1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 21 #include "llvm/CodeGen/LowLevelType.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetLowering.h" 31 #include "llvm/CodeGen/TargetPassConfig.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DebugInfo.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/InlineAsm.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/MC/MCContext.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/LowLevelTypeImpl.h" 59 #include "llvm/Support/MathExtras.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetMachine.h" 63 #include <algorithm> 64 #include <cassert> 65 #include <cstdint> 66 #include <iterator> 67 #include <string> 68 #include <utility> 69 #include <vector> 70 71 #define DEBUG_TYPE "irtranslator" 72 73 using namespace llvm; 74 75 char IRTranslator::ID = 0; 76 77 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 78 false, false) 79 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 80 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 81 false, false) 82 83 static void reportTranslationError(MachineFunction &MF, 84 const TargetPassConfig &TPC, 85 OptimizationRemarkEmitter &ORE, 86 OptimizationRemarkMissed &R) { 87 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 88 89 // Print the function name explicitly if we don't have a debug location (which 90 // makes the diagnostic less useful) or if we're going to emit a raw error. 91 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 92 R << (" (in function: " + MF.getName() + ")").str(); 93 94 if (TPC.isGlobalISelAbortEnabled()) 95 report_fatal_error(R.getMsg()); 96 else 97 ORE.emit(R); 98 } 99 100 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { 101 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 102 } 103 104 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 105 AU.addRequired<TargetPassConfig>(); 106 MachineFunctionPass::getAnalysisUsage(AU); 107 } 108 109 static void computeValueLLTs(const DataLayout &DL, Type &Ty, 110 SmallVectorImpl<LLT> &ValueTys, 111 SmallVectorImpl<uint64_t> *Offsets = nullptr, 112 uint64_t StartingOffset = 0) { 113 // Given a struct type, recursively traverse the elements. 114 if (StructType *STy = dyn_cast<StructType>(&Ty)) { 115 const StructLayout *SL = DL.getStructLayout(STy); 116 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) 117 computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, 118 StartingOffset + SL->getElementOffset(I)); 119 return; 120 } 121 // Given an array type, recursively traverse the elements. 122 if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { 123 Type *EltTy = ATy->getElementType(); 124 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 125 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 126 computeValueLLTs(DL, *EltTy, ValueTys, Offsets, 127 StartingOffset + i * EltSize); 128 return; 129 } 130 // Interpret void as zero return values. 131 if (Ty.isVoidTy()) 132 return; 133 // Base case: we can get an LLT for this LLVM IR type. 134 ValueTys.push_back(getLLTForType(Ty, DL)); 135 if (Offsets != nullptr) 136 Offsets->push_back(StartingOffset * 8); 137 } 138 139 IRTranslator::ValueToVRegInfo::VRegListT & 140 IRTranslator::allocateVRegs(const Value &Val) { 141 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 142 auto *Regs = VMap.getVRegs(Val); 143 auto *Offsets = VMap.getOffsets(Val); 144 SmallVector<LLT, 4> SplitTys; 145 computeValueLLTs(*DL, *Val.getType(), SplitTys, 146 Offsets->empty() ? Offsets : nullptr); 147 for (unsigned i = 0; i < SplitTys.size(); ++i) 148 Regs->push_back(0); 149 return *Regs; 150 } 151 152 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) { 153 auto VRegsIt = VMap.findVRegs(Val); 154 if (VRegsIt != VMap.vregs_end()) 155 return *VRegsIt->second; 156 157 if (Val.getType()->isVoidTy()) 158 return *VMap.getVRegs(Val); 159 160 // Create entry for this type. 161 auto *VRegs = VMap.getVRegs(Val); 162 auto *Offsets = VMap.getOffsets(Val); 163 164 assert(Val.getType()->isSized() && 165 "Don't know how to create an empty vreg"); 166 167 SmallVector<LLT, 4> SplitTys; 168 computeValueLLTs(*DL, *Val.getType(), SplitTys, 169 Offsets->empty() ? Offsets : nullptr); 170 171 if (!isa<Constant>(Val)) { 172 for (auto Ty : SplitTys) 173 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 174 return *VRegs; 175 } 176 177 if (Val.getType()->isAggregateType()) { 178 // UndefValue, ConstantAggregateZero 179 auto &C = cast<Constant>(Val); 180 unsigned Idx = 0; 181 while (auto Elt = C.getAggregateElement(Idx++)) { 182 auto EltRegs = getOrCreateVRegs(*Elt); 183 std::copy(EltRegs.begin(), EltRegs.end(), std::back_inserter(*VRegs)); 184 } 185 } else { 186 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 187 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 188 bool Success = translate(cast<Constant>(Val), VRegs->front()); 189 if (!Success) { 190 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 191 MF->getFunction().getSubprogram(), 192 &MF->getFunction().getEntryBlock()); 193 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 194 reportTranslationError(*MF, *TPC, *ORE, R); 195 return *VRegs; 196 } 197 } 198 199 return *VRegs; 200 } 201 202 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 203 if (FrameIndices.find(&AI) != FrameIndices.end()) 204 return FrameIndices[&AI]; 205 206 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 207 unsigned Size = 208 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 209 210 // Always allocate at least one byte. 211 Size = std::max(Size, 1u); 212 213 unsigned Alignment = AI.getAlignment(); 214 if (!Alignment) 215 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 216 217 int &FI = FrameIndices[&AI]; 218 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 219 return FI; 220 } 221 222 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 223 unsigned Alignment = 0; 224 Type *ValTy = nullptr; 225 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 226 Alignment = SI->getAlignment(); 227 ValTy = SI->getValueOperand()->getType(); 228 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 229 Alignment = LI->getAlignment(); 230 ValTy = LI->getType(); 231 } else { 232 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 233 R << "unable to translate memop: " << ore::NV("Opcode", &I); 234 reportTranslationError(*MF, *TPC, *ORE, R); 235 return 1; 236 } 237 238 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 239 } 240 241 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 242 MachineBasicBlock *&MBB = BBToMBB[&BB]; 243 assert(MBB && "BasicBlock was not encountered before"); 244 return *MBB; 245 } 246 247 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 248 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 249 MachinePreds[Edge].push_back(NewPred); 250 } 251 252 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 253 MachineIRBuilder &MIRBuilder) { 254 // FIXME: handle signed/unsigned wrapping flags. 255 256 // Get or create a virtual register for each value. 257 // Unless the value is a Constant => loadimm cst? 258 // or inline constant each time? 259 // Creation of a virtual register needs to have a size. 260 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 261 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 262 unsigned Res = getOrCreateVReg(U); 263 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); 264 return true; 265 } 266 267 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 268 // -0.0 - X --> G_FNEG 269 if (isa<Constant>(U.getOperand(0)) && 270 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 271 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 272 .addDef(getOrCreateVReg(U)) 273 .addUse(getOrCreateVReg(*U.getOperand(1))); 274 return true; 275 } 276 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 277 } 278 279 bool IRTranslator::translateCompare(const User &U, 280 MachineIRBuilder &MIRBuilder) { 281 const CmpInst *CI = dyn_cast<CmpInst>(&U); 282 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 283 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 284 unsigned Res = getOrCreateVReg(U); 285 CmpInst::Predicate Pred = 286 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 287 cast<ConstantExpr>(U).getPredicate()); 288 if (CmpInst::isIntPredicate(Pred)) 289 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 290 else if (Pred == CmpInst::FCMP_FALSE) 291 MIRBuilder.buildCopy( 292 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 293 else if (Pred == CmpInst::FCMP_TRUE) 294 MIRBuilder.buildCopy( 295 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 296 else 297 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); 298 299 return true; 300 } 301 302 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 303 const ReturnInst &RI = cast<ReturnInst>(U); 304 const Value *Ret = RI.getReturnValue(); 305 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 306 Ret = nullptr; 307 // The target may mess up with the insertion point, but 308 // this is not important as a return is the last instruction 309 // of the block anyway. 310 311 // FIXME: this interface should simplify when CallLowering gets adapted to 312 // multiple VRegs per Value. 313 unsigned VReg = Ret ? packRegs(*Ret, MIRBuilder) : 0; 314 return CLI->lowerReturn(MIRBuilder, Ret, VReg); 315 } 316 317 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 318 const BranchInst &BrInst = cast<BranchInst>(U); 319 unsigned Succ = 0; 320 if (!BrInst.isUnconditional()) { 321 // We want a G_BRCOND to the true BB followed by an unconditional branch. 322 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 323 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 324 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 325 MIRBuilder.buildBrCond(Tst, TrueBB); 326 } 327 328 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 329 MachineBasicBlock &TgtBB = getMBB(BrTgt); 330 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 331 332 // If the unconditional target is the layout successor, fallthrough. 333 if (!CurBB.isLayoutSuccessor(&TgtBB)) 334 MIRBuilder.buildBr(TgtBB); 335 336 // Link successors. 337 for (const BasicBlock *Succ : BrInst.successors()) 338 CurBB.addSuccessor(&getMBB(*Succ)); 339 return true; 340 } 341 342 bool IRTranslator::translateSwitch(const User &U, 343 MachineIRBuilder &MIRBuilder) { 344 // For now, just translate as a chain of conditional branches. 345 // FIXME: could we share most of the logic/code in 346 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 347 // At first sight, it seems most of the logic in there is independent of 348 // SelectionDAG-specifics and a lot of work went in to optimize switch 349 // lowering in there. 350 351 const SwitchInst &SwInst = cast<SwitchInst>(U); 352 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 353 const BasicBlock *OrigBB = SwInst.getParent(); 354 355 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 356 for (auto &CaseIt : SwInst.cases()) { 357 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 358 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 359 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 360 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 361 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 362 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 363 364 MIRBuilder.buildBrCond(Tst, TrueMBB); 365 CurMBB.addSuccessor(&TrueMBB); 366 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 367 368 MachineBasicBlock *FalseMBB = 369 MF->CreateMachineBasicBlock(SwInst.getParent()); 370 // Insert the comparison blocks one after the other. 371 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 372 MIRBuilder.buildBr(*FalseMBB); 373 CurMBB.addSuccessor(FalseMBB); 374 375 MIRBuilder.setMBB(*FalseMBB); 376 } 377 // handle default case 378 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 379 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 380 MIRBuilder.buildBr(DefaultMBB); 381 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 382 CurMBB.addSuccessor(&DefaultMBB); 383 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 384 385 return true; 386 } 387 388 bool IRTranslator::translateIndirectBr(const User &U, 389 MachineIRBuilder &MIRBuilder) { 390 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 391 392 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 393 MIRBuilder.buildBrIndirect(Tgt); 394 395 // Link successors. 396 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 397 for (const BasicBlock *Succ : BrInst.successors()) 398 CurBB.addSuccessor(&getMBB(*Succ)); 399 400 return true; 401 } 402 403 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 404 const LoadInst &LI = cast<LoadInst>(U); 405 406 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 407 : MachineMemOperand::MONone; 408 Flags |= MachineMemOperand::MOLoad; 409 410 if (DL->getTypeStoreSize(LI.getType()) == 0) 411 return true; 412 413 ArrayRef<unsigned> Regs = getOrCreateVRegs(LI); 414 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 415 unsigned Base = getOrCreateVReg(*LI.getPointerOperand()); 416 417 for (unsigned i = 0; i < Regs.size(); ++i) { 418 unsigned Addr = 0; 419 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); 420 421 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 422 unsigned BaseAlign = getMemOpAlignment(LI); 423 auto MMO = MF->getMachineMemOperand( 424 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 425 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 426 LI.getSyncScopeID(), LI.getOrdering()); 427 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 428 } 429 430 return true; 431 } 432 433 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 434 const StoreInst &SI = cast<StoreInst>(U); 435 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 436 : MachineMemOperand::MONone; 437 Flags |= MachineMemOperand::MOStore; 438 439 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 440 return true; 441 442 ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand()); 443 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 444 unsigned Base = getOrCreateVReg(*SI.getPointerOperand()); 445 446 for (unsigned i = 0; i < Vals.size(); ++i) { 447 unsigned Addr = 0; 448 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); 449 450 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 451 unsigned BaseAlign = getMemOpAlignment(SI); 452 auto MMO = MF->getMachineMemOperand( 453 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 454 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 455 SI.getSyncScopeID(), SI.getOrdering()); 456 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 457 } 458 return true; 459 } 460 461 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 462 const Value *Src = U.getOperand(0); 463 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 464 465 // getIndexedOffsetInType is designed for GEPs, so the first index is the 466 // usual array element rather than looking into the actual aggregate. 467 SmallVector<Value *, 1> Indices; 468 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 469 470 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 471 for (auto Idx : EVI->indices()) 472 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 473 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 474 for (auto Idx : IVI->indices()) 475 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 476 } else { 477 for (unsigned i = 1; i < U.getNumOperands(); ++i) 478 Indices.push_back(U.getOperand(i)); 479 } 480 481 return 8 * static_cast<uint64_t>( 482 DL.getIndexedOffsetInType(Src->getType(), Indices)); 483 } 484 485 bool IRTranslator::translateExtractValue(const User &U, 486 MachineIRBuilder &MIRBuilder) { 487 const Value *Src = U.getOperand(0); 488 uint64_t Offset = getOffsetFromIndices(U, *DL); 489 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 490 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 491 unsigned Idx = std::lower_bound(Offsets.begin(), Offsets.end(), Offset) - 492 Offsets.begin(); 493 auto &DstRegs = allocateVRegs(U); 494 495 for (unsigned i = 0; i < DstRegs.size(); ++i) 496 DstRegs[i] = SrcRegs[Idx++]; 497 498 return true; 499 } 500 501 bool IRTranslator::translateInsertValue(const User &U, 502 MachineIRBuilder &MIRBuilder) { 503 const Value *Src = U.getOperand(0); 504 uint64_t Offset = getOffsetFromIndices(U, *DL); 505 auto &DstRegs = allocateVRegs(U); 506 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 507 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 508 ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 509 auto InsertedIt = InsertedRegs.begin(); 510 511 for (unsigned i = 0; i < DstRegs.size(); ++i) { 512 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 513 DstRegs[i] = *InsertedIt++; 514 else 515 DstRegs[i] = SrcRegs[i]; 516 } 517 518 return true; 519 } 520 521 bool IRTranslator::translateSelect(const User &U, 522 MachineIRBuilder &MIRBuilder) { 523 unsigned Tst = getOrCreateVReg(*U.getOperand(0)); 524 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U); 525 ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 526 ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 527 528 for (unsigned i = 0; i < ResRegs.size(); ++i) 529 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i]); 530 531 return true; 532 } 533 534 bool IRTranslator::translateBitCast(const User &U, 535 MachineIRBuilder &MIRBuilder) { 536 // If we're bitcasting to the source type, we can reuse the source vreg. 537 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 538 getLLTForType(*U.getType(), *DL)) { 539 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 540 auto &Regs = *VMap.getVRegs(U); 541 // If we already assigned a vreg for this bitcast, we can't change that. 542 // Emit a copy to satisfy the users we already emitted. 543 if (!Regs.empty()) 544 MIRBuilder.buildCopy(Regs[0], SrcReg); 545 else { 546 Regs.push_back(SrcReg); 547 VMap.getOffsets(U)->push_back(0); 548 } 549 return true; 550 } 551 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 552 } 553 554 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 555 MachineIRBuilder &MIRBuilder) { 556 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 557 unsigned Res = getOrCreateVReg(U); 558 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 559 return true; 560 } 561 562 bool IRTranslator::translateGetElementPtr(const User &U, 563 MachineIRBuilder &MIRBuilder) { 564 // FIXME: support vector GEPs. 565 if (U.getType()->isVectorTy()) 566 return false; 567 568 Value &Op0 = *U.getOperand(0); 569 unsigned BaseReg = getOrCreateVReg(Op0); 570 Type *PtrIRTy = Op0.getType(); 571 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 572 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 573 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 574 575 int64_t Offset = 0; 576 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 577 GTI != E; ++GTI) { 578 const Value *Idx = GTI.getOperand(); 579 if (StructType *StTy = GTI.getStructTypeOrNull()) { 580 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 581 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 582 continue; 583 } else { 584 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 585 586 // If this is a scalar constant or a splat vector of constants, 587 // handle it quickly. 588 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 589 Offset += ElementSize * CI->getSExtValue(); 590 continue; 591 } 592 593 if (Offset != 0) { 594 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 595 unsigned OffsetReg = 596 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 597 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 598 599 BaseReg = NewBaseReg; 600 Offset = 0; 601 } 602 603 unsigned IdxReg = getOrCreateVReg(*Idx); 604 if (MRI->getType(IdxReg) != OffsetTy) { 605 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 606 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 607 IdxReg = NewIdxReg; 608 } 609 610 // N = N + Idx * ElementSize; 611 // Avoid doing it for ElementSize of 1. 612 unsigned GepOffsetReg; 613 if (ElementSize != 1) { 614 unsigned ElementSizeReg = 615 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize)); 616 617 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 618 MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg); 619 } else 620 GepOffsetReg = IdxReg; 621 622 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 623 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); 624 BaseReg = NewBaseReg; 625 } 626 } 627 628 if (Offset != 0) { 629 unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 630 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 631 return true; 632 } 633 634 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 635 return true; 636 } 637 638 bool IRTranslator::translateMemfunc(const CallInst &CI, 639 MachineIRBuilder &MIRBuilder, 640 unsigned ID) { 641 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 642 Type *DstTy = CI.getArgOperand(0)->getType(); 643 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 644 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 645 return false; 646 647 SmallVector<CallLowering::ArgInfo, 8> Args; 648 for (int i = 0; i < 3; ++i) { 649 const auto &Arg = CI.getArgOperand(i); 650 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 651 } 652 653 const char *Callee; 654 switch (ID) { 655 case Intrinsic::memmove: 656 case Intrinsic::memcpy: { 657 Type *SrcTy = CI.getArgOperand(1)->getType(); 658 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 659 return false; 660 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 661 break; 662 } 663 case Intrinsic::memset: 664 Callee = "memset"; 665 break; 666 default: 667 return false; 668 } 669 670 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 671 MachineOperand::CreateES(Callee), 672 CallLowering::ArgInfo(0, CI.getType()), Args); 673 } 674 675 void IRTranslator::getStackGuard(unsigned DstReg, 676 MachineIRBuilder &MIRBuilder) { 677 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 678 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 679 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 680 MIB.addDef(DstReg); 681 682 auto &TLI = *MF->getSubtarget().getTargetLowering(); 683 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 684 if (!Global) 685 return; 686 687 MachinePointerInfo MPInfo(Global); 688 MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1); 689 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 690 MachineMemOperand::MODereferenceable; 691 *MemRefs = 692 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 693 DL->getPointerABIAlignment(0)); 694 MIB.setMemRefs(MemRefs, MemRefs + 1); 695 } 696 697 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 698 MachineIRBuilder &MIRBuilder) { 699 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI); 700 auto MIB = MIRBuilder.buildInstr(Op) 701 .addDef(ResRegs[0]) 702 .addDef(ResRegs[1]) 703 .addUse(getOrCreateVReg(*CI.getOperand(0))) 704 .addUse(getOrCreateVReg(*CI.getOperand(1))); 705 706 if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) { 707 unsigned Zero = getOrCreateVReg( 708 *Constant::getNullValue(Type::getInt1Ty(CI.getContext()))); 709 MIB.addUse(Zero); 710 } 711 712 return true; 713 } 714 715 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 716 MachineIRBuilder &MIRBuilder) { 717 switch (ID) { 718 default: 719 break; 720 case Intrinsic::lifetime_start: 721 case Intrinsic::lifetime_end: 722 // Stack coloring is not enabled in O0 (which we care about now) so we can 723 // drop these. Make sure someone notices when we start compiling at higher 724 // opts though. 725 if (MF->getTarget().getOptLevel() != CodeGenOpt::None) 726 return false; 727 return true; 728 case Intrinsic::dbg_declare: { 729 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 730 assert(DI.getVariable() && "Missing variable"); 731 732 const Value *Address = DI.getAddress(); 733 if (!Address || isa<UndefValue>(Address)) { 734 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 735 return true; 736 } 737 738 assert(DI.getVariable()->isValidLocationForIntrinsic( 739 MIRBuilder.getDebugLoc()) && 740 "Expected inlined-at fields to agree"); 741 auto AI = dyn_cast<AllocaInst>(Address); 742 if (AI && AI->isStaticAlloca()) { 743 // Static allocas are tracked at the MF level, no need for DBG_VALUE 744 // instructions (in fact, they get ignored if they *do* exist). 745 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 746 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 747 } else 748 MIRBuilder.buildDirectDbgValue(getOrCreateVReg(*Address), 749 DI.getVariable(), DI.getExpression()); 750 return true; 751 } 752 case Intrinsic::vaend: 753 // No target I know of cares about va_end. Certainly no in-tree target 754 // does. Simplest intrinsic ever! 755 return true; 756 case Intrinsic::vastart: { 757 auto &TLI = *MF->getSubtarget().getTargetLowering(); 758 Value *Ptr = CI.getArgOperand(0); 759 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 760 761 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 762 .addUse(getOrCreateVReg(*Ptr)) 763 .addMemOperand(MF->getMachineMemOperand( 764 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0)); 765 return true; 766 } 767 case Intrinsic::dbg_value: { 768 // This form of DBG_VALUE is target-independent. 769 const DbgValueInst &DI = cast<DbgValueInst>(CI); 770 const Value *V = DI.getValue(); 771 assert(DI.getVariable()->isValidLocationForIntrinsic( 772 MIRBuilder.getDebugLoc()) && 773 "Expected inlined-at fields to agree"); 774 if (!V) { 775 // Currently the optimizer can produce this; insert an undef to 776 // help debugging. Probably the optimizer should not do this. 777 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 778 } else if (const auto *CI = dyn_cast<Constant>(V)) { 779 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 780 } else { 781 unsigned Reg = getOrCreateVReg(*V); 782 // FIXME: This does not handle register-indirect values at offset 0. The 783 // direct/indirect thing shouldn't really be handled by something as 784 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 785 // pretty baked in right now. 786 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 787 } 788 return true; 789 } 790 case Intrinsic::uadd_with_overflow: 791 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder); 792 case Intrinsic::sadd_with_overflow: 793 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 794 case Intrinsic::usub_with_overflow: 795 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder); 796 case Intrinsic::ssub_with_overflow: 797 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 798 case Intrinsic::umul_with_overflow: 799 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 800 case Intrinsic::smul_with_overflow: 801 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 802 case Intrinsic::pow: 803 MIRBuilder.buildInstr(TargetOpcode::G_FPOW) 804 .addDef(getOrCreateVReg(CI)) 805 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 806 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 807 return true; 808 case Intrinsic::exp: 809 MIRBuilder.buildInstr(TargetOpcode::G_FEXP) 810 .addDef(getOrCreateVReg(CI)) 811 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 812 return true; 813 case Intrinsic::exp2: 814 MIRBuilder.buildInstr(TargetOpcode::G_FEXP2) 815 .addDef(getOrCreateVReg(CI)) 816 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 817 return true; 818 case Intrinsic::log: 819 MIRBuilder.buildInstr(TargetOpcode::G_FLOG) 820 .addDef(getOrCreateVReg(CI)) 821 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 822 return true; 823 case Intrinsic::log2: 824 MIRBuilder.buildInstr(TargetOpcode::G_FLOG2) 825 .addDef(getOrCreateVReg(CI)) 826 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 827 return true; 828 case Intrinsic::fabs: 829 MIRBuilder.buildInstr(TargetOpcode::G_FABS) 830 .addDef(getOrCreateVReg(CI)) 831 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 832 return true; 833 case Intrinsic::fma: 834 MIRBuilder.buildInstr(TargetOpcode::G_FMA) 835 .addDef(getOrCreateVReg(CI)) 836 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 837 .addUse(getOrCreateVReg(*CI.getArgOperand(1))) 838 .addUse(getOrCreateVReg(*CI.getArgOperand(2))); 839 return true; 840 case Intrinsic::fmuladd: { 841 const TargetMachine &TM = MF->getTarget(); 842 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 843 unsigned Dst = getOrCreateVReg(CI); 844 unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 845 unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 846 unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 847 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 848 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 849 // TODO: Revisit this to see if we should move this part of the 850 // lowering to the combiner. 851 MIRBuilder.buildInstr(TargetOpcode::G_FMA, Dst, Op0, Op1, Op2); 852 } else { 853 LLT Ty = getLLTForType(*CI.getType(), *DL); 854 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, Ty, Op0, Op1); 855 MIRBuilder.buildInstr(TargetOpcode::G_FADD, Dst, FMul, Op2); 856 } 857 return true; 858 } 859 case Intrinsic::memcpy: 860 case Intrinsic::memmove: 861 case Intrinsic::memset: 862 return translateMemfunc(CI, MIRBuilder, ID); 863 case Intrinsic::eh_typeid_for: { 864 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 865 unsigned Reg = getOrCreateVReg(CI); 866 unsigned TypeID = MF->getTypeIDFor(GV); 867 MIRBuilder.buildConstant(Reg, TypeID); 868 return true; 869 } 870 case Intrinsic::objectsize: { 871 // If we don't know by now, we're never going to know. 872 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 873 874 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 875 return true; 876 } 877 case Intrinsic::stackguard: 878 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 879 return true; 880 case Intrinsic::stackprotector: { 881 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 882 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 883 getStackGuard(GuardVal, MIRBuilder); 884 885 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 886 MIRBuilder.buildStore( 887 GuardVal, getOrCreateVReg(*Slot), 888 *MF->getMachineMemOperand( 889 MachinePointerInfo::getFixedStack(*MF, 890 getOrCreateFrameIndex(*Slot)), 891 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 892 PtrTy.getSizeInBits() / 8, 8)); 893 return true; 894 } 895 } 896 return false; 897 } 898 899 bool IRTranslator::translateInlineAsm(const CallInst &CI, 900 MachineIRBuilder &MIRBuilder) { 901 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 902 if (!IA.getConstraintString().empty()) 903 return false; 904 905 unsigned ExtraInfo = 0; 906 if (IA.hasSideEffects()) 907 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 908 if (IA.getDialect() == InlineAsm::AD_Intel) 909 ExtraInfo |= InlineAsm::Extra_AsmDialect; 910 911 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 912 .addExternalSymbol(IA.getAsmString().c_str()) 913 .addImm(ExtraInfo); 914 915 return true; 916 } 917 918 unsigned IRTranslator::packRegs(const Value &V, 919 MachineIRBuilder &MIRBuilder) { 920 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 921 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 922 LLT BigTy = getLLTForType(*V.getType(), *DL); 923 924 if (Regs.size() == 1) 925 return Regs[0]; 926 927 unsigned Dst = MRI->createGenericVirtualRegister(BigTy); 928 MIRBuilder.buildUndef(Dst); 929 for (unsigned i = 0; i < Regs.size(); ++i) { 930 unsigned NewDst = MRI->createGenericVirtualRegister(BigTy); 931 MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]); 932 Dst = NewDst; 933 } 934 return Dst; 935 } 936 937 void IRTranslator::unpackRegs(const Value &V, unsigned Src, 938 MachineIRBuilder &MIRBuilder) { 939 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 940 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 941 942 for (unsigned i = 0; i < Regs.size(); ++i) 943 MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]); 944 } 945 946 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 947 const CallInst &CI = cast<CallInst>(U); 948 auto TII = MF->getTarget().getIntrinsicInfo(); 949 const Function *F = CI.getCalledFunction(); 950 951 // FIXME: support Windows dllimport function calls. 952 if (F && F->hasDLLImportStorageClass()) 953 return false; 954 955 if (CI.isInlineAsm()) 956 return translateInlineAsm(CI, MIRBuilder); 957 958 Intrinsic::ID ID = Intrinsic::not_intrinsic; 959 if (F && F->isIntrinsic()) { 960 ID = F->getIntrinsicID(); 961 if (TII && ID == Intrinsic::not_intrinsic) 962 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 963 } 964 965 bool IsSplitType = valueIsSplit(CI); 966 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { 967 unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister( 968 getLLTForType(*CI.getType(), *DL)) 969 : getOrCreateVReg(CI); 970 971 SmallVector<unsigned, 8> Args; 972 for (auto &Arg: CI.arg_operands()) 973 Args.push_back(packRegs(*Arg, MIRBuilder)); 974 975 MF->getFrameInfo().setHasCalls(true); 976 bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() { 977 return getOrCreateVReg(*CI.getCalledValue()); 978 }); 979 980 if (IsSplitType) 981 unpackRegs(CI, Res, MIRBuilder); 982 return Success; 983 } 984 985 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 986 987 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 988 return true; 989 990 unsigned Res = 0; 991 if (!CI.getType()->isVoidTy()) { 992 if (IsSplitType) 993 Res = 994 MRI->createGenericVirtualRegister(getLLTForType(*CI.getType(), *DL)); 995 else 996 Res = getOrCreateVReg(CI); 997 } 998 MachineInstrBuilder MIB = 999 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 1000 1001 for (auto &Arg : CI.arg_operands()) { 1002 // Some intrinsics take metadata parameters. Reject them. 1003 if (isa<MetadataAsValue>(Arg)) 1004 return false; 1005 MIB.addUse(packRegs(*Arg, MIRBuilder)); 1006 } 1007 1008 if (IsSplitType) 1009 unpackRegs(CI, Res, MIRBuilder); 1010 1011 // Add a MachineMemOperand if it is a target mem intrinsic. 1012 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1013 TargetLowering::IntrinsicInfo Info; 1014 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1015 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1016 uint64_t Size = Info.memVT.getStoreSize(); 1017 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1018 Info.flags, Size, Info.align)); 1019 } 1020 1021 return true; 1022 } 1023 1024 bool IRTranslator::translateInvoke(const User &U, 1025 MachineIRBuilder &MIRBuilder) { 1026 const InvokeInst &I = cast<InvokeInst>(U); 1027 MCContext &Context = MF->getContext(); 1028 1029 const BasicBlock *ReturnBB = I.getSuccessor(0); 1030 const BasicBlock *EHPadBB = I.getSuccessor(1); 1031 1032 const Value *Callee = I.getCalledValue(); 1033 const Function *Fn = dyn_cast<Function>(Callee); 1034 if (isa<InlineAsm>(Callee)) 1035 return false; 1036 1037 // FIXME: support invoking patchpoint and statepoint intrinsics. 1038 if (Fn && Fn->isIntrinsic()) 1039 return false; 1040 1041 // FIXME: support whatever these are. 1042 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1043 return false; 1044 1045 // FIXME: support Windows exception handling. 1046 if (!isa<LandingPadInst>(EHPadBB->front())) 1047 return false; 1048 1049 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1050 // the region covered by the try. 1051 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1052 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1053 1054 unsigned Res = 1055 MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL)); 1056 SmallVector<unsigned, 8> Args; 1057 for (auto &Arg: I.arg_operands()) 1058 Args.push_back(packRegs(*Arg, MIRBuilder)); 1059 1060 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, 1061 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 1062 return false; 1063 1064 unpackRegs(I, Res, MIRBuilder); 1065 1066 MCSymbol *EndSymbol = Context.createTempSymbol(); 1067 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1068 1069 // FIXME: track probabilities. 1070 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1071 &ReturnMBB = getMBB(*ReturnBB); 1072 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1073 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1074 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1075 MIRBuilder.buildBr(ReturnMBB); 1076 1077 return true; 1078 } 1079 1080 bool IRTranslator::translateLandingPad(const User &U, 1081 MachineIRBuilder &MIRBuilder) { 1082 const LandingPadInst &LP = cast<LandingPadInst>(U); 1083 1084 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1085 addLandingPadInfo(LP, MBB); 1086 1087 MBB.setIsEHPad(); 1088 1089 // If there aren't registers to copy the values into (e.g., during SjLj 1090 // exceptions), then don't bother. 1091 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1092 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1093 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1094 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1095 return true; 1096 1097 // If landingpad's return type is token type, we don't create DAG nodes 1098 // for its exception pointer and selector value. The extraction of exception 1099 // pointer or selector value from token type landingpads is not currently 1100 // supported. 1101 if (LP.getType()->isTokenTy()) 1102 return true; 1103 1104 // Add a label to mark the beginning of the landing pad. Deletion of the 1105 // landing pad can thus be detected via the MachineModuleInfo. 1106 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1107 .addSym(MF->addLandingPad(&MBB)); 1108 1109 LLT Ty = getLLTForType(*LP.getType(), *DL); 1110 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 1111 MIRBuilder.buildUndef(Undef); 1112 1113 SmallVector<LLT, 2> Tys; 1114 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1115 Tys.push_back(getLLTForType(*Ty, *DL)); 1116 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1117 1118 // Mark exception register as live in. 1119 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1120 if (!ExceptionReg) 1121 return false; 1122 1123 MBB.addLiveIn(ExceptionReg); 1124 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP); 1125 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1126 1127 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1128 if (!SelectorReg) 1129 return false; 1130 1131 MBB.addLiveIn(SelectorReg); 1132 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1133 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1134 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1135 1136 return true; 1137 } 1138 1139 bool IRTranslator::translateAlloca(const User &U, 1140 MachineIRBuilder &MIRBuilder) { 1141 auto &AI = cast<AllocaInst>(U); 1142 1143 if (AI.isStaticAlloca()) { 1144 unsigned Res = getOrCreateVReg(AI); 1145 int FI = getOrCreateFrameIndex(AI); 1146 MIRBuilder.buildFrameIndex(Res, FI); 1147 return true; 1148 } 1149 1150 // FIXME: support stack probing for Windows. 1151 if (MF->getTarget().getTargetTriple().isOSWindows()) 1152 return false; 1153 1154 // Now we're in the harder dynamic case. 1155 Type *Ty = AI.getAllocatedType(); 1156 unsigned Align = 1157 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1158 1159 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 1160 1161 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1162 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1163 if (MRI->getType(NumElts) != IntPtrTy) { 1164 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1165 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1166 NumElts = ExtElts; 1167 } 1168 1169 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1170 unsigned TySize = 1171 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1172 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1173 1174 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1175 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1176 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1177 1178 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1179 MIRBuilder.buildCopy(SPTmp, SPReg); 1180 1181 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1182 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1183 1184 // Handle alignment. We have to realign if the allocation granule was smaller 1185 // than stack alignment, or the specific alloca requires more than stack 1186 // alignment. 1187 unsigned StackAlign = 1188 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1189 Align = std::max(Align, StackAlign); 1190 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1191 // Round the size of the allocation up to the stack alignment size 1192 // by add SA-1 to the size. This doesn't overflow because we're computing 1193 // an address inside an alloca. 1194 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1195 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1196 AllocTmp = AlignedAlloc; 1197 } 1198 1199 MIRBuilder.buildCopy(SPReg, AllocTmp); 1200 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1201 1202 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1203 assert(MF->getFrameInfo().hasVarSizedObjects()); 1204 return true; 1205 } 1206 1207 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1208 // FIXME: We may need more info about the type. Because of how LLT works, 1209 // we're completely discarding the i64/double distinction here (amongst 1210 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1211 // anyway but that's not guaranteed. 1212 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1213 .addDef(getOrCreateVReg(U)) 1214 .addUse(getOrCreateVReg(*U.getOperand(0))) 1215 .addImm(DL->getABITypeAlignment(U.getType())); 1216 return true; 1217 } 1218 1219 bool IRTranslator::translateInsertElement(const User &U, 1220 MachineIRBuilder &MIRBuilder) { 1221 // If it is a <1 x Ty> vector, use the scalar as it is 1222 // not a legal vector type in LLT. 1223 if (U.getType()->getVectorNumElements() == 1) { 1224 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1225 auto &Regs = *VMap.getVRegs(U); 1226 if (Regs.empty()) { 1227 Regs.push_back(Elt); 1228 VMap.getOffsets(U)->push_back(0); 1229 } else { 1230 MIRBuilder.buildCopy(Regs[0], Elt); 1231 } 1232 return true; 1233 } 1234 1235 unsigned Res = getOrCreateVReg(U); 1236 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1237 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1238 unsigned Idx = getOrCreateVReg(*U.getOperand(2)); 1239 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1240 return true; 1241 } 1242 1243 bool IRTranslator::translateExtractElement(const User &U, 1244 MachineIRBuilder &MIRBuilder) { 1245 // If it is a <1 x Ty> vector, use the scalar as it is 1246 // not a legal vector type in LLT. 1247 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1248 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1249 auto &Regs = *VMap.getVRegs(U); 1250 if (Regs.empty()) { 1251 Regs.push_back(Elt); 1252 VMap.getOffsets(U)->push_back(0); 1253 } else { 1254 MIRBuilder.buildCopy(Regs[0], Elt); 1255 } 1256 return true; 1257 } 1258 unsigned Res = getOrCreateVReg(U); 1259 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1260 unsigned Idx = getOrCreateVReg(*U.getOperand(1)); 1261 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1262 return true; 1263 } 1264 1265 bool IRTranslator::translateShuffleVector(const User &U, 1266 MachineIRBuilder &MIRBuilder) { 1267 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1268 .addDef(getOrCreateVReg(U)) 1269 .addUse(getOrCreateVReg(*U.getOperand(0))) 1270 .addUse(getOrCreateVReg(*U.getOperand(1))) 1271 .addUse(getOrCreateVReg(*U.getOperand(2))); 1272 return true; 1273 } 1274 1275 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1276 const PHINode &PI = cast<PHINode>(U); 1277 1278 SmallVector<MachineInstr *, 4> Insts; 1279 for (auto Reg : getOrCreateVRegs(PI)) { 1280 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, Reg); 1281 Insts.push_back(MIB.getInstr()); 1282 } 1283 1284 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1285 return true; 1286 } 1287 1288 void IRTranslator::finishPendingPhis() { 1289 for (auto &Phi : PendingPHIs) { 1290 const PHINode *PI = Phi.first; 1291 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 1292 1293 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1294 // won't create extra control flow here, otherwise we need to find the 1295 // dominating predecessor here (or perhaps force the weirder IRTranslators 1296 // to provide a simple boundary). 1297 SmallSet<const BasicBlock *, 4> HandledPreds; 1298 1299 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1300 auto IRPred = PI->getIncomingBlock(i); 1301 if (HandledPreds.count(IRPred)) 1302 continue; 1303 1304 HandledPreds.insert(IRPred); 1305 ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 1306 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1307 assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) && 1308 "incorrect CFG at MachineBasicBlock level"); 1309 for (unsigned j = 0; j < ValRegs.size(); ++j) { 1310 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 1311 MIB.addUse(ValRegs[j]); 1312 MIB.addMBB(Pred); 1313 } 1314 } 1315 } 1316 } 1317 } 1318 1319 bool IRTranslator::valueIsSplit(const Value &V, 1320 SmallVectorImpl<uint64_t> *Offsets) { 1321 SmallVector<LLT, 4> SplitTys; 1322 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 1323 return SplitTys.size() > 1; 1324 } 1325 1326 bool IRTranslator::translate(const Instruction &Inst) { 1327 CurBuilder.setDebugLoc(Inst.getDebugLoc()); 1328 switch(Inst.getOpcode()) { 1329 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1330 case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder); 1331 #include "llvm/IR/Instruction.def" 1332 default: 1333 return false; 1334 } 1335 } 1336 1337 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1338 if (auto CI = dyn_cast<ConstantInt>(&C)) 1339 EntryBuilder.buildConstant(Reg, *CI); 1340 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1341 EntryBuilder.buildFConstant(Reg, *CF); 1342 else if (isa<UndefValue>(C)) 1343 EntryBuilder.buildUndef(Reg); 1344 else if (isa<ConstantPointerNull>(C)) { 1345 // As we are trying to build a constant val of 0 into a pointer, 1346 // insert a cast to make them correct with respect to types. 1347 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 1348 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 1349 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 1350 unsigned ZeroReg = getOrCreateVReg(*ZeroVal); 1351 EntryBuilder.buildCast(Reg, ZeroReg); 1352 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 1353 EntryBuilder.buildGlobalValue(Reg, GV); 1354 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1355 if (!CAZ->getType()->isVectorTy()) 1356 return false; 1357 // Return the scalar if it is a <1 x Ty> vector. 1358 if (CAZ->getNumElements() == 1) 1359 return translate(*CAZ->getElementValue(0u), Reg); 1360 std::vector<unsigned> Ops; 1361 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1362 Constant &Elt = *CAZ->getElementValue(i); 1363 Ops.push_back(getOrCreateVReg(Elt)); 1364 } 1365 EntryBuilder.buildMerge(Reg, Ops); 1366 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1367 // Return the scalar if it is a <1 x Ty> vector. 1368 if (CV->getNumElements() == 1) 1369 return translate(*CV->getElementAsConstant(0), Reg); 1370 std::vector<unsigned> Ops; 1371 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1372 Constant &Elt = *CV->getElementAsConstant(i); 1373 Ops.push_back(getOrCreateVReg(Elt)); 1374 } 1375 EntryBuilder.buildMerge(Reg, Ops); 1376 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1377 switch(CE->getOpcode()) { 1378 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1379 case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder); 1380 #include "llvm/IR/Instruction.def" 1381 default: 1382 return false; 1383 } 1384 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 1385 if (CV->getNumOperands() == 1) 1386 return translate(*CV->getOperand(0), Reg); 1387 SmallVector<unsigned, 4> Ops; 1388 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 1389 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 1390 } 1391 EntryBuilder.buildMerge(Reg, Ops); 1392 } else 1393 return false; 1394 1395 return true; 1396 } 1397 1398 void IRTranslator::finalizeFunction() { 1399 // Release the memory used by the different maps we 1400 // needed during the translation. 1401 PendingPHIs.clear(); 1402 VMap.reset(); 1403 FrameIndices.clear(); 1404 MachinePreds.clear(); 1405 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 1406 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 1407 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 1408 EntryBuilder = MachineIRBuilder(); 1409 CurBuilder = MachineIRBuilder(); 1410 } 1411 1412 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1413 MF = &CurMF; 1414 const Function &F = MF->getFunction(); 1415 if (F.empty()) 1416 return false; 1417 CLI = MF->getSubtarget().getCallLowering(); 1418 CurBuilder.setMF(*MF); 1419 EntryBuilder.setMF(*MF); 1420 MRI = &MF->getRegInfo(); 1421 DL = &F.getParent()->getDataLayout(); 1422 TPC = &getAnalysis<TargetPassConfig>(); 1423 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 1424 1425 assert(PendingPHIs.empty() && "stale PHIs"); 1426 1427 if (!DL->isLittleEndian()) { 1428 // Currently we don't properly handle big endian code. 1429 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1430 F.getSubprogram(), &F.getEntryBlock()); 1431 R << "unable to translate in big endian mode"; 1432 reportTranslationError(*MF, *TPC, *ORE, R); 1433 } 1434 1435 // Release the per-function state when we return, whether we succeeded or not. 1436 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1437 1438 // Setup a separate basic-block for the arguments and constants 1439 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1440 MF->push_back(EntryBB); 1441 EntryBuilder.setMBB(*EntryBB); 1442 1443 // Create all blocks, in IR order, to preserve the layout. 1444 for (const BasicBlock &BB: F) { 1445 auto *&MBB = BBToMBB[&BB]; 1446 1447 MBB = MF->CreateMachineBasicBlock(&BB); 1448 MF->push_back(MBB); 1449 1450 if (BB.hasAddressTaken()) 1451 MBB->setHasAddressTaken(); 1452 } 1453 1454 // Make our arguments/constants entry block fallthrough to the IR entry block. 1455 EntryBB->addSuccessor(&getMBB(F.front())); 1456 1457 // Lower the actual args into this basic block. 1458 SmallVector<unsigned, 8> VRegArgs; 1459 for (const Argument &Arg: F.args()) { 1460 if (DL->getTypeStoreSize(Arg.getType()) == 0) 1461 continue; // Don't handle zero sized types. 1462 VRegArgs.push_back( 1463 MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL))); 1464 } 1465 1466 if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) { 1467 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1468 F.getSubprogram(), &F.getEntryBlock()); 1469 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1470 reportTranslationError(*MF, *TPC, *ORE, R); 1471 return false; 1472 } 1473 1474 auto ArgIt = F.arg_begin(); 1475 for (auto &VArg : VRegArgs) { 1476 // If the argument is an unsplit scalar then don't use unpackRegs to avoid 1477 // creating redundant copies. 1478 if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) { 1479 auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt)); 1480 assert(VRegs.empty() && "VRegs already populated?"); 1481 VRegs.push_back(VArg); 1482 } else { 1483 unpackRegs(*ArgIt, VArg, EntryBuilder); 1484 } 1485 ArgIt++; 1486 } 1487 1488 // And translate the function! 1489 for (const BasicBlock &BB : F) { 1490 MachineBasicBlock &MBB = getMBB(BB); 1491 // Set the insertion point of all the following translations to 1492 // the end of this basic block. 1493 CurBuilder.setMBB(MBB); 1494 1495 for (const Instruction &Inst : BB) { 1496 if (translate(Inst)) 1497 continue; 1498 1499 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1500 Inst.getDebugLoc(), &BB); 1501 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 1502 1503 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 1504 std::string InstStrStorage; 1505 raw_string_ostream InstStr(InstStrStorage); 1506 InstStr << Inst; 1507 1508 R << ": '" << InstStr.str() << "'"; 1509 } 1510 1511 reportTranslationError(*MF, *TPC, *ORE, R); 1512 return false; 1513 } 1514 } 1515 1516 finishPendingPhis(); 1517 1518 // Merge the argument lowering and constants block with its single 1519 // successor, the LLVM-IR entry block. We want the basic block to 1520 // be maximal. 1521 assert(EntryBB->succ_size() == 1 && 1522 "Custom BB used for lowering should have only one successor"); 1523 // Get the successor of the current entry block. 1524 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1525 assert(NewEntryBB.pred_size() == 1 && 1526 "LLVM-IR entry block has a predecessor!?"); 1527 // Move all the instruction from the current entry block to the 1528 // new entry block. 1529 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1530 EntryBB->end()); 1531 1532 // Update the live-in information for the new entry block. 1533 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1534 NewEntryBB.addLiveIn(LiveIn); 1535 NewEntryBB.sortUniqueLiveIns(); 1536 1537 // Get rid of the now empty basic block. 1538 EntryBB->removeSuccessor(&NewEntryBB); 1539 MF->remove(EntryBB); 1540 MF->DeleteMachineBasicBlock(EntryBB); 1541 1542 assert(&MF->front() == &NewEntryBB && 1543 "New entry wasn't next in the list of basic block!"); 1544 1545 return false; 1546 } 1547