&U); 337 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 338 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 339 Register Res = getOrCreateVReg(U); 340 CmpInst::Predicate Pred = 341 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 342 cast<ConstantExpr>(U).getPredicate()); 343 if (CmpInst::isIntPredicate(Pred)) 344 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 345 else if (Pred == CmpInst::FCMP_FALSE) 346 MIRBuilder.buildCopy( 347 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 348 else if (Pred == CmpInst::FCMP_TRUE) 349 MIRBuilder.buildCopy( 350 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 351 else { 352 assert(CI && "Instruction should be CmpInst"); 353 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, 354 MachineInstr::copyFlagsFromInstruction(*CI)); 355 } 356 357 return true; 358 } 359 360 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 361 const ReturnInst &RI = cast<ReturnInst>(U); 362 const Value *Ret = RI.getReturnValue(); 363 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 364 Ret = nullptr; 365 366 ArrayRef<Register> VRegs; 367 if (Ret) 368 VRegs = getOrCreateVRegs(*Ret); 369 370 Register SwiftErrorVReg = 0; 371 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 372 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 373 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 374 } 375 376 // The target may mess up with the insertion point, but 377 // this is not important as a return is the last instruction 378 // of the block anyway. 379 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 380 } 381 382 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 383 const BranchInst &BrInst = cast<BranchInst>(U); 384 unsigned Succ = 0; 385 if (!BrInst.isUnconditional()) { 386 // We want a G_BRCOND to the true BB followed by an unconditional branch. 387 Register Tst = getOrCreateVReg(*BrInst.getCondition()); 388 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 389 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 390 MIRBuilder.buildBrCond(Tst, TrueBB); 391 } 392 393 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 394 MachineBasicBlock &TgtBB = getMBB(BrTgt); 395 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 396 397 // If the unconditional target is the layout successor, fallthrough. 398 if (!CurBB.isLayoutSuccessor(&TgtBB)) 399 MIRBuilder.buildBr(TgtBB); 400 401 // Link successors. 402 for (const BasicBlock *Succ : successors(&BrInst)) 403 CurBB.addSuccessor(&getMBB(*Succ)); 404 return true; 405 } 406 407 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 408 MachineBasicBlock *Dst, 409 BranchProbability Prob) { 410 if (!FuncInfo.BPI) { 411 Src->addSuccessorWithoutProb(Dst); 412 return; 413 } 414 if (Prob.isUnknown()) 415 Prob = getEdgeProbability(Src, Dst); 416 Src->addSuccessor(Dst, Prob); 417 } 418 419 BranchProbability 420 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 421 const MachineBasicBlock *Dst) const { 422 const BasicBlock *SrcBB = Src->getBasicBlock(); 423 const BasicBlock *DstBB = Dst->getBasicBlock(); 424 if (!FuncInfo.BPI) { 425 // If BPI is not available, set the default probability as 1 / N, where N is 426 // the number of successors. 427 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 428 return BranchProbability(1, SuccSize); 429 } 430 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 431 } 432 433 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 434 using namespace SwitchCG; 435 // Extract cases from the switch. 436 const SwitchInst &SI = cast<SwitchInst>(U); 437 BranchProbabilityInfo *BPI = FuncInfo.BPI; 438 CaseClusterVector Clusters; 439 Clusters.reserve(SI.getNumCases()); 440 for (auto &I : SI.cases()) { 441 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 442 assert(Succ && "Could not find successor mbb in mapping"); 443 const ConstantInt *CaseVal = I.getCaseValue(); 444 BranchProbability Prob = 445 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 446 : BranchProbability(1, SI.getNumCases() + 1); 447 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 448 } 449 450 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 451 452 // Cluster adjacent cases with the same destination. We do this at all 453 // optimization levels because it's cheap to do and will make codegen faster 454 // if there are many clusters. 455 sortAndRangeify(Clusters); 456 457 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 458 459 // If there is only the default destination, jump there directly. 460 if (Clusters.empty()) { 461 SwitchMBB->addSuccessor(DefaultMBB); 462 if (DefaultMBB != SwitchMBB->getNextNode()) 463 MIB.buildBr(*DefaultMBB); 464 return true; 465 } 466 467 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 468 469 LLVM_DEBUG({ 470 dbgs() << "Case clusters: "; 471 for (const CaseCluster &C : Clusters) { 472 if (C.Kind == CC_JumpTable) 473 dbgs() << "JT:"; 474 if (C.Kind == CC_BitTests) 475 dbgs() << "BT:"; 476 477 C.Low->getValue().print(dbgs(), true); 478 if (C.Low != C.High) { 479 dbgs() << '-'; 480 C.High->getValue().print(dbgs(), true); 481 } 482 dbgs() << ' '; 483 } 484 dbgs() << '\n'; 485 }); 486 487 assert(!Clusters.empty()); 488 SwitchWorkList WorkList; 489 CaseClusterIt First = Clusters.begin(); 490 CaseClusterIt Last = Clusters.end() - 1; 491 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 492 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 493 494 // FIXME: At the moment we don't do any splitting optimizations here like 495 // SelectionDAG does, so this worklist only has one entry. 496 while (!WorkList.empty()) { 497 SwitchWorkListItem W = WorkList.back(); 498 WorkList.pop_back(); 499 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 500 return false; 501 } 502 return true; 503 } 504 505 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 506 MachineBasicBlock *MBB) { 507 // Emit the code for the jump table 508 assert(JT.Reg != -1U && "Should lower JT Header first!"); 509 MachineIRBuilder MIB(*MBB->getParent()); 510 MIB.setMBB(*MBB); 511 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 512 513 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 514 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 515 516 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 517 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 518 } 519 520 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 521 SwitchCG::JumpTableHeader &JTH, 522 MachineBasicBlock *HeaderBB) { 523 MachineIRBuilder MIB(*HeaderBB->getParent()); 524 MIB.setMBB(*HeaderBB); 525 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 526 527 const Value &SValue = *JTH.SValue; 528 // Subtract the lowest switch case value from the value being switched on. 529 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 530 Register SwitchOpReg = getOrCreateVReg(SValue); 531 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 532 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 533 534 // This value may be smaller or larger than the target's pointer type, and 535 // therefore require extension or truncating. 536 Type *PtrIRTy = SValue.getType()->getPointerTo(); 537 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 538 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 539 540 JT.Reg = Sub.getReg(0); 541 542 if (JTH.OmitRangeCheck) { 543 if (JT.MBB != HeaderBB->getNextNode()) 544 MIB.buildBr(*JT.MBB); 545 return true; 546 } 547 548 // Emit the range check for the jump table, and branch to the default block 549 // for the switch statement if the value being switched on exceeds the 550 // largest case in the switch. 551 auto Cst = getOrCreateVReg( 552 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 553 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 554 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 555 556 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 557 558 // Avoid emitting unnecessary branches to the next block. 559 if (JT.MBB != HeaderBB->getNextNode()) 560 BrCond = MIB.buildBr(*JT.MBB); 561 return true; 562 } 563 564 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 565 MachineBasicBlock *SwitchBB, 566 MachineIRBuilder &MIB) { 567 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 568 Register Cond; 569 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 570 MIB.setDebugLoc(CB.DbgLoc); 571 MIB.setMBB(*CB.ThisBB); 572 573 if (CB.PredInfo.NoCmp) { 574 // Branch or fall through to TrueBB. 575 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 576 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 577 CB.ThisBB); 578 CB.ThisBB->normalizeSuccProbs(); 579 if (CB.TrueBB != CB.ThisBB->getNextNode()) 580 MIB.buildBr(*CB.TrueBB); 581 MIB.setDebugLoc(OldDbgLoc); 582 return; 583 } 584 585 const LLT i1Ty = LLT::scalar(1); 586 // Build the compare. 587 if (!CB.CmpMHS) { 588 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 589 Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 590 } else { 591 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 592 "Can only handle SLE ranges"); 593 594 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 595 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 596 597 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 598 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 599 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 600 Cond = 601 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 602 } else { 603 const LLT CmpTy = MRI->getType(CmpOpReg); 604 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 605 auto Diff = MIB.buildConstant(CmpTy, High - Low); 606 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 607 } 608 } 609 610 // Update successor info 611 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 612 613 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 614 CB.ThisBB); 615 616 // TrueBB and FalseBB are always different unless the incoming IR is 617 // degenerate. This only happens when running llc on weird IR. 618 if (CB.TrueBB != CB.FalseBB) 619 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 620 CB.ThisBB->normalizeSuccProbs(); 621 622 // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) 623 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 624 CB.ThisBB); 625 626 // If the lhs block is the next block, invert the condition so that we can 627 // fall through to the lhs instead of the rhs block. 628 if (CB.TrueBB == CB.ThisBB->getNextNode()) { 629 std::swap(CB.TrueBB, CB.FalseBB); 630 auto True = MIB.buildConstant(i1Ty, 1); 631 Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0); 632 } 633 634 MIB.buildBrCond(Cond, *CB.TrueBB); 635 MIB.buildBr(*CB.FalseBB); 636 MIB.setDebugLoc(OldDbgLoc); 637 } 638 639 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 640 MachineBasicBlock *SwitchMBB, 641 MachineBasicBlock *CurMBB, 642 MachineBasicBlock *DefaultMBB, 643 MachineIRBuilder &MIB, 644 MachineFunction::iterator BBI, 645 BranchProbability UnhandledProbs, 646 SwitchCG::CaseClusterIt I, 647 MachineBasicBlock *Fallthrough, 648 bool FallthroughUnreachable) { 649 using namespace SwitchCG; 650 MachineFunction *CurMF = SwitchMBB->getParent(); 651 // FIXME: Optimize away range check based on pivot comparisons. 652 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 653 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 654 BranchProbability DefaultProb = W.DefaultProb; 655 656 // The jump block hasn't been inserted yet; insert it here. 657 MachineBasicBlock *JumpMBB = JT->MBB; 658 CurMF->insert(BBI, JumpMBB); 659 660 // Since the jump table block is separate from the switch block, we need 661 // to keep track of it as a machine predecessor to the default block, 662 // otherwise we lose the phi edges. 663 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 664 CurMBB); 665 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 666 JumpMBB); 667 668 auto JumpProb = I->Prob; 669 auto FallthroughProb = UnhandledProbs; 670 671 // If the default statement is a target of the jump table, we evenly 672 // distribute the default probability to successors of CurMBB. Also 673 // update the probability on the edge from JumpMBB to Fallthrough. 674 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 675 SE = JumpMBB->succ_end(); 676 SI != SE; ++SI) { 677 if (*SI == DefaultMBB) { 678 JumpProb += DefaultProb / 2; 679 FallthroughProb -= DefaultProb / 2; 680 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 681 JumpMBB->normalizeSuccProbs(); 682 } else { 683 // Also record edges from the jump table block to it's successors. 684 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 685 JumpMBB); 686 } 687 } 688 689 // Skip the range check if the fallthrough block is unreachable. 690 if (FallthroughUnreachable) 691 JTH->OmitRangeCheck = true; 692 693 if (!JTH->OmitRangeCheck) 694 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 695 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 696 CurMBB->normalizeSuccProbs(); 697 698 // The jump table header will be inserted in our current block, do the 699 // range check, and fall through to our fallthrough block. 700 JTH->HeaderBB = CurMBB; 701 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 702 703 // If we're in the right place, emit the jump table header right now. 704 if (CurMBB == SwitchMBB) { 705 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 706 return false; 707 JTH->Emitted = true; 708 } 709 return true; 710 } 711 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 712 Value *Cond, 713 MachineBasicBlock *Fallthrough, 714 bool FallthroughUnreachable, 715 BranchProbability UnhandledProbs, 716 MachineBasicBlock *CurMBB, 717 MachineIRBuilder &MIB, 718 MachineBasicBlock *SwitchMBB) { 719 using namespace SwitchCG; 720 const Value *RHS, *LHS, *MHS; 721 CmpInst::Predicate Pred; 722 if (I->Low == I->High) { 723 // Check Cond == I->Low. 724 Pred = CmpInst::ICMP_EQ; 725 LHS = Cond; 726 RHS = I->Low; 727 MHS = nullptr; 728 } else { 729 // Check I->Low <= Cond <= I->High. 730 Pred = CmpInst::ICMP_SLE; 731 LHS = I->Low; 732 MHS = Cond; 733 RHS = I->High; 734 } 735 736 // If Fallthrough is unreachable, fold away the comparison. 737 // The false probability is the sum of all unhandled cases. 738 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 739 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 740 741 emitSwitchCase(CB, SwitchMBB, MIB); 742 return true; 743 } 744 745 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 746 Value *Cond, 747 MachineBasicBlock *SwitchMBB, 748 MachineBasicBlock *DefaultMBB, 749 MachineIRBuilder &MIB) { 750 using namespace SwitchCG; 751 MachineFunction *CurMF = FuncInfo.MF; 752 MachineBasicBlock *NextMBB = nullptr; 753 MachineFunction::iterator BBI(W.MBB); 754 if (++BBI != FuncInfo.MF->end()) 755 NextMBB = &*BBI; 756 757 if (EnableOpts) { 758 // Here, we order cases by probability so the most likely case will be 759 // checked first. However, two clusters can have the same probability in 760 // which case their relative ordering is non-deterministic. So we use Low 761 // as a tie-breaker as clusters are guaranteed to never overlap. 762 llvm::sort(W.FirstCluster, W.LastCluster + 1, 763 [](const CaseCluster &a, const CaseCluster &b) { 764 return a.Prob != b.Prob 765 ? a.Prob > b.Prob 766 : a.Low->getValue().slt(b.Low->getValue()); 767 }); 768 769 // Rearrange the case blocks so that the last one falls through if possible 770 // without changing the order of probabilities. 771 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 772 --I; 773 if (I->Prob > W.LastCluster->Prob) 774 break; 775 if (I->Kind == CC_Range && I->MBB == NextMBB) { 776 std::swap(*I, *W.LastCluster); 777 break; 778 } 779 } 780 } 781 782 // Compute total probability. 783 BranchProbability DefaultProb = W.DefaultProb; 784 BranchProbability UnhandledProbs = DefaultProb; 785 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 786 UnhandledProbs += I->Prob; 787 788 MachineBasicBlock *CurMBB = W.MBB; 789 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 790 bool FallthroughUnreachable = false; 791 MachineBasicBlock *Fallthrough; 792 if (I == W.LastCluster) { 793 // For the last cluster, fall through to the default destination. 794 Fallthrough = DefaultMBB; 795 FallthroughUnreachable = isa<UnreachableInst>( 796 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 797 } else { 798 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 799 CurMF->insert(BBI, Fallthrough); 800 } 801 UnhandledProbs -= I->Prob; 802 803 switch (I->Kind) { 804 case CC_BitTests: { 805 LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented"); 806 return false; // Bit tests currently unimplemented. 807 } 808 case CC_JumpTable: { 809 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 810 UnhandledProbs, I, Fallthrough, 811 FallthroughUnreachable)) { 812 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 813 return false; 814 } 815 break; 816 } 817 case CC_Range: { 818 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 819 FallthroughUnreachable, UnhandledProbs, 820 CurMBB, MIB, SwitchMBB)) { 821 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 822 return false; 823 } 824 break; 825 } 826 } 827 CurMBB = Fallthrough; 828 } 829 830 return true; 831 } 832 833 bool IRTranslator::translateIndirectBr(const User &U, 834 MachineIRBuilder &MIRBuilder) { 835 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 836 837 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 838 MIRBuilder.buildBrIndirect(Tgt); 839 840 // Link successors. 841 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 842 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 843 for (const BasicBlock *Succ : successors(&BrInst)) { 844 // It's legal for indirectbr instructions to have duplicate blocks in the 845 // destination list. We don't allow this in MIR. Skip anything that's 846 // already a successor. 847 if (!AddedSuccessors.insert(Succ).second) 848 continue; 849 CurBB.addSuccessor(&getMBB(*Succ)); 850 } 851 852 return true; 853 } 854 855 static bool isSwiftError(const Value *V) { 856 if (auto Arg = dyn_cast<Argument>(V)) 857 return Arg->hasSwiftErrorAttr(); 858 if (auto AI = dyn_cast<AllocaInst>(V)) 859 return AI->isSwiftError(); 860 return false; 861 } 862 863 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 864 const LoadInst &LI = cast<LoadInst>(U); 865 if (DL->getTypeStoreSize(LI.getType()) == 0) 866 return true; 867 868 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 869 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 870 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 871 872 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 873 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 874 875 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 876 assert(Regs.size() == 1 && "swifterror should be single pointer"); 877 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 878 LI.getPointerOperand()); 879 MIRBuilder.buildCopy(Regs[0], VReg); 880 return true; 881 } 882 883 auto &TLI = *MF->getSubtarget().getTargetLowering(); 884 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 885 886 const MDNode *Ranges = 887 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 888 for (unsigned i = 0; i < Regs.size(); ++i) { 889 Register Addr; 890 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 891 892 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 893 Align BaseAlign = getMemOpAlign(LI); 894 AAMDNodes AAMetadata; 895 LI.getAAMetadata(AAMetadata); 896 auto MMO = MF->getMachineMemOperand( 897 Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(), 898 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges, 899 LI.getSyncScopeID(), LI.getOrdering()); 900 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 901 } 902 903 return true; 904 } 905 906 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 907 const StoreInst &SI = cast<StoreInst>(U); 908 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 909 return true; 910 911 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 912 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 913 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 914 915 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 916 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 917 918 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 919 assert(Vals.size() == 1 && "swifterror should be single pointer"); 920 921 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 922 SI.getPointerOperand()); 923 MIRBuilder.buildCopy(VReg, Vals[0]); 924 return true; 925 } 926 927 auto &TLI = *MF->getSubtarget().getTargetLowering(); 928 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 929 930 for (unsigned i = 0; i < Vals.size(); ++i) { 931 Register Addr; 932 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 933 934 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 935 Align BaseAlign = getMemOpAlign(SI); 936 AAMDNodes AAMetadata; 937 SI.getAAMetadata(AAMetadata); 938 auto MMO = MF->getMachineMemOperand( 939 Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(), 940 commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr, 941 SI.getSyncScopeID(), SI.getOrdering()); 942 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 943 } 944 return true; 945 } 946 947 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 948 const Value *Src = U.getOperand(0); 949 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 950 951 // getIndexedOffsetInType is designed for GEPs, so the first index is the 952 // usual array element rather than looking into the actual aggregate. 953 SmallVector<Value *, 1> Indices; 954 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 955 956 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 957 for (auto Idx : EVI->indices()) 958 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 959 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 960 for (auto Idx : IVI->indices()) 961 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 962 } else { 963 for (unsigned i = 1; i < U.getNumOperands(); ++i) 964 Indices.push_back(U.getOperand(i)); 965 } 966 967 return 8 * static_cast<uint64_t>( 968 DL.getIndexedOffsetInType(Src->getType(), Indices)); 969 } 970 971 bool IRTranslator::translateExtractValue(const User &U, 972 MachineIRBuilder &MIRBuilder) { 973 const Value *Src = U.getOperand(0); 974 uint64_t Offset = getOffsetFromIndices(U, *DL); 975 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 976 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 977 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 978 auto &DstRegs = allocateVRegs(U); 979 980 for (unsigned i = 0; i < DstRegs.size(); ++i) 981 DstRegs[i] = SrcRegs[Idx++]; 982 983 return true; 984 } 985 986 bool IRTranslator::translateInsertValue(const User &U, 987 MachineIRBuilder &MIRBuilder) { 988 const Value *Src = U.getOperand(0); 989 uint64_t Offset = getOffsetFromIndices(U, *DL); 990 auto &DstRegs = allocateVRegs(U); 991 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 992 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 993 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 994 auto InsertedIt = InsertedRegs.begin(); 995 996 for (unsigned i = 0; i < DstRegs.size(); ++i) { 997 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 998 DstRegs[i] = *InsertedIt++; 999 else 1000 DstRegs[i] = SrcRegs[i]; 1001 } 1002 1003 return true; 1004 } 1005 1006 bool IRTranslator::translateSelect(const User &U, 1007 MachineIRBuilder &MIRBuilder) { 1008 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1009 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1010 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1011 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1012 1013 const SelectInst &SI = cast<SelectInst>(U); 1014 uint16_t Flags = 0; 1015 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 1016 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 1017 1018 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1019 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1020 } 1021 1022 return true; 1023 } 1024 1025 bool IRTranslator::translateCopy(const User &U, const Value &V, 1026 MachineIRBuilder &MIRBuilder) { 1027 Register Src = getOrCreateVReg(V); 1028 auto &Regs = *VMap.getVRegs(U); 1029 if (Regs.empty()) { 1030 Regs.push_back(Src); 1031 VMap.getOffsets(U)->push_back(0); 1032 } else { 1033 // If we already assigned a vreg for this instruction, we can't change that. 1034 // Emit a copy to satisfy the users we already emitted. 1035 MIRBuilder.buildCopy(Regs[0], Src); 1036 } 1037 return true; 1038 } 1039 1040 bool IRTranslator::translateBitCast(const User &U, 1041 MachineIRBuilder &MIRBuilder) { 1042 // If we're bitcasting to the source type, we can reuse the source vreg. 1043 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1044 getLLTForType(*U.getType(), *DL)) 1045 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1046 1047 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1048 } 1049 1050 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1051 MachineIRBuilder &MIRBuilder) { 1052 Register Op = getOrCreateVReg(*U.getOperand(0)); 1053 Register Res = getOrCreateVReg(U); 1054 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1055 return true; 1056 } 1057 1058 bool IRTranslator::translateGetElementPtr(const User &U, 1059 MachineIRBuilder &MIRBuilder) { 1060 Value &Op0 = *U.getOperand(0); 1061 Register BaseReg = getOrCreateVReg(Op0); 1062 Type *PtrIRTy = Op0.getType(); 1063 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1064 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1065 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1066 1067 // Normalize Vector GEP - all scalar operands should be converted to the 1068 // splat vector. 1069 unsigned VectorWidth = 0; 1070 if (auto *VT = dyn_cast<VectorType>(U.getType())) 1071 VectorWidth = VT->getNumElements(); 1072 1073 // We might need to splat the base pointer into a vector if the offsets 1074 // are vectors. 1075 if (VectorWidth && !PtrTy.isVector()) { 1076 BaseReg = 1077 MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg) 1078 .getReg(0); 1079 PtrIRTy = VectorType::get(PtrIRTy, VectorWidth); 1080 PtrTy = getLLTForType(*PtrIRTy, *DL); 1081 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1082 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1083 } 1084 1085 int64_t Offset = 0; 1086 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1087 GTI != E; ++GTI) { 1088 const Value *Idx = GTI.getOperand(); 1089 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1090 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1091 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1092 continue; 1093 } else { 1094 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1095 1096 // If this is a scalar constant or a splat vector of constants, 1097 // handle it quickly. 1098 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1099 Offset += ElementSize * CI->getSExtValue(); 1100 continue; 1101 } 1102 1103 if (Offset != 0) { 1104 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1105 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1106 .getReg(0); 1107 Offset = 0; 1108 } 1109 1110 Register IdxReg = getOrCreateVReg(*Idx); 1111 LLT IdxTy = MRI->getType(IdxReg); 1112 if (IdxTy != OffsetTy) { 1113 if (!IdxTy.isVector() && VectorWidth) { 1114 IdxReg = MIRBuilder.buildSplatVector( 1115 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1116 } 1117 1118 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1119 } 1120 1121 // N = N + Idx * ElementSize; 1122 // Avoid doing it for ElementSize of 1. 1123 Register GepOffsetReg; 1124 if (ElementSize != 1) { 1125 auto ElementSizeMIB = MIRBuilder.buildConstant( 1126 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1127 GepOffsetReg = 1128 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1129 } else 1130 GepOffsetReg = IdxReg; 1131 1132 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1133 } 1134 } 1135 1136 if (Offset != 0) { 1137 auto OffsetMIB = 1138 MIRBuilder.buildConstant(OffsetTy, Offset); 1139 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1140 return true; 1141 } 1142 1143 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1144 return true; 1145 } 1146 1147 bool IRTranslator::translateMemFunc(const CallInst &CI, 1148 MachineIRBuilder &MIRBuilder, 1149 Intrinsic::ID ID) { 1150 1151 // If the source is undef, then just emit a nop. 1152 if (isa<UndefValue>(CI.getArgOperand(1))) 1153 return true; 1154 1155 ArrayRef<Register> Res; 1156 auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true); 1157 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) 1158 ICall.addUse(getOrCreateVReg(**AI)); 1159 1160 Align DstAlign; 1161 Align SrcAlign; 1162 unsigned IsVol = 1163 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1164 ->getZExtValue(); 1165 1166 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1167 DstAlign = MCI->getDestAlign().valueOrOne(); 1168 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1169 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1170 DstAlign = MMI->getDestAlign().valueOrOne(); 1171 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1172 } else { 1173 auto *MSI = cast<MemSetInst>(&CI); 1174 DstAlign = MSI->getDestAlign().valueOrOne(); 1175 } 1176 1177 // We need to propagate the tail call flag from the IR inst as an argument. 1178 // Otherwise, we have to pessimize and assume later that we cannot tail call 1179 // any memory intrinsics. 1180 ICall.addImm(CI.isTailCall() ? 1 : 0); 1181 1182 // Create mem operands to store the alignment and volatile info. 1183 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1184 ICall.addMemOperand(MF->getMachineMemOperand( 1185 MachinePointerInfo(CI.getArgOperand(0)), 1186 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1187 if (ID != Intrinsic::memset) 1188 ICall.addMemOperand(MF->getMachineMemOperand( 1189 MachinePointerInfo(CI.getArgOperand(1)), 1190 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1191 1192 return true; 1193 } 1194 1195 void IRTranslator::getStackGuard(Register DstReg, 1196 MachineIRBuilder &MIRBuilder) { 1197 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1198 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1199 auto MIB = 1200 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1201 1202 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1203 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1204 if (!Global) 1205 return; 1206 1207 MachinePointerInfo MPInfo(Global); 1208 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1209 MachineMemOperand::MODereferenceable; 1210 MachineMemOperand *MemRef = 1211 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 1212 DL->getPointerABIAlignment(0)); 1213 MIB.setMemRefs({MemRef}); 1214 } 1215 1216 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1217 MachineIRBuilder &MIRBuilder) { 1218 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1219 MIRBuilder.buildInstr( 1220 Op, {ResRegs[0], ResRegs[1]}, 1221 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1222 1223 return true; 1224 } 1225 1226 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1227 switch (ID) { 1228 default: 1229 break; 1230 case Intrinsic::bswap: 1231 return TargetOpcode::G_BSWAP; 1232 case Intrinsic::bitreverse: 1233 return TargetOpcode::G_BITREVERSE; 1234 case Intrinsic::fshl: 1235 return TargetOpcode::G_FSHL; 1236 case Intrinsic::fshr: 1237 return TargetOpcode::G_FSHR; 1238 case Intrinsic::ceil: 1239 return TargetOpcode::G_FCEIL; 1240 case Intrinsic::cos: 1241 return TargetOpcode::G_FCOS; 1242 case Intrinsic::ctpop: 1243 return TargetOpcode::G_CTPOP; 1244 case Intrinsic::exp: 1245 return TargetOpcode::G_FEXP; 1246 case Intrinsic::exp2: 1247 return TargetOpcode::G_FEXP2; 1248 case Intrinsic::fabs: 1249 return TargetOpcode::G_FABS; 1250 case Intrinsic::copysign: 1251 return TargetOpcode::G_FCOPYSIGN; 1252 case Intrinsic::minnum: 1253 return TargetOpcode::G_FMINNUM; 1254 case Intrinsic::maxnum: 1255 return TargetOpcode::G_FMAXNUM; 1256 case Intrinsic::minimum: 1257 return TargetOpcode::G_FMINIMUM; 1258 case Intrinsic::maximum: 1259 return TargetOpcode::G_FMAXIMUM; 1260 case Intrinsic::canonicalize: 1261 return TargetOpcode::G_FCANONICALIZE; 1262 case Intrinsic::floor: 1263 return TargetOpcode::G_FFLOOR; 1264 case Intrinsic::fma: 1265 return TargetOpcode::G_FMA; 1266 case Intrinsic::log: 1267 return TargetOpcode::G_FLOG; 1268 case Intrinsic::log2: 1269 return TargetOpcode::G_FLOG2; 1270 case Intrinsic::log10: 1271 return TargetOpcode::G_FLOG10; 1272 case Intrinsic::nearbyint: 1273 return TargetOpcode::G_FNEARBYINT; 1274 case Intrinsic::pow: 1275 return TargetOpcode::G_FPOW; 1276 case Intrinsic::rint: 1277 return TargetOpcode::G_FRINT; 1278 case Intrinsic::round: 1279 return TargetOpcode::G_INTRINSIC_ROUND; 1280 case Intrinsic::sin: 1281 return TargetOpcode::G_FSIN; 1282 case Intrinsic::sqrt: 1283 return TargetOpcode::G_FSQRT; 1284 case Intrinsic::trunc: 1285 return TargetOpcode::G_INTRINSIC_TRUNC; 1286 case Intrinsic::readcyclecounter: 1287 return TargetOpcode::G_READCYCLECOUNTER; 1288 } 1289 return Intrinsic::not_intrinsic; 1290 } 1291 1292 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1293 Intrinsic::ID ID, 1294 MachineIRBuilder &MIRBuilder) { 1295 1296 unsigned Op = getSimpleIntrinsicOpcode(ID); 1297 1298 // Is this a simple intrinsic? 1299 if (Op == Intrinsic::not_intrinsic) 1300 return false; 1301 1302 // Yes. Let's translate it. 1303 SmallVector<llvm::SrcOp, 4> VRegs; 1304 for (auto &Arg : CI.arg_operands()) 1305 VRegs.push_back(getOrCreateVReg(*Arg)); 1306 1307 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1308 MachineInstr::copyFlagsFromInstruction(CI)); 1309 return true; 1310 } 1311 1312 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1313 MachineIRBuilder &MIRBuilder) { 1314 1315 // If this is a simple intrinsic (that is, we just need to add a def of 1316 // a vreg, and uses for each arg operand, then translate it. 1317 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1318 return true; 1319 1320 switch (ID) { 1321 default: 1322 break; 1323 case Intrinsic::lifetime_start: 1324 case Intrinsic::lifetime_end: { 1325 // No stack colouring in O0, discard region information. 1326 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1327 return true; 1328 1329 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1330 : TargetOpcode::LIFETIME_END; 1331 1332 // Get the underlying objects for the location passed on the lifetime 1333 // marker. 1334 SmallVector<const Value *, 4> Allocas; 1335 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 1336 1337 // Iterate over each underlying object, creating lifetime markers for each 1338 // static alloca. Quit if we find a non-static alloca. 1339 for (const Value *V : Allocas) { 1340 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1341 if (!AI) 1342 continue; 1343 1344 if (!AI->isStaticAlloca()) 1345 return true; 1346 1347 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1348 } 1349 return true; 1350 } 1351 case Intrinsic::dbg_declare: { 1352 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1353 assert(DI.getVariable() && "Missing variable"); 1354 1355 const Value *Address = DI.getAddress(); 1356 if (!Address || isa<UndefValue>(Address)) { 1357 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1358 return true; 1359 } 1360 1361 assert(DI.getVariable()->isValidLocationForIntrinsic( 1362 MIRBuilder.getDebugLoc()) && 1363 "Expected inlined-at fields to agree"); 1364 auto AI = dyn_cast<AllocaInst>(Address); 1365 if (AI && AI->isStaticAlloca()) { 1366 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1367 // instructions (in fact, they get ignored if they *do* exist). 1368 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1369 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1370 } else { 1371 // A dbg.declare describes the address of a source variable, so lower it 1372 // into an indirect DBG_VALUE. 1373 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1374 DI.getVariable(), DI.getExpression()); 1375 } 1376 return true; 1377 } 1378 case Intrinsic::dbg_label: { 1379 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1380 assert(DI.getLabel() && "Missing label"); 1381 1382 assert(DI.getLabel()->isValidLocationForIntrinsic( 1383 MIRBuilder.getDebugLoc()) && 1384 "Expected inlined-at fields to agree"); 1385 1386 MIRBuilder.buildDbgLabel(DI.getLabel()); 1387 return true; 1388 } 1389 case Intrinsic::vaend: 1390 // No target I know of cares about va_end. Certainly no in-tree target 1391 // does. Simplest intrinsic ever! 1392 return true; 1393 case Intrinsic::vastart: { 1394 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1395 Value *Ptr = CI.getArgOperand(0); 1396 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1397 1398 // FIXME: Get alignment 1399 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1400 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 1401 MachineMemOperand::MOStore, 1402 ListSize, Align(1))); 1403 return true; 1404 } 1405 case Intrinsic::dbg_value: { 1406 // This form of DBG_VALUE is target-independent. 1407 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1408 const Value *V = DI.getValue(); 1409 assert(DI.getVariable()->isValidLocationForIntrinsic( 1410 MIRBuilder.getDebugLoc()) && 1411 "Expected inlined-at fields to agree"); 1412 if (!V) { 1413 // Currently the optimizer can produce this; insert an undef to 1414 // help debugging. Probably the optimizer should not do this. 1415 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1416 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1417 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1418 } else { 1419 for (Register Reg : getOrCreateVRegs(*V)) { 1420 // FIXME: This does not handle register-indirect values at offset 0. The 1421 // direct/indirect thing shouldn't really be handled by something as 1422 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1423 // pretty baked in right now. 1424 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1425 } 1426 } 1427 return true; 1428 } 1429 case Intrinsic::uadd_with_overflow: 1430 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1431 case Intrinsic::sadd_with_overflow: 1432 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1433 case Intrinsic::usub_with_overflow: 1434 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1435 case Intrinsic::ssub_with_overflow: 1436 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1437 case Intrinsic::umul_with_overflow: 1438 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1439 case Intrinsic::smul_with_overflow: 1440 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1441 case Intrinsic::uadd_sat: 1442 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 1443 case Intrinsic::sadd_sat: 1444 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 1445 case Intrinsic::usub_sat: 1446 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 1447 case Intrinsic::ssub_sat: 1448 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 1449 case Intrinsic::fmuladd: { 1450 const TargetMachine &TM = MF->getTarget(); 1451 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1452 Register Dst = getOrCreateVReg(CI); 1453 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1454 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1455 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1456 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1457 TLI.isFMAFasterThanFMulAndFAdd(*MF, 1458 TLI.getValueType(*DL, CI.getType()))) { 1459 // TODO: Revisit this to see if we should move this part of the 1460 // lowering to the combiner. 1461 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 1462 MachineInstr::copyFlagsFromInstruction(CI)); 1463 } else { 1464 LLT Ty = getLLTForType(*CI.getType(), *DL); 1465 auto FMul = MIRBuilder.buildFMul( 1466 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 1467 MIRBuilder.buildFAdd(Dst, FMul, Op2, 1468 MachineInstr::copyFlagsFromInstruction(CI)); 1469 } 1470 return true; 1471 } 1472 case Intrinsic::memcpy: 1473 case Intrinsic::memmove: 1474 case Intrinsic::memset: 1475 return translateMemFunc(CI, MIRBuilder, ID); 1476 case Intrinsic::eh_typeid_for: { 1477 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1478 Register Reg = getOrCreateVReg(CI); 1479 unsigned TypeID = MF->getTypeIDFor(GV); 1480 MIRBuilder.buildConstant(Reg, TypeID); 1481 return true; 1482 } 1483 case Intrinsic::objectsize: 1484 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1485 1486 case Intrinsic::is_constant: 1487 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1488 1489 case Intrinsic::stackguard: 1490 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1491 return true; 1492 case Intrinsic::stackprotector: { 1493 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1494 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1495 getStackGuard(GuardVal, MIRBuilder); 1496 1497 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1498 int FI = getOrCreateFrameIndex(*Slot); 1499 MF->getFrameInfo().setStackProtectorIndex(FI); 1500 1501 MIRBuilder.buildStore( 1502 GuardVal, getOrCreateVReg(*Slot), 1503 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1504 MachineMemOperand::MOStore | 1505 MachineMemOperand::MOVolatile, 1506 PtrTy.getSizeInBits() / 8, Align(8))); 1507 return true; 1508 } 1509 case Intrinsic::stacksave: { 1510 // Save the stack pointer to the location provided by the intrinsic. 1511 Register Reg = getOrCreateVReg(CI); 1512 Register StackPtr = MF->getSubtarget() 1513 .getTargetLowering() 1514 ->getStackPointerRegisterToSaveRestore(); 1515 1516 // If the target doesn't specify a stack pointer, then fall back. 1517 if (!StackPtr) 1518 return false; 1519 1520 MIRBuilder.buildCopy(Reg, StackPtr); 1521 return true; 1522 } 1523 case Intrinsic::stackrestore: { 1524 // Restore the stack pointer from the location provided by the intrinsic. 1525 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1526 Register StackPtr = MF->getSubtarget() 1527 .getTargetLowering() 1528 ->getStackPointerRegisterToSaveRestore(); 1529 1530 // If the target doesn't specify a stack pointer, then fall back. 1531 if (!StackPtr) 1532 return false; 1533 1534 MIRBuilder.buildCopy(StackPtr, Reg); 1535 return true; 1536 } 1537 case Intrinsic::cttz: 1538 case Intrinsic::ctlz: { 1539 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1540 bool isTrailing = ID == Intrinsic::cttz; 1541 unsigned Opcode = isTrailing 1542 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1543 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1544 : Cst->isZero() ? TargetOpcode::G_CTLZ 1545 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1546 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 1547 {getOrCreateVReg(*CI.getArgOperand(0))}); 1548 return true; 1549 } 1550 case Intrinsic::invariant_start: { 1551 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1552 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 1553 MIRBuilder.buildUndef(Undef); 1554 return true; 1555 } 1556 case Intrinsic::invariant_end: 1557 return true; 1558 case Intrinsic::assume: 1559 case Intrinsic::var_annotation: 1560 case Intrinsic::sideeffect: 1561 // Discard annotate attributes, assumptions, and artificial side-effects. 1562 return true; 1563 case Intrinsic::read_register: { 1564 Value *Arg = CI.getArgOperand(0); 1565 MIRBuilder 1566 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 1567 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 1568 return true; 1569 } 1570 case Intrinsic::write_register: { 1571 Value *Arg = CI.getArgOperand(0); 1572 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 1573 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 1574 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 1575 return true; 1576 } 1577 } 1578 return false; 1579 } 1580 1581 bool IRTranslator::translateInlineAsm(const CallBase &CB, 1582 MachineIRBuilder &MIRBuilder) { 1583 1584 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 1585 1586 if (!ALI) { 1587 LLVM_DEBUG( 1588 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 1589 return false; 1590 } 1591 1592 return ALI->lowerInlineAsm( 1593 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 1594 } 1595 1596 bool IRTranslator::translateCallBase(const CallBase &CB, 1597 MachineIRBuilder &MIRBuilder) { 1598 ArrayRef<Register> Res = getOrCreateVRegs(CB); 1599 1600 SmallVector<ArrayRef<Register>, 8> Args; 1601 Register SwiftInVReg = 0; 1602 Register SwiftErrorVReg = 0; 1603 for (auto &Arg : CB.args()) { 1604 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1605 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 1606 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1607 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 1608 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 1609 &CB, &MIRBuilder.getMBB(), Arg)); 1610 Args.emplace_back(makeArrayRef(SwiftInVReg)); 1611 SwiftErrorVReg = 1612 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 1613 continue; 1614 } 1615 Args.push_back(getOrCreateVRegs(*Arg)); 1616 } 1617 1618 // We don't set HasCalls on MFI here yet because call lowering may decide to 1619 // optimize into tail calls. Instead, we defer that to selection where a final 1620 // scan is done to check if any instructions are calls. 1621 bool Success = 1622 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 1623 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 1624 1625 // Check if we just inserted a tail call. 1626 if (Success) { 1627 assert(!HasTailCall && "Can't tail call return twice from block?"); 1628 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1629 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 1630 } 1631 1632 return Success; 1633 } 1634 1635 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1636 const CallInst &CI = cast<CallInst>(U); 1637 auto TII = MF->getTarget().getIntrinsicInfo(); 1638 const Function *F = CI.getCalledFunction(); 1639 1640 // FIXME: support Windows dllimport function calls. 1641 if (F && (F->hasDLLImportStorageClass() || 1642 (MF->getTarget().getTargetTriple().isOSWindows() && 1643 F->hasExternalWeakLinkage()))) 1644 return false; 1645 1646 // FIXME: support control flow guard targets. 1647 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1648 return false; 1649 1650 if (CI.isInlineAsm()) 1651 return translateInlineAsm(CI, MIRBuilder); 1652 1653 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1654 if (F && F->isIntrinsic()) { 1655 ID = F->getIntrinsicID(); 1656 if (TII && ID == Intrinsic::not_intrinsic) 1657 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1658 } 1659 1660 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 1661 return translateCallBase(CI, MIRBuilder); 1662 1663 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1664 1665 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1666 return true; 1667 1668 ArrayRef<Register> ResultRegs; 1669 if (!CI.getType()->isVoidTy()) 1670 ResultRegs = getOrCreateVRegs(CI); 1671 1672 // Ignore the callsite attributes. Backend code is most likely not expecting 1673 // an intrinsic to sometimes have side effects and sometimes not. 1674 MachineInstrBuilder MIB = 1675 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 1676 if (isa<FPMathOperator>(CI)) 1677 MIB->copyIRFlags(CI); 1678 1679 for (auto &Arg : enumerate(CI.arg_operands())) { 1680 // Some intrinsics take metadata parameters. Reject them. 1681 if (isa<MetadataAsValue>(Arg.value())) 1682 return false; 1683 1684 // If this is required to be an immediate, don't materialize it in a 1685 // register. 1686 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 1687 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 1688 // imm arguments are more convenient than cimm (and realistically 1689 // probably sufficient), so use them. 1690 assert(CI->getBitWidth() <= 64 && 1691 "large intrinsic immediates not handled"); 1692 MIB.addImm(CI->getSExtValue()); 1693 } else { 1694 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 1695 } 1696 } else { 1697 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 1698 if (VRegs.size() > 1) 1699 return false; 1700 MIB.addUse(VRegs[0]); 1701 } 1702 } 1703 1704 // Add a MachineMemOperand if it is a target mem intrinsic. 1705 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1706 TargetLowering::IntrinsicInfo Info; 1707 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1708 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1709 Align Alignment = Info.align.getValueOr( 1710 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 1711 1712 uint64_t Size = Info.memVT.getStoreSize(); 1713 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1714 Info.flags, Size, Alignment)); 1715 } 1716 1717 return true; 1718 } 1719 1720 bool IRTranslator::translateInvoke(const User &U, 1721 MachineIRBuilder &MIRBuilder) { 1722 const InvokeInst &I = cast<InvokeInst>(U); 1723 MCContext &Context = MF->getContext(); 1724 1725 const BasicBlock *ReturnBB = I.getSuccessor(0); 1726 const BasicBlock *EHPadBB = I.getSuccessor(1); 1727 1728 const Function *Fn = I.getCalledFunction(); 1729 if (I.isInlineAsm()) 1730 return false; 1731 1732 // FIXME: support invoking patchpoint and statepoint intrinsics. 1733 if (Fn && Fn->isIntrinsic()) 1734 return false; 1735 1736 // FIXME: support whatever these are. 1737 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1738 return false; 1739 1740 // FIXME: support control flow guard targets. 1741 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1742 return false; 1743 1744 // FIXME: support Windows exception handling. 1745 if (!isa<LandingPadInst>(EHPadBB->front())) 1746 return false; 1747 1748 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1749 // the region covered by the try. 1750 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1751 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1752 1753 if (!translateCallBase(I, MIRBuilder)) 1754 return false; 1755 1756 MCSymbol *EndSymbol = Context.createTempSymbol(); 1757 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1758 1759 // FIXME: track probabilities. 1760 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1761 &ReturnMBB = getMBB(*ReturnBB); 1762 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1763 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1764 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1765 MIRBuilder.buildBr(ReturnMBB); 1766 1767 return true; 1768 } 1769 1770 bool IRTranslator::translateCallBr(const User &U, 1771 MachineIRBuilder &MIRBuilder) { 1772 // FIXME: Implement this. 1773 return false; 1774 } 1775 1776 bool IRTranslator::translateLandingPad(const User &U, 1777 MachineIRBuilder &MIRBuilder) { 1778 const LandingPadInst &LP = cast<LandingPadInst>(U); 1779 1780 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1781 1782 MBB.setIsEHPad(); 1783 1784 // If there aren't registers to copy the values into (e.g., during SjLj 1785 // exceptions), then don't bother. 1786 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1787 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1788 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1789 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1790 return true; 1791 1792 // If landingpad's return type is token type, we don't create DAG nodes 1793 // for its exception pointer and selector value. The extraction of exception 1794 // pointer or selector value from token type landingpads is not currently 1795 // supported. 1796 if (LP.getType()->isTokenTy()) 1797 return true; 1798 1799 // Add a label to mark the beginning of the landing pad. Deletion of the 1800 // landing pad can thus be detected via the MachineModuleInfo. 1801 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1802 .addSym(MF->addLandingPad(&MBB)); 1803 1804 LLT Ty = getLLTForType(*LP.getType(), *DL); 1805 Register Undef = MRI->createGenericVirtualRegister(Ty); 1806 MIRBuilder.buildUndef(Undef); 1807 1808 SmallVector<LLT, 2> Tys; 1809 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1810 Tys.push_back(getLLTForType(*Ty, *DL)); 1811 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1812 1813 // Mark exception register as live in. 1814 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1815 if (!ExceptionReg) 1816 return false; 1817 1818 MBB.addLiveIn(ExceptionReg); 1819 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 1820 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1821 1822 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1823 if (!SelectorReg) 1824 return false; 1825 1826 MBB.addLiveIn(SelectorReg); 1827 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1828 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1829 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1830 1831 return true; 1832 } 1833 1834 bool IRTranslator::translateAlloca(const User &U, 1835 MachineIRBuilder &MIRBuilder) { 1836 auto &AI = cast<AllocaInst>(U); 1837 1838 if (AI.isSwiftError()) 1839 return true; 1840 1841 if (AI.isStaticAlloca()) { 1842 Register Res = getOrCreateVReg(AI); 1843 int FI = getOrCreateFrameIndex(AI); 1844 MIRBuilder.buildFrameIndex(Res, FI); 1845 return true; 1846 } 1847 1848 // FIXME: support stack probing for Windows. 1849 if (MF->getTarget().getTargetTriple().isOSWindows()) 1850 return false; 1851 1852 // Now we're in the harder dynamic case. 1853 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 1854 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1855 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1856 if (MRI->getType(NumElts) != IntPtrTy) { 1857 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1858 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1859 NumElts = ExtElts; 1860 } 1861 1862 Type *Ty = AI.getAllocatedType(); 1863 1864 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1865 Register TySize = 1866 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 1867 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1868 1869 // Round the size of the allocation up to the stack alignment size 1870 // by add SA-1 to the size. This doesn't overflow because we're computing 1871 // an address inside an alloca. 1872 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 1873 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 1874 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 1875 MachineInstr::NoUWrap); 1876 auto AlignCst = 1877 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 1878 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 1879 1880 Align Alignment = max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 1881 if (Alignment <= StackAlign) 1882 Alignment = Align(1); 1883 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 1884 1885 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 1886 assert(MF->getFrameInfo().hasVarSizedObjects()); 1887 return true; 1888 } 1889 1890 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1891 // FIXME: We may need more info about the type. Because of how LLT works, 1892 // we're completely discarding the i64/double distinction here (amongst 1893 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1894 // anyway but that's not guaranteed. 1895 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 1896 {getOrCreateVReg(*U.getOperand(0)), 1897 uint64_t(DL->getABITypeAlignment(U.getType()))}); 1898 return true; 1899 } 1900 1901 bool IRTranslator::translateInsertElement(const User &U, 1902 MachineIRBuilder &MIRBuilder) { 1903 // If it is a <1 x Ty> vector, use the scalar as it is 1904 // not a legal vector type in LLT. 1905 if (cast<VectorType>(U.getType())->getNumElements() == 1) 1906 return translateCopy(U, *U.getOperand(1), MIRBuilder); 1907 1908 Register Res = getOrCreateVReg(U); 1909 Register Val = getOrCreateVReg(*U.getOperand(0)); 1910 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1911 Register Idx = getOrCreateVReg(*U.getOperand(2)); 1912 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1913 return true; 1914 } 1915 1916 bool IRTranslator::translateExtractElement(const User &U, 1917 MachineIRBuilder &MIRBuilder) { 1918 // If it is a <1 x Ty> vector, use the scalar as it is 1919 // not a legal vector type in LLT. 1920 if (cast<VectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 1921 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1922 1923 Register Res = getOrCreateVReg(U); 1924 Register Val = getOrCreateVReg(*U.getOperand(0)); 1925 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1926 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1927 Register Idx; 1928 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1929 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1930 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1931 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1932 Idx = getOrCreateVReg(*NewIdxCI); 1933 } 1934 } 1935 if (!Idx) 1936 Idx = getOrCreateVReg(*U.getOperand(1)); 1937 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1938 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1939 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0); 1940 } 1941 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1942 return true; 1943 } 1944 1945 bool IRTranslator::translateShuffleVector(const User &U, 1946 MachineIRBuilder &MIRBuilder) { 1947 ArrayRef<int> Mask; 1948 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 1949 Mask = SVI->getShuffleMask(); 1950 else 1951 Mask = cast<ConstantExpr>(U).getShuffleMask(); 1952 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 1953 MIRBuilder 1954 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 1955 {getOrCreateVReg(*U.getOperand(0)), 1956 getOrCreateVReg(*U.getOperand(1))}) 1957 .addShuffleMask(MaskAlloc); 1958 return true; 1959 } 1960 1961 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1962 const PHINode &PI = cast<PHINode>(U); 1963 1964 SmallVector<MachineInstr *, 4> Insts; 1965 for (auto Reg : getOrCreateVRegs(PI)) { 1966 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1967 Insts.push_back(MIB.getInstr()); 1968 } 1969 1970 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1971 return true; 1972 } 1973 1974 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1975 MachineIRBuilder &MIRBuilder) { 1976 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1977 1978 if (I.isWeak()) 1979 return false; 1980 1981 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1982 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 1983 1984 Type *ResType = I.getType(); 1985 Type *ValType = ResType->Type::getStructElementType(0); 1986 1987 auto Res = getOrCreateVRegs(I); 1988 Register OldValRes = Res[0]; 1989 Register SuccessRes = Res[1]; 1990 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 1991 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 1992 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 1993 1994 AAMDNodes AAMetadata; 1995 I.getAAMetadata(AAMetadata); 1996 1997 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1998 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1999 *MF->getMachineMemOperand( 2000 MachinePointerInfo(I.getPointerOperand()), Flags, 2001 DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr, 2002 I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering())); 2003 return true; 2004 } 2005 2006 bool IRTranslator::translateAtomicRMW(const User &U, 2007 MachineIRBuilder &MIRBuilder) { 2008 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2009 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2010 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2011 2012 Type *ResType = I.getType(); 2013 2014 Register Res = getOrCreateVReg(I); 2015 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2016 Register Val = getOrCreateVReg(*I.getValOperand()); 2017 2018 unsigned Opcode = 0; 2019 switch (I.getOperation()) { 2020 default: 2021 return false; 2022 case AtomicRMWInst::Xchg: 2023 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2024 break; 2025 case AtomicRMWInst::Add: 2026 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2027 break; 2028 case AtomicRMWInst::Sub: 2029 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2030 break; 2031 case AtomicRMWInst::And: 2032 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2033 break; 2034 case AtomicRMWInst::Nand: 2035 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2036 break; 2037 case AtomicRMWInst::Or: 2038 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2039 break; 2040 case AtomicRMWInst::Xor: 2041 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2042 break; 2043 case AtomicRMWInst::Max: 2044 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2045 break; 2046 case AtomicRMWInst::Min: 2047 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2048 break; 2049 case AtomicRMWInst::UMax: 2050 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2051 break; 2052 case AtomicRMWInst::UMin: 2053 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2054 break; 2055 case AtomicRMWInst::FAdd: 2056 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2057 break; 2058 case AtomicRMWInst::FSub: 2059 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2060 break; 2061 } 2062 2063 AAMDNodes AAMetadata; 2064 I.getAAMetadata(AAMetadata); 2065 2066 MIRBuilder.buildAtomicRMW( 2067 Opcode, Res, Addr, Val, 2068 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2069 Flags, DL->getTypeStoreSize(ResType), 2070 getMemOpAlign(I), AAMetadata, nullptr, 2071 I.getSyncScopeID(), I.getOrdering())); 2072 return true; 2073 } 2074 2075 bool IRTranslator::translateFence(const User &U, 2076 MachineIRBuilder &MIRBuilder) { 2077 const FenceInst &Fence = cast<FenceInst>(U); 2078 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2079 Fence.getSyncScopeID()); 2080 return true; 2081 } 2082 2083 bool IRTranslator::translateFreeze(const User &U, 2084 MachineIRBuilder &MIRBuilder) { 2085 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 2086 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 2087 2088 assert(DstRegs.size() == SrcRegs.size() && 2089 "Freeze with different source and destination type?"); 2090 2091 for (unsigned I = 0; I < DstRegs.size(); ++I) { 2092 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 2093 } 2094 2095 return true; 2096 } 2097 2098 void IRTranslator::finishPendingPhis() { 2099 #ifndef NDEBUG 2100 DILocationVerifier Verifier; 2101 GISelObserverWrapper WrapperObserver(&Verifier); 2102 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2103 #endif // ifndef NDEBUG 2104 for (auto &Phi : PendingPHIs) { 2105 const PHINode *PI = Phi.first; 2106 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2107 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2108 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2109 #ifndef NDEBUG 2110 Verifier.setCurrentInst(PI); 2111 #endif // ifndef NDEBUG 2112 2113 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2114 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2115 auto IRPred = PI->getIncomingBlock(i); 2116 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2117 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2118 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2119 continue; 2120 SeenPreds.insert(Pred); 2121 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2122 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2123 MIB.addUse(ValRegs[j]); 2124 MIB.addMBB(Pred); 2125 } 2126 } 2127 } 2128 } 2129 } 2130 2131 bool IRTranslator::valueIsSplit(const Value &V, 2132 SmallVectorImpl<uint64_t> *Offsets) { 2133 SmallVector<LLT, 4> SplitTys; 2134 if (Offsets && !Offsets->empty()) 2135 Offsets->clear(); 2136 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2137 return SplitTys.size() > 1; 2138 } 2139 2140 bool IRTranslator::translate(const Instruction &Inst) { 2141 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2142 // We only emit constants into the entry block from here. To prevent jumpy 2143 // debug behaviour set the line to 0. 2144 if (const DebugLoc &DL = Inst.getDebugLoc()) 2145 EntryBuilder->setDebugLoc( 2146 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 2147 else 2148 EntryBuilder->setDebugLoc(DebugLoc()); 2149 2150 switch (Inst.getOpcode()) { 2151 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2152 case Instruction::OPCODE: \ 2153 return translate##OPCODE(Inst, *CurBuilder.get()); 2154 #include "llvm/IR/Instruction.def" 2155 default: 2156 return false; 2157 } 2158 } 2159 2160 bool IRTranslator::translate(const Constant &C, Register Reg) { 2161 if (auto CI = dyn_cast<ConstantInt>(&C)) 2162 EntryBuilder->buildConstant(Reg, *CI); 2163 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2164 EntryBuilder->buildFConstant(Reg, *CF); 2165 else if (isa<UndefValue>(C)) 2166 EntryBuilder->buildUndef(Reg); 2167 else if (isa<ConstantPointerNull>(C)) 2168 EntryBuilder->buildConstant(Reg, 0); 2169 else if (auto GV = dyn_cast<GlobalValue>(&C)) 2170 EntryBuilder->buildGlobalValue(Reg, GV); 2171 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2172 if (!CAZ->getType()->isVectorTy()) 2173 return false; 2174 // Return the scalar if it is a <1 x Ty> vector. 2175 if (CAZ->getNumElements() == 1) 2176 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get()); 2177 SmallVector<Register, 4> Ops; 2178 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 2179 Constant &Elt = *CAZ->getElementValue(i); 2180 Ops.push_back(getOrCreateVReg(Elt)); 2181 } 2182 EntryBuilder->buildBuildVector(Reg, Ops); 2183 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2184 // Return the scalar if it is a <1 x Ty> vector. 2185 if (CV->getNumElements() == 1) 2186 return translateCopy(C, *CV->getElementAsConstant(0), 2187 *EntryBuilder.get()); 2188 SmallVector<Register, 4> Ops; 2189 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2190 Constant &Elt = *CV->getElementAsConstant(i); 2191 Ops.push_back(getOrCreateVReg(Elt)); 2192 } 2193 EntryBuilder->buildBuildVector(Reg, Ops); 2194 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2195 switch(CE->getOpcode()) { 2196 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2197 case Instruction::OPCODE: \ 2198 return translate##OPCODE(*CE, *EntryBuilder.get()); 2199 #include "llvm/IR/Instruction.def" 2200 default: 2201 return false; 2202 } 2203 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2204 if (CV->getNumOperands() == 1) 2205 return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get()); 2206 SmallVector<Register, 4> Ops; 2207 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2208 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2209 } 2210 EntryBuilder->buildBuildVector(Reg, Ops); 2211 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2212 EntryBuilder->buildBlockAddress(Reg, BA); 2213 } else 2214 return false; 2215 2216 return true; 2217 } 2218 2219 void IRTranslator::finalizeBasicBlock() { 2220 for (auto &JTCase : SL->JTCases) { 2221 // Emit header first, if it wasn't already emitted. 2222 if (!JTCase.first.Emitted) 2223 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 2224 2225 emitJumpTable(JTCase.second, JTCase.second.MBB); 2226 } 2227 SL->JTCases.clear(); 2228 } 2229 2230 void IRTranslator::finalizeFunction() { 2231 // Release the memory used by the different maps we 2232 // needed during the translation. 2233 PendingPHIs.clear(); 2234 VMap.reset(); 2235 FrameIndices.clear(); 2236 MachinePreds.clear(); 2237 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 2238 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 2239 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 2240 EntryBuilder.reset(); 2241 CurBuilder.reset(); 2242 FuncInfo.clear(); 2243 } 2244 2245 /// Returns true if a BasicBlock \p BB within a variadic function contains a 2246 /// variadic musttail call. 2247 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 2248 if (!IsVarArg) 2249 return false; 2250 2251 // Walk the block backwards, because tail calls usually only appear at the end 2252 // of a block. 2253 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 2254 const auto *CI = dyn_cast<CallInst>(&I); 2255 return CI && CI->isMustTailCall(); 2256 }); 2257 } 2258 2259 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 2260 MF = &CurMF; 2261 const Function &F = MF->getFunction(); 2262 if (F.empty()) 2263 return false; 2264 GISelCSEAnalysisWrapper &Wrapper = 2265 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 2266 // Set the CSEConfig and run the analysis. 2267 GISelCSEInfo *CSEInfo = nullptr; 2268 TPC = &getAnalysis<TargetPassConfig>(); 2269 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 2270 ? EnableCSEInIRTranslator 2271 : TPC->isGISelCSEEnabled(); 2272 2273 if (EnableCSE) { 2274 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2275 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 2276 EntryBuilder->setCSEInfo(CSEInfo); 2277 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2278 CurBuilder->setCSEInfo(CSEInfo); 2279 } else { 2280 EntryBuilder = std::make_unique<MachineIRBuilder>(); 2281 CurBuilder = std::make_unique<MachineIRBuilder>(); 2282 } 2283 CLI = MF->getSubtarget().getCallLowering(); 2284 CurBuilder->setMF(*MF); 2285 EntryBuilder->setMF(*MF); 2286 MRI = &MF->getRegInfo(); 2287 DL = &F.getParent()->getDataLayout(); 2288 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2289 FuncInfo.MF = MF; 2290 FuncInfo.BPI = nullptr; 2291 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2292 const TargetMachine &TM = MF->getTarget(); 2293 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 2294 SL->init(TLI, TM, *DL); 2295 2296 EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); 2297 2298 assert(PendingPHIs.empty() && "stale PHIs"); 2299 2300 if (!DL->isLittleEndian()) { 2301 // Currently we don't properly handle big endian code. 2302 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2303 F.getSubprogram(), &F.getEntryBlock()); 2304 R << "unable to translate in big endian mode"; 2305 reportTranslationError(*MF, *TPC, *ORE, R); 2306 } 2307 2308 // Release the per-function state when we return, whether we succeeded or not. 2309 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 2310 2311 // Setup a separate basic-block for the arguments and constants 2312 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 2313 MF->push_back(EntryBB); 2314 EntryBuilder->setMBB(*EntryBB); 2315 2316 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 2317 SwiftError.setFunction(CurMF); 2318 SwiftError.createEntriesInEntryBlock(DbgLoc); 2319 2320 bool IsVarArg = F.isVarArg(); 2321 bool HasMustTailInVarArgFn = false; 2322 2323 // Create all blocks, in IR order, to preserve the layout. 2324 for (const BasicBlock &BB: F) { 2325 auto *&MBB = BBToMBB[&BB]; 2326 2327 MBB = MF->CreateMachineBasicBlock(&BB); 2328 MF->push_back(MBB); 2329 2330 if (BB.hasAddressTaken()) 2331 MBB->setHasAddressTaken(); 2332 2333 if (!HasMustTailInVarArgFn) 2334 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 2335 } 2336 2337 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 2338 2339 // Make our arguments/constants entry block fallthrough to the IR entry block. 2340 EntryBB->addSuccessor(&getMBB(F.front())); 2341 2342 // Lower the actual args into this basic block. 2343 SmallVector<ArrayRef<Register>, 8> VRegArgs; 2344 for (const Argument &Arg: F.args()) { 2345 if (DL->getTypeStoreSize(Arg.getType()) == 0) 2346 continue; // Don't handle zero sized types. 2347 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 2348 VRegArgs.push_back(VRegs); 2349 2350 if (Arg.hasSwiftErrorAttr()) { 2351 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 2352 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 2353 } 2354 } 2355 2356 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 2357 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2358 F.getSubprogram(), &F.getEntryBlock()); 2359 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 2360 reportTranslationError(*MF, *TPC, *ORE, R); 2361 return false; 2362 } 2363 2364 // Need to visit defs before uses when translating instructions. 2365 GISelObserverWrapper WrapperObserver; 2366 if (EnableCSE && CSEInfo) 2367 WrapperObserver.addObserver(CSEInfo); 2368 { 2369 ReversePostOrderTraversal<const Function *> RPOT(&F); 2370 #ifndef NDEBUG 2371 DILocationVerifier Verifier; 2372 WrapperObserver.addObserver(&Verifier); 2373 #endif // ifndef NDEBUG 2374 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2375 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 2376 for (const BasicBlock *BB : RPOT) { 2377 MachineBasicBlock &MBB = getMBB(*BB); 2378 // Set the insertion point of all the following translations to 2379 // the end of this basic block. 2380 CurBuilder->setMBB(MBB); 2381 HasTailCall = false; 2382 for (const Instruction &Inst : *BB) { 2383 // If we translated a tail call in the last step, then we know 2384 // everything after the call is either a return, or something that is 2385 // handled by the call itself. (E.g. a lifetime marker or assume 2386 // intrinsic.) In this case, we should stop translating the block and 2387 // move on. 2388 if (HasTailCall) 2389 break; 2390 #ifndef NDEBUG 2391 Verifier.setCurrentInst(&Inst); 2392 #endif // ifndef NDEBUG 2393 if (translate(Inst)) 2394 continue; 2395 2396 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2397 Inst.getDebugLoc(), BB); 2398 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 2399 2400 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 2401 std::string InstStrStorage; 2402 raw_string_ostream InstStr(InstStrStorage); 2403 InstStr << Inst; 2404 2405 R << ": '" << InstStr.str() << "'"; 2406 } 2407 2408 reportTranslationError(*MF, *TPC, *ORE, R); 2409 return false; 2410 } 2411 2412 finalizeBasicBlock(); 2413 } 2414 #ifndef NDEBUG 2415 WrapperObserver.removeObserver(&Verifier); 2416 #endif 2417 } 2418 2419 finishPendingPhis(); 2420 2421 SwiftError.propagateVRegs(); 2422 2423 // Merge the argument lowering and constants block with its single 2424 // successor, the LLVM-IR entry block. We want the basic block to 2425 // be maximal. 2426 assert(EntryBB->succ_size() == 1 && 2427 "Custom BB used for lowering should have only one successor"); 2428 // Get the successor of the current entry block. 2429 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 2430 assert(NewEntryBB.pred_size() == 1 && 2431 "LLVM-IR entry block has a predecessor!?"); 2432 // Move all the instruction from the current entry block to the 2433 // new entry block. 2434 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 2435 EntryBB->end()); 2436 2437 // Update the live-in information for the new entry block. 2438 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 2439 NewEntryBB.addLiveIn(LiveIn); 2440 NewEntryBB.sortUniqueLiveIns(); 2441 2442 // Get rid of the now empty basic block. 2443 EntryBB->removeSuccessor(&NewEntryBB); 2444 MF->remove(EntryBB); 2445 MF->DeleteMachineBasicBlock(EntryBB); 2446 2447 assert(&MF->front() == &NewEntryBB && 2448 "New entry wasn't next in the list of basic block!"); 2449 2450 // Initialize stack protector information. 2451 StackProtector &SP = getAnalysis<StackProtector>(); 2452 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2453 2454 return false; 2455 } 2456