1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/FunctionLoweringInfo.h" 24 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 25 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 26 #include "llvm/CodeGen/LowLevelType.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/StackProtector.h" 35 #include "llvm/CodeGen/TargetFrameLowering.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/CFG.h" 43 #include "llvm/IR/Constant.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GetElementPtrTypeIterator.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/MC/MCContext.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CodeGen.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/LowLevelTypeImpl.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetIntrinsicInfo.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <iterator> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 #define DEBUG_TYPE "irtranslator" 81 82 using namespace llvm; 83 84 static cl::opt<bool> 85 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 86 cl::desc("Should enable CSE in irtranslator"), 87 cl::Optional, cl::init(false)); 88 char IRTranslator::ID = 0; 89 90 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 91 false, false) 92 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 93 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 94 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 95 false, false) 96 97 static void reportTranslationError(MachineFunction &MF, 98 const TargetPassConfig &TPC, 99 OptimizationRemarkEmitter &ORE, 100 OptimizationRemarkMissed &R) { 101 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 102 103 // Print the function name explicitly if we don't have a debug location (which 104 // makes the diagnostic less useful) or if we're going to emit a raw error. 105 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 106 R << (" (in function: " + MF.getName() + ")").str(); 107 108 if (TPC.isGlobalISelAbortEnabled()) 109 report_fatal_error(R.getMsg()); 110 else 111 ORE.emit(R); 112 } 113 114 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } 115 116 #ifndef NDEBUG 117 namespace { 118 /// Verify that every instruction created has the same DILocation as the 119 /// instruction being translated. 120 class DILocationVerifier : public GISelChangeObserver { 121 const Instruction *CurrInst = nullptr; 122 123 public: 124 DILocationVerifier() = default; 125 ~DILocationVerifier() = default; 126 127 const Instruction *getCurrentInst() const { return CurrInst; } 128 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 129 130 void erasingInstr(MachineInstr &MI) override {} 131 void changingInstr(MachineInstr &MI) override {} 132 void changedInstr(MachineInstr &MI) override {} 133 134 void createdInstr(MachineInstr &MI) override { 135 assert(getCurrentInst() && "Inserted instruction without a current MI"); 136 137 // Only print the check message if we're actually checking it. 138 #ifndef NDEBUG 139 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 140 << " was copied to " << MI); 141 #endif 142 // We allow insts in the entry block to have a debug loc line of 0 because 143 // they could have originated from constants, and we don't want a jumpy 144 // debug experience. 145 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 146 MI.getDebugLoc().getLine() == 0) && 147 "Line info was not transferred to all instructions"); 148 } 149 }; 150 } // namespace 151 #endif // ifndef NDEBUG 152 153 154 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 155 AU.addRequired<StackProtector>(); 156 AU.addRequired<TargetPassConfig>(); 157 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 158 getSelectionDAGFallbackAnalysisUsage(AU); 159 MachineFunctionPass::getAnalysisUsage(AU); 160 } 161 162 IRTranslator::ValueToVRegInfo::VRegListT & 163 IRTranslator::allocateVRegs(const Value &Val) { 164 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 165 auto *Regs = VMap.getVRegs(Val); 166 auto *Offsets = VMap.getOffsets(Val); 167 SmallVector<LLT, 4> SplitTys; 168 computeValueLLTs(*DL, *Val.getType(), SplitTys, 169 Offsets->empty() ? Offsets : nullptr); 170 for (unsigned i = 0; i < SplitTys.size(); ++i) 171 Regs->push_back(0); 172 return *Regs; 173 } 174 175 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 176 auto VRegsIt = VMap.findVRegs(Val); 177 if (VRegsIt != VMap.vregs_end()) 178 return *VRegsIt->second; 179 180 if (Val.getType()->isVoidTy()) 181 return *VMap.getVRegs(Val); 182 183 // Create entry for this type. 184 auto *VRegs = VMap.getVRegs(Val); 185 auto *Offsets = VMap.getOffsets(Val); 186 187 assert(Val.getType()->isSized() && 188 "Don't know how to create an empty vreg"); 189 190 SmallVector<LLT, 4> SplitTys; 191 computeValueLLTs(*DL, *Val.getType(), SplitTys, 192 Offsets->empty() ? Offsets : nullptr); 193 194 if (!isa<Constant>(Val)) { 195 for (auto Ty : SplitTys) 196 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 197 return *VRegs; 198 } 199 200 if (Val.getType()->isAggregateType()) { 201 // UndefValue, ConstantAggregateZero 202 auto &C = cast<Constant>(Val); 203 unsigned Idx = 0; 204 while (auto Elt = C.getAggregateElement(Idx++)) { 205 auto EltRegs = getOrCreateVRegs(*Elt); 206 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 207 } 208 } else { 209 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 210 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 211 bool Success = translate(cast<Constant>(Val), VRegs->front()); 212 if (!Success) { 213 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 214 MF->getFunction().getSubprogram(), 215 &MF->getFunction().getEntryBlock()); 216 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 217 reportTranslationError(*MF, *TPC, *ORE, R); 218 return *VRegs; 219 } 220 } 221 222 return *VRegs; 223 } 224 225 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 226 if (FrameIndices.find(&AI) != FrameIndices.end()) 227 return FrameIndices[&AI]; 228 229 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 230 uint64_t Size = 231 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 232 233 // Always allocate at least one byte. 234 Size = std::max<uint64_t>(Size, 1u); 235 236 unsigned Alignment = AI.getAlignment(); 237 if (!Alignment) 238 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 239 240 int &FI = FrameIndices[&AI]; 241 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 242 return FI; 243 } 244 245 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 246 unsigned Alignment = 0; 247 Type *ValTy = nullptr; 248 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 249 Alignment = SI->getAlignment(); 250 ValTy = SI->getValueOperand()->getType(); 251 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 252 Alignment = LI->getAlignment(); 253 ValTy = LI->getType(); 254 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 255 // TODO(PR27168): This instruction has no alignment attribute, but unlike 256 // the default alignment for load/store, the default here is to assume 257 // it has NATURAL alignment, not DataLayout-specified alignment. 258 const DataLayout &DL = AI->getModule()->getDataLayout(); 259 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 260 ValTy = AI->getCompareOperand()->getType(); 261 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 262 // TODO(PR27168): This instruction has no alignment attribute, but unlike 263 // the default alignment for load/store, the default here is to assume 264 // it has NATURAL alignment, not DataLayout-specified alignment. 265 const DataLayout &DL = AI->getModule()->getDataLayout(); 266 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 267 ValTy = AI->getType(); 268 } else { 269 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 270 R << "unable to translate memop: " << ore::NV("Opcode", &I); 271 reportTranslationError(*MF, *TPC, *ORE, R); 272 return 1; 273 } 274 275 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 276 } 277 278 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 279 MachineBasicBlock *&MBB = BBToMBB[&BB]; 280 assert(MBB && "BasicBlock was not encountered before"); 281 return *MBB; 282 } 283 284 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 285 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 286 MachinePreds[Edge].push_back(NewPred); 287 } 288 289 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 290 MachineIRBuilder &MIRBuilder) { 291 // Get or create a virtual register for each value. 292 // Unless the value is a Constant => loadimm cst? 293 // or inline constant each time? 294 // Creation of a virtual register needs to have a size. 295 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 296 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 297 Register Res = getOrCreateVReg(U); 298 uint16_t Flags = 0; 299 if (isa<Instruction>(U)) { 300 const Instruction &I = cast<Instruction>(U); 301 Flags = MachineInstr::copyFlagsFromInstruction(I); 302 } 303 304 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 305 return true; 306 } 307 308 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 309 // -0.0 - X --> G_FNEG 310 if (isa<Constant>(U.getOperand(0)) && 311 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 312 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 313 Register Res = getOrCreateVReg(U); 314 uint16_t Flags = 0; 315 if (isa<Instruction>(U)) { 316 const Instruction &I = cast<Instruction>(U); 317 Flags = MachineInstr::copyFlagsFromInstruction(I); 318 } 319 // Negate the last operand of the FSUB 320 MIRBuilder.buildFNeg(Res, Op1, Flags); 321 return true; 322 } 323 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 324 } 325 326 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 327 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 328 Register Res = getOrCreateVReg(U); 329 uint16_t Flags = 0; 330 if (isa<Instruction>(U)) { 331 const Instruction &I = cast<Instruction>(U); 332 Flags = MachineInstr::copyFlagsFromInstruction(I); 333 } 334 MIRBuilder.buildFNeg(Res, Op0, Flags); 335 return true; 336 } 337 338 bool IRTranslator::translateCompare(const User &U, 339 MachineIRBuilder &MIRBuilder) { 340 auto *CI = dyn_cast<CmpInst>(&U); 341 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 342 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 343 Register Res = getOrCreateVReg(U); 344 CmpInst::Predicate Pred = 345 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 346 cast<ConstantExpr>(U).getPredicate()); 347 if (CmpInst::isIntPredicate(Pred)) 348 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 349 else if (Pred == CmpInst::FCMP_FALSE) 350 MIRBuilder.buildCopy( 351 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 352 else if (Pred == CmpInst::FCMP_TRUE) 353 MIRBuilder.buildCopy( 354 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 355 else { 356 assert(CI && "Instruction should be CmpInst"); 357 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, 358 MachineInstr::copyFlagsFromInstruction(*CI)); 359 } 360 361 return true; 362 } 363 364 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 365 const ReturnInst &RI = cast<ReturnInst>(U); 366 const Value *Ret = RI.getReturnValue(); 367 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 368 Ret = nullptr; 369 370 ArrayRef<Register> VRegs; 371 if (Ret) 372 VRegs = getOrCreateVRegs(*Ret); 373 374 Register SwiftErrorVReg = 0; 375 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 376 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 377 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 378 } 379 380 // The target may mess up with the insertion point, but 381 // this is not important as a return is the last instruction 382 // of the block anyway. 383 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 384 } 385 386 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 387 const BranchInst &BrInst = cast<BranchInst>(U); 388 unsigned Succ = 0; 389 if (!BrInst.isUnconditional()) { 390 // We want a G_BRCOND to the true BB followed by an unconditional branch. 391 Register Tst = getOrCreateVReg(*BrInst.getCondition()); 392 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 393 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 394 MIRBuilder.buildBrCond(Tst, TrueBB); 395 } 396 397 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 398 MachineBasicBlock &TgtBB = getMBB(BrTgt); 399 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 400 401 // If the unconditional target is the layout successor, fallthrough. 402 if (!CurBB.isLayoutSuccessor(&TgtBB)) 403 MIRBuilder.buildBr(TgtBB); 404 405 // Link successors. 406 for (const BasicBlock *Succ : successors(&BrInst)) 407 CurBB.addSuccessor(&getMBB(*Succ)); 408 return true; 409 } 410 411 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 412 MachineBasicBlock *Dst, 413 BranchProbability Prob) { 414 if (!FuncInfo.BPI) { 415 Src->addSuccessorWithoutProb(Dst); 416 return; 417 } 418 if (Prob.isUnknown()) 419 Prob = getEdgeProbability(Src, Dst); 420 Src->addSuccessor(Dst, Prob); 421 } 422 423 BranchProbability 424 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 425 const MachineBasicBlock *Dst) const { 426 const BasicBlock *SrcBB = Src->getBasicBlock(); 427 const BasicBlock *DstBB = Dst->getBasicBlock(); 428 if (!FuncInfo.BPI) { 429 // If BPI is not available, set the default probability as 1 / N, where N is 430 // the number of successors. 431 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 432 return BranchProbability(1, SuccSize); 433 } 434 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 435 } 436 437 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 438 using namespace SwitchCG; 439 // Extract cases from the switch. 440 const SwitchInst &SI = cast<SwitchInst>(U); 441 BranchProbabilityInfo *BPI = FuncInfo.BPI; 442 CaseClusterVector Clusters; 443 Clusters.reserve(SI.getNumCases()); 444 for (auto &I : SI.cases()) { 445 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 446 assert(Succ && "Could not find successor mbb in mapping"); 447 const ConstantInt *CaseVal = I.getCaseValue(); 448 BranchProbability Prob = 449 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 450 : BranchProbability(1, SI.getNumCases() + 1); 451 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 452 } 453 454 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 455 456 // Cluster adjacent cases with the same destination. We do this at all 457 // optimization levels because it's cheap to do and will make codegen faster 458 // if there are many clusters. 459 sortAndRangeify(Clusters); 460 461 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 462 463 // If there is only the default destination, jump there directly. 464 if (Clusters.empty()) { 465 SwitchMBB->addSuccessor(DefaultMBB); 466 if (DefaultMBB != SwitchMBB->getNextNode()) 467 MIB.buildBr(*DefaultMBB); 468 return true; 469 } 470 471 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 472 473 LLVM_DEBUG({ 474 dbgs() << "Case clusters: "; 475 for (const CaseCluster &C : Clusters) { 476 if (C.Kind == CC_JumpTable) 477 dbgs() << "JT:"; 478 if (C.Kind == CC_BitTests) 479 dbgs() << "BT:"; 480 481 C.Low->getValue().print(dbgs(), true); 482 if (C.Low != C.High) { 483 dbgs() << '-'; 484 C.High->getValue().print(dbgs(), true); 485 } 486 dbgs() << ' '; 487 } 488 dbgs() << '\n'; 489 }); 490 491 assert(!Clusters.empty()); 492 SwitchWorkList WorkList; 493 CaseClusterIt First = Clusters.begin(); 494 CaseClusterIt Last = Clusters.end() - 1; 495 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 496 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 497 498 // FIXME: At the moment we don't do any splitting optimizations here like 499 // SelectionDAG does, so this worklist only has one entry. 500 while (!WorkList.empty()) { 501 SwitchWorkListItem W = WorkList.back(); 502 WorkList.pop_back(); 503 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 504 return false; 505 } 506 return true; 507 } 508 509 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 510 MachineBasicBlock *MBB) { 511 // Emit the code for the jump table 512 assert(JT.Reg != -1U && "Should lower JT Header first!"); 513 MachineIRBuilder MIB(*MBB->getParent()); 514 MIB.setMBB(*MBB); 515 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 516 517 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 518 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 519 520 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 521 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 522 } 523 524 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 525 SwitchCG::JumpTableHeader &JTH, 526 MachineBasicBlock *HeaderBB) { 527 MachineIRBuilder MIB(*HeaderBB->getParent()); 528 MIB.setMBB(*HeaderBB); 529 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 530 531 const Value &SValue = *JTH.SValue; 532 // Subtract the lowest switch case value from the value being switched on. 533 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 534 Register SwitchOpReg = getOrCreateVReg(SValue); 535 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 536 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 537 538 // This value may be smaller or larger than the target's pointer type, and 539 // therefore require extension or truncating. 540 Type *PtrIRTy = SValue.getType()->getPointerTo(); 541 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 542 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 543 544 JT.Reg = Sub.getReg(0); 545 546 if (JTH.OmitRangeCheck) { 547 if (JT.MBB != HeaderBB->getNextNode()) 548 MIB.buildBr(*JT.MBB); 549 return true; 550 } 551 552 // Emit the range check for the jump table, and branch to the default block 553 // for the switch statement if the value being switched on exceeds the 554 // largest case in the switch. 555 auto Cst = getOrCreateVReg( 556 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 557 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 558 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 559 560 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 561 562 // Avoid emitting unnecessary branches to the next block. 563 if (JT.MBB != HeaderBB->getNextNode()) 564 BrCond = MIB.buildBr(*JT.MBB); 565 return true; 566 } 567 568 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 569 MachineBasicBlock *SwitchBB, 570 MachineIRBuilder &MIB) { 571 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 572 Register Cond; 573 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 574 MIB.setDebugLoc(CB.DbgLoc); 575 MIB.setMBB(*CB.ThisBB); 576 577 if (CB.PredInfo.NoCmp) { 578 // Branch or fall through to TrueBB. 579 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 580 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 581 CB.ThisBB); 582 CB.ThisBB->normalizeSuccProbs(); 583 if (CB.TrueBB != CB.ThisBB->getNextNode()) 584 MIB.buildBr(*CB.TrueBB); 585 MIB.setDebugLoc(OldDbgLoc); 586 return; 587 } 588 589 const LLT i1Ty = LLT::scalar(1); 590 // Build the compare. 591 if (!CB.CmpMHS) { 592 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 593 Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 594 } else { 595 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 596 "Can only handle SLE ranges"); 597 598 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 599 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 600 601 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 602 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 603 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 604 Cond = 605 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 606 } else { 607 const LLT CmpTy = MRI->getType(CmpOpReg); 608 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 609 auto Diff = MIB.buildConstant(CmpTy, High - Low); 610 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 611 } 612 } 613 614 // Update successor info 615 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 616 617 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 618 CB.ThisBB); 619 620 // TrueBB and FalseBB are always different unless the incoming IR is 621 // degenerate. This only happens when running llc on weird IR. 622 if (CB.TrueBB != CB.FalseBB) 623 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 624 CB.ThisBB->normalizeSuccProbs(); 625 626 // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) 627 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 628 CB.ThisBB); 629 630 // If the lhs block is the next block, invert the condition so that we can 631 // fall through to the lhs instead of the rhs block. 632 if (CB.TrueBB == CB.ThisBB->getNextNode()) { 633 std::swap(CB.TrueBB, CB.FalseBB); 634 auto True = MIB.buildConstant(i1Ty, 1); 635 Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0); 636 } 637 638 MIB.buildBrCond(Cond, *CB.TrueBB); 639 MIB.buildBr(*CB.FalseBB); 640 MIB.setDebugLoc(OldDbgLoc); 641 } 642 643 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 644 MachineBasicBlock *SwitchMBB, 645 MachineBasicBlock *CurMBB, 646 MachineBasicBlock *DefaultMBB, 647 MachineIRBuilder &MIB, 648 MachineFunction::iterator BBI, 649 BranchProbability UnhandledProbs, 650 SwitchCG::CaseClusterIt I, 651 MachineBasicBlock *Fallthrough, 652 bool FallthroughUnreachable) { 653 using namespace SwitchCG; 654 MachineFunction *CurMF = SwitchMBB->getParent(); 655 // FIXME: Optimize away range check based on pivot comparisons. 656 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 657 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 658 BranchProbability DefaultProb = W.DefaultProb; 659 660 // The jump block hasn't been inserted yet; insert it here. 661 MachineBasicBlock *JumpMBB = JT->MBB; 662 CurMF->insert(BBI, JumpMBB); 663 664 // Since the jump table block is separate from the switch block, we need 665 // to keep track of it as a machine predecessor to the default block, 666 // otherwise we lose the phi edges. 667 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 668 CurMBB); 669 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 670 JumpMBB); 671 672 auto JumpProb = I->Prob; 673 auto FallthroughProb = UnhandledProbs; 674 675 // If the default statement is a target of the jump table, we evenly 676 // distribute the default probability to successors of CurMBB. Also 677 // update the probability on the edge from JumpMBB to Fallthrough. 678 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 679 SE = JumpMBB->succ_end(); 680 SI != SE; ++SI) { 681 if (*SI == DefaultMBB) { 682 JumpProb += DefaultProb / 2; 683 FallthroughProb -= DefaultProb / 2; 684 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 685 JumpMBB->normalizeSuccProbs(); 686 } else { 687 // Also record edges from the jump table block to it's successors. 688 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 689 JumpMBB); 690 } 691 } 692 693 // Skip the range check if the fallthrough block is unreachable. 694 if (FallthroughUnreachable) 695 JTH->OmitRangeCheck = true; 696 697 if (!JTH->OmitRangeCheck) 698 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 699 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 700 CurMBB->normalizeSuccProbs(); 701 702 // The jump table header will be inserted in our current block, do the 703 // range check, and fall through to our fallthrough block. 704 JTH->HeaderBB = CurMBB; 705 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 706 707 // If we're in the right place, emit the jump table header right now. 708 if (CurMBB == SwitchMBB) { 709 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 710 return false; 711 JTH->Emitted = true; 712 } 713 return true; 714 } 715 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 716 Value *Cond, 717 MachineBasicBlock *Fallthrough, 718 bool FallthroughUnreachable, 719 BranchProbability UnhandledProbs, 720 MachineBasicBlock *CurMBB, 721 MachineIRBuilder &MIB, 722 MachineBasicBlock *SwitchMBB) { 723 using namespace SwitchCG; 724 const Value *RHS, *LHS, *MHS; 725 CmpInst::Predicate Pred; 726 if (I->Low == I->High) { 727 // Check Cond == I->Low. 728 Pred = CmpInst::ICMP_EQ; 729 LHS = Cond; 730 RHS = I->Low; 731 MHS = nullptr; 732 } else { 733 // Check I->Low <= Cond <= I->High. 734 Pred = CmpInst::ICMP_SLE; 735 LHS = I->Low; 736 MHS = Cond; 737 RHS = I->High; 738 } 739 740 // If Fallthrough is unreachable, fold away the comparison. 741 // The false probability is the sum of all unhandled cases. 742 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 743 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 744 745 emitSwitchCase(CB, SwitchMBB, MIB); 746 return true; 747 } 748 749 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 750 Value *Cond, 751 MachineBasicBlock *SwitchMBB, 752 MachineBasicBlock *DefaultMBB, 753 MachineIRBuilder &MIB) { 754 using namespace SwitchCG; 755 MachineFunction *CurMF = FuncInfo.MF; 756 MachineBasicBlock *NextMBB = nullptr; 757 MachineFunction::iterator BBI(W.MBB); 758 if (++BBI != FuncInfo.MF->end()) 759 NextMBB = &*BBI; 760 761 if (EnableOpts) { 762 // Here, we order cases by probability so the most likely case will be 763 // checked first. However, two clusters can have the same probability in 764 // which case their relative ordering is non-deterministic. So we use Low 765 // as a tie-breaker as clusters are guaranteed to never overlap. 766 llvm::sort(W.FirstCluster, W.LastCluster + 1, 767 [](const CaseCluster &a, const CaseCluster &b) { 768 return a.Prob != b.Prob 769 ? a.Prob > b.Prob 770 : a.Low->getValue().slt(b.Low->getValue()); 771 }); 772 773 // Rearrange the case blocks so that the last one falls through if possible 774 // without changing the order of probabilities. 775 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 776 --I; 777 if (I->Prob > W.LastCluster->Prob) 778 break; 779 if (I->Kind == CC_Range && I->MBB == NextMBB) { 780 std::swap(*I, *W.LastCluster); 781 break; 782 } 783 } 784 } 785 786 // Compute total probability. 787 BranchProbability DefaultProb = W.DefaultProb; 788 BranchProbability UnhandledProbs = DefaultProb; 789 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 790 UnhandledProbs += I->Prob; 791 792 MachineBasicBlock *CurMBB = W.MBB; 793 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 794 bool FallthroughUnreachable = false; 795 MachineBasicBlock *Fallthrough; 796 if (I == W.LastCluster) { 797 // For the last cluster, fall through to the default destination. 798 Fallthrough = DefaultMBB; 799 FallthroughUnreachable = isa<UnreachableInst>( 800 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 801 } else { 802 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 803 CurMF->insert(BBI, Fallthrough); 804 } 805 UnhandledProbs -= I->Prob; 806 807 switch (I->Kind) { 808 case CC_BitTests: { 809 LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented"); 810 return false; // Bit tests currently unimplemented. 811 } 812 case CC_JumpTable: { 813 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 814 UnhandledProbs, I, Fallthrough, 815 FallthroughUnreachable)) { 816 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 817 return false; 818 } 819 break; 820 } 821 case CC_Range: { 822 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 823 FallthroughUnreachable, UnhandledProbs, 824 CurMBB, MIB, SwitchMBB)) { 825 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 826 return false; 827 } 828 break; 829 } 830 } 831 CurMBB = Fallthrough; 832 } 833 834 return true; 835 } 836 837 bool IRTranslator::translateIndirectBr(const User &U, 838 MachineIRBuilder &MIRBuilder) { 839 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 840 841 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 842 MIRBuilder.buildBrIndirect(Tgt); 843 844 // Link successors. 845 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 846 for (const BasicBlock *Succ : successors(&BrInst)) 847 CurBB.addSuccessor(&getMBB(*Succ)); 848 849 return true; 850 } 851 852 static bool isSwiftError(const Value *V) { 853 if (auto Arg = dyn_cast<Argument>(V)) 854 return Arg->hasSwiftErrorAttr(); 855 if (auto AI = dyn_cast<AllocaInst>(V)) 856 return AI->isSwiftError(); 857 return false; 858 } 859 860 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 861 const LoadInst &LI = cast<LoadInst>(U); 862 if (DL->getTypeStoreSize(LI.getType()) == 0) 863 return true; 864 865 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 866 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 867 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 868 869 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 870 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 871 872 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 873 assert(Regs.size() == 1 && "swifterror should be single pointer"); 874 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 875 LI.getPointerOperand()); 876 MIRBuilder.buildCopy(Regs[0], VReg); 877 return true; 878 } 879 880 auto &TLI = *MF->getSubtarget().getTargetLowering(); 881 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 882 883 const MDNode *Ranges = 884 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 885 for (unsigned i = 0; i < Regs.size(); ++i) { 886 Register Addr; 887 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 888 889 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 890 unsigned BaseAlign = getMemOpAlignment(LI); 891 AAMDNodes AAMetadata; 892 LI.getAAMetadata(AAMetadata); 893 auto MMO = MF->getMachineMemOperand( 894 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 895 MinAlign(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges, 896 LI.getSyncScopeID(), LI.getOrdering()); 897 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 898 } 899 900 return true; 901 } 902 903 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 904 const StoreInst &SI = cast<StoreInst>(U); 905 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 906 return true; 907 908 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 909 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 910 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 911 912 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 913 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 914 915 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 916 assert(Vals.size() == 1 && "swifterror should be single pointer"); 917 918 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 919 SI.getPointerOperand()); 920 MIRBuilder.buildCopy(VReg, Vals[0]); 921 return true; 922 } 923 924 auto &TLI = *MF->getSubtarget().getTargetLowering(); 925 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 926 927 for (unsigned i = 0; i < Vals.size(); ++i) { 928 Register Addr; 929 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 930 931 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 932 unsigned BaseAlign = getMemOpAlignment(SI); 933 AAMDNodes AAMetadata; 934 SI.getAAMetadata(AAMetadata); 935 auto MMO = MF->getMachineMemOperand( 936 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 937 MinAlign(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr, 938 SI.getSyncScopeID(), SI.getOrdering()); 939 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 940 } 941 return true; 942 } 943 944 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 945 const Value *Src = U.getOperand(0); 946 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 947 948 // getIndexedOffsetInType is designed for GEPs, so the first index is the 949 // usual array element rather than looking into the actual aggregate. 950 SmallVector<Value *, 1> Indices; 951 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 952 953 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 954 for (auto Idx : EVI->indices()) 955 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 956 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 957 for (auto Idx : IVI->indices()) 958 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 959 } else { 960 for (unsigned i = 1; i < U.getNumOperands(); ++i) 961 Indices.push_back(U.getOperand(i)); 962 } 963 964 return 8 * static_cast<uint64_t>( 965 DL.getIndexedOffsetInType(Src->getType(), Indices)); 966 } 967 968 bool IRTranslator::translateExtractValue(const User &U, 969 MachineIRBuilder &MIRBuilder) { 970 const Value *Src = U.getOperand(0); 971 uint64_t Offset = getOffsetFromIndices(U, *DL); 972 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 973 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 974 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 975 auto &DstRegs = allocateVRegs(U); 976 977 for (unsigned i = 0; i < DstRegs.size(); ++i) 978 DstRegs[i] = SrcRegs[Idx++]; 979 980 return true; 981 } 982 983 bool IRTranslator::translateInsertValue(const User &U, 984 MachineIRBuilder &MIRBuilder) { 985 const Value *Src = U.getOperand(0); 986 uint64_t Offset = getOffsetFromIndices(U, *DL); 987 auto &DstRegs = allocateVRegs(U); 988 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 989 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 990 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 991 auto InsertedIt = InsertedRegs.begin(); 992 993 for (unsigned i = 0; i < DstRegs.size(); ++i) { 994 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 995 DstRegs[i] = *InsertedIt++; 996 else 997 DstRegs[i] = SrcRegs[i]; 998 } 999 1000 return true; 1001 } 1002 1003 bool IRTranslator::translateSelect(const User &U, 1004 MachineIRBuilder &MIRBuilder) { 1005 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1006 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1007 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1008 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1009 1010 const SelectInst &SI = cast<SelectInst>(U); 1011 uint16_t Flags = 0; 1012 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 1013 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 1014 1015 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1016 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1017 } 1018 1019 return true; 1020 } 1021 1022 bool IRTranslator::translateBitCast(const User &U, 1023 MachineIRBuilder &MIRBuilder) { 1024 // If we're bitcasting to the source type, we can reuse the source vreg. 1025 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1026 getLLTForType(*U.getType(), *DL)) { 1027 Register SrcReg = getOrCreateVReg(*U.getOperand(0)); 1028 auto &Regs = *VMap.getVRegs(U); 1029 // If we already assigned a vreg for this bitcast, we can't change that. 1030 // Emit a copy to satisfy the users we already emitted. 1031 if (!Regs.empty()) 1032 MIRBuilder.buildCopy(Regs[0], SrcReg); 1033 else { 1034 Regs.push_back(SrcReg); 1035 VMap.getOffsets(U)->push_back(0); 1036 } 1037 return true; 1038 } 1039 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1040 } 1041 1042 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1043 MachineIRBuilder &MIRBuilder) { 1044 Register Op = getOrCreateVReg(*U.getOperand(0)); 1045 Register Res = getOrCreateVReg(U); 1046 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1047 return true; 1048 } 1049 1050 bool IRTranslator::translateGetElementPtr(const User &U, 1051 MachineIRBuilder &MIRBuilder) { 1052 Value &Op0 = *U.getOperand(0); 1053 Register BaseReg = getOrCreateVReg(Op0); 1054 Type *PtrIRTy = Op0.getType(); 1055 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1056 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1057 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1058 1059 // Normalize Vector GEP - all scalar operands should be converted to the 1060 // splat vector. 1061 unsigned VectorWidth = 0; 1062 if (auto *VT = dyn_cast<VectorType>(U.getType())) 1063 VectorWidth = VT->getNumElements(); 1064 1065 // We might need to splat the base pointer into a vector if the offsets 1066 // are vectors. 1067 if (VectorWidth && !PtrTy.isVector()) { 1068 BaseReg = 1069 MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg) 1070 .getReg(0); 1071 PtrIRTy = VectorType::get(PtrIRTy, VectorWidth); 1072 PtrTy = getLLTForType(*PtrIRTy, *DL); 1073 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1074 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1075 } 1076 1077 int64_t Offset = 0; 1078 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1079 GTI != E; ++GTI) { 1080 const Value *Idx = GTI.getOperand(); 1081 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1082 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1083 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1084 continue; 1085 } else { 1086 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1087 1088 // If this is a scalar constant or a splat vector of constants, 1089 // handle it quickly. 1090 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1091 Offset += ElementSize * CI->getSExtValue(); 1092 continue; 1093 } 1094 1095 if (Offset != 0) { 1096 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1097 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1098 .getReg(0); 1099 Offset = 0; 1100 } 1101 1102 Register IdxReg = getOrCreateVReg(*Idx); 1103 LLT IdxTy = MRI->getType(IdxReg); 1104 if (IdxTy != OffsetTy) { 1105 if (!IdxTy.isVector() && VectorWidth) { 1106 IdxReg = MIRBuilder.buildSplatVector( 1107 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1108 } 1109 1110 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1111 } 1112 1113 // N = N + Idx * ElementSize; 1114 // Avoid doing it for ElementSize of 1. 1115 Register GepOffsetReg; 1116 if (ElementSize != 1) { 1117 auto ElementSizeMIB = MIRBuilder.buildConstant( 1118 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1119 GepOffsetReg = 1120 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1121 } else 1122 GepOffsetReg = IdxReg; 1123 1124 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1125 } 1126 } 1127 1128 if (Offset != 0) { 1129 auto OffsetMIB = 1130 MIRBuilder.buildConstant(OffsetTy, Offset); 1131 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1132 return true; 1133 } 1134 1135 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1136 return true; 1137 } 1138 1139 bool IRTranslator::translateMemFunc(const CallInst &CI, 1140 MachineIRBuilder &MIRBuilder, 1141 Intrinsic::ID ID) { 1142 1143 // If the source is undef, then just emit a nop. 1144 if (isa<UndefValue>(CI.getArgOperand(1))) 1145 return true; 1146 1147 ArrayRef<Register> Res; 1148 auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true); 1149 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) 1150 ICall.addUse(getOrCreateVReg(**AI)); 1151 1152 unsigned DstAlign = 0, SrcAlign = 0; 1153 unsigned IsVol = 1154 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1155 ->getZExtValue(); 1156 1157 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1158 DstAlign = std::max<unsigned>(MCI->getDestAlignment(), 1); 1159 SrcAlign = std::max<unsigned>(MCI->getSourceAlignment(), 1); 1160 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1161 DstAlign = std::max<unsigned>(MMI->getDestAlignment(), 1); 1162 SrcAlign = std::max<unsigned>(MMI->getSourceAlignment(), 1); 1163 } else { 1164 auto *MSI = cast<MemSetInst>(&CI); 1165 DstAlign = std::max<unsigned>(MSI->getDestAlignment(), 1); 1166 } 1167 1168 // We need to propagate the tail call flag from the IR inst as an argument. 1169 // Otherwise, we have to pessimize and assume later that we cannot tail call 1170 // any memory intrinsics. 1171 ICall.addImm(CI.isTailCall() ? 1 : 0); 1172 1173 // Create mem operands to store the alignment and volatile info. 1174 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1175 ICall.addMemOperand(MF->getMachineMemOperand( 1176 MachinePointerInfo(CI.getArgOperand(0)), 1177 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1178 if (ID != Intrinsic::memset) 1179 ICall.addMemOperand(MF->getMachineMemOperand( 1180 MachinePointerInfo(CI.getArgOperand(1)), 1181 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1182 1183 return true; 1184 } 1185 1186 void IRTranslator::getStackGuard(Register DstReg, 1187 MachineIRBuilder &MIRBuilder) { 1188 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1189 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1190 auto MIB = 1191 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1192 1193 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1194 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1195 if (!Global) 1196 return; 1197 1198 MachinePointerInfo MPInfo(Global); 1199 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1200 MachineMemOperand::MODereferenceable; 1201 MachineMemOperand *MemRef = 1202 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 1203 DL->getPointerABIAlignment(0).value()); 1204 MIB.setMemRefs({MemRef}); 1205 } 1206 1207 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1208 MachineIRBuilder &MIRBuilder) { 1209 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1210 MIRBuilder.buildInstr( 1211 Op, {ResRegs[0], ResRegs[1]}, 1212 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1213 1214 return true; 1215 } 1216 1217 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1218 switch (ID) { 1219 default: 1220 break; 1221 case Intrinsic::bswap: 1222 return TargetOpcode::G_BSWAP; 1223 case Intrinsic::bitreverse: 1224 return TargetOpcode::G_BITREVERSE; 1225 case Intrinsic::ceil: 1226 return TargetOpcode::G_FCEIL; 1227 case Intrinsic::cos: 1228 return TargetOpcode::G_FCOS; 1229 case Intrinsic::ctpop: 1230 return TargetOpcode::G_CTPOP; 1231 case Intrinsic::exp: 1232 return TargetOpcode::G_FEXP; 1233 case Intrinsic::exp2: 1234 return TargetOpcode::G_FEXP2; 1235 case Intrinsic::fabs: 1236 return TargetOpcode::G_FABS; 1237 case Intrinsic::copysign: 1238 return TargetOpcode::G_FCOPYSIGN; 1239 case Intrinsic::minnum: 1240 return TargetOpcode::G_FMINNUM; 1241 case Intrinsic::maxnum: 1242 return TargetOpcode::G_FMAXNUM; 1243 case Intrinsic::minimum: 1244 return TargetOpcode::G_FMINIMUM; 1245 case Intrinsic::maximum: 1246 return TargetOpcode::G_FMAXIMUM; 1247 case Intrinsic::canonicalize: 1248 return TargetOpcode::G_FCANONICALIZE; 1249 case Intrinsic::floor: 1250 return TargetOpcode::G_FFLOOR; 1251 case Intrinsic::fma: 1252 return TargetOpcode::G_FMA; 1253 case Intrinsic::log: 1254 return TargetOpcode::G_FLOG; 1255 case Intrinsic::log2: 1256 return TargetOpcode::G_FLOG2; 1257 case Intrinsic::log10: 1258 return TargetOpcode::G_FLOG10; 1259 case Intrinsic::nearbyint: 1260 return TargetOpcode::G_FNEARBYINT; 1261 case Intrinsic::pow: 1262 return TargetOpcode::G_FPOW; 1263 case Intrinsic::rint: 1264 return TargetOpcode::G_FRINT; 1265 case Intrinsic::round: 1266 return TargetOpcode::G_INTRINSIC_ROUND; 1267 case Intrinsic::sin: 1268 return TargetOpcode::G_FSIN; 1269 case Intrinsic::sqrt: 1270 return TargetOpcode::G_FSQRT; 1271 case Intrinsic::trunc: 1272 return TargetOpcode::G_INTRINSIC_TRUNC; 1273 case Intrinsic::readcyclecounter: 1274 return TargetOpcode::G_READCYCLECOUNTER; 1275 } 1276 return Intrinsic::not_intrinsic; 1277 } 1278 1279 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1280 Intrinsic::ID ID, 1281 MachineIRBuilder &MIRBuilder) { 1282 1283 unsigned Op = getSimpleIntrinsicOpcode(ID); 1284 1285 // Is this a simple intrinsic? 1286 if (Op == Intrinsic::not_intrinsic) 1287 return false; 1288 1289 // Yes. Let's translate it. 1290 SmallVector<llvm::SrcOp, 4> VRegs; 1291 for (auto &Arg : CI.arg_operands()) 1292 VRegs.push_back(getOrCreateVReg(*Arg)); 1293 1294 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1295 MachineInstr::copyFlagsFromInstruction(CI)); 1296 return true; 1297 } 1298 1299 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1300 MachineIRBuilder &MIRBuilder) { 1301 1302 // If this is a simple intrinsic (that is, we just need to add a def of 1303 // a vreg, and uses for each arg operand, then translate it. 1304 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1305 return true; 1306 1307 switch (ID) { 1308 default: 1309 break; 1310 case Intrinsic::lifetime_start: 1311 case Intrinsic::lifetime_end: { 1312 // No stack colouring in O0, discard region information. 1313 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1314 return true; 1315 1316 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1317 : TargetOpcode::LIFETIME_END; 1318 1319 // Get the underlying objects for the location passed on the lifetime 1320 // marker. 1321 SmallVector<const Value *, 4> Allocas; 1322 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 1323 1324 // Iterate over each underlying object, creating lifetime markers for each 1325 // static alloca. Quit if we find a non-static alloca. 1326 for (const Value *V : Allocas) { 1327 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1328 if (!AI) 1329 continue; 1330 1331 if (!AI->isStaticAlloca()) 1332 return true; 1333 1334 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1335 } 1336 return true; 1337 } 1338 case Intrinsic::dbg_declare: { 1339 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1340 assert(DI.getVariable() && "Missing variable"); 1341 1342 const Value *Address = DI.getAddress(); 1343 if (!Address || isa<UndefValue>(Address)) { 1344 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1345 return true; 1346 } 1347 1348 assert(DI.getVariable()->isValidLocationForIntrinsic( 1349 MIRBuilder.getDebugLoc()) && 1350 "Expected inlined-at fields to agree"); 1351 auto AI = dyn_cast<AllocaInst>(Address); 1352 if (AI && AI->isStaticAlloca()) { 1353 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1354 // instructions (in fact, they get ignored if they *do* exist). 1355 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1356 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1357 } else { 1358 // A dbg.declare describes the address of a source variable, so lower it 1359 // into an indirect DBG_VALUE. 1360 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1361 DI.getVariable(), DI.getExpression()); 1362 } 1363 return true; 1364 } 1365 case Intrinsic::dbg_label: { 1366 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1367 assert(DI.getLabel() && "Missing label"); 1368 1369 assert(DI.getLabel()->isValidLocationForIntrinsic( 1370 MIRBuilder.getDebugLoc()) && 1371 "Expected inlined-at fields to agree"); 1372 1373 MIRBuilder.buildDbgLabel(DI.getLabel()); 1374 return true; 1375 } 1376 case Intrinsic::vaend: 1377 // No target I know of cares about va_end. Certainly no in-tree target 1378 // does. Simplest intrinsic ever! 1379 return true; 1380 case Intrinsic::vastart: { 1381 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1382 Value *Ptr = CI.getArgOperand(0); 1383 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1384 1385 // FIXME: Get alignment 1386 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1387 .addMemOperand(MF->getMachineMemOperand( 1388 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); 1389 return true; 1390 } 1391 case Intrinsic::dbg_value: { 1392 // This form of DBG_VALUE is target-independent. 1393 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1394 const Value *V = DI.getValue(); 1395 assert(DI.getVariable()->isValidLocationForIntrinsic( 1396 MIRBuilder.getDebugLoc()) && 1397 "Expected inlined-at fields to agree"); 1398 if (!V) { 1399 // Currently the optimizer can produce this; insert an undef to 1400 // help debugging. Probably the optimizer should not do this. 1401 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1402 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1403 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1404 } else { 1405 for (Register Reg : getOrCreateVRegs(*V)) { 1406 // FIXME: This does not handle register-indirect values at offset 0. The 1407 // direct/indirect thing shouldn't really be handled by something as 1408 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1409 // pretty baked in right now. 1410 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1411 } 1412 } 1413 return true; 1414 } 1415 case Intrinsic::uadd_with_overflow: 1416 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1417 case Intrinsic::sadd_with_overflow: 1418 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1419 case Intrinsic::usub_with_overflow: 1420 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1421 case Intrinsic::ssub_with_overflow: 1422 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1423 case Intrinsic::umul_with_overflow: 1424 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1425 case Intrinsic::smul_with_overflow: 1426 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1427 case Intrinsic::uadd_sat: 1428 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 1429 case Intrinsic::sadd_sat: 1430 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 1431 case Intrinsic::usub_sat: 1432 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 1433 case Intrinsic::ssub_sat: 1434 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 1435 case Intrinsic::fmuladd: { 1436 const TargetMachine &TM = MF->getTarget(); 1437 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1438 Register Dst = getOrCreateVReg(CI); 1439 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1440 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1441 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1442 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1443 TLI.isFMAFasterThanFMulAndFAdd(*MF, 1444 TLI.getValueType(*DL, CI.getType()))) { 1445 // TODO: Revisit this to see if we should move this part of the 1446 // lowering to the combiner. 1447 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 1448 MachineInstr::copyFlagsFromInstruction(CI)); 1449 } else { 1450 LLT Ty = getLLTForType(*CI.getType(), *DL); 1451 auto FMul = MIRBuilder.buildFMul( 1452 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 1453 MIRBuilder.buildFAdd(Dst, FMul, Op2, 1454 MachineInstr::copyFlagsFromInstruction(CI)); 1455 } 1456 return true; 1457 } 1458 case Intrinsic::memcpy: 1459 case Intrinsic::memmove: 1460 case Intrinsic::memset: 1461 return translateMemFunc(CI, MIRBuilder, ID); 1462 case Intrinsic::eh_typeid_for: { 1463 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1464 Register Reg = getOrCreateVReg(CI); 1465 unsigned TypeID = MF->getTypeIDFor(GV); 1466 MIRBuilder.buildConstant(Reg, TypeID); 1467 return true; 1468 } 1469 case Intrinsic::objectsize: 1470 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1471 1472 case Intrinsic::is_constant: 1473 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1474 1475 case Intrinsic::stackguard: 1476 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1477 return true; 1478 case Intrinsic::stackprotector: { 1479 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1480 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1481 getStackGuard(GuardVal, MIRBuilder); 1482 1483 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1484 int FI = getOrCreateFrameIndex(*Slot); 1485 MF->getFrameInfo().setStackProtectorIndex(FI); 1486 1487 MIRBuilder.buildStore( 1488 GuardVal, getOrCreateVReg(*Slot), 1489 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1490 MachineMemOperand::MOStore | 1491 MachineMemOperand::MOVolatile, 1492 PtrTy.getSizeInBits() / 8, 8)); 1493 return true; 1494 } 1495 case Intrinsic::stacksave: { 1496 // Save the stack pointer to the location provided by the intrinsic. 1497 Register Reg = getOrCreateVReg(CI); 1498 Register StackPtr = MF->getSubtarget() 1499 .getTargetLowering() 1500 ->getStackPointerRegisterToSaveRestore(); 1501 1502 // If the target doesn't specify a stack pointer, then fall back. 1503 if (!StackPtr) 1504 return false; 1505 1506 MIRBuilder.buildCopy(Reg, StackPtr); 1507 return true; 1508 } 1509 case Intrinsic::stackrestore: { 1510 // Restore the stack pointer from the location provided by the intrinsic. 1511 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1512 Register StackPtr = MF->getSubtarget() 1513 .getTargetLowering() 1514 ->getStackPointerRegisterToSaveRestore(); 1515 1516 // If the target doesn't specify a stack pointer, then fall back. 1517 if (!StackPtr) 1518 return false; 1519 1520 MIRBuilder.buildCopy(StackPtr, Reg); 1521 return true; 1522 } 1523 case Intrinsic::cttz: 1524 case Intrinsic::ctlz: { 1525 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1526 bool isTrailing = ID == Intrinsic::cttz; 1527 unsigned Opcode = isTrailing 1528 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1529 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1530 : Cst->isZero() ? TargetOpcode::G_CTLZ 1531 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1532 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 1533 {getOrCreateVReg(*CI.getArgOperand(0))}); 1534 return true; 1535 } 1536 case Intrinsic::invariant_start: { 1537 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1538 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 1539 MIRBuilder.buildUndef(Undef); 1540 return true; 1541 } 1542 case Intrinsic::invariant_end: 1543 return true; 1544 case Intrinsic::assume: 1545 case Intrinsic::var_annotation: 1546 case Intrinsic::sideeffect: 1547 // Discard annotate attributes, assumptions, and artificial side-effects. 1548 return true; 1549 case Intrinsic::read_register: { 1550 Value *Arg = CI.getArgOperand(0); 1551 MIRBuilder 1552 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 1553 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 1554 return true; 1555 } 1556 case Intrinsic::write_register: { 1557 Value *Arg = CI.getArgOperand(0); 1558 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 1559 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 1560 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 1561 return true; 1562 } 1563 } 1564 return false; 1565 } 1566 1567 bool IRTranslator::translateInlineAsm(const CallInst &CI, 1568 MachineIRBuilder &MIRBuilder) { 1569 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 1570 StringRef ConstraintStr = IA.getConstraintString(); 1571 1572 bool HasOnlyMemoryClobber = false; 1573 if (!ConstraintStr.empty()) { 1574 // Until we have full inline assembly support, we just try to handle the 1575 // very simple case of just "~{memory}" to avoid falling back so often. 1576 if (ConstraintStr != "~{memory}") 1577 return false; 1578 HasOnlyMemoryClobber = true; 1579 } 1580 1581 unsigned ExtraInfo = 0; 1582 if (IA.hasSideEffects()) 1583 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1584 if (IA.getDialect() == InlineAsm::AD_Intel) 1585 ExtraInfo |= InlineAsm::Extra_AsmDialect; 1586 1587 // HACK: special casing for ~memory. 1588 if (HasOnlyMemoryClobber) 1589 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 1590 1591 auto Inst = MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 1592 .addExternalSymbol(IA.getAsmString().c_str()) 1593 .addImm(ExtraInfo); 1594 if (const MDNode *SrcLoc = CI.getMetadata("srcloc")) 1595 Inst.addMetadata(SrcLoc); 1596 1597 return true; 1598 } 1599 1600 bool IRTranslator::translateCallSite(const ImmutableCallSite &CS, 1601 MachineIRBuilder &MIRBuilder) { 1602 const Instruction &I = *CS.getInstruction(); 1603 ArrayRef<Register> Res = getOrCreateVRegs(I); 1604 1605 SmallVector<ArrayRef<Register>, 8> Args; 1606 Register SwiftInVReg = 0; 1607 Register SwiftErrorVReg = 0; 1608 for (auto &Arg : CS.args()) { 1609 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1610 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 1611 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1612 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 1613 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 1614 &I, &MIRBuilder.getMBB(), Arg)); 1615 Args.emplace_back(makeArrayRef(SwiftInVReg)); 1616 SwiftErrorVReg = 1617 SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg); 1618 continue; 1619 } 1620 Args.push_back(getOrCreateVRegs(*Arg)); 1621 } 1622 1623 // We don't set HasCalls on MFI here yet because call lowering may decide to 1624 // optimize into tail calls. Instead, we defer that to selection where a final 1625 // scan is done to check if any instructions are calls. 1626 bool Success = 1627 CLI->lowerCall(MIRBuilder, CS, Res, Args, SwiftErrorVReg, 1628 [&]() { return getOrCreateVReg(*CS.getCalledValue()); }); 1629 1630 // Check if we just inserted a tail call. 1631 if (Success) { 1632 assert(!HasTailCall && "Can't tail call return twice from block?"); 1633 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1634 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 1635 } 1636 1637 return Success; 1638 } 1639 1640 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1641 const CallInst &CI = cast<CallInst>(U); 1642 auto TII = MF->getTarget().getIntrinsicInfo(); 1643 const Function *F = CI.getCalledFunction(); 1644 1645 // FIXME: support Windows dllimport function calls. 1646 if (F && (F->hasDLLImportStorageClass() || 1647 (MF->getTarget().getTargetTriple().isOSWindows() && 1648 F->hasExternalWeakLinkage()))) 1649 return false; 1650 1651 // FIXME: support control flow guard targets. 1652 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1653 return false; 1654 1655 if (CI.isInlineAsm()) 1656 return translateInlineAsm(CI, MIRBuilder); 1657 1658 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1659 if (F && F->isIntrinsic()) { 1660 ID = F->getIntrinsicID(); 1661 if (TII && ID == Intrinsic::not_intrinsic) 1662 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1663 } 1664 1665 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 1666 return translateCallSite(&CI, MIRBuilder); 1667 1668 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1669 1670 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1671 return true; 1672 1673 ArrayRef<Register> ResultRegs; 1674 if (!CI.getType()->isVoidTy()) 1675 ResultRegs = getOrCreateVRegs(CI); 1676 1677 // Ignore the callsite attributes. Backend code is most likely not expecting 1678 // an intrinsic to sometimes have side effects and sometimes not. 1679 MachineInstrBuilder MIB = 1680 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 1681 if (isa<FPMathOperator>(CI)) 1682 MIB->copyIRFlags(CI); 1683 1684 for (auto &Arg : enumerate(CI.arg_operands())) { 1685 // Some intrinsics take metadata parameters. Reject them. 1686 if (isa<MetadataAsValue>(Arg.value())) 1687 return false; 1688 1689 // If this is required to be an immediate, don't materialize it in a 1690 // register. 1691 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 1692 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 1693 // imm arguments are more convenient than cimm (and realistically 1694 // probably sufficient), so use them. 1695 assert(CI->getBitWidth() <= 64 && 1696 "large intrinsic immediates not handled"); 1697 MIB.addImm(CI->getSExtValue()); 1698 } else { 1699 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 1700 } 1701 } else { 1702 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 1703 if (VRegs.size() > 1) 1704 return false; 1705 MIB.addUse(VRegs[0]); 1706 } 1707 } 1708 1709 // Add a MachineMemOperand if it is a target mem intrinsic. 1710 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1711 TargetLowering::IntrinsicInfo Info; 1712 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1713 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1714 MaybeAlign Align = Info.align; 1715 if (!Align) 1716 Align = MaybeAlign( 1717 DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext()))); 1718 1719 uint64_t Size = Info.memVT.getStoreSize(); 1720 MIB.addMemOperand(MF->getMachineMemOperand( 1721 MachinePointerInfo(Info.ptrVal), Info.flags, Size, Align->value())); 1722 } 1723 1724 return true; 1725 } 1726 1727 bool IRTranslator::translateInvoke(const User &U, 1728 MachineIRBuilder &MIRBuilder) { 1729 const InvokeInst &I = cast<InvokeInst>(U); 1730 MCContext &Context = MF->getContext(); 1731 1732 const BasicBlock *ReturnBB = I.getSuccessor(0); 1733 const BasicBlock *EHPadBB = I.getSuccessor(1); 1734 1735 const Value *Callee = I.getCalledValue(); 1736 const Function *Fn = dyn_cast<Function>(Callee); 1737 if (isa<InlineAsm>(Callee)) 1738 return false; 1739 1740 // FIXME: support invoking patchpoint and statepoint intrinsics. 1741 if (Fn && Fn->isIntrinsic()) 1742 return false; 1743 1744 // FIXME: support whatever these are. 1745 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1746 return false; 1747 1748 // FIXME: support control flow guard targets. 1749 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 1750 return false; 1751 1752 // FIXME: support Windows exception handling. 1753 if (!isa<LandingPadInst>(EHPadBB->front())) 1754 return false; 1755 1756 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1757 // the region covered by the try. 1758 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1759 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1760 1761 if (!translateCallSite(&I, MIRBuilder)) 1762 return false; 1763 1764 MCSymbol *EndSymbol = Context.createTempSymbol(); 1765 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1766 1767 // FIXME: track probabilities. 1768 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1769 &ReturnMBB = getMBB(*ReturnBB); 1770 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1771 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1772 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1773 MIRBuilder.buildBr(ReturnMBB); 1774 1775 return true; 1776 } 1777 1778 bool IRTranslator::translateCallBr(const User &U, 1779 MachineIRBuilder &MIRBuilder) { 1780 // FIXME: Implement this. 1781 return false; 1782 } 1783 1784 bool IRTranslator::translateLandingPad(const User &U, 1785 MachineIRBuilder &MIRBuilder) { 1786 const LandingPadInst &LP = cast<LandingPadInst>(U); 1787 1788 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1789 1790 MBB.setIsEHPad(); 1791 1792 // If there aren't registers to copy the values into (e.g., during SjLj 1793 // exceptions), then don't bother. 1794 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1795 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1796 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1797 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1798 return true; 1799 1800 // If landingpad's return type is token type, we don't create DAG nodes 1801 // for its exception pointer and selector value. The extraction of exception 1802 // pointer or selector value from token type landingpads is not currently 1803 // supported. 1804 if (LP.getType()->isTokenTy()) 1805 return true; 1806 1807 // Add a label to mark the beginning of the landing pad. Deletion of the 1808 // landing pad can thus be detected via the MachineModuleInfo. 1809 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1810 .addSym(MF->addLandingPad(&MBB)); 1811 1812 LLT Ty = getLLTForType(*LP.getType(), *DL); 1813 Register Undef = MRI->createGenericVirtualRegister(Ty); 1814 MIRBuilder.buildUndef(Undef); 1815 1816 SmallVector<LLT, 2> Tys; 1817 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1818 Tys.push_back(getLLTForType(*Ty, *DL)); 1819 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1820 1821 // Mark exception register as live in. 1822 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1823 if (!ExceptionReg) 1824 return false; 1825 1826 MBB.addLiveIn(ExceptionReg); 1827 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 1828 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1829 1830 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1831 if (!SelectorReg) 1832 return false; 1833 1834 MBB.addLiveIn(SelectorReg); 1835 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1836 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1837 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1838 1839 return true; 1840 } 1841 1842 bool IRTranslator::translateAlloca(const User &U, 1843 MachineIRBuilder &MIRBuilder) { 1844 auto &AI = cast<AllocaInst>(U); 1845 1846 if (AI.isSwiftError()) 1847 return true; 1848 1849 if (AI.isStaticAlloca()) { 1850 Register Res = getOrCreateVReg(AI); 1851 int FI = getOrCreateFrameIndex(AI); 1852 MIRBuilder.buildFrameIndex(Res, FI); 1853 return true; 1854 } 1855 1856 // FIXME: support stack probing for Windows. 1857 if (MF->getTarget().getTargetTriple().isOSWindows()) 1858 return false; 1859 1860 // Now we're in the harder dynamic case. 1861 Type *Ty = AI.getAllocatedType(); 1862 unsigned Align = 1863 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1864 1865 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 1866 1867 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1868 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1869 if (MRI->getType(NumElts) != IntPtrTy) { 1870 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1871 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1872 NumElts = ExtElts; 1873 } 1874 1875 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1876 Register TySize = 1877 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 1878 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1879 1880 unsigned StackAlign = 1881 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1882 if (Align <= StackAlign) 1883 Align = 0; 1884 1885 // Round the size of the allocation up to the stack alignment size 1886 // by add SA-1 to the size. This doesn't overflow because we're computing 1887 // an address inside an alloca. 1888 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign - 1); 1889 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 1890 MachineInstr::NoUWrap); 1891 auto AlignCst = 1892 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign - 1)); 1893 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 1894 1895 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Align); 1896 1897 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1898 assert(MF->getFrameInfo().hasVarSizedObjects()); 1899 return true; 1900 } 1901 1902 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1903 // FIXME: We may need more info about the type. Because of how LLT works, 1904 // we're completely discarding the i64/double distinction here (amongst 1905 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1906 // anyway but that's not guaranteed. 1907 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 1908 {getOrCreateVReg(*U.getOperand(0)), 1909 uint64_t(DL->getABITypeAlignment(U.getType()))}); 1910 return true; 1911 } 1912 1913 bool IRTranslator::translateInsertElement(const User &U, 1914 MachineIRBuilder &MIRBuilder) { 1915 // If it is a <1 x Ty> vector, use the scalar as it is 1916 // not a legal vector type in LLT. 1917 if (U.getType()->getVectorNumElements() == 1) { 1918 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1919 auto &Regs = *VMap.getVRegs(U); 1920 if (Regs.empty()) { 1921 Regs.push_back(Elt); 1922 VMap.getOffsets(U)->push_back(0); 1923 } else { 1924 MIRBuilder.buildCopy(Regs[0], Elt); 1925 } 1926 return true; 1927 } 1928 1929 Register Res = getOrCreateVReg(U); 1930 Register Val = getOrCreateVReg(*U.getOperand(0)); 1931 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1932 Register Idx = getOrCreateVReg(*U.getOperand(2)); 1933 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1934 return true; 1935 } 1936 1937 bool IRTranslator::translateExtractElement(const User &U, 1938 MachineIRBuilder &MIRBuilder) { 1939 // If it is a <1 x Ty> vector, use the scalar as it is 1940 // not a legal vector type in LLT. 1941 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1942 Register Elt = getOrCreateVReg(*U.getOperand(0)); 1943 auto &Regs = *VMap.getVRegs(U); 1944 if (Regs.empty()) { 1945 Regs.push_back(Elt); 1946 VMap.getOffsets(U)->push_back(0); 1947 } else { 1948 MIRBuilder.buildCopy(Regs[0], Elt); 1949 } 1950 return true; 1951 } 1952 Register Res = getOrCreateVReg(U); 1953 Register Val = getOrCreateVReg(*U.getOperand(0)); 1954 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1955 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1956 Register Idx; 1957 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1958 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1959 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1960 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1961 Idx = getOrCreateVReg(*NewIdxCI); 1962 } 1963 } 1964 if (!Idx) 1965 Idx = getOrCreateVReg(*U.getOperand(1)); 1966 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1967 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1968 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0); 1969 } 1970 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1971 return true; 1972 } 1973 1974 bool IRTranslator::translateShuffleVector(const User &U, 1975 MachineIRBuilder &MIRBuilder) { 1976 SmallVector<int, 8> Mask; 1977 ShuffleVectorInst::getShuffleMask(cast<Constant>(U.getOperand(2)), Mask); 1978 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 1979 MIRBuilder 1980 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 1981 {getOrCreateVReg(*U.getOperand(0)), 1982 getOrCreateVReg(*U.getOperand(1))}) 1983 .addShuffleMask(MaskAlloc); 1984 return true; 1985 } 1986 1987 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1988 const PHINode &PI = cast<PHINode>(U); 1989 1990 SmallVector<MachineInstr *, 4> Insts; 1991 for (auto Reg : getOrCreateVRegs(PI)) { 1992 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1993 Insts.push_back(MIB.getInstr()); 1994 } 1995 1996 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1997 return true; 1998 } 1999 2000 bool IRTranslator::translateAtomicCmpXchg(const User &U, 2001 MachineIRBuilder &MIRBuilder) { 2002 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 2003 2004 if (I.isWeak()) 2005 return false; 2006 2007 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2008 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2009 2010 Type *ResType = I.getType(); 2011 Type *ValType = ResType->Type::getStructElementType(0); 2012 2013 auto Res = getOrCreateVRegs(I); 2014 Register OldValRes = Res[0]; 2015 Register SuccessRes = Res[1]; 2016 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2017 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 2018 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 2019 2020 AAMDNodes AAMetadata; 2021 I.getAAMetadata(AAMetadata); 2022 2023 MIRBuilder.buildAtomicCmpXchgWithSuccess( 2024 OldValRes, SuccessRes, Addr, Cmp, NewVal, 2025 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2026 Flags, DL->getTypeStoreSize(ValType), 2027 getMemOpAlignment(I), AAMetadata, nullptr, 2028 I.getSyncScopeID(), I.getSuccessOrdering(), 2029 I.getFailureOrdering())); 2030 return true; 2031 } 2032 2033 bool IRTranslator::translateAtomicRMW(const User &U, 2034 MachineIRBuilder &MIRBuilder) { 2035 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2036 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2037 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2038 2039 Type *ResType = I.getType(); 2040 2041 Register Res = getOrCreateVReg(I); 2042 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2043 Register Val = getOrCreateVReg(*I.getValOperand()); 2044 2045 unsigned Opcode = 0; 2046 switch (I.getOperation()) { 2047 default: 2048 return false; 2049 case AtomicRMWInst::Xchg: 2050 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2051 break; 2052 case AtomicRMWInst::Add: 2053 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2054 break; 2055 case AtomicRMWInst::Sub: 2056 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2057 break; 2058 case AtomicRMWInst::And: 2059 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2060 break; 2061 case AtomicRMWInst::Nand: 2062 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2063 break; 2064 case AtomicRMWInst::Or: 2065 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2066 break; 2067 case AtomicRMWInst::Xor: 2068 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2069 break; 2070 case AtomicRMWInst::Max: 2071 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2072 break; 2073 case AtomicRMWInst::Min: 2074 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2075 break; 2076 case AtomicRMWInst::UMax: 2077 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2078 break; 2079 case AtomicRMWInst::UMin: 2080 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2081 break; 2082 case AtomicRMWInst::FAdd: 2083 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2084 break; 2085 case AtomicRMWInst::FSub: 2086 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2087 break; 2088 } 2089 2090 AAMDNodes AAMetadata; 2091 I.getAAMetadata(AAMetadata); 2092 2093 MIRBuilder.buildAtomicRMW( 2094 Opcode, Res, Addr, Val, 2095 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2096 Flags, DL->getTypeStoreSize(ResType), 2097 getMemOpAlignment(I), AAMetadata, 2098 nullptr, I.getSyncScopeID(), I.getOrdering())); 2099 return true; 2100 } 2101 2102 bool IRTranslator::translateFence(const User &U, 2103 MachineIRBuilder &MIRBuilder) { 2104 const FenceInst &Fence = cast<FenceInst>(U); 2105 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2106 Fence.getSyncScopeID()); 2107 return true; 2108 } 2109 2110 void IRTranslator::finishPendingPhis() { 2111 #ifndef NDEBUG 2112 DILocationVerifier Verifier; 2113 GISelObserverWrapper WrapperObserver(&Verifier); 2114 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2115 #endif // ifndef NDEBUG 2116 for (auto &Phi : PendingPHIs) { 2117 const PHINode *PI = Phi.first; 2118 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2119 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2120 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2121 #ifndef NDEBUG 2122 Verifier.setCurrentInst(PI); 2123 #endif // ifndef NDEBUG 2124 2125 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2126 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2127 auto IRPred = PI->getIncomingBlock(i); 2128 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2129 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2130 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2131 continue; 2132 SeenPreds.insert(Pred); 2133 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2134 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2135 MIB.addUse(ValRegs[j]); 2136 MIB.addMBB(Pred); 2137 } 2138 } 2139 } 2140 } 2141 } 2142 2143 bool IRTranslator::valueIsSplit(const Value &V, 2144 SmallVectorImpl<uint64_t> *Offsets) { 2145 SmallVector<LLT, 4> SplitTys; 2146 if (Offsets && !Offsets->empty()) 2147 Offsets->clear(); 2148 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2149 return SplitTys.size() > 1; 2150 } 2151 2152 bool IRTranslator::translate(const Instruction &Inst) { 2153 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2154 // We only emit constants into the entry block from here. To prevent jumpy 2155 // debug behaviour set the line to 0. 2156 if (const DebugLoc &DL = Inst.getDebugLoc()) 2157 EntryBuilder->setDebugLoc( 2158 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 2159 else 2160 EntryBuilder->setDebugLoc(DebugLoc()); 2161 2162 switch (Inst.getOpcode()) { 2163 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2164 case Instruction::OPCODE: \ 2165 return translate##OPCODE(Inst, *CurBuilder.get()); 2166 #include "llvm/IR/Instruction.def" 2167 default: 2168 return false; 2169 } 2170 } 2171 2172 bool IRTranslator::translate(const Constant &C, Register Reg) { 2173 if (auto CI = dyn_cast<ConstantInt>(&C)) 2174 EntryBuilder->buildConstant(Reg, *CI); 2175 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2176 EntryBuilder->buildFConstant(Reg, *CF); 2177 else if (isa<UndefValue>(C)) 2178 EntryBuilder->buildUndef(Reg); 2179 else if (isa<ConstantPointerNull>(C)) { 2180 // As we are trying to build a constant val of 0 into a pointer, 2181 // insert a cast to make them correct with respect to types. 2182 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 2183 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 2184 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 2185 Register ZeroReg = getOrCreateVReg(*ZeroVal); 2186 EntryBuilder->buildCast(Reg, ZeroReg); 2187 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 2188 EntryBuilder->buildGlobalValue(Reg, GV); 2189 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2190 if (!CAZ->getType()->isVectorTy()) 2191 return false; 2192 // Return the scalar if it is a <1 x Ty> vector. 2193 if (CAZ->getNumElements() == 1) 2194 return translate(*CAZ->getElementValue(0u), Reg); 2195 SmallVector<Register, 4> Ops; 2196 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 2197 Constant &Elt = *CAZ->getElementValue(i); 2198 Ops.push_back(getOrCreateVReg(Elt)); 2199 } 2200 EntryBuilder->buildBuildVector(Reg, Ops); 2201 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2202 // Return the scalar if it is a <1 x Ty> vector. 2203 if (CV->getNumElements() == 1) 2204 return translate(*CV->getElementAsConstant(0), Reg); 2205 SmallVector<Register, 4> Ops; 2206 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2207 Constant &Elt = *CV->getElementAsConstant(i); 2208 Ops.push_back(getOrCreateVReg(Elt)); 2209 } 2210 EntryBuilder->buildBuildVector(Reg, Ops); 2211 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2212 switch(CE->getOpcode()) { 2213 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2214 case Instruction::OPCODE: \ 2215 return translate##OPCODE(*CE, *EntryBuilder.get()); 2216 #include "llvm/IR/Instruction.def" 2217 default: 2218 return false; 2219 } 2220 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2221 if (CV->getNumOperands() == 1) 2222 return translate(*CV->getOperand(0), Reg); 2223 SmallVector<Register, 4> Ops; 2224 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2225 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2226 } 2227 EntryBuilder->buildBuildVector(Reg, Ops); 2228 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2229 EntryBuilder->buildBlockAddress(Reg, BA); 2230 } else 2231 return false; 2232 2233 return true; 2234 } 2235 2236 void IRTranslator::finalizeBasicBlock() { 2237 for (auto &JTCase : SL->JTCases) { 2238 // Emit header first, if it wasn't already emitted. 2239 if (!JTCase.first.Emitted) 2240 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 2241 2242 emitJumpTable(JTCase.second, JTCase.second.MBB); 2243 } 2244 SL->JTCases.clear(); 2245 } 2246 2247 void IRTranslator::finalizeFunction() { 2248 // Release the memory used by the different maps we 2249 // needed during the translation. 2250 PendingPHIs.clear(); 2251 VMap.reset(); 2252 FrameIndices.clear(); 2253 MachinePreds.clear(); 2254 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 2255 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 2256 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 2257 EntryBuilder.reset(); 2258 CurBuilder.reset(); 2259 FuncInfo.clear(); 2260 } 2261 2262 /// Returns true if a BasicBlock \p BB within a variadic function contains a 2263 /// variadic musttail call. 2264 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 2265 if (!IsVarArg) 2266 return false; 2267 2268 // Walk the block backwards, because tail calls usually only appear at the end 2269 // of a block. 2270 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 2271 const auto *CI = dyn_cast<CallInst>(&I); 2272 return CI && CI->isMustTailCall(); 2273 }); 2274 } 2275 2276 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 2277 MF = &CurMF; 2278 const Function &F = MF->getFunction(); 2279 if (F.empty()) 2280 return false; 2281 GISelCSEAnalysisWrapper &Wrapper = 2282 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 2283 // Set the CSEConfig and run the analysis. 2284 GISelCSEInfo *CSEInfo = nullptr; 2285 TPC = &getAnalysis<TargetPassConfig>(); 2286 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 2287 ? EnableCSEInIRTranslator 2288 : TPC->isGISelCSEEnabled(); 2289 2290 if (EnableCSE) { 2291 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2292 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 2293 EntryBuilder->setCSEInfo(CSEInfo); 2294 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 2295 CurBuilder->setCSEInfo(CSEInfo); 2296 } else { 2297 EntryBuilder = std::make_unique<MachineIRBuilder>(); 2298 CurBuilder = std::make_unique<MachineIRBuilder>(); 2299 } 2300 CLI = MF->getSubtarget().getCallLowering(); 2301 CurBuilder->setMF(*MF); 2302 EntryBuilder->setMF(*MF); 2303 MRI = &MF->getRegInfo(); 2304 DL = &F.getParent()->getDataLayout(); 2305 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 2306 FuncInfo.MF = MF; 2307 FuncInfo.BPI = nullptr; 2308 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2309 const TargetMachine &TM = MF->getTarget(); 2310 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 2311 SL->init(TLI, TM, *DL); 2312 2313 EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); 2314 2315 assert(PendingPHIs.empty() && "stale PHIs"); 2316 2317 if (!DL->isLittleEndian()) { 2318 // Currently we don't properly handle big endian code. 2319 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2320 F.getSubprogram(), &F.getEntryBlock()); 2321 R << "unable to translate in big endian mode"; 2322 reportTranslationError(*MF, *TPC, *ORE, R); 2323 } 2324 2325 // Release the per-function state when we return, whether we succeeded or not. 2326 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 2327 2328 // Setup a separate basic-block for the arguments and constants 2329 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 2330 MF->push_back(EntryBB); 2331 EntryBuilder->setMBB(*EntryBB); 2332 2333 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 2334 SwiftError.setFunction(CurMF); 2335 SwiftError.createEntriesInEntryBlock(DbgLoc); 2336 2337 bool IsVarArg = F.isVarArg(); 2338 bool HasMustTailInVarArgFn = false; 2339 2340 // Create all blocks, in IR order, to preserve the layout. 2341 for (const BasicBlock &BB: F) { 2342 auto *&MBB = BBToMBB[&BB]; 2343 2344 MBB = MF->CreateMachineBasicBlock(&BB); 2345 MF->push_back(MBB); 2346 2347 if (BB.hasAddressTaken()) 2348 MBB->setHasAddressTaken(); 2349 2350 if (!HasMustTailInVarArgFn) 2351 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 2352 } 2353 2354 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 2355 2356 // Make our arguments/constants entry block fallthrough to the IR entry block. 2357 EntryBB->addSuccessor(&getMBB(F.front())); 2358 2359 // Lower the actual args into this basic block. 2360 SmallVector<ArrayRef<Register>, 8> VRegArgs; 2361 for (const Argument &Arg: F.args()) { 2362 if (DL->getTypeStoreSize(Arg.getType()) == 0) 2363 continue; // Don't handle zero sized types. 2364 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 2365 VRegArgs.push_back(VRegs); 2366 2367 if (Arg.hasSwiftErrorAttr()) { 2368 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 2369 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 2370 } 2371 } 2372 2373 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 2374 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2375 F.getSubprogram(), &F.getEntryBlock()); 2376 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 2377 reportTranslationError(*MF, *TPC, *ORE, R); 2378 return false; 2379 } 2380 2381 // Need to visit defs before uses when translating instructions. 2382 GISelObserverWrapper WrapperObserver; 2383 if (EnableCSE && CSEInfo) 2384 WrapperObserver.addObserver(CSEInfo); 2385 { 2386 ReversePostOrderTraversal<const Function *> RPOT(&F); 2387 #ifndef NDEBUG 2388 DILocationVerifier Verifier; 2389 WrapperObserver.addObserver(&Verifier); 2390 #endif // ifndef NDEBUG 2391 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2392 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 2393 for (const BasicBlock *BB : RPOT) { 2394 MachineBasicBlock &MBB = getMBB(*BB); 2395 // Set the insertion point of all the following translations to 2396 // the end of this basic block. 2397 CurBuilder->setMBB(MBB); 2398 HasTailCall = false; 2399 for (const Instruction &Inst : *BB) { 2400 // If we translated a tail call in the last step, then we know 2401 // everything after the call is either a return, or something that is 2402 // handled by the call itself. (E.g. a lifetime marker or assume 2403 // intrinsic.) In this case, we should stop translating the block and 2404 // move on. 2405 if (HasTailCall) 2406 break; 2407 #ifndef NDEBUG 2408 Verifier.setCurrentInst(&Inst); 2409 #endif // ifndef NDEBUG 2410 if (translate(Inst)) 2411 continue; 2412 2413 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2414 Inst.getDebugLoc(), BB); 2415 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 2416 2417 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 2418 std::string InstStrStorage; 2419 raw_string_ostream InstStr(InstStrStorage); 2420 InstStr << Inst; 2421 2422 R << ": '" << InstStr.str() << "'"; 2423 } 2424 2425 reportTranslationError(*MF, *TPC, *ORE, R); 2426 return false; 2427 } 2428 2429 finalizeBasicBlock(); 2430 } 2431 #ifndef NDEBUG 2432 WrapperObserver.removeObserver(&Verifier); 2433 #endif 2434 } 2435 2436 finishPendingPhis(); 2437 2438 SwiftError.propagateVRegs(); 2439 2440 // Merge the argument lowering and constants block with its single 2441 // successor, the LLVM-IR entry block. We want the basic block to 2442 // be maximal. 2443 assert(EntryBB->succ_size() == 1 && 2444 "Custom BB used for lowering should have only one successor"); 2445 // Get the successor of the current entry block. 2446 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 2447 assert(NewEntryBB.pred_size() == 1 && 2448 "LLVM-IR entry block has a predecessor!?"); 2449 // Move all the instruction from the current entry block to the 2450 // new entry block. 2451 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 2452 EntryBB->end()); 2453 2454 // Update the live-in information for the new entry block. 2455 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 2456 NewEntryBB.addLiveIn(LiveIn); 2457 NewEntryBB.sortUniqueLiveIns(); 2458 2459 // Get rid of the now empty basic block. 2460 EntryBB->removeSuccessor(&NewEntryBB); 2461 MF->remove(EntryBB); 2462 MF->DeleteMachineBasicBlock(EntryBB); 2463 2464 assert(&MF->front() == &NewEntryBB && 2465 "New entry wasn't next in the list of basic block!"); 2466 2467 // Initialize stack protector information. 2468 StackProtector &SP = getAnalysis<StackProtector>(); 2469 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2470 2471 return false; 2472 } 2473