1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 #include "llvm/ADT/PostOrderIterator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 22 #include "llvm/CodeGen/LowLevelType.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/StackProtector.h" 31 #include "llvm/CodeGen/TargetFrameLowering.h" 32 #include "llvm/CodeGen/TargetLowering.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GetElementPtrTypeIterator.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/LowLevelTypeImpl.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetIntrinsicInfo.h" 65 #include "llvm/Target/TargetMachine.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <iterator> 70 #include <string> 71 #include <utility> 72 #include <vector> 73 74 #define DEBUG_TYPE "irtranslator" 75 76 using namespace llvm; 77 78 char IRTranslator::ID = 0; 79 80 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 81 false, false) 82 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 83 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 84 false, false) 85 86 static void reportTranslationError(MachineFunction &MF, 87 const TargetPassConfig &TPC, 88 OptimizationRemarkEmitter &ORE, 89 OptimizationRemarkMissed &R) { 90 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 91 92 // Print the function name explicitly if we don't have a debug location (which 93 // makes the diagnostic less useful) or if we're going to emit a raw error. 94 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 95 R << (" (in function: " + MF.getName() + ")").str(); 96 97 if (TPC.isGlobalISelAbortEnabled()) 98 report_fatal_error(R.getMsg()); 99 else 100 ORE.emit(R); 101 } 102 103 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { 104 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 105 } 106 107 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 108 AU.addRequired<StackProtector>(); 109 AU.addRequired<TargetPassConfig>(); 110 getSelectionDAGFallbackAnalysisUsage(AU); 111 MachineFunctionPass::getAnalysisUsage(AU); 112 } 113 114 static void computeValueLLTs(const DataLayout &DL, Type &Ty, 115 SmallVectorImpl<LLT> &ValueTys, 116 SmallVectorImpl<uint64_t> *Offsets = nullptr, 117 uint64_t StartingOffset = 0) { 118 // Given a struct type, recursively traverse the elements. 119 if (StructType *STy = dyn_cast<StructType>(&Ty)) { 120 const StructLayout *SL = DL.getStructLayout(STy); 121 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) 122 computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, 123 StartingOffset + SL->getElementOffset(I)); 124 return; 125 } 126 // Given an array type, recursively traverse the elements. 127 if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { 128 Type *EltTy = ATy->getElementType(); 129 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 130 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 131 computeValueLLTs(DL, *EltTy, ValueTys, Offsets, 132 StartingOffset + i * EltSize); 133 return; 134 } 135 // Interpret void as zero return values. 136 if (Ty.isVoidTy()) 137 return; 138 // Base case: we can get an LLT for this LLVM IR type. 139 ValueTys.push_back(getLLTForType(Ty, DL)); 140 if (Offsets != nullptr) 141 Offsets->push_back(StartingOffset * 8); 142 } 143 144 IRTranslator::ValueToVRegInfo::VRegListT & 145 IRTranslator::allocateVRegs(const Value &Val) { 146 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 147 auto *Regs = VMap.getVRegs(Val); 148 auto *Offsets = VMap.getOffsets(Val); 149 SmallVector<LLT, 4> SplitTys; 150 computeValueLLTs(*DL, *Val.getType(), SplitTys, 151 Offsets->empty() ? Offsets : nullptr); 152 for (unsigned i = 0; i < SplitTys.size(); ++i) 153 Regs->push_back(0); 154 return *Regs; 155 } 156 157 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) { 158 auto VRegsIt = VMap.findVRegs(Val); 159 if (VRegsIt != VMap.vregs_end()) 160 return *VRegsIt->second; 161 162 if (Val.getType()->isVoidTy()) 163 return *VMap.getVRegs(Val); 164 165 // Create entry for this type. 166 auto *VRegs = VMap.getVRegs(Val); 167 auto *Offsets = VMap.getOffsets(Val); 168 169 assert(Val.getType()->isSized() && 170 "Don't know how to create an empty vreg"); 171 172 SmallVector<LLT, 4> SplitTys; 173 computeValueLLTs(*DL, *Val.getType(), SplitTys, 174 Offsets->empty() ? Offsets : nullptr); 175 176 if (!isa<Constant>(Val)) { 177 for (auto Ty : SplitTys) 178 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 179 return *VRegs; 180 } 181 182 if (Val.getType()->isAggregateType()) { 183 // UndefValue, ConstantAggregateZero 184 auto &C = cast<Constant>(Val); 185 unsigned Idx = 0; 186 while (auto Elt = C.getAggregateElement(Idx++)) { 187 auto EltRegs = getOrCreateVRegs(*Elt); 188 std::copy(EltRegs.begin(), EltRegs.end(), std::back_inserter(*VRegs)); 189 } 190 } else { 191 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 192 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 193 bool Success = translate(cast<Constant>(Val), VRegs->front()); 194 if (!Success) { 195 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 196 MF->getFunction().getSubprogram(), 197 &MF->getFunction().getEntryBlock()); 198 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 199 reportTranslationError(*MF, *TPC, *ORE, R); 200 return *VRegs; 201 } 202 } 203 204 return *VRegs; 205 } 206 207 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 208 if (FrameIndices.find(&AI) != FrameIndices.end()) 209 return FrameIndices[&AI]; 210 211 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 212 unsigned Size = 213 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 214 215 // Always allocate at least one byte. 216 Size = std::max(Size, 1u); 217 218 unsigned Alignment = AI.getAlignment(); 219 if (!Alignment) 220 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 221 222 int &FI = FrameIndices[&AI]; 223 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 224 return FI; 225 } 226 227 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 228 unsigned Alignment = 0; 229 Type *ValTy = nullptr; 230 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 231 Alignment = SI->getAlignment(); 232 ValTy = SI->getValueOperand()->getType(); 233 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 234 Alignment = LI->getAlignment(); 235 ValTy = LI->getType(); 236 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 237 // TODO(PR27168): This instruction has no alignment attribute, but unlike 238 // the default alignment for load/store, the default here is to assume 239 // it has NATURAL alignment, not DataLayout-specified alignment. 240 const DataLayout &DL = AI->getModule()->getDataLayout(); 241 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 242 ValTy = AI->getCompareOperand()->getType(); 243 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 244 // TODO(PR27168): This instruction has no alignment attribute, but unlike 245 // the default alignment for load/store, the default here is to assume 246 // it has NATURAL alignment, not DataLayout-specified alignment. 247 const DataLayout &DL = AI->getModule()->getDataLayout(); 248 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 249 ValTy = AI->getType(); 250 } else { 251 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 252 R << "unable to translate memop: " << ore::NV("Opcode", &I); 253 reportTranslationError(*MF, *TPC, *ORE, R); 254 return 1; 255 } 256 257 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 258 } 259 260 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 261 MachineBasicBlock *&MBB = BBToMBB[&BB]; 262 assert(MBB && "BasicBlock was not encountered before"); 263 return *MBB; 264 } 265 266 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 267 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 268 MachinePreds[Edge].push_back(NewPred); 269 } 270 271 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 272 MachineIRBuilder &MIRBuilder) { 273 // FIXME: handle signed/unsigned wrapping flags. 274 275 // Get or create a virtual register for each value. 276 // Unless the value is a Constant => loadimm cst? 277 // or inline constant each time? 278 // Creation of a virtual register needs to have a size. 279 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 280 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 281 unsigned Res = getOrCreateVReg(U); 282 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); 283 return true; 284 } 285 286 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 287 // -0.0 - X --> G_FNEG 288 if (isa<Constant>(U.getOperand(0)) && 289 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 290 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 291 .addDef(getOrCreateVReg(U)) 292 .addUse(getOrCreateVReg(*U.getOperand(1))); 293 return true; 294 } 295 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 296 } 297 298 bool IRTranslator::translateCompare(const User &U, 299 MachineIRBuilder &MIRBuilder) { 300 const CmpInst *CI = dyn_cast<CmpInst>(&U); 301 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 302 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 303 unsigned Res = getOrCreateVReg(U); 304 CmpInst::Predicate Pred = 305 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 306 cast<ConstantExpr>(U).getPredicate()); 307 if (CmpInst::isIntPredicate(Pred)) 308 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 309 else if (Pred == CmpInst::FCMP_FALSE) 310 MIRBuilder.buildCopy( 311 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 312 else if (Pred == CmpInst::FCMP_TRUE) 313 MIRBuilder.buildCopy( 314 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 315 else 316 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); 317 318 return true; 319 } 320 321 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 322 const ReturnInst &RI = cast<ReturnInst>(U); 323 const Value *Ret = RI.getReturnValue(); 324 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 325 Ret = nullptr; 326 327 ArrayRef<unsigned> VRegs; 328 if (Ret) 329 VRegs = getOrCreateVRegs(*Ret); 330 331 // The target may mess up with the insertion point, but 332 // this is not important as a return is the last instruction 333 // of the block anyway. 334 335 return CLI->lowerReturn(MIRBuilder, Ret, VRegs); 336 } 337 338 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 339 const BranchInst &BrInst = cast<BranchInst>(U); 340 unsigned Succ = 0; 341 if (!BrInst.isUnconditional()) { 342 // We want a G_BRCOND to the true BB followed by an unconditional branch. 343 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 344 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 345 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 346 MIRBuilder.buildBrCond(Tst, TrueBB); 347 } 348 349 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 350 MachineBasicBlock &TgtBB = getMBB(BrTgt); 351 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 352 353 // If the unconditional target is the layout successor, fallthrough. 354 if (!CurBB.isLayoutSuccessor(&TgtBB)) 355 MIRBuilder.buildBr(TgtBB); 356 357 // Link successors. 358 for (const BasicBlock *Succ : successors(&BrInst)) 359 CurBB.addSuccessor(&getMBB(*Succ)); 360 return true; 361 } 362 363 bool IRTranslator::translateSwitch(const User &U, 364 MachineIRBuilder &MIRBuilder) { 365 // For now, just translate as a chain of conditional branches. 366 // FIXME: could we share most of the logic/code in 367 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 368 // At first sight, it seems most of the logic in there is independent of 369 // SelectionDAG-specifics and a lot of work went in to optimize switch 370 // lowering in there. 371 372 const SwitchInst &SwInst = cast<SwitchInst>(U); 373 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 374 const BasicBlock *OrigBB = SwInst.getParent(); 375 376 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 377 for (auto &CaseIt : SwInst.cases()) { 378 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 379 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 380 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 381 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 382 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 383 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 384 385 MIRBuilder.buildBrCond(Tst, TrueMBB); 386 CurMBB.addSuccessor(&TrueMBB); 387 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 388 389 MachineBasicBlock *FalseMBB = 390 MF->CreateMachineBasicBlock(SwInst.getParent()); 391 // Insert the comparison blocks one after the other. 392 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 393 MIRBuilder.buildBr(*FalseMBB); 394 CurMBB.addSuccessor(FalseMBB); 395 396 MIRBuilder.setMBB(*FalseMBB); 397 } 398 // handle default case 399 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 400 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 401 MIRBuilder.buildBr(DefaultMBB); 402 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 403 CurMBB.addSuccessor(&DefaultMBB); 404 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 405 406 return true; 407 } 408 409 bool IRTranslator::translateIndirectBr(const User &U, 410 MachineIRBuilder &MIRBuilder) { 411 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 412 413 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 414 MIRBuilder.buildBrIndirect(Tgt); 415 416 // Link successors. 417 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 418 for (const BasicBlock *Succ : successors(&BrInst)) 419 CurBB.addSuccessor(&getMBB(*Succ)); 420 421 return true; 422 } 423 424 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 425 const LoadInst &LI = cast<LoadInst>(U); 426 427 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 428 : MachineMemOperand::MONone; 429 Flags |= MachineMemOperand::MOLoad; 430 431 if (DL->getTypeStoreSize(LI.getType()) == 0) 432 return true; 433 434 ArrayRef<unsigned> Regs = getOrCreateVRegs(LI); 435 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 436 unsigned Base = getOrCreateVReg(*LI.getPointerOperand()); 437 438 for (unsigned i = 0; i < Regs.size(); ++i) { 439 unsigned Addr = 0; 440 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); 441 442 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 443 unsigned BaseAlign = getMemOpAlignment(LI); 444 auto MMO = MF->getMachineMemOperand( 445 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 446 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 447 LI.getSyncScopeID(), LI.getOrdering()); 448 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 449 } 450 451 return true; 452 } 453 454 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 455 const StoreInst &SI = cast<StoreInst>(U); 456 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 457 : MachineMemOperand::MONone; 458 Flags |= MachineMemOperand::MOStore; 459 460 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 461 return true; 462 463 ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand()); 464 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 465 unsigned Base = getOrCreateVReg(*SI.getPointerOperand()); 466 467 for (unsigned i = 0; i < Vals.size(); ++i) { 468 unsigned Addr = 0; 469 MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8); 470 471 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 472 unsigned BaseAlign = getMemOpAlignment(SI); 473 auto MMO = MF->getMachineMemOperand( 474 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 475 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 476 SI.getSyncScopeID(), SI.getOrdering()); 477 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 478 } 479 return true; 480 } 481 482 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 483 const Value *Src = U.getOperand(0); 484 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 485 486 // getIndexedOffsetInType is designed for GEPs, so the first index is the 487 // usual array element rather than looking into the actual aggregate. 488 SmallVector<Value *, 1> Indices; 489 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 490 491 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 492 for (auto Idx : EVI->indices()) 493 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 494 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 495 for (auto Idx : IVI->indices()) 496 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 497 } else { 498 for (unsigned i = 1; i < U.getNumOperands(); ++i) 499 Indices.push_back(U.getOperand(i)); 500 } 501 502 return 8 * static_cast<uint64_t>( 503 DL.getIndexedOffsetInType(Src->getType(), Indices)); 504 } 505 506 bool IRTranslator::translateExtractValue(const User &U, 507 MachineIRBuilder &MIRBuilder) { 508 const Value *Src = U.getOperand(0); 509 uint64_t Offset = getOffsetFromIndices(U, *DL); 510 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 511 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 512 unsigned Idx = std::lower_bound(Offsets.begin(), Offsets.end(), Offset) - 513 Offsets.begin(); 514 auto &DstRegs = allocateVRegs(U); 515 516 for (unsigned i = 0; i < DstRegs.size(); ++i) 517 DstRegs[i] = SrcRegs[Idx++]; 518 519 return true; 520 } 521 522 bool IRTranslator::translateInsertValue(const User &U, 523 MachineIRBuilder &MIRBuilder) { 524 const Value *Src = U.getOperand(0); 525 uint64_t Offset = getOffsetFromIndices(U, *DL); 526 auto &DstRegs = allocateVRegs(U); 527 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 528 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 529 ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 530 auto InsertedIt = InsertedRegs.begin(); 531 532 for (unsigned i = 0; i < DstRegs.size(); ++i) { 533 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 534 DstRegs[i] = *InsertedIt++; 535 else 536 DstRegs[i] = SrcRegs[i]; 537 } 538 539 return true; 540 } 541 542 bool IRTranslator::translateSelect(const User &U, 543 MachineIRBuilder &MIRBuilder) { 544 unsigned Tst = getOrCreateVReg(*U.getOperand(0)); 545 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U); 546 ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 547 ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 548 549 for (unsigned i = 0; i < ResRegs.size(); ++i) 550 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i]); 551 552 return true; 553 } 554 555 bool IRTranslator::translateBitCast(const User &U, 556 MachineIRBuilder &MIRBuilder) { 557 // If we're bitcasting to the source type, we can reuse the source vreg. 558 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 559 getLLTForType(*U.getType(), *DL)) { 560 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 561 auto &Regs = *VMap.getVRegs(U); 562 // If we already assigned a vreg for this bitcast, we can't change that. 563 // Emit a copy to satisfy the users we already emitted. 564 if (!Regs.empty()) 565 MIRBuilder.buildCopy(Regs[0], SrcReg); 566 else { 567 Regs.push_back(SrcReg); 568 VMap.getOffsets(U)->push_back(0); 569 } 570 return true; 571 } 572 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 573 } 574 575 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 576 MachineIRBuilder &MIRBuilder) { 577 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 578 unsigned Res = getOrCreateVReg(U); 579 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 580 return true; 581 } 582 583 bool IRTranslator::translateGetElementPtr(const User &U, 584 MachineIRBuilder &MIRBuilder) { 585 // FIXME: support vector GEPs. 586 if (U.getType()->isVectorTy()) 587 return false; 588 589 Value &Op0 = *U.getOperand(0); 590 unsigned BaseReg = getOrCreateVReg(Op0); 591 Type *PtrIRTy = Op0.getType(); 592 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 593 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 594 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 595 596 int64_t Offset = 0; 597 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 598 GTI != E; ++GTI) { 599 const Value *Idx = GTI.getOperand(); 600 if (StructType *StTy = GTI.getStructTypeOrNull()) { 601 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 602 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 603 continue; 604 } else { 605 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 606 607 // If this is a scalar constant or a splat vector of constants, 608 // handle it quickly. 609 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 610 Offset += ElementSize * CI->getSExtValue(); 611 continue; 612 } 613 614 if (Offset != 0) { 615 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 616 unsigned OffsetReg = 617 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 618 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 619 620 BaseReg = NewBaseReg; 621 Offset = 0; 622 } 623 624 unsigned IdxReg = getOrCreateVReg(*Idx); 625 if (MRI->getType(IdxReg) != OffsetTy) { 626 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 627 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 628 IdxReg = NewIdxReg; 629 } 630 631 // N = N + Idx * ElementSize; 632 // Avoid doing it for ElementSize of 1. 633 unsigned GepOffsetReg; 634 if (ElementSize != 1) { 635 unsigned ElementSizeReg = 636 getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize)); 637 638 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 639 MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg); 640 } else 641 GepOffsetReg = IdxReg; 642 643 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 644 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); 645 BaseReg = NewBaseReg; 646 } 647 } 648 649 if (Offset != 0) { 650 unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset)); 651 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 652 return true; 653 } 654 655 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 656 return true; 657 } 658 659 bool IRTranslator::translateMemfunc(const CallInst &CI, 660 MachineIRBuilder &MIRBuilder, 661 unsigned ID) { 662 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 663 Type *DstTy = CI.getArgOperand(0)->getType(); 664 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 665 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 666 return false; 667 668 SmallVector<CallLowering::ArgInfo, 8> Args; 669 for (int i = 0; i < 3; ++i) { 670 const auto &Arg = CI.getArgOperand(i); 671 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 672 } 673 674 const char *Callee; 675 switch (ID) { 676 case Intrinsic::memmove: 677 case Intrinsic::memcpy: { 678 Type *SrcTy = CI.getArgOperand(1)->getType(); 679 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 680 return false; 681 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 682 break; 683 } 684 case Intrinsic::memset: 685 Callee = "memset"; 686 break; 687 default: 688 return false; 689 } 690 691 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 692 MachineOperand::CreateES(Callee), 693 CallLowering::ArgInfo(0, CI.getType()), Args); 694 } 695 696 void IRTranslator::getStackGuard(unsigned DstReg, 697 MachineIRBuilder &MIRBuilder) { 698 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 699 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 700 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 701 MIB.addDef(DstReg); 702 703 auto &TLI = *MF->getSubtarget().getTargetLowering(); 704 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 705 if (!Global) 706 return; 707 708 MachinePointerInfo MPInfo(Global); 709 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 710 MachineMemOperand::MODereferenceable; 711 MachineMemOperand *MemRef = 712 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 713 DL->getPointerABIAlignment(0)); 714 MIB.setMemRefs({MemRef}); 715 } 716 717 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 718 MachineIRBuilder &MIRBuilder) { 719 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI); 720 MIRBuilder.buildInstr(Op) 721 .addDef(ResRegs[0]) 722 .addDef(ResRegs[1]) 723 .addUse(getOrCreateVReg(*CI.getOperand(0))) 724 .addUse(getOrCreateVReg(*CI.getOperand(1))); 725 726 return true; 727 } 728 729 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 730 MachineIRBuilder &MIRBuilder) { 731 switch (ID) { 732 default: 733 break; 734 case Intrinsic::lifetime_start: 735 case Intrinsic::lifetime_end: 736 // Stack coloring is not enabled in O0 (which we care about now) so we can 737 // drop these. Make sure someone notices when we start compiling at higher 738 // opts though. 739 if (MF->getTarget().getOptLevel() != CodeGenOpt::None) 740 return false; 741 return true; 742 case Intrinsic::dbg_declare: { 743 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 744 assert(DI.getVariable() && "Missing variable"); 745 746 const Value *Address = DI.getAddress(); 747 if (!Address || isa<UndefValue>(Address)) { 748 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 749 return true; 750 } 751 752 assert(DI.getVariable()->isValidLocationForIntrinsic( 753 MIRBuilder.getDebugLoc()) && 754 "Expected inlined-at fields to agree"); 755 auto AI = dyn_cast<AllocaInst>(Address); 756 if (AI && AI->isStaticAlloca()) { 757 // Static allocas are tracked at the MF level, no need for DBG_VALUE 758 // instructions (in fact, they get ignored if they *do* exist). 759 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 760 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 761 } else 762 MIRBuilder.buildDirectDbgValue(getOrCreateVReg(*Address), 763 DI.getVariable(), DI.getExpression()); 764 return true; 765 } 766 case Intrinsic::dbg_label: { 767 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 768 assert(DI.getLabel() && "Missing label"); 769 770 assert(DI.getLabel()->isValidLocationForIntrinsic( 771 MIRBuilder.getDebugLoc()) && 772 "Expected inlined-at fields to agree"); 773 774 MIRBuilder.buildDbgLabel(DI.getLabel()); 775 return true; 776 } 777 case Intrinsic::vaend: 778 // No target I know of cares about va_end. Certainly no in-tree target 779 // does. Simplest intrinsic ever! 780 return true; 781 case Intrinsic::vastart: { 782 auto &TLI = *MF->getSubtarget().getTargetLowering(); 783 Value *Ptr = CI.getArgOperand(0); 784 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 785 786 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 787 .addUse(getOrCreateVReg(*Ptr)) 788 .addMemOperand(MF->getMachineMemOperand( 789 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0)); 790 return true; 791 } 792 case Intrinsic::dbg_value: { 793 // This form of DBG_VALUE is target-independent. 794 const DbgValueInst &DI = cast<DbgValueInst>(CI); 795 const Value *V = DI.getValue(); 796 assert(DI.getVariable()->isValidLocationForIntrinsic( 797 MIRBuilder.getDebugLoc()) && 798 "Expected inlined-at fields to agree"); 799 if (!V) { 800 // Currently the optimizer can produce this; insert an undef to 801 // help debugging. Probably the optimizer should not do this. 802 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 803 } else if (const auto *CI = dyn_cast<Constant>(V)) { 804 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 805 } else { 806 unsigned Reg = getOrCreateVReg(*V); 807 // FIXME: This does not handle register-indirect values at offset 0. The 808 // direct/indirect thing shouldn't really be handled by something as 809 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 810 // pretty baked in right now. 811 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 812 } 813 return true; 814 } 815 case Intrinsic::uadd_with_overflow: 816 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 817 case Intrinsic::sadd_with_overflow: 818 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 819 case Intrinsic::usub_with_overflow: 820 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 821 case Intrinsic::ssub_with_overflow: 822 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 823 case Intrinsic::umul_with_overflow: 824 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 825 case Intrinsic::smul_with_overflow: 826 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 827 case Intrinsic::pow: 828 MIRBuilder.buildInstr(TargetOpcode::G_FPOW) 829 .addDef(getOrCreateVReg(CI)) 830 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 831 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 832 return true; 833 case Intrinsic::exp: 834 MIRBuilder.buildInstr(TargetOpcode::G_FEXP) 835 .addDef(getOrCreateVReg(CI)) 836 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 837 return true; 838 case Intrinsic::exp2: 839 MIRBuilder.buildInstr(TargetOpcode::G_FEXP2) 840 .addDef(getOrCreateVReg(CI)) 841 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 842 return true; 843 case Intrinsic::log: 844 MIRBuilder.buildInstr(TargetOpcode::G_FLOG) 845 .addDef(getOrCreateVReg(CI)) 846 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 847 return true; 848 case Intrinsic::log2: 849 MIRBuilder.buildInstr(TargetOpcode::G_FLOG2) 850 .addDef(getOrCreateVReg(CI)) 851 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 852 return true; 853 case Intrinsic::fabs: 854 MIRBuilder.buildInstr(TargetOpcode::G_FABS) 855 .addDef(getOrCreateVReg(CI)) 856 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 857 return true; 858 case Intrinsic::trunc: 859 MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_TRUNC) 860 .addDef(getOrCreateVReg(CI)) 861 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 862 return true; 863 case Intrinsic::round: 864 MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_ROUND) 865 .addDef(getOrCreateVReg(CI)) 866 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 867 return true; 868 case Intrinsic::fma: 869 MIRBuilder.buildInstr(TargetOpcode::G_FMA) 870 .addDef(getOrCreateVReg(CI)) 871 .addUse(getOrCreateVReg(*CI.getArgOperand(0))) 872 .addUse(getOrCreateVReg(*CI.getArgOperand(1))) 873 .addUse(getOrCreateVReg(*CI.getArgOperand(2))); 874 return true; 875 case Intrinsic::fmuladd: { 876 const TargetMachine &TM = MF->getTarget(); 877 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 878 unsigned Dst = getOrCreateVReg(CI); 879 unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 880 unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 881 unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 882 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 883 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 884 // TODO: Revisit this to see if we should move this part of the 885 // lowering to the combiner. 886 MIRBuilder.buildInstr(TargetOpcode::G_FMA, Dst, Op0, Op1, Op2); 887 } else { 888 LLT Ty = getLLTForType(*CI.getType(), *DL); 889 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, Ty, Op0, Op1); 890 MIRBuilder.buildInstr(TargetOpcode::G_FADD, Dst, FMul, Op2); 891 } 892 return true; 893 } 894 case Intrinsic::memcpy: 895 case Intrinsic::memmove: 896 case Intrinsic::memset: 897 return translateMemfunc(CI, MIRBuilder, ID); 898 case Intrinsic::eh_typeid_for: { 899 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 900 unsigned Reg = getOrCreateVReg(CI); 901 unsigned TypeID = MF->getTypeIDFor(GV); 902 MIRBuilder.buildConstant(Reg, TypeID); 903 return true; 904 } 905 case Intrinsic::objectsize: { 906 // If we don't know by now, we're never going to know. 907 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 908 909 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 910 return true; 911 } 912 case Intrinsic::stackguard: 913 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 914 return true; 915 case Intrinsic::stackprotector: { 916 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 917 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 918 getStackGuard(GuardVal, MIRBuilder); 919 920 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 921 MIRBuilder.buildStore( 922 GuardVal, getOrCreateVReg(*Slot), 923 *MF->getMachineMemOperand( 924 MachinePointerInfo::getFixedStack(*MF, 925 getOrCreateFrameIndex(*Slot)), 926 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 927 PtrTy.getSizeInBits() / 8, 8)); 928 return true; 929 } 930 case Intrinsic::cttz: 931 case Intrinsic::ctlz: { 932 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 933 bool isTrailing = ID == Intrinsic::cttz; 934 unsigned Opcode = isTrailing 935 ? Cst->isZero() ? TargetOpcode::G_CTTZ 936 : TargetOpcode::G_CTTZ_ZERO_UNDEF 937 : Cst->isZero() ? TargetOpcode::G_CTLZ 938 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 939 MIRBuilder.buildInstr(Opcode) 940 .addDef(getOrCreateVReg(CI)) 941 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 942 return true; 943 } 944 case Intrinsic::ctpop: { 945 MIRBuilder.buildInstr(TargetOpcode::G_CTPOP) 946 .addDef(getOrCreateVReg(CI)) 947 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 948 return true; 949 } 950 } 951 return false; 952 } 953 954 bool IRTranslator::translateInlineAsm(const CallInst &CI, 955 MachineIRBuilder &MIRBuilder) { 956 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 957 if (!IA.getConstraintString().empty()) 958 return false; 959 960 unsigned ExtraInfo = 0; 961 if (IA.hasSideEffects()) 962 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 963 if (IA.getDialect() == InlineAsm::AD_Intel) 964 ExtraInfo |= InlineAsm::Extra_AsmDialect; 965 966 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 967 .addExternalSymbol(IA.getAsmString().c_str()) 968 .addImm(ExtraInfo); 969 970 return true; 971 } 972 973 unsigned IRTranslator::packRegs(const Value &V, 974 MachineIRBuilder &MIRBuilder) { 975 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 976 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 977 LLT BigTy = getLLTForType(*V.getType(), *DL); 978 979 if (Regs.size() == 1) 980 return Regs[0]; 981 982 unsigned Dst = MRI->createGenericVirtualRegister(BigTy); 983 MIRBuilder.buildUndef(Dst); 984 for (unsigned i = 0; i < Regs.size(); ++i) { 985 unsigned NewDst = MRI->createGenericVirtualRegister(BigTy); 986 MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]); 987 Dst = NewDst; 988 } 989 return Dst; 990 } 991 992 void IRTranslator::unpackRegs(const Value &V, unsigned Src, 993 MachineIRBuilder &MIRBuilder) { 994 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 995 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 996 997 for (unsigned i = 0; i < Regs.size(); ++i) 998 MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]); 999 } 1000 1001 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1002 const CallInst &CI = cast<CallInst>(U); 1003 auto TII = MF->getTarget().getIntrinsicInfo(); 1004 const Function *F = CI.getCalledFunction(); 1005 1006 // FIXME: support Windows dllimport function calls. 1007 if (F && F->hasDLLImportStorageClass()) 1008 return false; 1009 1010 if (CI.isInlineAsm()) 1011 return translateInlineAsm(CI, MIRBuilder); 1012 1013 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1014 if (F && F->isIntrinsic()) { 1015 ID = F->getIntrinsicID(); 1016 if (TII && ID == Intrinsic::not_intrinsic) 1017 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1018 } 1019 1020 bool IsSplitType = valueIsSplit(CI); 1021 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { 1022 unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister( 1023 getLLTForType(*CI.getType(), *DL)) 1024 : getOrCreateVReg(CI); 1025 1026 SmallVector<unsigned, 8> Args; 1027 for (auto &Arg: CI.arg_operands()) 1028 Args.push_back(packRegs(*Arg, MIRBuilder)); 1029 1030 MF->getFrameInfo().setHasCalls(true); 1031 bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() { 1032 return getOrCreateVReg(*CI.getCalledValue()); 1033 }); 1034 1035 if (IsSplitType) 1036 unpackRegs(CI, Res, MIRBuilder); 1037 return Success; 1038 } 1039 1040 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1041 1042 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1043 return true; 1044 1045 unsigned Res = 0; 1046 if (!CI.getType()->isVoidTy()) { 1047 if (IsSplitType) 1048 Res = 1049 MRI->createGenericVirtualRegister(getLLTForType(*CI.getType(), *DL)); 1050 else 1051 Res = getOrCreateVReg(CI); 1052 } 1053 MachineInstrBuilder MIB = 1054 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 1055 1056 for (auto &Arg : CI.arg_operands()) { 1057 // Some intrinsics take metadata parameters. Reject them. 1058 if (isa<MetadataAsValue>(Arg)) 1059 return false; 1060 MIB.addUse(packRegs(*Arg, MIRBuilder)); 1061 } 1062 1063 if (IsSplitType) 1064 unpackRegs(CI, Res, MIRBuilder); 1065 1066 // Add a MachineMemOperand if it is a target mem intrinsic. 1067 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1068 TargetLowering::IntrinsicInfo Info; 1069 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1070 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1071 uint64_t Size = Info.memVT.getStoreSize(); 1072 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1073 Info.flags, Size, Info.align)); 1074 } 1075 1076 return true; 1077 } 1078 1079 bool IRTranslator::translateInvoke(const User &U, 1080 MachineIRBuilder &MIRBuilder) { 1081 const InvokeInst &I = cast<InvokeInst>(U); 1082 MCContext &Context = MF->getContext(); 1083 1084 const BasicBlock *ReturnBB = I.getSuccessor(0); 1085 const BasicBlock *EHPadBB = I.getSuccessor(1); 1086 1087 const Value *Callee = I.getCalledValue(); 1088 const Function *Fn = dyn_cast<Function>(Callee); 1089 if (isa<InlineAsm>(Callee)) 1090 return false; 1091 1092 // FIXME: support invoking patchpoint and statepoint intrinsics. 1093 if (Fn && Fn->isIntrinsic()) 1094 return false; 1095 1096 // FIXME: support whatever these are. 1097 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1098 return false; 1099 1100 // FIXME: support Windows exception handling. 1101 if (!isa<LandingPadInst>(EHPadBB->front())) 1102 return false; 1103 1104 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1105 // the region covered by the try. 1106 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1107 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1108 1109 unsigned Res = 1110 MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL)); 1111 SmallVector<unsigned, 8> Args; 1112 for (auto &Arg: I.arg_operands()) 1113 Args.push_back(packRegs(*Arg, MIRBuilder)); 1114 1115 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, 1116 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 1117 return false; 1118 1119 unpackRegs(I, Res, MIRBuilder); 1120 1121 MCSymbol *EndSymbol = Context.createTempSymbol(); 1122 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1123 1124 // FIXME: track probabilities. 1125 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1126 &ReturnMBB = getMBB(*ReturnBB); 1127 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1128 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1129 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1130 MIRBuilder.buildBr(ReturnMBB); 1131 1132 return true; 1133 } 1134 1135 bool IRTranslator::translateLandingPad(const User &U, 1136 MachineIRBuilder &MIRBuilder) { 1137 const LandingPadInst &LP = cast<LandingPadInst>(U); 1138 1139 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1140 addLandingPadInfo(LP, MBB); 1141 1142 MBB.setIsEHPad(); 1143 1144 // If there aren't registers to copy the values into (e.g., during SjLj 1145 // exceptions), then don't bother. 1146 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1147 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1148 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1149 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1150 return true; 1151 1152 // If landingpad's return type is token type, we don't create DAG nodes 1153 // for its exception pointer and selector value. The extraction of exception 1154 // pointer or selector value from token type landingpads is not currently 1155 // supported. 1156 if (LP.getType()->isTokenTy()) 1157 return true; 1158 1159 // Add a label to mark the beginning of the landing pad. Deletion of the 1160 // landing pad can thus be detected via the MachineModuleInfo. 1161 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1162 .addSym(MF->addLandingPad(&MBB)); 1163 1164 LLT Ty = getLLTForType(*LP.getType(), *DL); 1165 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 1166 MIRBuilder.buildUndef(Undef); 1167 1168 SmallVector<LLT, 2> Tys; 1169 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1170 Tys.push_back(getLLTForType(*Ty, *DL)); 1171 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1172 1173 // Mark exception register as live in. 1174 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1175 if (!ExceptionReg) 1176 return false; 1177 1178 MBB.addLiveIn(ExceptionReg); 1179 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP); 1180 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1181 1182 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1183 if (!SelectorReg) 1184 return false; 1185 1186 MBB.addLiveIn(SelectorReg); 1187 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1188 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1189 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1190 1191 return true; 1192 } 1193 1194 bool IRTranslator::translateAlloca(const User &U, 1195 MachineIRBuilder &MIRBuilder) { 1196 auto &AI = cast<AllocaInst>(U); 1197 1198 if (AI.isSwiftError()) 1199 return false; 1200 1201 if (AI.isStaticAlloca()) { 1202 unsigned Res = getOrCreateVReg(AI); 1203 int FI = getOrCreateFrameIndex(AI); 1204 MIRBuilder.buildFrameIndex(Res, FI); 1205 return true; 1206 } 1207 1208 // FIXME: support stack probing for Windows. 1209 if (MF->getTarget().getTargetTriple().isOSWindows()) 1210 return false; 1211 1212 // Now we're in the harder dynamic case. 1213 Type *Ty = AI.getAllocatedType(); 1214 unsigned Align = 1215 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1216 1217 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 1218 1219 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1220 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1221 if (MRI->getType(NumElts) != IntPtrTy) { 1222 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1223 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1224 NumElts = ExtElts; 1225 } 1226 1227 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1228 unsigned TySize = 1229 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1230 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1231 1232 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1233 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1234 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1235 1236 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1237 MIRBuilder.buildCopy(SPTmp, SPReg); 1238 1239 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1240 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1241 1242 // Handle alignment. We have to realign if the allocation granule was smaller 1243 // than stack alignment, or the specific alloca requires more than stack 1244 // alignment. 1245 unsigned StackAlign = 1246 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1247 Align = std::max(Align, StackAlign); 1248 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1249 // Round the size of the allocation up to the stack alignment size 1250 // by add SA-1 to the size. This doesn't overflow because we're computing 1251 // an address inside an alloca. 1252 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1253 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1254 AllocTmp = AlignedAlloc; 1255 } 1256 1257 MIRBuilder.buildCopy(SPReg, AllocTmp); 1258 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1259 1260 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1261 assert(MF->getFrameInfo().hasVarSizedObjects()); 1262 return true; 1263 } 1264 1265 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1266 // FIXME: We may need more info about the type. Because of how LLT works, 1267 // we're completely discarding the i64/double distinction here (amongst 1268 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1269 // anyway but that's not guaranteed. 1270 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1271 .addDef(getOrCreateVReg(U)) 1272 .addUse(getOrCreateVReg(*U.getOperand(0))) 1273 .addImm(DL->getABITypeAlignment(U.getType())); 1274 return true; 1275 } 1276 1277 bool IRTranslator::translateInsertElement(const User &U, 1278 MachineIRBuilder &MIRBuilder) { 1279 // If it is a <1 x Ty> vector, use the scalar as it is 1280 // not a legal vector type in LLT. 1281 if (U.getType()->getVectorNumElements() == 1) { 1282 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1283 auto &Regs = *VMap.getVRegs(U); 1284 if (Regs.empty()) { 1285 Regs.push_back(Elt); 1286 VMap.getOffsets(U)->push_back(0); 1287 } else { 1288 MIRBuilder.buildCopy(Regs[0], Elt); 1289 } 1290 return true; 1291 } 1292 1293 unsigned Res = getOrCreateVReg(U); 1294 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1295 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1296 unsigned Idx = getOrCreateVReg(*U.getOperand(2)); 1297 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1298 return true; 1299 } 1300 1301 bool IRTranslator::translateExtractElement(const User &U, 1302 MachineIRBuilder &MIRBuilder) { 1303 // If it is a <1 x Ty> vector, use the scalar as it is 1304 // not a legal vector type in LLT. 1305 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1306 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1307 auto &Regs = *VMap.getVRegs(U); 1308 if (Regs.empty()) { 1309 Regs.push_back(Elt); 1310 VMap.getOffsets(U)->push_back(0); 1311 } else { 1312 MIRBuilder.buildCopy(Regs[0], Elt); 1313 } 1314 return true; 1315 } 1316 unsigned Res = getOrCreateVReg(U); 1317 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1318 unsigned Idx = getOrCreateVReg(*U.getOperand(1)); 1319 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1320 return true; 1321 } 1322 1323 bool IRTranslator::translateShuffleVector(const User &U, 1324 MachineIRBuilder &MIRBuilder) { 1325 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1326 .addDef(getOrCreateVReg(U)) 1327 .addUse(getOrCreateVReg(*U.getOperand(0))) 1328 .addUse(getOrCreateVReg(*U.getOperand(1))) 1329 .addUse(getOrCreateVReg(*U.getOperand(2))); 1330 return true; 1331 } 1332 1333 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1334 const PHINode &PI = cast<PHINode>(U); 1335 1336 SmallVector<MachineInstr *, 4> Insts; 1337 for (auto Reg : getOrCreateVRegs(PI)) { 1338 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, Reg); 1339 Insts.push_back(MIB.getInstr()); 1340 } 1341 1342 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1343 return true; 1344 } 1345 1346 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1347 MachineIRBuilder &MIRBuilder) { 1348 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1349 1350 if (I.isWeak()) 1351 return false; 1352 1353 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1354 : MachineMemOperand::MONone; 1355 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1356 1357 Type *ResType = I.getType(); 1358 Type *ValType = ResType->Type::getStructElementType(0); 1359 1360 auto Res = getOrCreateVRegs(I); 1361 unsigned OldValRes = Res[0]; 1362 unsigned SuccessRes = Res[1]; 1363 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1364 unsigned Cmp = getOrCreateVReg(*I.getCompareOperand()); 1365 unsigned NewVal = getOrCreateVReg(*I.getNewValOperand()); 1366 1367 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1368 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1369 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1370 Flags, DL->getTypeStoreSize(ValType), 1371 getMemOpAlignment(I), AAMDNodes(), nullptr, 1372 I.getSyncScopeID(), I.getSuccessOrdering(), 1373 I.getFailureOrdering())); 1374 return true; 1375 } 1376 1377 bool IRTranslator::translateAtomicRMW(const User &U, 1378 MachineIRBuilder &MIRBuilder) { 1379 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1380 1381 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1382 : MachineMemOperand::MONone; 1383 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1384 1385 Type *ResType = I.getType(); 1386 1387 unsigned Res = getOrCreateVReg(I); 1388 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1389 unsigned Val = getOrCreateVReg(*I.getValOperand()); 1390 1391 unsigned Opcode = 0; 1392 switch (I.getOperation()) { 1393 default: 1394 llvm_unreachable("Unknown atomicrmw op"); 1395 return false; 1396 case AtomicRMWInst::Xchg: 1397 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 1398 break; 1399 case AtomicRMWInst::Add: 1400 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 1401 break; 1402 case AtomicRMWInst::Sub: 1403 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 1404 break; 1405 case AtomicRMWInst::And: 1406 Opcode = TargetOpcode::G_ATOMICRMW_AND; 1407 break; 1408 case AtomicRMWInst::Nand: 1409 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 1410 break; 1411 case AtomicRMWInst::Or: 1412 Opcode = TargetOpcode::G_ATOMICRMW_OR; 1413 break; 1414 case AtomicRMWInst::Xor: 1415 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 1416 break; 1417 case AtomicRMWInst::Max: 1418 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 1419 break; 1420 case AtomicRMWInst::Min: 1421 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 1422 break; 1423 case AtomicRMWInst::UMax: 1424 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 1425 break; 1426 case AtomicRMWInst::UMin: 1427 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 1428 break; 1429 } 1430 1431 MIRBuilder.buildAtomicRMW( 1432 Opcode, Res, Addr, Val, 1433 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1434 Flags, DL->getTypeStoreSize(ResType), 1435 getMemOpAlignment(I), AAMDNodes(), nullptr, 1436 I.getSyncScopeID(), I.getOrdering())); 1437 return true; 1438 } 1439 1440 void IRTranslator::finishPendingPhis() { 1441 for (auto &Phi : PendingPHIs) { 1442 const PHINode *PI = Phi.first; 1443 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 1444 1445 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1446 // won't create extra control flow here, otherwise we need to find the 1447 // dominating predecessor here (or perhaps force the weirder IRTranslators 1448 // to provide a simple boundary). 1449 SmallSet<const BasicBlock *, 4> HandledPreds; 1450 1451 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1452 auto IRPred = PI->getIncomingBlock(i); 1453 if (HandledPreds.count(IRPred)) 1454 continue; 1455 1456 HandledPreds.insert(IRPred); 1457 ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 1458 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1459 assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) && 1460 "incorrect CFG at MachineBasicBlock level"); 1461 for (unsigned j = 0; j < ValRegs.size(); ++j) { 1462 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 1463 MIB.addUse(ValRegs[j]); 1464 MIB.addMBB(Pred); 1465 } 1466 } 1467 } 1468 } 1469 } 1470 1471 bool IRTranslator::valueIsSplit(const Value &V, 1472 SmallVectorImpl<uint64_t> *Offsets) { 1473 SmallVector<LLT, 4> SplitTys; 1474 if (Offsets && !Offsets->empty()) 1475 Offsets->clear(); 1476 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 1477 return SplitTys.size() > 1; 1478 } 1479 1480 bool IRTranslator::translate(const Instruction &Inst) { 1481 CurBuilder.setDebugLoc(Inst.getDebugLoc()); 1482 switch(Inst.getOpcode()) { 1483 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1484 case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder); 1485 #include "llvm/IR/Instruction.def" 1486 default: 1487 return false; 1488 } 1489 } 1490 1491 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1492 if (auto CI = dyn_cast<ConstantInt>(&C)) 1493 EntryBuilder.buildConstant(Reg, *CI); 1494 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1495 EntryBuilder.buildFConstant(Reg, *CF); 1496 else if (isa<UndefValue>(C)) 1497 EntryBuilder.buildUndef(Reg); 1498 else if (isa<ConstantPointerNull>(C)) { 1499 // As we are trying to build a constant val of 0 into a pointer, 1500 // insert a cast to make them correct with respect to types. 1501 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 1502 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 1503 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 1504 unsigned ZeroReg = getOrCreateVReg(*ZeroVal); 1505 EntryBuilder.buildCast(Reg, ZeroReg); 1506 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 1507 EntryBuilder.buildGlobalValue(Reg, GV); 1508 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1509 if (!CAZ->getType()->isVectorTy()) 1510 return false; 1511 // Return the scalar if it is a <1 x Ty> vector. 1512 if (CAZ->getNumElements() == 1) 1513 return translate(*CAZ->getElementValue(0u), Reg); 1514 std::vector<unsigned> Ops; 1515 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1516 Constant &Elt = *CAZ->getElementValue(i); 1517 Ops.push_back(getOrCreateVReg(Elt)); 1518 } 1519 EntryBuilder.buildMerge(Reg, Ops); 1520 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1521 // Return the scalar if it is a <1 x Ty> vector. 1522 if (CV->getNumElements() == 1) 1523 return translate(*CV->getElementAsConstant(0), Reg); 1524 std::vector<unsigned> Ops; 1525 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1526 Constant &Elt = *CV->getElementAsConstant(i); 1527 Ops.push_back(getOrCreateVReg(Elt)); 1528 } 1529 EntryBuilder.buildMerge(Reg, Ops); 1530 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1531 switch(CE->getOpcode()) { 1532 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1533 case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder); 1534 #include "llvm/IR/Instruction.def" 1535 default: 1536 return false; 1537 } 1538 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 1539 if (CV->getNumOperands() == 1) 1540 return translate(*CV->getOperand(0), Reg); 1541 SmallVector<unsigned, 4> Ops; 1542 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 1543 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 1544 } 1545 EntryBuilder.buildMerge(Reg, Ops); 1546 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 1547 EntryBuilder.buildBlockAddress(Reg, BA); 1548 } else 1549 return false; 1550 1551 return true; 1552 } 1553 1554 void IRTranslator::finalizeFunction() { 1555 // Release the memory used by the different maps we 1556 // needed during the translation. 1557 PendingPHIs.clear(); 1558 VMap.reset(); 1559 FrameIndices.clear(); 1560 MachinePreds.clear(); 1561 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 1562 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 1563 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 1564 EntryBuilder = MachineIRBuilder(); 1565 CurBuilder = MachineIRBuilder(); 1566 } 1567 1568 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1569 MF = &CurMF; 1570 const Function &F = MF->getFunction(); 1571 if (F.empty()) 1572 return false; 1573 CLI = MF->getSubtarget().getCallLowering(); 1574 CurBuilder.setMF(*MF); 1575 EntryBuilder.setMF(*MF); 1576 MRI = &MF->getRegInfo(); 1577 DL = &F.getParent()->getDataLayout(); 1578 TPC = &getAnalysis<TargetPassConfig>(); 1579 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 1580 1581 assert(PendingPHIs.empty() && "stale PHIs"); 1582 1583 if (!DL->isLittleEndian()) { 1584 // Currently we don't properly handle big endian code. 1585 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1586 F.getSubprogram(), &F.getEntryBlock()); 1587 R << "unable to translate in big endian mode"; 1588 reportTranslationError(*MF, *TPC, *ORE, R); 1589 } 1590 1591 // Release the per-function state when we return, whether we succeeded or not. 1592 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1593 1594 // Setup a separate basic-block for the arguments and constants 1595 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1596 MF->push_back(EntryBB); 1597 EntryBuilder.setMBB(*EntryBB); 1598 1599 // Create all blocks, in IR order, to preserve the layout. 1600 for (const BasicBlock &BB: F) { 1601 auto *&MBB = BBToMBB[&BB]; 1602 1603 MBB = MF->CreateMachineBasicBlock(&BB); 1604 MF->push_back(MBB); 1605 1606 if (BB.hasAddressTaken()) 1607 MBB->setHasAddressTaken(); 1608 } 1609 1610 // Make our arguments/constants entry block fallthrough to the IR entry block. 1611 EntryBB->addSuccessor(&getMBB(F.front())); 1612 1613 // Lower the actual args into this basic block. 1614 SmallVector<unsigned, 8> VRegArgs; 1615 for (const Argument &Arg: F.args()) { 1616 if (DL->getTypeStoreSize(Arg.getType()) == 0) 1617 continue; // Don't handle zero sized types. 1618 VRegArgs.push_back( 1619 MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL))); 1620 } 1621 1622 // We don't currently support translating swifterror or swiftself functions. 1623 for (auto &Arg : F.args()) { 1624 if (Arg.hasSwiftErrorAttr() || Arg.hasSwiftSelfAttr()) { 1625 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1626 F.getSubprogram(), &F.getEntryBlock()); 1627 R << "unable to lower arguments due to swifterror/swiftself: " 1628 << ore::NV("Prototype", F.getType()); 1629 reportTranslationError(*MF, *TPC, *ORE, R); 1630 return false; 1631 } 1632 } 1633 1634 if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) { 1635 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1636 F.getSubprogram(), &F.getEntryBlock()); 1637 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1638 reportTranslationError(*MF, *TPC, *ORE, R); 1639 return false; 1640 } 1641 1642 auto ArgIt = F.arg_begin(); 1643 for (auto &VArg : VRegArgs) { 1644 // If the argument is an unsplit scalar then don't use unpackRegs to avoid 1645 // creating redundant copies. 1646 if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) { 1647 auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt)); 1648 assert(VRegs.empty() && "VRegs already populated?"); 1649 VRegs.push_back(VArg); 1650 } else { 1651 unpackRegs(*ArgIt, VArg, EntryBuilder); 1652 } 1653 ArgIt++; 1654 } 1655 1656 // Need to visit defs before uses when translating instructions. 1657 ReversePostOrderTraversal<const Function *> RPOT(&F); 1658 for (const BasicBlock *BB : RPOT) { 1659 MachineBasicBlock &MBB = getMBB(*BB); 1660 // Set the insertion point of all the following translations to 1661 // the end of this basic block. 1662 CurBuilder.setMBB(MBB); 1663 1664 for (const Instruction &Inst : *BB) { 1665 if (translate(Inst)) 1666 continue; 1667 1668 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1669 Inst.getDebugLoc(), BB); 1670 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 1671 1672 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 1673 std::string InstStrStorage; 1674 raw_string_ostream InstStr(InstStrStorage); 1675 InstStr << Inst; 1676 1677 R << ": '" << InstStr.str() << "'"; 1678 } 1679 1680 reportTranslationError(*MF, *TPC, *ORE, R); 1681 return false; 1682 } 1683 } 1684 1685 finishPendingPhis(); 1686 1687 // Merge the argument lowering and constants block with its single 1688 // successor, the LLVM-IR entry block. We want the basic block to 1689 // be maximal. 1690 assert(EntryBB->succ_size() == 1 && 1691 "Custom BB used for lowering should have only one successor"); 1692 // Get the successor of the current entry block. 1693 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1694 assert(NewEntryBB.pred_size() == 1 && 1695 "LLVM-IR entry block has a predecessor!?"); 1696 // Move all the instruction from the current entry block to the 1697 // new entry block. 1698 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1699 EntryBB->end()); 1700 1701 // Update the live-in information for the new entry block. 1702 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1703 NewEntryBB.addLiveIn(LiveIn); 1704 NewEntryBB.sortUniqueLiveIns(); 1705 1706 // Get rid of the now empty basic block. 1707 EntryBB->removeSuccessor(&NewEntryBB); 1708 MF->remove(EntryBB); 1709 MF->DeleteMachineBasicBlock(EntryBB); 1710 1711 assert(&MF->front() == &NewEntryBB && 1712 "New entry wasn't next in the list of basic block!"); 1713 1714 // Initialize stack protector information. 1715 StackProtector &SP = getAnalysis<StackProtector>(); 1716 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1717 1718 return false; 1719 } 1720