1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/LowLevelType.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/StackProtector.h" 34 #include "llvm/CodeGen/TargetFrameLowering.h" 35 #include "llvm/CodeGen/TargetInstrInfo.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfo.h" 46 #include "llvm/IR/DerivedTypes.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/GetElementPtrTypeIterator.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/MC/MCContext.h" 60 #include "llvm/Pass.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CodeGen.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/LowLevelTypeImpl.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetIntrinsicInfo.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <iterator> 74 #include <string> 75 #include <utility> 76 #include <vector> 77 78 #define DEBUG_TYPE "irtranslator" 79 80 using namespace llvm; 81 82 static cl::opt<bool> 83 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 84 cl::desc("Should enable CSE in irtranslator"), 85 cl::Optional, cl::init(false)); 86 char IRTranslator::ID = 0; 87 88 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 89 false, false) 90 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 91 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 92 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 93 false, false) 94 95 static void reportTranslationError(MachineFunction &MF, 96 const TargetPassConfig &TPC, 97 OptimizationRemarkEmitter &ORE, 98 OptimizationRemarkMissed &R) { 99 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 100 101 // Print the function name explicitly if we don't have a debug location (which 102 // makes the diagnostic less useful) or if we're going to emit a raw error. 103 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 104 R << (" (in function: " + MF.getName() + ")").str(); 105 106 if (TPC.isGlobalISelAbortEnabled()) 107 report_fatal_error(R.getMsg()); 108 else 109 ORE.emit(R); 110 } 111 112 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } 113 114 #ifndef NDEBUG 115 namespace { 116 /// Verify that every instruction created has the same DILocation as the 117 /// instruction being translated. 118 class DILocationVerifier : public GISelChangeObserver { 119 const Instruction *CurrInst = nullptr; 120 121 public: 122 DILocationVerifier() = default; 123 ~DILocationVerifier() = default; 124 125 const Instruction *getCurrentInst() const { return CurrInst; } 126 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 127 128 void erasingInstr(MachineInstr &MI) override {} 129 void changingInstr(MachineInstr &MI) override {} 130 void changedInstr(MachineInstr &MI) override {} 131 132 void createdInstr(MachineInstr &MI) override { 133 assert(getCurrentInst() && "Inserted instruction without a current MI"); 134 135 // Only print the check message if we're actually checking it. 136 #ifndef NDEBUG 137 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 138 << " was copied to " << MI); 139 #endif 140 // We allow insts in the entry block to have a debug loc line of 0 because 141 // they could have originated from constants, and we don't want a jumpy 142 // debug experience. 143 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 144 MI.getDebugLoc().getLine() == 0) && 145 "Line info was not transferred to all instructions"); 146 } 147 }; 148 } // namespace 149 #endif // ifndef NDEBUG 150 151 152 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 153 AU.addRequired<StackProtector>(); 154 AU.addRequired<TargetPassConfig>(); 155 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 156 getSelectionDAGFallbackAnalysisUsage(AU); 157 MachineFunctionPass::getAnalysisUsage(AU); 158 } 159 160 IRTranslator::ValueToVRegInfo::VRegListT & 161 IRTranslator::allocateVRegs(const Value &Val) { 162 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 163 auto *Regs = VMap.getVRegs(Val); 164 auto *Offsets = VMap.getOffsets(Val); 165 SmallVector<LLT, 4> SplitTys; 166 computeValueLLTs(*DL, *Val.getType(), SplitTys, 167 Offsets->empty() ? Offsets : nullptr); 168 for (unsigned i = 0; i < SplitTys.size(); ++i) 169 Regs->push_back(0); 170 return *Regs; 171 } 172 173 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 174 auto VRegsIt = VMap.findVRegs(Val); 175 if (VRegsIt != VMap.vregs_end()) 176 return *VRegsIt->second; 177 178 if (Val.getType()->isVoidTy()) 179 return *VMap.getVRegs(Val); 180 181 // Create entry for this type. 182 auto *VRegs = VMap.getVRegs(Val); 183 auto *Offsets = VMap.getOffsets(Val); 184 185 assert(Val.getType()->isSized() && 186 "Don't know how to create an empty vreg"); 187 188 SmallVector<LLT, 4> SplitTys; 189 computeValueLLTs(*DL, *Val.getType(), SplitTys, 190 Offsets->empty() ? Offsets : nullptr); 191 192 if (!isa<Constant>(Val)) { 193 for (auto Ty : SplitTys) 194 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 195 return *VRegs; 196 } 197 198 if (Val.getType()->isAggregateType()) { 199 // UndefValue, ConstantAggregateZero 200 auto &C = cast<Constant>(Val); 201 unsigned Idx = 0; 202 while (auto Elt = C.getAggregateElement(Idx++)) { 203 auto EltRegs = getOrCreateVRegs(*Elt); 204 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 205 } 206 } else { 207 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 208 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 209 bool Success = translate(cast<Constant>(Val), VRegs->front()); 210 if (!Success) { 211 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 212 MF->getFunction().getSubprogram(), 213 &MF->getFunction().getEntryBlock()); 214 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 215 reportTranslationError(*MF, *TPC, *ORE, R); 216 return *VRegs; 217 } 218 } 219 220 return *VRegs; 221 } 222 223 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 224 if (FrameIndices.find(&AI) != FrameIndices.end()) 225 return FrameIndices[&AI]; 226 227 unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 228 unsigned Size = 229 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 230 231 // Always allocate at least one byte. 232 Size = std::max(Size, 1u); 233 234 unsigned Alignment = AI.getAlignment(); 235 if (!Alignment) 236 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 237 238 int &FI = FrameIndices[&AI]; 239 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 240 return FI; 241 } 242 243 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 244 unsigned Alignment = 0; 245 Type *ValTy = nullptr; 246 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 247 Alignment = SI->getAlignment(); 248 ValTy = SI->getValueOperand()->getType(); 249 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 250 Alignment = LI->getAlignment(); 251 ValTy = LI->getType(); 252 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 253 // TODO(PR27168): This instruction has no alignment attribute, but unlike 254 // the default alignment for load/store, the default here is to assume 255 // it has NATURAL alignment, not DataLayout-specified alignment. 256 const DataLayout &DL = AI->getModule()->getDataLayout(); 257 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 258 ValTy = AI->getCompareOperand()->getType(); 259 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 260 // TODO(PR27168): This instruction has no alignment attribute, but unlike 261 // the default alignment for load/store, the default here is to assume 262 // it has NATURAL alignment, not DataLayout-specified alignment. 263 const DataLayout &DL = AI->getModule()->getDataLayout(); 264 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 265 ValTy = AI->getType(); 266 } else { 267 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 268 R << "unable to translate memop: " << ore::NV("Opcode", &I); 269 reportTranslationError(*MF, *TPC, *ORE, R); 270 return 1; 271 } 272 273 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 274 } 275 276 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 277 MachineBasicBlock *&MBB = BBToMBB[&BB]; 278 assert(MBB && "BasicBlock was not encountered before"); 279 return *MBB; 280 } 281 282 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 283 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 284 MachinePreds[Edge].push_back(NewPred); 285 } 286 287 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 288 MachineIRBuilder &MIRBuilder) { 289 // Get or create a virtual register for each value. 290 // Unless the value is a Constant => loadimm cst? 291 // or inline constant each time? 292 // Creation of a virtual register needs to have a size. 293 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 294 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 295 Register Res = getOrCreateVReg(U); 296 uint16_t Flags = 0; 297 if (isa<Instruction>(U)) { 298 const Instruction &I = cast<Instruction>(U); 299 Flags = MachineInstr::copyFlagsFromInstruction(I); 300 } 301 302 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 303 return true; 304 } 305 306 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 307 // -0.0 - X --> G_FNEG 308 if (isa<Constant>(U.getOperand(0)) && 309 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 310 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 311 Register Res = getOrCreateVReg(U); 312 uint16_t Flags = 0; 313 if (isa<Instruction>(U)) { 314 const Instruction &I = cast<Instruction>(U); 315 Flags = MachineInstr::copyFlagsFromInstruction(I); 316 } 317 // Negate the last operand of the FSUB 318 MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op1}, Flags); 319 return true; 320 } 321 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 322 } 323 324 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 325 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 326 Register Res = getOrCreateVReg(U); 327 uint16_t Flags = 0; 328 if (isa<Instruction>(U)) { 329 const Instruction &I = cast<Instruction>(U); 330 Flags = MachineInstr::copyFlagsFromInstruction(I); 331 } 332 MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op0}, Flags); 333 return true; 334 } 335 336 bool IRTranslator::translateCompare(const User &U, 337 MachineIRBuilder &MIRBuilder) { 338 const CmpInst *CI = dyn_cast<CmpInst>(&U); 339 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 340 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 341 Register Res = getOrCreateVReg(U); 342 CmpInst::Predicate Pred = 343 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 344 cast<ConstantExpr>(U).getPredicate()); 345 if (CmpInst::isIntPredicate(Pred)) 346 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 347 else if (Pred == CmpInst::FCMP_FALSE) 348 MIRBuilder.buildCopy( 349 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 350 else if (Pred == CmpInst::FCMP_TRUE) 351 MIRBuilder.buildCopy( 352 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 353 else { 354 MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1}, 355 MachineInstr::copyFlagsFromInstruction(*CI)); 356 } 357 358 return true; 359 } 360 361 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 362 const ReturnInst &RI = cast<ReturnInst>(U); 363 const Value *Ret = RI.getReturnValue(); 364 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 365 Ret = nullptr; 366 367 ArrayRef<Register> VRegs; 368 if (Ret) 369 VRegs = getOrCreateVRegs(*Ret); 370 371 Register SwiftErrorVReg = 0; 372 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 373 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 374 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 375 } 376 377 // The target may mess up with the insertion point, but 378 // this is not important as a return is the last instruction 379 // of the block anyway. 380 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 381 } 382 383 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 384 const BranchInst &BrInst = cast<BranchInst>(U); 385 unsigned Succ = 0; 386 if (!BrInst.isUnconditional()) { 387 // We want a G_BRCOND to the true BB followed by an unconditional branch. 388 Register Tst = getOrCreateVReg(*BrInst.getCondition()); 389 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 390 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 391 MIRBuilder.buildBrCond(Tst, TrueBB); 392 } 393 394 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 395 MachineBasicBlock &TgtBB = getMBB(BrTgt); 396 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 397 398 // If the unconditional target is the layout successor, fallthrough. 399 if (!CurBB.isLayoutSuccessor(&TgtBB)) 400 MIRBuilder.buildBr(TgtBB); 401 402 // Link successors. 403 for (const BasicBlock *Succ : successors(&BrInst)) 404 CurBB.addSuccessor(&getMBB(*Succ)); 405 return true; 406 } 407 408 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 409 MachineBasicBlock *Dst, 410 BranchProbability Prob) { 411 if (!FuncInfo.BPI) { 412 Src->addSuccessorWithoutProb(Dst); 413 return; 414 } 415 if (Prob.isUnknown()) 416 Prob = getEdgeProbability(Src, Dst); 417 Src->addSuccessor(Dst, Prob); 418 } 419 420 BranchProbability 421 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 422 const MachineBasicBlock *Dst) const { 423 const BasicBlock *SrcBB = Src->getBasicBlock(); 424 const BasicBlock *DstBB = Dst->getBasicBlock(); 425 if (!FuncInfo.BPI) { 426 // If BPI is not available, set the default probability as 1 / N, where N is 427 // the number of successors. 428 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 429 return BranchProbability(1, SuccSize); 430 } 431 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 432 } 433 434 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 435 using namespace SwitchCG; 436 // Extract cases from the switch. 437 const SwitchInst &SI = cast<SwitchInst>(U); 438 BranchProbabilityInfo *BPI = FuncInfo.BPI; 439 CaseClusterVector Clusters; 440 Clusters.reserve(SI.getNumCases()); 441 for (auto &I : SI.cases()) { 442 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 443 assert(Succ && "Could not find successor mbb in mapping"); 444 const ConstantInt *CaseVal = I.getCaseValue(); 445 BranchProbability Prob = 446 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 447 : BranchProbability(1, SI.getNumCases() + 1); 448 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 449 } 450 451 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 452 453 // Cluster adjacent cases with the same destination. We do this at all 454 // optimization levels because it's cheap to do and will make codegen faster 455 // if there are many clusters. 456 sortAndRangeify(Clusters); 457 458 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 459 460 // If there is only the default destination, jump there directly. 461 if (Clusters.empty()) { 462 SwitchMBB->addSuccessor(DefaultMBB); 463 if (DefaultMBB != SwitchMBB->getNextNode()) 464 MIB.buildBr(*DefaultMBB); 465 return true; 466 } 467 468 SL->findJumpTables(Clusters, &SI, DefaultMBB); 469 470 LLVM_DEBUG({ 471 dbgs() << "Case clusters: "; 472 for (const CaseCluster &C : Clusters) { 473 if (C.Kind == CC_JumpTable) 474 dbgs() << "JT:"; 475 if (C.Kind == CC_BitTests) 476 dbgs() << "BT:"; 477 478 C.Low->getValue().print(dbgs(), true); 479 if (C.Low != C.High) { 480 dbgs() << '-'; 481 C.High->getValue().print(dbgs(), true); 482 } 483 dbgs() << ' '; 484 } 485 dbgs() << '\n'; 486 }); 487 488 assert(!Clusters.empty()); 489 SwitchWorkList WorkList; 490 CaseClusterIt First = Clusters.begin(); 491 CaseClusterIt Last = Clusters.end() - 1; 492 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 493 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 494 495 // FIXME: At the moment we don't do any splitting optimizations here like 496 // SelectionDAG does, so this worklist only has one entry. 497 while (!WorkList.empty()) { 498 SwitchWorkListItem W = WorkList.back(); 499 WorkList.pop_back(); 500 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 501 return false; 502 } 503 return true; 504 } 505 506 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 507 MachineBasicBlock *MBB) { 508 // Emit the code for the jump table 509 assert(JT.Reg != -1U && "Should lower JT Header first!"); 510 MachineIRBuilder MIB(*MBB->getParent()); 511 MIB.setMBB(*MBB); 512 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 513 514 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 515 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 516 517 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 518 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 519 } 520 521 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 522 SwitchCG::JumpTableHeader &JTH, 523 MachineBasicBlock *HeaderBB) { 524 MachineIRBuilder MIB(*HeaderBB->getParent()); 525 MIB.setMBB(*HeaderBB); 526 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 527 528 const Value &SValue = *JTH.SValue; 529 // Subtract the lowest switch case value from the value being switched on. 530 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 531 Register SwitchOpReg = getOrCreateVReg(SValue); 532 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 533 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 534 535 // This value may be smaller or larger than the target's pointer type, and 536 // therefore require extension or truncating. 537 Type *PtrIRTy = SValue.getType()->getPointerTo(); 538 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 539 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 540 541 JT.Reg = Sub.getReg(0); 542 543 if (JTH.OmitRangeCheck) { 544 if (JT.MBB != HeaderBB->getNextNode()) 545 MIB.buildBr(*JT.MBB); 546 return true; 547 } 548 549 // Emit the range check for the jump table, and branch to the default block 550 // for the switch statement if the value being switched on exceeds the 551 // largest case in the switch. 552 auto Cst = getOrCreateVReg( 553 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 554 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 555 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 556 557 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 558 559 // Avoid emitting unnecessary branches to the next block. 560 if (JT.MBB != HeaderBB->getNextNode()) 561 BrCond = MIB.buildBr(*JT.MBB); 562 return true; 563 } 564 565 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 566 MachineBasicBlock *SwitchBB, 567 MachineIRBuilder &MIB) { 568 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 569 Register Cond; 570 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 571 MIB.setDebugLoc(CB.DbgLoc); 572 MIB.setMBB(*CB.ThisBB); 573 574 if (CB.PredInfo.NoCmp) { 575 // Branch or fall through to TrueBB. 576 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 577 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 578 CB.ThisBB); 579 CB.ThisBB->normalizeSuccProbs(); 580 if (CB.TrueBB != CB.ThisBB->getNextNode()) 581 MIB.buildBr(*CB.TrueBB); 582 MIB.setDebugLoc(OldDbgLoc); 583 return; 584 } 585 586 const LLT i1Ty = LLT::scalar(1); 587 // Build the compare. 588 if (!CB.CmpMHS) { 589 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 590 Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 591 } else { 592 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 593 "Can only handle SLE ranges"); 594 595 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 596 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 597 598 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 599 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 600 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 601 Cond = 602 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 603 } else { 604 const LLT &CmpTy = MRI->getType(CmpOpReg); 605 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 606 auto Diff = MIB.buildConstant(CmpTy, High - Low); 607 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 608 } 609 } 610 611 // Update successor info 612 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 613 614 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 615 CB.ThisBB); 616 617 // TrueBB and FalseBB are always different unless the incoming IR is 618 // degenerate. This only happens when running llc on weird IR. 619 if (CB.TrueBB != CB.FalseBB) 620 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 621 CB.ThisBB->normalizeSuccProbs(); 622 623 // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) 624 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 625 CB.ThisBB); 626 627 // If the lhs block is the next block, invert the condition so that we can 628 // fall through to the lhs instead of the rhs block. 629 if (CB.TrueBB == CB.ThisBB->getNextNode()) { 630 std::swap(CB.TrueBB, CB.FalseBB); 631 auto True = MIB.buildConstant(i1Ty, 1); 632 Cond = MIB.buildInstr(TargetOpcode::G_XOR, {i1Ty}, {Cond, True}, None) 633 .getReg(0); 634 } 635 636 MIB.buildBrCond(Cond, *CB.TrueBB); 637 MIB.buildBr(*CB.FalseBB); 638 MIB.setDebugLoc(OldDbgLoc); 639 } 640 641 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 642 MachineBasicBlock *SwitchMBB, 643 MachineBasicBlock *CurMBB, 644 MachineBasicBlock *DefaultMBB, 645 MachineIRBuilder &MIB, 646 MachineFunction::iterator BBI, 647 BranchProbability UnhandledProbs, 648 SwitchCG::CaseClusterIt I, 649 MachineBasicBlock *Fallthrough, 650 bool FallthroughUnreachable) { 651 using namespace SwitchCG; 652 MachineFunction *CurMF = SwitchMBB->getParent(); 653 // FIXME: Optimize away range check based on pivot comparisons. 654 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 655 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 656 BranchProbability DefaultProb = W.DefaultProb; 657 658 // The jump block hasn't been inserted yet; insert it here. 659 MachineBasicBlock *JumpMBB = JT->MBB; 660 CurMF->insert(BBI, JumpMBB); 661 662 // Since the jump table block is separate from the switch block, we need 663 // to keep track of it as a machine predecessor to the default block, 664 // otherwise we lose the phi edges. 665 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 666 CurMBB); 667 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 668 JumpMBB); 669 670 auto JumpProb = I->Prob; 671 auto FallthroughProb = UnhandledProbs; 672 673 // If the default statement is a target of the jump table, we evenly 674 // distribute the default probability to successors of CurMBB. Also 675 // update the probability on the edge from JumpMBB to Fallthrough. 676 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 677 SE = JumpMBB->succ_end(); 678 SI != SE; ++SI) { 679 if (*SI == DefaultMBB) { 680 JumpProb += DefaultProb / 2; 681 FallthroughProb -= DefaultProb / 2; 682 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 683 JumpMBB->normalizeSuccProbs(); 684 } else { 685 // Also record edges from the jump table block to it's successors. 686 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 687 JumpMBB); 688 } 689 } 690 691 // Skip the range check if the fallthrough block is unreachable. 692 if (FallthroughUnreachable) 693 JTH->OmitRangeCheck = true; 694 695 if (!JTH->OmitRangeCheck) 696 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 697 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 698 CurMBB->normalizeSuccProbs(); 699 700 // The jump table header will be inserted in our current block, do the 701 // range check, and fall through to our fallthrough block. 702 JTH->HeaderBB = CurMBB; 703 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 704 705 // If we're in the right place, emit the jump table header right now. 706 if (CurMBB == SwitchMBB) { 707 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 708 return false; 709 JTH->Emitted = true; 710 } 711 return true; 712 } 713 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 714 Value *Cond, 715 MachineBasicBlock *Fallthrough, 716 bool FallthroughUnreachable, 717 BranchProbability UnhandledProbs, 718 MachineBasicBlock *CurMBB, 719 MachineIRBuilder &MIB, 720 MachineBasicBlock *SwitchMBB) { 721 using namespace SwitchCG; 722 const Value *RHS, *LHS, *MHS; 723 CmpInst::Predicate Pred; 724 if (I->Low == I->High) { 725 // Check Cond == I->Low. 726 Pred = CmpInst::ICMP_EQ; 727 LHS = Cond; 728 RHS = I->Low; 729 MHS = nullptr; 730 } else { 731 // Check I->Low <= Cond <= I->High. 732 Pred = CmpInst::ICMP_SLE; 733 LHS = I->Low; 734 MHS = Cond; 735 RHS = I->High; 736 } 737 738 // If Fallthrough is unreachable, fold away the comparison. 739 // The false probability is the sum of all unhandled cases. 740 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 741 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 742 743 emitSwitchCase(CB, SwitchMBB, MIB); 744 return true; 745 } 746 747 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 748 Value *Cond, 749 MachineBasicBlock *SwitchMBB, 750 MachineBasicBlock *DefaultMBB, 751 MachineIRBuilder &MIB) { 752 using namespace SwitchCG; 753 MachineFunction *CurMF = FuncInfo.MF; 754 MachineBasicBlock *NextMBB = nullptr; 755 MachineFunction::iterator BBI(W.MBB); 756 if (++BBI != FuncInfo.MF->end()) 757 NextMBB = &*BBI; 758 759 if (EnableOpts) { 760 // Here, we order cases by probability so the most likely case will be 761 // checked first. However, two clusters can have the same probability in 762 // which case their relative ordering is non-deterministic. So we use Low 763 // as a tie-breaker as clusters are guaranteed to never overlap. 764 llvm::sort(W.FirstCluster, W.LastCluster + 1, 765 [](const CaseCluster &a, const CaseCluster &b) { 766 return a.Prob != b.Prob 767 ? a.Prob > b.Prob 768 : a.Low->getValue().slt(b.Low->getValue()); 769 }); 770 771 // Rearrange the case blocks so that the last one falls through if possible 772 // without changing the order of probabilities. 773 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 774 --I; 775 if (I->Prob > W.LastCluster->Prob) 776 break; 777 if (I->Kind == CC_Range && I->MBB == NextMBB) { 778 std::swap(*I, *W.LastCluster); 779 break; 780 } 781 } 782 } 783 784 // Compute total probability. 785 BranchProbability DefaultProb = W.DefaultProb; 786 BranchProbability UnhandledProbs = DefaultProb; 787 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 788 UnhandledProbs += I->Prob; 789 790 MachineBasicBlock *CurMBB = W.MBB; 791 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 792 bool FallthroughUnreachable = false; 793 MachineBasicBlock *Fallthrough; 794 if (I == W.LastCluster) { 795 // For the last cluster, fall through to the default destination. 796 Fallthrough = DefaultMBB; 797 FallthroughUnreachable = isa<UnreachableInst>( 798 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 799 } else { 800 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 801 CurMF->insert(BBI, Fallthrough); 802 } 803 UnhandledProbs -= I->Prob; 804 805 switch (I->Kind) { 806 case CC_BitTests: { 807 LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented"); 808 return false; // Bit tests currently unimplemented. 809 } 810 case CC_JumpTable: { 811 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 812 UnhandledProbs, I, Fallthrough, 813 FallthroughUnreachable)) { 814 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 815 return false; 816 } 817 break; 818 } 819 case CC_Range: { 820 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 821 FallthroughUnreachable, UnhandledProbs, 822 CurMBB, MIB, SwitchMBB)) { 823 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 824 return false; 825 } 826 break; 827 } 828 } 829 CurMBB = Fallthrough; 830 } 831 832 return true; 833 } 834 835 bool IRTranslator::translateIndirectBr(const User &U, 836 MachineIRBuilder &MIRBuilder) { 837 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 838 839 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 840 MIRBuilder.buildBrIndirect(Tgt); 841 842 // Link successors. 843 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 844 for (const BasicBlock *Succ : successors(&BrInst)) 845 CurBB.addSuccessor(&getMBB(*Succ)); 846 847 return true; 848 } 849 850 static bool isSwiftError(const Value *V) { 851 if (auto Arg = dyn_cast<Argument>(V)) 852 return Arg->hasSwiftErrorAttr(); 853 if (auto AI = dyn_cast<AllocaInst>(V)) 854 return AI->isSwiftError(); 855 return false; 856 } 857 858 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 859 const LoadInst &LI = cast<LoadInst>(U); 860 861 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 862 : MachineMemOperand::MONone; 863 Flags |= MachineMemOperand::MOLoad; 864 865 if (DL->getTypeStoreSize(LI.getType()) == 0) 866 return true; 867 868 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 869 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 870 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 871 872 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 873 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 874 875 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 876 assert(Regs.size() == 1 && "swifterror should be single pointer"); 877 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 878 LI.getPointerOperand()); 879 MIRBuilder.buildCopy(Regs[0], VReg); 880 return true; 881 } 882 883 const MDNode *Ranges = 884 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 885 for (unsigned i = 0; i < Regs.size(); ++i) { 886 Register Addr; 887 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 888 889 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 890 unsigned BaseAlign = getMemOpAlignment(LI); 891 auto MMO = MF->getMachineMemOperand( 892 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 893 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), Ranges, 894 LI.getSyncScopeID(), LI.getOrdering()); 895 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 896 } 897 898 return true; 899 } 900 901 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 902 const StoreInst &SI = cast<StoreInst>(U); 903 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 904 : MachineMemOperand::MONone; 905 Flags |= MachineMemOperand::MOStore; 906 907 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 908 return true; 909 910 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 911 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 912 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 913 914 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 915 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 916 917 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 918 assert(Vals.size() == 1 && "swifterror should be single pointer"); 919 920 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 921 SI.getPointerOperand()); 922 MIRBuilder.buildCopy(VReg, Vals[0]); 923 return true; 924 } 925 926 for (unsigned i = 0; i < Vals.size(); ++i) { 927 Register Addr; 928 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 929 930 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 931 unsigned BaseAlign = getMemOpAlignment(SI); 932 auto MMO = MF->getMachineMemOperand( 933 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 934 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 935 SI.getSyncScopeID(), SI.getOrdering()); 936 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 937 } 938 return true; 939 } 940 941 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 942 const Value *Src = U.getOperand(0); 943 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 944 945 // getIndexedOffsetInType is designed for GEPs, so the first index is the 946 // usual array element rather than looking into the actual aggregate. 947 SmallVector<Value *, 1> Indices; 948 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 949 950 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 951 for (auto Idx : EVI->indices()) 952 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 953 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 954 for (auto Idx : IVI->indices()) 955 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 956 } else { 957 for (unsigned i = 1; i < U.getNumOperands(); ++i) 958 Indices.push_back(U.getOperand(i)); 959 } 960 961 return 8 * static_cast<uint64_t>( 962 DL.getIndexedOffsetInType(Src->getType(), Indices)); 963 } 964 965 bool IRTranslator::translateExtractValue(const User &U, 966 MachineIRBuilder &MIRBuilder) { 967 const Value *Src = U.getOperand(0); 968 uint64_t Offset = getOffsetFromIndices(U, *DL); 969 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 970 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 971 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 972 auto &DstRegs = allocateVRegs(U); 973 974 for (unsigned i = 0; i < DstRegs.size(); ++i) 975 DstRegs[i] = SrcRegs[Idx++]; 976 977 return true; 978 } 979 980 bool IRTranslator::translateInsertValue(const User &U, 981 MachineIRBuilder &MIRBuilder) { 982 const Value *Src = U.getOperand(0); 983 uint64_t Offset = getOffsetFromIndices(U, *DL); 984 auto &DstRegs = allocateVRegs(U); 985 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 986 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 987 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 988 auto InsertedIt = InsertedRegs.begin(); 989 990 for (unsigned i = 0; i < DstRegs.size(); ++i) { 991 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 992 DstRegs[i] = *InsertedIt++; 993 else 994 DstRegs[i] = SrcRegs[i]; 995 } 996 997 return true; 998 } 999 1000 bool IRTranslator::translateSelect(const User &U, 1001 MachineIRBuilder &MIRBuilder) { 1002 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1003 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1004 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1005 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1006 1007 const SelectInst &SI = cast<SelectInst>(U); 1008 uint16_t Flags = 0; 1009 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 1010 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 1011 1012 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1013 MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]}, 1014 {Tst, Op0Regs[i], Op1Regs[i]}, Flags); 1015 } 1016 1017 return true; 1018 } 1019 1020 bool IRTranslator::translateBitCast(const User &U, 1021 MachineIRBuilder &MIRBuilder) { 1022 // If we're bitcasting to the source type, we can reuse the source vreg. 1023 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1024 getLLTForType(*U.getType(), *DL)) { 1025 Register SrcReg = getOrCreateVReg(*U.getOperand(0)); 1026 auto &Regs = *VMap.getVRegs(U); 1027 // If we already assigned a vreg for this bitcast, we can't change that. 1028 // Emit a copy to satisfy the users we already emitted. 1029 if (!Regs.empty()) 1030 MIRBuilder.buildCopy(Regs[0], SrcReg); 1031 else { 1032 Regs.push_back(SrcReg); 1033 VMap.getOffsets(U)->push_back(0); 1034 } 1035 return true; 1036 } 1037 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1038 } 1039 1040 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1041 MachineIRBuilder &MIRBuilder) { 1042 Register Op = getOrCreateVReg(*U.getOperand(0)); 1043 Register Res = getOrCreateVReg(U); 1044 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1045 return true; 1046 } 1047 1048 bool IRTranslator::translateGetElementPtr(const User &U, 1049 MachineIRBuilder &MIRBuilder) { 1050 // FIXME: support vector GEPs. 1051 if (U.getType()->isVectorTy()) 1052 return false; 1053 1054 Value &Op0 = *U.getOperand(0); 1055 Register BaseReg = getOrCreateVReg(Op0); 1056 Type *PtrIRTy = Op0.getType(); 1057 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1058 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1059 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1060 1061 int64_t Offset = 0; 1062 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1063 GTI != E; ++GTI) { 1064 const Value *Idx = GTI.getOperand(); 1065 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1066 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1067 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1068 continue; 1069 } else { 1070 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1071 1072 // If this is a scalar constant or a splat vector of constants, 1073 // handle it quickly. 1074 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1075 Offset += ElementSize * CI->getSExtValue(); 1076 continue; 1077 } 1078 1079 if (Offset != 0) { 1080 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1081 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1082 BaseReg = 1083 MIRBuilder.buildGEP(PtrTy, BaseReg, OffsetMIB.getReg(0)).getReg(0); 1084 Offset = 0; 1085 } 1086 1087 Register IdxReg = getOrCreateVReg(*Idx); 1088 if (MRI->getType(IdxReg) != OffsetTy) 1089 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1090 1091 // N = N + Idx * ElementSize; 1092 // Avoid doing it for ElementSize of 1. 1093 Register GepOffsetReg; 1094 if (ElementSize != 1) { 1095 auto ElementSizeMIB = MIRBuilder.buildConstant( 1096 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1097 GepOffsetReg = 1098 MIRBuilder.buildMul(OffsetTy, ElementSizeMIB, IdxReg).getReg(0); 1099 } else 1100 GepOffsetReg = IdxReg; 1101 1102 BaseReg = MIRBuilder.buildGEP(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1103 } 1104 } 1105 1106 if (Offset != 0) { 1107 auto OffsetMIB = 1108 MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset); 1109 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1110 return true; 1111 } 1112 1113 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1114 return true; 1115 } 1116 1117 bool IRTranslator::translateMemFunc(const CallInst &CI, 1118 MachineIRBuilder &MIRBuilder, 1119 Intrinsic::ID ID) { 1120 1121 // If the source is undef, then just emit a nop. 1122 if (isa<UndefValue>(CI.getArgOperand(1))) 1123 return true; 1124 1125 ArrayRef<Register> Res; 1126 auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true); 1127 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) 1128 ICall.addUse(getOrCreateVReg(**AI)); 1129 1130 unsigned DstAlign = 0, SrcAlign = 0; 1131 unsigned IsVol = 1132 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1133 ->getZExtValue(); 1134 1135 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1136 DstAlign = std::max<unsigned>(MCI->getDestAlignment(), 1); 1137 SrcAlign = std::max<unsigned>(MCI->getSourceAlignment(), 1); 1138 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1139 DstAlign = std::max<unsigned>(MMI->getDestAlignment(), 1); 1140 SrcAlign = std::max<unsigned>(MMI->getSourceAlignment(), 1); 1141 } else { 1142 auto *MSI = cast<MemSetInst>(&CI); 1143 DstAlign = std::max<unsigned>(MSI->getDestAlignment(), 1); 1144 } 1145 1146 // We need to propagate the tail call flag from the IR inst as an argument. 1147 // Otherwise, we have to pessimize and assume later that we cannot tail call 1148 // any memory intrinsics. 1149 ICall.addImm(CI.isTailCall() ? 1 : 0); 1150 1151 // Create mem operands to store the alignment and volatile info. 1152 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1153 ICall.addMemOperand(MF->getMachineMemOperand( 1154 MachinePointerInfo(CI.getArgOperand(0)), 1155 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1156 if (ID != Intrinsic::memset) 1157 ICall.addMemOperand(MF->getMachineMemOperand( 1158 MachinePointerInfo(CI.getArgOperand(1)), 1159 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1160 1161 return true; 1162 } 1163 1164 void IRTranslator::getStackGuard(Register DstReg, 1165 MachineIRBuilder &MIRBuilder) { 1166 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1167 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1168 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 1169 MIB.addDef(DstReg); 1170 1171 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1172 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1173 if (!Global) 1174 return; 1175 1176 MachinePointerInfo MPInfo(Global); 1177 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1178 MachineMemOperand::MODereferenceable; 1179 MachineMemOperand *MemRef = 1180 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 1181 DL->getPointerABIAlignment(0).value()); 1182 MIB.setMemRefs({MemRef}); 1183 } 1184 1185 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1186 MachineIRBuilder &MIRBuilder) { 1187 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1188 MIRBuilder.buildInstr(Op) 1189 .addDef(ResRegs[0]) 1190 .addDef(ResRegs[1]) 1191 .addUse(getOrCreateVReg(*CI.getOperand(0))) 1192 .addUse(getOrCreateVReg(*CI.getOperand(1))); 1193 1194 return true; 1195 } 1196 1197 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1198 switch (ID) { 1199 default: 1200 break; 1201 case Intrinsic::bswap: 1202 return TargetOpcode::G_BSWAP; 1203 case Intrinsic::bitreverse: 1204 return TargetOpcode::G_BITREVERSE; 1205 case Intrinsic::ceil: 1206 return TargetOpcode::G_FCEIL; 1207 case Intrinsic::cos: 1208 return TargetOpcode::G_FCOS; 1209 case Intrinsic::ctpop: 1210 return TargetOpcode::G_CTPOP; 1211 case Intrinsic::exp: 1212 return TargetOpcode::G_FEXP; 1213 case Intrinsic::exp2: 1214 return TargetOpcode::G_FEXP2; 1215 case Intrinsic::fabs: 1216 return TargetOpcode::G_FABS; 1217 case Intrinsic::copysign: 1218 return TargetOpcode::G_FCOPYSIGN; 1219 case Intrinsic::minnum: 1220 return TargetOpcode::G_FMINNUM; 1221 case Intrinsic::maxnum: 1222 return TargetOpcode::G_FMAXNUM; 1223 case Intrinsic::minimum: 1224 return TargetOpcode::G_FMINIMUM; 1225 case Intrinsic::maximum: 1226 return TargetOpcode::G_FMAXIMUM; 1227 case Intrinsic::canonicalize: 1228 return TargetOpcode::G_FCANONICALIZE; 1229 case Intrinsic::floor: 1230 return TargetOpcode::G_FFLOOR; 1231 case Intrinsic::fma: 1232 return TargetOpcode::G_FMA; 1233 case Intrinsic::log: 1234 return TargetOpcode::G_FLOG; 1235 case Intrinsic::log2: 1236 return TargetOpcode::G_FLOG2; 1237 case Intrinsic::log10: 1238 return TargetOpcode::G_FLOG10; 1239 case Intrinsic::nearbyint: 1240 return TargetOpcode::G_FNEARBYINT; 1241 case Intrinsic::pow: 1242 return TargetOpcode::G_FPOW; 1243 case Intrinsic::rint: 1244 return TargetOpcode::G_FRINT; 1245 case Intrinsic::round: 1246 return TargetOpcode::G_INTRINSIC_ROUND; 1247 case Intrinsic::sin: 1248 return TargetOpcode::G_FSIN; 1249 case Intrinsic::sqrt: 1250 return TargetOpcode::G_FSQRT; 1251 case Intrinsic::trunc: 1252 return TargetOpcode::G_INTRINSIC_TRUNC; 1253 } 1254 return Intrinsic::not_intrinsic; 1255 } 1256 1257 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1258 Intrinsic::ID ID, 1259 MachineIRBuilder &MIRBuilder) { 1260 1261 unsigned Op = getSimpleIntrinsicOpcode(ID); 1262 1263 // Is this a simple intrinsic? 1264 if (Op == Intrinsic::not_intrinsic) 1265 return false; 1266 1267 // Yes. Let's translate it. 1268 SmallVector<llvm::SrcOp, 4> VRegs; 1269 for (auto &Arg : CI.arg_operands()) 1270 VRegs.push_back(getOrCreateVReg(*Arg)); 1271 1272 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1273 MachineInstr::copyFlagsFromInstruction(CI)); 1274 return true; 1275 } 1276 1277 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1278 MachineIRBuilder &MIRBuilder) { 1279 1280 // If this is a simple intrinsic (that is, we just need to add a def of 1281 // a vreg, and uses for each arg operand, then translate it. 1282 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1283 return true; 1284 1285 switch (ID) { 1286 default: 1287 break; 1288 case Intrinsic::lifetime_start: 1289 case Intrinsic::lifetime_end: { 1290 // No stack colouring in O0, discard region information. 1291 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1292 return true; 1293 1294 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1295 : TargetOpcode::LIFETIME_END; 1296 1297 // Get the underlying objects for the location passed on the lifetime 1298 // marker. 1299 SmallVector<const Value *, 4> Allocas; 1300 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 1301 1302 // Iterate over each underlying object, creating lifetime markers for each 1303 // static alloca. Quit if we find a non-static alloca. 1304 for (const Value *V : Allocas) { 1305 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1306 if (!AI) 1307 continue; 1308 1309 if (!AI->isStaticAlloca()) 1310 return true; 1311 1312 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1313 } 1314 return true; 1315 } 1316 case Intrinsic::dbg_declare: { 1317 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1318 assert(DI.getVariable() && "Missing variable"); 1319 1320 const Value *Address = DI.getAddress(); 1321 if (!Address || isa<UndefValue>(Address)) { 1322 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1323 return true; 1324 } 1325 1326 assert(DI.getVariable()->isValidLocationForIntrinsic( 1327 MIRBuilder.getDebugLoc()) && 1328 "Expected inlined-at fields to agree"); 1329 auto AI = dyn_cast<AllocaInst>(Address); 1330 if (AI && AI->isStaticAlloca()) { 1331 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1332 // instructions (in fact, they get ignored if they *do* exist). 1333 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1334 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1335 } else { 1336 // A dbg.declare describes the address of a source variable, so lower it 1337 // into an indirect DBG_VALUE. 1338 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1339 DI.getVariable(), DI.getExpression()); 1340 } 1341 return true; 1342 } 1343 case Intrinsic::dbg_label: { 1344 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1345 assert(DI.getLabel() && "Missing label"); 1346 1347 assert(DI.getLabel()->isValidLocationForIntrinsic( 1348 MIRBuilder.getDebugLoc()) && 1349 "Expected inlined-at fields to agree"); 1350 1351 MIRBuilder.buildDbgLabel(DI.getLabel()); 1352 return true; 1353 } 1354 case Intrinsic::vaend: 1355 // No target I know of cares about va_end. Certainly no in-tree target 1356 // does. Simplest intrinsic ever! 1357 return true; 1358 case Intrinsic::vastart: { 1359 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1360 Value *Ptr = CI.getArgOperand(0); 1361 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1362 1363 // FIXME: Get alignment 1364 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 1365 .addUse(getOrCreateVReg(*Ptr)) 1366 .addMemOperand(MF->getMachineMemOperand( 1367 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); 1368 return true; 1369 } 1370 case Intrinsic::dbg_value: { 1371 // This form of DBG_VALUE is target-independent. 1372 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1373 const Value *V = DI.getValue(); 1374 assert(DI.getVariable()->isValidLocationForIntrinsic( 1375 MIRBuilder.getDebugLoc()) && 1376 "Expected inlined-at fields to agree"); 1377 if (!V) { 1378 // Currently the optimizer can produce this; insert an undef to 1379 // help debugging. Probably the optimizer should not do this. 1380 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1381 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1382 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1383 } else { 1384 for (Register Reg : getOrCreateVRegs(*V)) { 1385 // FIXME: This does not handle register-indirect values at offset 0. The 1386 // direct/indirect thing shouldn't really be handled by something as 1387 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1388 // pretty baked in right now. 1389 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1390 } 1391 } 1392 return true; 1393 } 1394 case Intrinsic::uadd_with_overflow: 1395 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1396 case Intrinsic::sadd_with_overflow: 1397 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1398 case Intrinsic::usub_with_overflow: 1399 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1400 case Intrinsic::ssub_with_overflow: 1401 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1402 case Intrinsic::umul_with_overflow: 1403 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1404 case Intrinsic::smul_with_overflow: 1405 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1406 case Intrinsic::fmuladd: { 1407 const TargetMachine &TM = MF->getTarget(); 1408 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1409 Register Dst = getOrCreateVReg(CI); 1410 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1411 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1412 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1413 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1414 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 1415 // TODO: Revisit this to see if we should move this part of the 1416 // lowering to the combiner. 1417 MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2}, 1418 MachineInstr::copyFlagsFromInstruction(CI)); 1419 } else { 1420 LLT Ty = getLLTForType(*CI.getType(), *DL); 1421 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1}, 1422 MachineInstr::copyFlagsFromInstruction(CI)); 1423 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2}, 1424 MachineInstr::copyFlagsFromInstruction(CI)); 1425 } 1426 return true; 1427 } 1428 case Intrinsic::memcpy: 1429 case Intrinsic::memmove: 1430 case Intrinsic::memset: 1431 return translateMemFunc(CI, MIRBuilder, ID); 1432 case Intrinsic::eh_typeid_for: { 1433 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1434 Register Reg = getOrCreateVReg(CI); 1435 unsigned TypeID = MF->getTypeIDFor(GV); 1436 MIRBuilder.buildConstant(Reg, TypeID); 1437 return true; 1438 } 1439 case Intrinsic::objectsize: { 1440 // If we don't know by now, we're never going to know. 1441 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 1442 1443 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 1444 return true; 1445 } 1446 case Intrinsic::is_constant: 1447 // If this wasn't constant-folded away by now, then it's not a 1448 // constant. 1449 MIRBuilder.buildConstant(getOrCreateVReg(CI), 0); 1450 return true; 1451 case Intrinsic::stackguard: 1452 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1453 return true; 1454 case Intrinsic::stackprotector: { 1455 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1456 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1457 getStackGuard(GuardVal, MIRBuilder); 1458 1459 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1460 int FI = getOrCreateFrameIndex(*Slot); 1461 MF->getFrameInfo().setStackProtectorIndex(FI); 1462 1463 MIRBuilder.buildStore( 1464 GuardVal, getOrCreateVReg(*Slot), 1465 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1466 MachineMemOperand::MOStore | 1467 MachineMemOperand::MOVolatile, 1468 PtrTy.getSizeInBits() / 8, 8)); 1469 return true; 1470 } 1471 case Intrinsic::stacksave: { 1472 // Save the stack pointer to the location provided by the intrinsic. 1473 Register Reg = getOrCreateVReg(CI); 1474 Register StackPtr = MF->getSubtarget() 1475 .getTargetLowering() 1476 ->getStackPointerRegisterToSaveRestore(); 1477 1478 // If the target doesn't specify a stack pointer, then fall back. 1479 if (!StackPtr) 1480 return false; 1481 1482 MIRBuilder.buildCopy(Reg, StackPtr); 1483 return true; 1484 } 1485 case Intrinsic::stackrestore: { 1486 // Restore the stack pointer from the location provided by the intrinsic. 1487 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1488 Register StackPtr = MF->getSubtarget() 1489 .getTargetLowering() 1490 ->getStackPointerRegisterToSaveRestore(); 1491 1492 // If the target doesn't specify a stack pointer, then fall back. 1493 if (!StackPtr) 1494 return false; 1495 1496 MIRBuilder.buildCopy(StackPtr, Reg); 1497 return true; 1498 } 1499 case Intrinsic::cttz: 1500 case Intrinsic::ctlz: { 1501 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1502 bool isTrailing = ID == Intrinsic::cttz; 1503 unsigned Opcode = isTrailing 1504 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1505 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1506 : Cst->isZero() ? TargetOpcode::G_CTLZ 1507 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1508 MIRBuilder.buildInstr(Opcode) 1509 .addDef(getOrCreateVReg(CI)) 1510 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 1511 return true; 1512 } 1513 case Intrinsic::invariant_start: { 1514 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1515 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 1516 MIRBuilder.buildUndef(Undef); 1517 return true; 1518 } 1519 case Intrinsic::invariant_end: 1520 return true; 1521 case Intrinsic::assume: 1522 case Intrinsic::var_annotation: 1523 case Intrinsic::sideeffect: 1524 // Discard annotate attributes, assumptions, and artificial side-effects. 1525 return true; 1526 } 1527 return false; 1528 } 1529 1530 bool IRTranslator::translateInlineAsm(const CallInst &CI, 1531 MachineIRBuilder &MIRBuilder) { 1532 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 1533 if (!IA.getConstraintString().empty()) 1534 return false; 1535 1536 unsigned ExtraInfo = 0; 1537 if (IA.hasSideEffects()) 1538 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1539 if (IA.getDialect() == InlineAsm::AD_Intel) 1540 ExtraInfo |= InlineAsm::Extra_AsmDialect; 1541 1542 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 1543 .addExternalSymbol(IA.getAsmString().c_str()) 1544 .addImm(ExtraInfo); 1545 1546 return true; 1547 } 1548 1549 bool IRTranslator::translateCallSite(const ImmutableCallSite &CS, 1550 MachineIRBuilder &MIRBuilder) { 1551 const Instruction &I = *CS.getInstruction(); 1552 ArrayRef<Register> Res = getOrCreateVRegs(I); 1553 1554 SmallVector<ArrayRef<Register>, 8> Args; 1555 Register SwiftInVReg = 0; 1556 Register SwiftErrorVReg = 0; 1557 for (auto &Arg : CS.args()) { 1558 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1559 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 1560 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1561 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 1562 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 1563 &I, &MIRBuilder.getMBB(), Arg)); 1564 Args.emplace_back(makeArrayRef(SwiftInVReg)); 1565 SwiftErrorVReg = 1566 SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg); 1567 continue; 1568 } 1569 Args.push_back(getOrCreateVRegs(*Arg)); 1570 } 1571 1572 // We don't set HasCalls on MFI here yet because call lowering may decide to 1573 // optimize into tail calls. Instead, we defer that to selection where a final 1574 // scan is done to check if any instructions are calls. 1575 bool Success = 1576 CLI->lowerCall(MIRBuilder, CS, Res, Args, SwiftErrorVReg, 1577 [&]() { return getOrCreateVReg(*CS.getCalledValue()); }); 1578 1579 // Check if we just inserted a tail call. 1580 if (Success) { 1581 assert(!HasTailCall && "Can't tail call return twice from block?"); 1582 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1583 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 1584 } 1585 1586 return Success; 1587 } 1588 1589 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1590 const CallInst &CI = cast<CallInst>(U); 1591 auto TII = MF->getTarget().getIntrinsicInfo(); 1592 const Function *F = CI.getCalledFunction(); 1593 1594 // FIXME: support Windows dllimport function calls. 1595 if (F && F->hasDLLImportStorageClass()) 1596 return false; 1597 1598 if (CI.isInlineAsm()) 1599 return translateInlineAsm(CI, MIRBuilder); 1600 1601 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1602 if (F && F->isIntrinsic()) { 1603 ID = F->getIntrinsicID(); 1604 if (TII && ID == Intrinsic::not_intrinsic) 1605 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1606 } 1607 1608 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 1609 return translateCallSite(&CI, MIRBuilder); 1610 1611 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1612 1613 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1614 return true; 1615 1616 ArrayRef<Register> ResultRegs; 1617 if (!CI.getType()->isVoidTy()) 1618 ResultRegs = getOrCreateVRegs(CI); 1619 1620 // Ignore the callsite attributes. Backend code is most likely not expecting 1621 // an intrinsic to sometimes have side effects and sometimes not. 1622 MachineInstrBuilder MIB = 1623 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 1624 if (isa<FPMathOperator>(CI)) 1625 MIB->copyIRFlags(CI); 1626 1627 for (auto &Arg : enumerate(CI.arg_operands())) { 1628 // Some intrinsics take metadata parameters. Reject them. 1629 if (isa<MetadataAsValue>(Arg.value())) 1630 return false; 1631 1632 // If this is required to be an immediate, don't materialize it in a 1633 // register. 1634 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 1635 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 1636 // imm arguments are more convenient than cimm (and realistically 1637 // probably sufficient), so use them. 1638 assert(CI->getBitWidth() <= 64 && 1639 "large intrinsic immediates not handled"); 1640 MIB.addImm(CI->getSExtValue()); 1641 } else { 1642 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 1643 } 1644 } else { 1645 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 1646 if (VRegs.size() > 1) 1647 return false; 1648 MIB.addUse(VRegs[0]); 1649 } 1650 } 1651 1652 // Add a MachineMemOperand if it is a target mem intrinsic. 1653 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1654 TargetLowering::IntrinsicInfo Info; 1655 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1656 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1657 MaybeAlign Align = Info.align; 1658 if (!Align) 1659 Align = MaybeAlign( 1660 DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext()))); 1661 1662 uint64_t Size = Info.memVT.getStoreSize(); 1663 MIB.addMemOperand(MF->getMachineMemOperand( 1664 MachinePointerInfo(Info.ptrVal), Info.flags, Size, Align->value())); 1665 } 1666 1667 return true; 1668 } 1669 1670 bool IRTranslator::translateInvoke(const User &U, 1671 MachineIRBuilder &MIRBuilder) { 1672 const InvokeInst &I = cast<InvokeInst>(U); 1673 MCContext &Context = MF->getContext(); 1674 1675 const BasicBlock *ReturnBB = I.getSuccessor(0); 1676 const BasicBlock *EHPadBB = I.getSuccessor(1); 1677 1678 const Value *Callee = I.getCalledValue(); 1679 const Function *Fn = dyn_cast<Function>(Callee); 1680 if (isa<InlineAsm>(Callee)) 1681 return false; 1682 1683 // FIXME: support invoking patchpoint and statepoint intrinsics. 1684 if (Fn && Fn->isIntrinsic()) 1685 return false; 1686 1687 // FIXME: support whatever these are. 1688 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1689 return false; 1690 1691 // FIXME: support Windows exception handling. 1692 if (!isa<LandingPadInst>(EHPadBB->front())) 1693 return false; 1694 1695 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1696 // the region covered by the try. 1697 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1698 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1699 1700 if (!translateCallSite(&I, MIRBuilder)) 1701 return false; 1702 1703 MCSymbol *EndSymbol = Context.createTempSymbol(); 1704 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1705 1706 // FIXME: track probabilities. 1707 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1708 &ReturnMBB = getMBB(*ReturnBB); 1709 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1710 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1711 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1712 MIRBuilder.buildBr(ReturnMBB); 1713 1714 return true; 1715 } 1716 1717 bool IRTranslator::translateCallBr(const User &U, 1718 MachineIRBuilder &MIRBuilder) { 1719 // FIXME: Implement this. 1720 return false; 1721 } 1722 1723 bool IRTranslator::translateLandingPad(const User &U, 1724 MachineIRBuilder &MIRBuilder) { 1725 const LandingPadInst &LP = cast<LandingPadInst>(U); 1726 1727 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1728 1729 MBB.setIsEHPad(); 1730 1731 // If there aren't registers to copy the values into (e.g., during SjLj 1732 // exceptions), then don't bother. 1733 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1734 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1735 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1736 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1737 return true; 1738 1739 // If landingpad's return type is token type, we don't create DAG nodes 1740 // for its exception pointer and selector value. The extraction of exception 1741 // pointer or selector value from token type landingpads is not currently 1742 // supported. 1743 if (LP.getType()->isTokenTy()) 1744 return true; 1745 1746 // Add a label to mark the beginning of the landing pad. Deletion of the 1747 // landing pad can thus be detected via the MachineModuleInfo. 1748 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1749 .addSym(MF->addLandingPad(&MBB)); 1750 1751 LLT Ty = getLLTForType(*LP.getType(), *DL); 1752 Register Undef = MRI->createGenericVirtualRegister(Ty); 1753 MIRBuilder.buildUndef(Undef); 1754 1755 SmallVector<LLT, 2> Tys; 1756 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1757 Tys.push_back(getLLTForType(*Ty, *DL)); 1758 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1759 1760 // Mark exception register as live in. 1761 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1762 if (!ExceptionReg) 1763 return false; 1764 1765 MBB.addLiveIn(ExceptionReg); 1766 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 1767 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1768 1769 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1770 if (!SelectorReg) 1771 return false; 1772 1773 MBB.addLiveIn(SelectorReg); 1774 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1775 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1776 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1777 1778 return true; 1779 } 1780 1781 bool IRTranslator::translateAlloca(const User &U, 1782 MachineIRBuilder &MIRBuilder) { 1783 auto &AI = cast<AllocaInst>(U); 1784 1785 if (AI.isSwiftError()) 1786 return true; 1787 1788 if (AI.isStaticAlloca()) { 1789 Register Res = getOrCreateVReg(AI); 1790 int FI = getOrCreateFrameIndex(AI); 1791 MIRBuilder.buildFrameIndex(Res, FI); 1792 return true; 1793 } 1794 1795 // FIXME: support stack probing for Windows. 1796 if (MF->getTarget().getTargetTriple().isOSWindows()) 1797 return false; 1798 1799 // Now we're in the harder dynamic case. 1800 Type *Ty = AI.getAllocatedType(); 1801 unsigned Align = 1802 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1803 1804 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 1805 1806 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1807 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1808 if (MRI->getType(NumElts) != IntPtrTy) { 1809 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1810 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1811 NumElts = ExtElts; 1812 } 1813 1814 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1815 Register TySize = 1816 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 1817 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1818 1819 unsigned StackAlign = 1820 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1821 if (Align <= StackAlign) 1822 Align = 0; 1823 1824 // Round the size of the allocation up to the stack alignment size 1825 // by add SA-1 to the size. This doesn't overflow because we're computing 1826 // an address inside an alloca. 1827 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign - 1); 1828 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 1829 MachineInstr::NoUWrap); 1830 auto AlignCst = 1831 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign - 1)); 1832 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 1833 1834 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Align); 1835 1836 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1837 assert(MF->getFrameInfo().hasVarSizedObjects()); 1838 return true; 1839 } 1840 1841 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1842 // FIXME: We may need more info about the type. Because of how LLT works, 1843 // we're completely discarding the i64/double distinction here (amongst 1844 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1845 // anyway but that's not guaranteed. 1846 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1847 .addDef(getOrCreateVReg(U)) 1848 .addUse(getOrCreateVReg(*U.getOperand(0))) 1849 .addImm(DL->getABITypeAlignment(U.getType())); 1850 return true; 1851 } 1852 1853 bool IRTranslator::translateInsertElement(const User &U, 1854 MachineIRBuilder &MIRBuilder) { 1855 // If it is a <1 x Ty> vector, use the scalar as it is 1856 // not a legal vector type in LLT. 1857 if (U.getType()->getVectorNumElements() == 1) { 1858 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1859 auto &Regs = *VMap.getVRegs(U); 1860 if (Regs.empty()) { 1861 Regs.push_back(Elt); 1862 VMap.getOffsets(U)->push_back(0); 1863 } else { 1864 MIRBuilder.buildCopy(Regs[0], Elt); 1865 } 1866 return true; 1867 } 1868 1869 Register Res = getOrCreateVReg(U); 1870 Register Val = getOrCreateVReg(*U.getOperand(0)); 1871 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1872 Register Idx = getOrCreateVReg(*U.getOperand(2)); 1873 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1874 return true; 1875 } 1876 1877 bool IRTranslator::translateExtractElement(const User &U, 1878 MachineIRBuilder &MIRBuilder) { 1879 // If it is a <1 x Ty> vector, use the scalar as it is 1880 // not a legal vector type in LLT. 1881 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1882 Register Elt = getOrCreateVReg(*U.getOperand(0)); 1883 auto &Regs = *VMap.getVRegs(U); 1884 if (Regs.empty()) { 1885 Regs.push_back(Elt); 1886 VMap.getOffsets(U)->push_back(0); 1887 } else { 1888 MIRBuilder.buildCopy(Regs[0], Elt); 1889 } 1890 return true; 1891 } 1892 Register Res = getOrCreateVReg(U); 1893 Register Val = getOrCreateVReg(*U.getOperand(0)); 1894 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1895 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1896 Register Idx; 1897 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1898 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1899 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1900 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1901 Idx = getOrCreateVReg(*NewIdxCI); 1902 } 1903 } 1904 if (!Idx) 1905 Idx = getOrCreateVReg(*U.getOperand(1)); 1906 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1907 const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1908 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); 1909 } 1910 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1911 return true; 1912 } 1913 1914 bool IRTranslator::translateShuffleVector(const User &U, 1915 MachineIRBuilder &MIRBuilder) { 1916 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1917 .addDef(getOrCreateVReg(U)) 1918 .addUse(getOrCreateVReg(*U.getOperand(0))) 1919 .addUse(getOrCreateVReg(*U.getOperand(1))) 1920 .addShuffleMask(cast<Constant>(U.getOperand(2))); 1921 return true; 1922 } 1923 1924 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1925 const PHINode &PI = cast<PHINode>(U); 1926 1927 SmallVector<MachineInstr *, 4> Insts; 1928 for (auto Reg : getOrCreateVRegs(PI)) { 1929 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1930 Insts.push_back(MIB.getInstr()); 1931 } 1932 1933 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1934 return true; 1935 } 1936 1937 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1938 MachineIRBuilder &MIRBuilder) { 1939 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1940 1941 if (I.isWeak()) 1942 return false; 1943 1944 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1945 : MachineMemOperand::MONone; 1946 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1947 1948 Type *ResType = I.getType(); 1949 Type *ValType = ResType->Type::getStructElementType(0); 1950 1951 auto Res = getOrCreateVRegs(I); 1952 Register OldValRes = Res[0]; 1953 Register SuccessRes = Res[1]; 1954 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 1955 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 1956 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 1957 1958 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1959 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1960 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1961 Flags, DL->getTypeStoreSize(ValType), 1962 getMemOpAlignment(I), AAMDNodes(), nullptr, 1963 I.getSyncScopeID(), I.getSuccessOrdering(), 1964 I.getFailureOrdering())); 1965 return true; 1966 } 1967 1968 bool IRTranslator::translateAtomicRMW(const User &U, 1969 MachineIRBuilder &MIRBuilder) { 1970 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1971 1972 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1973 : MachineMemOperand::MONone; 1974 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1975 1976 Type *ResType = I.getType(); 1977 1978 Register Res = getOrCreateVReg(I); 1979 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 1980 Register Val = getOrCreateVReg(*I.getValOperand()); 1981 1982 unsigned Opcode = 0; 1983 switch (I.getOperation()) { 1984 default: 1985 return false; 1986 case AtomicRMWInst::Xchg: 1987 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 1988 break; 1989 case AtomicRMWInst::Add: 1990 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 1991 break; 1992 case AtomicRMWInst::Sub: 1993 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 1994 break; 1995 case AtomicRMWInst::And: 1996 Opcode = TargetOpcode::G_ATOMICRMW_AND; 1997 break; 1998 case AtomicRMWInst::Nand: 1999 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2000 break; 2001 case AtomicRMWInst::Or: 2002 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2003 break; 2004 case AtomicRMWInst::Xor: 2005 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2006 break; 2007 case AtomicRMWInst::Max: 2008 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2009 break; 2010 case AtomicRMWInst::Min: 2011 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2012 break; 2013 case AtomicRMWInst::UMax: 2014 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2015 break; 2016 case AtomicRMWInst::UMin: 2017 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2018 break; 2019 case AtomicRMWInst::FAdd: 2020 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2021 break; 2022 case AtomicRMWInst::FSub: 2023 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2024 break; 2025 } 2026 2027 MIRBuilder.buildAtomicRMW( 2028 Opcode, Res, Addr, Val, 2029 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2030 Flags, DL->getTypeStoreSize(ResType), 2031 getMemOpAlignment(I), AAMDNodes(), nullptr, 2032 I.getSyncScopeID(), I.getOrdering())); 2033 return true; 2034 } 2035 2036 bool IRTranslator::translateFence(const User &U, 2037 MachineIRBuilder &MIRBuilder) { 2038 const FenceInst &Fence = cast<FenceInst>(U); 2039 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2040 Fence.getSyncScopeID()); 2041 return true; 2042 } 2043 2044 void IRTranslator::finishPendingPhis() { 2045 #ifndef NDEBUG 2046 DILocationVerifier Verifier; 2047 GISelObserverWrapper WrapperObserver(&Verifier); 2048 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2049 #endif // ifndef NDEBUG 2050 for (auto &Phi : PendingPHIs) { 2051 const PHINode *PI = Phi.first; 2052 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2053 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2054 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2055 #ifndef NDEBUG 2056 Verifier.setCurrentInst(PI); 2057 #endif // ifndef NDEBUG 2058 2059 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2060 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2061 auto IRPred = PI->getIncomingBlock(i); 2062 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2063 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2064 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2065 continue; 2066 SeenPreds.insert(Pred); 2067 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2068 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2069 MIB.addUse(ValRegs[j]); 2070 MIB.addMBB(Pred); 2071 } 2072 } 2073 } 2074 } 2075 } 2076 2077 bool IRTranslator::valueIsSplit(const Value &V, 2078 SmallVectorImpl<uint64_t> *Offsets) { 2079 SmallVector<LLT, 4> SplitTys; 2080 if (Offsets && !Offsets->empty()) 2081 Offsets->clear(); 2082 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2083 return SplitTys.size() > 1; 2084 } 2085 2086 bool IRTranslator::translate(const Instruction &Inst) { 2087 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2088 // We only emit constants into the entry block from here. To prevent jumpy 2089 // debug behaviour set the line to 0. 2090 if (const DebugLoc &DL = Inst.getDebugLoc()) 2091 EntryBuilder->setDebugLoc( 2092 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 2093 else 2094 EntryBuilder->setDebugLoc(DebugLoc()); 2095 2096 switch (Inst.getOpcode()) { 2097 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2098 case Instruction::OPCODE: \ 2099 return translate##OPCODE(Inst, *CurBuilder.get()); 2100 #include "llvm/IR/Instruction.def" 2101 default: 2102 return false; 2103 } 2104 } 2105 2106 bool IRTranslator::translate(const Constant &C, Register Reg) { 2107 if (auto CI = dyn_cast<ConstantInt>(&C)) 2108 EntryBuilder->buildConstant(Reg, *CI); 2109 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2110 EntryBuilder->buildFConstant(Reg, *CF); 2111 else if (isa<UndefValue>(C)) 2112 EntryBuilder->buildUndef(Reg); 2113 else if (isa<ConstantPointerNull>(C)) { 2114 // As we are trying to build a constant val of 0 into a pointer, 2115 // insert a cast to make them correct with respect to types. 2116 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 2117 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 2118 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 2119 Register ZeroReg = getOrCreateVReg(*ZeroVal); 2120 EntryBuilder->buildCast(Reg, ZeroReg); 2121 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 2122 EntryBuilder->buildGlobalValue(Reg, GV); 2123 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2124 if (!CAZ->getType()->isVectorTy()) 2125 return false; 2126 // Return the scalar if it is a <1 x Ty> vector. 2127 if (CAZ->getNumElements() == 1) 2128 return translate(*CAZ->getElementValue(0u), Reg); 2129 SmallVector<Register, 4> Ops; 2130 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 2131 Constant &Elt = *CAZ->getElementValue(i); 2132 Ops.push_back(getOrCreateVReg(Elt)); 2133 } 2134 EntryBuilder->buildBuildVector(Reg, Ops); 2135 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2136 // Return the scalar if it is a <1 x Ty> vector. 2137 if (CV->getNumElements() == 1) 2138 return translate(*CV->getElementAsConstant(0), Reg); 2139 SmallVector<Register, 4> Ops; 2140 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2141 Constant &Elt = *CV->getElementAsConstant(i); 2142 Ops.push_back(getOrCreateVReg(Elt)); 2143 } 2144 EntryBuilder->buildBuildVector(Reg, Ops); 2145 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2146 switch(CE->getOpcode()) { 2147 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2148 case Instruction::OPCODE: \ 2149 return translate##OPCODE(*CE, *EntryBuilder.get()); 2150 #include "llvm/IR/Instruction.def" 2151 default: 2152 return false; 2153 } 2154 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2155 if (CV->getNumOperands() == 1) 2156 return translate(*CV->getOperand(0), Reg); 2157 SmallVector<Register, 4> Ops; 2158 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2159 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2160 } 2161 EntryBuilder->buildBuildVector(Reg, Ops); 2162 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2163 EntryBuilder->buildBlockAddress(Reg, BA); 2164 } else 2165 return false; 2166 2167 return true; 2168 } 2169 2170 void IRTranslator::finalizeBasicBlock() { 2171 for (auto &JTCase : SL->JTCases) { 2172 // Emit header first, if it wasn't already emitted. 2173 if (!JTCase.first.Emitted) 2174 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 2175 2176 emitJumpTable(JTCase.second, JTCase.second.MBB); 2177 } 2178 SL->JTCases.clear(); 2179 } 2180 2181 void IRTranslator::finalizeFunction() { 2182 // Release the memory used by the different maps we 2183 // needed during the translation. 2184 PendingPHIs.clear(); 2185 VMap.reset(); 2186 FrameIndices.clear(); 2187 MachinePreds.clear(); 2188 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 2189 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 2190 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 2191 EntryBuilder.reset(); 2192 CurBuilder.reset(); 2193 FuncInfo.clear(); 2194 } 2195 2196 /// Returns true if a BasicBlock \p BB within a variadic function contains a 2197 /// variadic musttail call. 2198 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 2199 if (!IsVarArg) 2200 return false; 2201 2202 // Walk the block backwards, because tail calls usually only appear at the end 2203 // of a block. 2204 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 2205 const auto *CI = dyn_cast<CallInst>(&I); 2206 return CI && CI->isMustTailCall(); 2207 }); 2208 } 2209 2210 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 2211 MF = &CurMF; 2212 const Function &F = MF->getFunction(); 2213 if (F.empty()) 2214 return false; 2215 GISelCSEAnalysisWrapper &Wrapper = 2216 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 2217 // Set the CSEConfig and run the analysis. 2218 GISelCSEInfo *CSEInfo = nullptr; 2219 TPC = &getAnalysis<TargetPassConfig>(); 2220 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 2221 ? EnableCSEInIRTranslator 2222 : TPC->isGISelCSEEnabled(); 2223 2224 if (EnableCSE) { 2225 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2226 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 2227 EntryBuilder->setCSEInfo(CSEInfo); 2228 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2229 CurBuilder->setCSEInfo(CSEInfo); 2230 } else { 2231 EntryBuilder = std::make_unique<MachineIRBuilder>(); 2232 CurBuilder = std::make_unique<MachineIRBuilder>(); 2233 } 2234 CLI = MF->getSubtarget().getCallLowering(); 2235 CurBuilder->setMF(*MF); 2236 EntryBuilder->setMF(*MF); 2237 MRI = &MF->getRegInfo(); 2238 DL = &F.getParent()->getDataLayout(); 2239 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2240 FuncInfo.MF = MF; 2241 FuncInfo.BPI = nullptr; 2242 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2243 const TargetMachine &TM = MF->getTarget(); 2244 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 2245 SL->init(TLI, TM, *DL); 2246 2247 EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); 2248 2249 assert(PendingPHIs.empty() && "stale PHIs"); 2250 2251 if (!DL->isLittleEndian()) { 2252 // Currently we don't properly handle big endian code. 2253 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2254 F.getSubprogram(), &F.getEntryBlock()); 2255 R << "unable to translate in big endian mode"; 2256 reportTranslationError(*MF, *TPC, *ORE, R); 2257 } 2258 2259 // Release the per-function state when we return, whether we succeeded or not. 2260 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 2261 2262 // Setup a separate basic-block for the arguments and constants 2263 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 2264 MF->push_back(EntryBB); 2265 EntryBuilder->setMBB(*EntryBB); 2266 2267 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 2268 SwiftError.setFunction(CurMF); 2269 SwiftError.createEntriesInEntryBlock(DbgLoc); 2270 2271 bool IsVarArg = F.isVarArg(); 2272 bool HasMustTailInVarArgFn = false; 2273 2274 // Create all blocks, in IR order, to preserve the layout. 2275 for (const BasicBlock &BB: F) { 2276 auto *&MBB = BBToMBB[&BB]; 2277 2278 MBB = MF->CreateMachineBasicBlock(&BB); 2279 MF->push_back(MBB); 2280 2281 if (BB.hasAddressTaken()) 2282 MBB->setHasAddressTaken(); 2283 2284 if (!HasMustTailInVarArgFn) 2285 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 2286 } 2287 2288 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 2289 2290 // Make our arguments/constants entry block fallthrough to the IR entry block. 2291 EntryBB->addSuccessor(&getMBB(F.front())); 2292 2293 // Lower the actual args into this basic block. 2294 SmallVector<ArrayRef<Register>, 8> VRegArgs; 2295 for (const Argument &Arg: F.args()) { 2296 if (DL->getTypeStoreSize(Arg.getType()) == 0) 2297 continue; // Don't handle zero sized types. 2298 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 2299 VRegArgs.push_back(VRegs); 2300 2301 if (Arg.hasSwiftErrorAttr()) { 2302 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 2303 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 2304 } 2305 } 2306 2307 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 2308 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2309 F.getSubprogram(), &F.getEntryBlock()); 2310 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 2311 reportTranslationError(*MF, *TPC, *ORE, R); 2312 return false; 2313 } 2314 2315 // Need to visit defs before uses when translating instructions. 2316 GISelObserverWrapper WrapperObserver; 2317 if (EnableCSE && CSEInfo) 2318 WrapperObserver.addObserver(CSEInfo); 2319 { 2320 ReversePostOrderTraversal<const Function *> RPOT(&F); 2321 #ifndef NDEBUG 2322 DILocationVerifier Verifier; 2323 WrapperObserver.addObserver(&Verifier); 2324 #endif // ifndef NDEBUG 2325 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2326 for (const BasicBlock *BB : RPOT) { 2327 MachineBasicBlock &MBB = getMBB(*BB); 2328 // Set the insertion point of all the following translations to 2329 // the end of this basic block. 2330 CurBuilder->setMBB(MBB); 2331 HasTailCall = false; 2332 for (const Instruction &Inst : *BB) { 2333 // If we translated a tail call in the last step, then we know 2334 // everything after the call is either a return, or something that is 2335 // handled by the call itself. (E.g. a lifetime marker or assume 2336 // intrinsic.) In this case, we should stop translating the block and 2337 // move on. 2338 if (HasTailCall) 2339 break; 2340 #ifndef NDEBUG 2341 Verifier.setCurrentInst(&Inst); 2342 #endif // ifndef NDEBUG 2343 if (translate(Inst)) 2344 continue; 2345 2346 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2347 Inst.getDebugLoc(), BB); 2348 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 2349 2350 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 2351 std::string InstStrStorage; 2352 raw_string_ostream InstStr(InstStrStorage); 2353 InstStr << Inst; 2354 2355 R << ": '" << InstStr.str() << "'"; 2356 } 2357 2358 reportTranslationError(*MF, *TPC, *ORE, R); 2359 return false; 2360 } 2361 2362 finalizeBasicBlock(); 2363 } 2364 #ifndef NDEBUG 2365 WrapperObserver.removeObserver(&Verifier); 2366 #endif 2367 } 2368 2369 finishPendingPhis(); 2370 2371 SwiftError.propagateVRegs(); 2372 2373 // Merge the argument lowering and constants block with its single 2374 // successor, the LLVM-IR entry block. We want the basic block to 2375 // be maximal. 2376 assert(EntryBB->succ_size() == 1 && 2377 "Custom BB used for lowering should have only one successor"); 2378 // Get the successor of the current entry block. 2379 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 2380 assert(NewEntryBB.pred_size() == 1 && 2381 "LLVM-IR entry block has a predecessor!?"); 2382 // Move all the instruction from the current entry block to the 2383 // new entry block. 2384 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 2385 EntryBB->end()); 2386 2387 // Update the live-in information for the new entry block. 2388 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 2389 NewEntryBB.addLiveIn(LiveIn); 2390 NewEntryBB.sortUniqueLiveIns(); 2391 2392 // Get rid of the now empty basic block. 2393 EntryBB->removeSuccessor(&NewEntryBB); 2394 MF->remove(EntryBB); 2395 MF->DeleteMachineBasicBlock(EntryBB); 2396 2397 assert(&MF->front() == &NewEntryBB && 2398 "New entry wasn't next in the list of basic block!"); 2399 2400 // Initialize stack protector information. 2401 StackProtector &SP = getAnalysis<StackProtector>(); 2402 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2403 2404 return false; 2405 } 2406