1 //===-- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator --*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This file implements the IRTranslator class. 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 14 15 #include "llvm/ADT/SmallSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 18 #include "llvm/CodeGen/Analysis.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineModuleInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/Target/TargetIntrinsicInfo.h" 31 #include "llvm/Target/TargetLowering.h" 32 33 #define DEBUG_TYPE "irtranslator" 34 35 using namespace llvm; 36 37 char IRTranslator::ID = 0; 38 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 39 false, false) 40 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 41 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 42 false, false) 43 44 static void reportTranslationError(const Value &V, const Twine &Message) { 45 std::string ErrStorage; 46 raw_string_ostream Err(ErrStorage); 47 Err << Message << ": " << V << '\n'; 48 report_fatal_error(Err.str()); 49 } 50 51 IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) { 52 initializeIRTranslatorPass(*PassRegistry::getPassRegistry()); 53 } 54 55 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 56 AU.addRequired<TargetPassConfig>(); 57 MachineFunctionPass::getAnalysisUsage(AU); 58 } 59 60 61 unsigned IRTranslator::getOrCreateVReg(const Value &Val) { 62 unsigned &ValReg = ValToVReg[&Val]; 63 // Check if this is the first time we see Val. 64 if (!ValReg) { 65 // Fill ValRegsSequence with the sequence of registers 66 // we need to concat together to produce the value. 67 assert(Val.getType()->isSized() && 68 "Don't know how to create an empty vreg"); 69 unsigned VReg = MRI->createGenericVirtualRegister(LLT{*Val.getType(), *DL}); 70 ValReg = VReg; 71 72 if (auto CV = dyn_cast<Constant>(&Val)) { 73 bool Success = translate(*CV, VReg); 74 if (!Success) { 75 if (!TPC->isGlobalISelAbortEnabled()) { 76 MF->getProperties().set( 77 MachineFunctionProperties::Property::FailedISel); 78 return VReg; 79 } 80 reportTranslationError(Val, "unable to translate constant"); 81 } 82 } 83 } 84 85 // Look Val up again in case the reference has been invalidated since. 86 return ValToVReg[&Val]; 87 } 88 89 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 90 if (FrameIndices.find(&AI) != FrameIndices.end()) 91 return FrameIndices[&AI]; 92 93 unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType()); 94 unsigned Size = 95 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 96 97 // Always allocate at least one byte. 98 Size = std::max(Size, 1u); 99 100 unsigned Alignment = AI.getAlignment(); 101 if (!Alignment) 102 Alignment = DL->getABITypeAlignment(AI.getAllocatedType()); 103 104 int &FI = FrameIndices[&AI]; 105 FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI); 106 return FI; 107 } 108 109 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) { 110 unsigned Alignment = 0; 111 Type *ValTy = nullptr; 112 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 113 Alignment = SI->getAlignment(); 114 ValTy = SI->getValueOperand()->getType(); 115 } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 116 Alignment = LI->getAlignment(); 117 ValTy = LI->getType(); 118 } else if (!TPC->isGlobalISelAbortEnabled()) { 119 MF->getProperties().set( 120 MachineFunctionProperties::Property::FailedISel); 121 return 1; 122 } else 123 llvm_unreachable("unhandled memory instruction"); 124 125 return Alignment ? Alignment : DL->getABITypeAlignment(ValTy); 126 } 127 128 MachineBasicBlock &IRTranslator::getOrCreateBB(const BasicBlock &BB) { 129 MachineBasicBlock *&MBB = BBToMBB[&BB]; 130 if (!MBB) { 131 MBB = MF->CreateMachineBasicBlock(&BB); 132 MF->push_back(MBB); 133 134 if (BB.hasAddressTaken()) 135 MBB->setHasAddressTaken(); 136 } 137 return *MBB; 138 } 139 140 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 141 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 142 MachinePreds[Edge].push_back(NewPred); 143 } 144 145 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 146 MachineIRBuilder &MIRBuilder) { 147 // FIXME: handle signed/unsigned wrapping flags. 148 149 // Get or create a virtual register for each value. 150 // Unless the value is a Constant => loadimm cst? 151 // or inline constant each time? 152 // Creation of a virtual register needs to have a size. 153 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 154 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 155 unsigned Res = getOrCreateVReg(U); 156 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1); 157 return true; 158 } 159 160 bool IRTranslator::translateCompare(const User &U, 161 MachineIRBuilder &MIRBuilder) { 162 const CmpInst *CI = dyn_cast<CmpInst>(&U); 163 unsigned Op0 = getOrCreateVReg(*U.getOperand(0)); 164 unsigned Op1 = getOrCreateVReg(*U.getOperand(1)); 165 unsigned Res = getOrCreateVReg(U); 166 CmpInst::Predicate Pred = 167 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 168 cast<ConstantExpr>(U).getPredicate()); 169 170 if (CmpInst::isIntPredicate(Pred)) 171 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 172 else 173 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1); 174 175 return true; 176 } 177 178 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 179 const ReturnInst &RI = cast<ReturnInst>(U); 180 const Value *Ret = RI.getReturnValue(); 181 // The target may mess up with the insertion point, but 182 // this is not important as a return is the last instruction 183 // of the block anyway. 184 return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret)); 185 } 186 187 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 188 const BranchInst &BrInst = cast<BranchInst>(U); 189 unsigned Succ = 0; 190 if (!BrInst.isUnconditional()) { 191 // We want a G_BRCOND to the true BB followed by an unconditional branch. 192 unsigned Tst = getOrCreateVReg(*BrInst.getCondition()); 193 const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++)); 194 MachineBasicBlock &TrueBB = getOrCreateBB(TrueTgt); 195 MIRBuilder.buildBrCond(Tst, TrueBB); 196 } 197 198 const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ)); 199 MachineBasicBlock &TgtBB = getOrCreateBB(BrTgt); 200 MIRBuilder.buildBr(TgtBB); 201 202 // Link successors. 203 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 204 for (const BasicBlock *Succ : BrInst.successors()) 205 CurBB.addSuccessor(&getOrCreateBB(*Succ)); 206 return true; 207 } 208 209 bool IRTranslator::translateSwitch(const User &U, 210 MachineIRBuilder &MIRBuilder) { 211 // For now, just translate as a chain of conditional branches. 212 // FIXME: could we share most of the logic/code in 213 // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel? 214 // At first sight, it seems most of the logic in there is independent of 215 // SelectionDAG-specifics and a lot of work went in to optimize switch 216 // lowering in there. 217 218 const SwitchInst &SwInst = cast<SwitchInst>(U); 219 const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition()); 220 const BasicBlock *OrigBB = SwInst.getParent(); 221 222 LLT LLTi1 = LLT(*Type::getInt1Ty(U.getContext()), *DL); 223 for (auto &CaseIt : SwInst.cases()) { 224 const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue()); 225 const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1); 226 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue); 227 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 228 const BasicBlock *TrueBB = CaseIt.getCaseSuccessor(); 229 MachineBasicBlock &TrueMBB = getOrCreateBB(*TrueBB); 230 231 MIRBuilder.buildBrCond(Tst, TrueMBB); 232 CurMBB.addSuccessor(&TrueMBB); 233 addMachineCFGPred({OrigBB, TrueBB}, &CurMBB); 234 235 MachineBasicBlock *FalseMBB = 236 MF->CreateMachineBasicBlock(SwInst.getParent()); 237 MF->push_back(FalseMBB); 238 MIRBuilder.buildBr(*FalseMBB); 239 CurMBB.addSuccessor(FalseMBB); 240 241 MIRBuilder.setMBB(*FalseMBB); 242 } 243 // handle default case 244 const BasicBlock *DefaultBB = SwInst.getDefaultDest(); 245 MachineBasicBlock &DefaultMBB = getOrCreateBB(*DefaultBB); 246 MIRBuilder.buildBr(DefaultMBB); 247 MachineBasicBlock &CurMBB = MIRBuilder.getMBB(); 248 CurMBB.addSuccessor(&DefaultMBB); 249 addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB); 250 251 return true; 252 } 253 254 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 255 const LoadInst &LI = cast<LoadInst>(U); 256 257 if (!TPC->isGlobalISelAbortEnabled() && LI.isAtomic()) 258 return false; 259 260 assert(!LI.isAtomic() && "only non-atomic loads are supported at the moment"); 261 auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile 262 : MachineMemOperand::MONone; 263 Flags |= MachineMemOperand::MOLoad; 264 265 unsigned Res = getOrCreateVReg(LI); 266 unsigned Addr = getOrCreateVReg(*LI.getPointerOperand()); 267 LLT VTy{*LI.getType(), *DL}, PTy{*LI.getPointerOperand()->getType(), *DL}; 268 MIRBuilder.buildLoad( 269 Res, Addr, 270 *MF->getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()), 271 Flags, DL->getTypeStoreSize(LI.getType()), 272 getMemOpAlignment(LI))); 273 return true; 274 } 275 276 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 277 const StoreInst &SI = cast<StoreInst>(U); 278 279 if (!TPC->isGlobalISelAbortEnabled() && SI.isAtomic()) 280 return false; 281 282 assert(!SI.isAtomic() && "only non-atomic stores supported at the moment"); 283 auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile 284 : MachineMemOperand::MONone; 285 Flags |= MachineMemOperand::MOStore; 286 287 unsigned Val = getOrCreateVReg(*SI.getValueOperand()); 288 unsigned Addr = getOrCreateVReg(*SI.getPointerOperand()); 289 LLT VTy{*SI.getValueOperand()->getType(), *DL}, 290 PTy{*SI.getPointerOperand()->getType(), *DL}; 291 292 MIRBuilder.buildStore( 293 Val, Addr, 294 *MF->getMachineMemOperand( 295 MachinePointerInfo(SI.getPointerOperand()), Flags, 296 DL->getTypeStoreSize(SI.getValueOperand()->getType()), 297 getMemOpAlignment(SI))); 298 return true; 299 } 300 301 bool IRTranslator::translateExtractValue(const User &U, 302 MachineIRBuilder &MIRBuilder) { 303 const Value *Src = U.getOperand(0); 304 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 305 SmallVector<Value *, 1> Indices; 306 307 // getIndexedOffsetInType is designed for GEPs, so the first index is the 308 // usual array element rather than looking into the actual aggregate. 309 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 310 311 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 312 for (auto Idx : EVI->indices()) 313 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 314 } else { 315 for (unsigned i = 1; i < U.getNumOperands(); ++i) 316 Indices.push_back(U.getOperand(i)); 317 } 318 319 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 320 321 unsigned Res = getOrCreateVReg(U); 322 MIRBuilder.buildExtract(Res, Offset, getOrCreateVReg(*Src)); 323 324 return true; 325 } 326 327 bool IRTranslator::translateInsertValue(const User &U, 328 MachineIRBuilder &MIRBuilder) { 329 const Value *Src = U.getOperand(0); 330 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 331 SmallVector<Value *, 1> Indices; 332 333 // getIndexedOffsetInType is designed for GEPs, so the first index is the 334 // usual array element rather than looking into the actual aggregate. 335 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 336 337 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 338 for (auto Idx : IVI->indices()) 339 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 340 } else { 341 for (unsigned i = 2; i < U.getNumOperands(); ++i) 342 Indices.push_back(U.getOperand(i)); 343 } 344 345 uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices); 346 347 unsigned Res = getOrCreateVReg(U); 348 const Value &Inserted = *U.getOperand(1); 349 MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), getOrCreateVReg(Inserted), 350 Offset); 351 352 return true; 353 } 354 355 bool IRTranslator::translateSelect(const User &U, 356 MachineIRBuilder &MIRBuilder) { 357 MIRBuilder.buildSelect(getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)), 358 getOrCreateVReg(*U.getOperand(1)), 359 getOrCreateVReg(*U.getOperand(2))); 360 return true; 361 } 362 363 bool IRTranslator::translateBitCast(const User &U, 364 MachineIRBuilder &MIRBuilder) { 365 if (LLT{*U.getOperand(0)->getType(), *DL} == LLT{*U.getType(), *DL}) { 366 unsigned &Reg = ValToVReg[&U]; 367 if (Reg) 368 MIRBuilder.buildCopy(Reg, getOrCreateVReg(*U.getOperand(0))); 369 else 370 Reg = getOrCreateVReg(*U.getOperand(0)); 371 return true; 372 } 373 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 374 } 375 376 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 377 MachineIRBuilder &MIRBuilder) { 378 unsigned Op = getOrCreateVReg(*U.getOperand(0)); 379 unsigned Res = getOrCreateVReg(U); 380 MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op); 381 return true; 382 } 383 384 bool IRTranslator::translateGetElementPtr(const User &U, 385 MachineIRBuilder &MIRBuilder) { 386 // FIXME: support vector GEPs. 387 if (U.getType()->isVectorTy()) 388 return false; 389 390 Value &Op0 = *U.getOperand(0); 391 unsigned BaseReg = getOrCreateVReg(Op0); 392 LLT PtrTy{*Op0.getType(), *DL}; 393 unsigned PtrSize = DL->getPointerSizeInBits(PtrTy.getAddressSpace()); 394 LLT OffsetTy = LLT::scalar(PtrSize); 395 396 int64_t Offset = 0; 397 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 398 GTI != E; ++GTI) { 399 const Value *Idx = GTI.getOperand(); 400 if (StructType *StTy = GTI.getStructTypeOrNull()) { 401 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 402 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 403 continue; 404 } else { 405 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 406 407 // If this is a scalar constant or a splat vector of constants, 408 // handle it quickly. 409 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 410 Offset += ElementSize * CI->getSExtValue(); 411 continue; 412 } 413 414 if (Offset != 0) { 415 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 416 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 417 MIRBuilder.buildConstant(OffsetReg, Offset); 418 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 419 420 BaseReg = NewBaseReg; 421 Offset = 0; 422 } 423 424 // N = N + Idx * ElementSize; 425 unsigned ElementSizeReg = MRI->createGenericVirtualRegister(OffsetTy); 426 MIRBuilder.buildConstant(ElementSizeReg, ElementSize); 427 428 unsigned IdxReg = getOrCreateVReg(*Idx); 429 if (MRI->getType(IdxReg) != OffsetTy) { 430 unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy); 431 MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg); 432 IdxReg = NewIdxReg; 433 } 434 435 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 436 MIRBuilder.buildMul(OffsetReg, ElementSizeReg, IdxReg); 437 438 unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy); 439 MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg); 440 BaseReg = NewBaseReg; 441 } 442 } 443 444 if (Offset != 0) { 445 unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy); 446 MIRBuilder.buildConstant(OffsetReg, Offset); 447 MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg); 448 return true; 449 } 450 451 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 452 return true; 453 } 454 455 bool IRTranslator::translateMemcpy(const CallInst &CI, 456 MachineIRBuilder &MIRBuilder) { 457 LLT SizeTy{*CI.getArgOperand(2)->getType(), *DL}; 458 if (cast<PointerType>(CI.getArgOperand(0)->getType())->getAddressSpace() != 459 0 || 460 cast<PointerType>(CI.getArgOperand(1)->getType())->getAddressSpace() != 461 0 || 462 SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0)) 463 return false; 464 465 SmallVector<CallLowering::ArgInfo, 8> Args; 466 for (int i = 0; i < 3; ++i) { 467 const auto &Arg = CI.getArgOperand(i); 468 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 469 } 470 471 MachineOperand Callee = MachineOperand::CreateES("memcpy"); 472 473 return CLI->lowerCall(MIRBuilder, Callee, 474 CallLowering::ArgInfo(0, CI.getType()), Args); 475 } 476 477 void IRTranslator::getStackGuard(unsigned DstReg, 478 MachineIRBuilder &MIRBuilder) { 479 auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD); 480 MIB.addDef(DstReg); 481 482 auto &TLI = *MF->getSubtarget().getTargetLowering(); 483 Value *Global = TLI.getSDagStackGuard(*MF->getFunction()->getParent()); 484 if (!Global) 485 return; 486 487 MachinePointerInfo MPInfo(Global); 488 MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1); 489 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 490 MachineMemOperand::MODereferenceable; 491 *MemRefs = 492 MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8, 493 DL->getPointerABIAlignment()); 494 MIB.setMemRefs(MemRefs, MemRefs + 1); 495 } 496 497 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 498 MachineIRBuilder &MIRBuilder) { 499 LLT Ty{*CI.getOperand(0)->getType(), *DL}; 500 LLT s1 = LLT::scalar(1); 501 unsigned Width = Ty.getSizeInBits(); 502 unsigned Res = MRI->createGenericVirtualRegister(Ty); 503 unsigned Overflow = MRI->createGenericVirtualRegister(s1); 504 auto MIB = MIRBuilder.buildInstr(Op) 505 .addDef(Res) 506 .addDef(Overflow) 507 .addUse(getOrCreateVReg(*CI.getOperand(0))) 508 .addUse(getOrCreateVReg(*CI.getOperand(1))); 509 510 if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) { 511 unsigned Zero = MRI->createGenericVirtualRegister(s1); 512 EntryBuilder.buildConstant(Zero, 0); 513 MIB.addUse(Zero); 514 } 515 516 MIRBuilder.buildSequence(getOrCreateVReg(CI), Res, 0, Overflow, Width); 517 return true; 518 } 519 520 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 521 MachineIRBuilder &MIRBuilder) { 522 switch (ID) { 523 default: 524 break; 525 case Intrinsic::dbg_declare: 526 case Intrinsic::dbg_value: 527 // FIXME: these obviously need to be supported properly. 528 if (!TPC->isGlobalISelAbortEnabled()) 529 MF->getProperties().set(MachineFunctionProperties::Property::FailedISel); 530 return true; 531 case Intrinsic::uadd_with_overflow: 532 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder); 533 case Intrinsic::sadd_with_overflow: 534 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 535 case Intrinsic::usub_with_overflow: 536 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder); 537 case Intrinsic::ssub_with_overflow: 538 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 539 case Intrinsic::umul_with_overflow: 540 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 541 case Intrinsic::smul_with_overflow: 542 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 543 case Intrinsic::memcpy: 544 return translateMemcpy(CI, MIRBuilder); 545 case Intrinsic::eh_typeid_for: { 546 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 547 unsigned Reg = getOrCreateVReg(CI); 548 unsigned TypeID = MF->getTypeIDFor(GV); 549 MIRBuilder.buildConstant(Reg, TypeID); 550 return true; 551 } 552 case Intrinsic::objectsize: { 553 // If we don't know by now, we're never going to know. 554 const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1)); 555 556 MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0); 557 return true; 558 } 559 case Intrinsic::stackguard: 560 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 561 return true; 562 case Intrinsic::stackprotector: { 563 LLT PtrTy{*CI.getArgOperand(0)->getType(), *DL}; 564 unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy); 565 getStackGuard(GuardVal, MIRBuilder); 566 567 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 568 MIRBuilder.buildStore( 569 GuardVal, getOrCreateVReg(*Slot), 570 *MF->getMachineMemOperand( 571 MachinePointerInfo::getFixedStack(*MF, 572 getOrCreateFrameIndex(*Slot)), 573 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, 574 PtrTy.getSizeInBits() / 8, 8)); 575 return true; 576 } 577 } 578 return false; 579 } 580 581 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 582 const CallInst &CI = cast<CallInst>(U); 583 auto TII = MF->getTarget().getIntrinsicInfo(); 584 const Function *F = CI.getCalledFunction(); 585 586 if (CI.isInlineAsm()) 587 return false; 588 589 if (!F || !F->isIntrinsic()) { 590 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 591 SmallVector<unsigned, 8> Args; 592 for (auto &Arg: CI.arg_operands()) 593 Args.push_back(getOrCreateVReg(*Arg)); 594 595 return CLI->lowerCall(MIRBuilder, CI, Res, Args, [&]() { 596 return getOrCreateVReg(*CI.getCalledValue()); 597 }); 598 } 599 600 Intrinsic::ID ID = F->getIntrinsicID(); 601 if (TII && ID == Intrinsic::not_intrinsic) 602 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 603 604 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 605 606 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 607 return true; 608 609 unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI); 610 MachineInstrBuilder MIB = 611 MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory()); 612 613 for (auto &Arg : CI.arg_operands()) { 614 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) 615 MIB.addImm(CI->getSExtValue()); 616 else 617 MIB.addUse(getOrCreateVReg(*Arg)); 618 } 619 return true; 620 } 621 622 bool IRTranslator::translateInvoke(const User &U, 623 MachineIRBuilder &MIRBuilder) { 624 const InvokeInst &I = cast<InvokeInst>(U); 625 MCContext &Context = MF->getContext(); 626 627 const BasicBlock *ReturnBB = I.getSuccessor(0); 628 const BasicBlock *EHPadBB = I.getSuccessor(1); 629 630 const Value *Callee(I.getCalledValue()); 631 const Function *Fn = dyn_cast<Function>(Callee); 632 if (isa<InlineAsm>(Callee)) 633 return false; 634 635 // FIXME: support invoking patchpoint and statepoint intrinsics. 636 if (Fn && Fn->isIntrinsic()) 637 return false; 638 639 // FIXME: support whatever these are. 640 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 641 return false; 642 643 // FIXME: support Windows exception handling. 644 if (!isa<LandingPadInst>(EHPadBB->front())) 645 return false; 646 647 648 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 649 // the region covered by the try. 650 MCSymbol *BeginSymbol = Context.createTempSymbol(); 651 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 652 653 unsigned Res = I.getType()->isVoidTy() ? 0 : getOrCreateVReg(I); 654 SmallVector<CallLowering::ArgInfo, 8> Args; 655 for (auto &Arg: I.arg_operands()) 656 Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType()); 657 658 if (!CLI->lowerCall(MIRBuilder, MachineOperand::CreateGA(Fn, 0), 659 CallLowering::ArgInfo(Res, I.getType()), Args)) 660 return false; 661 662 MCSymbol *EndSymbol = Context.createTempSymbol(); 663 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 664 665 // FIXME: track probabilities. 666 MachineBasicBlock &EHPadMBB = getOrCreateBB(*EHPadBB), 667 &ReturnMBB = getOrCreateBB(*ReturnBB); 668 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 669 MIRBuilder.getMBB().addSuccessor(&ReturnMBB); 670 MIRBuilder.getMBB().addSuccessor(&EHPadMBB); 671 672 return true; 673 } 674 675 bool IRTranslator::translateLandingPad(const User &U, 676 MachineIRBuilder &MIRBuilder) { 677 const LandingPadInst &LP = cast<LandingPadInst>(U); 678 679 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 680 addLandingPadInfo(LP, MBB); 681 682 MBB.setIsEHPad(); 683 684 // If there aren't registers to copy the values into (e.g., during SjLj 685 // exceptions), then don't bother. 686 auto &TLI = *MF->getSubtarget().getTargetLowering(); 687 const Constant *PersonalityFn = MF->getFunction()->getPersonalityFn(); 688 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 689 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 690 return true; 691 692 // If landingpad's return type is token type, we don't create DAG nodes 693 // for its exception pointer and selector value. The extraction of exception 694 // pointer or selector value from token type landingpads is not currently 695 // supported. 696 if (LP.getType()->isTokenTy()) 697 return true; 698 699 // Add a label to mark the beginning of the landing pad. Deletion of the 700 // landing pad can thus be detected via the MachineModuleInfo. 701 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 702 .addSym(MF->addLandingPad(&MBB)); 703 704 // Mark exception register as live in. 705 SmallVector<unsigned, 2> Regs; 706 SmallVector<uint64_t, 2> Offsets; 707 LLT p0 = LLT::pointer(0, DL->getPointerSizeInBits()); 708 if (unsigned Reg = TLI.getExceptionPointerRegister(PersonalityFn)) { 709 unsigned VReg = MRI->createGenericVirtualRegister(p0); 710 MIRBuilder.buildCopy(VReg, Reg); 711 Regs.push_back(VReg); 712 Offsets.push_back(0); 713 } 714 715 if (unsigned Reg = TLI.getExceptionSelectorRegister(PersonalityFn)) { 716 unsigned VReg = MRI->createGenericVirtualRegister(p0); 717 MIRBuilder.buildCopy(VReg, Reg); 718 Regs.push_back(VReg); 719 Offsets.push_back(p0.getSizeInBits()); 720 } 721 722 MIRBuilder.buildSequence(getOrCreateVReg(LP), Regs, Offsets); 723 return true; 724 } 725 726 bool IRTranslator::translateStaticAlloca(const AllocaInst &AI, 727 MachineIRBuilder &MIRBuilder) { 728 if (!TPC->isGlobalISelAbortEnabled() && !AI.isStaticAlloca()) 729 return false; 730 731 assert(AI.isStaticAlloca() && "only handle static allocas now"); 732 unsigned Res = getOrCreateVReg(AI); 733 int FI = getOrCreateFrameIndex(AI); 734 MIRBuilder.buildFrameIndex(Res, FI); 735 return true; 736 } 737 738 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 739 const PHINode &PI = cast<PHINode>(U); 740 auto MIB = MIRBuilder.buildInstr(TargetOpcode::PHI); 741 MIB.addDef(getOrCreateVReg(PI)); 742 743 PendingPHIs.emplace_back(&PI, MIB.getInstr()); 744 return true; 745 } 746 747 void IRTranslator::finishPendingPhis() { 748 for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) { 749 const PHINode *PI = Phi.first; 750 MachineInstrBuilder MIB(*MF, Phi.second); 751 752 // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator 753 // won't create extra control flow here, otherwise we need to find the 754 // dominating predecessor here (or perhaps force the weirder IRTranslators 755 // to provide a simple boundary). 756 SmallSet<const BasicBlock *, 4> HandledPreds; 757 758 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 759 auto IRPred = PI->getIncomingBlock(i); 760 if (HandledPreds.count(IRPred)) 761 continue; 762 763 HandledPreds.insert(IRPred); 764 unsigned ValReg = getOrCreateVReg(*PI->getIncomingValue(i)); 765 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 766 assert(Pred->isSuccessor(MIB->getParent()) && 767 "incorrect CFG at MachineBasicBlock level"); 768 MIB.addUse(ValReg); 769 MIB.addMBB(Pred); 770 } 771 } 772 } 773 } 774 775 bool IRTranslator::translate(const Instruction &Inst) { 776 CurBuilder.setDebugLoc(Inst.getDebugLoc()); 777 switch(Inst.getOpcode()) { 778 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 779 case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder); 780 #include "llvm/IR/Instruction.def" 781 default: 782 if (!TPC->isGlobalISelAbortEnabled()) 783 return false; 784 llvm_unreachable("unknown opcode"); 785 } 786 } 787 788 bool IRTranslator::translate(const Constant &C, unsigned Reg) { 789 if (auto CI = dyn_cast<ConstantInt>(&C)) 790 EntryBuilder.buildConstant(Reg, *CI); 791 else if (auto CF = dyn_cast<ConstantFP>(&C)) 792 EntryBuilder.buildFConstant(Reg, *CF); 793 else if (isa<UndefValue>(C)) 794 EntryBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF).addDef(Reg); 795 else if (isa<ConstantPointerNull>(C)) 796 EntryBuilder.buildConstant(Reg, 0); 797 else if (auto GV = dyn_cast<GlobalValue>(&C)) 798 EntryBuilder.buildGlobalValue(Reg, GV); 799 else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 800 switch(CE->getOpcode()) { 801 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 802 case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder); 803 #include "llvm/IR/Instruction.def" 804 default: 805 if (!TPC->isGlobalISelAbortEnabled()) 806 return false; 807 llvm_unreachable("unknown opcode"); 808 } 809 } else if (!TPC->isGlobalISelAbortEnabled()) 810 return false; 811 else 812 llvm_unreachable("unhandled constant kind"); 813 814 return true; 815 } 816 817 void IRTranslator::finalizeFunction() { 818 // Release the memory used by the different maps we 819 // needed during the translation. 820 PendingPHIs.clear(); 821 ValToVReg.clear(); 822 FrameIndices.clear(); 823 Constants.clear(); 824 MachinePreds.clear(); 825 } 826 827 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 828 MF = &CurMF; 829 const Function &F = *MF->getFunction(); 830 if (F.empty()) 831 return false; 832 CLI = MF->getSubtarget().getCallLowering(); 833 CurBuilder.setMF(*MF); 834 EntryBuilder.setMF(*MF); 835 MRI = &MF->getRegInfo(); 836 DL = &F.getParent()->getDataLayout(); 837 TPC = &getAnalysis<TargetPassConfig>(); 838 839 assert(PendingPHIs.empty() && "stale PHIs"); 840 841 // Setup a separate basic-block for the arguments and constants, falling 842 // through to the IR-level Function's entry block. 843 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 844 MF->push_back(EntryBB); 845 EntryBB->addSuccessor(&getOrCreateBB(F.front())); 846 EntryBuilder.setMBB(*EntryBB); 847 848 // Lower the actual args into this basic block. 849 SmallVector<unsigned, 8> VRegArgs; 850 for (const Argument &Arg: F.args()) 851 VRegArgs.push_back(getOrCreateVReg(Arg)); 852 bool Succeeded = CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs); 853 if (!Succeeded) { 854 if (!TPC->isGlobalISelAbortEnabled()) { 855 MF->getProperties().set( 856 MachineFunctionProperties::Property::FailedISel); 857 finalizeFunction(); 858 return false; 859 } 860 report_fatal_error("Unable to lower arguments"); 861 } 862 863 // And translate the function! 864 for (const BasicBlock &BB: F) { 865 MachineBasicBlock &MBB = getOrCreateBB(BB); 866 // Set the insertion point of all the following translations to 867 // the end of this basic block. 868 CurBuilder.setMBB(MBB); 869 870 for (const Instruction &Inst: BB) { 871 Succeeded &= translate(Inst); 872 if (!Succeeded) { 873 if (TPC->isGlobalISelAbortEnabled()) 874 reportTranslationError(Inst, "unable to translate instruction"); 875 MF->getProperties().set( 876 MachineFunctionProperties::Property::FailedISel); 877 break; 878 } 879 } 880 } 881 882 if (Succeeded) { 883 finishPendingPhis(); 884 885 // Now that the MachineFrameInfo has been configured, no further changes to 886 // the reserved registers are possible. 887 MRI->freezeReservedRegs(*MF); 888 889 // Merge the argument lowering and constants block with its single 890 // successor, the LLVM-IR entry block. We want the basic block to 891 // be maximal. 892 assert(EntryBB->succ_size() == 1 && 893 "Custom BB used for lowering should have only one successor"); 894 // Get the successor of the current entry block. 895 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 896 assert(NewEntryBB.pred_size() == 1 && 897 "LLVM-IR entry block has a predecessor!?"); 898 // Move all the instruction from the current entry block to the 899 // new entry block. 900 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 901 EntryBB->end()); 902 903 // Update the live-in information for the new entry block. 904 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 905 NewEntryBB.addLiveIn(LiveIn); 906 NewEntryBB.sortUniqueLiveIns(); 907 908 // Get rid of the now empty basic block. 909 EntryBB->removeSuccessor(&NewEntryBB); 910 MF->remove(EntryBB); 911 912 assert(&MF->front() == &NewEntryBB && 913 "New entry wasn't next in the list of basic block!"); 914 } 915 916 finalizeFunction(); 917 918 return false; 919 } 920