1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 22 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 23 #include "llvm/CodeGen/LowLevelType.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/StackProtector.h" 32 #include "llvm/CodeGen/TargetFrameLowering.h" 33 #include "llvm/CodeGen/TargetLowering.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/LowLevelTypeImpl.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetIntrinsicInfo.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <iterator> 71 #include <string> 72 #include <utility> 73 #include <vector> 74 75 #define DEBUG_TYPE "irtranslator" 76 77 using namespace llvm; 78 79 static cl::opt<bool> 80 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 81 cl::desc("Should enable CSE in irtranslator"), 82 cl::Optional, cl::init(false)); 83 char IRTranslator::ID = 0; 84 85 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 86 false, false) 87 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 88 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 89 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 90 false, false) 91 92 static void reportTranslationError(MachineFunction &MF, 93 const TargetPassConfig &TPC, 94 OptimizationRemarkEmitter &ORE, 95 OptimizationRemarkMissed &R) { 96 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 97 98 // Print the function name explicitly if we don't have a debug location (which 99 // makes the diagnostic less useful) or if we're going to emit a raw error. 100 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 101 R << (" (in function: " + MF.getName() + ")").str(); 102 103 if (TPC.isGlobalISelAbortEnabled()) 104 report_fatal_error(R.getMsg()); 105 else 106 ORE.emit(R); 107 } 108 109 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { 110 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 111 } 112 113 #ifndef NDEBUG 114 namespace { 115 /// Verify that every instruction created has the same DILocation as the 116 /// instruction being translated. 117 class DILocationVerifier : public GISelChangeObserver { 118 const Instruction *CurrInst = nullptr; 119 120 public: 121 DILocationVerifier() = default; 122 ~DILocationVerifier() = default; 123 124 const Instruction *getCurrentInst() const { return CurrInst; } 125 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 126 127 void erasingInstr(MachineInstr &MI) override {} 128 void changingInstr(MachineInstr &MI) override {} 129 void changedInstr(MachineInstr &MI) override {} 130 131 void createdInstr(MachineInstr &MI) override { 132 assert(getCurrentInst() && "Inserted instruction without a current MI"); 133 134 // Only print the check message if we're actually checking it. 135 #ifndef NDEBUG 136 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 137 << " was copied to " << MI); 138 #endif 139 assert(CurrInst->getDebugLoc() == MI.getDebugLoc() && 140 "Line info was not transferred to all instructions"); 141 } 142 }; 143 } // namespace 144 #endif // ifndef NDEBUG 145 146 147 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 148 AU.addRequired<StackProtector>(); 149 AU.addRequired<TargetPassConfig>(); 150 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 151 getSelectionDAGFallbackAnalysisUsage(AU); 152 MachineFunctionPass::getAnalysisUsage(AU); 153 } 154 155 IRTranslator::ValueToVRegInfo::VRegListT & 156 IRTranslator::allocateVRegs(const Value &Val) { 157 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 158 auto *Regs = VMap.getVRegs(Val); 159 auto *Offsets = VMap.getOffsets(Val); 160 SmallVector<LLT, 4> SplitTys; 161 computeValueLLTs(*DL, *Val.getType(), SplitTys, 162 Offsets->empty() ? Offsets : nullptr); 163 for (unsigned i = 0; i < SplitTys.size(); ++i) 164 Regs->push_back(0); 165 return *Regs; 166 } 167 168 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) { 169 auto VRegsIt = VMap.findVRegs(Val); 170 if (VRegsIt != VMap.vregs_end()) 171 return *VRegsIt->second; 172 173 if (Val.getType()->isVoidTy()) 174 return *VMap.getVRegs(Val); 175 176 // Create entry for this type. 177 auto *VRegs = VMap.getVRegs(Val); 178 auto *Offsets = VMap.getOffsets(Val); 179 180 assert(Val.getType()->isSized() && 181 "Don't know how to create an empty vreg"); 182 183 SmallVector<LLT, 4> SplitTys; 184 computeValueLLTs(*DL, *Val.getType(), SplitTys, 185 Offsets->empty() ? Offsets : nullptr); 186 187 if (!isa<Constant>(Val)) { 188 for (auto Ty : SplitTys) 189 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 190 return *VRegs; 191 } 192 193 if (Val.getType()->isAggregateType()) { 194 // UndefValue, ConstantAggregateZero 195 auto &C = cast<Constant>(Val); 196 unsigned Idx = 0; 197 while (auto Elt = C.getAggregateElement(Idx++)) { 198 auto EltRegs = getOrCreateVRegs(*Elt); 199 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 200 } 201 } else { 202 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 203 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 204 bool Success = translate(cast<Constant>(Val), VRegs->front()); 205 if (!Success) { 206 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 207 MF->getFunction().getSubprogram(), 208 &MF->getFunction().getEntryBlock()); 209 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 210 reportTranslationError(*MF, *TPC, *ORE, R); 211 return *VRegs; 212 } 213 } 214 215 return *VRegs; 216 } 217 218 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 219 if (FrameIndices.find(&AI) != FrameIndices.end()) 220 return FrameIndices[&AI]; 221 222 unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 223 unsigned Size = 224 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 225 226 // Always allocate at least one byte. 227 Size = std::max(Size, 1u); 228 229 unsigned Alignment = AI.getAlignment(); 230 if (!Alignment) 231 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 232 233 int &FI = FrameIndices[&AI]; 234 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 235 return FI; 236 } 237 238 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 239 unsigned Alignment = 0; 240 Type *ValTy = nullptr; 241 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 242 Alignment = SI->getAlignment(); 243 ValTy = SI->getValueOperand()->getType(); 244 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 245 Alignment = LI->getAlignment(); 246 ValTy = LI->getType(); 247 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 248 // TODO(PR27168): This instruction has no alignment attribute, but unlike 249 // the default alignment for load/store, the default here is to assume 250 // it has NATURAL alignment, not DataLayout-specified alignment. 251 const DataLayout &DL = AI->getModule()->getDataLayout(); 252 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 253 ValTy = AI->getCompareOperand()->getType(); 254 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 255 // TODO(PR27168): This instruction has no alignment attribute, but unlike 256 // the default alignment for load/store, the default here is to assume 257 // it has NATURAL alignment, not DataLayout-specified alignment. 258 const DataLayout &DL = AI->getModule()->getDataLayout(); 259 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 260 ValTy = AI->getType(); 261 } else { 262 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 263 R << "unable to translate memop: " << ore::NV("Opcode", &I); 264 reportTranslationError(*MF, *TPC, *ORE, R); 265 return 1; 266 } 267 268 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 269 } 270 271 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 272 MachineBasicBlock *&MBB = BBToMBB[&BB]; 273 assert(MBB && "BasicBlock was not encountered before"); 274 return *MBB; 275 } 276 277 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 278 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 279 MachinePreds[Edge].push_back(NewPred); 280 } 281 282 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 283 MachineIRBuilder &MIRBuilder) { 284 // FIXME: handle signed/unsigned wrapping flags. 285 286 // Get or create a virtual register for each value. 287 // Unless the value is a Constant => loadimm cst? 288 // or inline constant each time? 289 // Creation of a virtual register needs to have a size. 290 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 291 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 292 unsigned Res = getOrCreateVReg(U); 293 uint16_t Flags = 0; 294 if (isa<Instruction>(U)) { 295 const Instruction &I = cast<Instruction>(U); 296 Flags = MachineInstr::copyFlagsFromInstruction(I); 297 } 298 299 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 300 return true; 301 } 302 303 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 304 // -0.0 - X --> G_FNEG 305 if (isa<Constant>(U.getOperand(0)) && 306 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 307 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 308 .addDef(getOrCreateVReg(U)) 309 .addUse(getOrCreateVReg(*U.getOperand(1))); 310 return true; 311 } 312 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 313 } 314 315 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 316 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 317 .addDef(getOrCreateVReg(U)) 318 .addUse(getOrCreateVReg(*U.getOperand(0))); 319 return true; 320 } 321 322 bool IRTranslator::translateCompare(const User &U, 323 MachineIRBuilder &MIRBuilder) { 324 const CmpInst *CI = dyn_cast<CmpInst>(&U); 325 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 326 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 327 unsigned Res = getOrCreateVReg(U); 328 CmpInst::Predicate Pred = 329 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 330 cast<ConstantExpr>(U).getPredicate()); 331 if (CmpInst::isIntPredicate(Pred)) 332 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 333 else if (Pred == CmpInst::FCMP_FALSE) 334 MIRBuilder.buildCopy( 335 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 336 else if (Pred == CmpInst::FCMP_TRUE) 337 MIRBuilder.buildCopy( 338 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 339 else { 340 MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1}, 341 MachineInstr::copyFlagsFromInstruction(*CI)); 342 } 343 344 return true; 345 } 346 347 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 348 const ReturnInst &RI = cast<ReturnInst>(U); 349 const Value *Ret = RI.getReturnValue(); 350 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 351 Ret = nullptr; 352 353 ArrayRef<unsigned> VRegs; 354 if (Ret) 355 VRegs = getOrCreateVRegs(*Ret); 356 357 // The target may mess up with the insertion point, but 358 // this is not important as a return is the last instruction 359 // of the block anyway. 360 361 return CLI->lowerReturn(MIRBuilder, Ret, VRegs); 362 } 363 364 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 365 const BranchInst &BrInst = cast<BranchInst>(U); 366 unsigned Succ = 0; 367 if (!BrInst.isUnconditional()) { 368 // We want a G_BRCOND to the true BB followed by an unconditional branch. 369 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 370 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 371 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 372 MIRBuilder.buildBrCond(Tst, TrueBB); 373 } 374 375 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 376 MachineBasicBlock &TgtBB = getMBB(BrTgt); 377 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 378 379 // If the unconditional target is the layout successor, fallthrough. 380 if (!CurBB.isLayoutSuccessor(&TgtBB)) 381 MIRBuilder.buildBr(TgtBB); 382 383 // Link successors. 384 for (const BasicBlock *Succ : successors(&BrInst)) 385 CurBB.addSuccessor(&getMBB(*Succ)); 386 return true; 387 } 388 389 bool IRTranslator::translateSwitch(const User &U, 390 MachineIRBuilder &MIRBuilder) { 391 // For now, just translate as a chain of conditional branches. 392 // FIXME: could we share most of the logic/code in 393 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 394 // At first sight, it seems most of the logic in there is independent of 395 // SelectionDAG-specifics and a lot of work went in to optimize switch 396 // lowering in there. 397 398 const SwitchInst &SwInst = cast<SwitchInst>(U); 399 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 400 const BasicBlock *OrigBB = SwInst.getParent(); 401 402 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 403 for (auto &CaseIt : SwInst.cases()) { 404 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 405 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 406 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 407 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 408 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 409 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 410 411 MIRBuilder.buildBrCond(Tst, TrueMBB); 412 CurMBB.addSuccessor(&TrueMBB); 413 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 414 415 MachineBasicBlock *FalseMBB = 416 MF->CreateMachineBasicBlock(SwInst.getParent()); 417 // Insert the comparison blocks one after the other. 418 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 419 MIRBuilder.buildBr(*FalseMBB); 420 CurMBB.addSuccessor(FalseMBB); 421 422 MIRBuilder.setMBB(*FalseMBB); 423 } 424 // handle default case 425 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 426 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 427 MIRBuilder.buildBr(DefaultMBB); 428 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 429 CurMBB.addSuccessor(&DefaultMBB); 430 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 431 432 return true; 433 } 434 435 bool IRTranslator::translateIndirectBr(const User &U, 436 MachineIRBuilder &MIRBuilder) { 437 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 438 439 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 440 MIRBuilder.buildBrIndirect(Tgt); 441 442 // Link successors. 443 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 444 for (const BasicBlock *Succ : successors(&BrInst)) 445 CurBB.addSuccessor(&getMBB(*Succ)); 446 447 return true; 448 } 449 450 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 451 const LoadInst &LI = cast<LoadInst>(U); 452 453 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 454 : MachineMemOperand::MONone; 455 Flags |= MachineMemOperand::MOLoad; 456 457 if (DL->getTypeStoreSize(LI.getType()) == 0) 458 return true; 459 460 ArrayRef<unsigned> Regs = getOrCreateVRegs(LI); 461 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 462 unsigned Base = getOrCreateVReg(*LI.getPointerOperand()); 463 464 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 465 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 466 467 for (unsigned i = 0; i < Regs.size(); ++i) { 468 unsigned Addr = 0; 469 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 470 471 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 472 unsigned BaseAlign = getMemOpAlignment(LI); 473 auto MMO = MF->getMachineMemOperand( 474 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 475 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 476 LI.getSyncScopeID(), LI.getOrdering()); 477 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 478 } 479 480 return true; 481 } 482 483 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 484 const StoreInst &SI = cast<StoreInst>(U); 485 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 486 : MachineMemOperand::MONone; 487 Flags |= MachineMemOperand::MOStore; 488 489 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 490 return true; 491 492 ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand()); 493 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 494 unsigned Base = getOrCreateVReg(*SI.getPointerOperand()); 495 496 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 497 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 498 499 for (unsigned i = 0; i < Vals.size(); ++i) { 500 unsigned Addr = 0; 501 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 502 503 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 504 unsigned BaseAlign = getMemOpAlignment(SI); 505 auto MMO = MF->getMachineMemOperand( 506 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 507 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 508 SI.getSyncScopeID(), SI.getOrdering()); 509 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 510 } 511 return true; 512 } 513 514 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 515 const Value *Src = U.getOperand(0); 516 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 517 518 // getIndexedOffsetInType is designed for GEPs, so the first index is the 519 // usual array element rather than looking into the actual aggregate. 520 SmallVector<Value *, 1> Indices; 521 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 522 523 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 524 for (auto Idx : EVI->indices()) 525 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 526 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 527 for (auto Idx : IVI->indices()) 528 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 529 } else { 530 for (unsigned i = 1; i < U.getNumOperands(); ++i) 531 Indices.push_back(U.getOperand(i)); 532 } 533 534 return 8 * static_cast<uint64_t>( 535 DL.getIndexedOffsetInType(Src->getType(), Indices)); 536 } 537 538 bool IRTranslator::translateExtractValue(const User &U, 539 MachineIRBuilder &MIRBuilder) { 540 const Value *Src = U.getOperand(0); 541 uint64_t Offset = getOffsetFromIndices(U, *DL); 542 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 543 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 544 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 545 auto &DstRegs = allocateVRegs(U); 546 547 for (unsigned i = 0; i < DstRegs.size(); ++i) 548 DstRegs[i] = SrcRegs[Idx++]; 549 550 return true; 551 } 552 553 bool IRTranslator::translateInsertValue(const User &U, 554 MachineIRBuilder &MIRBuilder) { 555 const Value *Src = U.getOperand(0); 556 uint64_t Offset = getOffsetFromIndices(U, *DL); 557 auto &DstRegs = allocateVRegs(U); 558 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 559 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 560 ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 561 auto InsertedIt = InsertedRegs.begin(); 562 563 for (unsigned i = 0; i < DstRegs.size(); ++i) { 564 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 565 DstRegs[i] = *InsertedIt++; 566 else 567 DstRegs[i] = SrcRegs[i]; 568 } 569 570 return true; 571 } 572 573 bool IRTranslator::translateSelect(const User &U, 574 MachineIRBuilder &MIRBuilder) { 575 unsigned Tst = getOrCreateVReg(*U.getOperand(0)); 576 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U); 577 ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 578 ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 579 580 const SelectInst &SI = cast<SelectInst>(U); 581 uint16_t Flags = 0; 582 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 583 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 584 585 for (unsigned i = 0; i < ResRegs.size(); ++i) { 586 MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]}, 587 {Tst, Op0Regs[i], Op1Regs[i]}, Flags); 588 } 589 590 return true; 591 } 592 593 bool IRTranslator::translateBitCast(const User &U, 594 MachineIRBuilder &MIRBuilder) { 595 // If we're bitcasting to the source type, we can reuse the source vreg. 596 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 597 getLLTForType(*U.getType(), *DL)) { 598 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 599 auto &Regs = *VMap.getVRegs(U); 600 // If we already assigned a vreg for this bitcast, we can't change that. 601 // Emit a copy to satisfy the users we already emitted. 602 if (!Regs.empty()) 603 MIRBuilder.buildCopy(Regs[0], SrcReg); 604 else { 605 Regs.push_back(SrcReg); 606 VMap.getOffsets(U)->push_back(0); 607 } 608 return true; 609 } 610 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 611 } 612 613 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 614 MachineIRBuilder &MIRBuilder) { 615 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 616 unsigned Res = getOrCreateVReg(U); 617 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 618 return true; 619 } 620 621 bool IRTranslator::translateGetElementPtr(const User &U, 622 MachineIRBuilder &MIRBuilder) { 623 // FIXME: support vector GEPs. 624 if (U.getType()->isVectorTy()) 625 return false; 626 627 Value &Op0 = *U.getOperand(0); 628 unsigned BaseReg = getOrCreateVReg(Op0); 629 Type *PtrIRTy = Op0.getType(); 630 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 631 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 632 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 633 634 int64_t Offset = 0; 635 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 636 GTI != E; ++GTI) { 637 const Value *Idx = GTI.getOperand(); 638 if (StructType *StTy = GTI.getStructTypeOrNull()) { 639 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 640 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 641 continue; 642 } else { 643 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 644 645 // If this is a scalar constant or a splat vector of constants, 646 // handle it quickly. 647 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 648 Offset += ElementSize * CI->getSExtValue(); 649 continue; 650 } 651 652 if (Offset != 0) { 653 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 654 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 655 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 656 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetMIB.getReg(0)); 657 658 BaseReg = NewBaseReg; 659 Offset = 0; 660 } 661 662 unsigned IdxReg = getOrCreateVReg(*Idx); 663 if (MRI->getType(IdxReg) != OffsetTy) { 664 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 665 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 666 IdxReg = NewIdxReg; 667 } 668 669 // N = N + Idx * ElementSize; 670 // Avoid doing it for ElementSize of 1. 671 unsigned GepOffsetReg; 672 if (ElementSize != 1) { 673 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 674 auto ElementSizeMIB = MIRBuilder.buildConstant( 675 getLLTForType(*OffsetIRTy, *DL), ElementSize); 676 MIRBuilder.buildMul(GepOffsetReg, ElementSizeMIB.getReg(0), IdxReg); 677 } else 678 GepOffsetReg = IdxReg; 679 680 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 681 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); 682 BaseReg = NewBaseReg; 683 } 684 } 685 686 if (Offset != 0) { 687 auto OffsetMIB = 688 MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset); 689 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 690 return true; 691 } 692 693 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 694 return true; 695 } 696 697 bool IRTranslator::translateMemfunc(const CallInst &CI, 698 MachineIRBuilder &MIRBuilder, 699 unsigned ID) { 700 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 701 Type *DstTy = CI.getArgOperand(0)->getType(); 702 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 703 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 704 return false; 705 706 SmallVector<CallLowering::ArgInfo, 8> Args; 707 for (int i = 0; i < 3; ++i) { 708 const auto &Arg = CI.getArgOperand(i); 709 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 710 } 711 712 const char *Callee; 713 switch (ID) { 714 case Intrinsic::memmove: 715 case Intrinsic::memcpy: { 716 Type *SrcTy = CI.getArgOperand(1)->getType(); 717 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 718 return false; 719 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 720 break; 721 } 722 case Intrinsic::memset: 723 Callee = "memset"; 724 break; 725 default: 726 return false; 727 } 728 729 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 730 MachineOperand::CreateES(Callee), 731 CallLowering::ArgInfo(0, CI.getType()), Args); 732 } 733 734 void IRTranslator::getStackGuard(unsigned DstReg, 735 MachineIRBuilder &MIRBuilder) { 736 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 737 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 738 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 739 MIB.addDef(DstReg); 740 741 auto &TLI = *MF->getSubtarget().getTargetLowering(); 742 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 743 if (!Global) 744 return; 745 746 MachinePointerInfo MPInfo(Global); 747 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 748 MachineMemOperand::MODereferenceable; 749 MachineMemOperand *MemRef = 750 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 751 DL->getPointerABIAlignment(0)); 752 MIB.setMemRefs({MemRef}); 753 } 754 755 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 756 MachineIRBuilder &MIRBuilder) { 757 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI); 758 MIRBuilder.buildInstr(Op) 759 .addDef(ResRegs[0]) 760 .addDef(ResRegs[1]) 761 .addUse(getOrCreateVReg(*CI.getOperand(0))) 762 .addUse(getOrCreateVReg(*CI.getOperand(1))); 763 764 return true; 765 } 766 767 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 768 switch (ID) { 769 default: 770 break; 771 case Intrinsic::bswap: 772 return TargetOpcode::G_BSWAP; 773 case Intrinsic::ceil: 774 return TargetOpcode::G_FCEIL; 775 case Intrinsic::cos: 776 return TargetOpcode::G_FCOS; 777 case Intrinsic::ctpop: 778 return TargetOpcode::G_CTPOP; 779 case Intrinsic::exp: 780 return TargetOpcode::G_FEXP; 781 case Intrinsic::exp2: 782 return TargetOpcode::G_FEXP2; 783 case Intrinsic::fabs: 784 return TargetOpcode::G_FABS; 785 case Intrinsic::copysign: 786 return TargetOpcode::G_FCOPYSIGN; 787 case Intrinsic::canonicalize: 788 return TargetOpcode::G_FCANONICALIZE; 789 case Intrinsic::floor: 790 return TargetOpcode::G_FFLOOR; 791 case Intrinsic::fma: 792 return TargetOpcode::G_FMA; 793 case Intrinsic::log: 794 return TargetOpcode::G_FLOG; 795 case Intrinsic::log2: 796 return TargetOpcode::G_FLOG2; 797 case Intrinsic::log10: 798 return TargetOpcode::G_FLOG10; 799 case Intrinsic::nearbyint: 800 return TargetOpcode::G_FNEARBYINT; 801 case Intrinsic::pow: 802 return TargetOpcode::G_FPOW; 803 case Intrinsic::rint: 804 return TargetOpcode::G_FRINT; 805 case Intrinsic::round: 806 return TargetOpcode::G_INTRINSIC_ROUND; 807 case Intrinsic::sin: 808 return TargetOpcode::G_FSIN; 809 case Intrinsic::sqrt: 810 return TargetOpcode::G_FSQRT; 811 case Intrinsic::trunc: 812 return TargetOpcode::G_INTRINSIC_TRUNC; 813 } 814 return Intrinsic::not_intrinsic; 815 } 816 817 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 818 Intrinsic::ID ID, 819 MachineIRBuilder &MIRBuilder) { 820 821 unsigned Op = getSimpleIntrinsicOpcode(ID); 822 823 // Is this a simple intrinsic? 824 if (Op == Intrinsic::not_intrinsic) 825 return false; 826 827 // Yes. Let's translate it. 828 SmallVector<llvm::SrcOp, 4> VRegs; 829 for (auto &Arg : CI.arg_operands()) 830 VRegs.push_back(getOrCreateVReg(*Arg)); 831 832 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 833 MachineInstr::copyFlagsFromInstruction(CI)); 834 return true; 835 } 836 837 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 838 MachineIRBuilder &MIRBuilder) { 839 840 // If this is a simple intrinsic (that is, we just need to add a def of 841 // a vreg, and uses for each arg operand, then translate it. 842 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 843 return true; 844 845 switch (ID) { 846 default: 847 break; 848 case Intrinsic::lifetime_start: 849 case Intrinsic::lifetime_end: { 850 // No stack colouring in O0, discard region information. 851 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 852 return true; 853 854 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 855 : TargetOpcode::LIFETIME_END; 856 857 // Get the underlying objects for the location passed on the lifetime 858 // marker. 859 SmallVector<const Value *, 4> Allocas; 860 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 861 862 // Iterate over each underlying object, creating lifetime markers for each 863 // static alloca. Quit if we find a non-static alloca. 864 for (const Value *V : Allocas) { 865 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 866 if (!AI) 867 continue; 868 869 if (!AI->isStaticAlloca()) 870 return true; 871 872 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 873 } 874 return true; 875 } 876 case Intrinsic::dbg_declare: { 877 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 878 assert(DI.getVariable() && "Missing variable"); 879 880 const Value *Address = DI.getAddress(); 881 if (!Address || isa<UndefValue>(Address)) { 882 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 883 return true; 884 } 885 886 assert(DI.getVariable()->isValidLocationForIntrinsic( 887 MIRBuilder.getDebugLoc()) && 888 "Expected inlined-at fields to agree"); 889 auto AI = dyn_cast<AllocaInst>(Address); 890 if (AI && AI->isStaticAlloca()) { 891 // Static allocas are tracked at the MF level, no need for DBG_VALUE 892 // instructions (in fact, they get ignored if they *do* exist). 893 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 894 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 895 } else { 896 // A dbg.declare describes the address of a source variable, so lower it 897 // into an indirect DBG_VALUE. 898 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 899 DI.getVariable(), DI.getExpression()); 900 } 901 return true; 902 } 903 case Intrinsic::dbg_label: { 904 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 905 assert(DI.getLabel() && "Missing label"); 906 907 assert(DI.getLabel()->isValidLocationForIntrinsic( 908 MIRBuilder.getDebugLoc()) && 909 "Expected inlined-at fields to agree"); 910 911 MIRBuilder.buildDbgLabel(DI.getLabel()); 912 return true; 913 } 914 case Intrinsic::vaend: 915 // No target I know of cares about va_end. Certainly no in-tree target 916 // does. Simplest intrinsic ever! 917 return true; 918 case Intrinsic::vastart: { 919 auto &TLI = *MF->getSubtarget().getTargetLowering(); 920 Value *Ptr = CI.getArgOperand(0); 921 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 922 923 // FIXME: Get alignment 924 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 925 .addUse(getOrCreateVReg(*Ptr)) 926 .addMemOperand(MF->getMachineMemOperand( 927 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); 928 return true; 929 } 930 case Intrinsic::dbg_value: { 931 // This form of DBG_VALUE is target-independent. 932 const DbgValueInst &DI = cast<DbgValueInst>(CI); 933 const Value *V = DI.getValue(); 934 assert(DI.getVariable()->isValidLocationForIntrinsic( 935 MIRBuilder.getDebugLoc()) && 936 "Expected inlined-at fields to agree"); 937 if (!V) { 938 // Currently the optimizer can produce this; insert an undef to 939 // help debugging. Probably the optimizer should not do this. 940 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 941 } else if (const auto *CI = dyn_cast<Constant>(V)) { 942 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 943 } else { 944 unsigned Reg = getOrCreateVReg(*V); 945 // FIXME: This does not handle register-indirect values at offset 0. The 946 // direct/indirect thing shouldn't really be handled by something as 947 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 948 // pretty baked in right now. 949 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 950 } 951 return true; 952 } 953 case Intrinsic::uadd_with_overflow: 954 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 955 case Intrinsic::sadd_with_overflow: 956 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 957 case Intrinsic::usub_with_overflow: 958 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 959 case Intrinsic::ssub_with_overflow: 960 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 961 case Intrinsic::umul_with_overflow: 962 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 963 case Intrinsic::smul_with_overflow: 964 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 965 case Intrinsic::fmuladd: { 966 const TargetMachine &TM = MF->getTarget(); 967 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 968 unsigned Dst = getOrCreateVReg(CI); 969 unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 970 unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 971 unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 972 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 973 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 974 // TODO: Revisit this to see if we should move this part of the 975 // lowering to the combiner. 976 MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2}, 977 MachineInstr::copyFlagsFromInstruction(CI)); 978 } else { 979 LLT Ty = getLLTForType(*CI.getType(), *DL); 980 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1}, 981 MachineInstr::copyFlagsFromInstruction(CI)); 982 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2}, 983 MachineInstr::copyFlagsFromInstruction(CI)); 984 } 985 return true; 986 } 987 case Intrinsic::memcpy: 988 case Intrinsic::memmove: 989 case Intrinsic::memset: 990 return translateMemfunc(CI, MIRBuilder, ID); 991 case Intrinsic::eh_typeid_for: { 992 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 993 unsigned Reg = getOrCreateVReg(CI); 994 unsigned TypeID = MF->getTypeIDFor(GV); 995 MIRBuilder.buildConstant(Reg, TypeID); 996 return true; 997 } 998 case Intrinsic::objectsize: { 999 // If we don't know by now, we're never going to know. 1000 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 1001 1002 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 1003 return true; 1004 } 1005 case Intrinsic::is_constant: 1006 // If this wasn't constant-folded away by now, then it's not a 1007 // constant. 1008 MIRBuilder.buildConstant(getOrCreateVReg(CI), 0); 1009 return true; 1010 case Intrinsic::stackguard: 1011 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1012 return true; 1013 case Intrinsic::stackprotector: { 1014 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1015 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1016 getStackGuard(GuardVal, MIRBuilder); 1017 1018 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1019 int FI = getOrCreateFrameIndex(*Slot); 1020 MF->getFrameInfo().setStackProtectorIndex(FI); 1021 1022 MIRBuilder.buildStore( 1023 GuardVal, getOrCreateVReg(*Slot), 1024 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1025 MachineMemOperand::MOStore | 1026 MachineMemOperand::MOVolatile, 1027 PtrTy.getSizeInBits() / 8, 8)); 1028 return true; 1029 } 1030 case Intrinsic::stacksave: { 1031 // Save the stack pointer to the location provided by the intrinsic. 1032 unsigned Reg = getOrCreateVReg(CI); 1033 unsigned StackPtr = MF->getSubtarget() 1034 .getTargetLowering() 1035 ->getStackPointerRegisterToSaveRestore(); 1036 1037 // If the target doesn't specify a stack pointer, then fall back. 1038 if (!StackPtr) 1039 return false; 1040 1041 MIRBuilder.buildCopy(Reg, StackPtr); 1042 return true; 1043 } 1044 case Intrinsic::stackrestore: { 1045 // Restore the stack pointer from the location provided by the intrinsic. 1046 unsigned Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1047 unsigned StackPtr = MF->getSubtarget() 1048 .getTargetLowering() 1049 ->getStackPointerRegisterToSaveRestore(); 1050 1051 // If the target doesn't specify a stack pointer, then fall back. 1052 if (!StackPtr) 1053 return false; 1054 1055 MIRBuilder.buildCopy(StackPtr, Reg); 1056 return true; 1057 } 1058 case Intrinsic::cttz: 1059 case Intrinsic::ctlz: { 1060 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1061 bool isTrailing = ID == Intrinsic::cttz; 1062 unsigned Opcode = isTrailing 1063 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1064 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1065 : Cst->isZero() ? TargetOpcode::G_CTLZ 1066 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1067 MIRBuilder.buildInstr(Opcode) 1068 .addDef(getOrCreateVReg(CI)) 1069 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 1070 return true; 1071 } 1072 case Intrinsic::invariant_start: { 1073 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1074 unsigned Undef = MRI->createGenericVirtualRegister(PtrTy); 1075 MIRBuilder.buildUndef(Undef); 1076 return true; 1077 } 1078 case Intrinsic::invariant_end: 1079 return true; 1080 } 1081 return false; 1082 } 1083 1084 bool IRTranslator::translateInlineAsm(const CallInst &CI, 1085 MachineIRBuilder &MIRBuilder) { 1086 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 1087 if (!IA.getConstraintString().empty()) 1088 return false; 1089 1090 unsigned ExtraInfo = 0; 1091 if (IA.hasSideEffects()) 1092 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1093 if (IA.getDialect() == InlineAsm::AD_Intel) 1094 ExtraInfo |= InlineAsm::Extra_AsmDialect; 1095 1096 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 1097 .addExternalSymbol(IA.getAsmString().c_str()) 1098 .addImm(ExtraInfo); 1099 1100 return true; 1101 } 1102 1103 unsigned IRTranslator::packRegs(const Value &V, 1104 MachineIRBuilder &MIRBuilder) { 1105 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1106 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1107 LLT BigTy = getLLTForType(*V.getType(), *DL); 1108 1109 if (Regs.size() == 1) 1110 return Regs[0]; 1111 1112 unsigned Dst = MRI->createGenericVirtualRegister(BigTy); 1113 MIRBuilder.buildUndef(Dst); 1114 for (unsigned i = 0; i < Regs.size(); ++i) { 1115 unsigned NewDst = MRI->createGenericVirtualRegister(BigTy); 1116 MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]); 1117 Dst = NewDst; 1118 } 1119 return Dst; 1120 } 1121 1122 void IRTranslator::unpackRegs(const Value &V, unsigned Src, 1123 MachineIRBuilder &MIRBuilder) { 1124 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1125 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1126 1127 for (unsigned i = 0; i < Regs.size(); ++i) 1128 MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]); 1129 } 1130 1131 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1132 const CallInst &CI = cast<CallInst>(U); 1133 auto TII = MF->getTarget().getIntrinsicInfo(); 1134 const Function *F = CI.getCalledFunction(); 1135 1136 // FIXME: support Windows dllimport function calls. 1137 if (F && F->hasDLLImportStorageClass()) 1138 return false; 1139 1140 if (CI.isInlineAsm()) 1141 return translateInlineAsm(CI, MIRBuilder); 1142 1143 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1144 if (F && F->isIntrinsic()) { 1145 ID = F->getIntrinsicID(); 1146 if (TII && ID == Intrinsic::not_intrinsic) 1147 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1148 } 1149 1150 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { 1151 bool IsSplitType = valueIsSplit(CI); 1152 unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister( 1153 getLLTForType(*CI.getType(), *DL)) 1154 : getOrCreateVReg(CI); 1155 1156 SmallVector<unsigned, 8> Args; 1157 for (auto &Arg: CI.arg_operands()) 1158 Args.push_back(packRegs(*Arg, MIRBuilder)); 1159 1160 MF->getFrameInfo().setHasCalls(true); 1161 bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() { 1162 return getOrCreateVReg(*CI.getCalledValue()); 1163 }); 1164 1165 if (IsSplitType) 1166 unpackRegs(CI, Res, MIRBuilder); 1167 return Success; 1168 } 1169 1170 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1171 1172 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1173 return true; 1174 1175 ArrayRef<unsigned> ResultRegs; 1176 if (!CI.getType()->isVoidTy()) 1177 ResultRegs = getOrCreateVRegs(CI); 1178 1179 MachineInstrBuilder MIB = 1180 MIRBuilder.buildIntrinsic(ID, ResultRegs, !CI.doesNotAccessMemory()); 1181 if (isa<FPMathOperator>(CI)) 1182 MIB->copyIRFlags(CI); 1183 1184 for (auto &Arg : CI.arg_operands()) { 1185 // Some intrinsics take metadata parameters. Reject them. 1186 if (isa<MetadataAsValue>(Arg)) 1187 return false; 1188 MIB.addUse(packRegs(*Arg, MIRBuilder)); 1189 } 1190 1191 // Add a MachineMemOperand if it is a target mem intrinsic. 1192 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1193 TargetLowering::IntrinsicInfo Info; 1194 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1195 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1196 unsigned Align = Info.align; 1197 if (Align == 0) 1198 Align = DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext())); 1199 1200 uint64_t Size = Info.memVT.getStoreSize(); 1201 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1202 Info.flags, Size, Align)); 1203 } 1204 1205 return true; 1206 } 1207 1208 bool IRTranslator::translateInvoke(const User &U, 1209 MachineIRBuilder &MIRBuilder) { 1210 const InvokeInst &I = cast<InvokeInst>(U); 1211 MCContext &Context = MF->getContext(); 1212 1213 const BasicBlock *ReturnBB = I.getSuccessor(0); 1214 const BasicBlock *EHPadBB = I.getSuccessor(1); 1215 1216 const Value *Callee = I.getCalledValue(); 1217 const Function *Fn = dyn_cast<Function>(Callee); 1218 if (isa<InlineAsm>(Callee)) 1219 return false; 1220 1221 // FIXME: support invoking patchpoint and statepoint intrinsics. 1222 if (Fn && Fn->isIntrinsic()) 1223 return false; 1224 1225 // FIXME: support whatever these are. 1226 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1227 return false; 1228 1229 // FIXME: support Windows exception handling. 1230 if (!isa<LandingPadInst>(EHPadBB->front())) 1231 return false; 1232 1233 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1234 // the region covered by the try. 1235 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1236 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1237 1238 unsigned Res = 0; 1239 if (!I.getType()->isVoidTy()) 1240 Res = MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL)); 1241 SmallVector<unsigned, 8> Args; 1242 for (auto &Arg: I.arg_operands()) 1243 Args.push_back(packRegs(*Arg, MIRBuilder)); 1244 1245 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, 1246 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 1247 return false; 1248 1249 unpackRegs(I, Res, MIRBuilder); 1250 1251 MCSymbol *EndSymbol = Context.createTempSymbol(); 1252 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1253 1254 // FIXME: track probabilities. 1255 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1256 &ReturnMBB = getMBB(*ReturnBB); 1257 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1258 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1259 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1260 MIRBuilder.buildBr(ReturnMBB); 1261 1262 return true; 1263 } 1264 1265 bool IRTranslator::translateCallBr(const User &U, 1266 MachineIRBuilder &MIRBuilder) { 1267 // FIXME: Implement this. 1268 return false; 1269 } 1270 1271 bool IRTranslator::translateLandingPad(const User &U, 1272 MachineIRBuilder &MIRBuilder) { 1273 const LandingPadInst &LP = cast<LandingPadInst>(U); 1274 1275 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1276 1277 MBB.setIsEHPad(); 1278 1279 // If there aren't registers to copy the values into (e.g., during SjLj 1280 // exceptions), then don't bother. 1281 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1282 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1283 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1284 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1285 return true; 1286 1287 // If landingpad's return type is token type, we don't create DAG nodes 1288 // for its exception pointer and selector value. The extraction of exception 1289 // pointer or selector value from token type landingpads is not currently 1290 // supported. 1291 if (LP.getType()->isTokenTy()) 1292 return true; 1293 1294 // Add a label to mark the beginning of the landing pad. Deletion of the 1295 // landing pad can thus be detected via the MachineModuleInfo. 1296 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1297 .addSym(MF->addLandingPad(&MBB)); 1298 1299 LLT Ty = getLLTForType(*LP.getType(), *DL); 1300 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 1301 MIRBuilder.buildUndef(Undef); 1302 1303 SmallVector<LLT, 2> Tys; 1304 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1305 Tys.push_back(getLLTForType(*Ty, *DL)); 1306 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1307 1308 // Mark exception register as live in. 1309 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1310 if (!ExceptionReg) 1311 return false; 1312 1313 MBB.addLiveIn(ExceptionReg); 1314 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP); 1315 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1316 1317 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1318 if (!SelectorReg) 1319 return false; 1320 1321 MBB.addLiveIn(SelectorReg); 1322 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1323 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1324 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1325 1326 return true; 1327 } 1328 1329 bool IRTranslator::translateAlloca(const User &U, 1330 MachineIRBuilder &MIRBuilder) { 1331 auto &AI = cast<AllocaInst>(U); 1332 1333 if (AI.isSwiftError()) 1334 return false; 1335 1336 if (AI.isStaticAlloca()) { 1337 unsigned Res = getOrCreateVReg(AI); 1338 int FI = getOrCreateFrameIndex(AI); 1339 MIRBuilder.buildFrameIndex(Res, FI); 1340 return true; 1341 } 1342 1343 // FIXME: support stack probing for Windows. 1344 if (MF->getTarget().getTargetTriple().isOSWindows()) 1345 return false; 1346 1347 // Now we're in the harder dynamic case. 1348 Type *Ty = AI.getAllocatedType(); 1349 unsigned Align = 1350 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1351 1352 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 1353 1354 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1355 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1356 if (MRI->getType(NumElts) != IntPtrTy) { 1357 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1358 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1359 NumElts = ExtElts; 1360 } 1361 1362 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1363 unsigned TySize = 1364 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1365 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1366 1367 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1368 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1369 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1370 1371 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1372 MIRBuilder.buildCopy(SPTmp, SPReg); 1373 1374 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1375 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1376 1377 // Handle alignment. We have to realign if the allocation granule was smaller 1378 // than stack alignment, or the specific alloca requires more than stack 1379 // alignment. 1380 unsigned StackAlign = 1381 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1382 Align = std::max(Align, StackAlign); 1383 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1384 // Round the size of the allocation up to the stack alignment size 1385 // by add SA-1 to the size. This doesn't overflow because we're computing 1386 // an address inside an alloca. 1387 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1388 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1389 AllocTmp = AlignedAlloc; 1390 } 1391 1392 MIRBuilder.buildCopy(SPReg, AllocTmp); 1393 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1394 1395 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1396 assert(MF->getFrameInfo().hasVarSizedObjects()); 1397 return true; 1398 } 1399 1400 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1401 // FIXME: We may need more info about the type. Because of how LLT works, 1402 // we're completely discarding the i64/double distinction here (amongst 1403 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1404 // anyway but that's not guaranteed. 1405 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1406 .addDef(getOrCreateVReg(U)) 1407 .addUse(getOrCreateVReg(*U.getOperand(0))) 1408 .addImm(DL->getABITypeAlignment(U.getType())); 1409 return true; 1410 } 1411 1412 bool IRTranslator::translateInsertElement(const User &U, 1413 MachineIRBuilder &MIRBuilder) { 1414 // If it is a <1 x Ty> vector, use the scalar as it is 1415 // not a legal vector type in LLT. 1416 if (U.getType()->getVectorNumElements() == 1) { 1417 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1418 auto &Regs = *VMap.getVRegs(U); 1419 if (Regs.empty()) { 1420 Regs.push_back(Elt); 1421 VMap.getOffsets(U)->push_back(0); 1422 } else { 1423 MIRBuilder.buildCopy(Regs[0], Elt); 1424 } 1425 return true; 1426 } 1427 1428 unsigned Res = getOrCreateVReg(U); 1429 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1430 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1431 unsigned Idx = getOrCreateVReg(*U.getOperand(2)); 1432 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1433 return true; 1434 } 1435 1436 bool IRTranslator::translateExtractElement(const User &U, 1437 MachineIRBuilder &MIRBuilder) { 1438 // If it is a <1 x Ty> vector, use the scalar as it is 1439 // not a legal vector type in LLT. 1440 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1441 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1442 auto &Regs = *VMap.getVRegs(U); 1443 if (Regs.empty()) { 1444 Regs.push_back(Elt); 1445 VMap.getOffsets(U)->push_back(0); 1446 } else { 1447 MIRBuilder.buildCopy(Regs[0], Elt); 1448 } 1449 return true; 1450 } 1451 unsigned Res = getOrCreateVReg(U); 1452 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1453 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1454 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1455 unsigned Idx = 0; 1456 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1457 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1458 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1459 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1460 Idx = getOrCreateVReg(*NewIdxCI); 1461 } 1462 } 1463 if (!Idx) 1464 Idx = getOrCreateVReg(*U.getOperand(1)); 1465 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1466 const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1467 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); 1468 } 1469 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1470 return true; 1471 } 1472 1473 bool IRTranslator::translateShuffleVector(const User &U, 1474 MachineIRBuilder &MIRBuilder) { 1475 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1476 .addDef(getOrCreateVReg(U)) 1477 .addUse(getOrCreateVReg(*U.getOperand(0))) 1478 .addUse(getOrCreateVReg(*U.getOperand(1))) 1479 .addUse(getOrCreateVReg(*U.getOperand(2))); 1480 return true; 1481 } 1482 1483 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1484 const PHINode &PI = cast<PHINode>(U); 1485 1486 SmallVector<MachineInstr *, 4> Insts; 1487 for (auto Reg : getOrCreateVRegs(PI)) { 1488 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1489 Insts.push_back(MIB.getInstr()); 1490 } 1491 1492 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1493 return true; 1494 } 1495 1496 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1497 MachineIRBuilder &MIRBuilder) { 1498 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1499 1500 if (I.isWeak()) 1501 return false; 1502 1503 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1504 : MachineMemOperand::MONone; 1505 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1506 1507 Type *ResType = I.getType(); 1508 Type *ValType = ResType->Type::getStructElementType(0); 1509 1510 auto Res = getOrCreateVRegs(I); 1511 unsigned OldValRes = Res[0]; 1512 unsigned SuccessRes = Res[1]; 1513 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1514 unsigned Cmp = getOrCreateVReg(*I.getCompareOperand()); 1515 unsigned NewVal = getOrCreateVReg(*I.getNewValOperand()); 1516 1517 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1518 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1519 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1520 Flags, DL->getTypeStoreSize(ValType), 1521 getMemOpAlignment(I), AAMDNodes(), nullptr, 1522 I.getSyncScopeID(), I.getSuccessOrdering(), 1523 I.getFailureOrdering())); 1524 return true; 1525 } 1526 1527 bool IRTranslator::translateAtomicRMW(const User &U, 1528 MachineIRBuilder &MIRBuilder) { 1529 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1530 1531 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1532 : MachineMemOperand::MONone; 1533 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1534 1535 Type *ResType = I.getType(); 1536 1537 unsigned Res = getOrCreateVReg(I); 1538 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1539 unsigned Val = getOrCreateVReg(*I.getValOperand()); 1540 1541 unsigned Opcode = 0; 1542 switch (I.getOperation()) { 1543 default: 1544 llvm_unreachable("Unknown atomicrmw op"); 1545 return false; 1546 case AtomicRMWInst::Xchg: 1547 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 1548 break; 1549 case AtomicRMWInst::Add: 1550 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 1551 break; 1552 case AtomicRMWInst::Sub: 1553 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 1554 break; 1555 case AtomicRMWInst::And: 1556 Opcode = TargetOpcode::G_ATOMICRMW_AND; 1557 break; 1558 case AtomicRMWInst::Nand: 1559 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 1560 break; 1561 case AtomicRMWInst::Or: 1562 Opcode = TargetOpcode::G_ATOMICRMW_OR; 1563 break; 1564 case AtomicRMWInst::Xor: 1565 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 1566 break; 1567 case AtomicRMWInst::Max: 1568 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 1569 break; 1570 case AtomicRMWInst::Min: 1571 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 1572 break; 1573 case AtomicRMWInst::UMax: 1574 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 1575 break; 1576 case AtomicRMWInst::UMin: 1577 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 1578 break; 1579 } 1580 1581 MIRBuilder.buildAtomicRMW( 1582 Opcode, Res, Addr, Val, 1583 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1584 Flags, DL->getTypeStoreSize(ResType), 1585 getMemOpAlignment(I), AAMDNodes(), nullptr, 1586 I.getSyncScopeID(), I.getOrdering())); 1587 return true; 1588 } 1589 1590 void IRTranslator::finishPendingPhis() { 1591 #ifndef NDEBUG 1592 DILocationVerifier Verifier; 1593 GISelObserverWrapper WrapperObserver(&Verifier); 1594 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 1595 #endif // ifndef NDEBUG 1596 for (auto &Phi : PendingPHIs) { 1597 const PHINode *PI = Phi.first; 1598 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 1599 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 1600 #ifndef NDEBUG 1601 Verifier.setCurrentInst(PI); 1602 #endif // ifndef NDEBUG 1603 1604 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1605 // won't create extra control flow here, otherwise we need to find the 1606 // dominating predecessor here (or perhaps force the weirder IRTranslators 1607 // to provide a simple boundary). 1608 SmallSet<const BasicBlock *, 4> HandledPreds; 1609 1610 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1611 auto IRPred = PI->getIncomingBlock(i); 1612 if (HandledPreds.count(IRPred)) 1613 continue; 1614 1615 HandledPreds.insert(IRPred); 1616 ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 1617 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1618 assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) && 1619 "incorrect CFG at MachineBasicBlock level"); 1620 for (unsigned j = 0; j < ValRegs.size(); ++j) { 1621 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 1622 MIB.addUse(ValRegs[j]); 1623 MIB.addMBB(Pred); 1624 } 1625 } 1626 } 1627 } 1628 } 1629 1630 bool IRTranslator::valueIsSplit(const Value &V, 1631 SmallVectorImpl<uint64_t> *Offsets) { 1632 SmallVector<LLT, 4> SplitTys; 1633 if (Offsets && !Offsets->empty()) 1634 Offsets->clear(); 1635 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 1636 return SplitTys.size() > 1; 1637 } 1638 1639 bool IRTranslator::translate(const Instruction &Inst) { 1640 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 1641 EntryBuilder->setDebugLoc(Inst.getDebugLoc()); 1642 switch(Inst.getOpcode()) { 1643 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1644 case Instruction::OPCODE: \ 1645 return translate##OPCODE(Inst, *CurBuilder.get()); 1646 #include "llvm/IR/Instruction.def" 1647 default: 1648 return false; 1649 } 1650 } 1651 1652 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1653 if (auto CI = dyn_cast<ConstantInt>(&C)) 1654 EntryBuilder->buildConstant(Reg, *CI); 1655 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1656 EntryBuilder->buildFConstant(Reg, *CF); 1657 else if (isa<UndefValue>(C)) 1658 EntryBuilder->buildUndef(Reg); 1659 else if (isa<ConstantPointerNull>(C)) { 1660 // As we are trying to build a constant val of 0 into a pointer, 1661 // insert a cast to make them correct with respect to types. 1662 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 1663 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 1664 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 1665 unsigned ZeroReg = getOrCreateVReg(*ZeroVal); 1666 EntryBuilder->buildCast(Reg, ZeroReg); 1667 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 1668 EntryBuilder->buildGlobalValue(Reg, GV); 1669 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1670 if (!CAZ->getType()->isVectorTy()) 1671 return false; 1672 // Return the scalar if it is a <1 x Ty> vector. 1673 if (CAZ->getNumElements() == 1) 1674 return translate(*CAZ->getElementValue(0u), Reg); 1675 SmallVector<unsigned, 4> Ops; 1676 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1677 Constant &Elt = *CAZ->getElementValue(i); 1678 Ops.push_back(getOrCreateVReg(Elt)); 1679 } 1680 EntryBuilder->buildBuildVector(Reg, Ops); 1681 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1682 // Return the scalar if it is a <1 x Ty> vector. 1683 if (CV->getNumElements() == 1) 1684 return translate(*CV->getElementAsConstant(0), Reg); 1685 SmallVector<unsigned, 4> Ops; 1686 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1687 Constant &Elt = *CV->getElementAsConstant(i); 1688 Ops.push_back(getOrCreateVReg(Elt)); 1689 } 1690 EntryBuilder->buildBuildVector(Reg, Ops); 1691 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1692 switch(CE->getOpcode()) { 1693 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1694 case Instruction::OPCODE: \ 1695 return translate##OPCODE(*CE, *EntryBuilder.get()); 1696 #include "llvm/IR/Instruction.def" 1697 default: 1698 return false; 1699 } 1700 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 1701 if (CV->getNumOperands() == 1) 1702 return translate(*CV->getOperand(0), Reg); 1703 SmallVector<unsigned, 4> Ops; 1704 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 1705 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 1706 } 1707 EntryBuilder->buildBuildVector(Reg, Ops); 1708 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 1709 EntryBuilder->buildBlockAddress(Reg, BA); 1710 } else 1711 return false; 1712 1713 return true; 1714 } 1715 1716 void IRTranslator::finalizeFunction() { 1717 // Release the memory used by the different maps we 1718 // needed during the translation. 1719 PendingPHIs.clear(); 1720 VMap.reset(); 1721 FrameIndices.clear(); 1722 MachinePreds.clear(); 1723 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 1724 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 1725 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 1726 EntryBuilder.reset(); 1727 CurBuilder.reset(); 1728 } 1729 1730 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1731 MF = &CurMF; 1732 const Function &F = MF->getFunction(); 1733 if (F.empty()) 1734 return false; 1735 GISelCSEAnalysisWrapper &Wrapper = 1736 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 1737 // Set the CSEConfig and run the analysis. 1738 GISelCSEInfo *CSEInfo = nullptr; 1739 TPC = &getAnalysis<TargetPassConfig>(); 1740 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 1741 ? EnableCSEInIRTranslator 1742 : TPC->isGISelCSEEnabled(); 1743 1744 if (EnableCSE) { 1745 EntryBuilder = make_unique<CSEMIRBuilder>(CurMF); 1746 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 1747 EntryBuilder->setCSEInfo(CSEInfo); 1748 CurBuilder = make_unique<CSEMIRBuilder>(CurMF); 1749 CurBuilder->setCSEInfo(CSEInfo); 1750 } else { 1751 EntryBuilder = make_unique<MachineIRBuilder>(); 1752 CurBuilder = make_unique<MachineIRBuilder>(); 1753 } 1754 CLI = MF->getSubtarget().getCallLowering(); 1755 CurBuilder->setMF(*MF); 1756 EntryBuilder->setMF(*MF); 1757 MRI = &MF->getRegInfo(); 1758 DL = &F.getParent()->getDataLayout(); 1759 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 1760 1761 assert(PendingPHIs.empty() && "stale PHIs"); 1762 1763 if (!DL->isLittleEndian()) { 1764 // Currently we don't properly handle big endian code. 1765 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1766 F.getSubprogram(), &F.getEntryBlock()); 1767 R << "unable to translate in big endian mode"; 1768 reportTranslationError(*MF, *TPC, *ORE, R); 1769 } 1770 1771 // Release the per-function state when we return, whether we succeeded or not. 1772 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1773 1774 // Setup a separate basic-block for the arguments and constants 1775 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1776 MF->push_back(EntryBB); 1777 EntryBuilder->setMBB(*EntryBB); 1778 1779 // Create all blocks, in IR order, to preserve the layout. 1780 for (const BasicBlock &BB: F) { 1781 auto *&MBB = BBToMBB[&BB]; 1782 1783 MBB = MF->CreateMachineBasicBlock(&BB); 1784 MF->push_back(MBB); 1785 1786 if (BB.hasAddressTaken()) 1787 MBB->setHasAddressTaken(); 1788 } 1789 1790 // Make our arguments/constants entry block fallthrough to the IR entry block. 1791 EntryBB->addSuccessor(&getMBB(F.front())); 1792 1793 // Lower the actual args into this basic block. 1794 SmallVector<unsigned, 8> VRegArgs; 1795 for (const Argument &Arg: F.args()) { 1796 if (DL->getTypeStoreSize(Arg.getType()) == 0) 1797 continue; // Don't handle zero sized types. 1798 VRegArgs.push_back( 1799 MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL))); 1800 } 1801 1802 // We don't currently support translating swifterror or swiftself functions. 1803 for (auto &Arg : F.args()) { 1804 if (Arg.hasSwiftErrorAttr() || Arg.hasSwiftSelfAttr()) { 1805 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1806 F.getSubprogram(), &F.getEntryBlock()); 1807 R << "unable to lower arguments due to swifterror/swiftself: " 1808 << ore::NV("Prototype", F.getType()); 1809 reportTranslationError(*MF, *TPC, *ORE, R); 1810 return false; 1811 } 1812 } 1813 1814 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 1815 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1816 F.getSubprogram(), &F.getEntryBlock()); 1817 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1818 reportTranslationError(*MF, *TPC, *ORE, R); 1819 return false; 1820 } 1821 1822 auto ArgIt = F.arg_begin(); 1823 for (auto &VArg : VRegArgs) { 1824 // If the argument is an unsplit scalar then don't use unpackRegs to avoid 1825 // creating redundant copies. 1826 if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) { 1827 auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt)); 1828 assert(VRegs.empty() && "VRegs already populated?"); 1829 VRegs.push_back(VArg); 1830 } else { 1831 unpackRegs(*ArgIt, VArg, *EntryBuilder.get()); 1832 } 1833 ArgIt++; 1834 } 1835 1836 // Need to visit defs before uses when translating instructions. 1837 GISelObserverWrapper WrapperObserver; 1838 if (EnableCSE && CSEInfo) 1839 WrapperObserver.addObserver(CSEInfo); 1840 { 1841 ReversePostOrderTraversal<const Function *> RPOT(&F); 1842 #ifndef NDEBUG 1843 DILocationVerifier Verifier; 1844 WrapperObserver.addObserver(&Verifier); 1845 #endif // ifndef NDEBUG 1846 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 1847 for (const BasicBlock *BB : RPOT) { 1848 MachineBasicBlock &MBB = getMBB(*BB); 1849 // Set the insertion point of all the following translations to 1850 // the end of this basic block. 1851 CurBuilder->setMBB(MBB); 1852 1853 for (const Instruction &Inst : *BB) { 1854 #ifndef NDEBUG 1855 Verifier.setCurrentInst(&Inst); 1856 #endif // ifndef NDEBUG 1857 if (translate(Inst)) 1858 continue; 1859 1860 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1861 Inst.getDebugLoc(), BB); 1862 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 1863 1864 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 1865 std::string InstStrStorage; 1866 raw_string_ostream InstStr(InstStrStorage); 1867 InstStr << Inst; 1868 1869 R << ": '" << InstStr.str() << "'"; 1870 } 1871 1872 reportTranslationError(*MF, *TPC, *ORE, R); 1873 return false; 1874 } 1875 } 1876 #ifndef NDEBUG 1877 WrapperObserver.removeObserver(&Verifier); 1878 #endif 1879 } 1880 1881 finishPendingPhis(); 1882 1883 // Merge the argument lowering and constants block with its single 1884 // successor, the LLVM-IR entry block. We want the basic block to 1885 // be maximal. 1886 assert(EntryBB->succ_size() == 1 && 1887 "Custom BB used for lowering should have only one successor"); 1888 // Get the successor of the current entry block. 1889 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1890 assert(NewEntryBB.pred_size() == 1 && 1891 "LLVM-IR entry block has a predecessor!?"); 1892 // Move all the instruction from the current entry block to the 1893 // new entry block. 1894 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1895 EntryBB->end()); 1896 1897 // Update the live-in information for the new entry block. 1898 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1899 NewEntryBB.addLiveIn(LiveIn); 1900 NewEntryBB.sortUniqueLiveIns(); 1901 1902 // Get rid of the now empty basic block. 1903 EntryBB->removeSuccessor(&NewEntryBB); 1904 MF->remove(EntryBB); 1905 MF->DeleteMachineBasicBlock(EntryBB); 1906 1907 assert(&MF->front() == &NewEntryBB && 1908 "New entry wasn't next in the list of basic block!"); 1909 1910 // Initialize stack protector information. 1911 StackProtector &SP = getAnalysis<StackProtector>(); 1912 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1913 1914 return false; 1915 } 1916