1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 22 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 23 #include "llvm/CodeGen/LowLevelType.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/StackProtector.h" 32 #include "llvm/CodeGen/TargetFrameLowering.h" 33 #include "llvm/CodeGen/TargetLowering.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/MC/MCContext.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/LowLevelTypeImpl.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Target/TargetIntrinsicInfo.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstdint> 70 #include <iterator> 71 #include <string> 72 #include <utility> 73 #include <vector> 74 75 #define DEBUG_TYPE "irtranslator" 76 77 using namespace llvm; 78 79 static cl::opt<bool> 80 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 81 cl::desc("Should enable CSE in irtranslator"), 82 cl::Optional, cl::init(false)); 83 char IRTranslator::ID = 0; 84 85 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 86 false, false) 87 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 88 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 89 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 90 false, false) 91 92 static void reportTranslationError(MachineFunction &MF, 93 const TargetPassConfig &TPC, 94 OptimizationRemarkEmitter &ORE, 95 OptimizationRemarkMissed &R) { 96 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 97 98 // Print the function name explicitly if we don't have a debug location (which 99 // makes the diagnostic less useful) or if we're going to emit a raw error. 100 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 101 R << (" (in function: " + MF.getName() + ")").str(); 102 103 if (TPC.isGlobalISelAbortEnabled()) 104 report_fatal_error(R.getMsg()); 105 else 106 ORE.emit(R); 107 } 108 109 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { 110 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 111 } 112 113 #ifndef NDEBUG 114 namespace { 115 /// Verify that every instruction created has the same DILocation as the 116 /// instruction being translated. 117 class DILocationVerifier : public GISelChangeObserver { 118 const Instruction *CurrInst = nullptr; 119 120 public: 121 DILocationVerifier() = default; 122 ~DILocationVerifier() = default; 123 124 const Instruction *getCurrentInst() const { return CurrInst; } 125 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 126 127 void erasingInstr(MachineInstr &MI) override {} 128 void changingInstr(MachineInstr &MI) override {} 129 void changedInstr(MachineInstr &MI) override {} 130 131 void createdInstr(MachineInstr &MI) override { 132 assert(getCurrentInst() && "Inserted instruction without a current MI"); 133 134 // Only print the check message if we're actually checking it. 135 #ifndef NDEBUG 136 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 137 << " was copied to " << MI); 138 #endif 139 assert(CurrInst->getDebugLoc() == MI.getDebugLoc() && 140 "Line info was not transferred to all instructions"); 141 } 142 }; 143 } // namespace 144 #endif // ifndef NDEBUG 145 146 147 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 148 AU.addRequired<StackProtector>(); 149 AU.addRequired<TargetPassConfig>(); 150 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 151 getSelectionDAGFallbackAnalysisUsage(AU); 152 MachineFunctionPass::getAnalysisUsage(AU); 153 } 154 155 IRTranslator::ValueToVRegInfo::VRegListT & 156 IRTranslator::allocateVRegs(const Value &Val) { 157 assert(!VMap.contains(Val) && "Value already allocated in VMap"); 158 auto *Regs = VMap.getVRegs(Val); 159 auto *Offsets = VMap.getOffsets(Val); 160 SmallVector<LLT, 4> SplitTys; 161 computeValueLLTs(*DL, *Val.getType(), SplitTys, 162 Offsets->empty() ? Offsets : nullptr); 163 for (unsigned i = 0; i < SplitTys.size(); ++i) 164 Regs->push_back(0); 165 return *Regs; 166 } 167 168 ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) { 169 auto VRegsIt = VMap.findVRegs(Val); 170 if (VRegsIt != VMap.vregs_end()) 171 return *VRegsIt->second; 172 173 if (Val.getType()->isVoidTy()) 174 return *VMap.getVRegs(Val); 175 176 // Create entry for this type. 177 auto *VRegs = VMap.getVRegs(Val); 178 auto *Offsets = VMap.getOffsets(Val); 179 180 assert(Val.getType()->isSized() && 181 "Don't know how to create an empty vreg"); 182 183 SmallVector<LLT, 4> SplitTys; 184 computeValueLLTs(*DL, *Val.getType(), SplitTys, 185 Offsets->empty() ? Offsets : nullptr); 186 187 if (!isa<Constant>(Val)) { 188 for (auto Ty : SplitTys) 189 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 190 return *VRegs; 191 } 192 193 if (Val.getType()->isAggregateType()) { 194 // UndefValue, ConstantAggregateZero 195 auto &C = cast<Constant>(Val); 196 unsigned Idx = 0; 197 while (auto Elt = C.getAggregateElement(Idx++)) { 198 auto EltRegs = getOrCreateVRegs(*Elt); 199 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 200 } 201 } else { 202 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 203 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 204 bool Success = translate(cast<Constant>(Val), VRegs->front()); 205 if (!Success) { 206 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 207 MF->getFunction().getSubprogram(), 208 &MF->getFunction().getEntryBlock()); 209 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 210 reportTranslationError(*MF, *TPC, *ORE, R); 211 return *VRegs; 212 } 213 } 214 215 return *VRegs; 216 } 217 218 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 219 if (FrameIndices.find(&AI) != FrameIndices.end()) 220 return FrameIndices[&AI]; 221 222 unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 223 unsigned Size = 224 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 225 226 // Always allocate at least one byte. 227 Size = std::max(Size, 1u); 228 229 unsigned Alignment = AI.getAlignment(); 230 if (!Alignment) 231 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 232 233 int &FI = FrameIndices[&AI]; 234 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 235 return FI; 236 } 237 238 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 239 unsigned Alignment = 0; 240 Type *ValTy = nullptr; 241 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 242 Alignment = SI->getAlignment(); 243 ValTy = SI->getValueOperand()->getType(); 244 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 245 Alignment = LI->getAlignment(); 246 ValTy = LI->getType(); 247 } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { 248 // TODO(PR27168): This instruction has no alignment attribute, but unlike 249 // the default alignment for load/store, the default here is to assume 250 // it has NATURAL alignment, not DataLayout-specified alignment. 251 const DataLayout &DL = AI->getModule()->getDataLayout(); 252 Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); 253 ValTy = AI->getCompareOperand()->getType(); 254 } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { 255 // TODO(PR27168): This instruction has no alignment attribute, but unlike 256 // the default alignment for load/store, the default here is to assume 257 // it has NATURAL alignment, not DataLayout-specified alignment. 258 const DataLayout &DL = AI->getModule()->getDataLayout(); 259 Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType()); 260 ValTy = AI->getType(); 261 } else { 262 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 263 R << "unable to translate memop: " << ore::NV("Opcode", &I); 264 reportTranslationError(*MF, *TPC, *ORE, R); 265 return 1; 266 } 267 268 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 269 } 270 271 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 272 MachineBasicBlock *&MBB = BBToMBB[&BB]; 273 assert(MBB && "BasicBlock was not encountered before"); 274 return *MBB; 275 } 276 277 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 278 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 279 MachinePreds[Edge].push_back(NewPred); 280 } 281 282 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 283 MachineIRBuilder &MIRBuilder) { 284 // FIXME: handle signed/unsigned wrapping flags. 285 286 // Get or create a virtual register for each value. 287 // Unless the value is a Constant => loadimm cst? 288 // or inline constant each time? 289 // Creation of a virtual register needs to have a size. 290 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 291 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 292 unsigned Res = getOrCreateVReg(U); 293 uint16_t Flags = 0; 294 if (isa<Instruction>(U)) { 295 const Instruction &I = cast<Instruction>(U); 296 Flags = MachineInstr::copyFlagsFromInstruction(I); 297 } 298 299 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 300 return true; 301 } 302 303 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) { 304 // -0.0 - X --> G_FNEG 305 if (isa<Constant>(U.getOperand(0)) && 306 U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) { 307 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 308 .addDef(getOrCreateVReg(U)) 309 .addUse(getOrCreateVReg(*U.getOperand(1))); 310 return true; 311 } 312 return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder); 313 } 314 315 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 316 MIRBuilder.buildInstr(TargetOpcode::G_FNEG) 317 .addDef(getOrCreateVReg(U)) 318 .addUse(getOrCreateVReg(*U.getOperand(0))); 319 return true; 320 } 321 322 bool IRTranslator::translateCompare(const User &U, 323 MachineIRBuilder &MIRBuilder) { 324 const CmpInst *CI = dyn_cast<CmpInst>(&U); 325 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 326 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 327 unsigned Res = getOrCreateVReg(U); 328 CmpInst::Predicate Pred = 329 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 330 cast<ConstantExpr>(U).getPredicate()); 331 if (CmpInst::isIntPredicate(Pred)) 332 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 333 else if (Pred == CmpInst::FCMP_FALSE) 334 MIRBuilder.buildCopy( 335 Res, getOrCreateVReg(*Constant::getNullValue(CI->getType()))); 336 else if (Pred == CmpInst::FCMP_TRUE) 337 MIRBuilder.buildCopy( 338 Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType()))); 339 else { 340 MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1}, 341 MachineInstr::copyFlagsFromInstruction(*CI)); 342 } 343 344 return true; 345 } 346 347 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 348 const ReturnInst &RI = cast<ReturnInst>(U); 349 const Value *Ret = RI.getReturnValue(); 350 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 351 Ret = nullptr; 352 353 ArrayRef<unsigned> VRegs; 354 if (Ret) 355 VRegs = getOrCreateVRegs(*Ret); 356 357 // The target may mess up with the insertion point, but 358 // this is not important as a return is the last instruction 359 // of the block anyway. 360 361 return CLI->lowerReturn(MIRBuilder, Ret, VRegs); 362 } 363 364 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 365 const BranchInst &BrInst = cast<BranchInst>(U); 366 unsigned Succ = 0; 367 if (!BrInst.isUnconditional()) { 368 // We want a G_BRCOND to the true BB followed by an unconditional branch. 369 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 370 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 371 MachineBasicBlock &TrueBB = getMBB(TrueTgt); 372 MIRBuilder.buildBrCond(Tst, TrueBB); 373 } 374 375 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 376 MachineBasicBlock &TgtBB = getMBB(BrTgt); 377 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 378 379 // If the unconditional target is the layout successor, fallthrough. 380 if (!CurBB.isLayoutSuccessor(&TgtBB)) 381 MIRBuilder.buildBr(TgtBB); 382 383 // Link successors. 384 for (const BasicBlock *Succ : successors(&BrInst)) 385 CurBB.addSuccessor(&getMBB(*Succ)); 386 return true; 387 } 388 389 bool IRTranslator::translateSwitch(const User &U, 390 MachineIRBuilder &MIRBuilder) { 391 // For now, just translate as a chain of conditional branches. 392 // FIXME: could we share most of the logic/code in 393 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 394 // At first sight, it seems most of the logic in there is independent of 395 // SelectionDAG-specifics and a lot of work went in to optimize switch 396 // lowering in there. 397 398 const SwitchInst &SwInst = cast<SwitchInst>(U); 399 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 400 const BasicBlock *OrigBB = SwInst.getParent(); 401 402 LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL); 403 for (auto &CaseIt : SwInst.cases()) { 404 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 405 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 406 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 407 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 408 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 409 MachineBasicBlock &TrueMBB = getMBB(*TrueBB); 410 411 MIRBuilder.buildBrCond(Tst, TrueMBB); 412 CurMBB.addSuccessor(&TrueMBB); 413 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 414 415 MachineBasicBlock *FalseMBB = 416 MF->CreateMachineBasicBlock(SwInst.getParent()); 417 // Insert the comparison blocks one after the other. 418 MF->insert(std::next(CurMBB.getIterator()), FalseMBB); 419 MIRBuilder.buildBr(*FalseMBB); 420 CurMBB.addSuccessor(FalseMBB); 421 422 MIRBuilder.setMBB(*FalseMBB); 423 } 424 // handle default case 425 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 426 MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB); 427 MIRBuilder.buildBr(DefaultMBB); 428 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 429 CurMBB.addSuccessor(&DefaultMBB); 430 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 431 432 return true; 433 } 434 435 bool IRTranslator::translateIndirectBr(const User &U, 436 MachineIRBuilder &MIRBuilder) { 437 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 438 439 const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress()); 440 MIRBuilder.buildBrIndirect(Tgt); 441 442 // Link successors. 443 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 444 for (const BasicBlock *Succ : successors(&BrInst)) 445 CurBB.addSuccessor(&getMBB(*Succ)); 446 447 return true; 448 } 449 450 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 451 const LoadInst &LI = cast<LoadInst>(U); 452 453 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 454 : MachineMemOperand::MONone; 455 Flags |= MachineMemOperand::MOLoad; 456 457 if (DL->getTypeStoreSize(LI.getType()) == 0) 458 return true; 459 460 ArrayRef<unsigned> Regs = getOrCreateVRegs(LI); 461 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 462 unsigned Base = getOrCreateVReg(*LI.getPointerOperand()); 463 464 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 465 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 466 467 for (unsigned i = 0; i < Regs.size(); ++i) { 468 unsigned Addr = 0; 469 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 470 471 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 472 unsigned BaseAlign = getMemOpAlignment(LI); 473 auto MMO = MF->getMachineMemOperand( 474 Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8, 475 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 476 LI.getSyncScopeID(), LI.getOrdering()); 477 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 478 } 479 480 return true; 481 } 482 483 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 484 const StoreInst &SI = cast<StoreInst>(U); 485 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 486 : MachineMemOperand::MONone; 487 Flags |= MachineMemOperand::MOStore; 488 489 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 490 return true; 491 492 ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand()); 493 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 494 unsigned Base = getOrCreateVReg(*SI.getPointerOperand()); 495 496 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 497 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 498 499 for (unsigned i = 0; i < Vals.size(); ++i) { 500 unsigned Addr = 0; 501 MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8); 502 503 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 504 unsigned BaseAlign = getMemOpAlignment(SI); 505 auto MMO = MF->getMachineMemOperand( 506 Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8, 507 MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr, 508 SI.getSyncScopeID(), SI.getOrdering()); 509 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 510 } 511 return true; 512 } 513 514 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 515 const Value *Src = U.getOperand(0); 516 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 517 518 // getIndexedOffsetInType is designed for GEPs, so the first index is the 519 // usual array element rather than looking into the actual aggregate. 520 SmallVector<Value *, 1> Indices; 521 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 522 523 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 524 for (auto Idx : EVI->indices()) 525 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 526 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 527 for (auto Idx : IVI->indices()) 528 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 529 } else { 530 for (unsigned i = 1; i < U.getNumOperands(); ++i) 531 Indices.push_back(U.getOperand(i)); 532 } 533 534 return 8 * static_cast<uint64_t>( 535 DL.getIndexedOffsetInType(Src->getType(), Indices)); 536 } 537 538 bool IRTranslator::translateExtractValue(const User &U, 539 MachineIRBuilder &MIRBuilder) { 540 const Value *Src = U.getOperand(0); 541 uint64_t Offset = getOffsetFromIndices(U, *DL); 542 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 543 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 544 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 545 auto &DstRegs = allocateVRegs(U); 546 547 for (unsigned i = 0; i < DstRegs.size(); ++i) 548 DstRegs[i] = SrcRegs[Idx++]; 549 550 return true; 551 } 552 553 bool IRTranslator::translateInsertValue(const User &U, 554 MachineIRBuilder &MIRBuilder) { 555 const Value *Src = U.getOperand(0); 556 uint64_t Offset = getOffsetFromIndices(U, *DL); 557 auto &DstRegs = allocateVRegs(U); 558 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 559 ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src); 560 ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 561 auto InsertedIt = InsertedRegs.begin(); 562 563 for (unsigned i = 0; i < DstRegs.size(); ++i) { 564 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 565 DstRegs[i] = *InsertedIt++; 566 else 567 DstRegs[i] = SrcRegs[i]; 568 } 569 570 return true; 571 } 572 573 bool IRTranslator::translateSelect(const User &U, 574 MachineIRBuilder &MIRBuilder) { 575 unsigned Tst = getOrCreateVReg(*U.getOperand(0)); 576 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U); 577 ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 578 ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 579 580 const SelectInst &SI = cast<SelectInst>(U); 581 uint16_t Flags = 0; 582 if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition())) 583 Flags = MachineInstr::copyFlagsFromInstruction(*Cmp); 584 585 for (unsigned i = 0; i < ResRegs.size(); ++i) { 586 MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]}, 587 {Tst, Op0Regs[i], Op1Regs[i]}, Flags); 588 } 589 590 return true; 591 } 592 593 bool IRTranslator::translateBitCast(const User &U, 594 MachineIRBuilder &MIRBuilder) { 595 // If we're bitcasting to the source type, we can reuse the source vreg. 596 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 597 getLLTForType(*U.getType(), *DL)) { 598 unsigned SrcReg = getOrCreateVReg(*U.getOperand(0)); 599 auto &Regs = *VMap.getVRegs(U); 600 // If we already assigned a vreg for this bitcast, we can't change that. 601 // Emit a copy to satisfy the users we already emitted. 602 if (!Regs.empty()) 603 MIRBuilder.buildCopy(Regs[0], SrcReg); 604 else { 605 Regs.push_back(SrcReg); 606 VMap.getOffsets(U)->push_back(0); 607 } 608 return true; 609 } 610 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 611 } 612 613 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 614 MachineIRBuilder &MIRBuilder) { 615 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 616 unsigned Res = getOrCreateVReg(U); 617 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 618 return true; 619 } 620 621 bool IRTranslator::translateGetElementPtr(const User &U, 622 MachineIRBuilder &MIRBuilder) { 623 // FIXME: support vector GEPs. 624 if (U.getType()->isVectorTy()) 625 return false; 626 627 Value &Op0 = *U.getOperand(0); 628 unsigned BaseReg = getOrCreateVReg(Op0); 629 Type *PtrIRTy = Op0.getType(); 630 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 631 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 632 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 633 634 int64_t Offset = 0; 635 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 636 GTI != E; ++GTI) { 637 const Value *Idx = GTI.getOperand(); 638 if (StructType *StTy = GTI.getStructTypeOrNull()) { 639 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 640 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 641 continue; 642 } else { 643 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 644 645 // If this is a scalar constant or a splat vector of constants, 646 // handle it quickly. 647 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 648 Offset += ElementSize * CI->getSExtValue(); 649 continue; 650 } 651 652 if (Offset != 0) { 653 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 654 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 655 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 656 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetMIB.getReg(0)); 657 658 BaseReg = NewBaseReg; 659 Offset = 0; 660 } 661 662 unsigned IdxReg = getOrCreateVReg(*Idx); 663 if (MRI->getType(IdxReg) != OffsetTy) { 664 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 665 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 666 IdxReg = NewIdxReg; 667 } 668 669 // N = N + Idx * ElementSize; 670 // Avoid doing it for ElementSize of 1. 671 unsigned GepOffsetReg; 672 if (ElementSize != 1) { 673 GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 674 auto ElementSizeMIB = MIRBuilder.buildConstant( 675 getLLTForType(*OffsetIRTy, *DL), ElementSize); 676 MIRBuilder.buildMul(GepOffsetReg, ElementSizeMIB.getReg(0), IdxReg); 677 } else 678 GepOffsetReg = IdxReg; 679 680 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 681 MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg); 682 BaseReg = NewBaseReg; 683 } 684 } 685 686 if (Offset != 0) { 687 auto OffsetMIB = 688 MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset); 689 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 690 return true; 691 } 692 693 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 694 return true; 695 } 696 697 bool IRTranslator::translateMemfunc(const CallInst &CI, 698 MachineIRBuilder &MIRBuilder, 699 unsigned ID) { 700 LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL); 701 Type *DstTy = CI.getArgOperand(0)->getType(); 702 if (cast<PointerType>(DstTy)->getAddressSpace() != 0 || 703 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 704 return false; 705 706 SmallVector<CallLowering::ArgInfo, 8> Args; 707 for (int i = 0; i < 3; ++i) { 708 const auto &Arg = CI.getArgOperand(i); 709 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 710 } 711 712 const char *Callee; 713 switch (ID) { 714 case Intrinsic::memmove: 715 case Intrinsic::memcpy: { 716 Type *SrcTy = CI.getArgOperand(1)->getType(); 717 if(cast<PointerType>(SrcTy)->getAddressSpace() != 0) 718 return false; 719 Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove"; 720 break; 721 } 722 case Intrinsic::memset: 723 Callee = "memset"; 724 break; 725 default: 726 return false; 727 } 728 729 return CLI->lowerCall(MIRBuilder, CI.getCallingConv(), 730 MachineOperand::CreateES(Callee), 731 CallLowering::ArgInfo(0, CI.getType()), Args); 732 } 733 734 void IRTranslator::getStackGuard(unsigned DstReg, 735 MachineIRBuilder &MIRBuilder) { 736 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 737 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 738 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 739 MIB.addDef(DstReg); 740 741 auto &TLI = *MF->getSubtarget().getTargetLowering(); 742 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 743 if (!Global) 744 return; 745 746 MachinePointerInfo MPInfo(Global); 747 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 748 MachineMemOperand::MODereferenceable; 749 MachineMemOperand *MemRef = 750 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 751 DL->getPointerABIAlignment(0)); 752 MIB.setMemRefs({MemRef}); 753 } 754 755 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 756 MachineIRBuilder &MIRBuilder) { 757 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI); 758 MIRBuilder.buildInstr(Op) 759 .addDef(ResRegs[0]) 760 .addDef(ResRegs[1]) 761 .addUse(getOrCreateVReg(*CI.getOperand(0))) 762 .addUse(getOrCreateVReg(*CI.getOperand(1))); 763 764 return true; 765 } 766 767 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 768 switch (ID) { 769 default: 770 break; 771 case Intrinsic::bswap: 772 return TargetOpcode::G_BSWAP; 773 case Intrinsic::ceil: 774 return TargetOpcode::G_FCEIL; 775 case Intrinsic::cos: 776 return TargetOpcode::G_FCOS; 777 case Intrinsic::ctpop: 778 return TargetOpcode::G_CTPOP; 779 case Intrinsic::exp: 780 return TargetOpcode::G_FEXP; 781 case Intrinsic::exp2: 782 return TargetOpcode::G_FEXP2; 783 case Intrinsic::fabs: 784 return TargetOpcode::G_FABS; 785 case Intrinsic::canonicalize: 786 return TargetOpcode::G_FCANONICALIZE; 787 case Intrinsic::floor: 788 return TargetOpcode::G_FFLOOR; 789 case Intrinsic::fma: 790 return TargetOpcode::G_FMA; 791 case Intrinsic::log: 792 return TargetOpcode::G_FLOG; 793 case Intrinsic::log2: 794 return TargetOpcode::G_FLOG2; 795 case Intrinsic::log10: 796 return TargetOpcode::G_FLOG10; 797 case Intrinsic::nearbyint: 798 return TargetOpcode::G_FNEARBYINT; 799 case Intrinsic::pow: 800 return TargetOpcode::G_FPOW; 801 case Intrinsic::rint: 802 return TargetOpcode::G_FRINT; 803 case Intrinsic::round: 804 return TargetOpcode::G_INTRINSIC_ROUND; 805 case Intrinsic::sin: 806 return TargetOpcode::G_FSIN; 807 case Intrinsic::sqrt: 808 return TargetOpcode::G_FSQRT; 809 case Intrinsic::trunc: 810 return TargetOpcode::G_INTRINSIC_TRUNC; 811 } 812 return Intrinsic::not_intrinsic; 813 } 814 815 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 816 Intrinsic::ID ID, 817 MachineIRBuilder &MIRBuilder) { 818 819 unsigned Op = getSimpleIntrinsicOpcode(ID); 820 821 // Is this a simple intrinsic? 822 if (Op == Intrinsic::not_intrinsic) 823 return false; 824 825 // Yes. Let's translate it. 826 SmallVector<llvm::SrcOp, 4> VRegs; 827 for (auto &Arg : CI.arg_operands()) 828 VRegs.push_back(getOrCreateVReg(*Arg)); 829 830 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 831 MachineInstr::copyFlagsFromInstruction(CI)); 832 return true; 833 } 834 835 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 836 MachineIRBuilder &MIRBuilder) { 837 838 // If this is a simple intrinsic (that is, we just need to add a def of 839 // a vreg, and uses for each arg operand, then translate it. 840 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 841 return true; 842 843 switch (ID) { 844 default: 845 break; 846 case Intrinsic::lifetime_start: 847 case Intrinsic::lifetime_end: { 848 // No stack colouring in O0, discard region information. 849 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 850 return true; 851 852 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 853 : TargetOpcode::LIFETIME_END; 854 855 // Get the underlying objects for the location passed on the lifetime 856 // marker. 857 SmallVector<const Value *, 4> Allocas; 858 GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL); 859 860 // Iterate over each underlying object, creating lifetime markers for each 861 // static alloca. Quit if we find a non-static alloca. 862 for (const Value *V : Allocas) { 863 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 864 if (!AI) 865 continue; 866 867 if (!AI->isStaticAlloca()) 868 return true; 869 870 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 871 } 872 return true; 873 } 874 case Intrinsic::dbg_declare: { 875 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 876 assert(DI.getVariable() && "Missing variable"); 877 878 const Value *Address = DI.getAddress(); 879 if (!Address || isa<UndefValue>(Address)) { 880 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 881 return true; 882 } 883 884 assert(DI.getVariable()->isValidLocationForIntrinsic( 885 MIRBuilder.getDebugLoc()) && 886 "Expected inlined-at fields to agree"); 887 auto AI = dyn_cast<AllocaInst>(Address); 888 if (AI && AI->isStaticAlloca()) { 889 // Static allocas are tracked at the MF level, no need for DBG_VALUE 890 // instructions (in fact, they get ignored if they *do* exist). 891 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 892 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 893 } else { 894 // A dbg.declare describes the address of a source variable, so lower it 895 // into an indirect DBG_VALUE. 896 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 897 DI.getVariable(), DI.getExpression()); 898 } 899 return true; 900 } 901 case Intrinsic::dbg_label: { 902 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 903 assert(DI.getLabel() && "Missing label"); 904 905 assert(DI.getLabel()->isValidLocationForIntrinsic( 906 MIRBuilder.getDebugLoc()) && 907 "Expected inlined-at fields to agree"); 908 909 MIRBuilder.buildDbgLabel(DI.getLabel()); 910 return true; 911 } 912 case Intrinsic::vaend: 913 // No target I know of cares about va_end. Certainly no in-tree target 914 // does. Simplest intrinsic ever! 915 return true; 916 case Intrinsic::vastart: { 917 auto &TLI = *MF->getSubtarget().getTargetLowering(); 918 Value *Ptr = CI.getArgOperand(0); 919 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 920 921 // FIXME: Get alignment 922 MIRBuilder.buildInstr(TargetOpcode::G_VASTART) 923 .addUse(getOrCreateVReg(*Ptr)) 924 .addMemOperand(MF->getMachineMemOperand( 925 MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1)); 926 return true; 927 } 928 case Intrinsic::dbg_value: { 929 // This form of DBG_VALUE is target-independent. 930 const DbgValueInst &DI = cast<DbgValueInst>(CI); 931 const Value *V = DI.getValue(); 932 assert(DI.getVariable()->isValidLocationForIntrinsic( 933 MIRBuilder.getDebugLoc()) && 934 "Expected inlined-at fields to agree"); 935 if (!V) { 936 // Currently the optimizer can produce this; insert an undef to 937 // help debugging. Probably the optimizer should not do this. 938 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 939 } else if (const auto *CI = dyn_cast<Constant>(V)) { 940 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 941 } else { 942 unsigned Reg = getOrCreateVReg(*V); 943 // FIXME: This does not handle register-indirect values at offset 0. The 944 // direct/indirect thing shouldn't really be handled by something as 945 // implicit as reg+noreg vs reg+imm in the first palce, but it seems 946 // pretty baked in right now. 947 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 948 } 949 return true; 950 } 951 case Intrinsic::uadd_with_overflow: 952 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 953 case Intrinsic::sadd_with_overflow: 954 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 955 case Intrinsic::usub_with_overflow: 956 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 957 case Intrinsic::ssub_with_overflow: 958 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 959 case Intrinsic::umul_with_overflow: 960 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 961 case Intrinsic::smul_with_overflow: 962 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 963 case Intrinsic::fmuladd: { 964 const TargetMachine &TM = MF->getTarget(); 965 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 966 unsigned Dst = getOrCreateVReg(CI); 967 unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 968 unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 969 unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 970 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 971 TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) { 972 // TODO: Revisit this to see if we should move this part of the 973 // lowering to the combiner. 974 MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2}, 975 MachineInstr::copyFlagsFromInstruction(CI)); 976 } else { 977 LLT Ty = getLLTForType(*CI.getType(), *DL); 978 auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1}, 979 MachineInstr::copyFlagsFromInstruction(CI)); 980 MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2}, 981 MachineInstr::copyFlagsFromInstruction(CI)); 982 } 983 return true; 984 } 985 case Intrinsic::memcpy: 986 case Intrinsic::memmove: 987 case Intrinsic::memset: 988 return translateMemfunc(CI, MIRBuilder, ID); 989 case Intrinsic::eh_typeid_for: { 990 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 991 unsigned Reg = getOrCreateVReg(CI); 992 unsigned TypeID = MF->getTypeIDFor(GV); 993 MIRBuilder.buildConstant(Reg, TypeID); 994 return true; 995 } 996 case Intrinsic::objectsize: { 997 // If we don't know by now, we're never going to know. 998 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 999 1000 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 1001 return true; 1002 } 1003 case Intrinsic::is_constant: 1004 // If this wasn't constant-folded away by now, then it's not a 1005 // constant. 1006 MIRBuilder.buildConstant(getOrCreateVReg(CI), 0); 1007 return true; 1008 case Intrinsic::stackguard: 1009 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 1010 return true; 1011 case Intrinsic::stackprotector: { 1012 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1013 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 1014 getStackGuard(GuardVal, MIRBuilder); 1015 1016 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 1017 int FI = getOrCreateFrameIndex(*Slot); 1018 MF->getFrameInfo().setStackProtectorIndex(FI); 1019 1020 MIRBuilder.buildStore( 1021 GuardVal, getOrCreateVReg(*Slot), 1022 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 1023 MachineMemOperand::MOStore | 1024 MachineMemOperand::MOVolatile, 1025 PtrTy.getSizeInBits() / 8, 8)); 1026 return true; 1027 } 1028 case Intrinsic::stacksave: { 1029 // Save the stack pointer to the location provided by the intrinsic. 1030 unsigned Reg = getOrCreateVReg(CI); 1031 unsigned StackPtr = MF->getSubtarget() 1032 .getTargetLowering() 1033 ->getStackPointerRegisterToSaveRestore(); 1034 1035 // If the target doesn't specify a stack pointer, then fall back. 1036 if (!StackPtr) 1037 return false; 1038 1039 MIRBuilder.buildCopy(Reg, StackPtr); 1040 return true; 1041 } 1042 case Intrinsic::stackrestore: { 1043 // Restore the stack pointer from the location provided by the intrinsic. 1044 unsigned Reg = getOrCreateVReg(*CI.getArgOperand(0)); 1045 unsigned StackPtr = MF->getSubtarget() 1046 .getTargetLowering() 1047 ->getStackPointerRegisterToSaveRestore(); 1048 1049 // If the target doesn't specify a stack pointer, then fall back. 1050 if (!StackPtr) 1051 return false; 1052 1053 MIRBuilder.buildCopy(StackPtr, Reg); 1054 return true; 1055 } 1056 case Intrinsic::cttz: 1057 case Intrinsic::ctlz: { 1058 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 1059 bool isTrailing = ID == Intrinsic::cttz; 1060 unsigned Opcode = isTrailing 1061 ? Cst->isZero() ? TargetOpcode::G_CTTZ 1062 : TargetOpcode::G_CTTZ_ZERO_UNDEF 1063 : Cst->isZero() ? TargetOpcode::G_CTLZ 1064 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 1065 MIRBuilder.buildInstr(Opcode) 1066 .addDef(getOrCreateVReg(CI)) 1067 .addUse(getOrCreateVReg(*CI.getArgOperand(0))); 1068 return true; 1069 } 1070 case Intrinsic::invariant_start: { 1071 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 1072 unsigned Undef = MRI->createGenericVirtualRegister(PtrTy); 1073 MIRBuilder.buildUndef(Undef); 1074 return true; 1075 } 1076 case Intrinsic::invariant_end: 1077 return true; 1078 } 1079 return false; 1080 } 1081 1082 bool IRTranslator::translateInlineAsm(const CallInst &CI, 1083 MachineIRBuilder &MIRBuilder) { 1084 const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue()); 1085 if (!IA.getConstraintString().empty()) 1086 return false; 1087 1088 unsigned ExtraInfo = 0; 1089 if (IA.hasSideEffects()) 1090 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 1091 if (IA.getDialect() == InlineAsm::AD_Intel) 1092 ExtraInfo |= InlineAsm::Extra_AsmDialect; 1093 1094 MIRBuilder.buildInstr(TargetOpcode::INLINEASM) 1095 .addExternalSymbol(IA.getAsmString().c_str()) 1096 .addImm(ExtraInfo); 1097 1098 return true; 1099 } 1100 1101 unsigned IRTranslator::packRegs(const Value &V, 1102 MachineIRBuilder &MIRBuilder) { 1103 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1104 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1105 LLT BigTy = getLLTForType(*V.getType(), *DL); 1106 1107 if (Regs.size() == 1) 1108 return Regs[0]; 1109 1110 unsigned Dst = MRI->createGenericVirtualRegister(BigTy); 1111 MIRBuilder.buildUndef(Dst); 1112 for (unsigned i = 0; i < Regs.size(); ++i) { 1113 unsigned NewDst = MRI->createGenericVirtualRegister(BigTy); 1114 MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]); 1115 Dst = NewDst; 1116 } 1117 return Dst; 1118 } 1119 1120 void IRTranslator::unpackRegs(const Value &V, unsigned Src, 1121 MachineIRBuilder &MIRBuilder) { 1122 ArrayRef<unsigned> Regs = getOrCreateVRegs(V); 1123 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V); 1124 1125 for (unsigned i = 0; i < Regs.size(); ++i) 1126 MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]); 1127 } 1128 1129 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 1130 const CallInst &CI = cast<CallInst>(U); 1131 auto TII = MF->getTarget().getIntrinsicInfo(); 1132 const Function *F = CI.getCalledFunction(); 1133 1134 // FIXME: support Windows dllimport function calls. 1135 if (F && F->hasDLLImportStorageClass()) 1136 return false; 1137 1138 if (CI.isInlineAsm()) 1139 return translateInlineAsm(CI, MIRBuilder); 1140 1141 Intrinsic::ID ID = Intrinsic::not_intrinsic; 1142 if (F && F->isIntrinsic()) { 1143 ID = F->getIntrinsicID(); 1144 if (TII && ID == Intrinsic::not_intrinsic) 1145 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 1146 } 1147 1148 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) { 1149 bool IsSplitType = valueIsSplit(CI); 1150 unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister( 1151 getLLTForType(*CI.getType(), *DL)) 1152 : getOrCreateVReg(CI); 1153 1154 SmallVector<unsigned, 8> Args; 1155 for (auto &Arg: CI.arg_operands()) 1156 Args.push_back(packRegs(*Arg, MIRBuilder)); 1157 1158 MF->getFrameInfo().setHasCalls(true); 1159 bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() { 1160 return getOrCreateVReg(*CI.getCalledValue()); 1161 }); 1162 1163 if (IsSplitType) 1164 unpackRegs(CI, Res, MIRBuilder); 1165 return Success; 1166 } 1167 1168 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 1169 1170 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 1171 return true; 1172 1173 ArrayRef<unsigned> ResultRegs; 1174 if (!CI.getType()->isVoidTy()) 1175 ResultRegs = getOrCreateVRegs(CI); 1176 1177 MachineInstrBuilder MIB = 1178 MIRBuilder.buildIntrinsic(ID, ResultRegs, !CI.doesNotAccessMemory()); 1179 if (isa<FPMathOperator>(CI)) 1180 MIB->copyIRFlags(CI); 1181 1182 for (auto &Arg : CI.arg_operands()) { 1183 // Some intrinsics take metadata parameters. Reject them. 1184 if (isa<MetadataAsValue>(Arg)) 1185 return false; 1186 MIB.addUse(packRegs(*Arg, MIRBuilder)); 1187 } 1188 1189 // Add a MachineMemOperand if it is a target mem intrinsic. 1190 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 1191 TargetLowering::IntrinsicInfo Info; 1192 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 1193 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 1194 unsigned Align = Info.align; 1195 if (Align == 0) 1196 Align = DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext())); 1197 1198 uint64_t Size = Info.memVT.getStoreSize(); 1199 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 1200 Info.flags, Size, Align)); 1201 } 1202 1203 return true; 1204 } 1205 1206 bool IRTranslator::translateInvoke(const User &U, 1207 MachineIRBuilder &MIRBuilder) { 1208 const InvokeInst &I = cast<InvokeInst>(U); 1209 MCContext &Context = MF->getContext(); 1210 1211 const BasicBlock *ReturnBB = I.getSuccessor(0); 1212 const BasicBlock *EHPadBB = I.getSuccessor(1); 1213 1214 const Value *Callee = I.getCalledValue(); 1215 const Function *Fn = dyn_cast<Function>(Callee); 1216 if (isa<InlineAsm>(Callee)) 1217 return false; 1218 1219 // FIXME: support invoking patchpoint and statepoint intrinsics. 1220 if (Fn && Fn->isIntrinsic()) 1221 return false; 1222 1223 // FIXME: support whatever these are. 1224 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 1225 return false; 1226 1227 // FIXME: support Windows exception handling. 1228 if (!isa<LandingPadInst>(EHPadBB->front())) 1229 return false; 1230 1231 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 1232 // the region covered by the try. 1233 MCSymbol *BeginSymbol = Context.createTempSymbol(); 1234 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 1235 1236 unsigned Res = 0; 1237 if (!I.getType()->isVoidTy()) 1238 Res = MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL)); 1239 SmallVector<unsigned, 8> Args; 1240 for (auto &Arg: I.arg_operands()) 1241 Args.push_back(packRegs(*Arg, MIRBuilder)); 1242 1243 if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, 1244 [&]() { return getOrCreateVReg(*I.getCalledValue()); })) 1245 return false; 1246 1247 unpackRegs(I, Res, MIRBuilder); 1248 1249 MCSymbol *EndSymbol = Context.createTempSymbol(); 1250 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 1251 1252 // FIXME: track probabilities. 1253 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 1254 &ReturnMBB = getMBB(*ReturnBB); 1255 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 1256 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 1257 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 1258 MIRBuilder.buildBr(ReturnMBB); 1259 1260 return true; 1261 } 1262 1263 bool IRTranslator::translateCallBr(const User &U, 1264 MachineIRBuilder &MIRBuilder) { 1265 // FIXME: Implement this. 1266 return false; 1267 } 1268 1269 bool IRTranslator::translateLandingPad(const User &U, 1270 MachineIRBuilder &MIRBuilder) { 1271 const LandingPadInst &LP = cast<LandingPadInst>(U); 1272 1273 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 1274 1275 MBB.setIsEHPad(); 1276 1277 // If there aren't registers to copy the values into (e.g., during SjLj 1278 // exceptions), then don't bother. 1279 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1280 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 1281 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 1282 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 1283 return true; 1284 1285 // If landingpad's return type is token type, we don't create DAG nodes 1286 // for its exception pointer and selector value. The extraction of exception 1287 // pointer or selector value from token type landingpads is not currently 1288 // supported. 1289 if (LP.getType()->isTokenTy()) 1290 return true; 1291 1292 // Add a label to mark the beginning of the landing pad. Deletion of the 1293 // landing pad can thus be detected via the MachineModuleInfo. 1294 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 1295 .addSym(MF->addLandingPad(&MBB)); 1296 1297 LLT Ty = getLLTForType(*LP.getType(), *DL); 1298 unsigned Undef = MRI->createGenericVirtualRegister(Ty); 1299 MIRBuilder.buildUndef(Undef); 1300 1301 SmallVector<LLT, 2> Tys; 1302 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 1303 Tys.push_back(getLLTForType(*Ty, *DL)); 1304 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 1305 1306 // Mark exception register as live in. 1307 unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 1308 if (!ExceptionReg) 1309 return false; 1310 1311 MBB.addLiveIn(ExceptionReg); 1312 ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP); 1313 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 1314 1315 unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 1316 if (!SelectorReg) 1317 return false; 1318 1319 MBB.addLiveIn(SelectorReg); 1320 unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 1321 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 1322 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 1323 1324 return true; 1325 } 1326 1327 bool IRTranslator::translateAlloca(const User &U, 1328 MachineIRBuilder &MIRBuilder) { 1329 auto &AI = cast<AllocaInst>(U); 1330 1331 if (AI.isSwiftError()) 1332 return false; 1333 1334 if (AI.isStaticAlloca()) { 1335 unsigned Res = getOrCreateVReg(AI); 1336 int FI = getOrCreateFrameIndex(AI); 1337 MIRBuilder.buildFrameIndex(Res, FI); 1338 return true; 1339 } 1340 1341 // FIXME: support stack probing for Windows. 1342 if (MF->getTarget().getTargetTriple().isOSWindows()) 1343 return false; 1344 1345 // Now we're in the harder dynamic case. 1346 Type *Ty = AI.getAllocatedType(); 1347 unsigned Align = 1348 std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment()); 1349 1350 unsigned NumElts = getOrCreateVReg(*AI.getArraySize()); 1351 1352 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 1353 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 1354 if (MRI->getType(NumElts) != IntPtrTy) { 1355 unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 1356 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 1357 NumElts = ExtElts; 1358 } 1359 1360 unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 1361 unsigned TySize = 1362 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty))); 1363 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 1364 1365 LLT PtrTy = getLLTForType(*AI.getType(), *DL); 1366 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1367 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1368 1369 unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy); 1370 MIRBuilder.buildCopy(SPTmp, SPReg); 1371 1372 unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy); 1373 MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize); 1374 1375 // Handle alignment. We have to realign if the allocation granule was smaller 1376 // than stack alignment, or the specific alloca requires more than stack 1377 // alignment. 1378 unsigned StackAlign = 1379 MF->getSubtarget().getFrameLowering()->getStackAlignment(); 1380 Align = std::max(Align, StackAlign); 1381 if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) { 1382 // Round the size of the allocation up to the stack alignment size 1383 // by add SA-1 to the size. This doesn't overflow because we're computing 1384 // an address inside an alloca. 1385 unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy); 1386 MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align)); 1387 AllocTmp = AlignedAlloc; 1388 } 1389 1390 MIRBuilder.buildCopy(SPReg, AllocTmp); 1391 MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp); 1392 1393 MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI); 1394 assert(MF->getFrameInfo().hasVarSizedObjects()); 1395 return true; 1396 } 1397 1398 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 1399 // FIXME: We may need more info about the type. Because of how LLT works, 1400 // we're completely discarding the i64/double distinction here (amongst 1401 // others). Fortunately the ABIs I know of where that matters don't use va_arg 1402 // anyway but that's not guaranteed. 1403 MIRBuilder.buildInstr(TargetOpcode::G_VAARG) 1404 .addDef(getOrCreateVReg(U)) 1405 .addUse(getOrCreateVReg(*U.getOperand(0))) 1406 .addImm(DL->getABITypeAlignment(U.getType())); 1407 return true; 1408 } 1409 1410 bool IRTranslator::translateInsertElement(const User &U, 1411 MachineIRBuilder &MIRBuilder) { 1412 // If it is a <1 x Ty> vector, use the scalar as it is 1413 // not a legal vector type in LLT. 1414 if (U.getType()->getVectorNumElements() == 1) { 1415 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1416 auto &Regs = *VMap.getVRegs(U); 1417 if (Regs.empty()) { 1418 Regs.push_back(Elt); 1419 VMap.getOffsets(U)->push_back(0); 1420 } else { 1421 MIRBuilder.buildCopy(Regs[0], Elt); 1422 } 1423 return true; 1424 } 1425 1426 unsigned Res = getOrCreateVReg(U); 1427 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1428 unsigned Elt = getOrCreateVReg(*U.getOperand(1)); 1429 unsigned Idx = getOrCreateVReg(*U.getOperand(2)); 1430 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 1431 return true; 1432 } 1433 1434 bool IRTranslator::translateExtractElement(const User &U, 1435 MachineIRBuilder &MIRBuilder) { 1436 // If it is a <1 x Ty> vector, use the scalar as it is 1437 // not a legal vector type in LLT. 1438 if (U.getOperand(0)->getType()->getVectorNumElements() == 1) { 1439 unsigned Elt = getOrCreateVReg(*U.getOperand(0)); 1440 auto &Regs = *VMap.getVRegs(U); 1441 if (Regs.empty()) { 1442 Regs.push_back(Elt); 1443 VMap.getOffsets(U)->push_back(0); 1444 } else { 1445 MIRBuilder.buildCopy(Regs[0], Elt); 1446 } 1447 return true; 1448 } 1449 unsigned Res = getOrCreateVReg(U); 1450 unsigned Val = getOrCreateVReg(*U.getOperand(0)); 1451 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 1452 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 1453 unsigned Idx = 0; 1454 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 1455 if (CI->getBitWidth() != PreferredVecIdxWidth) { 1456 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 1457 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 1458 Idx = getOrCreateVReg(*NewIdxCI); 1459 } 1460 } 1461 if (!Idx) 1462 Idx = getOrCreateVReg(*U.getOperand(1)); 1463 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 1464 const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 1465 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg(); 1466 } 1467 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 1468 return true; 1469 } 1470 1471 bool IRTranslator::translateShuffleVector(const User &U, 1472 MachineIRBuilder &MIRBuilder) { 1473 MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR) 1474 .addDef(getOrCreateVReg(U)) 1475 .addUse(getOrCreateVReg(*U.getOperand(0))) 1476 .addUse(getOrCreateVReg(*U.getOperand(1))) 1477 .addUse(getOrCreateVReg(*U.getOperand(2))); 1478 return true; 1479 } 1480 1481 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 1482 const PHINode &PI = cast<PHINode>(U); 1483 1484 SmallVector<MachineInstr *, 4> Insts; 1485 for (auto Reg : getOrCreateVRegs(PI)) { 1486 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 1487 Insts.push_back(MIB.getInstr()); 1488 } 1489 1490 PendingPHIs.emplace_back(&PI, std::move(Insts)); 1491 return true; 1492 } 1493 1494 bool IRTranslator::translateAtomicCmpXchg(const User &U, 1495 MachineIRBuilder &MIRBuilder) { 1496 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 1497 1498 if (I.isWeak()) 1499 return false; 1500 1501 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1502 : MachineMemOperand::MONone; 1503 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1504 1505 Type *ResType = I.getType(); 1506 Type *ValType = ResType->Type::getStructElementType(0); 1507 1508 auto Res = getOrCreateVRegs(I); 1509 unsigned OldValRes = Res[0]; 1510 unsigned SuccessRes = Res[1]; 1511 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1512 unsigned Cmp = getOrCreateVReg(*I.getCompareOperand()); 1513 unsigned NewVal = getOrCreateVReg(*I.getNewValOperand()); 1514 1515 MIRBuilder.buildAtomicCmpXchgWithSuccess( 1516 OldValRes, SuccessRes, Addr, Cmp, NewVal, 1517 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1518 Flags, DL->getTypeStoreSize(ValType), 1519 getMemOpAlignment(I), AAMDNodes(), nullptr, 1520 I.getSyncScopeID(), I.getSuccessOrdering(), 1521 I.getFailureOrdering())); 1522 return true; 1523 } 1524 1525 bool IRTranslator::translateAtomicRMW(const User &U, 1526 MachineIRBuilder &MIRBuilder) { 1527 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 1528 1529 auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile 1530 : MachineMemOperand::MONone; 1531 Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 1532 1533 Type *ResType = I.getType(); 1534 1535 unsigned Res = getOrCreateVReg(I); 1536 unsigned Addr = getOrCreateVReg(*I.getPointerOperand()); 1537 unsigned Val = getOrCreateVReg(*I.getValOperand()); 1538 1539 unsigned Opcode = 0; 1540 switch (I.getOperation()) { 1541 default: 1542 llvm_unreachable("Unknown atomicrmw op"); 1543 return false; 1544 case AtomicRMWInst::Xchg: 1545 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 1546 break; 1547 case AtomicRMWInst::Add: 1548 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 1549 break; 1550 case AtomicRMWInst::Sub: 1551 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 1552 break; 1553 case AtomicRMWInst::And: 1554 Opcode = TargetOpcode::G_ATOMICRMW_AND; 1555 break; 1556 case AtomicRMWInst::Nand: 1557 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 1558 break; 1559 case AtomicRMWInst::Or: 1560 Opcode = TargetOpcode::G_ATOMICRMW_OR; 1561 break; 1562 case AtomicRMWInst::Xor: 1563 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 1564 break; 1565 case AtomicRMWInst::Max: 1566 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 1567 break; 1568 case AtomicRMWInst::Min: 1569 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 1570 break; 1571 case AtomicRMWInst::UMax: 1572 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 1573 break; 1574 case AtomicRMWInst::UMin: 1575 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 1576 break; 1577 } 1578 1579 MIRBuilder.buildAtomicRMW( 1580 Opcode, Res, Addr, Val, 1581 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 1582 Flags, DL->getTypeStoreSize(ResType), 1583 getMemOpAlignment(I), AAMDNodes(), nullptr, 1584 I.getSyncScopeID(), I.getOrdering())); 1585 return true; 1586 } 1587 1588 void IRTranslator::finishPendingPhis() { 1589 #ifndef NDEBUG 1590 DILocationVerifier Verifier; 1591 GISelObserverWrapper WrapperObserver(&Verifier); 1592 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 1593 #endif // ifndef NDEBUG 1594 for (auto &Phi : PendingPHIs) { 1595 const PHINode *PI = Phi.first; 1596 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 1597 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 1598 #ifndef NDEBUG 1599 Verifier.setCurrentInst(PI); 1600 #endif // ifndef NDEBUG 1601 1602 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 1603 // won't create extra control flow here, otherwise we need to find the 1604 // dominating predecessor here (or perhaps force the weirder IRTranslators 1605 // to provide a simple boundary). 1606 SmallSet<const BasicBlock *, 4> HandledPreds; 1607 1608 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 1609 auto IRPred = PI->getIncomingBlock(i); 1610 if (HandledPreds.count(IRPred)) 1611 continue; 1612 1613 HandledPreds.insert(IRPred); 1614 ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 1615 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 1616 assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) && 1617 "incorrect CFG at MachineBasicBlock level"); 1618 for (unsigned j = 0; j < ValRegs.size(); ++j) { 1619 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 1620 MIB.addUse(ValRegs[j]); 1621 MIB.addMBB(Pred); 1622 } 1623 } 1624 } 1625 } 1626 } 1627 1628 bool IRTranslator::valueIsSplit(const Value &V, 1629 SmallVectorImpl<uint64_t> *Offsets) { 1630 SmallVector<LLT, 4> SplitTys; 1631 if (Offsets && !Offsets->empty()) 1632 Offsets->clear(); 1633 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 1634 return SplitTys.size() > 1; 1635 } 1636 1637 bool IRTranslator::translate(const Instruction &Inst) { 1638 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 1639 EntryBuilder->setDebugLoc(Inst.getDebugLoc()); 1640 switch(Inst.getOpcode()) { 1641 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1642 case Instruction::OPCODE: \ 1643 return translate##OPCODE(Inst, *CurBuilder.get()); 1644 #include "llvm/IR/Instruction.def" 1645 default: 1646 return false; 1647 } 1648 } 1649 1650 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 1651 if (auto CI = dyn_cast<ConstantInt>(&C)) 1652 EntryBuilder->buildConstant(Reg, *CI); 1653 else if (auto CF = dyn_cast<ConstantFP>(&C)) 1654 EntryBuilder->buildFConstant(Reg, *CF); 1655 else if (isa<UndefValue>(C)) 1656 EntryBuilder->buildUndef(Reg); 1657 else if (isa<ConstantPointerNull>(C)) { 1658 // As we are trying to build a constant val of 0 into a pointer, 1659 // insert a cast to make them correct with respect to types. 1660 unsigned NullSize = DL->getTypeSizeInBits(C.getType()); 1661 auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize); 1662 auto *ZeroVal = ConstantInt::get(ZeroTy, 0); 1663 unsigned ZeroReg = getOrCreateVReg(*ZeroVal); 1664 EntryBuilder->buildCast(Reg, ZeroReg); 1665 } else if (auto GV = dyn_cast<GlobalValue>(&C)) 1666 EntryBuilder->buildGlobalValue(Reg, GV); 1667 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 1668 if (!CAZ->getType()->isVectorTy()) 1669 return false; 1670 // Return the scalar if it is a <1 x Ty> vector. 1671 if (CAZ->getNumElements() == 1) 1672 return translate(*CAZ->getElementValue(0u), Reg); 1673 SmallVector<unsigned, 4> Ops; 1674 for (unsigned i = 0; i < CAZ->getNumElements(); ++i) { 1675 Constant &Elt = *CAZ->getElementValue(i); 1676 Ops.push_back(getOrCreateVReg(Elt)); 1677 } 1678 EntryBuilder->buildBuildVector(Reg, Ops); 1679 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 1680 // Return the scalar if it is a <1 x Ty> vector. 1681 if (CV->getNumElements() == 1) 1682 return translate(*CV->getElementAsConstant(0), Reg); 1683 SmallVector<unsigned, 4> Ops; 1684 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 1685 Constant &Elt = *CV->getElementAsConstant(i); 1686 Ops.push_back(getOrCreateVReg(Elt)); 1687 } 1688 EntryBuilder->buildBuildVector(Reg, Ops); 1689 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 1690 switch(CE->getOpcode()) { 1691 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1692 case Instruction::OPCODE: \ 1693 return translate##OPCODE(*CE, *EntryBuilder.get()); 1694 #include "llvm/IR/Instruction.def" 1695 default: 1696 return false; 1697 } 1698 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 1699 if (CV->getNumOperands() == 1) 1700 return translate(*CV->getOperand(0), Reg); 1701 SmallVector<unsigned, 4> Ops; 1702 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 1703 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 1704 } 1705 EntryBuilder->buildBuildVector(Reg, Ops); 1706 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 1707 EntryBuilder->buildBlockAddress(Reg, BA); 1708 } else 1709 return false; 1710 1711 return true; 1712 } 1713 1714 void IRTranslator::finalizeFunction() { 1715 // Release the memory used by the different maps we 1716 // needed during the translation. 1717 PendingPHIs.clear(); 1718 VMap.reset(); 1719 FrameIndices.clear(); 1720 MachinePreds.clear(); 1721 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 1722 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 1723 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 1724 EntryBuilder.reset(); 1725 CurBuilder.reset(); 1726 } 1727 1728 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 1729 MF = &CurMF; 1730 const Function &F = MF->getFunction(); 1731 if (F.empty()) 1732 return false; 1733 GISelCSEAnalysisWrapper &Wrapper = 1734 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 1735 // Set the CSEConfig and run the analysis. 1736 GISelCSEInfo *CSEInfo = nullptr; 1737 TPC = &getAnalysis<TargetPassConfig>(); 1738 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 1739 ? EnableCSEInIRTranslator 1740 : TPC->isGISelCSEEnabled(); 1741 1742 if (EnableCSE) { 1743 EntryBuilder = make_unique<CSEMIRBuilder>(CurMF); 1744 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 1745 EntryBuilder->setCSEInfo(CSEInfo); 1746 CurBuilder = make_unique<CSEMIRBuilder>(CurMF); 1747 CurBuilder->setCSEInfo(CSEInfo); 1748 } else { 1749 EntryBuilder = make_unique<MachineIRBuilder>(); 1750 CurBuilder = make_unique<MachineIRBuilder>(); 1751 } 1752 CLI = MF->getSubtarget().getCallLowering(); 1753 CurBuilder->setMF(*MF); 1754 EntryBuilder->setMF(*MF); 1755 MRI = &MF->getRegInfo(); 1756 DL = &F.getParent()->getDataLayout(); 1757 ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F); 1758 1759 assert(PendingPHIs.empty() && "stale PHIs"); 1760 1761 if (!DL->isLittleEndian()) { 1762 // Currently we don't properly handle big endian code. 1763 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1764 F.getSubprogram(), &F.getEntryBlock()); 1765 R << "unable to translate in big endian mode"; 1766 reportTranslationError(*MF, *TPC, *ORE, R); 1767 } 1768 1769 // Release the per-function state when we return, whether we succeeded or not. 1770 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 1771 1772 // Setup a separate basic-block for the arguments and constants 1773 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 1774 MF->push_back(EntryBB); 1775 EntryBuilder->setMBB(*EntryBB); 1776 1777 // Create all blocks, in IR order, to preserve the layout. 1778 for (const BasicBlock &BB: F) { 1779 auto *&MBB = BBToMBB[&BB]; 1780 1781 MBB = MF->CreateMachineBasicBlock(&BB); 1782 MF->push_back(MBB); 1783 1784 if (BB.hasAddressTaken()) 1785 MBB->setHasAddressTaken(); 1786 } 1787 1788 // Make our arguments/constants entry block fallthrough to the IR entry block. 1789 EntryBB->addSuccessor(&getMBB(F.front())); 1790 1791 // Lower the actual args into this basic block. 1792 SmallVector<unsigned, 8> VRegArgs; 1793 for (const Argument &Arg: F.args()) { 1794 if (DL->getTypeStoreSize(Arg.getType()) == 0) 1795 continue; // Don't handle zero sized types. 1796 VRegArgs.push_back( 1797 MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL))); 1798 } 1799 1800 // We don't currently support translating swifterror or swiftself functions. 1801 for (auto &Arg : F.args()) { 1802 if (Arg.hasSwiftErrorAttr() || Arg.hasSwiftSelfAttr()) { 1803 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1804 F.getSubprogram(), &F.getEntryBlock()); 1805 R << "unable to lower arguments due to swifterror/swiftself: " 1806 << ore::NV("Prototype", F.getType()); 1807 reportTranslationError(*MF, *TPC, *ORE, R); 1808 return false; 1809 } 1810 } 1811 1812 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) { 1813 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1814 F.getSubprogram(), &F.getEntryBlock()); 1815 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 1816 reportTranslationError(*MF, *TPC, *ORE, R); 1817 return false; 1818 } 1819 1820 auto ArgIt = F.arg_begin(); 1821 for (auto &VArg : VRegArgs) { 1822 // If the argument is an unsplit scalar then don't use unpackRegs to avoid 1823 // creating redundant copies. 1824 if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) { 1825 auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt)); 1826 assert(VRegs.empty() && "VRegs already populated?"); 1827 VRegs.push_back(VArg); 1828 } else { 1829 unpackRegs(*ArgIt, VArg, *EntryBuilder.get()); 1830 } 1831 ArgIt++; 1832 } 1833 1834 // Need to visit defs before uses when translating instructions. 1835 GISelObserverWrapper WrapperObserver; 1836 if (EnableCSE && CSEInfo) 1837 WrapperObserver.addObserver(CSEInfo); 1838 { 1839 ReversePostOrderTraversal<const Function *> RPOT(&F); 1840 #ifndef NDEBUG 1841 DILocationVerifier Verifier; 1842 WrapperObserver.addObserver(&Verifier); 1843 #endif // ifndef NDEBUG 1844 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 1845 for (const BasicBlock *BB : RPOT) { 1846 MachineBasicBlock &MBB = getMBB(*BB); 1847 // Set the insertion point of all the following translations to 1848 // the end of this basic block. 1849 CurBuilder->setMBB(MBB); 1850 1851 for (const Instruction &Inst : *BB) { 1852 #ifndef NDEBUG 1853 Verifier.setCurrentInst(&Inst); 1854 #endif // ifndef NDEBUG 1855 if (translate(Inst)) 1856 continue; 1857 1858 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 1859 Inst.getDebugLoc(), BB); 1860 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 1861 1862 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 1863 std::string InstStrStorage; 1864 raw_string_ostream InstStr(InstStrStorage); 1865 InstStr << Inst; 1866 1867 R << ": '" << InstStr.str() << "'"; 1868 } 1869 1870 reportTranslationError(*MF, *TPC, *ORE, R); 1871 return false; 1872 } 1873 } 1874 #ifndef NDEBUG 1875 WrapperObserver.removeObserver(&Verifier); 1876 #endif 1877 } 1878 1879 finishPendingPhis(); 1880 1881 // Merge the argument lowering and constants block with its single 1882 // successor, the LLVM-IR entry block. We want the basic block to 1883 // be maximal. 1884 assert(EntryBB->succ_size() == 1 && 1885 "Custom BB used for lowering should have only one successor"); 1886 // Get the successor of the current entry block. 1887 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 1888 assert(NewEntryBB.pred_size() == 1 && 1889 "LLVM-IR entry block has a predecessor!?"); 1890 // Move all the instruction from the current entry block to the 1891 // new entry block. 1892 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 1893 EntryBB->end()); 1894 1895 // Update the live-in information for the new entry block. 1896 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 1897 NewEntryBB.addLiveIn(LiveIn); 1898 NewEntryBB.sortUniqueLiveIns(); 1899 1900 // Get rid of the now empty basic block. 1901 EntryBB->removeSuccessor(&NewEntryBB); 1902 MF->remove(EntryBB); 1903 MF->DeleteMachineBasicBlock(EntryBB); 1904 1905 assert(&MF->front() == &NewEntryBB && 1906 "New entry wasn't next in the list of basic block!"); 1907 1908 // Initialize stack protector information. 1909 StackProtector &SP = getAnalysis<StackProtector>(); 1910 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1911 1912 return false; 1913 } 1914