1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 22 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 23 #include "llvm/CodeGen/LowLevelType.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/StackProtector.h" 32 #include "llvm/CodeGen/TargetFrameLowering.h" 33 #include "llvm/CodeGen/TargetLowering.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/LowLevelTypeImpl.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetIntrinsicInfo.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <iterator> 71 #include <string> 72 #include <utility> 73 #include <vector> 74 75 #define DEBUG_TYPE "irtranslator" 76 77 using namespace llvm; 78 79 static cl::opt<bool> 80 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 81 cl::desc("Should enable CSE in irtranslator"), 82 cl::Optional, cl::init(false)); 83 char IRTranslator::ID = 0; 84 85 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 86 false, false) 87 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 88 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 89 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 90 false, false) 91 92 static void reportTranslationError(MachineFunction &MF, 93 const TargetPassConfig &TPC, 94 OptimizationRemarkEmitter &ORE, 95 OptimizationRemarkMissed &R) { 96 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 97 98 // Print the function name explicitly if we don't have a debug location (which 99 // makes the diagnostic less useful) or if we're going to emit a raw error. 100 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 101 R << (" (in function: " + MF.getName() + ")").str(); 102 103 if (TPC.isGlobalISelAbortEnabled()) 104 report_fatal_error(R.getMsg()); 105 else 106 ORE.emit(R); 107 } 108 109 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { 110 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 111 } 112 113 #ifndef NDEBUG 114 namespace { 115 /// Verify that every instruction created has the same DILocation as the 116 /// instruction being translated. 117 class DILocationVerifier : public GISelChangeObserver { 118 const Instruction *CurrInst = nullptr; 119 120 public: 121 DILocationVerifier() = default; 122 ~DILocationVerifier() = default; 123 124 const Instruction *getCurrentInst() const { return CurrInst; } 125 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 126 127 void erasingInstr(MachineInstr &MI) override {} 128 void changingInstr(MachineInstr &MI) override {} 129 void changedInstr(MachineInstr &MI) override {} 130 131 void createdInstr(MachineInstr &MI) override { 132 assert(getCurrentInst() && "Inserted instruction without a current MI"); 133 134 // Only print the check message if we're actually checking it. 135 #ifndef NDEBUG 136 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 137 << " was copied to " << MI); 138 #endif 139 // We allow insts in the entry block to have a debug loc line of 0 because 140 // they could have originated from constants, and we don't want a jumpy 141 // debug experience. 142 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 143 MI.getDebugLoc().getLine() == 0) && 144 "Line info was not transferred to all instructions"); 145 } 146 }; 147 } // namespace 148 #endif // ifndef NDEBUG 149 150 151 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 152 AU.addRequired<StackProtector>(); 153 AU.addRequired<TargetPassConfig>(); 154 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 155 getSelectionDAGFallbackAnalysisUsage(AU); 156 MachineFunctionPass::getAnalysisUsage(AU); 157 } 158 159 IRTranslator::ValueToVRegInfo::VRegListT & 160 IRTranslator::allocateVRegs(const Value &Val) { 161 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 162 auto *Regs = VMap.getVRegs(Val); 163 auto *Offsets = VMap.getOffsets(Val); 164 SmallVector<LLT, 4> SplitTys; 165 computeValueLLTs(*DL, *Val.getType(), SplitTys, 166 Offsets->empty() ? Offsets : nullptr); 167 for (unsigned i = 0; i < SplitTys.size(); ++i) 168 Regs->push_back(0); 169 return *Regs; 170 } 171 172 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) { 173 auto VRegsIt = VMap.findVRegs(Val); 174 if (VRegsIt != VMap.vregs_end()) 175 return *VRegsIt->second; 176 177 if (Val.getType()->isVoidTy()) 178 return *VMap.getVRegs(Val); 179 180 // Create entry for this type. 181 auto *VRegs = VMap.getVRegs(Val); 182 auto *Offsets = VMap.getOffsets(Val); 183 184 assert(Val.getType()->isSized() && 185 "Don't know how to create an empty vreg"); 186 187 SmallVector<LLT, 4> SplitTys; 188 computeValueLLTs(*DL, *Val.getType(), SplitTys, 189 Offsets->empty() ? Offsets : nullptr); 190 191 if (!isa<Constant>(Val)) { 192 for (auto Ty : SplitTys) 193 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 194 return *VRegs; 195 } 196 197 if (Val.getType()->isAggregateType()) { 198 // UndefValue, ConstantAggregateZero 199 auto &C = cast<Constant>(Val); 200 unsigned Idx = 0; 201 while (auto Elt = C.getAggregateElement(Idx++)) { 202 auto EltRegs = getOrCreateVRegs(*Elt); 203 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 204 } 205 } else { 206 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 207 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 208 bool Success = translate(cast<Constant>(Val), VRegs->front()); 209 if (!Success) { 210 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 211 MF->getFunction().getSubprogram(), 212 &MF->getFunction().getEntryBlock()); 213 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 214 reportTranslationError(*MF, *TPC, *ORE, R); 215 return *VRegs; 216 } 217 } 218 219 return *VRegs; 220 } 221 222 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 223 if (FrameIndices.find(&AI) != FrameIndices.end()) 224 return FrameIndices[&AI]; 225 226 unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 227 unsigned Size = 228 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 229 230 // Always allocate at least one byte. 231 Size = std::max(Size, 1u); 232 233 unsigned Alignment = AI.getAlignment(); 234 if (!Alignment) 235 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 236 237 int &FI = FrameIndices[&AI]; 238 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 239 return FI; 240 } 241 242 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 243 unsigned Alignment = 0; 244 Type *ValTy = nullptr; 245 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 246 Alignment = SI->getAlignment(); 247 ValTy = SI->getValueOperand()->getType(); 248 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 249 Alignment = LI->getAlignment(); 250 ValTy = LI->getType(); 251 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 252 // TODO(PR27168): This instruction has no alignment attribute, but unlike 253 // the default alignment for load/store, the default here is to assume 254 // it has NATURAL alignment, not DataLayout-specified alignment. 255 const DataLayout &DL = AI->getModule()->getDataLayout(); 256 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 257 ValTy = AI->getCompareOperand()->getType(); 258 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 259 // TODO(PR27168): This instruction has no alignment attribute, but unlike 260 // the default alignment for load/store, the default here is to assume 261 // it has NATURAL alignment, not DataLayout-specified alignment. 262 const DataLayout &DL = AI->getModule()->getDataLayout(); 263 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 264 ValTy = AI->getType(); 265 } else { 266 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 267 R << "unable to translate memop: " << ore::NV("Opcode", &I); 268 reportTranslationError(*MF, *TPC, *ORE, R); 269 return 1; 270 } 271 272 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 273 } 274 275 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 276 MachineBasicBlock *&MBB = BBToMBB[&BB]; 277 assert(MBB && "BasicBlock was not encountered before"); 278 return *MBB; 279 } 280 281 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 282 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 283 MachinePreds[Edge].push_back(NewPred); 284 } 285 286 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 287 MachineIRBuilder &MIRBuilder) { 288 // FIXME: handle signed/unsigned wrapping flags. 289 290 // Get or create a virtual register for each value. 291 // Unless the value is a Constant => loadimm cst? 292 // or inline constant each time? 293 // Creation of a virtual register needs to have a size. 294 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 295 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 296 unsigned Res = getOrCreateVReg(U); 297 uint16_t Flags = 0; 298 if (isa<Instruction>(U)) { 299 const Instruction &I = cast<Instruction>(U); 300 Flags = MachineInstr::copyFlagsFromInstruction(I); 301 } 302 303 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 304 return true; 305 } 306 307 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 308 // -0.0 - X --> G_FNEG 309 if (isa<Constant>(U.getOperand(0)) && 310 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 311 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 312 .addDef(getOrCreateVReg(U)) 313 .addUse(getOrCreateVReg(*U.getOperand(1))); 314 return true; 315 } 316 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 317 } 318 319 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 320 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 321 .addDef(getOrCreateVReg(U)) 322 .addUse(getOrCreateVReg(*U.getOperand(0))); 323 return true; 324 } 325 326 bool IRTranslator::translateCompare(const User &U, 327 MachineIRBuilder &MIRBuilder) { 328 const CmpInst *CI = dyn_cast<CmpInst>(&U); 329 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 330 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 331 unsigned Res = getOrCreateVReg(U); 332 CmpInst::Predicate Pred = 333 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 334 cast<ConstantExpr>(U).getPredicate()); 335 if (CmpInst::isIntPredicate(Pred)) 336 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 337 else if (Pred == CmpInst::FCMP_FALSE) 338 MIRBuilder.buildCopy( 339 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 340 else if (Pred == CmpInst::FCMP_TRUE) 341 MIRBuilder.buildCopy( 342 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 343 else { 344 MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1}, 345 MachineInstr::copyFlagsFromInstruction(*CI)); 346 } 347 348 return true; 349 } 350 351 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 352 const ReturnInst &RI = cast<ReturnInst>(U); 353 const Value *Ret = RI.getReturnValue(); 354 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 355 Ret = nullptr; 356 357 ArrayRef<unsigned> VRegs; 358 if (Ret) 359 VRegs = getOrCreateVRegs(*Ret); 360 361 unsigned SwiftErrorVReg = 0; 362 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 363 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 364 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 365 } 366 367 // The target may mess up with the insertion point, but 368 // this is not important as a return is the last instruction 369 // of the block anyway. 370 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 371 } 372 373 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 374 const BranchInst &BrInst = cast<BranchInst>(U); 375 unsigned Succ = 0; 376 if (!BrInst.isUnconditional()) { 377 // We want a G_BRCOND to the true BB followed by an unconditional branch. 378 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 379 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 380 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 381 MIRBuilder.buildBrCond(Tst, TrueBB); 382 } 383 384 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 385 MachineBasicBlock &TgtBB = getMBB(BrTgt); 386 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 387 388 // If the unconditional target is the layout successor, fallthrough. 389 if (!CurBB.isLayoutSuccessor(&TgtBB)) 390 MIRBuilder.buildBr(TgtBB); 391 392 // Link successors. 393 for (const BasicBlock *Succ : successors(&BrInst)) 394 CurBB.addSuccessor(&getMBB(*Succ)); 395 return true; 396 } 397 398 bool IRTranslator::translateSwitch(const User &U, 399 MachineIRBuilder &MIRBuilder) { 400 // For now, just translate as a chain of conditional branches. 401 // FIXME: could we share most of the logic/code in 402 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 403 // At first sight, it seems most of the logic in there is independent of 404 // SelectionDAG-specifics and a lot of work went in to optimize switch 405 // lowering in there. 406 407 const SwitchInst &SwInst = cast<SwitchInst>(U); 408 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 409 const BasicBlock *OrigBB = SwInst.getParent(); 410 411 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 412 for (auto &CaseIt : SwInst.cases()) { 413 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 414 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 415 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 416 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 417 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 418 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 419 420 MIRBuilder.buildBrCond(Tst, TrueMBB); 421 CurMBB.addSuccessor(&TrueMBB); 422 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 423 424 MachineBasicBlock *FalseMBB = 425 MF->CreateMachineBasicBlock(SwInst.getParent()); 426 // Insert the comparison blocks one after the other. 427 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 428 MIRBuilder.buildBr(*FalseMBB); 429 CurMBB.addSuccessor(FalseMBB); 430 431 MIRBuilder.setMBB(*FalseMBB); 432 } 433 // handle default case 434 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 435 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 436 MIRBuilder.buildBr(DefaultMBB); 437 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 438 CurMBB.addSuccessor(&DefaultMBB); 439 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 440 441 return true; 442 } 443 444 bool IRTranslator::translateIndirectBr(const User &U, 445 MachineIRBuilder &MIRBuilder) { 446 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 447 448 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 449 MIRBuilder.buildBrIndirect(Tgt); 450 451 // Link successors. 452 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 453 for (const BasicBlock *Succ : successors(&BrInst)) 454 CurBB.addSuccessor(&getMBB(*Succ)); 455 456 return true; 457 } 458 459 static bool isSwiftError(const Value *V) { 460 if (auto Arg = dyn_cast<Argument>(V)) 461 return Arg->hasSwiftErrorAttr(); 462 if (auto AI = dyn_cast<AllocaInst>(V)) 463 return AI->isSwiftError(); 464 return false; 465 } 466 467 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 468 const LoadInst &LI = cast<LoadInst>(U); 469 470 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 471 : MachineMemOperand::MONone; 472 Flags |= MachineMemOperand::MOLoad; 473 474 if (DL->getTypeStoreSize(LI.getType()) == 0) 475 return true; 476 477 ArrayRef<unsigned> Regs = getOrCreateVRegs(LI); 478 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 479 unsigned Base = getOrCreateVReg(*LI.getPointerOperand()); 480 481 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 482 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 483 484 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 485 assert(Regs.size() == 1 && "swifterror should be single pointer"); 486 unsigned VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 487 LI.getPointerOperand()); 488 MIRBuilder.buildCopy(Regs[0], VReg); 489 return true; 490 } 491 492 493 for (unsigned i = 0; i < Regs.size(); ++i) { 494 unsigned Addr = 0; 495 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 496 497 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 498 unsigned BaseAlign = getMemOpAlignment(LI); 499 auto MMO = MF->getMachineMemOperand( 500 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 501 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 502 LI.getSyncScopeID(), LI.getOrdering()); 503 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 504 } 505 506 return true; 507 } 508 509 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 510 const StoreInst &SI = cast<StoreInst>(U); 511 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 512 : MachineMemOperand::MONone; 513 Flags |= MachineMemOperand::MOStore; 514 515 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 516 return true; 517 518 ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand()); 519 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 520 unsigned Base = getOrCreateVReg(*SI.getPointerOperand()); 521 522 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 523 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 524 525 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 526 assert(Vals.size() == 1 && "swifterror should be single pointer"); 527 528 unsigned VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 529 SI.getPointerOperand()); 530 MIRBuilder.buildCopy(VReg, Vals[0]); 531 return true; 532 } 533 534 for (unsigned i = 0; i < Vals.size(); ++i) { 535 unsigned Addr = 0; 536 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 537 538 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 539 unsigned BaseAlign = getMemOpAlignment(SI); 540 auto MMO = MF->getMachineMemOperand( 541 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 542 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 543 SI.getSyncScopeID(), SI.getOrdering()); 544 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 545 } 546 return true; 547 } 548 549 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 550 const Value *Src = U.getOperand(0); 551 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 552 553 // getIndexedOffsetInType is designed for GEPs, so the first index is the 554 // usual array element rather than looking into the actual aggregate. 555 SmallVector<Value *, 1> Indices; 556 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 557 558 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 559 for (auto Idx : EVI->indices()) 560 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 561 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 562 for (auto Idx : IVI->indices()) 563 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 564 } else { 565 for (unsigned i = 1; i < U.getNumOperands(); ++i) 566 Indices.push_back(U.getOperand(i)); 567 } 568 569 return 8 * static_cast<uint64_t>( 570 DL.getIndexedOffsetInType(Src->getType(), Indices)); 571 } 572 573 bool IRTranslator::translateExtractValue(const User &U, 574 MachineIRBuilder &MIRBuilder) { 575 const Value *Src = U.getOperand(0); 576 uint64_t Offset = getOffsetFromIndices(U, *DL); 577 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 578 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 579 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 580 auto &DstRegs = allocateVRegs(U); 581 582 for (unsigned i = 0; i < DstRegs.size(); ++i) 583 DstRegs[i] = SrcRegs[Idx++]; 584 585 return true; 586 } 587 588 bool IRTranslator::translateInsertValue(const User &U, 589 MachineIRBuilder &MIRBuilder) { 590 const Value *Src = U.getOperand(0); 591 uint64_t Offset = getOffsetFromIndices(U, *DL); 592 auto &DstRegs = allocateVRegs(U); 593 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 594 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 595 ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 596 auto InsertedIt = InsertedRegs.begin(); 597 598 for (unsigned i = 0; i < DstRegs.size(); ++i) { 599 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 600 DstRegs[i] = *InsertedIt++; 601 else 602 DstRegs[i] = SrcRegs[i]; 603 } 604 605 return true; 606 } 607 608 bool IRTranslator::translateSelect(const User &U, 609 MachineIRBuilder &MIRBuilder) { 610 unsigned Tst = getOrCreateVReg(*U.getOperand(0)); 611 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U); 612 ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 613 ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 614 615 const SelectInst &SI = cast<SelectInst>(U); 616 uint16_t Flags = 0; 617 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 618 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 619 620 for (unsigned i = 0; i < ResRegs.size(); ++i) { 621 MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]}, 622 {Tst, Op0Regs[i], Op1Regs[i]}, Flags); 623 } 624 625 return true; 626 } 627 628 bool IRTranslator::translateBitCast(const User &U, 629 MachineIRBuilder &MIRBuilder) { 630 // If we're bitcasting to the source type, we can reuse the source vreg. 631 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 632 getLLTForType(*U.getType(), *DL)) { 633 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 634 auto &Regs = *VMap.getVRegs(U); 635 // If we already assigned a vreg for this bitcast, we can't change that. 636 // Emit a copy to satisfy the users we already emitted. 637 if (!Regs.empty()) 638 MIRBuilder.buildCopy(Regs[0], SrcReg); 639 else { 640 Regs.push_back(SrcReg); 641 VMap.getOffsets(U)->push_back(0); 642 } 643 return true; 644 } 645 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 646 } 647 648 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 649 MachineIRBuilder &MIRBuilder) { 650 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 651 unsigned Res = getOrCreateVReg(U); 652 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 653 return true; 654 } 655 656 bool IRTranslator::translateGetElementPtr(const User &U, 657 MachineIRBuilder &MIRBuilder) { 658 // FIXME: support vector GEPs. 659 if (U.getType()->isVectorTy()) 660 return false; 661 662 Value &Op0 = *U.getOperand(0); 663 unsigned BaseReg = getOrCreateVReg(Op0); 664 Type *PtrIRTy = Op0.getType(); 665 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 666 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 667 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 668 669 int64_t Offset = 0; 670 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 671 GTI != E; ++GTI) { 672 const Value *Idx = GTI.getOperand(); 673 if (StructType *StTy = GTI.getStructTypeOrNull()) { 674 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 675 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 676 continue; 677 } else { 678 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 679 680 // If this is a scalar constant or a splat vector of constants, 681 // handle it quickly. 682 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 683 Offset += ElementSize * CI->getSExtValue(); 684 continue; 685 } 686 687 if (Offset != 0) { 688 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 689 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 690 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 691 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetMIB.getReg(0)); 692 693 BaseReg = NewBaseReg; 694 Offset = 0; 695 } 696 697 unsigned IdxReg = getOrCreateVReg(*Idx); 698 if (MRI->getType(IdxReg) != OffsetTy) { 699 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 700 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 701 IdxReg = NewIdxReg; 702 } 703 704 // N = N + Idx * ElementSize; 705 // Avoid doing it for ElementSize of 1. 706 unsigned GepOffsetReg; 707 if (ElementSize != 1) { 708 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 709 auto ElementSizeMIB = MIRBuilder.buildConstant( 710 getLLTForType(*OffsetIRTy, *DL), ElementSize); 711 MIRBuilder.buildMul(GepOffsetReg, ElementSizeMIB.getReg(0), IdxReg); 712 } else 713 GepOffsetReg = IdxReg; 714 715 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 716 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); 717 BaseReg = NewBaseReg; 718 } 719 } 720 721 if (Offset != 0) { 722 auto OffsetMIB = 723 MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset); 724 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 725 return true; 726 } 727 728 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 729 return true; 730 } 731 732 bool IRTranslator::translateMemfunc(const CallInst &CI, 733 MachineIRBuilder &MIRBuilder, 734 unsigned ID) { 735 736 // If the source is undef, then just emit a nop. 737 if (isa<UndefValue>(CI.getArgOperand(1))) { 738 switch (ID) { 739 case Intrinsic::memmove: 740 case Intrinsic::memcpy: 741 case Intrinsic::memset: 742 return true; 743 default: 744 break; 745 } 746 } 747 748 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 749 Type *DstTy = CI.getArgOperand(0)->getType(); 750 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 751 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 752 return false; 753 754 SmallVector<CallLowering::ArgInfo, 8> Args; 755 for (int i = 0; i < 3; ++i) { 756 const auto &Arg = CI.getArgOperand(i); 757 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 758 } 759 760 const char *Callee; 761 switch (ID) { 762 case Intrinsic::memmove: 763 case Intrinsic::memcpy: { 764 Type *SrcTy = CI.getArgOperand(1)->getType(); 765 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 766 return false; 767 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 768 break; 769 } 770 case Intrinsic::memset: 771 Callee = "memset"; 772 break; 773 default: 774 return false; 775 } 776 777 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 778 MachineOperand::CreateES(Callee), 779 CallLowering::ArgInfo(0, CI.getType()), Args); 780 } 781 782 void IRTranslator::getStackGuard(unsigned DstReg, 783 MachineIRBuilder &MIRBuilder) { 784 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 785 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 786 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 787 MIB.addDef(DstReg); 788 789 auto &TLI = *MF->getSubtarget().getTargetLowering(); 790 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 791 if (!Global) 792 return; 793 794 MachinePointerInfo MPInfo(Global); 795 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 796 MachineMemOperand::MODereferenceable; 797 MachineMemOperand *MemRef = 798 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 799 DL->getPointerABIAlignment(0)); 800 MIB.setMemRefs({MemRef}); 801 } 802 803 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 804 MachineIRBuilder &MIRBuilder) { 805 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI); 806 MIRBuilder.buildInstr(Op) 807 .addDef(ResRegs[0]) 808 .addDef(ResRegs[1]) 809 .addUse(getOrCreateVReg(*CI.getOperand(0))) 810 .addUse(getOrCreateVReg(*CI.getOperand(1))); 811 812 return true; 813 } 814 815 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 816 switch (ID) { 817 default: 818 break; 819 case Intrinsic::bswap: 820 return TargetOpcode::G_BSWAP; 821 case Intrinsic::ceil: 822 return TargetOpcode::G_FCEIL; 823 case Intrinsic::cos: 824 return TargetOpcode::G_FCOS; 825 case Intrinsic::ctpop: 826 return TargetOpcode::G_CTPOP; 827 case Intrinsic::exp: 828 return TargetOpcode::G_FEXP; 829 case Intrinsic::exp2: 830 return TargetOpcode::G_FEXP2; 831 case Intrinsic::fabs: 832 return TargetOpcode::G_FABS; 833 case Intrinsic::copysign: 834 return TargetOpcode::G_FCOPYSIGN; 835 case Intrinsic::canonicalize: 836 return TargetOpcode::G_FCANONICALIZE; 837 case Intrinsic::floor: 838 return TargetOpcode::G_FFLOOR; 839 case Intrinsic::fma: 840 return TargetOpcode::G_FMA; 841 case Intrinsic::log: 842 return TargetOpcode::G_FLOG; 843 case Intrinsic::log2: 844 return TargetOpcode::G_FLOG2; 845 case Intrinsic::log10: 846 return TargetOpcode::G_FLOG10; 847 case Intrinsic::nearbyint: 848 return TargetOpcode::G_FNEARBYINT; 849 case Intrinsic::pow: 850 return TargetOpcode::G_FPOW; 851 case Intrinsic::rint: 852 return TargetOpcode::G_FRINT; 853 case Intrinsic::round: 854 return TargetOpcode::G_INTRINSIC_ROUND; 855 case Intrinsic::sin: 856 return TargetOpcode::G_FSIN; 857 case Intrinsic::sqrt: 858 return TargetOpcode::G_FSQRT; 859 case Intrinsic::trunc: 860 return TargetOpcode::G_INTRINSIC_TRUNC; 861 } 862 return Intrinsic::not_intrinsic; 863 } 864 865 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 866 Intrinsic::ID ID, 867 MachineIRBuilder &MIRBuilder) { 868 869 unsigned Op = getSimpleIntrinsicOpcode(ID); 870 871 // Is this a simple intrinsic? 872 if (Op == Intrinsic::not_intrinsic) 873 return false; 874 875 // Yes. Let's translate it. 876 SmallVector<llvm::SrcOp, 4> VRegs; 877 for (auto &Arg : CI.arg_operands()) 878 VRegs.push_back(getOrCreateVReg(*Arg)); 879 880 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 881 MachineInstr::copyFlagsFromInstruction(CI)); 882 return true; 883 } 884 885 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 886 MachineIRBuilder &MIRBuilder) { 887 888 // If this is a simple intrinsic (that is, we just need to add a def of 889 // a vreg, and uses for each arg operand, then translate it. 890 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 891 return true; 892 893 switch (ID) { 894 default: 895 break; 896 case Intrinsic::lifetime_start: 897 case Intrinsic::lifetime_end: { 898 // No stack colouring in O0, discard region information. 899 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 900 return true; 901 902 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 903 : TargetOpcode::LIFETIME_END; 904 905 // Get the underlying objects for the location passed on the lifetime 906 // marker. 907 SmallVector<const Value *, 4> Allocas; 908 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 909 910 // Iterate over each underlying object, creating lifetime markers for each 911 // static alloca. Quit if we find a non-static alloca. 912 for (const Value *V : Allocas) { 913 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 914 if (!AI) 915 continue; 916 917 if (!AI->isStaticAlloca()) 918 return true; 919 920 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 921 } 922 return true; 923 } 924 case Intrinsic::dbg_declare: { 925 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 926 assert(DI.getVariable() && "Missing variable"); 927 928 const Value *Address = DI.getAddress(); 929 if (!Address || isa<UndefValue>(Address)) { 930 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 931 return true; 932 } 933 934 assert(DI.getVariable()->isValidLocationForIntrinsic( 935 MIRBuilder.getDebugLoc()) && 936 "Expected inlined-at fields to agree"); 937 auto AI = dyn_cast<AllocaInst>(Address); 938 if (AI && AI->isStaticAlloca()) { 939 // Static allocas are tracked at the MF level, no need for DBG_VALUE 940 // instructions (in fact, they get ignored if they *do* exist). 941 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 942 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 943 } else { 944 // A dbg.declare describes the address of a source variable, so lower it 945 // into an indirect DBG_VALUE. 946 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 947 DI.getVariable(), DI.getExpression()); 948 } 949 return true; 950 } 951 case Intrinsic::dbg_label: { 952 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 953 assert(DI.getLabel() && "Missing label"); 954 955 assert(DI.getLabel()->isValidLocationForIntrinsic( 956 MIRBuilder.getDebugLoc()) && 957 "Expected inlined-at fields to agree"); 958 959 MIRBuilder.buildDbgLabel(DI.getLabel()); 960 return true; 961 } 962 case Intrinsic::vaend: 963 // No target I know of cares about va_end. Certainly no in-tree target 964 // does. Simplest intrinsic ever! 965 return true; 966 case Intrinsic::vastart: { 967 auto &TLI = *MF->getSubtarget().getTargetLowering(); 968 Value *Ptr = CI.getArgOperand(0); 969 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 970 971 // FIXME: Get alignment 972 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 973 .addUse(getOrCreateVReg(*Ptr)) 974 .addMemOperand(MF->getMachineMemOperand( 975 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); 976 return true; 977 } 978 case Intrinsic::dbg_value: { 979 // This form of DBG_VALUE is target-independent. 980 const DbgValueInst &DI = cast<DbgValueInst>(CI); 981 const Value *V = DI.getValue(); 982 assert(DI.getVariable()->isValidLocationForIntrinsic( 983 MIRBuilder.getDebugLoc()) && 984 "Expected inlined-at fields to agree"); 985 if (!V) { 986 // Currently the optimizer can produce this; insert an undef to 987 // help debugging. Probably the optimizer should not do this. 988 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 989 } else if (const auto *CI = dyn_cast<Constant>(V)) { 990 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 991 } else { 992 unsigned Reg = getOrCreateVReg(*V); 993 // FIXME: This does not handle register-indirect values at offset 0. The 994 // direct/indirect thing shouldn't really be handled by something as 995 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 996 // pretty baked in right now. 997 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 998 } 999 return true; 1000 } 1001 case Intrinsic::uadd_with_overflow: 1002 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1003 case Intrinsic::sadd_with_overflow: 1004 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1005 case Intrinsic::usub_with_overflow: 1006 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1007 case Intrinsic::ssub_with_overflow: 1008 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1009 case Intrinsic::umul_with_overflow: 1010 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1011 case Intrinsic::smul_with_overflow: 1012 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1013 case Intrinsic::fmuladd: { 1014 const TargetMachine &TM = MF->getTarget(); 1015 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1016 unsigned Dst = getOrCreateVReg(CI); 1017 unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1018 unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1019 unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1020 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1021 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 1022 // TODO: Revisit this to see if we should move this part of the 1023 // lowering to the combiner. 1024 MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2}, 1025 MachineInstr::copyFlagsFromInstruction(CI)); 1026 } else { 1027 LLT Ty = getLLTForType(*CI.getType(), *DL); 1028 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1}, 1029 MachineInstr::copyFlagsFromInstruction(CI)); 1030 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2}, 1031 MachineInstr::copyFlagsFromInstruction(CI)); 1032 } 1033 return true; 1034 } 1035 case Intrinsic::memcpy: 1036 case Intrinsic::memmove: 1037 case Intrinsic::memset: 1038 return translateMemfunc(CI, MIRBuilder, ID); 1039 case Intrinsic::eh_typeid_for: { 1040 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1041 unsigned Reg = getOrCreateVReg(CI); 1042 unsigned TypeID = MF->getTypeIDFor(GV); 1043 MIRBuilder.buildConstant(Reg, TypeID); 1044 return true; 1045 } 1046 case Intrinsic::objectsize: { 1047 // If we don't know by now, we're never going to know. 1048 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 1049 1050 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 1051 return true; 1052 } 1053 case Intrinsic::is_constant: 1054 // If this wasn't constant-folded away by now, then it's not a 1055 // constant. 1056 MIRBuilder.buildConstant(getOrCreateVReg(CI), 0); 1057 return true; 1058 case Intrinsic::stackguard: 1059 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1060 return true; 1061 case Intrinsic::stackprotector: { 1062 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1063 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1064 getStackGuard(GuardVal, MIRBuilder); 1065 1066 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1067 int FI = getOrCreateFrameIndex(*Slot); 1068 MF->getFrameInfo().setStackProtectorIndex(FI); 1069 1070 MIRBuilder.buildStore( 1071 GuardVal, getOrCreateVReg(*Slot), 1072 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1073 MachineMemOperand::MOStore | 1074 MachineMemOperand::MOVolatile, 1075 PtrTy.getSizeInBits() / 8, 8)); 1076 return true; 1077 } 1078 case Intrinsic::stacksave: { 1079 // Save the stack pointer to the location provided by the intrinsic. 1080 unsigned Reg = getOrCreateVReg(CI); 1081 unsigned StackPtr = MF->getSubtarget() 1082 .getTargetLowering() 1083 ->getStackPointerRegisterToSaveRestore(); 1084 1085 // If the target doesn't specify a stack pointer, then fall back. 1086 if (!StackPtr) 1087 return false; 1088 1089 MIRBuilder.buildCopy(Reg, StackPtr); 1090 return true; 1091 } 1092 case Intrinsic::stackrestore: { 1093 // Restore the stack pointer from the location provided by the intrinsic. 1094 unsigned Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1095 unsigned StackPtr = MF->getSubtarget() 1096 .getTargetLowering() 1097 ->getStackPointerRegisterToSaveRestore(); 1098 1099 // If the target doesn't specify a stack pointer, then fall back. 1100 if (!StackPtr) 1101 return false; 1102 1103 MIRBuilder.buildCopy(StackPtr, Reg); 1104 return true; 1105 } 1106 case Intrinsic::cttz: 1107 case Intrinsic::ctlz: { 1108 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1109 bool isTrailing = ID == Intrinsic::cttz; 1110 unsigned Opcode = isTrailing 1111 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1112 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1113 : Cst->isZero() ? TargetOpcode::G_CTLZ 1114 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1115 MIRBuilder.buildInstr(Opcode) 1116 .addDef(getOrCreateVReg(CI)) 1117 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 1118 return true; 1119 } 1120 case Intrinsic::invariant_start: { 1121 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1122 unsigned Undef = MRI->createGenericVirtualRegister(PtrTy); 1123 MIRBuilder.buildUndef(Undef); 1124 return true; 1125 } 1126 case Intrinsic::invariant_end: 1127 return true; 1128 case Intrinsic::assume: 1129 case Intrinsic::var_annotation: 1130 case Intrinsic::sideeffect: 1131 // Discard annotate attributes, assumptions, and artificial side-effects. 1132 return true; 1133 } 1134 return false; 1135 } 1136 1137 bool IRTranslator::translateInlineAsm(const CallInst &CI, 1138 MachineIRBuilder &MIRBuilder) { 1139 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 1140 if (!IA.getConstraintString().empty()) 1141 return false; 1142 1143 unsigned ExtraInfo = 0; 1144 if (IA.hasSideEffects()) 1145 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1146 if (IA.getDialect() == InlineAsm::AD_Intel) 1147 ExtraInfo |= InlineAsm::Extra_AsmDialect; 1148 1149 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 1150 .addExternalSymbol(IA.getAsmString().c_str()) 1151 .addImm(ExtraInfo); 1152 1153 return true; 1154 } 1155 1156 unsigned IRTranslator::packRegs(const Value &V, 1157 MachineIRBuilder &MIRBuilder) { 1158 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1159 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1160 LLT BigTy = getLLTForType(*V.getType(), *DL); 1161 1162 if (Regs.size() == 1) 1163 return Regs[0]; 1164 1165 unsigned Dst = MRI->createGenericVirtualRegister(BigTy); 1166 MIRBuilder.buildUndef(Dst); 1167 for (unsigned i = 0; i < Regs.size(); ++i) { 1168 unsigned NewDst = MRI->createGenericVirtualRegister(BigTy); 1169 MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]); 1170 Dst = NewDst; 1171 } 1172 return Dst; 1173 } 1174 1175 void IRTranslator::unpackRegs(const Value &V, unsigned Src, 1176 MachineIRBuilder &MIRBuilder) { 1177 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1178 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1179 1180 for (unsigned i = 0; i < Regs.size(); ++i) 1181 MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]); 1182 } 1183 1184 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1185 const CallInst &CI = cast<CallInst>(U); 1186 auto TII = MF->getTarget().getIntrinsicInfo(); 1187 const Function *F = CI.getCalledFunction(); 1188 1189 // FIXME: support Windows dllimport function calls. 1190 if (F && F->hasDLLImportStorageClass()) 1191 return false; 1192 1193 if (CI.isInlineAsm()) 1194 return translateInlineAsm(CI, MIRBuilder); 1195 1196 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1197 if (F && F->isIntrinsic()) { 1198 ID = F->getIntrinsicID(); 1199 if (TII && ID == Intrinsic::not_intrinsic) 1200 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1201 } 1202 1203 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { 1204 bool IsSplitType = valueIsSplit(CI); 1205 unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister( 1206 getLLTForType(*CI.getType(), *DL)) 1207 : getOrCreateVReg(CI); 1208 1209 SmallVector<unsigned, 8> Args; 1210 unsigned SwiftErrorVReg = 0; 1211 for (auto &Arg: CI.arg_operands()) { 1212 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1213 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1214 unsigned InVReg = MRI->createGenericVirtualRegister(Ty); 1215 MIRBuilder.buildCopy(InVReg, SwiftError.getOrCreateVRegUseAt( 1216 &CI, &MIRBuilder.getMBB(), Arg)); 1217 Args.push_back(InVReg); 1218 SwiftErrorVReg = 1219 SwiftError.getOrCreateVRegDefAt(&CI, &MIRBuilder.getMBB(), Arg); 1220 continue; 1221 } 1222 Args.push_back(packRegs(*Arg, MIRBuilder)); 1223 } 1224 1225 MF->getFrameInfo().setHasCalls(true); 1226 bool Success = 1227 CLI->lowerCall(MIRBuilder, &CI, Res, Args, SwiftErrorVReg, 1228 [&]() { return getOrCreateVReg(*CI.getCalledValue()); }); 1229 1230 if (IsSplitType) 1231 unpackRegs(CI, Res, MIRBuilder); 1232 1233 return Success; 1234 } 1235 1236 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1237 1238 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1239 return true; 1240 1241 ArrayRef<unsigned> ResultRegs; 1242 if (!CI.getType()->isVoidTy()) 1243 ResultRegs = getOrCreateVRegs(CI); 1244 1245 MachineInstrBuilder MIB = 1246 MIRBuilder.buildIntrinsic(ID, ResultRegs, !CI.doesNotAccessMemory()); 1247 if (isa<FPMathOperator>(CI)) 1248 MIB->copyIRFlags(CI); 1249 1250 for (auto &Arg : CI.arg_operands()) { 1251 // Some intrinsics take metadata parameters. Reject them. 1252 if (isa<MetadataAsValue>(Arg)) 1253 return false; 1254 MIB.addUse(packRegs(*Arg, MIRBuilder)); 1255 } 1256 1257 // Add a MachineMemOperand if it is a target mem intrinsic. 1258 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1259 TargetLowering::IntrinsicInfo Info; 1260 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1261 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1262 unsigned Align = Info.align; 1263 if (Align == 0) 1264 Align = DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext())); 1265 1266 uint64_t Size = Info.memVT.getStoreSize(); 1267 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1268 Info.flags, Size, Align)); 1269 } 1270 1271 return true; 1272 } 1273 1274 bool IRTranslator::translateInvoke(const User &U, 1275 MachineIRBuilder &MIRBuilder) { 1276 const InvokeInst &I = cast<InvokeInst>(U); 1277 MCContext &Context = MF->getContext(); 1278 1279 const BasicBlock *ReturnBB = I.getSuccessor(0); 1280 const BasicBlock *EHPadBB = I.getSuccessor(1); 1281 1282 const Value *Callee = I.getCalledValue(); 1283 const Function *Fn = dyn_cast<Function>(Callee); 1284 if (isa<InlineAsm>(Callee)) 1285 return false; 1286 1287 // FIXME: support invoking patchpoint and statepoint intrinsics. 1288 if (Fn && Fn->isIntrinsic()) 1289 return false; 1290 1291 // FIXME: support whatever these are. 1292 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1293 return false; 1294 1295 // FIXME: support Windows exception handling. 1296 if (!isa<LandingPadInst>(EHPadBB->front())) 1297 return false; 1298 1299 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1300 // the region covered by the try. 1301 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1302 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1303 1304 unsigned Res = 0; 1305 if (!I.getType()->isVoidTy()) 1306 Res = MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL)); 1307 SmallVector<unsigned, 8> Args; 1308 unsigned SwiftErrorVReg = 0; 1309 for (auto &Arg : I.arg_operands()) { 1310 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1311 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1312 unsigned InVReg = MRI->createGenericVirtualRegister(Ty); 1313 MIRBuilder.buildCopy(InVReg, SwiftError.getOrCreateVRegUseAt( 1314 &I, &MIRBuilder.getMBB(), Arg)); 1315 Args.push_back(InVReg); 1316 SwiftErrorVReg = 1317 SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg); 1318 continue; 1319 } 1320 1321 Args.push_back(packRegs(*Arg, MIRBuilder)); 1322 } 1323 1324 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, SwiftErrorVReg, 1325 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 1326 return false; 1327 1328 unpackRegs(I, Res, MIRBuilder); 1329 1330 MCSymbol *EndSymbol = Context.createTempSymbol(); 1331 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1332 1333 // FIXME: track probabilities. 1334 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1335 &ReturnMBB = getMBB(*ReturnBB); 1336 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1337 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1338 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1339 MIRBuilder.buildBr(ReturnMBB); 1340 1341 return true; 1342 } 1343 1344 bool IRTranslator::translateCallBr(const User &U, 1345 MachineIRBuilder &MIRBuilder) { 1346 // FIXME: Implement this. 1347 return false; 1348 } 1349 1350 bool IRTranslator::translateLandingPad(const User &U, 1351 MachineIRBuilder &MIRBuilder) { 1352 const LandingPadInst &LP = cast<LandingPadInst>(U); 1353 1354 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1355 1356 MBB.setIsEHPad(); 1357 1358 // If there aren't registers to copy the values into (e.g., during SjLj 1359 // exceptions), then don't bother. 1360 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1361 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1362 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1363 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1364 return true; 1365 1366 // If landingpad's return type is token type, we don't create DAG nodes 1367 // for its exception pointer and selector value. The extraction of exception 1368 // pointer or selector value from token type landingpads is not currently 1369 // supported. 1370 if (LP.getType()->isTokenTy()) 1371 return true; 1372 1373 // Add a label to mark the beginning of the landing pad. Deletion of the 1374 // landing pad can thus be detected via the MachineModuleInfo. 1375 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1376 .addSym(MF->addLandingPad(&MBB)); 1377 1378 LLT Ty = getLLTForType(*LP.getType(), *DL); 1379 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 1380 MIRBuilder.buildUndef(Undef); 1381 1382 SmallVector<LLT, 2> Tys; 1383 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1384 Tys.push_back(getLLTForType(*Ty, *DL)); 1385 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1386 1387 // Mark exception register as live in. 1388 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1389 if (!ExceptionReg) 1390 return false; 1391 1392 MBB.addLiveIn(ExceptionReg); 1393 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP); 1394 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1395 1396 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1397 if (!SelectorReg) 1398 return false; 1399 1400 MBB.addLiveIn(SelectorReg); 1401 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1402 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1403 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1404 1405 return true; 1406 } 1407 1408 bool IRTranslator::translateAlloca(const User &U, 1409 MachineIRBuilder &MIRBuilder) { 1410 auto &AI = cast<AllocaInst>(U); 1411 1412 if (AI.isSwiftError()) 1413 return true; 1414 1415 if (AI.isStaticAlloca()) { 1416 unsigned Res = getOrCreateVReg(AI); 1417 int FI = getOrCreateFrameIndex(AI); 1418 MIRBuilder.buildFrameIndex(Res, FI); 1419 return true; 1420 } 1421 1422 // FIXME: support stack probing for Windows. 1423 if (MF->getTarget().getTargetTriple().isOSWindows()) 1424 return false; 1425 1426 // Now we're in the harder dynamic case. 1427 Type *Ty = AI.getAllocatedType(); 1428 unsigned Align = 1429 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1430 1431 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 1432 1433 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1434 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1435 if (MRI->getType(NumElts) != IntPtrTy) { 1436 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1437 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1438 NumElts = ExtElts; 1439 } 1440 1441 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1442 unsigned TySize = 1443 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1444 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1445 1446 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1447 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1448 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1449 1450 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1451 MIRBuilder.buildCopy(SPTmp, SPReg); 1452 1453 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1454 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1455 1456 // Handle alignment. We have to realign if the allocation granule was smaller 1457 // than stack alignment, or the specific alloca requires more than stack 1458 // alignment. 1459 unsigned StackAlign = 1460 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1461 Align = std::max(Align, StackAlign); 1462 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1463 // Round the size of the allocation up to the stack alignment size 1464 // by add SA-1 to the size. This doesn't overflow because we're computing 1465 // an address inside an alloca. 1466 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1467 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1468 AllocTmp = AlignedAlloc; 1469 } 1470 1471 MIRBuilder.buildCopy(SPReg, AllocTmp); 1472 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1473 1474 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1475 assert(MF->getFrameInfo().hasVarSizedObjects()); 1476 return true; 1477 } 1478 1479 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1480 // FIXME: We may need more info about the type. Because of how LLT works, 1481 // we're completely discarding the i64/double distinction here (amongst 1482 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1483 // anyway but that's not guaranteed. 1484 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1485 .addDef(getOrCreateVReg(U)) 1486 .addUse(getOrCreateVReg(*U.getOperand(0))) 1487 .addImm(DL->getABITypeAlignment(U.getType())); 1488 return true; 1489 } 1490 1491 bool IRTranslator::translateInsertElement(const User &U, 1492 MachineIRBuilder &MIRBuilder) { 1493 // If it is a <1 x Ty> vector, use the scalar as it is 1494 // not a legal vector type in LLT. 1495 if (U.getType()->getVectorNumElements() == 1) { 1496 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1497 auto &Regs = *VMap.getVRegs(U); 1498 if (Regs.empty()) { 1499 Regs.push_back(Elt); 1500 VMap.getOffsets(U)->push_back(0); 1501 } else { 1502 MIRBuilder.buildCopy(Regs[0], Elt); 1503 } 1504 return true; 1505 } 1506 1507 unsigned Res = getOrCreateVReg(U); 1508 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1509 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1510 unsigned Idx = getOrCreateVReg(*U.getOperand(2)); 1511 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1512 return true; 1513 } 1514 1515 bool IRTranslator::translateExtractElement(const User &U, 1516 MachineIRBuilder &MIRBuilder) { 1517 // If it is a <1 x Ty> vector, use the scalar as it is 1518 // not a legal vector type in LLT. 1519 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1520 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1521 auto &Regs = *VMap.getVRegs(U); 1522 if (Regs.empty()) { 1523 Regs.push_back(Elt); 1524 VMap.getOffsets(U)->push_back(0); 1525 } else { 1526 MIRBuilder.buildCopy(Regs[0], Elt); 1527 } 1528 return true; 1529 } 1530 unsigned Res = getOrCreateVReg(U); 1531 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1532 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1533 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1534 unsigned Idx = 0; 1535 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1536 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1537 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1538 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1539 Idx = getOrCreateVReg(*NewIdxCI); 1540 } 1541 } 1542 if (!Idx) 1543 Idx = getOrCreateVReg(*U.getOperand(1)); 1544 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1545 const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1546 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); 1547 } 1548 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1549 return true; 1550 } 1551 1552 bool IRTranslator::translateShuffleVector(const User &U, 1553 MachineIRBuilder &MIRBuilder) { 1554 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1555 .addDef(getOrCreateVReg(U)) 1556 .addUse(getOrCreateVReg(*U.getOperand(0))) 1557 .addUse(getOrCreateVReg(*U.getOperand(1))) 1558 .addUse(getOrCreateVReg(*U.getOperand(2))); 1559 return true; 1560 } 1561 1562 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1563 const PHINode &PI = cast<PHINode>(U); 1564 1565 SmallVector<MachineInstr *, 4> Insts; 1566 for (auto Reg : getOrCreateVRegs(PI)) { 1567 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1568 Insts.push_back(MIB.getInstr()); 1569 } 1570 1571 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1572 return true; 1573 } 1574 1575 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1576 MachineIRBuilder &MIRBuilder) { 1577 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1578 1579 if (I.isWeak()) 1580 return false; 1581 1582 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1583 : MachineMemOperand::MONone; 1584 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1585 1586 Type *ResType = I.getType(); 1587 Type *ValType = ResType->Type::getStructElementType(0); 1588 1589 auto Res = getOrCreateVRegs(I); 1590 unsigned OldValRes = Res[0]; 1591 unsigned SuccessRes = Res[1]; 1592 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1593 unsigned Cmp = getOrCreateVReg(*I.getCompareOperand()); 1594 unsigned NewVal = getOrCreateVReg(*I.getNewValOperand()); 1595 1596 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1597 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1598 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1599 Flags, DL->getTypeStoreSize(ValType), 1600 getMemOpAlignment(I), AAMDNodes(), nullptr, 1601 I.getSyncScopeID(), I.getSuccessOrdering(), 1602 I.getFailureOrdering())); 1603 return true; 1604 } 1605 1606 bool IRTranslator::translateAtomicRMW(const User &U, 1607 MachineIRBuilder &MIRBuilder) { 1608 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1609 1610 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1611 : MachineMemOperand::MONone; 1612 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1613 1614 Type *ResType = I.getType(); 1615 1616 unsigned Res = getOrCreateVReg(I); 1617 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1618 unsigned Val = getOrCreateVReg(*I.getValOperand()); 1619 1620 unsigned Opcode = 0; 1621 switch (I.getOperation()) { 1622 default: 1623 llvm_unreachable("Unknown atomicrmw op"); 1624 return false; 1625 case AtomicRMWInst::Xchg: 1626 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 1627 break; 1628 case AtomicRMWInst::Add: 1629 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 1630 break; 1631 case AtomicRMWInst::Sub: 1632 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 1633 break; 1634 case AtomicRMWInst::And: 1635 Opcode = TargetOpcode::G_ATOMICRMW_AND; 1636 break; 1637 case AtomicRMWInst::Nand: 1638 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 1639 break; 1640 case AtomicRMWInst::Or: 1641 Opcode = TargetOpcode::G_ATOMICRMW_OR; 1642 break; 1643 case AtomicRMWInst::Xor: 1644 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 1645 break; 1646 case AtomicRMWInst::Max: 1647 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 1648 break; 1649 case AtomicRMWInst::Min: 1650 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 1651 break; 1652 case AtomicRMWInst::UMax: 1653 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 1654 break; 1655 case AtomicRMWInst::UMin: 1656 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 1657 break; 1658 } 1659 1660 MIRBuilder.buildAtomicRMW( 1661 Opcode, Res, Addr, Val, 1662 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1663 Flags, DL->getTypeStoreSize(ResType), 1664 getMemOpAlignment(I), AAMDNodes(), nullptr, 1665 I.getSyncScopeID(), I.getOrdering())); 1666 return true; 1667 } 1668 1669 void IRTranslator::finishPendingPhis() { 1670 #ifndef NDEBUG 1671 DILocationVerifier Verifier; 1672 GISelObserverWrapper WrapperObserver(&Verifier); 1673 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 1674 #endif // ifndef NDEBUG 1675 for (auto &Phi : PendingPHIs) { 1676 const PHINode *PI = Phi.first; 1677 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 1678 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 1679 #ifndef NDEBUG 1680 Verifier.setCurrentInst(PI); 1681 #endif // ifndef NDEBUG 1682 1683 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1684 // won't create extra control flow here, otherwise we need to find the 1685 // dominating predecessor here (or perhaps force the weirder IRTranslators 1686 // to provide a simple boundary). 1687 SmallSet<const BasicBlock *, 4> HandledPreds; 1688 1689 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1690 auto IRPred = PI->getIncomingBlock(i); 1691 if (HandledPreds.count(IRPred)) 1692 continue; 1693 1694 HandledPreds.insert(IRPred); 1695 ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 1696 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1697 assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) && 1698 "incorrect CFG at MachineBasicBlock level"); 1699 for (unsigned j = 0; j < ValRegs.size(); ++j) { 1700 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 1701 MIB.addUse(ValRegs[j]); 1702 MIB.addMBB(Pred); 1703 } 1704 } 1705 } 1706 } 1707 } 1708 1709 bool IRTranslator::valueIsSplit(const Value &V, 1710 SmallVectorImpl<uint64_t> *Offsets) { 1711 SmallVector<LLT, 4> SplitTys; 1712 if (Offsets && !Offsets->empty()) 1713 Offsets->clear(); 1714 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 1715 return SplitTys.size() > 1; 1716 } 1717 1718 bool IRTranslator::translate(const Instruction &Inst) { 1719 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 1720 // We only emit constants into the entry block from here. To prevent jumpy 1721 // debug behaviour set the line to 0. 1722 if (const DebugLoc &DL = Inst.getDebugLoc()) 1723 EntryBuilder->setDebugLoc( 1724 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 1725 else 1726 EntryBuilder->setDebugLoc(DebugLoc()); 1727 1728 switch (Inst.getOpcode()) { 1729 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1730 case Instruction::OPCODE: \ 1731 return translate##OPCODE(Inst, *CurBuilder.get()); 1732 #include "llvm/IR/Instruction.def" 1733 default: 1734 return false; 1735 } 1736 } 1737 1738 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1739 if (auto CI = dyn_cast<ConstantInt>(&C)) 1740 EntryBuilder->buildConstant(Reg, *CI); 1741 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1742 EntryBuilder->buildFConstant(Reg, *CF); 1743 else if (isa<UndefValue>(C)) 1744 EntryBuilder->buildUndef(Reg); 1745 else if (isa<ConstantPointerNull>(C)) { 1746 // As we are trying to build a constant val of 0 into a pointer, 1747 // insert a cast to make them correct with respect to types. 1748 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 1749 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 1750 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 1751 unsigned ZeroReg = getOrCreateVReg(*ZeroVal); 1752 EntryBuilder->buildCast(Reg, ZeroReg); 1753 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 1754 EntryBuilder->buildGlobalValue(Reg, GV); 1755 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1756 if (!CAZ->getType()->isVectorTy()) 1757 return false; 1758 // Return the scalar if it is a <1 x Ty> vector. 1759 if (CAZ->getNumElements() == 1) 1760 return translate(*CAZ->getElementValue(0u), Reg); 1761 SmallVector<unsigned, 4> Ops; 1762 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1763 Constant &Elt = *CAZ->getElementValue(i); 1764 Ops.push_back(getOrCreateVReg(Elt)); 1765 } 1766 EntryBuilder->buildBuildVector(Reg, Ops); 1767 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1768 // Return the scalar if it is a <1 x Ty> vector. 1769 if (CV->getNumElements() == 1) 1770 return translate(*CV->getElementAsConstant(0), Reg); 1771 SmallVector<unsigned, 4> Ops; 1772 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1773 Constant &Elt = *CV->getElementAsConstant(i); 1774 Ops.push_back(getOrCreateVReg(Elt)); 1775 } 1776 EntryBuilder->buildBuildVector(Reg, Ops); 1777 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1778 switch(CE->getOpcode()) { 1779 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1780 case Instruction::OPCODE: \ 1781 return translate##OPCODE(*CE, *EntryBuilder.get()); 1782 #include "llvm/IR/Instruction.def" 1783 default: 1784 return false; 1785 } 1786 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 1787 if (CV->getNumOperands() == 1) 1788 return translate(*CV->getOperand(0), Reg); 1789 SmallVector<unsigned, 4> Ops; 1790 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 1791 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 1792 } 1793 EntryBuilder->buildBuildVector(Reg, Ops); 1794 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 1795 EntryBuilder->buildBlockAddress(Reg, BA); 1796 } else 1797 return false; 1798 1799 return true; 1800 } 1801 1802 void IRTranslator::finalizeFunction() { 1803 // Release the memory used by the different maps we 1804 // needed during the translation. 1805 PendingPHIs.clear(); 1806 VMap.reset(); 1807 FrameIndices.clear(); 1808 MachinePreds.clear(); 1809 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 1810 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 1811 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 1812 EntryBuilder.reset(); 1813 CurBuilder.reset(); 1814 } 1815 1816 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1817 MF = &CurMF; 1818 const Function &F = MF->getFunction(); 1819 if (F.empty()) 1820 return false; 1821 GISelCSEAnalysisWrapper &Wrapper = 1822 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 1823 // Set the CSEConfig and run the analysis. 1824 GISelCSEInfo *CSEInfo = nullptr; 1825 TPC = &getAnalysis<TargetPassConfig>(); 1826 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 1827 ? EnableCSEInIRTranslator 1828 : TPC->isGISelCSEEnabled(); 1829 1830 if (EnableCSE) { 1831 EntryBuilder = make_unique<CSEMIRBuilder>(CurMF); 1832 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 1833 EntryBuilder->setCSEInfo(CSEInfo); 1834 CurBuilder = make_unique<CSEMIRBuilder>(CurMF); 1835 CurBuilder->setCSEInfo(CSEInfo); 1836 } else { 1837 EntryBuilder = make_unique<MachineIRBuilder>(); 1838 CurBuilder = make_unique<MachineIRBuilder>(); 1839 } 1840 CLI = MF->getSubtarget().getCallLowering(); 1841 CurBuilder->setMF(*MF); 1842 EntryBuilder->setMF(*MF); 1843 MRI = &MF->getRegInfo(); 1844 DL = &F.getParent()->getDataLayout(); 1845 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 1846 1847 assert(PendingPHIs.empty() && "stale PHIs"); 1848 1849 if (!DL->isLittleEndian()) { 1850 // Currently we don't properly handle big endian code. 1851 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1852 F.getSubprogram(), &F.getEntryBlock()); 1853 R << "unable to translate in big endian mode"; 1854 reportTranslationError(*MF, *TPC, *ORE, R); 1855 } 1856 1857 // Release the per-function state when we return, whether we succeeded or not. 1858 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1859 1860 // Setup a separate basic-block for the arguments and constants 1861 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1862 MF->push_back(EntryBB); 1863 EntryBuilder->setMBB(*EntryBB); 1864 1865 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 1866 SwiftError.setFunction(CurMF); 1867 SwiftError.createEntriesInEntryBlock(DbgLoc); 1868 1869 // Create all blocks, in IR order, to preserve the layout. 1870 for (const BasicBlock &BB: F) { 1871 auto *&MBB = BBToMBB[&BB]; 1872 1873 MBB = MF->CreateMachineBasicBlock(&BB); 1874 MF->push_back(MBB); 1875 1876 if (BB.hasAddressTaken()) 1877 MBB->setHasAddressTaken(); 1878 } 1879 1880 // Make our arguments/constants entry block fallthrough to the IR entry block. 1881 EntryBB->addSuccessor(&getMBB(F.front())); 1882 1883 // Lower the actual args into this basic block. 1884 SmallVector<unsigned, 8> VRegArgs; 1885 for (const Argument &Arg: F.args()) { 1886 if (DL->getTypeStoreSize(Arg.getType()) == 0) 1887 continue; // Don't handle zero sized types. 1888 VRegArgs.push_back( 1889 MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL))); 1890 1891 if (Arg.hasSwiftErrorAttr()) 1892 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), 1893 VRegArgs.back()); 1894 } 1895 1896 // We don't currently support translating swifterror or swiftself functions. 1897 for (auto &Arg : F.args()) { 1898 if (Arg.hasSwiftSelfAttr()) { 1899 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1900 F.getSubprogram(), &F.getEntryBlock()); 1901 R << "unable to lower arguments due to swiftself: " 1902 << ore::NV("Prototype", F.getType()); 1903 reportTranslationError(*MF, *TPC, *ORE, R); 1904 return false; 1905 } 1906 } 1907 1908 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 1909 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1910 F.getSubprogram(), &F.getEntryBlock()); 1911 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1912 reportTranslationError(*MF, *TPC, *ORE, R); 1913 return false; 1914 } 1915 1916 auto ArgIt = F.arg_begin(); 1917 for (auto &VArg : VRegArgs) { 1918 // If the argument is an unsplit scalar then don't use unpackRegs to avoid 1919 // creating redundant copies. 1920 if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) { 1921 auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt)); 1922 assert(VRegs.empty() && "VRegs already populated?"); 1923 VRegs.push_back(VArg); 1924 } else { 1925 unpackRegs(*ArgIt, VArg, *EntryBuilder.get()); 1926 } 1927 ArgIt++; 1928 } 1929 1930 // Need to visit defs before uses when translating instructions. 1931 GISelObserverWrapper WrapperObserver; 1932 if (EnableCSE && CSEInfo) 1933 WrapperObserver.addObserver(CSEInfo); 1934 { 1935 ReversePostOrderTraversal<const Function *> RPOT(&F); 1936 #ifndef NDEBUG 1937 DILocationVerifier Verifier; 1938 WrapperObserver.addObserver(&Verifier); 1939 #endif // ifndef NDEBUG 1940 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 1941 for (const BasicBlock *BB : RPOT) { 1942 MachineBasicBlock &MBB = getMBB(*BB); 1943 // Set the insertion point of all the following translations to 1944 // the end of this basic block. 1945 CurBuilder->setMBB(MBB); 1946 1947 for (const Instruction &Inst : *BB) { 1948 #ifndef NDEBUG 1949 Verifier.setCurrentInst(&Inst); 1950 #endif // ifndef NDEBUG 1951 if (translate(Inst)) 1952 continue; 1953 1954 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1955 Inst.getDebugLoc(), BB); 1956 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 1957 1958 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 1959 std::string InstStrStorage; 1960 raw_string_ostream InstStr(InstStrStorage); 1961 InstStr << Inst; 1962 1963 R << ": '" << InstStr.str() << "'"; 1964 } 1965 1966 reportTranslationError(*MF, *TPC, *ORE, R); 1967 return false; 1968 } 1969 } 1970 #ifndef NDEBUG 1971 WrapperObserver.removeObserver(&Verifier); 1972 #endif 1973 } 1974 1975 finishPendingPhis(); 1976 1977 SwiftError.propagateVRegs(); 1978 1979 // Merge the argument lowering and constants block with its single 1980 // successor, the LLVM-IR entry block. We want the basic block to 1981 // be maximal. 1982 assert(EntryBB->succ_size() == 1 && 1983 "Custom BB used for lowering should have only one successor"); 1984 // Get the successor of the current entry block. 1985 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1986 assert(NewEntryBB.pred_size() == 1 && 1987 "LLVM-IR entry block has a predecessor!?"); 1988 // Move all the instruction from the current entry block to the 1989 // new entry block. 1990 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1991 EntryBB->end()); 1992 1993 // Update the live-in information for the new entry block. 1994 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1995 NewEntryBB.addLiveIn(LiveIn); 1996 NewEntryBB.sortUniqueLiveIns(); 1997 1998 // Get rid of the now empty basic block. 1999 EntryBB->removeSuccessor(&NewEntryBB); 2000 MF->remove(EntryBB); 2001 MF->DeleteMachineBasicBlock(EntryBB); 2002 2003 assert(&MF->front() == &NewEntryBB && 2004 "New entry wasn't next in the list of basic block!"); 2005 2006 // Initialize stack protector information. 2007 StackProtector &SP = getAnalysis<StackProtector>(); 2008 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2009 2010 return false; 2011 } 2012