1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Metadata.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/MC/MCContext.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CodeGen.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/LowLevelTypeImpl.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetFrameLowering.h" 58 #include "llvm/Target/TargetIntrinsicInfo.h" 59 #include "llvm/Target/TargetLowering.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include "llvm/Target/TargetRegisterInfo.h" 62 #include "llvm/Target/TargetSubtargetInfo.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstdint> 66 #include <iterator> 67 #include <string> 68 #include <utility> 69 #include <vector> 70 71 #define DEBUG_TYPE "irtranslator" 72 73 using namespace llvm; 74 75 char IRTranslator::ID = 0; 76 77 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 78 false, false) 79 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 80 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 81 false, false) 82 83 static void reportTranslationError(MachineFunction &MF, 84 const TargetPassConfig &TPC, 85 OptimizationRemarkEmitter &ORE, 86 OptimizationRemarkMissed &R) { 87 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 88 89 // Print the function name explicitly if we don't have a debug location (which 90 // makes the diagnostic less useful) or if we're going to emit a raw error. 91 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 92 R << (" (in function: " + MF.getName() + ")").str(); 93 94 if (TPC.isGlobalISelAbortEnabled()) 95 report_fatal_error(R.getMsg()); 96 else 97 ORE.emit(R); 98 } 99 100 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { 101 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 102 } 103 104 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 105 AU.addRequired<TargetPassConfig>(); 106 MachineFunctionPass::getAnalysisUsage(AU); 107 } 108 109 unsigned IRTranslator::getOrCreateVReg(const Value &Val) { 110 unsigned &ValReg = ValToVReg[&Val]; 111 112 if (ValReg) 113 return ValReg; 114 115 // Fill ValRegsSequence with the sequence of registers 116 // we need to concat together to produce the value. 117 assert(Val.getType()->isSized() && 118 "Don't know how to create an empty vreg"); 119 unsigned VReg = 120 MRI->createGenericVirtualRegister(getLLTForType(*Val.getType(), *DL)); 121 ValReg = VReg; 122 123 if (auto CV = dyn_cast<Constant>(&Val)) { 124 bool Success = translate(*CV, VReg); 125 if (!Success) { 126 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 127 MF->getFunction()->getSubprogram(), 128 &MF->getFunction()->getEntryBlock()); 129 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 130 reportTranslationError(*MF, *TPC, *ORE, R); 131 return VReg; 132 } 133 } 134 135 return VReg; 136 } 137 138 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 139 if (FrameIndices.find(&AI) != FrameIndices.end()) 140 return FrameIndices[&AI]; 141 142 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 143 unsigned Size = 144 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 145 146 // Always allocate at least one byte. 147 Size = std::max(Size, 1u); 148 149 unsigned Alignment = AI.getAlignment(); 150 if (!Alignment) 151 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 152 153 int &FI = FrameIndices[&AI]; 154 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 155 return FI; 156 } 157 158 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 159 unsigned Alignment = 0; 160 Type *ValTy = nullptr; 161 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 162 Alignment = SI->getAlignment(); 163 ValTy = SI->getValueOperand()->getType(); 164 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 165 Alignment = LI->getAlignment(); 166 ValTy = LI->getType(); 167 } else { 168 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 169 R << "unable to translate memop: " << ore::NV("Opcode", &I); 170 reportTranslationError(*MF, *TPC, *ORE, R); 171 return 1; 172 } 173 174 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 175 } 176 177 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 178 MachineBasicBlock *&MBB = BBToMBB[&BB]; 179 assert(MBB && "BasicBlock was not encountered before"); 180 return *MBB; 181 } 182 183 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 184 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 185 MachinePreds[Edge].push_back(NewPred); 186 } 187 188 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 189 MachineIRBuilder &MIRBuilder) { 190 // FIXME: handle signed/unsigned wrapping flags. 191 192 // Get or create a virtual register for each value. 193 // Unless the value is a Constant => loadimm cst? 194 // or inline constant each time? 195 // Creation of a virtual register needs to have a size. 196 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 197 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 198 unsigned Res = getOrCreateVReg(U); 199 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); 200 return true; 201 } 202 203 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 204 // -0.0 - X --> G_FNEG 205 if (isa<Constant>(U.getOperand(0)) && 206 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 207 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 208 .addDef(getOrCreateVReg(U)) 209 .addUse(getOrCreateVReg(*U.getOperand(1))); 210 return true; 211 } 212 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 213 } 214 215 bool IRTranslator::translateCompare(const User &U, 216 MachineIRBuilder &MIRBuilder) { 217 const CmpInst *CI = dyn_cast<CmpInst>(&U); 218 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 219 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 220 unsigned Res = getOrCreateVReg(U); 221 CmpInst::Predicate Pred = 222 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 223 cast<ConstantExpr>(U).getPredicate()); 224 if (CmpInst::isIntPredicate(Pred)) 225 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 226 else if (Pred == CmpInst::FCMP_FALSE) 227 MIRBuilder.buildCopy( 228 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 229 else if (Pred == CmpInst::FCMP_TRUE) 230 MIRBuilder.buildCopy( 231 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 232 else 233 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); 234 235 return true; 236 } 237 238 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 239 const ReturnInst &RI = cast<ReturnInst>(U); 240 const Value *Ret = RI.getReturnValue(); 241 // The target may mess up with the insertion point, but 242 // this is not important as a return is the last instruction 243 // of the block anyway. 244 return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret)); 245 } 246 247 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 248 const BranchInst &BrInst = cast<BranchInst>(U); 249 unsigned Succ = 0; 250 if (!BrInst.isUnconditional()) { 251 // We want a G_BRCOND to the true BB followed by an unconditional branch. 252 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 253 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 254 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 255 MIRBuilder.buildBrCond(Tst, TrueBB); 256 } 257 258 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 259 MachineBasicBlock &TgtBB = getMBB(BrTgt); 260 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 261 262 // If the unconditional target is the layout successor, fallthrough. 263 if (!CurBB.isLayoutSuccessor(&TgtBB)) 264 MIRBuilder.buildBr(TgtBB); 265 266 // Link successors. 267 for (const BasicBlock *Succ : BrInst.successors()) 268 CurBB.addSuccessor(&getMBB(*Succ)); 269 return true; 270 } 271 272 bool IRTranslator::translateSwitch(const User &U, 273 MachineIRBuilder &MIRBuilder) { 274 // For now, just translate as a chain of conditional branches. 275 // FIXME: could we share most of the logic/code in 276 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 277 // At first sight, it seems most of the logic in there is independent of 278 // SelectionDAG-specifics and a lot of work went in to optimize switch 279 // lowering in there. 280 281 const SwitchInst &SwInst = cast<SwitchInst>(U); 282 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 283 const BasicBlock *OrigBB = SwInst.getParent(); 284 285 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 286 for (auto &CaseIt : SwInst.cases()) { 287 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 288 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 289 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 290 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 291 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 292 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 293 294 MIRBuilder.buildBrCond(Tst, TrueMBB); 295 CurMBB.addSuccessor(&TrueMBB); 296 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 297 298 MachineBasicBlock *FalseMBB = 299 MF->CreateMachineBasicBlock(SwInst.getParent()); 300 // Insert the comparison blocks one after the other. 301 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 302 MIRBuilder.buildBr(*FalseMBB); 303 CurMBB.addSuccessor(FalseMBB); 304 305 MIRBuilder.setMBB(*FalseMBB); 306 } 307 // handle default case 308 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 309 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 310 MIRBuilder.buildBr(DefaultMBB); 311 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 312 CurMBB.addSuccessor(&DefaultMBB); 313 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 314 315 return true; 316 } 317 318 bool IRTranslator::translateIndirectBr(const User &U, 319 MachineIRBuilder &MIRBuilder) { 320 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 321 322 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 323 MIRBuilder.buildBrIndirect(Tgt); 324 325 // Link successors. 326 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 327 for (const BasicBlock *Succ : BrInst.successors()) 328 CurBB.addSuccessor(&getMBB(*Succ)); 329 330 return true; 331 } 332 333 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 334 const LoadInst &LI = cast<LoadInst>(U); 335 336 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 337 : MachineMemOperand::MONone; 338 Flags |= MachineMemOperand::MOLoad; 339 340 unsigned Res = getOrCreateVReg(LI); 341 unsigned Addr = getOrCreateVReg(*LI.getPointerOperand()); 342 343 MIRBuilder.buildLoad( 344 Res, Addr, 345 *MF->getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()), 346 Flags, DL->getTypeStoreSize(LI.getType()), 347 getMemOpAlignment(LI), AAMDNodes(), nullptr, 348 LI.getSyncScopeID(), LI.getOrdering())); 349 return true; 350 } 351 352 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 353 const StoreInst &SI = cast<StoreInst>(U); 354 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 355 : MachineMemOperand::MONone; 356 Flags |= MachineMemOperand::MOStore; 357 358 unsigned Val = getOrCreateVReg(*SI.getValueOperand()); 359 unsigned Addr = getOrCreateVReg(*SI.getPointerOperand()); 360 361 MIRBuilder.buildStore( 362 Val, Addr, 363 *MF->getMachineMemOperand( 364 MachinePointerInfo(SI.getPointerOperand()), Flags, 365 DL->getTypeStoreSize(SI.getValueOperand()->getType()), 366 getMemOpAlignment(SI), AAMDNodes(), nullptr, SI.getSyncScopeID(), 367 SI.getOrdering())); 368 return true; 369 } 370 371 bool IRTranslator::translateExtractValue(const User &U, 372 MachineIRBuilder &MIRBuilder) { 373 const Value *Src = U.getOperand(0); 374 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 375 SmallVector<Value *, 1> Indices; 376 377 // If Src is a single element ConstantStruct, translate extractvalue 378 // to that element to avoid inserting a cast instruction. 379 if (auto CS = dyn_cast<ConstantStruct>(Src)) 380 if (CS->getNumOperands() == 1) { 381 unsigned Res = getOrCreateVReg(*CS->getOperand(0)); 382 ValToVReg[&U] = Res; 383 return true; 384 } 385 386 // getIndexedOffsetInType is designed for GEPs, so the first index is the 387 // usual array element rather than looking into the actual aggregate. 388 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 389 390 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 391 for (auto Idx : EVI->indices()) 392 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 393 } else { 394 for (unsigned i = 1; i < U.getNumOperands(); ++i) 395 Indices.push_back(U.getOperand(i)); 396 } 397 398 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 399 400 unsigned Res = getOrCreateVReg(U); 401 MIRBuilder.buildExtract(Res, getOrCreateVReg(*Src), Offset); 402 403 return true; 404 } 405 406 bool IRTranslator::translateInsertValue(const User &U, 407 MachineIRBuilder &MIRBuilder) { 408 const Value *Src = U.getOperand(0); 409 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 410 SmallVector<Value *, 1> Indices; 411 412 // getIndexedOffsetInType is designed for GEPs, so the first index is the 413 // usual array element rather than looking into the actual aggregate. 414 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 415 416 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 417 for (auto Idx : IVI->indices()) 418 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 419 } else { 420 for (unsigned i = 2; i < U.getNumOperands(); ++i) 421 Indices.push_back(U.getOperand(i)); 422 } 423 424 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 425 426 unsigned Res = getOrCreateVReg(U); 427 unsigned Inserted = getOrCreateVReg(*U.getOperand(1)); 428 MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), Inserted, Offset); 429 430 return true; 431 } 432 433 bool IRTranslator::translateSelect(const User &U, 434 MachineIRBuilder &MIRBuilder) { 435 unsigned Res = getOrCreateVReg(U); 436 unsigned Tst = getOrCreateVReg(*U.getOperand(0)); 437 unsigned Op0 = getOrCreateVReg(*U.getOperand(1)); 438 unsigned Op1 = getOrCreateVReg(*U.getOperand(2)); 439 MIRBuilder.buildSelect(Res, Tst, Op0, Op1); 440 return true; 441 } 442 443 bool IRTranslator::translateBitCast(const User &U, 444 MachineIRBuilder &MIRBuilder) { 445 // If we're bitcasting to the source type, we can reuse the source vreg. 446 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 447 getLLTForType(*U.getType(), *DL)) { 448 // Get the source vreg now, to avoid invalidating ValToVReg. 449 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 450 unsigned &Reg = ValToVReg[&U]; 451 // If we already assigned a vreg for this bitcast, we can't change that. 452 // Emit a copy to satisfy the users we already emitted. 453 if (Reg) 454 MIRBuilder.buildCopy(Reg, SrcReg); 455 else 456 Reg = SrcReg; 457 return true; 458 } 459 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 460 } 461 462 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 463 MachineIRBuilder &MIRBuilder) { 464 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 465 unsigned Res = getOrCreateVReg(U); 466 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 467 return true; 468 } 469 470 bool IRTranslator::translateGetElementPtr(const User &U, 471 MachineIRBuilder &MIRBuilder) { 472 // FIXME: support vector GEPs. 473 if (U.getType()->isVectorTy()) 474 return false; 475 476 Value &Op0 = *U.getOperand(0); 477 unsigned BaseReg = getOrCreateVReg(Op0); 478 Type *PtrIRTy = Op0.getType(); 479 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 480 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 481 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 482 483 int64_t Offset = 0; 484 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 485 GTI != E; ++GTI) { 486 const Value *Idx = GTI.getOperand(); 487 if (StructType *StTy = GTI.getStructTypeOrNull()) { 488 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 489 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 490 continue; 491 } else { 492 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 493 494 // If this is a scalar constant or a splat vector of constants, 495 // handle it quickly. 496 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 497 Offset += ElementSize * CI->getSExtValue(); 498 continue; 499 } 500 501 if (Offset != 0) { 502 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 503 unsigned OffsetReg = 504 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 505 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 506 507 BaseReg = NewBaseReg; 508 Offset = 0; 509 } 510 511 // N = N + Idx * ElementSize; 512 unsigned ElementSizeReg = 513 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize)); 514 515 unsigned IdxReg = getOrCreateVReg(*Idx); 516 if (MRI->getType(IdxReg) != OffsetTy) { 517 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 518 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 519 IdxReg = NewIdxReg; 520 } 521 522 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 523 MIRBuilder.buildMul(OffsetReg, ElementSizeReg, IdxReg); 524 525 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 526 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 527 BaseReg = NewBaseReg; 528 } 529 } 530 531 if (Offset != 0) { 532 unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 533 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 534 return true; 535 } 536 537 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 538 return true; 539 } 540 541 bool IRTranslator::translateMemfunc(const CallInst &CI, 542 MachineIRBuilder &MIRBuilder, 543 unsigned ID) { 544 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 545 Type *DstTy = CI.getArgOperand(0)->getType(); 546 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 547 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 548 return false; 549 550 SmallVector<CallLowering::ArgInfo, 8> Args; 551 for (int i = 0; i < 3; ++i) { 552 const auto &Arg = CI.getArgOperand(i); 553 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 554 } 555 556 const char *Callee; 557 switch (ID) { 558 case Intrinsic::memmove: 559 case Intrinsic::memcpy: { 560 Type *SrcTy = CI.getArgOperand(1)->getType(); 561 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 562 return false; 563 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 564 break; 565 } 566 case Intrinsic::memset: 567 Callee = "memset"; 568 break; 569 default: 570 return false; 571 } 572 573 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 574 MachineOperand::CreateES(Callee), 575 CallLowering::ArgInfo(0, CI.getType()), Args); 576 } 577 578 void IRTranslator::getStackGuard(unsigned DstReg, 579 MachineIRBuilder &MIRBuilder) { 580 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 581 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 582 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 583 MIB.addDef(DstReg); 584 585 auto &TLI = *MF->getSubtarget().getTargetLowering(); 586 Value *Global = TLI.getSDagStackGuard(*MF->getFunction()->getParent()); 587 if (!Global) 588 return; 589 590 MachinePointerInfo MPInfo(Global); 591 MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1); 592 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 593 MachineMemOperand::MODereferenceable; 594 *MemRefs = 595 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 596 DL->getPointerABIAlignment()); 597 MIB.setMemRefs(MemRefs, MemRefs + 1); 598 } 599 600 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 601 MachineIRBuilder &MIRBuilder) { 602 LLT Ty = getLLTForType(*CI.getOperand(0)->getType(), *DL); 603 LLT s1 = LLT::scalar(1); 604 unsigned Width = Ty.getSizeInBits(); 605 unsigned Res = MRI->createGenericVirtualRegister(Ty); 606 unsigned Overflow = MRI->createGenericVirtualRegister(s1); 607 auto MIB = MIRBuilder.buildInstr(Op) 608 .addDef(Res) 609 .addDef(Overflow) 610 .addUse(getOrCreateVReg(*CI.getOperand(0))) 611 .addUse(getOrCreateVReg(*CI.getOperand(1))); 612 613 if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) { 614 unsigned Zero = getOrCreateVReg( 615 *Constant::getNullValue(Type::getInt1Ty(CI.getContext()))); 616 MIB.addUse(Zero); 617 } 618 619 MIRBuilder.buildSequence(getOrCreateVReg(CI), {Res, Overflow}, {0, Width}); 620 return true; 621 } 622 623 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 624 MachineIRBuilder &MIRBuilder) { 625 switch (ID) { 626 default: 627 break; 628 case Intrinsic::lifetime_start: 629 case Intrinsic::lifetime_end: 630 // Stack coloring is not enabled in O0 (which we care about now) so we can 631 // drop these. Make sure someone notices when we start compiling at higher 632 // opts though. 633 if (MF->getTarget().getOptLevel() != CodeGenOpt::None) 634 return false; 635 return true; 636 case Intrinsic::dbg_declare: { 637 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 638 assert(DI.getVariable() && "Missing variable"); 639 640 const Value *Address = DI.getAddress(); 641 if (!Address || isa<UndefValue>(Address)) { 642 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 643 return true; 644 } 645 646 assert(DI.getVariable()->isValidLocationForIntrinsic( 647 MIRBuilder.getDebugLoc()) && 648 "Expected inlined-at fields to agree"); 649 auto AI = dyn_cast<AllocaInst>(Address); 650 if (AI && AI->isStaticAlloca()) { 651 // Static allocas are tracked at the MF level, no need for DBG_VALUE 652 // instructions (in fact, they get ignored if they *do* exist). 653 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 654 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 655 } else 656 MIRBuilder.buildDirectDbgValue(getOrCreateVReg(*Address), 657 DI.getVariable(), DI.getExpression()); 658 return true; 659 } 660 case Intrinsic::vaend: 661 // No target I know of cares about va_end. Certainly no in-tree target 662 // does. Simplest intrinsic ever! 663 return true; 664 case Intrinsic::vastart: { 665 auto &TLI = *MF->getSubtarget().getTargetLowering(); 666 Value *Ptr = CI.getArgOperand(0); 667 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 668 669 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 670 .addUse(getOrCreateVReg(*Ptr)) 671 .addMemOperand(MF->getMachineMemOperand( 672 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0)); 673 return true; 674 } 675 case Intrinsic::dbg_value: { 676 // This form of DBG_VALUE is target-independent. 677 const DbgValueInst &DI = cast<DbgValueInst>(CI); 678 const Value *V = DI.getValue(); 679 assert(DI.getVariable()->isValidLocationForIntrinsic( 680 MIRBuilder.getDebugLoc()) && 681 "Expected inlined-at fields to agree"); 682 if (!V) { 683 // Currently the optimizer can produce this; insert an undef to 684 // help debugging. Probably the optimizer should not do this. 685 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 686 } else if (const auto *CI = dyn_cast<Constant>(V)) { 687 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 688 } else { 689 unsigned Reg = getOrCreateVReg(*V); 690 // FIXME: This does not handle register-indirect values at offset 0. The 691 // direct/indirect thing shouldn't really be handled by something as 692 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 693 // pretty baked in right now. 694 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 695 } 696 return true; 697 } 698 case Intrinsic::uadd_with_overflow: 699 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder); 700 case Intrinsic::sadd_with_overflow: 701 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 702 case Intrinsic::usub_with_overflow: 703 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder); 704 case Intrinsic::ssub_with_overflow: 705 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 706 case Intrinsic::umul_with_overflow: 707 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 708 case Intrinsic::smul_with_overflow: 709 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 710 case Intrinsic::pow: 711 MIRBuilder.buildInstr(TargetOpcode::G_FPOW) 712 .addDef(getOrCreateVReg(CI)) 713 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 714 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 715 return true; 716 case Intrinsic::exp: 717 MIRBuilder.buildInstr(TargetOpcode::G_FEXP) 718 .addDef(getOrCreateVReg(CI)) 719 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 720 return true; 721 case Intrinsic::exp2: 722 MIRBuilder.buildInstr(TargetOpcode::G_FEXP2) 723 .addDef(getOrCreateVReg(CI)) 724 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 725 return true; 726 case Intrinsic::log: 727 MIRBuilder.buildInstr(TargetOpcode::G_FLOG) 728 .addDef(getOrCreateVReg(CI)) 729 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 730 return true; 731 case Intrinsic::log2: 732 MIRBuilder.buildInstr(TargetOpcode::G_FLOG2) 733 .addDef(getOrCreateVReg(CI)) 734 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 735 return true; 736 case Intrinsic::fma: 737 MIRBuilder.buildInstr(TargetOpcode::G_FMA) 738 .addDef(getOrCreateVReg(CI)) 739 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 740 .addUse(getOrCreateVReg(*CI.getArgOperand(1))) 741 .addUse(getOrCreateVReg(*CI.getArgOperand(2))); 742 return true; 743 case Intrinsic::memcpy: 744 case Intrinsic::memmove: 745 case Intrinsic::memset: 746 return translateMemfunc(CI, MIRBuilder, ID); 747 case Intrinsic::eh_typeid_for: { 748 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 749 unsigned Reg = getOrCreateVReg(CI); 750 unsigned TypeID = MF->getTypeIDFor(GV); 751 MIRBuilder.buildConstant(Reg, TypeID); 752 return true; 753 } 754 case Intrinsic::objectsize: { 755 // If we don't know by now, we're never going to know. 756 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 757 758 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 759 return true; 760 } 761 case Intrinsic::stackguard: 762 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 763 return true; 764 case Intrinsic::stackprotector: { 765 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 766 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 767 getStackGuard(GuardVal, MIRBuilder); 768 769 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 770 MIRBuilder.buildStore( 771 GuardVal, getOrCreateVReg(*Slot), 772 *MF->getMachineMemOperand( 773 MachinePointerInfo::getFixedStack(*MF, 774 getOrCreateFrameIndex(*Slot)), 775 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 776 PtrTy.getSizeInBits() / 8, 8)); 777 return true; 778 } 779 } 780 return false; 781 } 782 783 bool IRTranslator::translateInlineAsm(const CallInst &CI, 784 MachineIRBuilder &MIRBuilder) { 785 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 786 if (!IA.getConstraintString().empty()) 787 return false; 788 789 unsigned ExtraInfo = 0; 790 if (IA.hasSideEffects()) 791 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 792 if (IA.getDialect() == InlineAsm::AD_Intel) 793 ExtraInfo |= InlineAsm::Extra_AsmDialect; 794 795 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 796 .addExternalSymbol(IA.getAsmString().c_str()) 797 .addImm(ExtraInfo); 798 799 return true; 800 } 801 802 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 803 const CallInst &CI = cast<CallInst>(U); 804 auto TII = MF->getTarget().getIntrinsicInfo(); 805 const Function *F = CI.getCalledFunction(); 806 807 if (CI.isInlineAsm()) 808 return translateInlineAsm(CI, MIRBuilder); 809 810 if (!F || !F->isIntrinsic()) { 811 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 812 SmallVector<unsigned, 8> Args; 813 for (auto &Arg: CI.arg_operands()) 814 Args.push_back(getOrCreateVReg(*Arg)); 815 816 MF->getFrameInfo().setHasCalls(true); 817 return CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() { 818 return getOrCreateVReg(*CI.getCalledValue()); 819 }); 820 } 821 822 Intrinsic::ID ID = F->getIntrinsicID(); 823 if (TII && ID == Intrinsic::not_intrinsic) 824 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 825 826 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 827 828 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 829 return true; 830 831 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 832 MachineInstrBuilder MIB = 833 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 834 835 for (auto &Arg : CI.arg_operands()) { 836 // Some intrinsics take metadata parameters. Reject them. 837 if (isa<MetadataAsValue>(Arg)) 838 return false; 839 MIB.addUse(getOrCreateVReg(*Arg)); 840 } 841 842 // Add a MachineMemOperand if it is a target mem intrinsic. 843 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 844 TargetLowering::IntrinsicInfo Info; 845 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 846 if (TLI.getTgtMemIntrinsic(Info, CI, ID)) { 847 MachineMemOperand::Flags Flags = 848 Info.vol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 849 Flags |= 850 Info.readMem ? MachineMemOperand::MOLoad : MachineMemOperand::MOStore; 851 uint64_t Size = Info.memVT.getSizeInBits() >> 3; 852 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 853 Flags, Size, Info.align)); 854 } 855 856 return true; 857 } 858 859 bool IRTranslator::translateInvoke(const User &U, 860 MachineIRBuilder &MIRBuilder) { 861 const InvokeInst &I = cast<InvokeInst>(U); 862 MCContext &Context = MF->getContext(); 863 864 const BasicBlock *ReturnBB = I.getSuccessor(0); 865 const BasicBlock *EHPadBB = I.getSuccessor(1); 866 867 const Value *Callee = I.getCalledValue(); 868 const Function *Fn = dyn_cast<Function>(Callee); 869 if (isa<InlineAsm>(Callee)) 870 return false; 871 872 // FIXME: support invoking patchpoint and statepoint intrinsics. 873 if (Fn && Fn->isIntrinsic()) 874 return false; 875 876 // FIXME: support whatever these are. 877 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 878 return false; 879 880 // FIXME: support Windows exception handling. 881 if (!isa<LandingPadInst>(EHPadBB->front())) 882 return false; 883 884 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 885 // the region covered by the try. 886 MCSymbol *BeginSymbol = Context.createTempSymbol(); 887 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 888 889 unsigned Res = I.getType()->isVoidTy() ? 0 : getOrCreateVReg(I); 890 SmallVector<unsigned, 8> Args; 891 for (auto &Arg: I.arg_operands()) 892 Args.push_back(getOrCreateVReg(*Arg)); 893 894 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, 895 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 896 return false; 897 898 MCSymbol *EndSymbol = Context.createTempSymbol(); 899 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 900 901 // FIXME: track probabilities. 902 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 903 &ReturnMBB = getMBB(*ReturnBB); 904 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 905 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 906 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 907 MIRBuilder.buildBr(ReturnMBB); 908 909 return true; 910 } 911 912 bool IRTranslator::translateLandingPad(const User &U, 913 MachineIRBuilder &MIRBuilder) { 914 const LandingPadInst &LP = cast<LandingPadInst>(U); 915 916 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 917 addLandingPadInfo(LP, MBB); 918 919 MBB.setIsEHPad(); 920 921 // If there aren't registers to copy the values into (e.g., during SjLj 922 // exceptions), then don't bother. 923 auto &TLI = *MF->getSubtarget().getTargetLowering(); 924 const Constant *PersonalityFn = MF->getFunction()->getPersonalityFn(); 925 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 926 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 927 return true; 928 929 // If landingpad's return type is token type, we don't create DAG nodes 930 // for its exception pointer and selector value. The extraction of exception 931 // pointer or selector value from token type landingpads is not currently 932 // supported. 933 if (LP.getType()->isTokenTy()) 934 return true; 935 936 // Add a label to mark the beginning of the landing pad. Deletion of the 937 // landing pad can thus be detected via the MachineModuleInfo. 938 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 939 .addSym(MF->addLandingPad(&MBB)); 940 941 LLT Ty = getLLTForType(*LP.getType(), *DL); 942 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 943 MIRBuilder.buildUndef(Undef); 944 945 SmallVector<LLT, 2> Tys; 946 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 947 Tys.push_back(getLLTForType(*Ty, *DL)); 948 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 949 950 // Mark exception register as live in. 951 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 952 if (!ExceptionReg) 953 return false; 954 955 MBB.addLiveIn(ExceptionReg); 956 unsigned VReg = MRI->createGenericVirtualRegister(Tys[0]), 957 Tmp = MRI->createGenericVirtualRegister(Ty); 958 MIRBuilder.buildCopy(VReg, ExceptionReg); 959 MIRBuilder.buildInsert(Tmp, Undef, VReg, 0); 960 961 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 962 if (!SelectorReg) 963 return false; 964 965 MBB.addLiveIn(SelectorReg); 966 967 // N.b. the exception selector register always has pointer type and may not 968 // match the actual IR-level type in the landingpad so an extra cast is 969 // needed. 970 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 971 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 972 973 VReg = MRI->createGenericVirtualRegister(Tys[1]); 974 MIRBuilder.buildInstr(TargetOpcode::G_PTRTOINT).addDef(VReg).addUse(PtrVReg); 975 MIRBuilder.buildInsert(getOrCreateVReg(LP), Tmp, VReg, 976 Tys[0].getSizeInBits()); 977 return true; 978 } 979 980 bool IRTranslator::translateAlloca(const User &U, 981 MachineIRBuilder &MIRBuilder) { 982 auto &AI = cast<AllocaInst>(U); 983 984 if (AI.isStaticAlloca()) { 985 unsigned Res = getOrCreateVReg(AI); 986 int FI = getOrCreateFrameIndex(AI); 987 MIRBuilder.buildFrameIndex(Res, FI); 988 return true; 989 } 990 991 // Now we're in the harder dynamic case. 992 Type *Ty = AI.getAllocatedType(); 993 unsigned Align = 994 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 995 996 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 997 998 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 999 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1000 if (MRI->getType(NumElts) != IntPtrTy) { 1001 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1002 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1003 NumElts = ExtElts; 1004 } 1005 1006 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1007 unsigned TySize = 1008 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1009 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1010 1011 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1012 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1013 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1014 1015 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1016 MIRBuilder.buildCopy(SPTmp, SPReg); 1017 1018 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1019 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1020 1021 // Handle alignment. We have to realign if the allocation granule was smaller 1022 // than stack alignment, or the specific alloca requires more than stack 1023 // alignment. 1024 unsigned StackAlign = 1025 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1026 Align = std::max(Align, StackAlign); 1027 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1028 // Round the size of the allocation up to the stack alignment size 1029 // by add SA-1 to the size. This doesn't overflow because we're computing 1030 // an address inside an alloca. 1031 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1032 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1033 AllocTmp = AlignedAlloc; 1034 } 1035 1036 MIRBuilder.buildCopy(SPReg, AllocTmp); 1037 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1038 1039 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1040 assert(MF->getFrameInfo().hasVarSizedObjects()); 1041 return true; 1042 } 1043 1044 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1045 // FIXME: We may need more info about the type. Because of how LLT works, 1046 // we're completely discarding the i64/double distinction here (amongst 1047 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1048 // anyway but that's not guaranteed. 1049 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1050 .addDef(getOrCreateVReg(U)) 1051 .addUse(getOrCreateVReg(*U.getOperand(0))) 1052 .addImm(DL->getABITypeAlignment(U.getType())); 1053 return true; 1054 } 1055 1056 bool IRTranslator::translateInsertElement(const User &U, 1057 MachineIRBuilder &MIRBuilder) { 1058 // If it is a <1 x Ty> vector, use the scalar as it is 1059 // not a legal vector type in LLT. 1060 if (U.getType()->getVectorNumElements() == 1) { 1061 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1062 ValToVReg[&U] = Elt; 1063 return true; 1064 } 1065 unsigned Res = getOrCreateVReg(U); 1066 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1067 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1068 unsigned Idx = getOrCreateVReg(*U.getOperand(2)); 1069 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1070 return true; 1071 } 1072 1073 bool IRTranslator::translateExtractElement(const User &U, 1074 MachineIRBuilder &MIRBuilder) { 1075 // If it is a <1 x Ty> vector, use the scalar as it is 1076 // not a legal vector type in LLT. 1077 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1078 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1079 ValToVReg[&U] = Elt; 1080 return true; 1081 } 1082 unsigned Res = getOrCreateVReg(U); 1083 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1084 unsigned Idx = getOrCreateVReg(*U.getOperand(1)); 1085 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1086 return true; 1087 } 1088 1089 bool IRTranslator::translateShuffleVector(const User &U, 1090 MachineIRBuilder &MIRBuilder) { 1091 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1092 .addDef(getOrCreateVReg(U)) 1093 .addUse(getOrCreateVReg(*U.getOperand(0))) 1094 .addUse(getOrCreateVReg(*U.getOperand(1))) 1095 .addUse(getOrCreateVReg(*U.getOperand(2))); 1096 return true; 1097 } 1098 1099 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1100 const PHINode &PI = cast<PHINode>(U); 1101 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI); 1102 MIB.addDef(getOrCreateVReg(PI)); 1103 1104 PendingPHIs.emplace_back(&PI, MIB.getInstr()); 1105 return true; 1106 } 1107 1108 void IRTranslator::finishPendingPhis() { 1109 for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) { 1110 const PHINode *PI = Phi.first; 1111 MachineInstrBuilder MIB(*MF, Phi.second); 1112 1113 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1114 // won't create extra control flow here, otherwise we need to find the 1115 // dominating predecessor here (or perhaps force the weirder IRTranslators 1116 // to provide a simple boundary). 1117 SmallSet<const BasicBlock *, 4> HandledPreds; 1118 1119 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1120 auto IRPred = PI->getIncomingBlock(i); 1121 if (HandledPreds.count(IRPred)) 1122 continue; 1123 1124 HandledPreds.insert(IRPred); 1125 unsigned ValReg = getOrCreateVReg(*PI->getIncomingValue(i)); 1126 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1127 assert(Pred->isSuccessor(MIB->getParent()) && 1128 "incorrect CFG at MachineBasicBlock level"); 1129 MIB.addUse(ValReg); 1130 MIB.addMBB(Pred); 1131 } 1132 } 1133 } 1134 } 1135 1136 bool IRTranslator::translate(const Instruction &Inst) { 1137 CurBuilder.setDebugLoc(Inst.getDebugLoc()); 1138 switch(Inst.getOpcode()) { 1139 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1140 case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder); 1141 #include "llvm/IR/Instruction.def" 1142 default: 1143 return false; 1144 } 1145 } 1146 1147 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1148 if (auto CI = dyn_cast<ConstantInt>(&C)) 1149 EntryBuilder.buildConstant(Reg, *CI); 1150 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1151 EntryBuilder.buildFConstant(Reg, *CF); 1152 else if (isa<UndefValue>(C)) 1153 EntryBuilder.buildUndef(Reg); 1154 else if (isa<ConstantPointerNull>(C)) 1155 EntryBuilder.buildConstant(Reg, 0); 1156 else if (auto GV = dyn_cast<GlobalValue>(&C)) 1157 EntryBuilder.buildGlobalValue(Reg, GV); 1158 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1159 if (!CAZ->getType()->isVectorTy()) 1160 return false; 1161 // Return the scalar if it is a <1 x Ty> vector. 1162 if (CAZ->getNumElements() == 1) 1163 return translate(*CAZ->getElementValue(0u), Reg); 1164 std::vector<unsigned> Ops; 1165 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1166 Constant &Elt = *CAZ->getElementValue(i); 1167 Ops.push_back(getOrCreateVReg(Elt)); 1168 } 1169 EntryBuilder.buildMerge(Reg, Ops); 1170 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1171 // Return the scalar if it is a <1 x Ty> vector. 1172 if (CV->getNumElements() == 1) 1173 return translate(*CV->getElementAsConstant(0), Reg); 1174 std::vector<unsigned> Ops; 1175 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1176 Constant &Elt = *CV->getElementAsConstant(i); 1177 Ops.push_back(getOrCreateVReg(Elt)); 1178 } 1179 EntryBuilder.buildMerge(Reg, Ops); 1180 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1181 switch(CE->getOpcode()) { 1182 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1183 case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder); 1184 #include "llvm/IR/Instruction.def" 1185 default: 1186 return false; 1187 } 1188 } else if (auto CS = dyn_cast<ConstantStruct>(&C)) { 1189 // Return the element if it is a single element ConstantStruct. 1190 if (CS->getNumOperands() == 1) { 1191 unsigned EltReg = getOrCreateVReg(*CS->getOperand(0)); 1192 EntryBuilder.buildCast(Reg, EltReg); 1193 return true; 1194 } 1195 SmallVector<unsigned, 4> Ops; 1196 SmallVector<uint64_t, 4> Indices; 1197 uint64_t Offset = 0; 1198 for (unsigned i = 0; i < CS->getNumOperands(); ++i) { 1199 unsigned OpReg = getOrCreateVReg(*CS->getOperand(i)); 1200 Ops.push_back(OpReg); 1201 Indices.push_back(Offset); 1202 Offset += MRI->getType(OpReg).getSizeInBits(); 1203 } 1204 EntryBuilder.buildSequence(Reg, Ops, Indices); 1205 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 1206 if (CV->getNumOperands() == 1) 1207 return translate(*CV->getOperand(0), Reg); 1208 SmallVector<unsigned, 4> Ops; 1209 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 1210 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 1211 } 1212 EntryBuilder.buildMerge(Reg, Ops); 1213 } else 1214 return false; 1215 1216 return true; 1217 } 1218 1219 void IRTranslator::finalizeFunction() { 1220 // Release the memory used by the different maps we 1221 // needed during the translation. 1222 PendingPHIs.clear(); 1223 ValToVReg.clear(); 1224 FrameIndices.clear(); 1225 MachinePreds.clear(); 1226 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 1227 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 1228 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 1229 EntryBuilder = MachineIRBuilder(); 1230 CurBuilder = MachineIRBuilder(); 1231 } 1232 1233 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1234 MF = &CurMF; 1235 const Function &F = *MF->getFunction(); 1236 if (F.empty()) 1237 return false; 1238 CLI = MF->getSubtarget().getCallLowering(); 1239 CurBuilder.setMF(*MF); 1240 EntryBuilder.setMF(*MF); 1241 MRI = &MF->getRegInfo(); 1242 DL = &F.getParent()->getDataLayout(); 1243 TPC = &getAnalysis<TargetPassConfig>(); 1244 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 1245 1246 assert(PendingPHIs.empty() && "stale PHIs"); 1247 1248 // Release the per-function state when we return, whether we succeeded or not. 1249 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1250 1251 // Setup a separate basic-block for the arguments and constants 1252 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1253 MF->push_back(EntryBB); 1254 EntryBuilder.setMBB(*EntryBB); 1255 1256 // Create all blocks, in IR order, to preserve the layout. 1257 for (const BasicBlock &BB: F) { 1258 auto *&MBB = BBToMBB[&BB]; 1259 1260 MBB = MF->CreateMachineBasicBlock(&BB); 1261 MF->push_back(MBB); 1262 1263 if (BB.hasAddressTaken()) 1264 MBB->setHasAddressTaken(); 1265 } 1266 1267 // Make our arguments/constants entry block fallthrough to the IR entry block. 1268 EntryBB->addSuccessor(&getMBB(F.front())); 1269 1270 // Lower the actual args into this basic block. 1271 SmallVector<unsigned, 8> VRegArgs; 1272 for (const Argument &Arg: F.args()) 1273 VRegArgs.push_back(getOrCreateVReg(Arg)); 1274 if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) { 1275 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1276 MF->getFunction()->getSubprogram(), 1277 &MF->getFunction()->getEntryBlock()); 1278 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1279 reportTranslationError(*MF, *TPC, *ORE, R); 1280 return false; 1281 } 1282 1283 // And translate the function! 1284 for (const BasicBlock &BB: F) { 1285 MachineBasicBlock &MBB = getMBB(BB); 1286 // Set the insertion point of all the following translations to 1287 // the end of this basic block. 1288 CurBuilder.setMBB(MBB); 1289 1290 for (const Instruction &Inst: BB) { 1291 if (translate(Inst)) 1292 continue; 1293 1294 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1295 Inst.getDebugLoc(), &BB); 1296 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 1297 1298 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 1299 std::string InstStrStorage; 1300 raw_string_ostream InstStr(InstStrStorage); 1301 InstStr << Inst; 1302 1303 R << ": '" << InstStr.str() << "'"; 1304 } 1305 1306 reportTranslationError(*MF, *TPC, *ORE, R); 1307 return false; 1308 } 1309 } 1310 1311 finishPendingPhis(); 1312 1313 // Merge the argument lowering and constants block with its single 1314 // successor, the LLVM-IR entry block. We want the basic block to 1315 // be maximal. 1316 assert(EntryBB->succ_size() == 1 && 1317 "Custom BB used for lowering should have only one successor"); 1318 // Get the successor of the current entry block. 1319 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1320 assert(NewEntryBB.pred_size() == 1 && 1321 "LLVM-IR entry block has a predecessor!?"); 1322 // Move all the instruction from the current entry block to the 1323 // new entry block. 1324 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1325 EntryBB->end()); 1326 1327 // Update the live-in information for the new entry block. 1328 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1329 NewEntryBB.addLiveIn(LiveIn); 1330 NewEntryBB.sortUniqueLiveIns(); 1331 1332 // Get rid of the now empty basic block. 1333 EntryBB->removeSuccessor(&NewEntryBB); 1334 MF->remove(EntryBB); 1335 MF->DeleteMachineBasicBlock(EntryBB); 1336 1337 assert(&MF->front() == &NewEntryBB && 1338 "New entry wasn't next in the list of basic block!"); 1339 1340 return false; 1341 } 1342