1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/LowLevelType.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/StackProtector.h" 34 #include "llvm/CodeGen/TargetFrameLowering.h" 35 #include "llvm/CodeGen/TargetLowering.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/Constant.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GetElementPtrTypeIterator.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/Pass.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CodeGen.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/LowLevelTypeImpl.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetIntrinsicInfo.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstdint> 72 #include <iterator> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 #define DEBUG_TYPE "irtranslator" 78 79 using namespace llvm; 80 81 static cl::opt<bool> 82 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 83 cl::desc("Should enable CSE in irtranslator"), 84 cl::Optional, cl::init(false)); 85 char IRTranslator::ID = 0; 86 87 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 88 false, false) 89 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 90 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 91 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 92 false, false) 93 94 static void reportTranslationError(MachineFunction &MF, 95 const TargetPassConfig &TPC, 96 OptimizationRemarkEmitter &ORE, 97 OptimizationRemarkMissed &R) { 98 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 99 100 // Print the function name explicitly if we don't have a debug location (which 101 // makes the diagnostic less useful) or if we're going to emit a raw error. 102 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 103 R << (" (in function: " + MF.getName() + ")").str(); 104 105 if (TPC.isGlobalISelAbortEnabled()) 106 report_fatal_error(R.getMsg()); 107 else 108 ORE.emit(R); 109 } 110 111 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } 112 113 #ifndef NDEBUG 114 namespace { 115 /// Verify that every instruction created has the same DILocation as the 116 /// instruction being translated. 117 class DILocationVerifier : public GISelChangeObserver { 118 const Instruction *CurrInst = nullptr; 119 120 public: 121 DILocationVerifier() = default; 122 ~DILocationVerifier() = default; 123 124 const Instruction *getCurrentInst() const { return CurrInst; } 125 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 126 127 void erasingInstr(MachineInstr &MI) override {} 128 void changingInstr(MachineInstr &MI) override {} 129 void changedInstr(MachineInstr &MI) override {} 130 131 void createdInstr(MachineInstr &MI) override { 132 assert(getCurrentInst() && "Inserted instruction without a current MI"); 133 134 // Only print the check message if we're actually checking it. 135 #ifndef NDEBUG 136 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 137 << " was copied to " << MI); 138 #endif 139 // We allow insts in the entry block to have a debug loc line of 0 because 140 // they could have originated from constants, and we don't want a jumpy 141 // debug experience. 142 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 143 MI.getDebugLoc().getLine() == 0) && 144 "Line info was not transferred to all instructions"); 145 } 146 }; 147 } // namespace 148 #endif // ifndef NDEBUG 149 150 151 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 152 AU.addRequired<StackProtector>(); 153 AU.addRequired<TargetPassConfig>(); 154 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 155 getSelectionDAGFallbackAnalysisUsage(AU); 156 MachineFunctionPass::getAnalysisUsage(AU); 157 } 158 159 IRTranslator::ValueToVRegInfo::VRegListT & 160 IRTranslator::allocateVRegs(const Value &Val) { 161 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 162 auto *Regs = VMap.getVRegs(Val); 163 auto *Offsets = VMap.getOffsets(Val); 164 SmallVector<LLT, 4> SplitTys; 165 computeValueLLTs(*DL, *Val.getType(), SplitTys, 166 Offsets->empty() ? Offsets : nullptr); 167 for (unsigned i = 0; i < SplitTys.size(); ++i) 168 Regs->push_back(0); 169 return *Regs; 170 } 171 172 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 173 auto VRegsIt = VMap.findVRegs(Val); 174 if (VRegsIt != VMap.vregs_end()) 175 return *VRegsIt->second; 176 177 if (Val.getType()->isVoidTy()) 178 return *VMap.getVRegs(Val); 179 180 // Create entry for this type. 181 auto *VRegs = VMap.getVRegs(Val); 182 auto *Offsets = VMap.getOffsets(Val); 183 184 assert(Val.getType()->isSized() && 185 "Don't know how to create an empty vreg"); 186 187 SmallVector<LLT, 4> SplitTys; 188 computeValueLLTs(*DL, *Val.getType(), SplitTys, 189 Offsets->empty() ? Offsets : nullptr); 190 191 if (!isa<Constant>(Val)) { 192 for (auto Ty : SplitTys) 193 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 194 return *VRegs; 195 } 196 197 if (Val.getType()->isAggregateType()) { 198 // UndefValue, ConstantAggregateZero 199 auto &C = cast<Constant>(Val); 200 unsigned Idx = 0; 201 while (auto Elt = C.getAggregateElement(Idx++)) { 202 auto EltRegs = getOrCreateVRegs(*Elt); 203 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 204 } 205 } else { 206 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 207 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 208 bool Success = translate(cast<Constant>(Val), VRegs->front()); 209 if (!Success) { 210 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 211 MF->getFunction().getSubprogram(), 212 &MF->getFunction().getEntryBlock()); 213 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 214 reportTranslationError(*MF, *TPC, *ORE, R); 215 return *VRegs; 216 } 217 } 218 219 return *VRegs; 220 } 221 222 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 223 if (FrameIndices.find(&AI) != FrameIndices.end()) 224 return FrameIndices[&AI]; 225 226 unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 227 unsigned Size = 228 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 229 230 // Always allocate at least one byte. 231 Size = std::max(Size, 1u); 232 233 unsigned Alignment = AI.getAlignment(); 234 if (!Alignment) 235 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 236 237 int &FI = FrameIndices[&AI]; 238 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 239 return FI; 240 } 241 242 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 243 unsigned Alignment = 0; 244 Type *ValTy = nullptr; 245 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 246 Alignment = SI->getAlignment(); 247 ValTy = SI->getValueOperand()->getType(); 248 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 249 Alignment = LI->getAlignment(); 250 ValTy = LI->getType(); 251 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 252 // TODO(PR27168): This instruction has no alignment attribute, but unlike 253 // the default alignment for load/store, the default here is to assume 254 // it has NATURAL alignment, not DataLayout-specified alignment. 255 const DataLayout &DL = AI->getModule()->getDataLayout(); 256 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 257 ValTy = AI->getCompareOperand()->getType(); 258 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 259 // TODO(PR27168): This instruction has no alignment attribute, but unlike 260 // the default alignment for load/store, the default here is to assume 261 // it has NATURAL alignment, not DataLayout-specified alignment. 262 const DataLayout &DL = AI->getModule()->getDataLayout(); 263 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 264 ValTy = AI->getType(); 265 } else { 266 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 267 R << "unable to translate memop: " << ore::NV("Opcode", &I); 268 reportTranslationError(*MF, *TPC, *ORE, R); 269 return 1; 270 } 271 272 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 273 } 274 275 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 276 MachineBasicBlock *&MBB = BBToMBB[&BB]; 277 assert(MBB && "BasicBlock was not encountered before"); 278 return *MBB; 279 } 280 281 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 282 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 283 MachinePreds[Edge].push_back(NewPred); 284 } 285 286 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 287 MachineIRBuilder &MIRBuilder) { 288 // Get or create a virtual register for each value. 289 // Unless the value is a Constant => loadimm cst? 290 // or inline constant each time? 291 // Creation of a virtual register needs to have a size. 292 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 293 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 294 Register Res = getOrCreateVReg(U); 295 uint16_t Flags = 0; 296 if (isa<Instruction>(U)) { 297 const Instruction &I = cast<Instruction>(U); 298 Flags = MachineInstr::copyFlagsFromInstruction(I); 299 } 300 301 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 302 return true; 303 } 304 305 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 306 // -0.0 - X --> G_FNEG 307 if (isa<Constant>(U.getOperand(0)) && 308 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 309 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 310 Register Res = getOrCreateVReg(U); 311 uint16_t Flags = 0; 312 if (isa<Instruction>(U)) { 313 const Instruction &I = cast<Instruction>(U); 314 Flags = MachineInstr::copyFlagsFromInstruction(I); 315 } 316 // Negate the last operand of the FSUB 317 MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op1}, Flags); 318 return true; 319 } 320 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 321 } 322 323 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 324 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 325 Register Res = getOrCreateVReg(U); 326 uint16_t Flags = 0; 327 if (isa<Instruction>(U)) { 328 const Instruction &I = cast<Instruction>(U); 329 Flags = MachineInstr::copyFlagsFromInstruction(I); 330 } 331 MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op0}, Flags); 332 return true; 333 } 334 335 bool IRTranslator::translateCompare(const User &U, 336 MachineIRBuilder &MIRBuilder) { 337 const CmpInst *CI = dyn_cast<CmpInst>(&U); 338 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 339 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 340 Register Res = getOrCreateVReg(U); 341 CmpInst::Predicate Pred = 342 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 343 cast<ConstantExpr>(U).getPredicate()); 344 if (CmpInst::isIntPredicate(Pred)) 345 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 346 else if (Pred == CmpInst::FCMP_FALSE) 347 MIRBuilder.buildCopy( 348 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 349 else if (Pred == CmpInst::FCMP_TRUE) 350 MIRBuilder.buildCopy( 351 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 352 else { 353 MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1}, 354 MachineInstr::copyFlagsFromInstruction(*CI)); 355 } 356 357 return true; 358 } 359 360 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 361 const ReturnInst &RI = cast<ReturnInst>(U); 362 const Value *Ret = RI.getReturnValue(); 363 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 364 Ret = nullptr; 365 366 ArrayRef<Register> VRegs; 367 if (Ret) 368 VRegs = getOrCreateVRegs(*Ret); 369 370 Register SwiftErrorVReg = 0; 371 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 372 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 373 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 374 } 375 376 // The target may mess up with the insertion point, but 377 // this is not important as a return is the last instruction 378 // of the block anyway. 379 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 380 } 381 382 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 383 const BranchInst &BrInst = cast<BranchInst>(U); 384 unsigned Succ = 0; 385 if (!BrInst.isUnconditional()) { 386 // We want a G_BRCOND to the true BB followed by an unconditional branch. 387 Register Tst = getOrCreateVReg(*BrInst.getCondition()); 388 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 389 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 390 MIRBuilder.buildBrCond(Tst, TrueBB); 391 } 392 393 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 394 MachineBasicBlock &TgtBB = getMBB(BrTgt); 395 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 396 397 // If the unconditional target is the layout successor, fallthrough. 398 if (!CurBB.isLayoutSuccessor(&TgtBB)) 399 MIRBuilder.buildBr(TgtBB); 400 401 // Link successors. 402 for (const BasicBlock *Succ : successors(&BrInst)) 403 CurBB.addSuccessor(&getMBB(*Succ)); 404 return true; 405 } 406 407 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 408 MachineBasicBlock *Dst, 409 BranchProbability Prob) { 410 if (!FuncInfo.BPI) { 411 Src->addSuccessorWithoutProb(Dst); 412 return; 413 } 414 if (Prob.isUnknown()) 415 Prob = getEdgeProbability(Src, Dst); 416 Src->addSuccessor(Dst, Prob); 417 } 418 419 BranchProbability 420 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 421 const MachineBasicBlock *Dst) const { 422 const BasicBlock *SrcBB = Src->getBasicBlock(); 423 const BasicBlock *DstBB = Dst->getBasicBlock(); 424 if (!FuncInfo.BPI) { 425 // If BPI is not available, set the default probability as 1 / N, where N is 426 // the number of successors. 427 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 428 return BranchProbability(1, SuccSize); 429 } 430 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 431 } 432 433 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 434 using namespace SwitchCG; 435 // Extract cases from the switch. 436 const SwitchInst &SI = cast<SwitchInst>(U); 437 BranchProbabilityInfo *BPI = FuncInfo.BPI; 438 CaseClusterVector Clusters; 439 Clusters.reserve(SI.getNumCases()); 440 for (auto &I : SI.cases()) { 441 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 442 assert(Succ && "Could not find successor mbb in mapping"); 443 const ConstantInt *CaseVal = I.getCaseValue(); 444 BranchProbability Prob = 445 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 446 : BranchProbability(1, SI.getNumCases() + 1); 447 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 448 } 449 450 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 451 452 // Cluster adjacent cases with the same destination. We do this at all 453 // optimization levels because it's cheap to do and will make codegen faster 454 // if there are many clusters. 455 sortAndRangeify(Clusters); 456 457 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 458 459 // If there is only the default destination, jump there directly. 460 if (Clusters.empty()) { 461 SwitchMBB->addSuccessor(DefaultMBB); 462 if (DefaultMBB != SwitchMBB->getNextNode()) 463 MIB.buildBr(*DefaultMBB); 464 return true; 465 } 466 467 SL->findJumpTables(Clusters, &SI, DefaultMBB); 468 469 LLVM_DEBUG({ 470 dbgs() << "Case clusters: "; 471 for (const CaseCluster &C : Clusters) { 472 if (C.Kind == CC_JumpTable) 473 dbgs() << "JT:"; 474 if (C.Kind == CC_BitTests) 475 dbgs() << "BT:"; 476 477 C.Low->getValue().print(dbgs(), true); 478 if (C.Low != C.High) { 479 dbgs() << '-'; 480 C.High->getValue().print(dbgs(), true); 481 } 482 dbgs() << ' '; 483 } 484 dbgs() << '\n'; 485 }); 486 487 assert(!Clusters.empty()); 488 SwitchWorkList WorkList; 489 CaseClusterIt First = Clusters.begin(); 490 CaseClusterIt Last = Clusters.end() - 1; 491 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 492 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 493 494 // FIXME: At the moment we don't do any splitting optimizations here like 495 // SelectionDAG does, so this worklist only has one entry. 496 while (!WorkList.empty()) { 497 SwitchWorkListItem W = WorkList.back(); 498 WorkList.pop_back(); 499 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 500 return false; 501 } 502 return true; 503 } 504 505 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 506 MachineBasicBlock *MBB) { 507 // Emit the code for the jump table 508 assert(JT.Reg != -1U && "Should lower JT Header first!"); 509 MachineIRBuilder MIB(*MBB->getParent()); 510 MIB.setMBB(*MBB); 511 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 512 513 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 514 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 515 516 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 517 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 518 } 519 520 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 521 SwitchCG::JumpTableHeader &JTH, 522 MachineBasicBlock *HeaderBB) { 523 MachineIRBuilder MIB(*HeaderBB->getParent()); 524 MIB.setMBB(*HeaderBB); 525 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 526 527 const Value &SValue = *JTH.SValue; 528 // Subtract the lowest switch case value from the value being switched on. 529 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 530 Register SwitchOpReg = getOrCreateVReg(SValue); 531 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 532 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 533 534 // This value may be smaller or larger than the target's pointer type, and 535 // therefore require extension or truncating. 536 Type *PtrIRTy = SValue.getType()->getPointerTo(); 537 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 538 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 539 540 JT.Reg = Sub.getReg(0); 541 542 if (JTH.OmitRangeCheck) { 543 if (JT.MBB != HeaderBB->getNextNode()) 544 MIB.buildBr(*JT.MBB); 545 return true; 546 } 547 548 // Emit the range check for the jump table, and branch to the default block 549 // for the switch statement if the value being switched on exceeds the 550 // largest case in the switch. 551 auto Cst = getOrCreateVReg( 552 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 553 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 554 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 555 556 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 557 558 // Avoid emitting unnecessary branches to the next block. 559 if (JT.MBB != HeaderBB->getNextNode()) 560 BrCond = MIB.buildBr(*JT.MBB); 561 return true; 562 } 563 564 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 565 MachineBasicBlock *SwitchBB, 566 MachineIRBuilder &MIB) { 567 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 568 Register Cond; 569 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 570 MIB.setDebugLoc(CB.DbgLoc); 571 MIB.setMBB(*CB.ThisBB); 572 573 if (CB.PredInfo.NoCmp) { 574 // Branch or fall through to TrueBB. 575 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 576 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 577 CB.ThisBB); 578 CB.ThisBB->normalizeSuccProbs(); 579 if (CB.TrueBB != CB.ThisBB->getNextNode()) 580 MIB.buildBr(*CB.TrueBB); 581 MIB.setDebugLoc(OldDbgLoc); 582 return; 583 } 584 585 const LLT i1Ty = LLT::scalar(1); 586 // Build the compare. 587 if (!CB.CmpMHS) { 588 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 589 Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 590 } else { 591 assert(CB.PredInfo.Pred == CmpInst::ICMP_ULE && 592 "Can only handle ULE ranges"); 593 594 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 595 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 596 597 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 598 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 599 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 600 Cond = 601 MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, CmpOpReg, CondRHS).getReg(0); 602 } else { 603 const LLT &CmpTy = MRI->getType(CmpOpReg); 604 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 605 auto Diff = MIB.buildConstant(CmpTy, High - Low); 606 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 607 } 608 } 609 610 // Update successor info 611 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 612 613 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 614 CB.ThisBB); 615 616 // TrueBB and FalseBB are always different unless the incoming IR is 617 // degenerate. This only happens when running llc on weird IR. 618 if (CB.TrueBB != CB.FalseBB) 619 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 620 CB.ThisBB->normalizeSuccProbs(); 621 622 // if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock()) 623 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 624 CB.ThisBB); 625 626 // If the lhs block is the next block, invert the condition so that we can 627 // fall through to the lhs instead of the rhs block. 628 if (CB.TrueBB == CB.ThisBB->getNextNode()) { 629 std::swap(CB.TrueBB, CB.FalseBB); 630 auto True = MIB.buildConstant(i1Ty, 1); 631 Cond = MIB.buildInstr(TargetOpcode::G_XOR, {i1Ty}, {Cond, True}, None) 632 .getReg(0); 633 } 634 635 MIB.buildBrCond(Cond, *CB.TrueBB); 636 MIB.buildBr(*CB.FalseBB); 637 MIB.setDebugLoc(OldDbgLoc); 638 } 639 640 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 641 MachineBasicBlock *SwitchMBB, 642 MachineBasicBlock *CurMBB, 643 MachineBasicBlock *DefaultMBB, 644 MachineIRBuilder &MIB, 645 MachineFunction::iterator BBI, 646 BranchProbability UnhandledProbs, 647 SwitchCG::CaseClusterIt I, 648 MachineBasicBlock *Fallthrough, 649 bool FallthroughUnreachable) { 650 using namespace SwitchCG; 651 MachineFunction *CurMF = SwitchMBB->getParent(); 652 // FIXME: Optimize away range check based on pivot comparisons. 653 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 654 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 655 BranchProbability DefaultProb = W.DefaultProb; 656 657 // The jump block hasn't been inserted yet; insert it here. 658 MachineBasicBlock *JumpMBB = JT->MBB; 659 CurMF->insert(BBI, JumpMBB); 660 661 // Since the jump table block is separate from the switch block, we need 662 // to keep track of it as a machine predecessor to the default block, 663 // otherwise we lose the phi edges. 664 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 665 CurMBB); 666 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 667 JumpMBB); 668 669 auto JumpProb = I->Prob; 670 auto FallthroughProb = UnhandledProbs; 671 672 // If the default statement is a target of the jump table, we evenly 673 // distribute the default probability to successors of CurMBB. Also 674 // update the probability on the edge from JumpMBB to Fallthrough. 675 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 676 SE = JumpMBB->succ_end(); 677 SI != SE; ++SI) { 678 if (*SI == DefaultMBB) { 679 JumpProb += DefaultProb / 2; 680 FallthroughProb -= DefaultProb / 2; 681 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 682 JumpMBB->normalizeSuccProbs(); 683 } else { 684 // Also record edges from the jump table block to it's successors. 685 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 686 JumpMBB); 687 } 688 } 689 690 // Skip the range check if the fallthrough block is unreachable. 691 if (FallthroughUnreachable) 692 JTH->OmitRangeCheck = true; 693 694 if (!JTH->OmitRangeCheck) 695 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 696 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 697 CurMBB->normalizeSuccProbs(); 698 699 // The jump table header will be inserted in our current block, do the 700 // range check, and fall through to our fallthrough block. 701 JTH->HeaderBB = CurMBB; 702 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 703 704 // If we're in the right place, emit the jump table header right now. 705 if (CurMBB == SwitchMBB) { 706 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 707 return false; 708 JTH->Emitted = true; 709 } 710 return true; 711 } 712 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 713 Value *Cond, 714 MachineBasicBlock *Fallthrough, 715 bool FallthroughUnreachable, 716 BranchProbability UnhandledProbs, 717 MachineBasicBlock *CurMBB, 718 MachineIRBuilder &MIB, 719 MachineBasicBlock *SwitchMBB) { 720 using namespace SwitchCG; 721 const Value *RHS, *LHS, *MHS; 722 CmpInst::Predicate Pred; 723 if (I->Low == I->High) { 724 // Check Cond == I->Low. 725 Pred = CmpInst::ICMP_EQ; 726 LHS = Cond; 727 RHS = I->Low; 728 MHS = nullptr; 729 } else { 730 // Check I->Low <= Cond <= I->High. 731 Pred = CmpInst::ICMP_ULE; 732 LHS = I->Low; 733 MHS = Cond; 734 RHS = I->High; 735 } 736 737 // If Fallthrough is unreachable, fold away the comparison. 738 // The false probability is the sum of all unhandled cases. 739 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 740 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 741 742 emitSwitchCase(CB, SwitchMBB, MIB); 743 return true; 744 } 745 746 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 747 Value *Cond, 748 MachineBasicBlock *SwitchMBB, 749 MachineBasicBlock *DefaultMBB, 750 MachineIRBuilder &MIB) { 751 using namespace SwitchCG; 752 MachineFunction *CurMF = FuncInfo.MF; 753 MachineBasicBlock *NextMBB = nullptr; 754 MachineFunction::iterator BBI(W.MBB); 755 if (++BBI != FuncInfo.MF->end()) 756 NextMBB = &*BBI; 757 758 if (EnableOpts) { 759 // Here, we order cases by probability so the most likely case will be 760 // checked first. However, two clusters can have the same probability in 761 // which case their relative ordering is non-deterministic. So we use Low 762 // as a tie-breaker as clusters are guaranteed to never overlap. 763 llvm::sort(W.FirstCluster, W.LastCluster + 1, 764 [](const CaseCluster &a, const CaseCluster &b) { 765 return a.Prob != b.Prob 766 ? a.Prob > b.Prob 767 : a.Low->getValue().slt(b.Low->getValue()); 768 }); 769 770 // Rearrange the case blocks so that the last one falls through if possible 771 // without changing the order of probabilities. 772 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 773 --I; 774 if (I->Prob > W.LastCluster->Prob) 775 break; 776 if (I->Kind == CC_Range && I->MBB == NextMBB) { 777 std::swap(*I, *W.LastCluster); 778 break; 779 } 780 } 781 } 782 783 // Compute total probability. 784 BranchProbability DefaultProb = W.DefaultProb; 785 BranchProbability UnhandledProbs = DefaultProb; 786 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 787 UnhandledProbs += I->Prob; 788 789 MachineBasicBlock *CurMBB = W.MBB; 790 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 791 bool FallthroughUnreachable = false; 792 MachineBasicBlock *Fallthrough; 793 if (I == W.LastCluster) { 794 // For the last cluster, fall through to the default destination. 795 Fallthrough = DefaultMBB; 796 FallthroughUnreachable = isa<UnreachableInst>( 797 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 798 } else { 799 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 800 CurMF->insert(BBI, Fallthrough); 801 } 802 UnhandledProbs -= I->Prob; 803 804 switch (I->Kind) { 805 case CC_BitTests: { 806 LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented"); 807 return false; // Bit tests currently unimplemented. 808 } 809 case CC_JumpTable: { 810 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 811 UnhandledProbs, I, Fallthrough, 812 FallthroughUnreachable)) { 813 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 814 return false; 815 } 816 break; 817 } 818 case CC_Range: { 819 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 820 FallthroughUnreachable, UnhandledProbs, 821 CurMBB, MIB, SwitchMBB)) { 822 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 823 return false; 824 } 825 break; 826 } 827 } 828 CurMBB = Fallthrough; 829 } 830 831 return true; 832 } 833 834 bool IRTranslator::translateIndirectBr(const User &U, 835 MachineIRBuilder &MIRBuilder) { 836 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 837 838 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 839 MIRBuilder.buildBrIndirect(Tgt); 840 841 // Link successors. 842 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 843 for (const BasicBlock *Succ : successors(&BrInst)) 844 CurBB.addSuccessor(&getMBB(*Succ)); 845 846 return true; 847 } 848 849 static bool isSwiftError(const Value *V) { 850 if (auto Arg = dyn_cast<Argument>(V)) 851 return Arg->hasSwiftErrorAttr(); 852 if (auto AI = dyn_cast<AllocaInst>(V)) 853 return AI->isSwiftError(); 854 return false; 855 } 856 857 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 858 const LoadInst &LI = cast<LoadInst>(U); 859 860 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 861 : MachineMemOperand::MONone; 862 Flags |= MachineMemOperand::MOLoad; 863 864 if (DL->getTypeStoreSize(LI.getType()) == 0) 865 return true; 866 867 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 868 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 869 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 870 871 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 872 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 873 874 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 875 assert(Regs.size() == 1 && "swifterror should be single pointer"); 876 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 877 LI.getPointerOperand()); 878 MIRBuilder.buildCopy(Regs[0], VReg); 879 return true; 880 } 881 882 const MDNode *Ranges = 883 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 884 for (unsigned i = 0; i < Regs.size(); ++i) { 885 Register Addr; 886 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 887 888 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 889 unsigned BaseAlign = getMemOpAlignment(LI); 890 auto MMO = MF->getMachineMemOperand( 891 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 892 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), Ranges, 893 LI.getSyncScopeID(), LI.getOrdering()); 894 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 895 } 896 897 return true; 898 } 899 900 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 901 const StoreInst &SI = cast<StoreInst>(U); 902 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 903 : MachineMemOperand::MONone; 904 Flags |= MachineMemOperand::MOStore; 905 906 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 907 return true; 908 909 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 910 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 911 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 912 913 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 914 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 915 916 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 917 assert(Vals.size() == 1 && "swifterror should be single pointer"); 918 919 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 920 SI.getPointerOperand()); 921 MIRBuilder.buildCopy(VReg, Vals[0]); 922 return true; 923 } 924 925 for (unsigned i = 0; i < Vals.size(); ++i) { 926 Register Addr; 927 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 928 929 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 930 unsigned BaseAlign = getMemOpAlignment(SI); 931 auto MMO = MF->getMachineMemOperand( 932 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 933 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 934 SI.getSyncScopeID(), SI.getOrdering()); 935 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 936 } 937 return true; 938 } 939 940 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 941 const Value *Src = U.getOperand(0); 942 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 943 944 // getIndexedOffsetInType is designed for GEPs, so the first index is the 945 // usual array element rather than looking into the actual aggregate. 946 SmallVector<Value *, 1> Indices; 947 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 948 949 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 950 for (auto Idx : EVI->indices()) 951 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 952 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 953 for (auto Idx : IVI->indices()) 954 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 955 } else { 956 for (unsigned i = 1; i < U.getNumOperands(); ++i) 957 Indices.push_back(U.getOperand(i)); 958 } 959 960 return 8 * static_cast<uint64_t>( 961 DL.getIndexedOffsetInType(Src->getType(), Indices)); 962 } 963 964 bool IRTranslator::translateExtractValue(const User &U, 965 MachineIRBuilder &MIRBuilder) { 966 const Value *Src = U.getOperand(0); 967 uint64_t Offset = getOffsetFromIndices(U, *DL); 968 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 969 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 970 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 971 auto &DstRegs = allocateVRegs(U); 972 973 for (unsigned i = 0; i < DstRegs.size(); ++i) 974 DstRegs[i] = SrcRegs[Idx++]; 975 976 return true; 977 } 978 979 bool IRTranslator::translateInsertValue(const User &U, 980 MachineIRBuilder &MIRBuilder) { 981 const Value *Src = U.getOperand(0); 982 uint64_t Offset = getOffsetFromIndices(U, *DL); 983 auto &DstRegs = allocateVRegs(U); 984 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 985 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 986 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 987 auto InsertedIt = InsertedRegs.begin(); 988 989 for (unsigned i = 0; i < DstRegs.size(); ++i) { 990 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 991 DstRegs[i] = *InsertedIt++; 992 else 993 DstRegs[i] = SrcRegs[i]; 994 } 995 996 return true; 997 } 998 999 bool IRTranslator::translateSelect(const User &U, 1000 MachineIRBuilder &MIRBuilder) { 1001 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1002 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1003 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1004 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1005 1006 const SelectInst &SI = cast<SelectInst>(U); 1007 uint16_t Flags = 0; 1008 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 1009 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 1010 1011 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1012 MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]}, 1013 {Tst, Op0Regs[i], Op1Regs[i]}, Flags); 1014 } 1015 1016 return true; 1017 } 1018 1019 bool IRTranslator::translateBitCast(const User &U, 1020 MachineIRBuilder &MIRBuilder) { 1021 // If we're bitcasting to the source type, we can reuse the source vreg. 1022 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1023 getLLTForType(*U.getType(), *DL)) { 1024 Register SrcReg = getOrCreateVReg(*U.getOperand(0)); 1025 auto &Regs = *VMap.getVRegs(U); 1026 // If we already assigned a vreg for this bitcast, we can't change that. 1027 // Emit a copy to satisfy the users we already emitted. 1028 if (!Regs.empty()) 1029 MIRBuilder.buildCopy(Regs[0], SrcReg); 1030 else { 1031 Regs.push_back(SrcReg); 1032 VMap.getOffsets(U)->push_back(0); 1033 } 1034 return true; 1035 } 1036 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1037 } 1038 1039 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1040 MachineIRBuilder &MIRBuilder) { 1041 Register Op = getOrCreateVReg(*U.getOperand(0)); 1042 Register Res = getOrCreateVReg(U); 1043 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1044 return true; 1045 } 1046 1047 bool IRTranslator::translateGetElementPtr(const User &U, 1048 MachineIRBuilder &MIRBuilder) { 1049 // FIXME: support vector GEPs. 1050 if (U.getType()->isVectorTy()) 1051 return false; 1052 1053 Value &Op0 = *U.getOperand(0); 1054 Register BaseReg = getOrCreateVReg(Op0); 1055 Type *PtrIRTy = Op0.getType(); 1056 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1057 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1058 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1059 1060 int64_t Offset = 0; 1061 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1062 GTI != E; ++GTI) { 1063 const Value *Idx = GTI.getOperand(); 1064 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1065 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1066 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1067 continue; 1068 } else { 1069 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1070 1071 // If this is a scalar constant or a splat vector of constants, 1072 // handle it quickly. 1073 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1074 Offset += ElementSize * CI->getSExtValue(); 1075 continue; 1076 } 1077 1078 if (Offset != 0) { 1079 Register NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 1080 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1081 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1082 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetMIB.getReg(0)); 1083 1084 BaseReg = NewBaseReg; 1085 Offset = 0; 1086 } 1087 1088 Register IdxReg = getOrCreateVReg(*Idx); 1089 if (MRI->getType(IdxReg) != OffsetTy) { 1090 Register NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 1091 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 1092 IdxReg = NewIdxReg; 1093 } 1094 1095 // N = N + Idx * ElementSize; 1096 // Avoid doing it for ElementSize of 1. 1097 Register GepOffsetReg; 1098 if (ElementSize != 1) { 1099 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 1100 auto ElementSizeMIB = MIRBuilder.buildConstant( 1101 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1102 MIRBuilder.buildMul(GepOffsetReg, ElementSizeMIB.getReg(0), IdxReg); 1103 } else 1104 GepOffsetReg = IdxReg; 1105 1106 Register NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 1107 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); 1108 BaseReg = NewBaseReg; 1109 } 1110 } 1111 1112 if (Offset != 0) { 1113 auto OffsetMIB = 1114 MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset); 1115 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1116 return true; 1117 } 1118 1119 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1120 return true; 1121 } 1122 1123 bool IRTranslator::translateMemFunc(const CallInst &CI, 1124 MachineIRBuilder &MIRBuilder, 1125 Intrinsic::ID ID) { 1126 1127 // If the source is undef, then just emit a nop. 1128 if (isa<UndefValue>(CI.getArgOperand(1))) 1129 return true; 1130 1131 ArrayRef<Register> Res; 1132 auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true); 1133 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) 1134 ICall.addUse(getOrCreateVReg(**AI)); 1135 1136 unsigned DstAlign = 0, SrcAlign = 0; 1137 unsigned IsVol = 1138 cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1)) 1139 ->getZExtValue(); 1140 1141 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1142 DstAlign = std::max<unsigned>(MCI->getDestAlignment(), 1); 1143 SrcAlign = std::max<unsigned>(MCI->getSourceAlignment(), 1); 1144 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1145 DstAlign = std::max<unsigned>(MMI->getDestAlignment(), 1); 1146 SrcAlign = std::max<unsigned>(MMI->getSourceAlignment(), 1); 1147 } else { 1148 auto *MSI = cast<MemSetInst>(&CI); 1149 DstAlign = std::max<unsigned>(MSI->getDestAlignment(), 1); 1150 } 1151 1152 // Create mem operands to store the alignment and volatile info. 1153 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1154 ICall.addMemOperand(MF->getMachineMemOperand( 1155 MachinePointerInfo(CI.getArgOperand(0)), 1156 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1157 if (ID != Intrinsic::memset) 1158 ICall.addMemOperand(MF->getMachineMemOperand( 1159 MachinePointerInfo(CI.getArgOperand(1)), 1160 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1161 1162 return true; 1163 } 1164 1165 void IRTranslator::getStackGuard(Register DstReg, 1166 MachineIRBuilder &MIRBuilder) { 1167 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1168 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1169 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 1170 MIB.addDef(DstReg); 1171 1172 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1173 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1174 if (!Global) 1175 return; 1176 1177 MachinePointerInfo MPInfo(Global); 1178 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1179 MachineMemOperand::MODereferenceable; 1180 MachineMemOperand *MemRef = 1181 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 1182 DL->getPointerABIAlignment(0)); 1183 MIB.setMemRefs({MemRef}); 1184 } 1185 1186 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1187 MachineIRBuilder &MIRBuilder) { 1188 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1189 MIRBuilder.buildInstr(Op) 1190 .addDef(ResRegs[0]) 1191 .addDef(ResRegs[1]) 1192 .addUse(getOrCreateVReg(*CI.getOperand(0))) 1193 .addUse(getOrCreateVReg(*CI.getOperand(1))); 1194 1195 return true; 1196 } 1197 1198 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1199 switch (ID) { 1200 default: 1201 break; 1202 case Intrinsic::bswap: 1203 return TargetOpcode::G_BSWAP; 1204 case Intrinsic::ceil: 1205 return TargetOpcode::G_FCEIL; 1206 case Intrinsic::cos: 1207 return TargetOpcode::G_FCOS; 1208 case Intrinsic::ctpop: 1209 return TargetOpcode::G_CTPOP; 1210 case Intrinsic::exp: 1211 return TargetOpcode::G_FEXP; 1212 case Intrinsic::exp2: 1213 return TargetOpcode::G_FEXP2; 1214 case Intrinsic::fabs: 1215 return TargetOpcode::G_FABS; 1216 case Intrinsic::copysign: 1217 return TargetOpcode::G_FCOPYSIGN; 1218 case Intrinsic::minnum: 1219 return TargetOpcode::G_FMINNUM; 1220 case Intrinsic::maxnum: 1221 return TargetOpcode::G_FMAXNUM; 1222 case Intrinsic::minimum: 1223 return TargetOpcode::G_FMINIMUM; 1224 case Intrinsic::maximum: 1225 return TargetOpcode::G_FMAXIMUM; 1226 case Intrinsic::canonicalize: 1227 return TargetOpcode::G_FCANONICALIZE; 1228 case Intrinsic::floor: 1229 return TargetOpcode::G_FFLOOR; 1230 case Intrinsic::fma: 1231 return TargetOpcode::G_FMA; 1232 case Intrinsic::log: 1233 return TargetOpcode::G_FLOG; 1234 case Intrinsic::log2: 1235 return TargetOpcode::G_FLOG2; 1236 case Intrinsic::log10: 1237 return TargetOpcode::G_FLOG10; 1238 case Intrinsic::nearbyint: 1239 return TargetOpcode::G_FNEARBYINT; 1240 case Intrinsic::pow: 1241 return TargetOpcode::G_FPOW; 1242 case Intrinsic::rint: 1243 return TargetOpcode::G_FRINT; 1244 case Intrinsic::round: 1245 return TargetOpcode::G_INTRINSIC_ROUND; 1246 case Intrinsic::sin: 1247 return TargetOpcode::G_FSIN; 1248 case Intrinsic::sqrt: 1249 return TargetOpcode::G_FSQRT; 1250 case Intrinsic::trunc: 1251 return TargetOpcode::G_INTRINSIC_TRUNC; 1252 } 1253 return Intrinsic::not_intrinsic; 1254 } 1255 1256 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1257 Intrinsic::ID ID, 1258 MachineIRBuilder &MIRBuilder) { 1259 1260 unsigned Op = getSimpleIntrinsicOpcode(ID); 1261 1262 // Is this a simple intrinsic? 1263 if (Op == Intrinsic::not_intrinsic) 1264 return false; 1265 1266 // Yes. Let's translate it. 1267 SmallVector<llvm::SrcOp, 4> VRegs; 1268 for (auto &Arg : CI.arg_operands()) 1269 VRegs.push_back(getOrCreateVReg(*Arg)); 1270 1271 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1272 MachineInstr::copyFlagsFromInstruction(CI)); 1273 return true; 1274 } 1275 1276 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1277 MachineIRBuilder &MIRBuilder) { 1278 1279 // If this is a simple intrinsic (that is, we just need to add a def of 1280 // a vreg, and uses for each arg operand, then translate it. 1281 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1282 return true; 1283 1284 switch (ID) { 1285 default: 1286 break; 1287 case Intrinsic::lifetime_start: 1288 case Intrinsic::lifetime_end: { 1289 // No stack colouring in O0, discard region information. 1290 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1291 return true; 1292 1293 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1294 : TargetOpcode::LIFETIME_END; 1295 1296 // Get the underlying objects for the location passed on the lifetime 1297 // marker. 1298 SmallVector<const Value *, 4> Allocas; 1299 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 1300 1301 // Iterate over each underlying object, creating lifetime markers for each 1302 // static alloca. Quit if we find a non-static alloca. 1303 for (const Value *V : Allocas) { 1304 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1305 if (!AI) 1306 continue; 1307 1308 if (!AI->isStaticAlloca()) 1309 return true; 1310 1311 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1312 } 1313 return true; 1314 } 1315 case Intrinsic::dbg_declare: { 1316 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1317 assert(DI.getVariable() && "Missing variable"); 1318 1319 const Value *Address = DI.getAddress(); 1320 if (!Address || isa<UndefValue>(Address)) { 1321 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1322 return true; 1323 } 1324 1325 assert(DI.getVariable()->isValidLocationForIntrinsic( 1326 MIRBuilder.getDebugLoc()) && 1327 "Expected inlined-at fields to agree"); 1328 auto AI = dyn_cast<AllocaInst>(Address); 1329 if (AI && AI->isStaticAlloca()) { 1330 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1331 // instructions (in fact, they get ignored if they *do* exist). 1332 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1333 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1334 } else { 1335 // A dbg.declare describes the address of a source variable, so lower it 1336 // into an indirect DBG_VALUE. 1337 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1338 DI.getVariable(), DI.getExpression()); 1339 } 1340 return true; 1341 } 1342 case Intrinsic::dbg_label: { 1343 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1344 assert(DI.getLabel() && "Missing label"); 1345 1346 assert(DI.getLabel()->isValidLocationForIntrinsic( 1347 MIRBuilder.getDebugLoc()) && 1348 "Expected inlined-at fields to agree"); 1349 1350 MIRBuilder.buildDbgLabel(DI.getLabel()); 1351 return true; 1352 } 1353 case Intrinsic::vaend: 1354 // No target I know of cares about va_end. Certainly no in-tree target 1355 // does. Simplest intrinsic ever! 1356 return true; 1357 case Intrinsic::vastart: { 1358 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1359 Value *Ptr = CI.getArgOperand(0); 1360 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1361 1362 // FIXME: Get alignment 1363 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 1364 .addUse(getOrCreateVReg(*Ptr)) 1365 .addMemOperand(MF->getMachineMemOperand( 1366 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); 1367 return true; 1368 } 1369 case Intrinsic::dbg_value: { 1370 // This form of DBG_VALUE is target-independent. 1371 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1372 const Value *V = DI.getValue(); 1373 assert(DI.getVariable()->isValidLocationForIntrinsic( 1374 MIRBuilder.getDebugLoc()) && 1375 "Expected inlined-at fields to agree"); 1376 if (!V) { 1377 // Currently the optimizer can produce this; insert an undef to 1378 // help debugging. Probably the optimizer should not do this. 1379 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1380 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1381 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1382 } else { 1383 Register Reg = getOrCreateVReg(*V); 1384 // FIXME: This does not handle register-indirect values at offset 0. The 1385 // direct/indirect thing shouldn't really be handled by something as 1386 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 1387 // pretty baked in right now. 1388 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1389 } 1390 return true; 1391 } 1392 case Intrinsic::uadd_with_overflow: 1393 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1394 case Intrinsic::sadd_with_overflow: 1395 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1396 case Intrinsic::usub_with_overflow: 1397 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1398 case Intrinsic::ssub_with_overflow: 1399 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1400 case Intrinsic::umul_with_overflow: 1401 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1402 case Intrinsic::smul_with_overflow: 1403 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1404 case Intrinsic::fmuladd: { 1405 const TargetMachine &TM = MF->getTarget(); 1406 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1407 Register Dst = getOrCreateVReg(CI); 1408 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1409 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1410 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1411 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1412 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 1413 // TODO: Revisit this to see if we should move this part of the 1414 // lowering to the combiner. 1415 MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2}, 1416 MachineInstr::copyFlagsFromInstruction(CI)); 1417 } else { 1418 LLT Ty = getLLTForType(*CI.getType(), *DL); 1419 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1}, 1420 MachineInstr::copyFlagsFromInstruction(CI)); 1421 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2}, 1422 MachineInstr::copyFlagsFromInstruction(CI)); 1423 } 1424 return true; 1425 } 1426 case Intrinsic::memcpy: 1427 case Intrinsic::memmove: 1428 case Intrinsic::memset: 1429 return translateMemFunc(CI, MIRBuilder, ID); 1430 case Intrinsic::eh_typeid_for: { 1431 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1432 Register Reg = getOrCreateVReg(CI); 1433 unsigned TypeID = MF->getTypeIDFor(GV); 1434 MIRBuilder.buildConstant(Reg, TypeID); 1435 return true; 1436 } 1437 case Intrinsic::objectsize: { 1438 // If we don't know by now, we're never going to know. 1439 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 1440 1441 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 1442 return true; 1443 } 1444 case Intrinsic::is_constant: 1445 // If this wasn't constant-folded away by now, then it's not a 1446 // constant. 1447 MIRBuilder.buildConstant(getOrCreateVReg(CI), 0); 1448 return true; 1449 case Intrinsic::stackguard: 1450 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1451 return true; 1452 case Intrinsic::stackprotector: { 1453 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1454 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1455 getStackGuard(GuardVal, MIRBuilder); 1456 1457 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1458 int FI = getOrCreateFrameIndex(*Slot); 1459 MF->getFrameInfo().setStackProtectorIndex(FI); 1460 1461 MIRBuilder.buildStore( 1462 GuardVal, getOrCreateVReg(*Slot), 1463 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1464 MachineMemOperand::MOStore | 1465 MachineMemOperand::MOVolatile, 1466 PtrTy.getSizeInBits() / 8, 8)); 1467 return true; 1468 } 1469 case Intrinsic::stacksave: { 1470 // Save the stack pointer to the location provided by the intrinsic. 1471 Register Reg = getOrCreateVReg(CI); 1472 Register StackPtr = MF->getSubtarget() 1473 .getTargetLowering() 1474 ->getStackPointerRegisterToSaveRestore(); 1475 1476 // If the target doesn't specify a stack pointer, then fall back. 1477 if (!StackPtr) 1478 return false; 1479 1480 MIRBuilder.buildCopy(Reg, StackPtr); 1481 return true; 1482 } 1483 case Intrinsic::stackrestore: { 1484 // Restore the stack pointer from the location provided by the intrinsic. 1485 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1486 Register StackPtr = MF->getSubtarget() 1487 .getTargetLowering() 1488 ->getStackPointerRegisterToSaveRestore(); 1489 1490 // If the target doesn't specify a stack pointer, then fall back. 1491 if (!StackPtr) 1492 return false; 1493 1494 MIRBuilder.buildCopy(StackPtr, Reg); 1495 return true; 1496 } 1497 case Intrinsic::cttz: 1498 case Intrinsic::ctlz: { 1499 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1500 bool isTrailing = ID == Intrinsic::cttz; 1501 unsigned Opcode = isTrailing 1502 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1503 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1504 : Cst->isZero() ? TargetOpcode::G_CTLZ 1505 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1506 MIRBuilder.buildInstr(Opcode) 1507 .addDef(getOrCreateVReg(CI)) 1508 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 1509 return true; 1510 } 1511 case Intrinsic::invariant_start: { 1512 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1513 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 1514 MIRBuilder.buildUndef(Undef); 1515 return true; 1516 } 1517 case Intrinsic::invariant_end: 1518 return true; 1519 case Intrinsic::assume: 1520 case Intrinsic::var_annotation: 1521 case Intrinsic::sideeffect: 1522 // Discard annotate attributes, assumptions, and artificial side-effects. 1523 return true; 1524 } 1525 return false; 1526 } 1527 1528 bool IRTranslator::translateInlineAsm(const CallInst &CI, 1529 MachineIRBuilder &MIRBuilder) { 1530 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 1531 if (!IA.getConstraintString().empty()) 1532 return false; 1533 1534 unsigned ExtraInfo = 0; 1535 if (IA.hasSideEffects()) 1536 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1537 if (IA.getDialect() == InlineAsm::AD_Intel) 1538 ExtraInfo |= InlineAsm::Extra_AsmDialect; 1539 1540 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 1541 .addExternalSymbol(IA.getAsmString().c_str()) 1542 .addImm(ExtraInfo); 1543 1544 return true; 1545 } 1546 1547 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1548 const CallInst &CI = cast<CallInst>(U); 1549 auto TII = MF->getTarget().getIntrinsicInfo(); 1550 const Function *F = CI.getCalledFunction(); 1551 1552 // FIXME: support Windows dllimport function calls. 1553 if (F && F->hasDLLImportStorageClass()) 1554 return false; 1555 1556 if (CI.isInlineAsm()) 1557 return translateInlineAsm(CI, MIRBuilder); 1558 1559 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1560 if (F && F->isIntrinsic()) { 1561 ID = F->getIntrinsicID(); 1562 if (TII && ID == Intrinsic::not_intrinsic) 1563 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1564 } 1565 1566 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { 1567 ArrayRef<Register> Res = getOrCreateVRegs(CI); 1568 1569 SmallVector<ArrayRef<Register>, 8> Args; 1570 Register SwiftInVReg = 0; 1571 Register SwiftErrorVReg = 0; 1572 for (auto &Arg: CI.arg_operands()) { 1573 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1574 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 1575 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1576 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 1577 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 1578 &CI, &MIRBuilder.getMBB(), Arg)); 1579 Args.emplace_back(makeArrayRef(SwiftInVReg)); 1580 SwiftErrorVReg = 1581 SwiftError.getOrCreateVRegDefAt(&CI, &MIRBuilder.getMBB(), Arg); 1582 continue; 1583 } 1584 Args.push_back(getOrCreateVRegs(*Arg)); 1585 } 1586 1587 MF->getFrameInfo().setHasCalls(true); 1588 bool Success = 1589 CLI->lowerCall(MIRBuilder, &CI, Res, Args, SwiftErrorVReg, 1590 [&]() { return getOrCreateVReg(*CI.getCalledValue()); }); 1591 1592 return Success; 1593 } 1594 1595 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1596 1597 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1598 return true; 1599 1600 ArrayRef<Register> ResultRegs; 1601 if (!CI.getType()->isVoidTy()) 1602 ResultRegs = getOrCreateVRegs(CI); 1603 1604 // Ignore the callsite attributes. Backend code is most likely not expecting 1605 // an intrinsic to sometimes have side effects and sometimes not. 1606 MachineInstrBuilder MIB = 1607 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 1608 if (isa<FPMathOperator>(CI)) 1609 MIB->copyIRFlags(CI); 1610 1611 for (auto &Arg : CI.arg_operands()) { 1612 // Some intrinsics take metadata parameters. Reject them. 1613 if (isa<MetadataAsValue>(Arg)) 1614 return false; 1615 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg); 1616 if (VRegs.size() > 1) 1617 return false; 1618 MIB.addUse(VRegs[0]); 1619 } 1620 1621 // Add a MachineMemOperand if it is a target mem intrinsic. 1622 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1623 TargetLowering::IntrinsicInfo Info; 1624 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1625 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1626 unsigned Align = Info.align; 1627 if (Align == 0) 1628 Align = DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext())); 1629 1630 uint64_t Size = Info.memVT.getStoreSize(); 1631 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1632 Info.flags, Size, Align)); 1633 } 1634 1635 return true; 1636 } 1637 1638 bool IRTranslator::translateInvoke(const User &U, 1639 MachineIRBuilder &MIRBuilder) { 1640 const InvokeInst &I = cast<InvokeInst>(U); 1641 MCContext &Context = MF->getContext(); 1642 1643 const BasicBlock *ReturnBB = I.getSuccessor(0); 1644 const BasicBlock *EHPadBB = I.getSuccessor(1); 1645 1646 const Value *Callee = I.getCalledValue(); 1647 const Function *Fn = dyn_cast<Function>(Callee); 1648 if (isa<InlineAsm>(Callee)) 1649 return false; 1650 1651 // FIXME: support invoking patchpoint and statepoint intrinsics. 1652 if (Fn && Fn->isIntrinsic()) 1653 return false; 1654 1655 // FIXME: support whatever these are. 1656 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1657 return false; 1658 1659 // FIXME: support Windows exception handling. 1660 if (!isa<LandingPadInst>(EHPadBB->front())) 1661 return false; 1662 1663 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1664 // the region covered by the try. 1665 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1666 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1667 1668 ArrayRef<Register> Res; 1669 if (!I.getType()->isVoidTy()) 1670 Res = getOrCreateVRegs(I); 1671 SmallVector<ArrayRef<Register>, 8> Args; 1672 Register SwiftErrorVReg = 0; 1673 Register SwiftInVReg = 0; 1674 for (auto &Arg : I.arg_operands()) { 1675 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1676 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 1677 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1678 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 1679 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 1680 &I, &MIRBuilder.getMBB(), Arg)); 1681 Args.push_back(makeArrayRef(SwiftInVReg)); 1682 SwiftErrorVReg = 1683 SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg); 1684 continue; 1685 } 1686 1687 Args.push_back(getOrCreateVRegs(*Arg)); 1688 } 1689 1690 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, SwiftErrorVReg, 1691 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 1692 return false; 1693 1694 MCSymbol *EndSymbol = Context.createTempSymbol(); 1695 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1696 1697 // FIXME: track probabilities. 1698 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1699 &ReturnMBB = getMBB(*ReturnBB); 1700 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1701 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1702 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1703 MIRBuilder.buildBr(ReturnMBB); 1704 1705 return true; 1706 } 1707 1708 bool IRTranslator::translateCallBr(const User &U, 1709 MachineIRBuilder &MIRBuilder) { 1710 // FIXME: Implement this. 1711 return false; 1712 } 1713 1714 bool IRTranslator::translateLandingPad(const User &U, 1715 MachineIRBuilder &MIRBuilder) { 1716 const LandingPadInst &LP = cast<LandingPadInst>(U); 1717 1718 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1719 1720 MBB.setIsEHPad(); 1721 1722 // If there aren't registers to copy the values into (e.g., during SjLj 1723 // exceptions), then don't bother. 1724 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1725 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1726 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1727 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1728 return true; 1729 1730 // If landingpad's return type is token type, we don't create DAG nodes 1731 // for its exception pointer and selector value. The extraction of exception 1732 // pointer or selector value from token type landingpads is not currently 1733 // supported. 1734 if (LP.getType()->isTokenTy()) 1735 return true; 1736 1737 // Add a label to mark the beginning of the landing pad. Deletion of the 1738 // landing pad can thus be detected via the MachineModuleInfo. 1739 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1740 .addSym(MF->addLandingPad(&MBB)); 1741 1742 LLT Ty = getLLTForType(*LP.getType(), *DL); 1743 Register Undef = MRI->createGenericVirtualRegister(Ty); 1744 MIRBuilder.buildUndef(Undef); 1745 1746 SmallVector<LLT, 2> Tys; 1747 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1748 Tys.push_back(getLLTForType(*Ty, *DL)); 1749 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1750 1751 // Mark exception register as live in. 1752 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1753 if (!ExceptionReg) 1754 return false; 1755 1756 MBB.addLiveIn(ExceptionReg); 1757 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 1758 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1759 1760 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1761 if (!SelectorReg) 1762 return false; 1763 1764 MBB.addLiveIn(SelectorReg); 1765 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1766 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1767 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1768 1769 return true; 1770 } 1771 1772 bool IRTranslator::translateAlloca(const User &U, 1773 MachineIRBuilder &MIRBuilder) { 1774 auto &AI = cast<AllocaInst>(U); 1775 1776 if (AI.isSwiftError()) 1777 return true; 1778 1779 if (AI.isStaticAlloca()) { 1780 Register Res = getOrCreateVReg(AI); 1781 int FI = getOrCreateFrameIndex(AI); 1782 MIRBuilder.buildFrameIndex(Res, FI); 1783 return true; 1784 } 1785 1786 // FIXME: support stack probing for Windows. 1787 if (MF->getTarget().getTargetTriple().isOSWindows()) 1788 return false; 1789 1790 // Now we're in the harder dynamic case. 1791 Type *Ty = AI.getAllocatedType(); 1792 unsigned Align = 1793 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1794 1795 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 1796 1797 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1798 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1799 if (MRI->getType(NumElts) != IntPtrTy) { 1800 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1801 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1802 NumElts = ExtElts; 1803 } 1804 1805 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1806 Register TySize = 1807 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1808 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1809 1810 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1811 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1812 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1813 1814 Register SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1815 MIRBuilder.buildCopy(SPTmp, SPReg); 1816 1817 Register AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1818 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1819 1820 // Handle alignment. We have to realign if the allocation granule was smaller 1821 // than stack alignment, or the specific alloca requires more than stack 1822 // alignment. 1823 unsigned StackAlign = 1824 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1825 Align = std::max(Align, StackAlign); 1826 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1827 // Round the size of the allocation up to the stack alignment size 1828 // by add SA-1 to the size. This doesn't overflow because we're computing 1829 // an address inside an alloca. 1830 Register AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1831 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1832 AllocTmp = AlignedAlloc; 1833 } 1834 1835 MIRBuilder.buildCopy(SPReg, AllocTmp); 1836 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1837 1838 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1839 assert(MF->getFrameInfo().hasVarSizedObjects()); 1840 return true; 1841 } 1842 1843 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1844 // FIXME: We may need more info about the type. Because of how LLT works, 1845 // we're completely discarding the i64/double distinction here (amongst 1846 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1847 // anyway but that's not guaranteed. 1848 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1849 .addDef(getOrCreateVReg(U)) 1850 .addUse(getOrCreateVReg(*U.getOperand(0))) 1851 .addImm(DL->getABITypeAlignment(U.getType())); 1852 return true; 1853 } 1854 1855 bool IRTranslator::translateInsertElement(const User &U, 1856 MachineIRBuilder &MIRBuilder) { 1857 // If it is a <1 x Ty> vector, use the scalar as it is 1858 // not a legal vector type in LLT. 1859 if (U.getType()->getVectorNumElements() == 1) { 1860 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1861 auto &Regs = *VMap.getVRegs(U); 1862 if (Regs.empty()) { 1863 Regs.push_back(Elt); 1864 VMap.getOffsets(U)->push_back(0); 1865 } else { 1866 MIRBuilder.buildCopy(Regs[0], Elt); 1867 } 1868 return true; 1869 } 1870 1871 Register Res = getOrCreateVReg(U); 1872 Register Val = getOrCreateVReg(*U.getOperand(0)); 1873 Register Elt = getOrCreateVReg(*U.getOperand(1)); 1874 Register Idx = getOrCreateVReg(*U.getOperand(2)); 1875 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1876 return true; 1877 } 1878 1879 bool IRTranslator::translateExtractElement(const User &U, 1880 MachineIRBuilder &MIRBuilder) { 1881 // If it is a <1 x Ty> vector, use the scalar as it is 1882 // not a legal vector type in LLT. 1883 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1884 Register Elt = getOrCreateVReg(*U.getOperand(0)); 1885 auto &Regs = *VMap.getVRegs(U); 1886 if (Regs.empty()) { 1887 Regs.push_back(Elt); 1888 VMap.getOffsets(U)->push_back(0); 1889 } else { 1890 MIRBuilder.buildCopy(Regs[0], Elt); 1891 } 1892 return true; 1893 } 1894 Register Res = getOrCreateVReg(U); 1895 Register Val = getOrCreateVReg(*U.getOperand(0)); 1896 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1897 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1898 Register Idx; 1899 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1900 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1901 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1902 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1903 Idx = getOrCreateVReg(*NewIdxCI); 1904 } 1905 } 1906 if (!Idx) 1907 Idx = getOrCreateVReg(*U.getOperand(1)); 1908 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1909 const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1910 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); 1911 } 1912 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1913 return true; 1914 } 1915 1916 bool IRTranslator::translateShuffleVector(const User &U, 1917 MachineIRBuilder &MIRBuilder) { 1918 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1919 .addDef(getOrCreateVReg(U)) 1920 .addUse(getOrCreateVReg(*U.getOperand(0))) 1921 .addUse(getOrCreateVReg(*U.getOperand(1))) 1922 .addUse(getOrCreateVReg(*U.getOperand(2))); 1923 return true; 1924 } 1925 1926 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1927 const PHINode &PI = cast<PHINode>(U); 1928 1929 SmallVector<MachineInstr *, 4> Insts; 1930 for (auto Reg : getOrCreateVRegs(PI)) { 1931 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1932 Insts.push_back(MIB.getInstr()); 1933 } 1934 1935 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1936 return true; 1937 } 1938 1939 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1940 MachineIRBuilder &MIRBuilder) { 1941 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1942 1943 if (I.isWeak()) 1944 return false; 1945 1946 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1947 : MachineMemOperand::MONone; 1948 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1949 1950 Type *ResType = I.getType(); 1951 Type *ValType = ResType->Type::getStructElementType(0); 1952 1953 auto Res = getOrCreateVRegs(I); 1954 Register OldValRes = Res[0]; 1955 Register SuccessRes = Res[1]; 1956 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 1957 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 1958 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 1959 1960 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1961 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1962 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1963 Flags, DL->getTypeStoreSize(ValType), 1964 getMemOpAlignment(I), AAMDNodes(), nullptr, 1965 I.getSyncScopeID(), I.getSuccessOrdering(), 1966 I.getFailureOrdering())); 1967 return true; 1968 } 1969 1970 bool IRTranslator::translateAtomicRMW(const User &U, 1971 MachineIRBuilder &MIRBuilder) { 1972 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1973 1974 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1975 : MachineMemOperand::MONone; 1976 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1977 1978 Type *ResType = I.getType(); 1979 1980 Register Res = getOrCreateVReg(I); 1981 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 1982 Register Val = getOrCreateVReg(*I.getValOperand()); 1983 1984 unsigned Opcode = 0; 1985 switch (I.getOperation()) { 1986 default: 1987 return false; 1988 case AtomicRMWInst::Xchg: 1989 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 1990 break; 1991 case AtomicRMWInst::Add: 1992 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 1993 break; 1994 case AtomicRMWInst::Sub: 1995 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 1996 break; 1997 case AtomicRMWInst::And: 1998 Opcode = TargetOpcode::G_ATOMICRMW_AND; 1999 break; 2000 case AtomicRMWInst::Nand: 2001 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2002 break; 2003 case AtomicRMWInst::Or: 2004 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2005 break; 2006 case AtomicRMWInst::Xor: 2007 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2008 break; 2009 case AtomicRMWInst::Max: 2010 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2011 break; 2012 case AtomicRMWInst::Min: 2013 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2014 break; 2015 case AtomicRMWInst::UMax: 2016 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2017 break; 2018 case AtomicRMWInst::UMin: 2019 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2020 break; 2021 case AtomicRMWInst::FAdd: 2022 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2023 break; 2024 case AtomicRMWInst::FSub: 2025 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2026 break; 2027 } 2028 2029 MIRBuilder.buildAtomicRMW( 2030 Opcode, Res, Addr, Val, 2031 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2032 Flags, DL->getTypeStoreSize(ResType), 2033 getMemOpAlignment(I), AAMDNodes(), nullptr, 2034 I.getSyncScopeID(), I.getOrdering())); 2035 return true; 2036 } 2037 2038 bool IRTranslator::translateFence(const User &U, 2039 MachineIRBuilder &MIRBuilder) { 2040 const FenceInst &Fence = cast<FenceInst>(U); 2041 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2042 Fence.getSyncScopeID()); 2043 return true; 2044 } 2045 2046 void IRTranslator::finishPendingPhis() { 2047 #ifndef NDEBUG 2048 DILocationVerifier Verifier; 2049 GISelObserverWrapper WrapperObserver(&Verifier); 2050 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2051 #endif // ifndef NDEBUG 2052 for (auto &Phi : PendingPHIs) { 2053 const PHINode *PI = Phi.first; 2054 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2055 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2056 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2057 #ifndef NDEBUG 2058 Verifier.setCurrentInst(PI); 2059 #endif // ifndef NDEBUG 2060 2061 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2062 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2063 auto IRPred = PI->getIncomingBlock(i); 2064 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2065 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2066 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2067 continue; 2068 SeenPreds.insert(Pred); 2069 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2070 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2071 MIB.addUse(ValRegs[j]); 2072 MIB.addMBB(Pred); 2073 } 2074 } 2075 } 2076 } 2077 } 2078 2079 bool IRTranslator::valueIsSplit(const Value &V, 2080 SmallVectorImpl<uint64_t> *Offsets) { 2081 SmallVector<LLT, 4> SplitTys; 2082 if (Offsets && !Offsets->empty()) 2083 Offsets->clear(); 2084 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2085 return SplitTys.size() > 1; 2086 } 2087 2088 bool IRTranslator::translate(const Instruction &Inst) { 2089 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2090 // We only emit constants into the entry block from here. To prevent jumpy 2091 // debug behaviour set the line to 0. 2092 if (const DebugLoc &DL = Inst.getDebugLoc()) 2093 EntryBuilder->setDebugLoc( 2094 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 2095 else 2096 EntryBuilder->setDebugLoc(DebugLoc()); 2097 2098 switch (Inst.getOpcode()) { 2099 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2100 case Instruction::OPCODE: \ 2101 return translate##OPCODE(Inst, *CurBuilder.get()); 2102 #include "llvm/IR/Instruction.def" 2103 default: 2104 return false; 2105 } 2106 } 2107 2108 bool IRTranslator::translate(const Constant &C, Register Reg) { 2109 if (auto CI = dyn_cast<ConstantInt>(&C)) 2110 EntryBuilder->buildConstant(Reg, *CI); 2111 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2112 EntryBuilder->buildFConstant(Reg, *CF); 2113 else if (isa<UndefValue>(C)) 2114 EntryBuilder->buildUndef(Reg); 2115 else if (isa<ConstantPointerNull>(C)) { 2116 // As we are trying to build a constant val of 0 into a pointer, 2117 // insert a cast to make them correct with respect to types. 2118 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 2119 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 2120 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 2121 Register ZeroReg = getOrCreateVReg(*ZeroVal); 2122 EntryBuilder->buildCast(Reg, ZeroReg); 2123 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 2124 EntryBuilder->buildGlobalValue(Reg, GV); 2125 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2126 if (!CAZ->getType()->isVectorTy()) 2127 return false; 2128 // Return the scalar if it is a <1 x Ty> vector. 2129 if (CAZ->getNumElements() == 1) 2130 return translate(*CAZ->getElementValue(0u), Reg); 2131 SmallVector<Register, 4> Ops; 2132 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 2133 Constant &Elt = *CAZ->getElementValue(i); 2134 Ops.push_back(getOrCreateVReg(Elt)); 2135 } 2136 EntryBuilder->buildBuildVector(Reg, Ops); 2137 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 2138 // Return the scalar if it is a <1 x Ty> vector. 2139 if (CV->getNumElements() == 1) 2140 return translate(*CV->getElementAsConstant(0), Reg); 2141 SmallVector<Register, 4> Ops; 2142 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 2143 Constant &Elt = *CV->getElementAsConstant(i); 2144 Ops.push_back(getOrCreateVReg(Elt)); 2145 } 2146 EntryBuilder->buildBuildVector(Reg, Ops); 2147 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 2148 switch(CE->getOpcode()) { 2149 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2150 case Instruction::OPCODE: \ 2151 return translate##OPCODE(*CE, *EntryBuilder.get()); 2152 #include "llvm/IR/Instruction.def" 2153 default: 2154 return false; 2155 } 2156 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 2157 if (CV->getNumOperands() == 1) 2158 return translate(*CV->getOperand(0), Reg); 2159 SmallVector<Register, 4> Ops; 2160 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 2161 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 2162 } 2163 EntryBuilder->buildBuildVector(Reg, Ops); 2164 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 2165 EntryBuilder->buildBlockAddress(Reg, BA); 2166 } else 2167 return false; 2168 2169 return true; 2170 } 2171 2172 void IRTranslator::finalizeBasicBlock() { 2173 for (auto &JTCase : SL->JTCases) { 2174 // Emit header first, if it wasn't already emitted. 2175 if (!JTCase.first.Emitted) 2176 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 2177 2178 emitJumpTable(JTCase.second, JTCase.second.MBB); 2179 } 2180 SL->JTCases.clear(); 2181 } 2182 2183 void IRTranslator::finalizeFunction() { 2184 // Release the memory used by the different maps we 2185 // needed during the translation. 2186 PendingPHIs.clear(); 2187 VMap.reset(); 2188 FrameIndices.clear(); 2189 MachinePreds.clear(); 2190 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 2191 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 2192 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 2193 EntryBuilder.reset(); 2194 CurBuilder.reset(); 2195 FuncInfo.clear(); 2196 } 2197 2198 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 2199 MF = &CurMF; 2200 const Function &F = MF->getFunction(); 2201 if (F.empty()) 2202 return false; 2203 GISelCSEAnalysisWrapper &Wrapper = 2204 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 2205 // Set the CSEConfig and run the analysis. 2206 GISelCSEInfo *CSEInfo = nullptr; 2207 TPC = &getAnalysis<TargetPassConfig>(); 2208 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 2209 ? EnableCSEInIRTranslator 2210 : TPC->isGISelCSEEnabled(); 2211 2212 if (EnableCSE) { 2213 EntryBuilder = make_unique<CSEMIRBuilder>(CurMF); 2214 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 2215 EntryBuilder->setCSEInfo(CSEInfo); 2216 CurBuilder = make_unique<CSEMIRBuilder>(CurMF); 2217 CurBuilder->setCSEInfo(CSEInfo); 2218 } else { 2219 EntryBuilder = make_unique<MachineIRBuilder>(); 2220 CurBuilder = make_unique<MachineIRBuilder>(); 2221 } 2222 CLI = MF->getSubtarget().getCallLowering(); 2223 CurBuilder->setMF(*MF); 2224 EntryBuilder->setMF(*MF); 2225 MRI = &MF->getRegInfo(); 2226 DL = &F.getParent()->getDataLayout(); 2227 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 2228 FuncInfo.MF = MF; 2229 FuncInfo.BPI = nullptr; 2230 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2231 const TargetMachine &TM = MF->getTarget(); 2232 SL = make_unique<GISelSwitchLowering>(this, FuncInfo); 2233 SL->init(TLI, TM, *DL); 2234 2235 EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F); 2236 2237 assert(PendingPHIs.empty() && "stale PHIs"); 2238 2239 if (!DL->isLittleEndian()) { 2240 // Currently we don't properly handle big endian code. 2241 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2242 F.getSubprogram(), &F.getEntryBlock()); 2243 R << "unable to translate in big endian mode"; 2244 reportTranslationError(*MF, *TPC, *ORE, R); 2245 } 2246 2247 // Release the per-function state when we return, whether we succeeded or not. 2248 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 2249 2250 // Setup a separate basic-block for the arguments and constants 2251 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 2252 MF->push_back(EntryBB); 2253 EntryBuilder->setMBB(*EntryBB); 2254 2255 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 2256 SwiftError.setFunction(CurMF); 2257 SwiftError.createEntriesInEntryBlock(DbgLoc); 2258 2259 // Create all blocks, in IR order, to preserve the layout. 2260 for (const BasicBlock &BB: F) { 2261 auto *&MBB = BBToMBB[&BB]; 2262 2263 MBB = MF->CreateMachineBasicBlock(&BB); 2264 MF->push_back(MBB); 2265 2266 if (BB.hasAddressTaken()) 2267 MBB->setHasAddressTaken(); 2268 } 2269 2270 // Make our arguments/constants entry block fallthrough to the IR entry block. 2271 EntryBB->addSuccessor(&getMBB(F.front())); 2272 2273 // Lower the actual args into this basic block. 2274 SmallVector<ArrayRef<Register>, 8> VRegArgs; 2275 for (const Argument &Arg: F.args()) { 2276 if (DL->getTypeStoreSize(Arg.getType()) == 0) 2277 continue; // Don't handle zero sized types. 2278 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 2279 VRegArgs.push_back(VRegs); 2280 2281 if (Arg.hasSwiftErrorAttr()) { 2282 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 2283 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 2284 } 2285 } 2286 2287 // We don't currently support translating swifterror or swiftself functions. 2288 for (auto &Arg : F.args()) { 2289 if (Arg.hasSwiftSelfAttr()) { 2290 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2291 F.getSubprogram(), &F.getEntryBlock()); 2292 R << "unable to lower arguments due to swiftself: " 2293 << ore::NV("Prototype", F.getType()); 2294 reportTranslationError(*MF, *TPC, *ORE, R); 2295 return false; 2296 } 2297 } 2298 2299 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 2300 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2301 F.getSubprogram(), &F.getEntryBlock()); 2302 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 2303 reportTranslationError(*MF, *TPC, *ORE, R); 2304 return false; 2305 } 2306 2307 // Need to visit defs before uses when translating instructions. 2308 GISelObserverWrapper WrapperObserver; 2309 if (EnableCSE && CSEInfo) 2310 WrapperObserver.addObserver(CSEInfo); 2311 { 2312 ReversePostOrderTraversal<const Function *> RPOT(&F); 2313 #ifndef NDEBUG 2314 DILocationVerifier Verifier; 2315 WrapperObserver.addObserver(&Verifier); 2316 #endif // ifndef NDEBUG 2317 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2318 for (const BasicBlock *BB : RPOT) { 2319 MachineBasicBlock &MBB = getMBB(*BB); 2320 // Set the insertion point of all the following translations to 2321 // the end of this basic block. 2322 CurBuilder->setMBB(MBB); 2323 2324 for (const Instruction &Inst : *BB) { 2325 #ifndef NDEBUG 2326 Verifier.setCurrentInst(&Inst); 2327 #endif // ifndef NDEBUG 2328 if (translate(Inst)) 2329 continue; 2330 2331 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 2332 Inst.getDebugLoc(), BB); 2333 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 2334 2335 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 2336 std::string InstStrStorage; 2337 raw_string_ostream InstStr(InstStrStorage); 2338 InstStr << Inst; 2339 2340 R << ": '" << InstStr.str() << "'"; 2341 } 2342 2343 reportTranslationError(*MF, *TPC, *ORE, R); 2344 return false; 2345 } 2346 2347 finalizeBasicBlock(); 2348 } 2349 #ifndef NDEBUG 2350 WrapperObserver.removeObserver(&Verifier); 2351 #endif 2352 } 2353 2354 finishPendingPhis(); 2355 2356 SwiftError.propagateVRegs(); 2357 2358 // Merge the argument lowering and constants block with its single 2359 // successor, the LLVM-IR entry block. We want the basic block to 2360 // be maximal. 2361 assert(EntryBB->succ_size() == 1 && 2362 "Custom BB used for lowering should have only one successor"); 2363 // Get the successor of the current entry block. 2364 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 2365 assert(NewEntryBB.pred_size() == 1 && 2366 "LLVM-IR entry block has a predecessor!?"); 2367 // Move all the instruction from the current entry block to the 2368 // new entry block. 2369 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 2370 EntryBB->end()); 2371 2372 // Update the live-in information for the new entry block. 2373 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 2374 NewEntryBB.addLiveIn(LiveIn); 2375 NewEntryBB.sortUniqueLiveIns(); 2376 2377 // Get rid of the now empty basic block. 2378 EntryBB->removeSuccessor(&NewEntryBB); 2379 MF->remove(EntryBB); 2380 MF->DeleteMachineBasicBlock(EntryBB); 2381 2382 assert(&MF->front() == &NewEntryBB && 2383 "New entry wasn't next in the list of basic block!"); 2384 2385 // Initialize stack protector information. 2386 StackProtector &SP = getAnalysis<StackProtector>(); 2387 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2388 2389 return false; 2390 } 2391