1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetLowering.h" 31 #include "llvm/CodeGen/TargetPassConfig.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DebugInfo.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/InlineAsm.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/MC/MCContext.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/LowLevelTypeImpl.h" 59 #include "llvm/Support/MathExtras.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetMachine.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstdint> 66 #include <iterator> 67 #include <string> 68 #include <utility> 69 #include <vector> 70 71 #define DEBUG_TYPE "irtranslator" 72 73 using namespace llvm; 74 75 char IRTranslator::ID = 0; 76 77 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 78 false, false) 79 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 80 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 81 false, false) 82 83 static void reportTranslationError(MachineFunction &MF, 84 const TargetPassConfig &TPC, 85 OptimizationRemarkEmitter &ORE, 86 OptimizationRemarkMissed &R) { 87 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 88 89 // Print the function name explicitly if we don't have a debug location (which 90 // makes the diagnostic less useful) or if we're going to emit a raw error. 91 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 92 R << (" (in function: " + MF.getName() + ")").str(); 93 94 if (TPC.isGlobalISelAbortEnabled()) 95 report_fatal_error(R.getMsg()); 96 else 97 ORE.emit(R); 98 } 99 100 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { 101 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 102 } 103 104 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 105 AU.addRequired<TargetPassConfig>(); 106 MachineFunctionPass::getAnalysisUsage(AU); 107 } 108 109 unsigned IRTranslator::getOrCreateVReg(const Value &Val) { 110 unsigned &ValReg = ValToVReg[&Val]; 111 112 if (ValReg) 113 return ValReg; 114 115 // Fill ValRegsSequence with the sequence of registers 116 // we need to concat together to produce the value. 117 assert(Val.getType()->isSized() && 118 "Don't know how to create an empty vreg"); 119 unsigned VReg = 120 MRI->createGenericVirtualRegister(getLLTForType(*Val.getType(), *DL)); 121 ValReg = VReg; 122 123 if (auto CV = dyn_cast<Constant>(&Val)) { 124 bool Success = translate(*CV, VReg); 125 if (!Success) { 126 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 127 MF->getFunction().getSubprogram(), 128 &MF->getFunction().getEntryBlock()); 129 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 130 reportTranslationError(*MF, *TPC, *ORE, R); 131 return VReg; 132 } 133 } 134 135 return VReg; 136 } 137 138 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 139 if (FrameIndices.find(&AI) != FrameIndices.end()) 140 return FrameIndices[&AI]; 141 142 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 143 unsigned Size = 144 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 145 146 // Always allocate at least one byte. 147 Size = std::max(Size, 1u); 148 149 unsigned Alignment = AI.getAlignment(); 150 if (!Alignment) 151 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 152 153 int &FI = FrameIndices[&AI]; 154 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 155 return FI; 156 } 157 158 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 159 unsigned Alignment = 0; 160 Type *ValTy = nullptr; 161 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 162 Alignment = SI->getAlignment(); 163 ValTy = SI->getValueOperand()->getType(); 164 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 165 Alignment = LI->getAlignment(); 166 ValTy = LI->getType(); 167 } else { 168 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 169 R << "unable to translate memop: " << ore::NV("Opcode", &I); 170 reportTranslationError(*MF, *TPC, *ORE, R); 171 return 1; 172 } 173 174 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 175 } 176 177 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 178 MachineBasicBlock *&MBB = BBToMBB[&BB]; 179 assert(MBB && "BasicBlock was not encountered before"); 180 return *MBB; 181 } 182 183 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 184 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 185 MachinePreds[Edge].push_back(NewPred); 186 } 187 188 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 189 MachineIRBuilder &MIRBuilder) { 190 // FIXME: handle signed/unsigned wrapping flags. 191 192 // Get or create a virtual register for each value. 193 // Unless the value is a Constant => loadimm cst? 194 // or inline constant each time? 195 // Creation of a virtual register needs to have a size. 196 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 197 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 198 unsigned Res = getOrCreateVReg(U); 199 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); 200 return true; 201 } 202 203 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 204 // -0.0 - X --> G_FNEG 205 if (isa<Constant>(U.getOperand(0)) && 206 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 207 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 208 .addDef(getOrCreateVReg(U)) 209 .addUse(getOrCreateVReg(*U.getOperand(1))); 210 return true; 211 } 212 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 213 } 214 215 bool IRTranslator::translateCompare(const User &U, 216 MachineIRBuilder &MIRBuilder) { 217 const CmpInst *CI = dyn_cast<CmpInst>(&U); 218 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 219 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 220 unsigned Res = getOrCreateVReg(U); 221 CmpInst::Predicate Pred = 222 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 223 cast<ConstantExpr>(U).getPredicate()); 224 if (CmpInst::isIntPredicate(Pred)) 225 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 226 else if (Pred == CmpInst::FCMP_FALSE) 227 MIRBuilder.buildCopy( 228 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 229 else if (Pred == CmpInst::FCMP_TRUE) 230 MIRBuilder.buildCopy( 231 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 232 else 233 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); 234 235 return true; 236 } 237 238 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 239 const ReturnInst &RI = cast<ReturnInst>(U); 240 const Value *Ret = RI.getReturnValue(); 241 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 242 Ret = nullptr; 243 // The target may mess up with the insertion point, but 244 // this is not important as a return is the last instruction 245 // of the block anyway. 246 return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret)); 247 } 248 249 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 250 const BranchInst &BrInst = cast<BranchInst>(U); 251 unsigned Succ = 0; 252 if (!BrInst.isUnconditional()) { 253 // We want a G_BRCOND to the true BB followed by an unconditional branch. 254 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 255 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 256 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 257 MIRBuilder.buildBrCond(Tst, TrueBB); 258 } 259 260 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 261 MachineBasicBlock &TgtBB = getMBB(BrTgt); 262 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 263 264 // If the unconditional target is the layout successor, fallthrough. 265 if (!CurBB.isLayoutSuccessor(&TgtBB)) 266 MIRBuilder.buildBr(TgtBB); 267 268 // Link successors. 269 for (const BasicBlock *Succ : BrInst.successors()) 270 CurBB.addSuccessor(&getMBB(*Succ)); 271 return true; 272 } 273 274 bool IRTranslator::translateSwitch(const User &U, 275 MachineIRBuilder &MIRBuilder) { 276 // For now, just translate as a chain of conditional branches. 277 // FIXME: could we share most of the logic/code in 278 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 279 // At first sight, it seems most of the logic in there is independent of 280 // SelectionDAG-specifics and a lot of work went in to optimize switch 281 // lowering in there. 282 283 const SwitchInst &SwInst = cast<SwitchInst>(U); 284 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 285 const BasicBlock *OrigBB = SwInst.getParent(); 286 287 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 288 for (auto &CaseIt : SwInst.cases()) { 289 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 290 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 291 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 292 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 293 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 294 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 295 296 MIRBuilder.buildBrCond(Tst, TrueMBB); 297 CurMBB.addSuccessor(&TrueMBB); 298 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 299 300 MachineBasicBlock *FalseMBB = 301 MF->CreateMachineBasicBlock(SwInst.getParent()); 302 // Insert the comparison blocks one after the other. 303 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 304 MIRBuilder.buildBr(*FalseMBB); 305 CurMBB.addSuccessor(FalseMBB); 306 307 MIRBuilder.setMBB(*FalseMBB); 308 } 309 // handle default case 310 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 311 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 312 MIRBuilder.buildBr(DefaultMBB); 313 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 314 CurMBB.addSuccessor(&DefaultMBB); 315 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 316 317 return true; 318 } 319 320 bool IRTranslator::translateIndirectBr(const User &U, 321 MachineIRBuilder &MIRBuilder) { 322 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 323 324 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 325 MIRBuilder.buildBrIndirect(Tgt); 326 327 // Link successors. 328 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 329 for (const BasicBlock *Succ : BrInst.successors()) 330 CurBB.addSuccessor(&getMBB(*Succ)); 331 332 return true; 333 } 334 335 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 336 const LoadInst &LI = cast<LoadInst>(U); 337 338 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 339 : MachineMemOperand::MONone; 340 Flags |= MachineMemOperand::MOLoad; 341 342 if (DL->getTypeStoreSize(LI.getType()) == 0) 343 return true; 344 345 unsigned Res = getOrCreateVReg(LI); 346 unsigned Addr = getOrCreateVReg(*LI.getPointerOperand()); 347 348 MIRBuilder.buildLoad( 349 Res, Addr, 350 *MF->getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()), 351 Flags, DL->getTypeStoreSize(LI.getType()), 352 getMemOpAlignment(LI), AAMDNodes(), nullptr, 353 LI.getSyncScopeID(), LI.getOrdering())); 354 return true; 355 } 356 357 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 358 const StoreInst &SI = cast<StoreInst>(U); 359 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 360 : MachineMemOperand::MONone; 361 Flags |= MachineMemOperand::MOStore; 362 363 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 364 return true; 365 366 unsigned Val = getOrCreateVReg(*SI.getValueOperand()); 367 unsigned Addr = getOrCreateVReg(*SI.getPointerOperand()); 368 369 MIRBuilder.buildStore( 370 Val, Addr, 371 *MF->getMachineMemOperand( 372 MachinePointerInfo(SI.getPointerOperand()), Flags, 373 DL->getTypeStoreSize(SI.getValueOperand()->getType()), 374 getMemOpAlignment(SI), AAMDNodes(), nullptr, SI.getSyncScopeID(), 375 SI.getOrdering())); 376 return true; 377 } 378 379 bool IRTranslator::translateExtractValue(const User &U, 380 MachineIRBuilder &MIRBuilder) { 381 const Value *Src = U.getOperand(0); 382 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 383 SmallVector<Value *, 1> Indices; 384 385 // If Src is a single element ConstantStruct, translate extractvalue 386 // to that element to avoid inserting a cast instruction. 387 if (auto CS = dyn_cast<ConstantStruct>(Src)) 388 if (CS->getNumOperands() == 1) { 389 unsigned Res = getOrCreateVReg(*CS->getOperand(0)); 390 ValToVReg[&U] = Res; 391 return true; 392 } 393 394 // getIndexedOffsetInType is designed for GEPs, so the first index is the 395 // usual array element rather than looking into the actual aggregate. 396 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 397 398 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 399 for (auto Idx : EVI->indices()) 400 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 401 } else { 402 for (unsigned i = 1; i < U.getNumOperands(); ++i) 403 Indices.push_back(U.getOperand(i)); 404 } 405 406 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 407 408 unsigned Res = getOrCreateVReg(U); 409 MIRBuilder.buildExtract(Res, getOrCreateVReg(*Src), Offset); 410 411 return true; 412 } 413 414 bool IRTranslator::translateInsertValue(const User &U, 415 MachineIRBuilder &MIRBuilder) { 416 const Value *Src = U.getOperand(0); 417 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 418 SmallVector<Value *, 1> Indices; 419 420 // getIndexedOffsetInType is designed for GEPs, so the first index is the 421 // usual array element rather than looking into the actual aggregate. 422 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 423 424 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 425 for (auto Idx : IVI->indices()) 426 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 427 } else { 428 for (unsigned i = 2; i < U.getNumOperands(); ++i) 429 Indices.push_back(U.getOperand(i)); 430 } 431 432 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 433 434 unsigned Res = getOrCreateVReg(U); 435 unsigned Inserted = getOrCreateVReg(*U.getOperand(1)); 436 MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), Inserted, Offset); 437 438 return true; 439 } 440 441 bool IRTranslator::translateSelect(const User &U, 442 MachineIRBuilder &MIRBuilder) { 443 unsigned Res = getOrCreateVReg(U); 444 unsigned Tst = getOrCreateVReg(*U.getOperand(0)); 445 unsigned Op0 = getOrCreateVReg(*U.getOperand(1)); 446 unsigned Op1 = getOrCreateVReg(*U.getOperand(2)); 447 MIRBuilder.buildSelect(Res, Tst, Op0, Op1); 448 return true; 449 } 450 451 bool IRTranslator::translateBitCast(const User &U, 452 MachineIRBuilder &MIRBuilder) { 453 // If we're bitcasting to the source type, we can reuse the source vreg. 454 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 455 getLLTForType(*U.getType(), *DL)) { 456 // Get the source vreg now, to avoid invalidating ValToVReg. 457 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 458 unsigned &Reg = ValToVReg[&U]; 459 // If we already assigned a vreg for this bitcast, we can't change that. 460 // Emit a copy to satisfy the users we already emitted. 461 if (Reg) 462 MIRBuilder.buildCopy(Reg, SrcReg); 463 else 464 Reg = SrcReg; 465 return true; 466 } 467 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 468 } 469 470 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 471 MachineIRBuilder &MIRBuilder) { 472 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 473 unsigned Res = getOrCreateVReg(U); 474 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 475 return true; 476 } 477 478 bool IRTranslator::translateGetElementPtr(const User &U, 479 MachineIRBuilder &MIRBuilder) { 480 // FIXME: support vector GEPs. 481 if (U.getType()->isVectorTy()) 482 return false; 483 484 Value &Op0 = *U.getOperand(0); 485 unsigned BaseReg = getOrCreateVReg(Op0); 486 Type *PtrIRTy = Op0.getType(); 487 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 488 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 489 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 490 491 int64_t Offset = 0; 492 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 493 GTI != E; ++GTI) { 494 const Value *Idx = GTI.getOperand(); 495 if (StructType *StTy = GTI.getStructTypeOrNull()) { 496 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 497 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 498 continue; 499 } else { 500 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 501 502 // If this is a scalar constant or a splat vector of constants, 503 // handle it quickly. 504 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 505 Offset += ElementSize * CI->getSExtValue(); 506 continue; 507 } 508 509 if (Offset != 0) { 510 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 511 unsigned OffsetReg = 512 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 513 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 514 515 BaseReg = NewBaseReg; 516 Offset = 0; 517 } 518 519 unsigned IdxReg = getOrCreateVReg(*Idx); 520 if (MRI->getType(IdxReg) != OffsetTy) { 521 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 522 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 523 IdxReg = NewIdxReg; 524 } 525 526 // N = N + Idx * ElementSize; 527 // Avoid doing it for ElementSize of 1. 528 unsigned GepOffsetReg; 529 if (ElementSize != 1) { 530 unsigned ElementSizeReg = 531 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize)); 532 533 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 534 MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg); 535 } else 536 GepOffsetReg = IdxReg; 537 538 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 539 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); 540 BaseReg = NewBaseReg; 541 } 542 } 543 544 if (Offset != 0) { 545 unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 546 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 547 return true; 548 } 549 550 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 551 return true; 552 } 553 554 bool IRTranslator::translateMemfunc(const CallInst &CI, 555 MachineIRBuilder &MIRBuilder, 556 unsigned ID) { 557 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 558 Type *DstTy = CI.getArgOperand(0)->getType(); 559 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 560 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 561 return false; 562 563 SmallVector<CallLowering::ArgInfo, 8> Args; 564 for (int i = 0; i < 3; ++i) { 565 const auto &Arg = CI.getArgOperand(i); 566 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 567 } 568 569 const char *Callee; 570 switch (ID) { 571 case Intrinsic::memmove: 572 case Intrinsic::memcpy: { 573 Type *SrcTy = CI.getArgOperand(1)->getType(); 574 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 575 return false; 576 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 577 break; 578 } 579 case Intrinsic::memset: 580 Callee = "memset"; 581 break; 582 default: 583 return false; 584 } 585 586 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 587 MachineOperand::CreateES(Callee), 588 CallLowering::ArgInfo(0, CI.getType()), Args); 589 } 590 591 void IRTranslator::getStackGuard(unsigned DstReg, 592 MachineIRBuilder &MIRBuilder) { 593 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 594 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 595 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 596 MIB.addDef(DstReg); 597 598 auto &TLI = *MF->getSubtarget().getTargetLowering(); 599 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 600 if (!Global) 601 return; 602 603 MachinePointerInfo MPInfo(Global); 604 MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1); 605 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 606 MachineMemOperand::MODereferenceable; 607 *MemRefs = 608 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 609 DL->getPointerABIAlignment(0)); 610 MIB.setMemRefs(MemRefs, MemRefs + 1); 611 } 612 613 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 614 MachineIRBuilder &MIRBuilder) { 615 LLT Ty = getLLTForType(*CI.getOperand(0)->getType(), *DL); 616 LLT s1 = LLT::scalar(1); 617 unsigned Width = Ty.getSizeInBits(); 618 unsigned Res = MRI->createGenericVirtualRegister(Ty); 619 unsigned Overflow = MRI->createGenericVirtualRegister(s1); 620 auto MIB = MIRBuilder.buildInstr(Op) 621 .addDef(Res) 622 .addDef(Overflow) 623 .addUse(getOrCreateVReg(*CI.getOperand(0))) 624 .addUse(getOrCreateVReg(*CI.getOperand(1))); 625 626 if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) { 627 unsigned Zero = getOrCreateVReg( 628 *Constant::getNullValue(Type::getInt1Ty(CI.getContext()))); 629 MIB.addUse(Zero); 630 } 631 632 MIRBuilder.buildSequence(getOrCreateVReg(CI), {Res, Overflow}, {0, Width}); 633 return true; 634 } 635 636 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 637 MachineIRBuilder &MIRBuilder) { 638 switch (ID) { 639 default: 640 break; 641 case Intrinsic::lifetime_start: 642 case Intrinsic::lifetime_end: 643 // Stack coloring is not enabled in O0 (which we care about now) so we can 644 // drop these. Make sure someone notices when we start compiling at higher 645 // opts though. 646 if (MF->getTarget().getOptLevel() != CodeGenOpt::None) 647 return false; 648 return true; 649 case Intrinsic::dbg_declare: { 650 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 651 assert(DI.getVariable() && "Missing variable"); 652 653 const Value *Address = DI.getAddress(); 654 if (!Address || isa<UndefValue>(Address)) { 655 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 656 return true; 657 } 658 659 assert(DI.getVariable()->isValidLocationForIntrinsic( 660 MIRBuilder.getDebugLoc()) && 661 "Expected inlined-at fields to agree"); 662 auto AI = dyn_cast<AllocaInst>(Address); 663 if (AI && AI->isStaticAlloca()) { 664 // Static allocas are tracked at the MF level, no need for DBG_VALUE 665 // instructions (in fact, they get ignored if they *do* exist). 666 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 667 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 668 } else 669 MIRBuilder.buildDirectDbgValue(getOrCreateVReg(*Address), 670 DI.getVariable(), DI.getExpression()); 671 return true; 672 } 673 case Intrinsic::vaend: 674 // No target I know of cares about va_end. Certainly no in-tree target 675 // does. Simplest intrinsic ever! 676 return true; 677 case Intrinsic::vastart: { 678 auto &TLI = *MF->getSubtarget().getTargetLowering(); 679 Value *Ptr = CI.getArgOperand(0); 680 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 681 682 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 683 .addUse(getOrCreateVReg(*Ptr)) 684 .addMemOperand(MF->getMachineMemOperand( 685 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0)); 686 return true; 687 } 688 case Intrinsic::dbg_value: { 689 // This form of DBG_VALUE is target-independent. 690 const DbgValueInst &DI = cast<DbgValueInst>(CI); 691 const Value *V = DI.getValue(); 692 assert(DI.getVariable()->isValidLocationForIntrinsic( 693 MIRBuilder.getDebugLoc()) && 694 "Expected inlined-at fields to agree"); 695 if (!V) { 696 // Currently the optimizer can produce this; insert an undef to 697 // help debugging. Probably the optimizer should not do this. 698 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 699 } else if (const auto *CI = dyn_cast<Constant>(V)) { 700 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 701 } else { 702 unsigned Reg = getOrCreateVReg(*V); 703 // FIXME: This does not handle register-indirect values at offset 0. The 704 // direct/indirect thing shouldn't really be handled by something as 705 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 706 // pretty baked in right now. 707 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 708 } 709 return true; 710 } 711 case Intrinsic::uadd_with_overflow: 712 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder); 713 case Intrinsic::sadd_with_overflow: 714 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 715 case Intrinsic::usub_with_overflow: 716 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder); 717 case Intrinsic::ssub_with_overflow: 718 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 719 case Intrinsic::umul_with_overflow: 720 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 721 case Intrinsic::smul_with_overflow: 722 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 723 case Intrinsic::pow: 724 MIRBuilder.buildInstr(TargetOpcode::G_FPOW) 725 .addDef(getOrCreateVReg(CI)) 726 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 727 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 728 return true; 729 case Intrinsic::exp: 730 MIRBuilder.buildInstr(TargetOpcode::G_FEXP) 731 .addDef(getOrCreateVReg(CI)) 732 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 733 return true; 734 case Intrinsic::exp2: 735 MIRBuilder.buildInstr(TargetOpcode::G_FEXP2) 736 .addDef(getOrCreateVReg(CI)) 737 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 738 return true; 739 case Intrinsic::log: 740 MIRBuilder.buildInstr(TargetOpcode::G_FLOG) 741 .addDef(getOrCreateVReg(CI)) 742 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 743 return true; 744 case Intrinsic::log2: 745 MIRBuilder.buildInstr(TargetOpcode::G_FLOG2) 746 .addDef(getOrCreateVReg(CI)) 747 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 748 return true; 749 case Intrinsic::fabs: 750 MIRBuilder.buildInstr(TargetOpcode::G_FABS) 751 .addDef(getOrCreateVReg(CI)) 752 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 753 return true; 754 case Intrinsic::fma: 755 MIRBuilder.buildInstr(TargetOpcode::G_FMA) 756 .addDef(getOrCreateVReg(CI)) 757 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 758 .addUse(getOrCreateVReg(*CI.getArgOperand(1))) 759 .addUse(getOrCreateVReg(*CI.getArgOperand(2))); 760 return true; 761 case Intrinsic::fmuladd: { 762 const TargetMachine &TM = MF->getTarget(); 763 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 764 unsigned Dst = getOrCreateVReg(CI); 765 unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 766 unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 767 unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 768 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 769 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 770 // TODO: Revisit this to see if we should move this part of the 771 // lowering to the combiner. 772 MIRBuilder.buildInstr(TargetOpcode::G_FMA, Dst, Op0, Op1, Op2); 773 } else { 774 LLT Ty = getLLTForType(*CI.getType(), *DL); 775 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, Ty, Op0, Op1); 776 MIRBuilder.buildInstr(TargetOpcode::G_FADD, Dst, FMul, Op2); 777 } 778 return true; 779 } 780 case Intrinsic::memcpy: 781 case Intrinsic::memmove: 782 case Intrinsic::memset: 783 return translateMemfunc(CI, MIRBuilder, ID); 784 case Intrinsic::eh_typeid_for: { 785 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 786 unsigned Reg = getOrCreateVReg(CI); 787 unsigned TypeID = MF->getTypeIDFor(GV); 788 MIRBuilder.buildConstant(Reg, TypeID); 789 return true; 790 } 791 case Intrinsic::objectsize: { 792 // If we don't know by now, we're never going to know. 793 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 794 795 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 796 return true; 797 } 798 case Intrinsic::stackguard: 799 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 800 return true; 801 case Intrinsic::stackprotector: { 802 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 803 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 804 getStackGuard(GuardVal, MIRBuilder); 805 806 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 807 MIRBuilder.buildStore( 808 GuardVal, getOrCreateVReg(*Slot), 809 *MF->getMachineMemOperand( 810 MachinePointerInfo::getFixedStack(*MF, 811 getOrCreateFrameIndex(*Slot)), 812 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 813 PtrTy.getSizeInBits() / 8, 8)); 814 return true; 815 } 816 } 817 return false; 818 } 819 820 bool IRTranslator::translateInlineAsm(const CallInst &CI, 821 MachineIRBuilder &MIRBuilder) { 822 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 823 if (!IA.getConstraintString().empty()) 824 return false; 825 826 unsigned ExtraInfo = 0; 827 if (IA.hasSideEffects()) 828 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 829 if (IA.getDialect() == InlineAsm::AD_Intel) 830 ExtraInfo |= InlineAsm::Extra_AsmDialect; 831 832 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 833 .addExternalSymbol(IA.getAsmString().c_str()) 834 .addImm(ExtraInfo); 835 836 return true; 837 } 838 839 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 840 const CallInst &CI = cast<CallInst>(U); 841 auto TII = MF->getTarget().getIntrinsicInfo(); 842 const Function *F = CI.getCalledFunction(); 843 844 // FIXME: support Windows dllimport function calls. 845 if (F && F->hasDLLImportStorageClass()) 846 return false; 847 848 if (CI.isInlineAsm()) 849 return translateInlineAsm(CI, MIRBuilder); 850 851 Intrinsic::ID ID = Intrinsic::not_intrinsic; 852 if (F && F->isIntrinsic()) { 853 ID = F->getIntrinsicID(); 854 if (TII && ID == Intrinsic::not_intrinsic) 855 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 856 } 857 858 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { 859 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 860 SmallVector<unsigned, 8> Args; 861 for (auto &Arg: CI.arg_operands()) 862 Args.push_back(getOrCreateVReg(*Arg)); 863 864 MF->getFrameInfo().setHasCalls(true); 865 return CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() { 866 return getOrCreateVReg(*CI.getCalledValue()); 867 }); 868 } 869 870 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 871 872 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 873 return true; 874 875 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 876 MachineInstrBuilder MIB = 877 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 878 879 for (auto &Arg : CI.arg_operands()) { 880 // Some intrinsics take metadata parameters. Reject them. 881 if (isa<MetadataAsValue>(Arg)) 882 return false; 883 MIB.addUse(getOrCreateVReg(*Arg)); 884 } 885 886 // Add a MachineMemOperand if it is a target mem intrinsic. 887 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 888 TargetLowering::IntrinsicInfo Info; 889 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 890 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 891 uint64_t Size = Info.memVT.getStoreSize(); 892 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 893 Info.flags, Size, Info.align)); 894 } 895 896 return true; 897 } 898 899 bool IRTranslator::translateInvoke(const User &U, 900 MachineIRBuilder &MIRBuilder) { 901 const InvokeInst &I = cast<InvokeInst>(U); 902 MCContext &Context = MF->getContext(); 903 904 const BasicBlock *ReturnBB = I.getSuccessor(0); 905 const BasicBlock *EHPadBB = I.getSuccessor(1); 906 907 const Value *Callee = I.getCalledValue(); 908 const Function *Fn = dyn_cast<Function>(Callee); 909 if (isa<InlineAsm>(Callee)) 910 return false; 911 912 // FIXME: support invoking patchpoint and statepoint intrinsics. 913 if (Fn && Fn->isIntrinsic()) 914 return false; 915 916 // FIXME: support whatever these are. 917 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 918 return false; 919 920 // FIXME: support Windows exception handling. 921 if (!isa<LandingPadInst>(EHPadBB->front())) 922 return false; 923 924 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 925 // the region covered by the try. 926 MCSymbol *BeginSymbol = Context.createTempSymbol(); 927 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 928 929 unsigned Res = I.getType()->isVoidTy() ? 0 : getOrCreateVReg(I); 930 SmallVector<unsigned, 8> Args; 931 for (auto &Arg: I.arg_operands()) 932 Args.push_back(getOrCreateVReg(*Arg)); 933 934 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, 935 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 936 return false; 937 938 MCSymbol *EndSymbol = Context.createTempSymbol(); 939 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 940 941 // FIXME: track probabilities. 942 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 943 &ReturnMBB = getMBB(*ReturnBB); 944 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 945 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 946 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 947 MIRBuilder.buildBr(ReturnMBB); 948 949 return true; 950 } 951 952 bool IRTranslator::translateLandingPad(const User &U, 953 MachineIRBuilder &MIRBuilder) { 954 const LandingPadInst &LP = cast<LandingPadInst>(U); 955 956 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 957 addLandingPadInfo(LP, MBB); 958 959 MBB.setIsEHPad(); 960 961 // If there aren't registers to copy the values into (e.g., during SjLj 962 // exceptions), then don't bother. 963 auto &TLI = *MF->getSubtarget().getTargetLowering(); 964 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 965 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 966 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 967 return true; 968 969 // If landingpad's return type is token type, we don't create DAG nodes 970 // for its exception pointer and selector value. The extraction of exception 971 // pointer or selector value from token type landingpads is not currently 972 // supported. 973 if (LP.getType()->isTokenTy()) 974 return true; 975 976 // Add a label to mark the beginning of the landing pad. Deletion of the 977 // landing pad can thus be detected via the MachineModuleInfo. 978 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 979 .addSym(MF->addLandingPad(&MBB)); 980 981 LLT Ty = getLLTForType(*LP.getType(), *DL); 982 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 983 MIRBuilder.buildUndef(Undef); 984 985 SmallVector<LLT, 2> Tys; 986 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 987 Tys.push_back(getLLTForType(*Ty, *DL)); 988 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 989 990 // Mark exception register as live in. 991 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 992 if (!ExceptionReg) 993 return false; 994 995 MBB.addLiveIn(ExceptionReg); 996 unsigned VReg = MRI->createGenericVirtualRegister(Tys[0]), 997 Tmp = MRI->createGenericVirtualRegister(Ty); 998 MIRBuilder.buildCopy(VReg, ExceptionReg); 999 MIRBuilder.buildInsert(Tmp, Undef, VReg, 0); 1000 1001 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1002 if (!SelectorReg) 1003 return false; 1004 1005 MBB.addLiveIn(SelectorReg); 1006 1007 // N.b. the exception selector register always has pointer type and may not 1008 // match the actual IR-level type in the landingpad so an extra cast is 1009 // needed. 1010 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1011 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1012 1013 VReg = MRI->createGenericVirtualRegister(Tys[1]); 1014 MIRBuilder.buildInstr(TargetOpcode::G_PTRTOINT).addDef(VReg).addUse(PtrVReg); 1015 MIRBuilder.buildInsert(getOrCreateVReg(LP), Tmp, VReg, 1016 Tys[0].getSizeInBits()); 1017 return true; 1018 } 1019 1020 bool IRTranslator::translateAlloca(const User &U, 1021 MachineIRBuilder &MIRBuilder) { 1022 auto &AI = cast<AllocaInst>(U); 1023 1024 if (AI.isStaticAlloca()) { 1025 unsigned Res = getOrCreateVReg(AI); 1026 int FI = getOrCreateFrameIndex(AI); 1027 MIRBuilder.buildFrameIndex(Res, FI); 1028 return true; 1029 } 1030 1031 // FIXME: support stack probing for Windows. 1032 if (MF->getTarget().getTargetTriple().isOSWindows()) 1033 return false; 1034 1035 // Now we're in the harder dynamic case. 1036 Type *Ty = AI.getAllocatedType(); 1037 unsigned Align = 1038 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1039 1040 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 1041 1042 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1043 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1044 if (MRI->getType(NumElts) != IntPtrTy) { 1045 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1046 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1047 NumElts = ExtElts; 1048 } 1049 1050 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1051 unsigned TySize = 1052 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1053 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1054 1055 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1056 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1057 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1058 1059 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1060 MIRBuilder.buildCopy(SPTmp, SPReg); 1061 1062 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1063 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1064 1065 // Handle alignment. We have to realign if the allocation granule was smaller 1066 // than stack alignment, or the specific alloca requires more than stack 1067 // alignment. 1068 unsigned StackAlign = 1069 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1070 Align = std::max(Align, StackAlign); 1071 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1072 // Round the size of the allocation up to the stack alignment size 1073 // by add SA-1 to the size. This doesn't overflow because we're computing 1074 // an address inside an alloca. 1075 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1076 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1077 AllocTmp = AlignedAlloc; 1078 } 1079 1080 MIRBuilder.buildCopy(SPReg, AllocTmp); 1081 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1082 1083 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1084 assert(MF->getFrameInfo().hasVarSizedObjects()); 1085 return true; 1086 } 1087 1088 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1089 // FIXME: We may need more info about the type. Because of how LLT works, 1090 // we're completely discarding the i64/double distinction here (amongst 1091 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1092 // anyway but that's not guaranteed. 1093 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1094 .addDef(getOrCreateVReg(U)) 1095 .addUse(getOrCreateVReg(*U.getOperand(0))) 1096 .addImm(DL->getABITypeAlignment(U.getType())); 1097 return true; 1098 } 1099 1100 bool IRTranslator::translateInsertElement(const User &U, 1101 MachineIRBuilder &MIRBuilder) { 1102 // If it is a <1 x Ty> vector, use the scalar as it is 1103 // not a legal vector type in LLT. 1104 if (U.getType()->getVectorNumElements() == 1) { 1105 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1106 ValToVReg[&U] = Elt; 1107 return true; 1108 } 1109 unsigned Res = getOrCreateVReg(U); 1110 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1111 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1112 unsigned Idx = getOrCreateVReg(*U.getOperand(2)); 1113 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1114 return true; 1115 } 1116 1117 bool IRTranslator::translateExtractElement(const User &U, 1118 MachineIRBuilder &MIRBuilder) { 1119 // If it is a <1 x Ty> vector, use the scalar as it is 1120 // not a legal vector type in LLT. 1121 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1122 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1123 ValToVReg[&U] = Elt; 1124 return true; 1125 } 1126 unsigned Res = getOrCreateVReg(U); 1127 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1128 unsigned Idx = getOrCreateVReg(*U.getOperand(1)); 1129 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1130 return true; 1131 } 1132 1133 bool IRTranslator::translateShuffleVector(const User &U, 1134 MachineIRBuilder &MIRBuilder) { 1135 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1136 .addDef(getOrCreateVReg(U)) 1137 .addUse(getOrCreateVReg(*U.getOperand(0))) 1138 .addUse(getOrCreateVReg(*U.getOperand(1))) 1139 .addUse(getOrCreateVReg(*U.getOperand(2))); 1140 return true; 1141 } 1142 1143 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1144 const PHINode &PI = cast<PHINode>(U); 1145 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI); 1146 MIB.addDef(getOrCreateVReg(PI)); 1147 1148 PendingPHIs.emplace_back(&PI, MIB.getInstr()); 1149 return true; 1150 } 1151 1152 void IRTranslator::finishPendingPhis() { 1153 for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) { 1154 const PHINode *PI = Phi.first; 1155 MachineInstrBuilder MIB(*MF, Phi.second); 1156 1157 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1158 // won't create extra control flow here, otherwise we need to find the 1159 // dominating predecessor here (or perhaps force the weirder IRTranslators 1160 // to provide a simple boundary). 1161 SmallSet<const BasicBlock *, 4> HandledPreds; 1162 1163 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1164 auto IRPred = PI->getIncomingBlock(i); 1165 if (HandledPreds.count(IRPred)) 1166 continue; 1167 1168 HandledPreds.insert(IRPred); 1169 unsigned ValReg = getOrCreateVReg(*PI->getIncomingValue(i)); 1170 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1171 assert(Pred->isSuccessor(MIB->getParent()) && 1172 "incorrect CFG at MachineBasicBlock level"); 1173 MIB.addUse(ValReg); 1174 MIB.addMBB(Pred); 1175 } 1176 } 1177 } 1178 } 1179 1180 bool IRTranslator::translate(const Instruction &Inst) { 1181 CurBuilder.setDebugLoc(Inst.getDebugLoc()); 1182 switch(Inst.getOpcode()) { 1183 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1184 case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder); 1185 #include "llvm/IR/Instruction.def" 1186 default: 1187 return false; 1188 } 1189 } 1190 1191 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1192 if (auto CI = dyn_cast<ConstantInt>(&C)) 1193 EntryBuilder.buildConstant(Reg, *CI); 1194 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1195 EntryBuilder.buildFConstant(Reg, *CF); 1196 else if (isa<UndefValue>(C)) 1197 EntryBuilder.buildUndef(Reg); 1198 else if (isa<ConstantPointerNull>(C)) { 1199 // As we are trying to build a constant val of 0 into a pointer, 1200 // insert a cast to make them correct with respect to types. 1201 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 1202 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 1203 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 1204 unsigned ZeroReg = getOrCreateVReg(*ZeroVal); 1205 EntryBuilder.buildCast(Reg, ZeroReg); 1206 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 1207 EntryBuilder.buildGlobalValue(Reg, GV); 1208 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1209 if (!CAZ->getType()->isVectorTy()) 1210 return false; 1211 // Return the scalar if it is a <1 x Ty> vector. 1212 if (CAZ->getNumElements() == 1) 1213 return translate(*CAZ->getElementValue(0u), Reg); 1214 std::vector<unsigned> Ops; 1215 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1216 Constant &Elt = *CAZ->getElementValue(i); 1217 Ops.push_back(getOrCreateVReg(Elt)); 1218 } 1219 EntryBuilder.buildMerge(Reg, Ops); 1220 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1221 // Return the scalar if it is a <1 x Ty> vector. 1222 if (CV->getNumElements() == 1) 1223 return translate(*CV->getElementAsConstant(0), Reg); 1224 std::vector<unsigned> Ops; 1225 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1226 Constant &Elt = *CV->getElementAsConstant(i); 1227 Ops.push_back(getOrCreateVReg(Elt)); 1228 } 1229 EntryBuilder.buildMerge(Reg, Ops); 1230 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1231 switch(CE->getOpcode()) { 1232 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1233 case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder); 1234 #include "llvm/IR/Instruction.def" 1235 default: 1236 return false; 1237 } 1238 } else if (auto CS = dyn_cast<ConstantStruct>(&C)) { 1239 // Return the element if it is a single element ConstantStruct. 1240 if (CS->getNumOperands() == 1) { 1241 unsigned EltReg = getOrCreateVReg(*CS->getOperand(0)); 1242 EntryBuilder.buildCast(Reg, EltReg); 1243 return true; 1244 } 1245 SmallVector<unsigned, 4> Ops; 1246 SmallVector<uint64_t, 4> Indices; 1247 uint64_t Offset = 0; 1248 for (unsigned i = 0; i < CS->getNumOperands(); ++i) { 1249 unsigned OpReg = getOrCreateVReg(*CS->getOperand(i)); 1250 Ops.push_back(OpReg); 1251 Indices.push_back(Offset); 1252 Offset += MRI->getType(OpReg).getSizeInBits(); 1253 } 1254 EntryBuilder.buildSequence(Reg, Ops, Indices); 1255 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 1256 if (CV->getNumOperands() == 1) 1257 return translate(*CV->getOperand(0), Reg); 1258 SmallVector<unsigned, 4> Ops; 1259 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 1260 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 1261 } 1262 EntryBuilder.buildMerge(Reg, Ops); 1263 } else 1264 return false; 1265 1266 return true; 1267 } 1268 1269 void IRTranslator::finalizeFunction() { 1270 // Release the memory used by the different maps we 1271 // needed during the translation. 1272 PendingPHIs.clear(); 1273 ValToVReg.clear(); 1274 FrameIndices.clear(); 1275 MachinePreds.clear(); 1276 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 1277 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 1278 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 1279 EntryBuilder = MachineIRBuilder(); 1280 CurBuilder = MachineIRBuilder(); 1281 } 1282 1283 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1284 MF = &CurMF; 1285 const Function &F = MF->getFunction(); 1286 if (F.empty()) 1287 return false; 1288 CLI = MF->getSubtarget().getCallLowering(); 1289 CurBuilder.setMF(*MF); 1290 EntryBuilder.setMF(*MF); 1291 MRI = &MF->getRegInfo(); 1292 DL = &F.getParent()->getDataLayout(); 1293 TPC = &getAnalysis<TargetPassConfig>(); 1294 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 1295 1296 assert(PendingPHIs.empty() && "stale PHIs"); 1297 1298 if (!DL->isLittleEndian()) { 1299 // Currently we don't properly handle big endian code. 1300 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1301 F.getSubprogram(), &F.getEntryBlock()); 1302 R << "unable to translate in big endian mode"; 1303 reportTranslationError(*MF, *TPC, *ORE, R); 1304 } 1305 1306 // Release the per-function state when we return, whether we succeeded or not. 1307 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1308 1309 // Setup a separate basic-block for the arguments and constants 1310 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1311 MF->push_back(EntryBB); 1312 EntryBuilder.setMBB(*EntryBB); 1313 1314 // Create all blocks, in IR order, to preserve the layout. 1315 for (const BasicBlock &BB: F) { 1316 auto *&MBB = BBToMBB[&BB]; 1317 1318 MBB = MF->CreateMachineBasicBlock(&BB); 1319 MF->push_back(MBB); 1320 1321 if (BB.hasAddressTaken()) 1322 MBB->setHasAddressTaken(); 1323 } 1324 1325 // Make our arguments/constants entry block fallthrough to the IR entry block. 1326 EntryBB->addSuccessor(&getMBB(F.front())); 1327 1328 // Lower the actual args into this basic block. 1329 SmallVector<unsigned, 8> VRegArgs; 1330 for (const Argument &Arg: F.args()) { 1331 if (DL->getTypeStoreSize(Arg.getType()) == 0) 1332 continue; // Don't handle zero sized types. 1333 VRegArgs.push_back(getOrCreateVReg(Arg)); 1334 } 1335 if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) { 1336 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1337 F.getSubprogram(), &F.getEntryBlock()); 1338 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1339 reportTranslationError(*MF, *TPC, *ORE, R); 1340 return false; 1341 } 1342 1343 // And translate the function! 1344 for (const BasicBlock &BB: F) { 1345 MachineBasicBlock &MBB = getMBB(BB); 1346 // Set the insertion point of all the following translations to 1347 // the end of this basic block. 1348 CurBuilder.setMBB(MBB); 1349 1350 for (const Instruction &Inst: BB) { 1351 if (translate(Inst)) 1352 continue; 1353 1354 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1355 Inst.getDebugLoc(), &BB); 1356 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 1357 1358 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 1359 std::string InstStrStorage; 1360 raw_string_ostream InstStr(InstStrStorage); 1361 InstStr << Inst; 1362 1363 R << ": '" << InstStr.str() << "'"; 1364 } 1365 1366 reportTranslationError(*MF, *TPC, *ORE, R); 1367 return false; 1368 } 1369 } 1370 1371 finishPendingPhis(); 1372 1373 // Merge the argument lowering and constants block with its single 1374 // successor, the LLVM-IR entry block. We want the basic block to 1375 // be maximal. 1376 assert(EntryBB->succ_size() == 1 && 1377 "Custom BB used for lowering should have only one successor"); 1378 // Get the successor of the current entry block. 1379 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1380 assert(NewEntryBB.pred_size() == 1 && 1381 "LLVM-IR entry block has a predecessor!?"); 1382 // Move all the instruction from the current entry block to the 1383 // new entry block. 1384 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1385 EntryBB->end()); 1386 1387 // Update the live-in information for the new entry block. 1388 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1389 NewEntryBB.addLiveIn(LiveIn); 1390 NewEntryBB.sortUniqueLiveIns(); 1391 1392 // Get rid of the now empty basic block. 1393 EntryBB->removeSuccessor(&NewEntryBB); 1394 MF->remove(EntryBB); 1395 MF->DeleteMachineBasicBlock(EntryBB); 1396 1397 assert(&MF->front() == &NewEntryBB && 1398 "New entry wasn't next in the list of basic block!"); 1399 1400 return false; 1401 } 1402