1 //===-- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator --*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 15 #include "llvm/ADT/SmallSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 18 #include "llvm/CodeGen/Analysis.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/DebugInfo.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GetElementPtrTypeIterator.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Target/TargetIntrinsicInfo.h" 32 #include "llvm/Target/TargetLowering.h" 33 34 #define DEBUG_TYPE "irtranslator" 35 36 using namespace llvm; 37 38 char IRTranslator::ID = 0; 39 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 40 false, false) 41 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 42 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 43 false, false) 44 45 static void reportTranslationError(const Value &V, const Twine &Message) { 46 std::string ErrStorage; 47 raw_string_ostream Err(ErrStorage); 48 Err << Message << ": " << V << '\n'; 49 report_fatal_error(Err.str()); 50 } 51 52 IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) { 53 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 54 } 55 56 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 57 AU.addRequired<TargetPassConfig>(); 58 MachineFunctionPass::getAnalysisUsage(AU); 59 } 60 61 62 unsigned IRTranslator::getOrCreateVReg(const Value &Val) { 63 unsigned &ValReg = ValToVReg[&Val]; 64 65 if (ValReg) 66 return ValReg; 67 68 // Fill ValRegsSequence with the sequence of registers 69 // we need to concat together to produce the value. 70 assert(Val.getType()->isSized() && 71 "Don't know how to create an empty vreg"); 72 unsigned VReg = MRI->createGenericVirtualRegister(LLT{*Val.getType(), *DL}); 73 ValReg = VReg; 74 75 if (auto CV = dyn_cast<Constant>(&Val)) { 76 bool Success = translate(*CV, VReg); 77 if (!Success) { 78 if (!TPC->isGlobalISelAbortEnabled()) { 79 MF->getProperties().set( 80 MachineFunctionProperties::Property::FailedISel); 81 return VReg; 82 } 83 reportTranslationError(Val, "unable to translate constant"); 84 } 85 } 86 87 return VReg; 88 } 89 90 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 91 if (FrameIndices.find(&AI) != FrameIndices.end()) 92 return FrameIndices[&AI]; 93 94 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 95 unsigned Size = 96 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 97 98 // Always allocate at least one byte. 99 Size = std::max(Size, 1u); 100 101 unsigned Alignment = AI.getAlignment(); 102 if (!Alignment) 103 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 104 105 int &FI = FrameIndices[&AI]; 106 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 107 return FI; 108 } 109 110 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 111 unsigned Alignment = 0; 112 Type *ValTy = nullptr; 113 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 114 Alignment = SI->getAlignment(); 115 ValTy = SI->getValueOperand()->getType(); 116 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 117 Alignment = LI->getAlignment(); 118 ValTy = LI->getType(); 119 } else if (!TPC->isGlobalISelAbortEnabled()) { 120 MF->getProperties().set( 121 MachineFunctionProperties::Property::FailedISel); 122 return 1; 123 } else 124 llvm_unreachable("unhandled memory instruction"); 125 126 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 127 } 128 129 MachineBasicBlock &IRTranslator::getOrCreateBB(const BasicBlock &BB) { 130 MachineBasicBlock *&MBB = BBToMBB[&BB]; 131 if (!MBB) { 132 MBB = MF->CreateMachineBasicBlock(&BB); 133 MF->push_back(MBB); 134 135 if (BB.hasAddressTaken()) 136 MBB->setHasAddressTaken(); 137 } 138 return *MBB; 139 } 140 141 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 142 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 143 MachinePreds[Edge].push_back(NewPred); 144 } 145 146 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 147 MachineIRBuilder &MIRBuilder) { 148 // FIXME: handle signed/unsigned wrapping flags. 149 150 // Get or create a virtual register for each value. 151 // Unless the value is a Constant => loadimm cst? 152 // or inline constant each time? 153 // Creation of a virtual register needs to have a size. 154 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 155 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 156 unsigned Res = getOrCreateVReg(U); 157 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); 158 return true; 159 } 160 161 bool IRTranslator::translateCompare(const User &U, 162 MachineIRBuilder &MIRBuilder) { 163 const CmpInst *CI = dyn_cast<CmpInst>(&U); 164 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 165 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 166 unsigned Res = getOrCreateVReg(U); 167 CmpInst::Predicate Pred = 168 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 169 cast<ConstantExpr>(U).getPredicate()); 170 171 if (CmpInst::isIntPredicate(Pred)) 172 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 173 else 174 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); 175 176 return true; 177 } 178 179 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 180 const ReturnInst &RI = cast<ReturnInst>(U); 181 const Value *Ret = RI.getReturnValue(); 182 // The target may mess up with the insertion point, but 183 // this is not important as a return is the last instruction 184 // of the block anyway. 185 return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret)); 186 } 187 188 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 189 const BranchInst &BrInst = cast<BranchInst>(U); 190 unsigned Succ = 0; 191 if (!BrInst.isUnconditional()) { 192 // We want a G_BRCOND to the true BB followed by an unconditional branch. 193 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 194 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 195 MachineBasicBlock &TrueBB = getOrCreateBB(TrueTgt); 196 MIRBuilder.buildBrCond(Tst, TrueBB); 197 } 198 199 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 200 MachineBasicBlock &TgtBB = getOrCreateBB(BrTgt); 201 MIRBuilder.buildBr(TgtBB); 202 203 // Link successors. 204 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 205 for (const BasicBlock *Succ : BrInst.successors()) 206 CurBB.addSuccessor(&getOrCreateBB(*Succ)); 207 return true; 208 } 209 210 bool IRTranslator::translateSwitch(const User &U, 211 MachineIRBuilder &MIRBuilder) { 212 // For now, just translate as a chain of conditional branches. 213 // FIXME: could we share most of the logic/code in 214 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 215 // At first sight, it seems most of the logic in there is independent of 216 // SelectionDAG-specifics and a lot of work went in to optimize switch 217 // lowering in there. 218 219 const SwitchInst &SwInst = cast<SwitchInst>(U); 220 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 221 const BasicBlock *OrigBB = SwInst.getParent(); 222 223 LLT LLTi1 = LLT(*Type::getInt1Ty(U.getContext()), *DL); 224 for (auto &CaseIt : SwInst.cases()) { 225 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 226 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 227 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 228 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 229 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 230 MachineBasicBlock &TrueMBB = getOrCreateBB(*TrueBB); 231 232 MIRBuilder.buildBrCond(Tst, TrueMBB); 233 CurMBB.addSuccessor(&TrueMBB); 234 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 235 236 MachineBasicBlock *FalseMBB = 237 MF->CreateMachineBasicBlock(SwInst.getParent()); 238 MF->push_back(FalseMBB); 239 MIRBuilder.buildBr(*FalseMBB); 240 CurMBB.addSuccessor(FalseMBB); 241 242 MIRBuilder.setMBB(*FalseMBB); 243 } 244 // handle default case 245 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 246 MachineBasicBlock &DefaultMBB = getOrCreateBB(*DefaultBB); 247 MIRBuilder.buildBr(DefaultMBB); 248 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 249 CurMBB.addSuccessor(&DefaultMBB); 250 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 251 252 return true; 253 } 254 255 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 256 const LoadInst &LI = cast<LoadInst>(U); 257 258 if (!TPC->isGlobalISelAbortEnabled() && LI.isAtomic()) 259 return false; 260 261 assert(!LI.isAtomic() && "only non-atomic loads are supported at the moment"); 262 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 263 : MachineMemOperand::MONone; 264 Flags |= MachineMemOperand::MOLoad; 265 266 unsigned Res = getOrCreateVReg(LI); 267 unsigned Addr = getOrCreateVReg(*LI.getPointerOperand()); 268 LLT VTy{*LI.getType(), *DL}, PTy{*LI.getPointerOperand()->getType(), *DL}; 269 MIRBuilder.buildLoad( 270 Res, Addr, 271 *MF->getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()), 272 Flags, DL->getTypeStoreSize(LI.getType()), 273 getMemOpAlignment(LI))); 274 return true; 275 } 276 277 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 278 const StoreInst &SI = cast<StoreInst>(U); 279 280 if (!TPC->isGlobalISelAbortEnabled() && SI.isAtomic()) 281 return false; 282 283 assert(!SI.isAtomic() && "only non-atomic stores supported at the moment"); 284 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 285 : MachineMemOperand::MONone; 286 Flags |= MachineMemOperand::MOStore; 287 288 unsigned Val = getOrCreateVReg(*SI.getValueOperand()); 289 unsigned Addr = getOrCreateVReg(*SI.getPointerOperand()); 290 LLT VTy{*SI.getValueOperand()->getType(), *DL}, 291 PTy{*SI.getPointerOperand()->getType(), *DL}; 292 293 MIRBuilder.buildStore( 294 Val, Addr, 295 *MF->getMachineMemOperand( 296 MachinePointerInfo(SI.getPointerOperand()), Flags, 297 DL->getTypeStoreSize(SI.getValueOperand()->getType()), 298 getMemOpAlignment(SI))); 299 return true; 300 } 301 302 bool IRTranslator::translateExtractValue(const User &U, 303 MachineIRBuilder &MIRBuilder) { 304 const Value *Src = U.getOperand(0); 305 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 306 SmallVector<Value *, 1> Indices; 307 308 // getIndexedOffsetInType is designed for GEPs, so the first index is the 309 // usual array element rather than looking into the actual aggregate. 310 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 311 312 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 313 for (auto Idx : EVI->indices()) 314 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 315 } else { 316 for (unsigned i = 1; i < U.getNumOperands(); ++i) 317 Indices.push_back(U.getOperand(i)); 318 } 319 320 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 321 322 unsigned Res = getOrCreateVReg(U); 323 MIRBuilder.buildExtract(Res, Offset, getOrCreateVReg(*Src)); 324 325 return true; 326 } 327 328 bool IRTranslator::translateInsertValue(const User &U, 329 MachineIRBuilder &MIRBuilder) { 330 const Value *Src = U.getOperand(0); 331 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 332 SmallVector<Value *, 1> Indices; 333 334 // getIndexedOffsetInType is designed for GEPs, so the first index is the 335 // usual array element rather than looking into the actual aggregate. 336 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 337 338 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 339 for (auto Idx : IVI->indices()) 340 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 341 } else { 342 for (unsigned i = 2; i < U.getNumOperands(); ++i) 343 Indices.push_back(U.getOperand(i)); 344 } 345 346 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 347 348 unsigned Res = getOrCreateVReg(U); 349 const Value &Inserted = *U.getOperand(1); 350 MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), getOrCreateVReg(Inserted), 351 Offset); 352 353 return true; 354 } 355 356 bool IRTranslator::translateSelect(const User &U, 357 MachineIRBuilder &MIRBuilder) { 358 MIRBuilder.buildSelect(getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)), 359 getOrCreateVReg(*U.getOperand(1)), 360 getOrCreateVReg(*U.getOperand(2))); 361 return true; 362 } 363 364 bool IRTranslator::translateBitCast(const User &U, 365 MachineIRBuilder &MIRBuilder) { 366 if (LLT{*U.getOperand(0)->getType(), *DL} == LLT{*U.getType(), *DL}) { 367 unsigned &Reg = ValToVReg[&U]; 368 if (Reg) 369 MIRBuilder.buildCopy(Reg, getOrCreateVReg(*U.getOperand(0))); 370 else 371 Reg = getOrCreateVReg(*U.getOperand(0)); 372 return true; 373 } 374 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 375 } 376 377 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 378 MachineIRBuilder &MIRBuilder) { 379 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 380 unsigned Res = getOrCreateVReg(U); 381 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 382 return true; 383 } 384 385 bool IRTranslator::translateGetElementPtr(const User &U, 386 MachineIRBuilder &MIRBuilder) { 387 // FIXME: support vector GEPs. 388 if (U.getType()->isVectorTy()) 389 return false; 390 391 Value &Op0 = *U.getOperand(0); 392 unsigned BaseReg = getOrCreateVReg(Op0); 393 LLT PtrTy{*Op0.getType(), *DL}; 394 unsigned PtrSize = DL->getPointerSizeInBits(PtrTy.getAddressSpace()); 395 LLT OffsetTy = LLT::scalar(PtrSize); 396 397 int64_t Offset = 0; 398 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 399 GTI != E; ++GTI) { 400 const Value *Idx = GTI.getOperand(); 401 if (StructType *StTy = GTI.getStructTypeOrNull()) { 402 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 403 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 404 continue; 405 } else { 406 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 407 408 // If this is a scalar constant or a splat vector of constants, 409 // handle it quickly. 410 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 411 Offset += ElementSize * CI->getSExtValue(); 412 continue; 413 } 414 415 if (Offset != 0) { 416 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 417 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 418 MIRBuilder.buildConstant(OffsetReg, Offset); 419 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 420 421 BaseReg = NewBaseReg; 422 Offset = 0; 423 } 424 425 // N = N + Idx * ElementSize; 426 unsigned ElementSizeReg = MRI->createGenericVirtualRegister(OffsetTy); 427 MIRBuilder.buildConstant(ElementSizeReg, ElementSize); 428 429 unsigned IdxReg = getOrCreateVReg(*Idx); 430 if (MRI->getType(IdxReg) != OffsetTy) { 431 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 432 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 433 IdxReg = NewIdxReg; 434 } 435 436 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 437 MIRBuilder.buildMul(OffsetReg, ElementSizeReg, IdxReg); 438 439 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 440 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 441 BaseReg = NewBaseReg; 442 } 443 } 444 445 if (Offset != 0) { 446 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 447 MIRBuilder.buildConstant(OffsetReg, Offset); 448 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 449 return true; 450 } 451 452 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 453 return true; 454 } 455 456 bool IRTranslator::translateMemcpy(const CallInst &CI, 457 MachineIRBuilder &MIRBuilder) { 458 LLT SizeTy{*CI.getArgOperand(2)->getType(), *DL}; 459 if (cast<PointerType>(CI.getArgOperand(0)->getType())->getAddressSpace() != 460 0 || 461 cast<PointerType>(CI.getArgOperand(1)->getType())->getAddressSpace() != 462 0 || 463 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 464 return false; 465 466 SmallVector<CallLowering::ArgInfo, 8> Args; 467 for (int i = 0; i < 3; ++i) { 468 const auto &Arg = CI.getArgOperand(i); 469 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 470 } 471 472 MachineOperand Callee = MachineOperand::CreateES("memcpy"); 473 474 return CLI->lowerCall(MIRBuilder, Callee, 475 CallLowering::ArgInfo(0, CI.getType()), Args); 476 } 477 478 void IRTranslator::getStackGuard(unsigned DstReg, 479 MachineIRBuilder &MIRBuilder) { 480 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 481 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 482 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 483 MIB.addDef(DstReg); 484 485 auto &TLI = *MF->getSubtarget().getTargetLowering(); 486 Value *Global = TLI.getSDagStackGuard(*MF->getFunction()->getParent()); 487 if (!Global) 488 return; 489 490 MachinePointerInfo MPInfo(Global); 491 MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1); 492 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 493 MachineMemOperand::MODereferenceable; 494 *MemRefs = 495 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 496 DL->getPointerABIAlignment()); 497 MIB.setMemRefs(MemRefs, MemRefs + 1); 498 } 499 500 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 501 MachineIRBuilder &MIRBuilder) { 502 LLT Ty{*CI.getOperand(0)->getType(), *DL}; 503 LLT s1 = LLT::scalar(1); 504 unsigned Width = Ty.getSizeInBits(); 505 unsigned Res = MRI->createGenericVirtualRegister(Ty); 506 unsigned Overflow = MRI->createGenericVirtualRegister(s1); 507 auto MIB = MIRBuilder.buildInstr(Op) 508 .addDef(Res) 509 .addDef(Overflow) 510 .addUse(getOrCreateVReg(*CI.getOperand(0))) 511 .addUse(getOrCreateVReg(*CI.getOperand(1))); 512 513 if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) { 514 unsigned Zero = MRI->createGenericVirtualRegister(s1); 515 EntryBuilder.buildConstant(Zero, 0); 516 MIB.addUse(Zero); 517 } 518 519 MIRBuilder.buildSequence(getOrCreateVReg(CI), Res, 0, Overflow, Width); 520 return true; 521 } 522 523 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 524 MachineIRBuilder &MIRBuilder) { 525 switch (ID) { 526 default: 527 break; 528 case Intrinsic::dbg_declare: { 529 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 530 assert(DI.getVariable() && "Missing variable"); 531 532 const Value *Address = DI.getAddress(); 533 if (!Address || isa<UndefValue>(Address)) { 534 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 535 return true; 536 } 537 538 unsigned Reg = getOrCreateVReg(*Address); 539 auto RegDef = MRI->def_instr_begin(Reg); 540 assert(DI.getVariable()->isValidLocationForIntrinsic( 541 MIRBuilder.getDebugLoc()) && 542 "Expected inlined-at fields to agree"); 543 544 if (RegDef != MRI->def_instr_end() && 545 RegDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { 546 MIRBuilder.buildFIDbgValue(RegDef->getOperand(1).getIndex(), 547 DI.getVariable(), DI.getExpression()); 548 } else 549 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 550 return true; 551 } 552 case Intrinsic::dbg_value: { 553 // This form of DBG_VALUE is target-independent. 554 const DbgValueInst &DI = cast<DbgValueInst>(CI); 555 const Value *V = DI.getValue(); 556 assert(DI.getVariable()->isValidLocationForIntrinsic( 557 MIRBuilder.getDebugLoc()) && 558 "Expected inlined-at fields to agree"); 559 if (!V) { 560 // Currently the optimizer can produce this; insert an undef to 561 // help debugging. Probably the optimizer should not do this. 562 MIRBuilder.buildIndirectDbgValue(0, DI.getOffset(), DI.getVariable(), 563 DI.getExpression()); 564 } else if (const auto *CI = dyn_cast<Constant>(V)) { 565 MIRBuilder.buildConstDbgValue(*CI, DI.getOffset(), DI.getVariable(), 566 DI.getExpression()); 567 } else { 568 unsigned Reg = getOrCreateVReg(*V); 569 // FIXME: This does not handle register-indirect values at offset 0. The 570 // direct/indirect thing shouldn't really be handled by something as 571 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 572 // pretty baked in right now. 573 if (DI.getOffset() != 0) 574 MIRBuilder.buildIndirectDbgValue(Reg, DI.getOffset(), DI.getVariable(), 575 DI.getExpression()); 576 else 577 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), 578 DI.getExpression()); 579 } 580 return true; 581 } 582 case Intrinsic::uadd_with_overflow: 583 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder); 584 case Intrinsic::sadd_with_overflow: 585 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 586 case Intrinsic::usub_with_overflow: 587 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder); 588 case Intrinsic::ssub_with_overflow: 589 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 590 case Intrinsic::umul_with_overflow: 591 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 592 case Intrinsic::smul_with_overflow: 593 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 594 case Intrinsic::memcpy: 595 return translateMemcpy(CI, MIRBuilder); 596 case Intrinsic::eh_typeid_for: { 597 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 598 unsigned Reg = getOrCreateVReg(CI); 599 unsigned TypeID = MF->getTypeIDFor(GV); 600 MIRBuilder.buildConstant(Reg, TypeID); 601 return true; 602 } 603 case Intrinsic::objectsize: { 604 // If we don't know by now, we're never going to know. 605 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 606 607 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 608 return true; 609 } 610 case Intrinsic::stackguard: 611 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 612 return true; 613 case Intrinsic::stackprotector: { 614 LLT PtrTy{*CI.getArgOperand(0)->getType(), *DL}; 615 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 616 getStackGuard(GuardVal, MIRBuilder); 617 618 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 619 MIRBuilder.buildStore( 620 GuardVal, getOrCreateVReg(*Slot), 621 *MF->getMachineMemOperand( 622 MachinePointerInfo::getFixedStack(*MF, 623 getOrCreateFrameIndex(*Slot)), 624 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 625 PtrTy.getSizeInBits() / 8, 8)); 626 return true; 627 } 628 } 629 return false; 630 } 631 632 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 633 const CallInst &CI = cast<CallInst>(U); 634 auto TII = MF->getTarget().getIntrinsicInfo(); 635 const Function *F = CI.getCalledFunction(); 636 637 if (CI.isInlineAsm()) 638 return false; 639 640 if (!F || !F->isIntrinsic()) { 641 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 642 SmallVector<unsigned, 8> Args; 643 for (auto &Arg: CI.arg_operands()) 644 Args.push_back(getOrCreateVReg(*Arg)); 645 646 return CLI->lowerCall(MIRBuilder, CI, Res, Args, [&]() { 647 return getOrCreateVReg(*CI.getCalledValue()); 648 }); 649 } 650 651 Intrinsic::ID ID = F->getIntrinsicID(); 652 if (TII && ID == Intrinsic::not_intrinsic) 653 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 654 655 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 656 657 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 658 return true; 659 660 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 661 MachineInstrBuilder MIB = 662 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 663 664 for (auto &Arg : CI.arg_operands()) { 665 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) 666 MIB.addImm(CI->getSExtValue()); 667 else 668 MIB.addUse(getOrCreateVReg(*Arg)); 669 } 670 return true; 671 } 672 673 bool IRTranslator::translateInvoke(const User &U, 674 MachineIRBuilder &MIRBuilder) { 675 const InvokeInst &I = cast<InvokeInst>(U); 676 MCContext &Context = MF->getContext(); 677 678 const BasicBlock *ReturnBB = I.getSuccessor(0); 679 const BasicBlock *EHPadBB = I.getSuccessor(1); 680 681 const Value *Callee(I.getCalledValue()); 682 const Function *Fn = dyn_cast<Function>(Callee); 683 if (isa<InlineAsm>(Callee)) 684 return false; 685 686 // FIXME: support invoking patchpoint and statepoint intrinsics. 687 if (Fn && Fn->isIntrinsic()) 688 return false; 689 690 // FIXME: support whatever these are. 691 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 692 return false; 693 694 // FIXME: support Windows exception handling. 695 if (!isa<LandingPadInst>(EHPadBB->front())) 696 return false; 697 698 699 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 700 // the region covered by the try. 701 MCSymbol *BeginSymbol = Context.createTempSymbol(); 702 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 703 704 unsigned Res = I.getType()->isVoidTy() ? 0 : getOrCreateVReg(I); 705 SmallVector<CallLowering::ArgInfo, 8> Args; 706 for (auto &Arg: I.arg_operands()) 707 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 708 709 if (!CLI->lowerCall(MIRBuilder, MachineOperand::CreateGA(Fn, 0), 710 CallLowering::ArgInfo(Res, I.getType()), Args)) 711 return false; 712 713 MCSymbol *EndSymbol = Context.createTempSymbol(); 714 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 715 716 // FIXME: track probabilities. 717 MachineBasicBlock &EHPadMBB = getOrCreateBB(*EHPadBB), 718 &ReturnMBB = getOrCreateBB(*ReturnBB); 719 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 720 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 721 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 722 723 return true; 724 } 725 726 bool IRTranslator::translateLandingPad(const User &U, 727 MachineIRBuilder &MIRBuilder) { 728 const LandingPadInst &LP = cast<LandingPadInst>(U); 729 730 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 731 addLandingPadInfo(LP, MBB); 732 733 MBB.setIsEHPad(); 734 735 // If there aren't registers to copy the values into (e.g., during SjLj 736 // exceptions), then don't bother. 737 auto &TLI = *MF->getSubtarget().getTargetLowering(); 738 const Constant *PersonalityFn = MF->getFunction()->getPersonalityFn(); 739 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 740 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 741 return true; 742 743 // If landingpad's return type is token type, we don't create DAG nodes 744 // for its exception pointer and selector value. The extraction of exception 745 // pointer or selector value from token type landingpads is not currently 746 // supported. 747 if (LP.getType()->isTokenTy()) 748 return true; 749 750 // Add a label to mark the beginning of the landing pad. Deletion of the 751 // landing pad can thus be detected via the MachineModuleInfo. 752 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 753 .addSym(MF->addLandingPad(&MBB)); 754 755 SmallVector<LLT, 2> Tys; 756 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 757 Tys.push_back(LLT{*Ty, *DL}); 758 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 759 760 // Mark exception register as live in. 761 SmallVector<unsigned, 2> Regs; 762 SmallVector<uint64_t, 2> Offsets; 763 if (unsigned Reg = TLI.getExceptionPointerRegister(PersonalityFn)) { 764 MBB.addLiveIn(Reg); 765 unsigned VReg = MRI->createGenericVirtualRegister(Tys[0]); 766 MIRBuilder.buildCopy(VReg, Reg); 767 Regs.push_back(VReg); 768 Offsets.push_back(0); 769 } 770 771 if (unsigned Reg = TLI.getExceptionSelectorRegister(PersonalityFn)) { 772 MBB.addLiveIn(Reg); 773 unsigned VReg = MRI->createGenericVirtualRegister(Tys[1]); 774 MIRBuilder.buildCopy(VReg, Reg); 775 Regs.push_back(VReg); 776 Offsets.push_back(Tys[0].getSizeInBits()); 777 } 778 779 MIRBuilder.buildSequence(getOrCreateVReg(LP), Regs, Offsets); 780 return true; 781 } 782 783 bool IRTranslator::translateStaticAlloca(const AllocaInst &AI, 784 MachineIRBuilder &MIRBuilder) { 785 if (!TPC->isGlobalISelAbortEnabled() && !AI.isStaticAlloca()) 786 return false; 787 788 assert(AI.isStaticAlloca() && "only handle static allocas now"); 789 unsigned Res = getOrCreateVReg(AI); 790 int FI = getOrCreateFrameIndex(AI); 791 MIRBuilder.buildFrameIndex(Res, FI); 792 return true; 793 } 794 795 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 796 const PHINode &PI = cast<PHINode>(U); 797 auto MIB = MIRBuilder.buildInstr(TargetOpcode::PHI); 798 MIB.addDef(getOrCreateVReg(PI)); 799 800 PendingPHIs.emplace_back(&PI, MIB.getInstr()); 801 return true; 802 } 803 804 void IRTranslator::finishPendingPhis() { 805 for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) { 806 const PHINode *PI = Phi.first; 807 MachineInstrBuilder MIB(*MF, Phi.second); 808 809 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 810 // won't create extra control flow here, otherwise we need to find the 811 // dominating predecessor here (or perhaps force the weirder IRTranslators 812 // to provide a simple boundary). 813 SmallSet<const BasicBlock *, 4> HandledPreds; 814 815 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 816 auto IRPred = PI->getIncomingBlock(i); 817 if (HandledPreds.count(IRPred)) 818 continue; 819 820 HandledPreds.insert(IRPred); 821 unsigned ValReg = getOrCreateVReg(*PI->getIncomingValue(i)); 822 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 823 assert(Pred->isSuccessor(MIB->getParent()) && 824 "incorrect CFG at MachineBasicBlock level"); 825 MIB.addUse(ValReg); 826 MIB.addMBB(Pred); 827 } 828 } 829 } 830 } 831 832 bool IRTranslator::translate(const Instruction &Inst) { 833 CurBuilder.setDebugLoc(Inst.getDebugLoc()); 834 switch(Inst.getOpcode()) { 835 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 836 case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder); 837 #include "llvm/IR/Instruction.def" 838 default: 839 if (!TPC->isGlobalISelAbortEnabled()) 840 return false; 841 llvm_unreachable("unknown opcode"); 842 } 843 } 844 845 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 846 if (auto CI = dyn_cast<ConstantInt>(&C)) 847 EntryBuilder.buildConstant(Reg, *CI); 848 else if (auto CF = dyn_cast<ConstantFP>(&C)) 849 EntryBuilder.buildFConstant(Reg, *CF); 850 else if (isa<UndefValue>(C)) 851 EntryBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF).addDef(Reg); 852 else if (isa<ConstantPointerNull>(C)) 853 EntryBuilder.buildConstant(Reg, 0); 854 else if (auto GV = dyn_cast<GlobalValue>(&C)) 855 EntryBuilder.buildGlobalValue(Reg, GV); 856 else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 857 switch(CE->getOpcode()) { 858 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 859 case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder); 860 #include "llvm/IR/Instruction.def" 861 default: 862 if (!TPC->isGlobalISelAbortEnabled()) 863 return false; 864 llvm_unreachable("unknown opcode"); 865 } 866 } else if (!TPC->isGlobalISelAbortEnabled()) 867 return false; 868 else 869 llvm_unreachable("unhandled constant kind"); 870 871 return true; 872 } 873 874 void IRTranslator::finalizeFunction() { 875 // Release the memory used by the different maps we 876 // needed during the translation. 877 PendingPHIs.clear(); 878 ValToVReg.clear(); 879 FrameIndices.clear(); 880 Constants.clear(); 881 MachinePreds.clear(); 882 } 883 884 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 885 MF = &CurMF; 886 const Function &F = *MF->getFunction(); 887 if (F.empty()) 888 return false; 889 CLI = MF->getSubtarget().getCallLowering(); 890 CurBuilder.setMF(*MF); 891 EntryBuilder.setMF(*MF); 892 MRI = &MF->getRegInfo(); 893 DL = &F.getParent()->getDataLayout(); 894 TPC = &getAnalysis<TargetPassConfig>(); 895 896 assert(PendingPHIs.empty() && "stale PHIs"); 897 898 // Setup a separate basic-block for the arguments and constants, falling 899 // through to the IR-level Function's entry block. 900 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 901 MF->push_back(EntryBB); 902 EntryBB->addSuccessor(&getOrCreateBB(F.front())); 903 EntryBuilder.setMBB(*EntryBB); 904 905 // Lower the actual args into this basic block. 906 SmallVector<unsigned, 8> VRegArgs; 907 for (const Argument &Arg: F.args()) 908 VRegArgs.push_back(getOrCreateVReg(Arg)); 909 bool Succeeded = CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs); 910 if (!Succeeded) { 911 if (!TPC->isGlobalISelAbortEnabled()) { 912 MF->getProperties().set( 913 MachineFunctionProperties::Property::FailedISel); 914 finalizeFunction(); 915 return false; 916 } 917 report_fatal_error("Unable to lower arguments"); 918 } 919 920 // And translate the function! 921 for (const BasicBlock &BB: F) { 922 MachineBasicBlock &MBB = getOrCreateBB(BB); 923 // Set the insertion point of all the following translations to 924 // the end of this basic block. 925 CurBuilder.setMBB(MBB); 926 927 for (const Instruction &Inst: BB) { 928 Succeeded &= translate(Inst); 929 if (!Succeeded) { 930 if (TPC->isGlobalISelAbortEnabled()) 931 reportTranslationError(Inst, "unable to translate instruction"); 932 MF->getProperties().set( 933 MachineFunctionProperties::Property::FailedISel); 934 break; 935 } 936 } 937 } 938 939 if (Succeeded) { 940 finishPendingPhis(); 941 942 // Now that the MachineFrameInfo has been configured, no further changes to 943 // the reserved registers are possible. 944 MRI->freezeReservedRegs(*MF); 945 946 // Merge the argument lowering and constants block with its single 947 // successor, the LLVM-IR entry block. We want the basic block to 948 // be maximal. 949 assert(EntryBB->succ_size() == 1 && 950 "Custom BB used for lowering should have only one successor"); 951 // Get the successor of the current entry block. 952 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 953 assert(NewEntryBB.pred_size() == 1 && 954 "LLVM-IR entry block has a predecessor!?"); 955 // Move all the instruction from the current entry block to the 956 // new entry block. 957 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 958 EntryBB->end()); 959 960 // Update the live-in information for the new entry block. 961 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 962 NewEntryBB.addLiveIn(LiveIn); 963 NewEntryBB.sortUniqueLiveIns(); 964 965 // Get rid of the now empty basic block. 966 EntryBB->removeSuccessor(&NewEntryBB); 967 MF->remove(EntryBB); 968 MF->DeleteMachineBasicBlock(EntryBB); 969 970 assert(&MF->front() == &NewEntryBB && 971 "New entry wasn't next in the list of basic block!"); 972 } 973 974 finalizeFunction(); 975 976 return false; 977 } 978