1 //===-- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator --*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/Type.h" 23 #include "llvm/IR/Value.h" 24 #include "llvm/Target/TargetLowering.h" 25 26 #define DEBUG_TYPE "irtranslator" 27 28 using namespace llvm; 29 30 char IRTranslator::ID = 0; 31 INITIALIZE_PASS(IRTranslator, "irtranslator", "IRTranslator LLVM IR -> MI", 32 false, false) 33 34 IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) { 35 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 36 } 37 38 unsigned IRTranslator::getOrCreateVReg(const Value &Val) { 39 unsigned &ValReg = ValToVReg[&Val]; 40 // Check if this is the first time we see Val. 41 if (!ValReg) { 42 // Fill ValRegsSequence with the sequence of registers 43 // we need to concat together to produce the value. 44 assert(Val.getType()->isSized() && 45 "Don't know how to create an empty vreg"); 46 assert(!Val.getType()->isAggregateType() && "Not yet implemented"); 47 unsigned Size = DL->getTypeSizeInBits(Val.getType()); 48 unsigned VReg = MRI->createGenericVirtualRegister(Size); 49 ValReg = VReg; 50 assert(!isa<Constant>(Val) && "Not yet implemented"); 51 } 52 return ValReg; 53 } 54 55 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 56 unsigned Alignment = 0; 57 Type *ValTy = nullptr; 58 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 59 Alignment = SI->getAlignment(); 60 ValTy = SI->getValueOperand()->getType(); 61 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 62 Alignment = LI->getAlignment(); 63 ValTy = LI->getType(); 64 } else 65 llvm_unreachable("unhandled memory instruction"); 66 67 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 68 } 69 70 MachineBasicBlock &IRTranslator::getOrCreateBB(const BasicBlock &BB) { 71 MachineBasicBlock *&MBB = BBToMBB[&BB]; 72 if (!MBB) { 73 MachineFunction &MF = MIRBuilder.getMF(); 74 MBB = MF.CreateMachineBasicBlock(); 75 MF.push_back(MBB); 76 } 77 return *MBB; 78 } 79 80 bool IRTranslator::translateBinaryOp(unsigned Opcode, const Instruction &Inst) { 81 // Get or create a virtual register for each value. 82 // Unless the value is a Constant => loadimm cst? 83 // or inline constant each time? 84 // Creation of a virtual register needs to have a size. 85 unsigned Op0 = getOrCreateVReg(*Inst.getOperand(0)); 86 unsigned Op1 = getOrCreateVReg(*Inst.getOperand(1)); 87 unsigned Res = getOrCreateVReg(Inst); 88 MIRBuilder.buildInstr(Opcode, LLT{*Inst.getType()}, Res, Op0, Op1); 89 return true; 90 } 91 92 bool IRTranslator::translateReturn(const Instruction &Inst) { 93 assert(isa<ReturnInst>(Inst) && "Return expected"); 94 const Value *Ret = cast<ReturnInst>(Inst).getReturnValue(); 95 // The target may mess up with the insertion point, but 96 // this is not important as a return is the last instruction 97 // of the block anyway. 98 return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret)); 99 } 100 101 bool IRTranslator::translateBr(const Instruction &Inst) { 102 assert(isa<BranchInst>(Inst) && "Branch expected"); 103 const BranchInst &BrInst = *cast<BranchInst>(&Inst); 104 if (BrInst.isUnconditional()) { 105 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getOperand(0)); 106 MachineBasicBlock &TgtBB = getOrCreateBB(BrTgt); 107 MIRBuilder.buildBr(TgtBB); 108 } else { 109 assert(0 && "Not yet implemented"); 110 } 111 // Link successors. 112 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 113 for (const BasicBlock *Succ : BrInst.successors()) 114 CurBB.addSuccessor(&getOrCreateBB(*Succ)); 115 return true; 116 } 117 118 bool IRTranslator::translateLoad(const LoadInst &LI) { 119 assert(LI.isSimple() && "only simple loads are supported at the moment"); 120 121 MachineFunction &MF = MIRBuilder.getMF(); 122 unsigned Res = getOrCreateVReg(LI); 123 unsigned Addr = getOrCreateVReg(*LI.getPointerOperand()); 124 LLT VTy{*LI.getType()}, PTy{*LI.getPointerOperand()->getType()}; 125 126 MIRBuilder.buildLoad( 127 VTy, PTy, Res, Addr, 128 *MF.getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()), 129 MachineMemOperand::MOLoad, 130 VTy.getSizeInBits() / 8, getMemOpAlignment(LI))); 131 return true; 132 } 133 134 bool IRTranslator::translateStore(const StoreInst &SI) { 135 assert(SI.isSimple() && "only simple loads are supported at the moment"); 136 137 MachineFunction &MF = MIRBuilder.getMF(); 138 unsigned Val = getOrCreateVReg(*SI.getValueOperand()); 139 unsigned Addr = getOrCreateVReg(*SI.getPointerOperand()); 140 LLT VTy{*SI.getValueOperand()->getType()}, 141 PTy{*SI.getPointerOperand()->getType()}; 142 143 MIRBuilder.buildStore( 144 VTy, PTy, Val, Addr, 145 *MF.getMachineMemOperand(MachinePointerInfo(SI.getPointerOperand()), 146 MachineMemOperand::MOStore, 147 VTy.getSizeInBits() / 8, getMemOpAlignment(SI))); 148 return true; 149 } 150 151 bool IRTranslator::translateBitCast(const CastInst &CI) { 152 if (LLT{*CI.getDestTy()} == LLT{*CI.getSrcTy()}) { 153 MIRBuilder.buildCopy(getOrCreateVReg(CI), 154 getOrCreateVReg(*CI.getOperand(0))); 155 return true; 156 } 157 return translateCast(TargetOpcode::G_BITCAST, CI); 158 } 159 160 bool IRTranslator::translateCast(unsigned Opcode, const CastInst &CI) { 161 unsigned Op = getOrCreateVReg(*CI.getOperand(0)); 162 unsigned Res = getOrCreateVReg(CI); 163 MIRBuilder.buildInstr(Opcode, {LLT{*CI.getDestTy()}, LLT{*CI.getSrcTy()}}, 164 Res, Op); 165 return true; 166 } 167 168 bool IRTranslator::translateStaticAlloca(const AllocaInst &AI) { 169 assert(AI.isStaticAlloca() && "only handle static allocas now"); 170 MachineFunction &MF = MIRBuilder.getMF(); 171 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 172 unsigned Size = 173 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 174 175 unsigned Alignment = AI.getAlignment(); 176 if (!Alignment) 177 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 178 179 unsigned Res = getOrCreateVReg(AI); 180 int FI = MF.getFrameInfo()->CreateStackObject(Size, Alignment, false, &AI); 181 MIRBuilder.buildFrameIndex(LLT::pointer(0), Res, FI); 182 return true; 183 } 184 185 bool IRTranslator::translate(const Instruction &Inst) { 186 MIRBuilder.setDebugLoc(Inst.getDebugLoc()); 187 switch(Inst.getOpcode()) { 188 // Arithmetic operations. 189 case Instruction::Add: 190 return translateBinaryOp(TargetOpcode::G_ADD, Inst); 191 case Instruction::Sub: 192 return translateBinaryOp(TargetOpcode::G_SUB, Inst); 193 194 // Bitwise operations. 195 case Instruction::And: 196 return translateBinaryOp(TargetOpcode::G_AND, Inst); 197 case Instruction::Or: 198 return translateBinaryOp(TargetOpcode::G_OR, Inst); 199 200 // Branch operations. 201 case Instruction::Br: 202 return translateBr(Inst); 203 case Instruction::Ret: 204 return translateReturn(Inst); 205 206 // Casts 207 case Instruction::BitCast: 208 return translateBitCast(cast<CastInst>(Inst)); 209 case Instruction::IntToPtr: 210 return translateCast(TargetOpcode::G_INTTOPTR, cast<CastInst>(Inst)); 211 case Instruction::PtrToInt: 212 return translateCast(TargetOpcode::G_PTRTOINT, cast<CastInst>(Inst)); 213 214 // Memory ops. 215 case Instruction::Load: 216 return translateLoad(cast<LoadInst>(Inst)); 217 case Instruction::Store: 218 return translateStore(cast<StoreInst>(Inst)); 219 220 case Instruction::Alloca: 221 return translateStaticAlloca(cast<AllocaInst>(Inst)); 222 223 default: 224 llvm_unreachable("Opcode not supported"); 225 } 226 } 227 228 229 void IRTranslator::finalize() { 230 // Release the memory used by the different maps we 231 // needed during the translation. 232 ValToVReg.clear(); 233 Constants.clear(); 234 } 235 236 bool IRTranslator::runOnMachineFunction(MachineFunction &MF) { 237 const Function &F = *MF.getFunction(); 238 if (F.empty()) 239 return false; 240 CLI = MF.getSubtarget().getCallLowering(); 241 MIRBuilder.setMF(MF); 242 MRI = &MF.getRegInfo(); 243 DL = &F.getParent()->getDataLayout(); 244 245 // Setup the arguments. 246 MachineBasicBlock &MBB = getOrCreateBB(F.front()); 247 MIRBuilder.setMBB(MBB); 248 SmallVector<unsigned, 8> VRegArgs; 249 for (const Argument &Arg: F.args()) 250 VRegArgs.push_back(getOrCreateVReg(Arg)); 251 bool Succeeded = 252 CLI->lowerFormalArguments(MIRBuilder, F.getArgumentList(), VRegArgs); 253 if (!Succeeded) 254 report_fatal_error("Unable to lower arguments"); 255 256 for (const BasicBlock &BB: F) { 257 MachineBasicBlock &MBB = getOrCreateBB(BB); 258 // Set the insertion point of all the following translations to 259 // the end of this basic block. 260 MIRBuilder.setMBB(MBB); 261 for (const Instruction &Inst: BB) { 262 bool Succeeded = translate(Inst); 263 if (!Succeeded) { 264 DEBUG(dbgs() << "Cannot translate: " << Inst << '\n'); 265 report_fatal_error("Unable to translate instruction"); 266 } 267 } 268 } 269 270 // Now that the MachineFrameInfo has been configured, no further changes to 271 // the reserved registers are possible. 272 MRI->freezeReservedRegs(MF); 273 274 return false; 275 } 276