1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 22 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 23 #include "llvm/CodeGen/LowLevelType.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/StackProtector.h" 32 #include "llvm/CodeGen/TargetFrameLowering.h" 33 #include "llvm/CodeGen/TargetLowering.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/LowLevelTypeImpl.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetIntrinsicInfo.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <iterator> 71 #include <string> 72 #include <utility> 73 #include <vector> 74 75 #define DEBUG_TYPE "irtranslator" 76 77 using namespace llvm; 78 79 static cl::opt<bool> 80 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 81 cl::desc("Should enable CSE in irtranslator"), 82 cl::Optional, cl::init(false)); 83 char IRTranslator::ID = 0; 84 85 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 86 false, false) 87 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 88 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 89 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 90 false, false) 91 92 static void reportTranslationError(MachineFunction &MF, 93 const TargetPassConfig &TPC, 94 OptimizationRemarkEmitter &ORE, 95 OptimizationRemarkMissed &R) { 96 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 97 98 // Print the function name explicitly if we don't have a debug location (which 99 // makes the diagnostic less useful) or if we're going to emit a raw error. 100 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 101 R << (" (in function: " + MF.getName() + ")").str(); 102 103 if (TPC.isGlobalISelAbortEnabled()) 104 report_fatal_error(R.getMsg()); 105 else 106 ORE.emit(R); 107 } 108 109 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { } 110 111 #ifndef NDEBUG 112 namespace { 113 /// Verify that every instruction created has the same DILocation as the 114 /// instruction being translated. 115 class DILocationVerifier : public GISelChangeObserver { 116 const Instruction *CurrInst = nullptr; 117 118 public: 119 DILocationVerifier() = default; 120 ~DILocationVerifier() = default; 121 122 const Instruction *getCurrentInst() const { return CurrInst; } 123 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 124 125 void erasingInstr(MachineInstr &MI) override {} 126 void changingInstr(MachineInstr &MI) override {} 127 void changedInstr(MachineInstr &MI) override {} 128 129 void createdInstr(MachineInstr &MI) override { 130 assert(getCurrentInst() && "Inserted instruction without a current MI"); 131 132 // Only print the check message if we're actually checking it. 133 #ifndef NDEBUG 134 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 135 << " was copied to " << MI); 136 #endif 137 // We allow insts in the entry block to have a debug loc line of 0 because 138 // they could have originated from constants, and we don't want a jumpy 139 // debug experience. 140 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 141 MI.getDebugLoc().getLine() == 0) && 142 "Line info was not transferred to all instructions"); 143 } 144 }; 145 } // namespace 146 #endif // ifndef NDEBUG 147 148 149 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 150 AU.addRequired<StackProtector>(); 151 AU.addRequired<TargetPassConfig>(); 152 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 153 getSelectionDAGFallbackAnalysisUsage(AU); 154 MachineFunctionPass::getAnalysisUsage(AU); 155 } 156 157 IRTranslator::ValueToVRegInfo::VRegListT & 158 IRTranslator::allocateVRegs(const Value &Val) { 159 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 160 auto *Regs = VMap.getVRegs(Val); 161 auto *Offsets = VMap.getOffsets(Val); 162 SmallVector<LLT, 4> SplitTys; 163 computeValueLLTs(*DL, *Val.getType(), SplitTys, 164 Offsets->empty() ? Offsets : nullptr); 165 for (unsigned i = 0; i < SplitTys.size(); ++i) 166 Regs->push_back(0); 167 return *Regs; 168 } 169 170 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) { 171 auto VRegsIt = VMap.findVRegs(Val); 172 if (VRegsIt != VMap.vregs_end()) 173 return *VRegsIt->second; 174 175 if (Val.getType()->isVoidTy()) 176 return *VMap.getVRegs(Val); 177 178 // Create entry for this type. 179 auto *VRegs = VMap.getVRegs(Val); 180 auto *Offsets = VMap.getOffsets(Val); 181 182 assert(Val.getType()->isSized() && 183 "Don't know how to create an empty vreg"); 184 185 SmallVector<LLT, 4> SplitTys; 186 computeValueLLTs(*DL, *Val.getType(), SplitTys, 187 Offsets->empty() ? Offsets : nullptr); 188 189 if (!isa<Constant>(Val)) { 190 for (auto Ty : SplitTys) 191 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 192 return *VRegs; 193 } 194 195 if (Val.getType()->isAggregateType()) { 196 // UndefValue, ConstantAggregateZero 197 auto &C = cast<Constant>(Val); 198 unsigned Idx = 0; 199 while (auto Elt = C.getAggregateElement(Idx++)) { 200 auto EltRegs = getOrCreateVRegs(*Elt); 201 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 202 } 203 } else { 204 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 205 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 206 bool Success = translate(cast<Constant>(Val), VRegs->front()); 207 if (!Success) { 208 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 209 MF->getFunction().getSubprogram(), 210 &MF->getFunction().getEntryBlock()); 211 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 212 reportTranslationError(*MF, *TPC, *ORE, R); 213 return *VRegs; 214 } 215 } 216 217 return *VRegs; 218 } 219 220 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 221 if (FrameIndices.find(&AI) != FrameIndices.end()) 222 return FrameIndices[&AI]; 223 224 unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 225 unsigned Size = 226 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 227 228 // Always allocate at least one byte. 229 Size = std::max(Size, 1u); 230 231 unsigned Alignment = AI.getAlignment(); 232 if (!Alignment) 233 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 234 235 int &FI = FrameIndices[&AI]; 236 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 237 return FI; 238 } 239 240 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 241 unsigned Alignment = 0; 242 Type *ValTy = nullptr; 243 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 244 Alignment = SI->getAlignment(); 245 ValTy = SI->getValueOperand()->getType(); 246 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 247 Alignment = LI->getAlignment(); 248 ValTy = LI->getType(); 249 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 250 // TODO(PR27168): This instruction has no alignment attribute, but unlike 251 // the default alignment for load/store, the default here is to assume 252 // it has NATURAL alignment, not DataLayout-specified alignment. 253 const DataLayout &DL = AI->getModule()->getDataLayout(); 254 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 255 ValTy = AI->getCompareOperand()->getType(); 256 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 257 // TODO(PR27168): This instruction has no alignment attribute, but unlike 258 // the default alignment for load/store, the default here is to assume 259 // it has NATURAL alignment, not DataLayout-specified alignment. 260 const DataLayout &DL = AI->getModule()->getDataLayout(); 261 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 262 ValTy = AI->getType(); 263 } else { 264 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 265 R << "unable to translate memop: " << ore::NV("Opcode", &I); 266 reportTranslationError(*MF, *TPC, *ORE, R); 267 return 1; 268 } 269 270 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 271 } 272 273 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 274 MachineBasicBlock *&MBB = BBToMBB[&BB]; 275 assert(MBB && "BasicBlock was not encountered before"); 276 return *MBB; 277 } 278 279 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 280 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 281 MachinePreds[Edge].push_back(NewPred); 282 } 283 284 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 285 MachineIRBuilder &MIRBuilder) { 286 // Get or create a virtual register for each value. 287 // Unless the value is a Constant => loadimm cst? 288 // or inline constant each time? 289 // Creation of a virtual register needs to have a size. 290 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 291 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 292 unsigned Res = getOrCreateVReg(U); 293 uint16_t Flags = 0; 294 if (isa<Instruction>(U)) { 295 const Instruction &I = cast<Instruction>(U); 296 Flags = MachineInstr::copyFlagsFromInstruction(I); 297 } 298 299 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 300 return true; 301 } 302 303 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 304 // -0.0 - X --> G_FNEG 305 if (isa<Constant>(U.getOperand(0)) && 306 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 307 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 308 unsigned Res = getOrCreateVReg(U); 309 uint16_t Flags = 0; 310 if (isa<Instruction>(U)) { 311 const Instruction &I = cast<Instruction>(U); 312 Flags = MachineInstr::copyFlagsFromInstruction(I); 313 } 314 // Negate the last operand of the FSUB 315 MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op1}, Flags); 316 return true; 317 } 318 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 319 } 320 321 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 322 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 323 unsigned Res = getOrCreateVReg(U); 324 uint16_t Flags = 0; 325 if (isa<Instruction>(U)) { 326 const Instruction &I = cast<Instruction>(U); 327 Flags = MachineInstr::copyFlagsFromInstruction(I); 328 } 329 MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op0}, Flags); 330 return true; 331 } 332 333 bool IRTranslator::translateCompare(const User &U, 334 MachineIRBuilder &MIRBuilder) { 335 const CmpInst *CI = dyn_cast<CmpInst>(&U); 336 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 337 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 338 unsigned Res = getOrCreateVReg(U); 339 CmpInst::Predicate Pred = 340 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 341 cast<ConstantExpr>(U).getPredicate()); 342 if (CmpInst::isIntPredicate(Pred)) 343 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 344 else if (Pred == CmpInst::FCMP_FALSE) 345 MIRBuilder.buildCopy( 346 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 347 else if (Pred == CmpInst::FCMP_TRUE) 348 MIRBuilder.buildCopy( 349 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 350 else { 351 MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1}, 352 MachineInstr::copyFlagsFromInstruction(*CI)); 353 } 354 355 return true; 356 } 357 358 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 359 const ReturnInst &RI = cast<ReturnInst>(U); 360 const Value *Ret = RI.getReturnValue(); 361 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 362 Ret = nullptr; 363 364 ArrayRef<unsigned> VRegs; 365 if (Ret) 366 VRegs = getOrCreateVRegs(*Ret); 367 368 unsigned SwiftErrorVReg = 0; 369 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 370 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 371 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 372 } 373 374 // The target may mess up with the insertion point, but 375 // this is not important as a return is the last instruction 376 // of the block anyway. 377 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg); 378 } 379 380 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 381 const BranchInst &BrInst = cast<BranchInst>(U); 382 unsigned Succ = 0; 383 if (!BrInst.isUnconditional()) { 384 // We want a G_BRCOND to the true BB followed by an unconditional branch. 385 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 386 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 387 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 388 MIRBuilder.buildBrCond(Tst, TrueBB); 389 } 390 391 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 392 MachineBasicBlock &TgtBB = getMBB(BrTgt); 393 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 394 395 // If the unconditional target is the layout successor, fallthrough. 396 if (!CurBB.isLayoutSuccessor(&TgtBB)) 397 MIRBuilder.buildBr(TgtBB); 398 399 // Link successors. 400 for (const BasicBlock *Succ : successors(&BrInst)) 401 CurBB.addSuccessor(&getMBB(*Succ)); 402 return true; 403 } 404 405 bool IRTranslator::translateSwitch(const User &U, 406 MachineIRBuilder &MIRBuilder) { 407 // For now, just translate as a chain of conditional branches. 408 // FIXME: could we share most of the logic/code in 409 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 410 // At first sight, it seems most of the logic in there is independent of 411 // SelectionDAG-specifics and a lot of work went in to optimize switch 412 // lowering in there. 413 414 const SwitchInst &SwInst = cast<SwitchInst>(U); 415 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 416 const BasicBlock *OrigBB = SwInst.getParent(); 417 418 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 419 for (auto &CaseIt : SwInst.cases()) { 420 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 421 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 422 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 423 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 424 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 425 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 426 427 MIRBuilder.buildBrCond(Tst, TrueMBB); 428 CurMBB.addSuccessor(&TrueMBB); 429 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 430 431 MachineBasicBlock *FalseMBB = 432 MF->CreateMachineBasicBlock(SwInst.getParent()); 433 // Insert the comparison blocks one after the other. 434 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 435 MIRBuilder.buildBr(*FalseMBB); 436 CurMBB.addSuccessor(FalseMBB); 437 438 MIRBuilder.setMBB(*FalseMBB); 439 } 440 // handle default case 441 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 442 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 443 MIRBuilder.buildBr(DefaultMBB); 444 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 445 CurMBB.addSuccessor(&DefaultMBB); 446 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 447 448 return true; 449 } 450 451 bool IRTranslator::translateIndirectBr(const User &U, 452 MachineIRBuilder &MIRBuilder) { 453 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 454 455 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 456 MIRBuilder.buildBrIndirect(Tgt); 457 458 // Link successors. 459 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 460 for (const BasicBlock *Succ : successors(&BrInst)) 461 CurBB.addSuccessor(&getMBB(*Succ)); 462 463 return true; 464 } 465 466 static bool isSwiftError(const Value *V) { 467 if (auto Arg = dyn_cast<Argument>(V)) 468 return Arg->hasSwiftErrorAttr(); 469 if (auto AI = dyn_cast<AllocaInst>(V)) 470 return AI->isSwiftError(); 471 return false; 472 } 473 474 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 475 const LoadInst &LI = cast<LoadInst>(U); 476 477 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 478 : MachineMemOperand::MONone; 479 Flags |= MachineMemOperand::MOLoad; 480 481 if (DL->getTypeStoreSize(LI.getType()) == 0) 482 return true; 483 484 ArrayRef<unsigned> Regs = getOrCreateVRegs(LI); 485 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 486 unsigned Base = getOrCreateVReg(*LI.getPointerOperand()); 487 488 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 489 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 490 491 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 492 assert(Regs.size() == 1 && "swifterror should be single pointer"); 493 unsigned VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 494 LI.getPointerOperand()); 495 MIRBuilder.buildCopy(Regs[0], VReg); 496 return true; 497 } 498 499 500 for (unsigned i = 0; i < Regs.size(); ++i) { 501 unsigned Addr = 0; 502 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 503 504 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 505 unsigned BaseAlign = getMemOpAlignment(LI); 506 auto MMO = MF->getMachineMemOperand( 507 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 508 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 509 LI.getSyncScopeID(), LI.getOrdering()); 510 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 511 } 512 513 return true; 514 } 515 516 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 517 const StoreInst &SI = cast<StoreInst>(U); 518 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 519 : MachineMemOperand::MONone; 520 Flags |= MachineMemOperand::MOStore; 521 522 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 523 return true; 524 525 ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand()); 526 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 527 unsigned Base = getOrCreateVReg(*SI.getPointerOperand()); 528 529 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 530 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 531 532 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 533 assert(Vals.size() == 1 && "swifterror should be single pointer"); 534 535 unsigned VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 536 SI.getPointerOperand()); 537 MIRBuilder.buildCopy(VReg, Vals[0]); 538 return true; 539 } 540 541 for (unsigned i = 0; i < Vals.size(); ++i) { 542 unsigned Addr = 0; 543 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 544 545 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 546 unsigned BaseAlign = getMemOpAlignment(SI); 547 auto MMO = MF->getMachineMemOperand( 548 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 549 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 550 SI.getSyncScopeID(), SI.getOrdering()); 551 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 552 } 553 return true; 554 } 555 556 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 557 const Value *Src = U.getOperand(0); 558 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 559 560 // getIndexedOffsetInType is designed for GEPs, so the first index is the 561 // usual array element rather than looking into the actual aggregate. 562 SmallVector<Value *, 1> Indices; 563 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 564 565 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 566 for (auto Idx : EVI->indices()) 567 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 568 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 569 for (auto Idx : IVI->indices()) 570 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 571 } else { 572 for (unsigned i = 1; i < U.getNumOperands(); ++i) 573 Indices.push_back(U.getOperand(i)); 574 } 575 576 return 8 * static_cast<uint64_t>( 577 DL.getIndexedOffsetInType(Src->getType(), Indices)); 578 } 579 580 bool IRTranslator::translateExtractValue(const User &U, 581 MachineIRBuilder &MIRBuilder) { 582 const Value *Src = U.getOperand(0); 583 uint64_t Offset = getOffsetFromIndices(U, *DL); 584 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 585 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 586 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 587 auto &DstRegs = allocateVRegs(U); 588 589 for (unsigned i = 0; i < DstRegs.size(); ++i) 590 DstRegs[i] = SrcRegs[Idx++]; 591 592 return true; 593 } 594 595 bool IRTranslator::translateInsertValue(const User &U, 596 MachineIRBuilder &MIRBuilder) { 597 const Value *Src = U.getOperand(0); 598 uint64_t Offset = getOffsetFromIndices(U, *DL); 599 auto &DstRegs = allocateVRegs(U); 600 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 601 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 602 ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 603 auto InsertedIt = InsertedRegs.begin(); 604 605 for (unsigned i = 0; i < DstRegs.size(); ++i) { 606 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 607 DstRegs[i] = *InsertedIt++; 608 else 609 DstRegs[i] = SrcRegs[i]; 610 } 611 612 return true; 613 } 614 615 bool IRTranslator::translateSelect(const User &U, 616 MachineIRBuilder &MIRBuilder) { 617 unsigned Tst = getOrCreateVReg(*U.getOperand(0)); 618 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U); 619 ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 620 ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 621 622 const SelectInst &SI = cast<SelectInst>(U); 623 uint16_t Flags = 0; 624 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 625 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 626 627 for (unsigned i = 0; i < ResRegs.size(); ++i) { 628 MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]}, 629 {Tst, Op0Regs[i], Op1Regs[i]}, Flags); 630 } 631 632 return true; 633 } 634 635 bool IRTranslator::translateBitCast(const User &U, 636 MachineIRBuilder &MIRBuilder) { 637 // If we're bitcasting to the source type, we can reuse the source vreg. 638 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 639 getLLTForType(*U.getType(), *DL)) { 640 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 641 auto &Regs = *VMap.getVRegs(U); 642 // If we already assigned a vreg for this bitcast, we can't change that. 643 // Emit a copy to satisfy the users we already emitted. 644 if (!Regs.empty()) 645 MIRBuilder.buildCopy(Regs[0], SrcReg); 646 else { 647 Regs.push_back(SrcReg); 648 VMap.getOffsets(U)->push_back(0); 649 } 650 return true; 651 } 652 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 653 } 654 655 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 656 MachineIRBuilder &MIRBuilder) { 657 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 658 unsigned Res = getOrCreateVReg(U); 659 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 660 return true; 661 } 662 663 bool IRTranslator::translateGetElementPtr(const User &U, 664 MachineIRBuilder &MIRBuilder) { 665 // FIXME: support vector GEPs. 666 if (U.getType()->isVectorTy()) 667 return false; 668 669 Value &Op0 = *U.getOperand(0); 670 unsigned BaseReg = getOrCreateVReg(Op0); 671 Type *PtrIRTy = Op0.getType(); 672 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 673 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 674 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 675 676 int64_t Offset = 0; 677 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 678 GTI != E; ++GTI) { 679 const Value *Idx = GTI.getOperand(); 680 if (StructType *StTy = GTI.getStructTypeOrNull()) { 681 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 682 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 683 continue; 684 } else { 685 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 686 687 // If this is a scalar constant or a splat vector of constants, 688 // handle it quickly. 689 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 690 Offset += ElementSize * CI->getSExtValue(); 691 continue; 692 } 693 694 if (Offset != 0) { 695 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 696 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 697 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 698 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetMIB.getReg(0)); 699 700 BaseReg = NewBaseReg; 701 Offset = 0; 702 } 703 704 unsigned IdxReg = getOrCreateVReg(*Idx); 705 if (MRI->getType(IdxReg) != OffsetTy) { 706 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 707 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 708 IdxReg = NewIdxReg; 709 } 710 711 // N = N + Idx * ElementSize; 712 // Avoid doing it for ElementSize of 1. 713 unsigned GepOffsetReg; 714 if (ElementSize != 1) { 715 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 716 auto ElementSizeMIB = MIRBuilder.buildConstant( 717 getLLTForType(*OffsetIRTy, *DL), ElementSize); 718 MIRBuilder.buildMul(GepOffsetReg, ElementSizeMIB.getReg(0), IdxReg); 719 } else 720 GepOffsetReg = IdxReg; 721 722 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 723 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); 724 BaseReg = NewBaseReg; 725 } 726 } 727 728 if (Offset != 0) { 729 auto OffsetMIB = 730 MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset); 731 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 732 return true; 733 } 734 735 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 736 return true; 737 } 738 739 bool IRTranslator::translateMemfunc(const CallInst &CI, 740 MachineIRBuilder &MIRBuilder, 741 unsigned ID) { 742 743 // If the source is undef, then just emit a nop. 744 if (isa<UndefValue>(CI.getArgOperand(1))) { 745 switch (ID) { 746 case Intrinsic::memmove: 747 case Intrinsic::memcpy: 748 case Intrinsic::memset: 749 return true; 750 default: 751 break; 752 } 753 } 754 755 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 756 Type *DstTy = CI.getArgOperand(0)->getType(); 757 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 758 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 759 return false; 760 761 SmallVector<CallLowering::ArgInfo, 8> Args; 762 for (int i = 0; i < 3; ++i) { 763 const auto &Arg = CI.getArgOperand(i); 764 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 765 } 766 767 const char *Callee; 768 switch (ID) { 769 case Intrinsic::memmove: 770 case Intrinsic::memcpy: { 771 Type *SrcTy = CI.getArgOperand(1)->getType(); 772 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 773 return false; 774 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 775 break; 776 } 777 case Intrinsic::memset: 778 Callee = "memset"; 779 break; 780 default: 781 return false; 782 } 783 784 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 785 MachineOperand::CreateES(Callee), 786 CallLowering::ArgInfo(0, CI.getType()), Args); 787 } 788 789 void IRTranslator::getStackGuard(unsigned DstReg, 790 MachineIRBuilder &MIRBuilder) { 791 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 792 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 793 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 794 MIB.addDef(DstReg); 795 796 auto &TLI = *MF->getSubtarget().getTargetLowering(); 797 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 798 if (!Global) 799 return; 800 801 MachinePointerInfo MPInfo(Global); 802 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 803 MachineMemOperand::MODereferenceable; 804 MachineMemOperand *MemRef = 805 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 806 DL->getPointerABIAlignment(0)); 807 MIB.setMemRefs({MemRef}); 808 } 809 810 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 811 MachineIRBuilder &MIRBuilder) { 812 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI); 813 MIRBuilder.buildInstr(Op) 814 .addDef(ResRegs[0]) 815 .addDef(ResRegs[1]) 816 .addUse(getOrCreateVReg(*CI.getOperand(0))) 817 .addUse(getOrCreateVReg(*CI.getOperand(1))); 818 819 return true; 820 } 821 822 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 823 switch (ID) { 824 default: 825 break; 826 case Intrinsic::bswap: 827 return TargetOpcode::G_BSWAP; 828 case Intrinsic::ceil: 829 return TargetOpcode::G_FCEIL; 830 case Intrinsic::cos: 831 return TargetOpcode::G_FCOS; 832 case Intrinsic::ctpop: 833 return TargetOpcode::G_CTPOP; 834 case Intrinsic::exp: 835 return TargetOpcode::G_FEXP; 836 case Intrinsic::exp2: 837 return TargetOpcode::G_FEXP2; 838 case Intrinsic::fabs: 839 return TargetOpcode::G_FABS; 840 case Intrinsic::copysign: 841 return TargetOpcode::G_FCOPYSIGN; 842 case Intrinsic::canonicalize: 843 return TargetOpcode::G_FCANONICALIZE; 844 case Intrinsic::floor: 845 return TargetOpcode::G_FFLOOR; 846 case Intrinsic::fma: 847 return TargetOpcode::G_FMA; 848 case Intrinsic::log: 849 return TargetOpcode::G_FLOG; 850 case Intrinsic::log2: 851 return TargetOpcode::G_FLOG2; 852 case Intrinsic::log10: 853 return TargetOpcode::G_FLOG10; 854 case Intrinsic::nearbyint: 855 return TargetOpcode::G_FNEARBYINT; 856 case Intrinsic::pow: 857 return TargetOpcode::G_FPOW; 858 case Intrinsic::rint: 859 return TargetOpcode::G_FRINT; 860 case Intrinsic::round: 861 return TargetOpcode::G_INTRINSIC_ROUND; 862 case Intrinsic::sin: 863 return TargetOpcode::G_FSIN; 864 case Intrinsic::sqrt: 865 return TargetOpcode::G_FSQRT; 866 case Intrinsic::trunc: 867 return TargetOpcode::G_INTRINSIC_TRUNC; 868 } 869 return Intrinsic::not_intrinsic; 870 } 871 872 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 873 Intrinsic::ID ID, 874 MachineIRBuilder &MIRBuilder) { 875 876 unsigned Op = getSimpleIntrinsicOpcode(ID); 877 878 // Is this a simple intrinsic? 879 if (Op == Intrinsic::not_intrinsic) 880 return false; 881 882 // Yes. Let's translate it. 883 SmallVector<llvm::SrcOp, 4> VRegs; 884 for (auto &Arg : CI.arg_operands()) 885 VRegs.push_back(getOrCreateVReg(*Arg)); 886 887 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 888 MachineInstr::copyFlagsFromInstruction(CI)); 889 return true; 890 } 891 892 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 893 MachineIRBuilder &MIRBuilder) { 894 895 // If this is a simple intrinsic (that is, we just need to add a def of 896 // a vreg, and uses for each arg operand, then translate it. 897 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 898 return true; 899 900 switch (ID) { 901 default: 902 break; 903 case Intrinsic::lifetime_start: 904 case Intrinsic::lifetime_end: { 905 // No stack colouring in O0, discard region information. 906 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 907 return true; 908 909 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 910 : TargetOpcode::LIFETIME_END; 911 912 // Get the underlying objects for the location passed on the lifetime 913 // marker. 914 SmallVector<const Value *, 4> Allocas; 915 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 916 917 // Iterate over each underlying object, creating lifetime markers for each 918 // static alloca. Quit if we find a non-static alloca. 919 for (const Value *V : Allocas) { 920 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 921 if (!AI) 922 continue; 923 924 if (!AI->isStaticAlloca()) 925 return true; 926 927 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 928 } 929 return true; 930 } 931 case Intrinsic::dbg_declare: { 932 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 933 assert(DI.getVariable() && "Missing variable"); 934 935 const Value *Address = DI.getAddress(); 936 if (!Address || isa<UndefValue>(Address)) { 937 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 938 return true; 939 } 940 941 assert(DI.getVariable()->isValidLocationForIntrinsic( 942 MIRBuilder.getDebugLoc()) && 943 "Expected inlined-at fields to agree"); 944 auto AI = dyn_cast<AllocaInst>(Address); 945 if (AI && AI->isStaticAlloca()) { 946 // Static allocas are tracked at the MF level, no need for DBG_VALUE 947 // instructions (in fact, they get ignored if they *do* exist). 948 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 949 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 950 } else { 951 // A dbg.declare describes the address of a source variable, so lower it 952 // into an indirect DBG_VALUE. 953 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 954 DI.getVariable(), DI.getExpression()); 955 } 956 return true; 957 } 958 case Intrinsic::dbg_label: { 959 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 960 assert(DI.getLabel() && "Missing label"); 961 962 assert(DI.getLabel()->isValidLocationForIntrinsic( 963 MIRBuilder.getDebugLoc()) && 964 "Expected inlined-at fields to agree"); 965 966 MIRBuilder.buildDbgLabel(DI.getLabel()); 967 return true; 968 } 969 case Intrinsic::vaend: 970 // No target I know of cares about va_end. Certainly no in-tree target 971 // does. Simplest intrinsic ever! 972 return true; 973 case Intrinsic::vastart: { 974 auto &TLI = *MF->getSubtarget().getTargetLowering(); 975 Value *Ptr = CI.getArgOperand(0); 976 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 977 978 // FIXME: Get alignment 979 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 980 .addUse(getOrCreateVReg(*Ptr)) 981 .addMemOperand(MF->getMachineMemOperand( 982 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); 983 return true; 984 } 985 case Intrinsic::dbg_value: { 986 // This form of DBG_VALUE is target-independent. 987 const DbgValueInst &DI = cast<DbgValueInst>(CI); 988 const Value *V = DI.getValue(); 989 assert(DI.getVariable()->isValidLocationForIntrinsic( 990 MIRBuilder.getDebugLoc()) && 991 "Expected inlined-at fields to agree"); 992 if (!V) { 993 // Currently the optimizer can produce this; insert an undef to 994 // help debugging. Probably the optimizer should not do this. 995 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 996 } else if (const auto *CI = dyn_cast<Constant>(V)) { 997 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 998 } else { 999 unsigned Reg = getOrCreateVReg(*V); 1000 // FIXME: This does not handle register-indirect values at offset 0. The 1001 // direct/indirect thing shouldn't really be handled by something as 1002 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 1003 // pretty baked in right now. 1004 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1005 } 1006 return true; 1007 } 1008 case Intrinsic::uadd_with_overflow: 1009 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1010 case Intrinsic::sadd_with_overflow: 1011 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1012 case Intrinsic::usub_with_overflow: 1013 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1014 case Intrinsic::ssub_with_overflow: 1015 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1016 case Intrinsic::umul_with_overflow: 1017 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1018 case Intrinsic::smul_with_overflow: 1019 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1020 case Intrinsic::fmuladd: { 1021 const TargetMachine &TM = MF->getTarget(); 1022 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1023 unsigned Dst = getOrCreateVReg(CI); 1024 unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 1025 unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 1026 unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 1027 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 1028 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 1029 // TODO: Revisit this to see if we should move this part of the 1030 // lowering to the combiner. 1031 MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2}, 1032 MachineInstr::copyFlagsFromInstruction(CI)); 1033 } else { 1034 LLT Ty = getLLTForType(*CI.getType(), *DL); 1035 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1}, 1036 MachineInstr::copyFlagsFromInstruction(CI)); 1037 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2}, 1038 MachineInstr::copyFlagsFromInstruction(CI)); 1039 } 1040 return true; 1041 } 1042 case Intrinsic::memcpy: 1043 case Intrinsic::memmove: 1044 case Intrinsic::memset: 1045 return translateMemfunc(CI, MIRBuilder, ID); 1046 case Intrinsic::eh_typeid_for: { 1047 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 1048 unsigned Reg = getOrCreateVReg(CI); 1049 unsigned TypeID = MF->getTypeIDFor(GV); 1050 MIRBuilder.buildConstant(Reg, TypeID); 1051 return true; 1052 } 1053 case Intrinsic::objectsize: { 1054 // If we don't know by now, we're never going to know. 1055 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 1056 1057 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 1058 return true; 1059 } 1060 case Intrinsic::is_constant: 1061 // If this wasn't constant-folded away by now, then it's not a 1062 // constant. 1063 MIRBuilder.buildConstant(getOrCreateVReg(CI), 0); 1064 return true; 1065 case Intrinsic::stackguard: 1066 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1067 return true; 1068 case Intrinsic::stackprotector: { 1069 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1070 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1071 getStackGuard(GuardVal, MIRBuilder); 1072 1073 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1074 int FI = getOrCreateFrameIndex(*Slot); 1075 MF->getFrameInfo().setStackProtectorIndex(FI); 1076 1077 MIRBuilder.buildStore( 1078 GuardVal, getOrCreateVReg(*Slot), 1079 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1080 MachineMemOperand::MOStore | 1081 MachineMemOperand::MOVolatile, 1082 PtrTy.getSizeInBits() / 8, 8)); 1083 return true; 1084 } 1085 case Intrinsic::stacksave: { 1086 // Save the stack pointer to the location provided by the intrinsic. 1087 unsigned Reg = getOrCreateVReg(CI); 1088 unsigned StackPtr = MF->getSubtarget() 1089 .getTargetLowering() 1090 ->getStackPointerRegisterToSaveRestore(); 1091 1092 // If the target doesn't specify a stack pointer, then fall back. 1093 if (!StackPtr) 1094 return false; 1095 1096 MIRBuilder.buildCopy(Reg, StackPtr); 1097 return true; 1098 } 1099 case Intrinsic::stackrestore: { 1100 // Restore the stack pointer from the location provided by the intrinsic. 1101 unsigned Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1102 unsigned StackPtr = MF->getSubtarget() 1103 .getTargetLowering() 1104 ->getStackPointerRegisterToSaveRestore(); 1105 1106 // If the target doesn't specify a stack pointer, then fall back. 1107 if (!StackPtr) 1108 return false; 1109 1110 MIRBuilder.buildCopy(StackPtr, Reg); 1111 return true; 1112 } 1113 case Intrinsic::cttz: 1114 case Intrinsic::ctlz: { 1115 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1116 bool isTrailing = ID == Intrinsic::cttz; 1117 unsigned Opcode = isTrailing 1118 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1119 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1120 : Cst->isZero() ? TargetOpcode::G_CTLZ 1121 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1122 MIRBuilder.buildInstr(Opcode) 1123 .addDef(getOrCreateVReg(CI)) 1124 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 1125 return true; 1126 } 1127 case Intrinsic::invariant_start: { 1128 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1129 unsigned Undef = MRI->createGenericVirtualRegister(PtrTy); 1130 MIRBuilder.buildUndef(Undef); 1131 return true; 1132 } 1133 case Intrinsic::invariant_end: 1134 return true; 1135 case Intrinsic::assume: 1136 case Intrinsic::var_annotation: 1137 case Intrinsic::sideeffect: 1138 // Discard annotate attributes, assumptions, and artificial side-effects. 1139 return true; 1140 } 1141 return false; 1142 } 1143 1144 bool IRTranslator::translateInlineAsm(const CallInst &CI, 1145 MachineIRBuilder &MIRBuilder) { 1146 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 1147 if (!IA.getConstraintString().empty()) 1148 return false; 1149 1150 unsigned ExtraInfo = 0; 1151 if (IA.hasSideEffects()) 1152 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1153 if (IA.getDialect() == InlineAsm::AD_Intel) 1154 ExtraInfo |= InlineAsm::Extra_AsmDialect; 1155 1156 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 1157 .addExternalSymbol(IA.getAsmString().c_str()) 1158 .addImm(ExtraInfo); 1159 1160 return true; 1161 } 1162 1163 unsigned IRTranslator::packRegs(const Value &V, 1164 MachineIRBuilder &MIRBuilder) { 1165 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1166 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1167 LLT BigTy = getLLTForType(*V.getType(), *DL); 1168 1169 if (Regs.size() == 1) 1170 return Regs[0]; 1171 1172 unsigned Dst = MRI->createGenericVirtualRegister(BigTy); 1173 MIRBuilder.buildUndef(Dst); 1174 for (unsigned i = 0; i < Regs.size(); ++i) { 1175 unsigned NewDst = MRI->createGenericVirtualRegister(BigTy); 1176 MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]); 1177 Dst = NewDst; 1178 } 1179 return Dst; 1180 } 1181 1182 void IRTranslator::unpackRegs(const Value &V, unsigned Src, 1183 MachineIRBuilder &MIRBuilder) { 1184 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1185 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1186 1187 for (unsigned i = 0; i < Regs.size(); ++i) 1188 MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]); 1189 } 1190 1191 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1192 const CallInst &CI = cast<CallInst>(U); 1193 auto TII = MF->getTarget().getIntrinsicInfo(); 1194 const Function *F = CI.getCalledFunction(); 1195 1196 // FIXME: support Windows dllimport function calls. 1197 if (F && F->hasDLLImportStorageClass()) 1198 return false; 1199 1200 if (CI.isInlineAsm()) 1201 return translateInlineAsm(CI, MIRBuilder); 1202 1203 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1204 if (F && F->isIntrinsic()) { 1205 ID = F->getIntrinsicID(); 1206 if (TII && ID == Intrinsic::not_intrinsic) 1207 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1208 } 1209 1210 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { 1211 bool IsSplitType = valueIsSplit(CI); 1212 unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister( 1213 getLLTForType(*CI.getType(), *DL)) 1214 : getOrCreateVReg(CI); 1215 1216 SmallVector<unsigned, 8> Args; 1217 unsigned SwiftErrorVReg = 0; 1218 for (auto &Arg: CI.arg_operands()) { 1219 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1220 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1221 unsigned InVReg = MRI->createGenericVirtualRegister(Ty); 1222 MIRBuilder.buildCopy(InVReg, SwiftError.getOrCreateVRegUseAt( 1223 &CI, &MIRBuilder.getMBB(), Arg)); 1224 Args.push_back(InVReg); 1225 SwiftErrorVReg = 1226 SwiftError.getOrCreateVRegDefAt(&CI, &MIRBuilder.getMBB(), Arg); 1227 continue; 1228 } 1229 Args.push_back(packRegs(*Arg, MIRBuilder)); 1230 } 1231 1232 MF->getFrameInfo().setHasCalls(true); 1233 bool Success = 1234 CLI->lowerCall(MIRBuilder, &CI, Res, Args, SwiftErrorVReg, 1235 [&]() { return getOrCreateVReg(*CI.getCalledValue()); }); 1236 1237 if (IsSplitType) 1238 unpackRegs(CI, Res, MIRBuilder); 1239 1240 return Success; 1241 } 1242 1243 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1244 1245 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1246 return true; 1247 1248 ArrayRef<unsigned> ResultRegs; 1249 if (!CI.getType()->isVoidTy()) 1250 ResultRegs = getOrCreateVRegs(CI); 1251 1252 // Ignore the callsite attributes. Backend code is most likely not expecting 1253 // an intrinsic to sometimes have side effects and sometimes not. 1254 MachineInstrBuilder MIB = 1255 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 1256 if (isa<FPMathOperator>(CI)) 1257 MIB->copyIRFlags(CI); 1258 1259 for (auto &Arg : CI.arg_operands()) { 1260 // Some intrinsics take metadata parameters. Reject them. 1261 if (isa<MetadataAsValue>(Arg)) 1262 return false; 1263 MIB.addUse(packRegs(*Arg, MIRBuilder)); 1264 } 1265 1266 // Add a MachineMemOperand if it is a target mem intrinsic. 1267 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1268 TargetLowering::IntrinsicInfo Info; 1269 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1270 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1271 unsigned Align = Info.align; 1272 if (Align == 0) 1273 Align = DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext())); 1274 1275 uint64_t Size = Info.memVT.getStoreSize(); 1276 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1277 Info.flags, Size, Align)); 1278 } 1279 1280 return true; 1281 } 1282 1283 bool IRTranslator::translateInvoke(const User &U, 1284 MachineIRBuilder &MIRBuilder) { 1285 const InvokeInst &I = cast<InvokeInst>(U); 1286 MCContext &Context = MF->getContext(); 1287 1288 const BasicBlock *ReturnBB = I.getSuccessor(0); 1289 const BasicBlock *EHPadBB = I.getSuccessor(1); 1290 1291 const Value *Callee = I.getCalledValue(); 1292 const Function *Fn = dyn_cast<Function>(Callee); 1293 if (isa<InlineAsm>(Callee)) 1294 return false; 1295 1296 // FIXME: support invoking patchpoint and statepoint intrinsics. 1297 if (Fn && Fn->isIntrinsic()) 1298 return false; 1299 1300 // FIXME: support whatever these are. 1301 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1302 return false; 1303 1304 // FIXME: support Windows exception handling. 1305 if (!isa<LandingPadInst>(EHPadBB->front())) 1306 return false; 1307 1308 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1309 // the region covered by the try. 1310 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1311 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1312 1313 unsigned Res = 0; 1314 if (!I.getType()->isVoidTy()) 1315 Res = MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL)); 1316 SmallVector<unsigned, 8> Args; 1317 unsigned SwiftErrorVReg = 0; 1318 for (auto &Arg : I.arg_operands()) { 1319 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 1320 LLT Ty = getLLTForType(*Arg->getType(), *DL); 1321 unsigned InVReg = MRI->createGenericVirtualRegister(Ty); 1322 MIRBuilder.buildCopy(InVReg, SwiftError.getOrCreateVRegUseAt( 1323 &I, &MIRBuilder.getMBB(), Arg)); 1324 Args.push_back(InVReg); 1325 SwiftErrorVReg = 1326 SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg); 1327 continue; 1328 } 1329 1330 Args.push_back(packRegs(*Arg, MIRBuilder)); 1331 } 1332 1333 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, SwiftErrorVReg, 1334 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 1335 return false; 1336 1337 unpackRegs(I, Res, MIRBuilder); 1338 1339 MCSymbol *EndSymbol = Context.createTempSymbol(); 1340 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1341 1342 // FIXME: track probabilities. 1343 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1344 &ReturnMBB = getMBB(*ReturnBB); 1345 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1346 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1347 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1348 MIRBuilder.buildBr(ReturnMBB); 1349 1350 return true; 1351 } 1352 1353 bool IRTranslator::translateCallBr(const User &U, 1354 MachineIRBuilder &MIRBuilder) { 1355 // FIXME: Implement this. 1356 return false; 1357 } 1358 1359 bool IRTranslator::translateLandingPad(const User &U, 1360 MachineIRBuilder &MIRBuilder) { 1361 const LandingPadInst &LP = cast<LandingPadInst>(U); 1362 1363 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1364 1365 MBB.setIsEHPad(); 1366 1367 // If there aren't registers to copy the values into (e.g., during SjLj 1368 // exceptions), then don't bother. 1369 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1370 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1371 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1372 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1373 return true; 1374 1375 // If landingpad's return type is token type, we don't create DAG nodes 1376 // for its exception pointer and selector value. The extraction of exception 1377 // pointer or selector value from token type landingpads is not currently 1378 // supported. 1379 if (LP.getType()->isTokenTy()) 1380 return true; 1381 1382 // Add a label to mark the beginning of the landing pad. Deletion of the 1383 // landing pad can thus be detected via the MachineModuleInfo. 1384 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1385 .addSym(MF->addLandingPad(&MBB)); 1386 1387 LLT Ty = getLLTForType(*LP.getType(), *DL); 1388 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 1389 MIRBuilder.buildUndef(Undef); 1390 1391 SmallVector<LLT, 2> Tys; 1392 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1393 Tys.push_back(getLLTForType(*Ty, *DL)); 1394 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1395 1396 // Mark exception register as live in. 1397 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1398 if (!ExceptionReg) 1399 return false; 1400 1401 MBB.addLiveIn(ExceptionReg); 1402 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP); 1403 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1404 1405 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1406 if (!SelectorReg) 1407 return false; 1408 1409 MBB.addLiveIn(SelectorReg); 1410 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1411 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1412 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1413 1414 return true; 1415 } 1416 1417 bool IRTranslator::translateAlloca(const User &U, 1418 MachineIRBuilder &MIRBuilder) { 1419 auto &AI = cast<AllocaInst>(U); 1420 1421 if (AI.isSwiftError()) 1422 return true; 1423 1424 if (AI.isStaticAlloca()) { 1425 unsigned Res = getOrCreateVReg(AI); 1426 int FI = getOrCreateFrameIndex(AI); 1427 MIRBuilder.buildFrameIndex(Res, FI); 1428 return true; 1429 } 1430 1431 // FIXME: support stack probing for Windows. 1432 if (MF->getTarget().getTargetTriple().isOSWindows()) 1433 return false; 1434 1435 // Now we're in the harder dynamic case. 1436 Type *Ty = AI.getAllocatedType(); 1437 unsigned Align = 1438 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1439 1440 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 1441 1442 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1443 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1444 if (MRI->getType(NumElts) != IntPtrTy) { 1445 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1446 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1447 NumElts = ExtElts; 1448 } 1449 1450 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1451 unsigned TySize = 1452 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1453 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1454 1455 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1456 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1457 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1458 1459 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1460 MIRBuilder.buildCopy(SPTmp, SPReg); 1461 1462 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1463 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1464 1465 // Handle alignment. We have to realign if the allocation granule was smaller 1466 // than stack alignment, or the specific alloca requires more than stack 1467 // alignment. 1468 unsigned StackAlign = 1469 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1470 Align = std::max(Align, StackAlign); 1471 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1472 // Round the size of the allocation up to the stack alignment size 1473 // by add SA-1 to the size. This doesn't overflow because we're computing 1474 // an address inside an alloca. 1475 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1476 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1477 AllocTmp = AlignedAlloc; 1478 } 1479 1480 MIRBuilder.buildCopy(SPReg, AllocTmp); 1481 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1482 1483 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1484 assert(MF->getFrameInfo().hasVarSizedObjects()); 1485 return true; 1486 } 1487 1488 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1489 // FIXME: We may need more info about the type. Because of how LLT works, 1490 // we're completely discarding the i64/double distinction here (amongst 1491 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1492 // anyway but that's not guaranteed. 1493 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1494 .addDef(getOrCreateVReg(U)) 1495 .addUse(getOrCreateVReg(*U.getOperand(0))) 1496 .addImm(DL->getABITypeAlignment(U.getType())); 1497 return true; 1498 } 1499 1500 bool IRTranslator::translateInsertElement(const User &U, 1501 MachineIRBuilder &MIRBuilder) { 1502 // If it is a <1 x Ty> vector, use the scalar as it is 1503 // not a legal vector type in LLT. 1504 if (U.getType()->getVectorNumElements() == 1) { 1505 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1506 auto &Regs = *VMap.getVRegs(U); 1507 if (Regs.empty()) { 1508 Regs.push_back(Elt); 1509 VMap.getOffsets(U)->push_back(0); 1510 } else { 1511 MIRBuilder.buildCopy(Regs[0], Elt); 1512 } 1513 return true; 1514 } 1515 1516 unsigned Res = getOrCreateVReg(U); 1517 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1518 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1519 unsigned Idx = getOrCreateVReg(*U.getOperand(2)); 1520 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1521 return true; 1522 } 1523 1524 bool IRTranslator::translateExtractElement(const User &U, 1525 MachineIRBuilder &MIRBuilder) { 1526 // If it is a <1 x Ty> vector, use the scalar as it is 1527 // not a legal vector type in LLT. 1528 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1529 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1530 auto &Regs = *VMap.getVRegs(U); 1531 if (Regs.empty()) { 1532 Regs.push_back(Elt); 1533 VMap.getOffsets(U)->push_back(0); 1534 } else { 1535 MIRBuilder.buildCopy(Regs[0], Elt); 1536 } 1537 return true; 1538 } 1539 unsigned Res = getOrCreateVReg(U); 1540 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1541 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1542 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1543 unsigned Idx = 0; 1544 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1545 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1546 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1547 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1548 Idx = getOrCreateVReg(*NewIdxCI); 1549 } 1550 } 1551 if (!Idx) 1552 Idx = getOrCreateVReg(*U.getOperand(1)); 1553 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1554 const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1555 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); 1556 } 1557 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1558 return true; 1559 } 1560 1561 bool IRTranslator::translateShuffleVector(const User &U, 1562 MachineIRBuilder &MIRBuilder) { 1563 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1564 .addDef(getOrCreateVReg(U)) 1565 .addUse(getOrCreateVReg(*U.getOperand(0))) 1566 .addUse(getOrCreateVReg(*U.getOperand(1))) 1567 .addUse(getOrCreateVReg(*U.getOperand(2))); 1568 return true; 1569 } 1570 1571 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1572 const PHINode &PI = cast<PHINode>(U); 1573 1574 SmallVector<MachineInstr *, 4> Insts; 1575 for (auto Reg : getOrCreateVRegs(PI)) { 1576 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1577 Insts.push_back(MIB.getInstr()); 1578 } 1579 1580 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1581 return true; 1582 } 1583 1584 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1585 MachineIRBuilder &MIRBuilder) { 1586 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1587 1588 if (I.isWeak()) 1589 return false; 1590 1591 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1592 : MachineMemOperand::MONone; 1593 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1594 1595 Type *ResType = I.getType(); 1596 Type *ValType = ResType->Type::getStructElementType(0); 1597 1598 auto Res = getOrCreateVRegs(I); 1599 unsigned OldValRes = Res[0]; 1600 unsigned SuccessRes = Res[1]; 1601 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1602 unsigned Cmp = getOrCreateVReg(*I.getCompareOperand()); 1603 unsigned NewVal = getOrCreateVReg(*I.getNewValOperand()); 1604 1605 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1606 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1607 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1608 Flags, DL->getTypeStoreSize(ValType), 1609 getMemOpAlignment(I), AAMDNodes(), nullptr, 1610 I.getSyncScopeID(), I.getSuccessOrdering(), 1611 I.getFailureOrdering())); 1612 return true; 1613 } 1614 1615 bool IRTranslator::translateAtomicRMW(const User &U, 1616 MachineIRBuilder &MIRBuilder) { 1617 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1618 1619 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1620 : MachineMemOperand::MONone; 1621 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1622 1623 Type *ResType = I.getType(); 1624 1625 unsigned Res = getOrCreateVReg(I); 1626 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1627 unsigned Val = getOrCreateVReg(*I.getValOperand()); 1628 1629 unsigned Opcode = 0; 1630 switch (I.getOperation()) { 1631 default: 1632 llvm_unreachable("Unknown atomicrmw op"); 1633 return false; 1634 case AtomicRMWInst::Xchg: 1635 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 1636 break; 1637 case AtomicRMWInst::Add: 1638 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 1639 break; 1640 case AtomicRMWInst::Sub: 1641 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 1642 break; 1643 case AtomicRMWInst::And: 1644 Opcode = TargetOpcode::G_ATOMICRMW_AND; 1645 break; 1646 case AtomicRMWInst::Nand: 1647 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 1648 break; 1649 case AtomicRMWInst::Or: 1650 Opcode = TargetOpcode::G_ATOMICRMW_OR; 1651 break; 1652 case AtomicRMWInst::Xor: 1653 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 1654 break; 1655 case AtomicRMWInst::Max: 1656 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 1657 break; 1658 case AtomicRMWInst::Min: 1659 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 1660 break; 1661 case AtomicRMWInst::UMax: 1662 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 1663 break; 1664 case AtomicRMWInst::UMin: 1665 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 1666 break; 1667 } 1668 1669 MIRBuilder.buildAtomicRMW( 1670 Opcode, Res, Addr, Val, 1671 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1672 Flags, DL->getTypeStoreSize(ResType), 1673 getMemOpAlignment(I), AAMDNodes(), nullptr, 1674 I.getSyncScopeID(), I.getOrdering())); 1675 return true; 1676 } 1677 1678 void IRTranslator::finishPendingPhis() { 1679 #ifndef NDEBUG 1680 DILocationVerifier Verifier; 1681 GISelObserverWrapper WrapperObserver(&Verifier); 1682 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 1683 #endif // ifndef NDEBUG 1684 for (auto &Phi : PendingPHIs) { 1685 const PHINode *PI = Phi.first; 1686 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 1687 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 1688 #ifndef NDEBUG 1689 Verifier.setCurrentInst(PI); 1690 #endif // ifndef NDEBUG 1691 1692 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1693 // won't create extra control flow here, otherwise we need to find the 1694 // dominating predecessor here (or perhaps force the weirder IRTranslators 1695 // to provide a simple boundary). 1696 SmallSet<const BasicBlock *, 4> HandledPreds; 1697 1698 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1699 auto IRPred = PI->getIncomingBlock(i); 1700 if (HandledPreds.count(IRPred)) 1701 continue; 1702 1703 HandledPreds.insert(IRPred); 1704 ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 1705 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1706 assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) && 1707 "incorrect CFG at MachineBasicBlock level"); 1708 for (unsigned j = 0; j < ValRegs.size(); ++j) { 1709 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 1710 MIB.addUse(ValRegs[j]); 1711 MIB.addMBB(Pred); 1712 } 1713 } 1714 } 1715 } 1716 } 1717 1718 bool IRTranslator::valueIsSplit(const Value &V, 1719 SmallVectorImpl<uint64_t> *Offsets) { 1720 SmallVector<LLT, 4> SplitTys; 1721 if (Offsets && !Offsets->empty()) 1722 Offsets->clear(); 1723 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 1724 return SplitTys.size() > 1; 1725 } 1726 1727 bool IRTranslator::translate(const Instruction &Inst) { 1728 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 1729 // We only emit constants into the entry block from here. To prevent jumpy 1730 // debug behaviour set the line to 0. 1731 if (const DebugLoc &DL = Inst.getDebugLoc()) 1732 EntryBuilder->setDebugLoc( 1733 DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 1734 else 1735 EntryBuilder->setDebugLoc(DebugLoc()); 1736 1737 switch (Inst.getOpcode()) { 1738 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1739 case Instruction::OPCODE: \ 1740 return translate##OPCODE(Inst, *CurBuilder.get()); 1741 #include "llvm/IR/Instruction.def" 1742 default: 1743 return false; 1744 } 1745 } 1746 1747 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1748 if (auto CI = dyn_cast<ConstantInt>(&C)) 1749 EntryBuilder->buildConstant(Reg, *CI); 1750 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1751 EntryBuilder->buildFConstant(Reg, *CF); 1752 else if (isa<UndefValue>(C)) 1753 EntryBuilder->buildUndef(Reg); 1754 else if (isa<ConstantPointerNull>(C)) { 1755 // As we are trying to build a constant val of 0 into a pointer, 1756 // insert a cast to make them correct with respect to types. 1757 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 1758 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 1759 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 1760 unsigned ZeroReg = getOrCreateVReg(*ZeroVal); 1761 EntryBuilder->buildCast(Reg, ZeroReg); 1762 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 1763 EntryBuilder->buildGlobalValue(Reg, GV); 1764 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1765 if (!CAZ->getType()->isVectorTy()) 1766 return false; 1767 // Return the scalar if it is a <1 x Ty> vector. 1768 if (CAZ->getNumElements() == 1) 1769 return translate(*CAZ->getElementValue(0u), Reg); 1770 SmallVector<unsigned, 4> Ops; 1771 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1772 Constant &Elt = *CAZ->getElementValue(i); 1773 Ops.push_back(getOrCreateVReg(Elt)); 1774 } 1775 EntryBuilder->buildBuildVector(Reg, Ops); 1776 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1777 // Return the scalar if it is a <1 x Ty> vector. 1778 if (CV->getNumElements() == 1) 1779 return translate(*CV->getElementAsConstant(0), Reg); 1780 SmallVector<unsigned, 4> Ops; 1781 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1782 Constant &Elt = *CV->getElementAsConstant(i); 1783 Ops.push_back(getOrCreateVReg(Elt)); 1784 } 1785 EntryBuilder->buildBuildVector(Reg, Ops); 1786 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1787 switch(CE->getOpcode()) { 1788 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1789 case Instruction::OPCODE: \ 1790 return translate##OPCODE(*CE, *EntryBuilder.get()); 1791 #include "llvm/IR/Instruction.def" 1792 default: 1793 return false; 1794 } 1795 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 1796 if (CV->getNumOperands() == 1) 1797 return translate(*CV->getOperand(0), Reg); 1798 SmallVector<unsigned, 4> Ops; 1799 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 1800 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 1801 } 1802 EntryBuilder->buildBuildVector(Reg, Ops); 1803 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 1804 EntryBuilder->buildBlockAddress(Reg, BA); 1805 } else 1806 return false; 1807 1808 return true; 1809 } 1810 1811 void IRTranslator::finalizeFunction() { 1812 // Release the memory used by the different maps we 1813 // needed during the translation. 1814 PendingPHIs.clear(); 1815 VMap.reset(); 1816 FrameIndices.clear(); 1817 MachinePreds.clear(); 1818 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 1819 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 1820 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 1821 EntryBuilder.reset(); 1822 CurBuilder.reset(); 1823 } 1824 1825 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1826 MF = &CurMF; 1827 const Function &F = MF->getFunction(); 1828 if (F.empty()) 1829 return false; 1830 GISelCSEAnalysisWrapper &Wrapper = 1831 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 1832 // Set the CSEConfig and run the analysis. 1833 GISelCSEInfo *CSEInfo = nullptr; 1834 TPC = &getAnalysis<TargetPassConfig>(); 1835 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 1836 ? EnableCSEInIRTranslator 1837 : TPC->isGISelCSEEnabled(); 1838 1839 if (EnableCSE) { 1840 EntryBuilder = make_unique<CSEMIRBuilder>(CurMF); 1841 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 1842 EntryBuilder->setCSEInfo(CSEInfo); 1843 CurBuilder = make_unique<CSEMIRBuilder>(CurMF); 1844 CurBuilder->setCSEInfo(CSEInfo); 1845 } else { 1846 EntryBuilder = make_unique<MachineIRBuilder>(); 1847 CurBuilder = make_unique<MachineIRBuilder>(); 1848 } 1849 CLI = MF->getSubtarget().getCallLowering(); 1850 CurBuilder->setMF(*MF); 1851 EntryBuilder->setMF(*MF); 1852 MRI = &MF->getRegInfo(); 1853 DL = &F.getParent()->getDataLayout(); 1854 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 1855 1856 assert(PendingPHIs.empty() && "stale PHIs"); 1857 1858 if (!DL->isLittleEndian()) { 1859 // Currently we don't properly handle big endian code. 1860 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1861 F.getSubprogram(), &F.getEntryBlock()); 1862 R << "unable to translate in big endian mode"; 1863 reportTranslationError(*MF, *TPC, *ORE, R); 1864 } 1865 1866 // Release the per-function state when we return, whether we succeeded or not. 1867 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1868 1869 // Setup a separate basic-block for the arguments and constants 1870 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1871 MF->push_back(EntryBB); 1872 EntryBuilder->setMBB(*EntryBB); 1873 1874 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 1875 SwiftError.setFunction(CurMF); 1876 SwiftError.createEntriesInEntryBlock(DbgLoc); 1877 1878 // Create all blocks, in IR order, to preserve the layout. 1879 for (const BasicBlock &BB: F) { 1880 auto *&MBB = BBToMBB[&BB]; 1881 1882 MBB = MF->CreateMachineBasicBlock(&BB); 1883 MF->push_back(MBB); 1884 1885 if (BB.hasAddressTaken()) 1886 MBB->setHasAddressTaken(); 1887 } 1888 1889 // Make our arguments/constants entry block fallthrough to the IR entry block. 1890 EntryBB->addSuccessor(&getMBB(F.front())); 1891 1892 // Lower the actual args into this basic block. 1893 SmallVector<unsigned, 8> VRegArgs; 1894 for (const Argument &Arg: F.args()) { 1895 if (DL->getTypeStoreSize(Arg.getType()) == 0) 1896 continue; // Don't handle zero sized types. 1897 VRegArgs.push_back( 1898 MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL))); 1899 1900 if (Arg.hasSwiftErrorAttr()) 1901 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), 1902 VRegArgs.back()); 1903 } 1904 1905 // We don't currently support translating swifterror or swiftself functions. 1906 for (auto &Arg : F.args()) { 1907 if (Arg.hasSwiftSelfAttr()) { 1908 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1909 F.getSubprogram(), &F.getEntryBlock()); 1910 R << "unable to lower arguments due to swiftself: " 1911 << ore::NV("Prototype", F.getType()); 1912 reportTranslationError(*MF, *TPC, *ORE, R); 1913 return false; 1914 } 1915 } 1916 1917 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 1918 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1919 F.getSubprogram(), &F.getEntryBlock()); 1920 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1921 reportTranslationError(*MF, *TPC, *ORE, R); 1922 return false; 1923 } 1924 1925 auto ArgIt = F.arg_begin(); 1926 for (auto &VArg : VRegArgs) { 1927 // If the argument is an unsplit scalar then don't use unpackRegs to avoid 1928 // creating redundant copies. 1929 if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) { 1930 auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt)); 1931 assert(VRegs.empty() && "VRegs already populated?"); 1932 VRegs.push_back(VArg); 1933 } else { 1934 unpackRegs(*ArgIt, VArg, *EntryBuilder.get()); 1935 } 1936 ArgIt++; 1937 } 1938 1939 // Need to visit defs before uses when translating instructions. 1940 GISelObserverWrapper WrapperObserver; 1941 if (EnableCSE && CSEInfo) 1942 WrapperObserver.addObserver(CSEInfo); 1943 { 1944 ReversePostOrderTraversal<const Function *> RPOT(&F); 1945 #ifndef NDEBUG 1946 DILocationVerifier Verifier; 1947 WrapperObserver.addObserver(&Verifier); 1948 #endif // ifndef NDEBUG 1949 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 1950 for (const BasicBlock *BB : RPOT) { 1951 MachineBasicBlock &MBB = getMBB(*BB); 1952 // Set the insertion point of all the following translations to 1953 // the end of this basic block. 1954 CurBuilder->setMBB(MBB); 1955 1956 for (const Instruction &Inst : *BB) { 1957 #ifndef NDEBUG 1958 Verifier.setCurrentInst(&Inst); 1959 #endif // ifndef NDEBUG 1960 if (translate(Inst)) 1961 continue; 1962 1963 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1964 Inst.getDebugLoc(), BB); 1965 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 1966 1967 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 1968 std::string InstStrStorage; 1969 raw_string_ostream InstStr(InstStrStorage); 1970 InstStr << Inst; 1971 1972 R << ": '" << InstStr.str() << "'"; 1973 } 1974 1975 reportTranslationError(*MF, *TPC, *ORE, R); 1976 return false; 1977 } 1978 } 1979 #ifndef NDEBUG 1980 WrapperObserver.removeObserver(&Verifier); 1981 #endif 1982 } 1983 1984 finishPendingPhis(); 1985 1986 SwiftError.propagateVRegs(); 1987 1988 // Merge the argument lowering and constants block with its single 1989 // successor, the LLVM-IR entry block. We want the basic block to 1990 // be maximal. 1991 assert(EntryBB->succ_size() == 1 && 1992 "Custom BB used for lowering should have only one successor"); 1993 // Get the successor of the current entry block. 1994 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1995 assert(NewEntryBB.pred_size() == 1 && 1996 "LLVM-IR entry block has a predecessor!?"); 1997 // Move all the instruction from the current entry block to the 1998 // new entry block. 1999 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 2000 EntryBB->end()); 2001 2002 // Update the live-in information for the new entry block. 2003 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 2004 NewEntryBB.addLiveIn(LiveIn); 2005 NewEntryBB.sortUniqueLiveIns(); 2006 2007 // Get rid of the now empty basic block. 2008 EntryBB->removeSuccessor(&NewEntryBB); 2009 MF->remove(EntryBB); 2010 MF->DeleteMachineBasicBlock(EntryBB); 2011 2012 assert(&MF->front() == &NewEntryBB && 2013 "New entry wasn't next in the list of basic block!"); 2014 2015 // Initialize stack protector information. 2016 StackProtector &SP = getAnalysis<StackProtector>(); 2017 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 2018 2019 return false; 2020 } 2021