1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the IRTranslator class. 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/ScopeExit.h" 16 #include "llvm/ADT/SmallSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/BranchProbabilityInfo.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" 25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 26 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 27 #include "llvm/CodeGen/LowLevelType.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/RuntimeLibcalls.h" 37 #include "llvm/CodeGen/StackProtector.h" 38 #include "llvm/CodeGen/SwitchLoweringUtils.h" 39 #include "llvm/CodeGen/TargetFrameLowering.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetLowering.h" 42 #include "llvm/CodeGen/TargetPassConfig.h" 43 #include "llvm/CodeGen/TargetRegisterInfo.h" 44 #include "llvm/CodeGen/TargetSubtargetInfo.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CFG.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfo.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/DiagnosticInfo.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/InlineAsm.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/Metadata.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/InitializePasses.h" 67 #include "llvm/MC/MCContext.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CodeGen.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/ErrorHandling.h" 73 #include "llvm/Support/LowLevelTypeImpl.h" 74 #include "llvm/Support/MathExtras.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Target/TargetIntrinsicInfo.h" 77 #include "llvm/Target/TargetMachine.h" 78 #include "llvm/Transforms/Utils/MemoryOpRemark.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <string> 85 #include <utility> 86 #include <vector> 87 88 #define DEBUG_TYPE "irtranslator" 89 90 using namespace llvm; 91 92 static cl::opt<bool> 93 EnableCSEInIRTranslator("enable-cse-in-irtranslator", 94 cl::desc("Should enable CSE in irtranslator"), 95 cl::Optional, cl::init(false)); 96 char IRTranslator::ID = 0; 97 98 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 99 false, false) 100 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 101 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 102 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 103 INITIALIZE_PASS_DEPENDENCY(StackProtector) 104 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 105 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI", 106 false, false) 107 108 static void reportTranslationError(MachineFunction &MF, 109 const TargetPassConfig &TPC, 110 OptimizationRemarkEmitter &ORE, 111 OptimizationRemarkMissed &R) { 112 MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); 113 114 // Print the function name explicitly if we don't have a debug location (which 115 // makes the diagnostic less useful) or if we're going to emit a raw error. 116 if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled()) 117 R << (" (in function: " + MF.getName() + ")").str(); 118 119 if (TPC.isGlobalISelAbortEnabled()) 120 report_fatal_error(Twine(R.getMsg())); 121 else 122 ORE.emit(R); 123 } 124 125 IRTranslator::IRTranslator(CodeGenOpt::Level optlevel) 126 : MachineFunctionPass(ID), OptLevel(optlevel) {} 127 128 #ifndef NDEBUG 129 namespace { 130 /// Verify that every instruction created has the same DILocation as the 131 /// instruction being translated. 132 class DILocationVerifier : public GISelChangeObserver { 133 const Instruction *CurrInst = nullptr; 134 135 public: 136 DILocationVerifier() = default; 137 ~DILocationVerifier() = default; 138 139 const Instruction *getCurrentInst() const { return CurrInst; } 140 void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; } 141 142 void erasingInstr(MachineInstr &MI) override {} 143 void changingInstr(MachineInstr &MI) override {} 144 void changedInstr(MachineInstr &MI) override {} 145 146 void createdInstr(MachineInstr &MI) override { 147 assert(getCurrentInst() && "Inserted instruction without a current MI"); 148 149 // Only print the check message if we're actually checking it. 150 #ifndef NDEBUG 151 LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst 152 << " was copied to " << MI); 153 #endif 154 // We allow insts in the entry block to have a debug loc line of 0 because 155 // they could have originated from constants, and we don't want a jumpy 156 // debug experience. 157 assert((CurrInst->getDebugLoc() == MI.getDebugLoc() || 158 MI.getDebugLoc().getLine() == 0) && 159 "Line info was not transferred to all instructions"); 160 } 161 }; 162 } // namespace 163 #endif // ifndef NDEBUG 164 165 166 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.addRequired<StackProtector>(); 168 AU.addRequired<TargetPassConfig>(); 169 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 170 if (OptLevel != CodeGenOpt::None) 171 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 172 AU.addRequired<TargetLibraryInfoWrapperPass>(); 173 AU.addPreserved<TargetLibraryInfoWrapperPass>(); 174 getSelectionDAGFallbackAnalysisUsage(AU); 175 MachineFunctionPass::getAnalysisUsage(AU); 176 } 177 178 IRTranslator::ValueToVRegInfo::VRegListT & 179 IRTranslator::allocateVRegs(const Value &Val) { 180 auto VRegsIt = VMap.findVRegs(Val); 181 if (VRegsIt != VMap.vregs_end()) 182 return *VRegsIt->second; 183 auto *Regs = VMap.getVRegs(Val); 184 auto *Offsets = VMap.getOffsets(Val); 185 SmallVector<LLT, 4> SplitTys; 186 computeValueLLTs(*DL, *Val.getType(), SplitTys, 187 Offsets->empty() ? Offsets : nullptr); 188 for (unsigned i = 0; i < SplitTys.size(); ++i) 189 Regs->push_back(0); 190 return *Regs; 191 } 192 193 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) { 194 auto VRegsIt = VMap.findVRegs(Val); 195 if (VRegsIt != VMap.vregs_end()) 196 return *VRegsIt->second; 197 198 if (Val.getType()->isVoidTy()) 199 return *VMap.getVRegs(Val); 200 201 // Create entry for this type. 202 auto *VRegs = VMap.getVRegs(Val); 203 auto *Offsets = VMap.getOffsets(Val); 204 205 assert(Val.getType()->isSized() && 206 "Don't know how to create an empty vreg"); 207 208 SmallVector<LLT, 4> SplitTys; 209 computeValueLLTs(*DL, *Val.getType(), SplitTys, 210 Offsets->empty() ? Offsets : nullptr); 211 212 if (!isa<Constant>(Val)) { 213 for (auto Ty : SplitTys) 214 VRegs->push_back(MRI->createGenericVirtualRegister(Ty)); 215 return *VRegs; 216 } 217 218 if (Val.getType()->isAggregateType()) { 219 // UndefValue, ConstantAggregateZero 220 auto &C = cast<Constant>(Val); 221 unsigned Idx = 0; 222 while (auto Elt = C.getAggregateElement(Idx++)) { 223 auto EltRegs = getOrCreateVRegs(*Elt); 224 llvm::copy(EltRegs, std::back_inserter(*VRegs)); 225 } 226 } else { 227 assert(SplitTys.size() == 1 && "unexpectedly split LLT"); 228 VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0])); 229 bool Success = translate(cast<Constant>(Val), VRegs->front()); 230 if (!Success) { 231 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 232 MF->getFunction().getSubprogram(), 233 &MF->getFunction().getEntryBlock()); 234 R << "unable to translate constant: " << ore::NV("Type", Val.getType()); 235 reportTranslationError(*MF, *TPC, *ORE, R); 236 return *VRegs; 237 } 238 } 239 240 return *VRegs; 241 } 242 243 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) { 244 auto MapEntry = FrameIndices.find(&AI); 245 if (MapEntry != FrameIndices.end()) 246 return MapEntry->second; 247 248 uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType()); 249 uint64_t Size = 250 ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue(); 251 252 // Always allocate at least one byte. 253 Size = std::max<uint64_t>(Size, 1u); 254 255 int &FI = FrameIndices[&AI]; 256 FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI); 257 return FI; 258 } 259 260 Align IRTranslator::getMemOpAlign(const Instruction &I) { 261 if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) 262 return SI->getAlign(); 263 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) 264 return LI->getAlign(); 265 if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 266 return AI->getAlign(); 267 if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) 268 return AI->getAlign(); 269 270 OptimizationRemarkMissed R("gisel-irtranslator", "", &I); 271 R << "unable to translate memop: " << ore::NV("Opcode", &I); 272 reportTranslationError(*MF, *TPC, *ORE, R); 273 return Align(1); 274 } 275 276 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) { 277 MachineBasicBlock *&MBB = BBToMBB[&BB]; 278 assert(MBB && "BasicBlock was not encountered before"); 279 return *MBB; 280 } 281 282 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) { 283 assert(NewPred && "new predecessor must be a real MachineBasicBlock"); 284 MachinePreds[Edge].push_back(NewPred); 285 } 286 287 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U, 288 MachineIRBuilder &MIRBuilder) { 289 // Get or create a virtual register for each value. 290 // Unless the value is a Constant => loadimm cst? 291 // or inline constant each time? 292 // Creation of a virtual register needs to have a size. 293 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 294 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 295 Register Res = getOrCreateVReg(U); 296 uint16_t Flags = 0; 297 if (isa<Instruction>(U)) { 298 const Instruction &I = cast<Instruction>(U); 299 Flags = MachineInstr::copyFlagsFromInstruction(I); 300 } 301 302 MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags); 303 return true; 304 } 305 306 bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U, 307 MachineIRBuilder &MIRBuilder) { 308 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 309 Register Res = getOrCreateVReg(U); 310 uint16_t Flags = 0; 311 if (isa<Instruction>(U)) { 312 const Instruction &I = cast<Instruction>(U); 313 Flags = MachineInstr::copyFlagsFromInstruction(I); 314 } 315 MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags); 316 return true; 317 } 318 319 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) { 320 return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder); 321 } 322 323 bool IRTranslator::translateCompare(const User &U, 324 MachineIRBuilder &MIRBuilder) { 325 auto *CI = dyn_cast<CmpInst>(&U); 326 Register Op0 = getOrCreateVReg(*U.getOperand(0)); 327 Register Op1 = getOrCreateVReg(*U.getOperand(1)); 328 Register Res = getOrCreateVReg(U); 329 CmpInst::Predicate Pred = 330 CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>( 331 cast<ConstantExpr>(U).getPredicate()); 332 if (CmpInst::isIntPredicate(Pred)) 333 MIRBuilder.buildICmp(Pred, Res, Op0, Op1); 334 else if (Pred == CmpInst::FCMP_FALSE) 335 MIRBuilder.buildCopy( 336 Res, getOrCreateVReg(*Constant::getNullValue(U.getType()))); 337 else if (Pred == CmpInst::FCMP_TRUE) 338 MIRBuilder.buildCopy( 339 Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType()))); 340 else { 341 assert(CI && "Instruction should be CmpInst"); 342 MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, 343 MachineInstr::copyFlagsFromInstruction(*CI)); 344 } 345 346 return true; 347 } 348 349 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) { 350 const ReturnInst &RI = cast<ReturnInst>(U); 351 const Value *Ret = RI.getReturnValue(); 352 if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0) 353 Ret = nullptr; 354 355 ArrayRef<Register> VRegs; 356 if (Ret) 357 VRegs = getOrCreateVRegs(*Ret); 358 359 Register SwiftErrorVReg = 0; 360 if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) { 361 SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt( 362 &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg()); 363 } 364 365 // The target may mess up with the insertion point, but 366 // this is not important as a return is the last instruction 367 // of the block anyway. 368 return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg); 369 } 370 371 void IRTranslator::emitBranchForMergedCondition( 372 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 373 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 374 BranchProbability TProb, BranchProbability FProb, bool InvertCond) { 375 // If the leaf of the tree is a comparison, merge the condition into 376 // the caseblock. 377 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 378 CmpInst::Predicate Condition; 379 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 380 Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 381 } else { 382 const FCmpInst *FC = cast<FCmpInst>(Cond); 383 Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 384 } 385 386 SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0), 387 BOp->getOperand(1), nullptr, TBB, FBB, CurBB, 388 CurBuilder->getDebugLoc(), TProb, FProb); 389 SL->SwitchCases.push_back(CB); 390 return; 391 } 392 393 // Create a CaseBlock record representing this branch. 394 CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 395 SwitchCG::CaseBlock CB( 396 Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()), 397 nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb); 398 SL->SwitchCases.push_back(CB); 399 } 400 401 static bool isValInBlock(const Value *V, const BasicBlock *BB) { 402 if (const Instruction *I = dyn_cast<Instruction>(V)) 403 return I->getParent() == BB; 404 return true; 405 } 406 407 void IRTranslator::findMergedConditions( 408 const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, 409 MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, 410 Instruction::BinaryOps Opc, BranchProbability TProb, 411 BranchProbability FProb, bool InvertCond) { 412 using namespace PatternMatch; 413 assert((Opc == Instruction::And || Opc == Instruction::Or) && 414 "Expected Opc to be AND/OR"); 415 // Skip over not part of the tree and remember to invert op and operands at 416 // next level. 417 Value *NotCond; 418 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 419 isValInBlock(NotCond, CurBB->getBasicBlock())) { 420 findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 421 !InvertCond); 422 return; 423 } 424 425 const Instruction *BOp = dyn_cast<Instruction>(Cond); 426 const Value *BOpOp0, *BOpOp1; 427 // Compute the effective opcode for Cond, taking into account whether it needs 428 // to be inverted, e.g. 429 // and (not (or A, B)), C 430 // gets lowered as 431 // and (and (not A, not B), C) 432 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 433 if (BOp) { 434 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 435 ? Instruction::And 436 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 437 ? Instruction::Or 438 : (Instruction::BinaryOps)0); 439 if (InvertCond) { 440 if (BOpc == Instruction::And) 441 BOpc = Instruction::Or; 442 else if (BOpc == Instruction::Or) 443 BOpc = Instruction::And; 444 } 445 } 446 447 // If this node is not part of the or/and tree, emit it as a branch. 448 // Note that all nodes in the tree should have same opcode. 449 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 450 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 451 !isValInBlock(BOpOp0, CurBB->getBasicBlock()) || 452 !isValInBlock(BOpOp1, CurBB->getBasicBlock())) { 453 emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb, 454 InvertCond); 455 return; 456 } 457 458 // Create TmpBB after CurBB. 459 MachineFunction::iterator BBI(CurBB); 460 MachineBasicBlock *TmpBB = 461 MF->CreateMachineBasicBlock(CurBB->getBasicBlock()); 462 CurBB->getParent()->insert(++BBI, TmpBB); 463 464 if (Opc == Instruction::Or) { 465 // Codegen X | Y as: 466 // BB1: 467 // jmp_if_X TBB 468 // jmp TmpBB 469 // TmpBB: 470 // jmp_if_Y TBB 471 // jmp FBB 472 // 473 474 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 475 // The requirement is that 476 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 477 // = TrueProb for original BB. 478 // Assuming the original probabilities are A and B, one choice is to set 479 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 480 // A/(1+B) and 2B/(1+B). This choice assumes that 481 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 482 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 483 // TmpBB, but the math is more complicated. 484 485 auto NewTrueProb = TProb / 2; 486 auto NewFalseProb = TProb / 2 + FProb; 487 // Emit the LHS condition. 488 findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 489 NewFalseProb, InvertCond); 490 491 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 492 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 493 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 494 // Emit the RHS condition into TmpBB. 495 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 496 Probs[1], InvertCond); 497 } else { 498 assert(Opc == Instruction::And && "Unknown merge op!"); 499 // Codegen X & Y as: 500 // BB1: 501 // jmp_if_X TmpBB 502 // jmp FBB 503 // TmpBB: 504 // jmp_if_Y TBB 505 // jmp FBB 506 // 507 // This requires creation of TmpBB after CurBB. 508 509 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 510 // The requirement is that 511 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 512 // = FalseProb for original BB. 513 // Assuming the original probabilities are A and B, one choice is to set 514 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 515 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 516 // TrueProb for BB1 * FalseProb for TmpBB. 517 518 auto NewTrueProb = TProb + FProb / 2; 519 auto NewFalseProb = FProb / 2; 520 // Emit the LHS condition. 521 findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 522 NewFalseProb, InvertCond); 523 524 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 525 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 526 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 527 // Emit the RHS condition into TmpBB. 528 findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 529 Probs[1], InvertCond); 530 } 531 } 532 533 bool IRTranslator::shouldEmitAsBranches( 534 const std::vector<SwitchCG::CaseBlock> &Cases) { 535 // For multiple cases, it's better to emit as branches. 536 if (Cases.size() != 2) 537 return true; 538 539 // If this is two comparisons of the same values or'd or and'd together, they 540 // will get folded into a single comparison, so don't emit two blocks. 541 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 542 Cases[0].CmpRHS == Cases[1].CmpRHS) || 543 (Cases[0].CmpRHS == Cases[1].CmpLHS && 544 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 545 return false; 546 } 547 548 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 549 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 550 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 551 Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred && 552 isa<Constant>(Cases[0].CmpRHS) && 553 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 554 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ && 555 Cases[0].TrueBB == Cases[1].ThisBB) 556 return false; 557 if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE && 558 Cases[0].FalseBB == Cases[1].ThisBB) 559 return false; 560 } 561 562 return true; 563 } 564 565 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) { 566 const BranchInst &BrInst = cast<BranchInst>(U); 567 auto &CurMBB = MIRBuilder.getMBB(); 568 auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0)); 569 570 if (BrInst.isUnconditional()) { 571 // If the unconditional target is the layout successor, fallthrough. 572 if (OptLevel == CodeGenOpt::None || !CurMBB.isLayoutSuccessor(Succ0MBB)) 573 MIRBuilder.buildBr(*Succ0MBB); 574 575 // Link successors. 576 for (const BasicBlock *Succ : successors(&BrInst)) 577 CurMBB.addSuccessor(&getMBB(*Succ)); 578 return true; 579 } 580 581 // If this condition is one of the special cases we handle, do special stuff 582 // now. 583 const Value *CondVal = BrInst.getCondition(); 584 MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1)); 585 586 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 587 588 // If this is a series of conditions that are or'd or and'd together, emit 589 // this as a sequence of branches instead of setcc's with and/or operations. 590 // As long as jumps are not expensive (exceptions for multi-use logic ops, 591 // unpredictable branches, and vector extracts because those jumps are likely 592 // expensive for any target), this should improve performance. 593 // For example, instead of something like: 594 // cmp A, B 595 // C = seteq 596 // cmp D, E 597 // F = setle 598 // or C, F 599 // jnz foo 600 // Emit: 601 // cmp A, B 602 // je foo 603 // cmp D, E 604 // jle foo 605 using namespace PatternMatch; 606 const Instruction *CondI = dyn_cast<Instruction>(CondVal); 607 if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() && 608 !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) { 609 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 610 Value *Vec; 611 const Value *BOp0, *BOp1; 612 if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 613 Opcode = Instruction::And; 614 else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 615 Opcode = Instruction::Or; 616 617 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 618 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 619 findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode, 620 getEdgeProbability(&CurMBB, Succ0MBB), 621 getEdgeProbability(&CurMBB, Succ1MBB), 622 /*InvertCond=*/false); 623 assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!"); 624 625 // Allow some cases to be rejected. 626 if (shouldEmitAsBranches(SL->SwitchCases)) { 627 // Emit the branch for this block. 628 emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder); 629 SL->SwitchCases.erase(SL->SwitchCases.begin()); 630 return true; 631 } 632 633 // Okay, we decided not to do this, remove any inserted MBB's and clear 634 // SwitchCases. 635 for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I) 636 MF->erase(SL->SwitchCases[I].ThisBB); 637 638 SL->SwitchCases.clear(); 639 } 640 } 641 642 // Create a CaseBlock record representing this branch. 643 SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal, 644 ConstantInt::getTrue(MF->getFunction().getContext()), 645 nullptr, Succ0MBB, Succ1MBB, &CurMBB, 646 CurBuilder->getDebugLoc()); 647 648 // Use emitSwitchCase to actually insert the fast branch sequence for this 649 // cond branch. 650 emitSwitchCase(CB, &CurMBB, *CurBuilder); 651 return true; 652 } 653 654 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src, 655 MachineBasicBlock *Dst, 656 BranchProbability Prob) { 657 if (!FuncInfo.BPI) { 658 Src->addSuccessorWithoutProb(Dst); 659 return; 660 } 661 if (Prob.isUnknown()) 662 Prob = getEdgeProbability(Src, Dst); 663 Src->addSuccessor(Dst, Prob); 664 } 665 666 BranchProbability 667 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src, 668 const MachineBasicBlock *Dst) const { 669 const BasicBlock *SrcBB = Src->getBasicBlock(); 670 const BasicBlock *DstBB = Dst->getBasicBlock(); 671 if (!FuncInfo.BPI) { 672 // If BPI is not available, set the default probability as 1 / N, where N is 673 // the number of successors. 674 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 675 return BranchProbability(1, SuccSize); 676 } 677 return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB); 678 } 679 680 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) { 681 using namespace SwitchCG; 682 // Extract cases from the switch. 683 const SwitchInst &SI = cast<SwitchInst>(U); 684 BranchProbabilityInfo *BPI = FuncInfo.BPI; 685 CaseClusterVector Clusters; 686 Clusters.reserve(SI.getNumCases()); 687 for (auto &I : SI.cases()) { 688 MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor()); 689 assert(Succ && "Could not find successor mbb in mapping"); 690 const ConstantInt *CaseVal = I.getCaseValue(); 691 BranchProbability Prob = 692 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 693 : BranchProbability(1, SI.getNumCases() + 1); 694 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 695 } 696 697 MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest()); 698 699 // Cluster adjacent cases with the same destination. We do this at all 700 // optimization levels because it's cheap to do and will make codegen faster 701 // if there are many clusters. 702 sortAndRangeify(Clusters); 703 704 MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent()); 705 706 // If there is only the default destination, jump there directly. 707 if (Clusters.empty()) { 708 SwitchMBB->addSuccessor(DefaultMBB); 709 if (DefaultMBB != SwitchMBB->getNextNode()) 710 MIB.buildBr(*DefaultMBB); 711 return true; 712 } 713 714 SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr); 715 SL->findBitTestClusters(Clusters, &SI); 716 717 LLVM_DEBUG({ 718 dbgs() << "Case clusters: "; 719 for (const CaseCluster &C : Clusters) { 720 if (C.Kind == CC_JumpTable) 721 dbgs() << "JT:"; 722 if (C.Kind == CC_BitTests) 723 dbgs() << "BT:"; 724 725 C.Low->getValue().print(dbgs(), true); 726 if (C.Low != C.High) { 727 dbgs() << '-'; 728 C.High->getValue().print(dbgs(), true); 729 } 730 dbgs() << ' '; 731 } 732 dbgs() << '\n'; 733 }); 734 735 assert(!Clusters.empty()); 736 SwitchWorkList WorkList; 737 CaseClusterIt First = Clusters.begin(); 738 CaseClusterIt Last = Clusters.end() - 1; 739 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 740 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 741 742 // FIXME: At the moment we don't do any splitting optimizations here like 743 // SelectionDAG does, so this worklist only has one entry. 744 while (!WorkList.empty()) { 745 SwitchWorkListItem W = WorkList.pop_back_val(); 746 if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB)) 747 return false; 748 } 749 return true; 750 } 751 752 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT, 753 MachineBasicBlock *MBB) { 754 // Emit the code for the jump table 755 assert(JT.Reg != -1U && "Should lower JT Header first!"); 756 MachineIRBuilder MIB(*MBB->getParent()); 757 MIB.setMBB(*MBB); 758 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 759 760 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 761 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 762 763 auto Table = MIB.buildJumpTable(PtrTy, JT.JTI); 764 MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg); 765 } 766 767 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT, 768 SwitchCG::JumpTableHeader &JTH, 769 MachineBasicBlock *HeaderBB) { 770 MachineIRBuilder MIB(*HeaderBB->getParent()); 771 MIB.setMBB(*HeaderBB); 772 MIB.setDebugLoc(CurBuilder->getDebugLoc()); 773 774 const Value &SValue = *JTH.SValue; 775 // Subtract the lowest switch case value from the value being switched on. 776 const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL); 777 Register SwitchOpReg = getOrCreateVReg(SValue); 778 auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First); 779 auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst); 780 781 // This value may be smaller or larger than the target's pointer type, and 782 // therefore require extension or truncating. 783 Type *PtrIRTy = SValue.getType()->getPointerTo(); 784 const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy)); 785 Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub); 786 787 JT.Reg = Sub.getReg(0); 788 789 if (JTH.FallthroughUnreachable) { 790 if (JT.MBB != HeaderBB->getNextNode()) 791 MIB.buildBr(*JT.MBB); 792 return true; 793 } 794 795 // Emit the range check for the jump table, and branch to the default block 796 // for the switch statement if the value being switched on exceeds the 797 // largest case in the switch. 798 auto Cst = getOrCreateVReg( 799 *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First)); 800 Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0); 801 auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst); 802 803 auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default); 804 805 // Avoid emitting unnecessary branches to the next block. 806 if (JT.MBB != HeaderBB->getNextNode()) 807 BrCond = MIB.buildBr(*JT.MBB); 808 return true; 809 } 810 811 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB, 812 MachineBasicBlock *SwitchBB, 813 MachineIRBuilder &MIB) { 814 Register CondLHS = getOrCreateVReg(*CB.CmpLHS); 815 Register Cond; 816 DebugLoc OldDbgLoc = MIB.getDebugLoc(); 817 MIB.setDebugLoc(CB.DbgLoc); 818 MIB.setMBB(*CB.ThisBB); 819 820 if (CB.PredInfo.NoCmp) { 821 // Branch or fall through to TrueBB. 822 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 823 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 824 CB.ThisBB); 825 CB.ThisBB->normalizeSuccProbs(); 826 if (CB.TrueBB != CB.ThisBB->getNextNode()) 827 MIB.buildBr(*CB.TrueBB); 828 MIB.setDebugLoc(OldDbgLoc); 829 return; 830 } 831 832 const LLT i1Ty = LLT::scalar(1); 833 // Build the compare. 834 if (!CB.CmpMHS) { 835 const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS); 836 // For conditional branch lowering, we might try to do something silly like 837 // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so, 838 // just re-use the existing condition vreg. 839 if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && 840 CI->getZExtValue() == 1 && CB.PredInfo.Pred == CmpInst::ICMP_EQ) { 841 Cond = CondLHS; 842 } else { 843 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 844 if (CmpInst::isFPPredicate(CB.PredInfo.Pred)) 845 Cond = 846 MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 847 else 848 Cond = 849 MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0); 850 } 851 } else { 852 assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE && 853 "Can only handle SLE ranges"); 854 855 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 856 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 857 858 Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS); 859 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 860 Register CondRHS = getOrCreateVReg(*CB.CmpRHS); 861 Cond = 862 MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0); 863 } else { 864 const LLT CmpTy = MRI->getType(CmpOpReg); 865 auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS); 866 auto Diff = MIB.buildConstant(CmpTy, High - Low); 867 Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0); 868 } 869 } 870 871 // Update successor info 872 addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb); 873 874 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()}, 875 CB.ThisBB); 876 877 // TrueBB and FalseBB are always different unless the incoming IR is 878 // degenerate. This only happens when running llc on weird IR. 879 if (CB.TrueBB != CB.FalseBB) 880 addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb); 881 CB.ThisBB->normalizeSuccProbs(); 882 883 addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()}, 884 CB.ThisBB); 885 886 MIB.buildBrCond(Cond, *CB.TrueBB); 887 MIB.buildBr(*CB.FalseBB); 888 MIB.setDebugLoc(OldDbgLoc); 889 } 890 891 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W, 892 MachineBasicBlock *SwitchMBB, 893 MachineBasicBlock *CurMBB, 894 MachineBasicBlock *DefaultMBB, 895 MachineIRBuilder &MIB, 896 MachineFunction::iterator BBI, 897 BranchProbability UnhandledProbs, 898 SwitchCG::CaseClusterIt I, 899 MachineBasicBlock *Fallthrough, 900 bool FallthroughUnreachable) { 901 using namespace SwitchCG; 902 MachineFunction *CurMF = SwitchMBB->getParent(); 903 // FIXME: Optimize away range check based on pivot comparisons. 904 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 905 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 906 BranchProbability DefaultProb = W.DefaultProb; 907 908 // The jump block hasn't been inserted yet; insert it here. 909 MachineBasicBlock *JumpMBB = JT->MBB; 910 CurMF->insert(BBI, JumpMBB); 911 912 // Since the jump table block is separate from the switch block, we need 913 // to keep track of it as a machine predecessor to the default block, 914 // otherwise we lose the phi edges. 915 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 916 CurMBB); 917 addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()}, 918 JumpMBB); 919 920 auto JumpProb = I->Prob; 921 auto FallthroughProb = UnhandledProbs; 922 923 // If the default statement is a target of the jump table, we evenly 924 // distribute the default probability to successors of CurMBB. Also 925 // update the probability on the edge from JumpMBB to Fallthrough. 926 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 927 SE = JumpMBB->succ_end(); 928 SI != SE; ++SI) { 929 if (*SI == DefaultMBB) { 930 JumpProb += DefaultProb / 2; 931 FallthroughProb -= DefaultProb / 2; 932 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 933 JumpMBB->normalizeSuccProbs(); 934 } else { 935 // Also record edges from the jump table block to it's successors. 936 addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()}, 937 JumpMBB); 938 } 939 } 940 941 if (FallthroughUnreachable) 942 JTH->FallthroughUnreachable = true; 943 944 if (!JTH->FallthroughUnreachable) 945 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 946 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 947 CurMBB->normalizeSuccProbs(); 948 949 // The jump table header will be inserted in our current block, do the 950 // range check, and fall through to our fallthrough block. 951 JTH->HeaderBB = CurMBB; 952 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 953 954 // If we're in the right place, emit the jump table header right now. 955 if (CurMBB == SwitchMBB) { 956 if (!emitJumpTableHeader(*JT, *JTH, CurMBB)) 957 return false; 958 JTH->Emitted = true; 959 } 960 return true; 961 } 962 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, 963 Value *Cond, 964 MachineBasicBlock *Fallthrough, 965 bool FallthroughUnreachable, 966 BranchProbability UnhandledProbs, 967 MachineBasicBlock *CurMBB, 968 MachineIRBuilder &MIB, 969 MachineBasicBlock *SwitchMBB) { 970 using namespace SwitchCG; 971 const Value *RHS, *LHS, *MHS; 972 CmpInst::Predicate Pred; 973 if (I->Low == I->High) { 974 // Check Cond == I->Low. 975 Pred = CmpInst::ICMP_EQ; 976 LHS = Cond; 977 RHS = I->Low; 978 MHS = nullptr; 979 } else { 980 // Check I->Low <= Cond <= I->High. 981 Pred = CmpInst::ICMP_SLE; 982 LHS = I->Low; 983 MHS = Cond; 984 RHS = I->High; 985 } 986 987 // If Fallthrough is unreachable, fold away the comparison. 988 // The false probability is the sum of all unhandled cases. 989 CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough, 990 CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs); 991 992 emitSwitchCase(CB, SwitchMBB, MIB); 993 return true; 994 } 995 996 void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B, 997 MachineBasicBlock *SwitchBB) { 998 MachineIRBuilder &MIB = *CurBuilder; 999 MIB.setMBB(*SwitchBB); 1000 1001 // Subtract the minimum value. 1002 Register SwitchOpReg = getOrCreateVReg(*B.SValue); 1003 1004 LLT SwitchOpTy = MRI->getType(SwitchOpReg); 1005 Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0); 1006 auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg); 1007 1008 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 1009 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1010 1011 LLT MaskTy = SwitchOpTy; 1012 if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() || 1013 !isPowerOf2_32(MaskTy.getSizeInBits())) 1014 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1015 else { 1016 // Ensure that the type will fit the mask value. 1017 for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) { 1018 if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) { 1019 // Switch table case range are encoded into series of masks. 1020 // Just use pointer type, it's guaranteed to fit. 1021 MaskTy = LLT::scalar(PtrTy.getSizeInBits()); 1022 break; 1023 } 1024 } 1025 } 1026 Register SubReg = RangeSub.getReg(0); 1027 if (SwitchOpTy != MaskTy) 1028 SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0); 1029 1030 B.RegVT = getMVTForLLT(MaskTy); 1031 B.Reg = SubReg; 1032 1033 MachineBasicBlock *MBB = B.Cases[0].ThisBB; 1034 1035 if (!B.FallthroughUnreachable) 1036 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 1037 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 1038 1039 SwitchBB->normalizeSuccProbs(); 1040 1041 if (!B.FallthroughUnreachable) { 1042 // Conditional branch to the default block. 1043 auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range); 1044 auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1), 1045 RangeSub, RangeCst); 1046 MIB.buildBrCond(RangeCmp, *B.Default); 1047 } 1048 1049 // Avoid emitting unnecessary branches to the next block. 1050 if (MBB != SwitchBB->getNextNode()) 1051 MIB.buildBr(*MBB); 1052 } 1053 1054 void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB, 1055 MachineBasicBlock *NextMBB, 1056 BranchProbability BranchProbToNext, 1057 Register Reg, SwitchCG::BitTestCase &B, 1058 MachineBasicBlock *SwitchBB) { 1059 MachineIRBuilder &MIB = *CurBuilder; 1060 MIB.setMBB(*SwitchBB); 1061 1062 LLT SwitchTy = getLLTForMVT(BB.RegVT); 1063 Register Cmp; 1064 unsigned PopCount = countPopulation(B.Mask); 1065 if (PopCount == 1) { 1066 // Testing for a single bit; just compare the shift count with what it 1067 // would need to be to shift a 1 bit in that position. 1068 auto MaskTrailingZeros = 1069 MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask)); 1070 Cmp = 1071 MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros) 1072 .getReg(0); 1073 } else if (PopCount == BB.Range) { 1074 // There is only one zero bit in the range, test for it directly. 1075 auto MaskTrailingOnes = 1076 MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask)); 1077 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes) 1078 .getReg(0); 1079 } else { 1080 // Make desired shift. 1081 auto CstOne = MIB.buildConstant(SwitchTy, 1); 1082 auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg); 1083 1084 // Emit bit tests and jumps. 1085 auto CstMask = MIB.buildConstant(SwitchTy, B.Mask); 1086 auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask); 1087 auto CstZero = MIB.buildConstant(SwitchTy, 0); 1088 Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero) 1089 .getReg(0); 1090 } 1091 1092 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 1093 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 1094 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 1095 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 1096 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 1097 // one as they are relative probabilities (and thus work more like weights), 1098 // and hence we need to normalize them to let the sum of them become one. 1099 SwitchBB->normalizeSuccProbs(); 1100 1101 // Record the fact that the IR edge from the header to the bit test target 1102 // will go through our new block. Neeeded for PHIs to have nodes added. 1103 addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()}, 1104 SwitchBB); 1105 1106 MIB.buildBrCond(Cmp, *B.TargetBB); 1107 1108 // Avoid emitting unnecessary branches to the next block. 1109 if (NextMBB != SwitchBB->getNextNode()) 1110 MIB.buildBr(*NextMBB); 1111 } 1112 1113 bool IRTranslator::lowerBitTestWorkItem( 1114 SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB, 1115 MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB, 1116 MachineIRBuilder &MIB, MachineFunction::iterator BBI, 1117 BranchProbability DefaultProb, BranchProbability UnhandledProbs, 1118 SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough, 1119 bool FallthroughUnreachable) { 1120 using namespace SwitchCG; 1121 MachineFunction *CurMF = SwitchMBB->getParent(); 1122 // FIXME: Optimize away range check based on pivot comparisons. 1123 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 1124 // The bit test blocks haven't been inserted yet; insert them here. 1125 for (BitTestCase &BTC : BTB->Cases) 1126 CurMF->insert(BBI, BTC.ThisBB); 1127 1128 // Fill in fields of the BitTestBlock. 1129 BTB->Parent = CurMBB; 1130 BTB->Default = Fallthrough; 1131 1132 BTB->DefaultProb = UnhandledProbs; 1133 // If the cases in bit test don't form a contiguous range, we evenly 1134 // distribute the probability on the edge to Fallthrough to two 1135 // successors of CurMBB. 1136 if (!BTB->ContiguousRange) { 1137 BTB->Prob += DefaultProb / 2; 1138 BTB->DefaultProb -= DefaultProb / 2; 1139 } 1140 1141 if (FallthroughUnreachable) 1142 BTB->FallthroughUnreachable = true; 1143 1144 // If we're in the right place, emit the bit test header right now. 1145 if (CurMBB == SwitchMBB) { 1146 emitBitTestHeader(*BTB, SwitchMBB); 1147 BTB->Emitted = true; 1148 } 1149 return true; 1150 } 1151 1152 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, 1153 Value *Cond, 1154 MachineBasicBlock *SwitchMBB, 1155 MachineBasicBlock *DefaultMBB, 1156 MachineIRBuilder &MIB) { 1157 using namespace SwitchCG; 1158 MachineFunction *CurMF = FuncInfo.MF; 1159 MachineBasicBlock *NextMBB = nullptr; 1160 MachineFunction::iterator BBI(W.MBB); 1161 if (++BBI != FuncInfo.MF->end()) 1162 NextMBB = &*BBI; 1163 1164 if (EnableOpts) { 1165 // Here, we order cases by probability so the most likely case will be 1166 // checked first. However, two clusters can have the same probability in 1167 // which case their relative ordering is non-deterministic. So we use Low 1168 // as a tie-breaker as clusters are guaranteed to never overlap. 1169 llvm::sort(W.FirstCluster, W.LastCluster + 1, 1170 [](const CaseCluster &a, const CaseCluster &b) { 1171 return a.Prob != b.Prob 1172 ? a.Prob > b.Prob 1173 : a.Low->getValue().slt(b.Low->getValue()); 1174 }); 1175 1176 // Rearrange the case blocks so that the last one falls through if possible 1177 // without changing the order of probabilities. 1178 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) { 1179 --I; 1180 if (I->Prob > W.LastCluster->Prob) 1181 break; 1182 if (I->Kind == CC_Range && I->MBB == NextMBB) { 1183 std::swap(*I, *W.LastCluster); 1184 break; 1185 } 1186 } 1187 } 1188 1189 // Compute total probability. 1190 BranchProbability DefaultProb = W.DefaultProb; 1191 BranchProbability UnhandledProbs = DefaultProb; 1192 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 1193 UnhandledProbs += I->Prob; 1194 1195 MachineBasicBlock *CurMBB = W.MBB; 1196 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 1197 bool FallthroughUnreachable = false; 1198 MachineBasicBlock *Fallthrough; 1199 if (I == W.LastCluster) { 1200 // For the last cluster, fall through to the default destination. 1201 Fallthrough = DefaultMBB; 1202 FallthroughUnreachable = isa<UnreachableInst>( 1203 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 1204 } else { 1205 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 1206 CurMF->insert(BBI, Fallthrough); 1207 } 1208 UnhandledProbs -= I->Prob; 1209 1210 switch (I->Kind) { 1211 case CC_BitTests: { 1212 if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1213 DefaultProb, UnhandledProbs, I, Fallthrough, 1214 FallthroughUnreachable)) { 1215 LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch"); 1216 return false; 1217 } 1218 break; 1219 } 1220 1221 case CC_JumpTable: { 1222 if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI, 1223 UnhandledProbs, I, Fallthrough, 1224 FallthroughUnreachable)) { 1225 LLVM_DEBUG(dbgs() << "Failed to lower jump table"); 1226 return false; 1227 } 1228 break; 1229 } 1230 case CC_Range: { 1231 if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough, 1232 FallthroughUnreachable, UnhandledProbs, 1233 CurMBB, MIB, SwitchMBB)) { 1234 LLVM_DEBUG(dbgs() << "Failed to lower switch range"); 1235 return false; 1236 } 1237 break; 1238 } 1239 } 1240 CurMBB = Fallthrough; 1241 } 1242 1243 return true; 1244 } 1245 1246 bool IRTranslator::translateIndirectBr(const User &U, 1247 MachineIRBuilder &MIRBuilder) { 1248 const IndirectBrInst &BrInst = cast<IndirectBrInst>(U); 1249 1250 const Register Tgt = getOrCreateVReg(*BrInst.getAddress()); 1251 MIRBuilder.buildBrIndirect(Tgt); 1252 1253 // Link successors. 1254 SmallPtrSet<const BasicBlock *, 32> AddedSuccessors; 1255 MachineBasicBlock &CurBB = MIRBuilder.getMBB(); 1256 for (const BasicBlock *Succ : successors(&BrInst)) { 1257 // It's legal for indirectbr instructions to have duplicate blocks in the 1258 // destination list. We don't allow this in MIR. Skip anything that's 1259 // already a successor. 1260 if (!AddedSuccessors.insert(Succ).second) 1261 continue; 1262 CurBB.addSuccessor(&getMBB(*Succ)); 1263 } 1264 1265 return true; 1266 } 1267 1268 static bool isSwiftError(const Value *V) { 1269 if (auto Arg = dyn_cast<Argument>(V)) 1270 return Arg->hasSwiftErrorAttr(); 1271 if (auto AI = dyn_cast<AllocaInst>(V)) 1272 return AI->isSwiftError(); 1273 return false; 1274 } 1275 1276 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) { 1277 const LoadInst &LI = cast<LoadInst>(U); 1278 if (DL->getTypeStoreSize(LI.getType()) == 0) 1279 return true; 1280 1281 ArrayRef<Register> Regs = getOrCreateVRegs(LI); 1282 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI); 1283 Register Base = getOrCreateVReg(*LI.getPointerOperand()); 1284 1285 Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType()); 1286 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1287 1288 if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) { 1289 assert(Regs.size() == 1 && "swifterror should be single pointer"); 1290 Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), 1291 LI.getPointerOperand()); 1292 MIRBuilder.buildCopy(Regs[0], VReg); 1293 return true; 1294 } 1295 1296 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1297 MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL); 1298 1299 const MDNode *Ranges = 1300 Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr; 1301 for (unsigned i = 0; i < Regs.size(); ++i) { 1302 Register Addr; 1303 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1304 1305 MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8); 1306 Align BaseAlign = getMemOpAlign(LI); 1307 auto MMO = MF->getMachineMemOperand( 1308 Ptr, Flags, MRI->getType(Regs[i]), 1309 commonAlignment(BaseAlign, Offsets[i] / 8), LI.getAAMetadata(), Ranges, 1310 LI.getSyncScopeID(), LI.getOrdering()); 1311 MIRBuilder.buildLoad(Regs[i], Addr, *MMO); 1312 } 1313 1314 return true; 1315 } 1316 1317 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) { 1318 const StoreInst &SI = cast<StoreInst>(U); 1319 if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0) 1320 return true; 1321 1322 ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand()); 1323 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand()); 1324 Register Base = getOrCreateVReg(*SI.getPointerOperand()); 1325 1326 Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType()); 1327 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1328 1329 if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) { 1330 assert(Vals.size() == 1 && "swifterror should be single pointer"); 1331 1332 Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(), 1333 SI.getPointerOperand()); 1334 MIRBuilder.buildCopy(VReg, Vals[0]); 1335 return true; 1336 } 1337 1338 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1339 MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL); 1340 1341 for (unsigned i = 0; i < Vals.size(); ++i) { 1342 Register Addr; 1343 MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8); 1344 1345 MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8); 1346 Align BaseAlign = getMemOpAlign(SI); 1347 auto MMO = MF->getMachineMemOperand( 1348 Ptr, Flags, MRI->getType(Vals[i]), 1349 commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr, 1350 SI.getSyncScopeID(), SI.getOrdering()); 1351 MIRBuilder.buildStore(Vals[i], Addr, *MMO); 1352 } 1353 return true; 1354 } 1355 1356 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) { 1357 const Value *Src = U.getOperand(0); 1358 Type *Int32Ty = Type::getInt32Ty(U.getContext()); 1359 1360 // getIndexedOffsetInType is designed for GEPs, so the first index is the 1361 // usual array element rather than looking into the actual aggregate. 1362 SmallVector<Value *, 1> Indices; 1363 Indices.push_back(ConstantInt::get(Int32Ty, 0)); 1364 1365 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) { 1366 for (auto Idx : EVI->indices()) 1367 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1368 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) { 1369 for (auto Idx : IVI->indices()) 1370 Indices.push_back(ConstantInt::get(Int32Ty, Idx)); 1371 } else { 1372 for (unsigned i = 1; i < U.getNumOperands(); ++i) 1373 Indices.push_back(U.getOperand(i)); 1374 } 1375 1376 return 8 * static_cast<uint64_t>( 1377 DL.getIndexedOffsetInType(Src->getType(), Indices)); 1378 } 1379 1380 bool IRTranslator::translateExtractValue(const User &U, 1381 MachineIRBuilder &MIRBuilder) { 1382 const Value *Src = U.getOperand(0); 1383 uint64_t Offset = getOffsetFromIndices(U, *DL); 1384 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1385 ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src); 1386 unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin(); 1387 auto &DstRegs = allocateVRegs(U); 1388 1389 for (unsigned i = 0; i < DstRegs.size(); ++i) 1390 DstRegs[i] = SrcRegs[Idx++]; 1391 1392 return true; 1393 } 1394 1395 bool IRTranslator::translateInsertValue(const User &U, 1396 MachineIRBuilder &MIRBuilder) { 1397 const Value *Src = U.getOperand(0); 1398 uint64_t Offset = getOffsetFromIndices(U, *DL); 1399 auto &DstRegs = allocateVRegs(U); 1400 ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U); 1401 ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src); 1402 ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1)); 1403 auto InsertedIt = InsertedRegs.begin(); 1404 1405 for (unsigned i = 0; i < DstRegs.size(); ++i) { 1406 if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end()) 1407 DstRegs[i] = *InsertedIt++; 1408 else 1409 DstRegs[i] = SrcRegs[i]; 1410 } 1411 1412 return true; 1413 } 1414 1415 bool IRTranslator::translateSelect(const User &U, 1416 MachineIRBuilder &MIRBuilder) { 1417 Register Tst = getOrCreateVReg(*U.getOperand(0)); 1418 ArrayRef<Register> ResRegs = getOrCreateVRegs(U); 1419 ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1)); 1420 ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2)); 1421 1422 uint16_t Flags = 0; 1423 if (const SelectInst *SI = dyn_cast<SelectInst>(&U)) 1424 Flags = MachineInstr::copyFlagsFromInstruction(*SI); 1425 1426 for (unsigned i = 0; i < ResRegs.size(); ++i) { 1427 MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags); 1428 } 1429 1430 return true; 1431 } 1432 1433 bool IRTranslator::translateCopy(const User &U, const Value &V, 1434 MachineIRBuilder &MIRBuilder) { 1435 Register Src = getOrCreateVReg(V); 1436 auto &Regs = *VMap.getVRegs(U); 1437 if (Regs.empty()) { 1438 Regs.push_back(Src); 1439 VMap.getOffsets(U)->push_back(0); 1440 } else { 1441 // If we already assigned a vreg for this instruction, we can't change that. 1442 // Emit a copy to satisfy the users we already emitted. 1443 MIRBuilder.buildCopy(Regs[0], Src); 1444 } 1445 return true; 1446 } 1447 1448 bool IRTranslator::translateBitCast(const User &U, 1449 MachineIRBuilder &MIRBuilder) { 1450 // If we're bitcasting to the source type, we can reuse the source vreg. 1451 if (getLLTForType(*U.getOperand(0)->getType(), *DL) == 1452 getLLTForType(*U.getType(), *DL)) 1453 return translateCopy(U, *U.getOperand(0), MIRBuilder); 1454 1455 return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder); 1456 } 1457 1458 bool IRTranslator::translateCast(unsigned Opcode, const User &U, 1459 MachineIRBuilder &MIRBuilder) { 1460 Register Op = getOrCreateVReg(*U.getOperand(0)); 1461 Register Res = getOrCreateVReg(U); 1462 MIRBuilder.buildInstr(Opcode, {Res}, {Op}); 1463 return true; 1464 } 1465 1466 bool IRTranslator::translateGetElementPtr(const User &U, 1467 MachineIRBuilder &MIRBuilder) { 1468 Value &Op0 = *U.getOperand(0); 1469 Register BaseReg = getOrCreateVReg(Op0); 1470 Type *PtrIRTy = Op0.getType(); 1471 LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 1472 Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1473 LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1474 1475 // Normalize Vector GEP - all scalar operands should be converted to the 1476 // splat vector. 1477 unsigned VectorWidth = 0; 1478 1479 // True if we should use a splat vector; using VectorWidth alone is not 1480 // sufficient. 1481 bool WantSplatVector = false; 1482 if (auto *VT = dyn_cast<VectorType>(U.getType())) { 1483 VectorWidth = cast<FixedVectorType>(VT)->getNumElements(); 1484 // We don't produce 1 x N vectors; those are treated as scalars. 1485 WantSplatVector = VectorWidth > 1; 1486 } 1487 1488 // We might need to splat the base pointer into a vector if the offsets 1489 // are vectors. 1490 if (WantSplatVector && !PtrTy.isVector()) { 1491 BaseReg = 1492 MIRBuilder 1493 .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg) 1494 .getReg(0); 1495 PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth); 1496 PtrTy = getLLTForType(*PtrIRTy, *DL); 1497 OffsetIRTy = DL->getIntPtrType(PtrIRTy); 1498 OffsetTy = getLLTForType(*OffsetIRTy, *DL); 1499 } 1500 1501 int64_t Offset = 0; 1502 for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U); 1503 GTI != E; ++GTI) { 1504 const Value *Idx = GTI.getOperand(); 1505 if (StructType *StTy = GTI.getStructTypeOrNull()) { 1506 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 1507 Offset += DL->getStructLayout(StTy)->getElementOffset(Field); 1508 continue; 1509 } else { 1510 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 1511 1512 // If this is a scalar constant or a splat vector of constants, 1513 // handle it quickly. 1514 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 1515 Offset += ElementSize * CI->getSExtValue(); 1516 continue; 1517 } 1518 1519 if (Offset != 0) { 1520 auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset); 1521 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0)) 1522 .getReg(0); 1523 Offset = 0; 1524 } 1525 1526 Register IdxReg = getOrCreateVReg(*Idx); 1527 LLT IdxTy = MRI->getType(IdxReg); 1528 if (IdxTy != OffsetTy) { 1529 if (!IdxTy.isVector() && WantSplatVector) { 1530 IdxReg = MIRBuilder.buildSplatVector( 1531 OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0); 1532 } 1533 1534 IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0); 1535 } 1536 1537 // N = N + Idx * ElementSize; 1538 // Avoid doing it for ElementSize of 1. 1539 Register GepOffsetReg; 1540 if (ElementSize != 1) { 1541 auto ElementSizeMIB = MIRBuilder.buildConstant( 1542 getLLTForType(*OffsetIRTy, *DL), ElementSize); 1543 GepOffsetReg = 1544 MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0); 1545 } else 1546 GepOffsetReg = IdxReg; 1547 1548 BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0); 1549 } 1550 } 1551 1552 if (Offset != 0) { 1553 auto OffsetMIB = 1554 MIRBuilder.buildConstant(OffsetTy, Offset); 1555 MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0)); 1556 return true; 1557 } 1558 1559 MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg); 1560 return true; 1561 } 1562 1563 bool IRTranslator::translateMemFunc(const CallInst &CI, 1564 MachineIRBuilder &MIRBuilder, 1565 unsigned Opcode) { 1566 1567 // If the source is undef, then just emit a nop. 1568 if (isa<UndefValue>(CI.getArgOperand(1))) 1569 return true; 1570 1571 SmallVector<Register, 3> SrcRegs; 1572 1573 unsigned MinPtrSize = UINT_MAX; 1574 for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) { 1575 Register SrcReg = getOrCreateVReg(**AI); 1576 LLT SrcTy = MRI->getType(SrcReg); 1577 if (SrcTy.isPointer()) 1578 MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize); 1579 SrcRegs.push_back(SrcReg); 1580 } 1581 1582 LLT SizeTy = LLT::scalar(MinPtrSize); 1583 1584 // The size operand should be the minimum of the pointer sizes. 1585 Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1]; 1586 if (MRI->getType(SizeOpReg) != SizeTy) 1587 SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0); 1588 1589 auto ICall = MIRBuilder.buildInstr(Opcode); 1590 for (Register SrcReg : SrcRegs) 1591 ICall.addUse(SrcReg); 1592 1593 Align DstAlign; 1594 Align SrcAlign; 1595 unsigned IsVol = 1596 cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue(); 1597 1598 if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) { 1599 DstAlign = MCI->getDestAlign().valueOrOne(); 1600 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1601 } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) { 1602 DstAlign = MCI->getDestAlign().valueOrOne(); 1603 SrcAlign = MCI->getSourceAlign().valueOrOne(); 1604 } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) { 1605 DstAlign = MMI->getDestAlign().valueOrOne(); 1606 SrcAlign = MMI->getSourceAlign().valueOrOne(); 1607 } else { 1608 auto *MSI = cast<MemSetInst>(&CI); 1609 DstAlign = MSI->getDestAlign().valueOrOne(); 1610 } 1611 1612 if (Opcode != TargetOpcode::G_MEMCPY_INLINE) { 1613 // We need to propagate the tail call flag from the IR inst as an argument. 1614 // Otherwise, we have to pessimize and assume later that we cannot tail call 1615 // any memory intrinsics. 1616 ICall.addImm(CI.isTailCall() ? 1 : 0); 1617 } 1618 1619 // Create mem operands to store the alignment and volatile info. 1620 auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 1621 ICall.addMemOperand(MF->getMachineMemOperand( 1622 MachinePointerInfo(CI.getArgOperand(0)), 1623 MachineMemOperand::MOStore | VolFlag, 1, DstAlign)); 1624 if (Opcode != TargetOpcode::G_MEMSET) 1625 ICall.addMemOperand(MF->getMachineMemOperand( 1626 MachinePointerInfo(CI.getArgOperand(1)), 1627 MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign)); 1628 1629 return true; 1630 } 1631 1632 void IRTranslator::getStackGuard(Register DstReg, 1633 MachineIRBuilder &MIRBuilder) { 1634 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1635 MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF)); 1636 auto MIB = 1637 MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {}); 1638 1639 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1640 Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent()); 1641 if (!Global) 1642 return; 1643 1644 unsigned AddrSpace = Global->getType()->getPointerAddressSpace(); 1645 LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace)); 1646 1647 MachinePointerInfo MPInfo(Global); 1648 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 1649 MachineMemOperand::MODereferenceable; 1650 MachineMemOperand *MemRef = MF->getMachineMemOperand( 1651 MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace)); 1652 MIB.setMemRefs({MemRef}); 1653 } 1654 1655 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op, 1656 MachineIRBuilder &MIRBuilder) { 1657 ArrayRef<Register> ResRegs = getOrCreateVRegs(CI); 1658 MIRBuilder.buildInstr( 1659 Op, {ResRegs[0], ResRegs[1]}, 1660 {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))}); 1661 1662 return true; 1663 } 1664 1665 bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI, 1666 MachineIRBuilder &MIRBuilder) { 1667 Register Dst = getOrCreateVReg(CI); 1668 Register Src0 = getOrCreateVReg(*CI.getOperand(0)); 1669 Register Src1 = getOrCreateVReg(*CI.getOperand(1)); 1670 uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue(); 1671 MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale }); 1672 return true; 1673 } 1674 1675 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) { 1676 switch (ID) { 1677 default: 1678 break; 1679 case Intrinsic::bswap: 1680 return TargetOpcode::G_BSWAP; 1681 case Intrinsic::bitreverse: 1682 return TargetOpcode::G_BITREVERSE; 1683 case Intrinsic::fshl: 1684 return TargetOpcode::G_FSHL; 1685 case Intrinsic::fshr: 1686 return TargetOpcode::G_FSHR; 1687 case Intrinsic::ceil: 1688 return TargetOpcode::G_FCEIL; 1689 case Intrinsic::cos: 1690 return TargetOpcode::G_FCOS; 1691 case Intrinsic::ctpop: 1692 return TargetOpcode::G_CTPOP; 1693 case Intrinsic::exp: 1694 return TargetOpcode::G_FEXP; 1695 case Intrinsic::exp2: 1696 return TargetOpcode::G_FEXP2; 1697 case Intrinsic::fabs: 1698 return TargetOpcode::G_FABS; 1699 case Intrinsic::copysign: 1700 return TargetOpcode::G_FCOPYSIGN; 1701 case Intrinsic::minnum: 1702 return TargetOpcode::G_FMINNUM; 1703 case Intrinsic::maxnum: 1704 return TargetOpcode::G_FMAXNUM; 1705 case Intrinsic::minimum: 1706 return TargetOpcode::G_FMINIMUM; 1707 case Intrinsic::maximum: 1708 return TargetOpcode::G_FMAXIMUM; 1709 case Intrinsic::canonicalize: 1710 return TargetOpcode::G_FCANONICALIZE; 1711 case Intrinsic::floor: 1712 return TargetOpcode::G_FFLOOR; 1713 case Intrinsic::fma: 1714 return TargetOpcode::G_FMA; 1715 case Intrinsic::log: 1716 return TargetOpcode::G_FLOG; 1717 case Intrinsic::log2: 1718 return TargetOpcode::G_FLOG2; 1719 case Intrinsic::log10: 1720 return TargetOpcode::G_FLOG10; 1721 case Intrinsic::nearbyint: 1722 return TargetOpcode::G_FNEARBYINT; 1723 case Intrinsic::pow: 1724 return TargetOpcode::G_FPOW; 1725 case Intrinsic::powi: 1726 return TargetOpcode::G_FPOWI; 1727 case Intrinsic::rint: 1728 return TargetOpcode::G_FRINT; 1729 case Intrinsic::round: 1730 return TargetOpcode::G_INTRINSIC_ROUND; 1731 case Intrinsic::roundeven: 1732 return TargetOpcode::G_INTRINSIC_ROUNDEVEN; 1733 case Intrinsic::sin: 1734 return TargetOpcode::G_FSIN; 1735 case Intrinsic::sqrt: 1736 return TargetOpcode::G_FSQRT; 1737 case Intrinsic::trunc: 1738 return TargetOpcode::G_INTRINSIC_TRUNC; 1739 case Intrinsic::readcyclecounter: 1740 return TargetOpcode::G_READCYCLECOUNTER; 1741 case Intrinsic::ptrmask: 1742 return TargetOpcode::G_PTRMASK; 1743 case Intrinsic::lrint: 1744 return TargetOpcode::G_INTRINSIC_LRINT; 1745 // FADD/FMUL require checking the FMF, so are handled elsewhere. 1746 case Intrinsic::vector_reduce_fmin: 1747 return TargetOpcode::G_VECREDUCE_FMIN; 1748 case Intrinsic::vector_reduce_fmax: 1749 return TargetOpcode::G_VECREDUCE_FMAX; 1750 case Intrinsic::vector_reduce_add: 1751 return TargetOpcode::G_VECREDUCE_ADD; 1752 case Intrinsic::vector_reduce_mul: 1753 return TargetOpcode::G_VECREDUCE_MUL; 1754 case Intrinsic::vector_reduce_and: 1755 return TargetOpcode::G_VECREDUCE_AND; 1756 case Intrinsic::vector_reduce_or: 1757 return TargetOpcode::G_VECREDUCE_OR; 1758 case Intrinsic::vector_reduce_xor: 1759 return TargetOpcode::G_VECREDUCE_XOR; 1760 case Intrinsic::vector_reduce_smax: 1761 return TargetOpcode::G_VECREDUCE_SMAX; 1762 case Intrinsic::vector_reduce_smin: 1763 return TargetOpcode::G_VECREDUCE_SMIN; 1764 case Intrinsic::vector_reduce_umax: 1765 return TargetOpcode::G_VECREDUCE_UMAX; 1766 case Intrinsic::vector_reduce_umin: 1767 return TargetOpcode::G_VECREDUCE_UMIN; 1768 case Intrinsic::lround: 1769 return TargetOpcode::G_LROUND; 1770 case Intrinsic::llround: 1771 return TargetOpcode::G_LLROUND; 1772 } 1773 return Intrinsic::not_intrinsic; 1774 } 1775 1776 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI, 1777 Intrinsic::ID ID, 1778 MachineIRBuilder &MIRBuilder) { 1779 1780 unsigned Op = getSimpleIntrinsicOpcode(ID); 1781 1782 // Is this a simple intrinsic? 1783 if (Op == Intrinsic::not_intrinsic) 1784 return false; 1785 1786 // Yes. Let's translate it. 1787 SmallVector<llvm::SrcOp, 4> VRegs; 1788 for (auto &Arg : CI.args()) 1789 VRegs.push_back(getOrCreateVReg(*Arg)); 1790 1791 MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs, 1792 MachineInstr::copyFlagsFromInstruction(CI)); 1793 return true; 1794 } 1795 1796 // TODO: Include ConstainedOps.def when all strict instructions are defined. 1797 static unsigned getConstrainedOpcode(Intrinsic::ID ID) { 1798 switch (ID) { 1799 case Intrinsic::experimental_constrained_fadd: 1800 return TargetOpcode::G_STRICT_FADD; 1801 case Intrinsic::experimental_constrained_fsub: 1802 return TargetOpcode::G_STRICT_FSUB; 1803 case Intrinsic::experimental_constrained_fmul: 1804 return TargetOpcode::G_STRICT_FMUL; 1805 case Intrinsic::experimental_constrained_fdiv: 1806 return TargetOpcode::G_STRICT_FDIV; 1807 case Intrinsic::experimental_constrained_frem: 1808 return TargetOpcode::G_STRICT_FREM; 1809 case Intrinsic::experimental_constrained_fma: 1810 return TargetOpcode::G_STRICT_FMA; 1811 case Intrinsic::experimental_constrained_sqrt: 1812 return TargetOpcode::G_STRICT_FSQRT; 1813 default: 1814 return 0; 1815 } 1816 } 1817 1818 bool IRTranslator::translateConstrainedFPIntrinsic( 1819 const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) { 1820 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 1821 1822 unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID()); 1823 if (!Opcode) 1824 return false; 1825 1826 unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI); 1827 if (EB == fp::ExceptionBehavior::ebIgnore) 1828 Flags |= MachineInstr::NoFPExcept; 1829 1830 SmallVector<llvm::SrcOp, 4> VRegs; 1831 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0))); 1832 if (!FPI.isUnaryOp()) 1833 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1))); 1834 if (FPI.isTernaryOp()) 1835 VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2))); 1836 1837 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags); 1838 return true; 1839 } 1840 1841 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID, 1842 MachineIRBuilder &MIRBuilder) { 1843 if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) { 1844 if (ORE->enabled()) { 1845 const Function &F = *MI->getParent()->getParent(); 1846 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1847 if (MemoryOpRemark::canHandle(MI, TLI)) { 1848 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI); 1849 R.visit(MI); 1850 } 1851 } 1852 } 1853 1854 // If this is a simple intrinsic (that is, we just need to add a def of 1855 // a vreg, and uses for each arg operand, then translate it. 1856 if (translateSimpleIntrinsic(CI, ID, MIRBuilder)) 1857 return true; 1858 1859 switch (ID) { 1860 default: 1861 break; 1862 case Intrinsic::lifetime_start: 1863 case Intrinsic::lifetime_end: { 1864 // No stack colouring in O0, discard region information. 1865 if (MF->getTarget().getOptLevel() == CodeGenOpt::None) 1866 return true; 1867 1868 unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START 1869 : TargetOpcode::LIFETIME_END; 1870 1871 // Get the underlying objects for the location passed on the lifetime 1872 // marker. 1873 SmallVector<const Value *, 4> Allocas; 1874 getUnderlyingObjects(CI.getArgOperand(1), Allocas); 1875 1876 // Iterate over each underlying object, creating lifetime markers for each 1877 // static alloca. Quit if we find a non-static alloca. 1878 for (const Value *V : Allocas) { 1879 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 1880 if (!AI) 1881 continue; 1882 1883 if (!AI->isStaticAlloca()) 1884 return true; 1885 1886 MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI)); 1887 } 1888 return true; 1889 } 1890 case Intrinsic::dbg_declare: { 1891 const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI); 1892 assert(DI.getVariable() && "Missing variable"); 1893 1894 const Value *Address = DI.getAddress(); 1895 if (!Address || isa<UndefValue>(Address)) { 1896 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1897 return true; 1898 } 1899 1900 assert(DI.getVariable()->isValidLocationForIntrinsic( 1901 MIRBuilder.getDebugLoc()) && 1902 "Expected inlined-at fields to agree"); 1903 auto AI = dyn_cast<AllocaInst>(Address); 1904 if (AI && AI->isStaticAlloca()) { 1905 // Static allocas are tracked at the MF level, no need for DBG_VALUE 1906 // instructions (in fact, they get ignored if they *do* exist). 1907 MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(), 1908 getOrCreateFrameIndex(*AI), DI.getDebugLoc()); 1909 } else { 1910 // A dbg.declare describes the address of a source variable, so lower it 1911 // into an indirect DBG_VALUE. 1912 MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address), 1913 DI.getVariable(), DI.getExpression()); 1914 } 1915 return true; 1916 } 1917 case Intrinsic::dbg_label: { 1918 const DbgLabelInst &DI = cast<DbgLabelInst>(CI); 1919 assert(DI.getLabel() && "Missing label"); 1920 1921 assert(DI.getLabel()->isValidLocationForIntrinsic( 1922 MIRBuilder.getDebugLoc()) && 1923 "Expected inlined-at fields to agree"); 1924 1925 MIRBuilder.buildDbgLabel(DI.getLabel()); 1926 return true; 1927 } 1928 case Intrinsic::vaend: 1929 // No target I know of cares about va_end. Certainly no in-tree target 1930 // does. Simplest intrinsic ever! 1931 return true; 1932 case Intrinsic::vastart: { 1933 auto &TLI = *MF->getSubtarget().getTargetLowering(); 1934 Value *Ptr = CI.getArgOperand(0); 1935 unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8; 1936 1937 // FIXME: Get alignment 1938 MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)}) 1939 .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr), 1940 MachineMemOperand::MOStore, 1941 ListSize, Align(1))); 1942 return true; 1943 } 1944 case Intrinsic::dbg_value: { 1945 // This form of DBG_VALUE is target-independent. 1946 const DbgValueInst &DI = cast<DbgValueInst>(CI); 1947 const Value *V = DI.getValue(); 1948 assert(DI.getVariable()->isValidLocationForIntrinsic( 1949 MIRBuilder.getDebugLoc()) && 1950 "Expected inlined-at fields to agree"); 1951 if (!V || DI.hasArgList()) { 1952 // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to 1953 // terminate any prior location. 1954 MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression()); 1955 } else if (const auto *CI = dyn_cast<Constant>(V)) { 1956 MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression()); 1957 } else { 1958 for (Register Reg : getOrCreateVRegs(*V)) { 1959 // FIXME: This does not handle register-indirect values at offset 0. The 1960 // direct/indirect thing shouldn't really be handled by something as 1961 // implicit as reg+noreg vs reg+imm in the first place, but it seems 1962 // pretty baked in right now. 1963 MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression()); 1964 } 1965 } 1966 return true; 1967 } 1968 case Intrinsic::uadd_with_overflow: 1969 return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder); 1970 case Intrinsic::sadd_with_overflow: 1971 return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder); 1972 case Intrinsic::usub_with_overflow: 1973 return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder); 1974 case Intrinsic::ssub_with_overflow: 1975 return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder); 1976 case Intrinsic::umul_with_overflow: 1977 return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder); 1978 case Intrinsic::smul_with_overflow: 1979 return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder); 1980 case Intrinsic::uadd_sat: 1981 return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder); 1982 case Intrinsic::sadd_sat: 1983 return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder); 1984 case Intrinsic::usub_sat: 1985 return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder); 1986 case Intrinsic::ssub_sat: 1987 return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder); 1988 case Intrinsic::ushl_sat: 1989 return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder); 1990 case Intrinsic::sshl_sat: 1991 return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder); 1992 case Intrinsic::umin: 1993 return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder); 1994 case Intrinsic::umax: 1995 return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder); 1996 case Intrinsic::smin: 1997 return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder); 1998 case Intrinsic::smax: 1999 return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder); 2000 case Intrinsic::abs: 2001 // TODO: Preserve "int min is poison" arg in GMIR? 2002 return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder); 2003 case Intrinsic::smul_fix: 2004 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder); 2005 case Intrinsic::umul_fix: 2006 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder); 2007 case Intrinsic::smul_fix_sat: 2008 return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder); 2009 case Intrinsic::umul_fix_sat: 2010 return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder); 2011 case Intrinsic::sdiv_fix: 2012 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder); 2013 case Intrinsic::udiv_fix: 2014 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder); 2015 case Intrinsic::sdiv_fix_sat: 2016 return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder); 2017 case Intrinsic::udiv_fix_sat: 2018 return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder); 2019 case Intrinsic::fmuladd: { 2020 const TargetMachine &TM = MF->getTarget(); 2021 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2022 Register Dst = getOrCreateVReg(CI); 2023 Register Op0 = getOrCreateVReg(*CI.getArgOperand(0)); 2024 Register Op1 = getOrCreateVReg(*CI.getArgOperand(1)); 2025 Register Op2 = getOrCreateVReg(*CI.getArgOperand(2)); 2026 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 2027 TLI.isFMAFasterThanFMulAndFAdd(*MF, 2028 TLI.getValueType(*DL, CI.getType()))) { 2029 // TODO: Revisit this to see if we should move this part of the 2030 // lowering to the combiner. 2031 MIRBuilder.buildFMA(Dst, Op0, Op1, Op2, 2032 MachineInstr::copyFlagsFromInstruction(CI)); 2033 } else { 2034 LLT Ty = getLLTForType(*CI.getType(), *DL); 2035 auto FMul = MIRBuilder.buildFMul( 2036 Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI)); 2037 MIRBuilder.buildFAdd(Dst, FMul, Op2, 2038 MachineInstr::copyFlagsFromInstruction(CI)); 2039 } 2040 return true; 2041 } 2042 case Intrinsic::convert_from_fp16: 2043 // FIXME: This intrinsic should probably be removed from the IR. 2044 MIRBuilder.buildFPExt(getOrCreateVReg(CI), 2045 getOrCreateVReg(*CI.getArgOperand(0)), 2046 MachineInstr::copyFlagsFromInstruction(CI)); 2047 return true; 2048 case Intrinsic::convert_to_fp16: 2049 // FIXME: This intrinsic should probably be removed from the IR. 2050 MIRBuilder.buildFPTrunc(getOrCreateVReg(CI), 2051 getOrCreateVReg(*CI.getArgOperand(0)), 2052 MachineInstr::copyFlagsFromInstruction(CI)); 2053 return true; 2054 case Intrinsic::memcpy_inline: 2055 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE); 2056 case Intrinsic::memcpy: 2057 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY); 2058 case Intrinsic::memmove: 2059 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE); 2060 case Intrinsic::memset: 2061 return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET); 2062 case Intrinsic::eh_typeid_for: { 2063 GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0)); 2064 Register Reg = getOrCreateVReg(CI); 2065 unsigned TypeID = MF->getTypeIDFor(GV); 2066 MIRBuilder.buildConstant(Reg, TypeID); 2067 return true; 2068 } 2069 case Intrinsic::objectsize: 2070 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2071 2072 case Intrinsic::is_constant: 2073 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2074 2075 case Intrinsic::stackguard: 2076 getStackGuard(getOrCreateVReg(CI), MIRBuilder); 2077 return true; 2078 case Intrinsic::stackprotector: { 2079 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2080 Register GuardVal = MRI->createGenericVirtualRegister(PtrTy); 2081 getStackGuard(GuardVal, MIRBuilder); 2082 2083 AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1)); 2084 int FI = getOrCreateFrameIndex(*Slot); 2085 MF->getFrameInfo().setStackProtectorIndex(FI); 2086 2087 MIRBuilder.buildStore( 2088 GuardVal, getOrCreateVReg(*Slot), 2089 *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 2090 MachineMemOperand::MOStore | 2091 MachineMemOperand::MOVolatile, 2092 PtrTy, Align(8))); 2093 return true; 2094 } 2095 case Intrinsic::stacksave: { 2096 // Save the stack pointer to the location provided by the intrinsic. 2097 Register Reg = getOrCreateVReg(CI); 2098 Register StackPtr = MF->getSubtarget() 2099 .getTargetLowering() 2100 ->getStackPointerRegisterToSaveRestore(); 2101 2102 // If the target doesn't specify a stack pointer, then fall back. 2103 if (!StackPtr) 2104 return false; 2105 2106 MIRBuilder.buildCopy(Reg, StackPtr); 2107 return true; 2108 } 2109 case Intrinsic::stackrestore: { 2110 // Restore the stack pointer from the location provided by the intrinsic. 2111 Register Reg = getOrCreateVReg(*CI.getArgOperand(0)); 2112 Register StackPtr = MF->getSubtarget() 2113 .getTargetLowering() 2114 ->getStackPointerRegisterToSaveRestore(); 2115 2116 // If the target doesn't specify a stack pointer, then fall back. 2117 if (!StackPtr) 2118 return false; 2119 2120 MIRBuilder.buildCopy(StackPtr, Reg); 2121 return true; 2122 } 2123 case Intrinsic::cttz: 2124 case Intrinsic::ctlz: { 2125 ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1)); 2126 bool isTrailing = ID == Intrinsic::cttz; 2127 unsigned Opcode = isTrailing 2128 ? Cst->isZero() ? TargetOpcode::G_CTTZ 2129 : TargetOpcode::G_CTTZ_ZERO_UNDEF 2130 : Cst->isZero() ? TargetOpcode::G_CTLZ 2131 : TargetOpcode::G_CTLZ_ZERO_UNDEF; 2132 MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)}, 2133 {getOrCreateVReg(*CI.getArgOperand(0))}); 2134 return true; 2135 } 2136 case Intrinsic::invariant_start: { 2137 LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL); 2138 Register Undef = MRI->createGenericVirtualRegister(PtrTy); 2139 MIRBuilder.buildUndef(Undef); 2140 return true; 2141 } 2142 case Intrinsic::invariant_end: 2143 return true; 2144 case Intrinsic::expect: 2145 case Intrinsic::annotation: 2146 case Intrinsic::ptr_annotation: 2147 case Intrinsic::launder_invariant_group: 2148 case Intrinsic::strip_invariant_group: { 2149 // Drop the intrinsic, but forward the value. 2150 MIRBuilder.buildCopy(getOrCreateVReg(CI), 2151 getOrCreateVReg(*CI.getArgOperand(0))); 2152 return true; 2153 } 2154 case Intrinsic::assume: 2155 case Intrinsic::experimental_noalias_scope_decl: 2156 case Intrinsic::var_annotation: 2157 case Intrinsic::sideeffect: 2158 // Discard annotate attributes, assumptions, and artificial side-effects. 2159 return true; 2160 case Intrinsic::read_volatile_register: 2161 case Intrinsic::read_register: { 2162 Value *Arg = CI.getArgOperand(0); 2163 MIRBuilder 2164 .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {}) 2165 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())); 2166 return true; 2167 } 2168 case Intrinsic::write_register: { 2169 Value *Arg = CI.getArgOperand(0); 2170 MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER) 2171 .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata())) 2172 .addUse(getOrCreateVReg(*CI.getArgOperand(1))); 2173 return true; 2174 } 2175 case Intrinsic::localescape: { 2176 MachineBasicBlock &EntryMBB = MF->front(); 2177 StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName()); 2178 2179 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 2180 // is the same on all targets. 2181 for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) { 2182 Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts(); 2183 if (isa<ConstantPointerNull>(Arg)) 2184 continue; // Skip null pointers. They represent a hole in index space. 2185 2186 int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg)); 2187 MCSymbol *FrameAllocSym = 2188 MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName, 2189 Idx); 2190 2191 // This should be inserted at the start of the entry block. 2192 auto LocalEscape = 2193 MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE) 2194 .addSym(FrameAllocSym) 2195 .addFrameIndex(FI); 2196 2197 EntryMBB.insert(EntryMBB.begin(), LocalEscape); 2198 } 2199 2200 return true; 2201 } 2202 case Intrinsic::vector_reduce_fadd: 2203 case Intrinsic::vector_reduce_fmul: { 2204 // Need to check for the reassoc flag to decide whether we want a 2205 // sequential reduction opcode or not. 2206 Register Dst = getOrCreateVReg(CI); 2207 Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0)); 2208 Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1)); 2209 unsigned Opc = 0; 2210 if (!CI.hasAllowReassoc()) { 2211 // The sequential ordering case. 2212 Opc = ID == Intrinsic::vector_reduce_fadd 2213 ? TargetOpcode::G_VECREDUCE_SEQ_FADD 2214 : TargetOpcode::G_VECREDUCE_SEQ_FMUL; 2215 MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc}, 2216 MachineInstr::copyFlagsFromInstruction(CI)); 2217 return true; 2218 } 2219 // We split the operation into a separate G_FADD/G_FMUL + the reduce, 2220 // since the associativity doesn't matter. 2221 unsigned ScalarOpc; 2222 if (ID == Intrinsic::vector_reduce_fadd) { 2223 Opc = TargetOpcode::G_VECREDUCE_FADD; 2224 ScalarOpc = TargetOpcode::G_FADD; 2225 } else { 2226 Opc = TargetOpcode::G_VECREDUCE_FMUL; 2227 ScalarOpc = TargetOpcode::G_FMUL; 2228 } 2229 LLT DstTy = MRI->getType(Dst); 2230 auto Rdx = MIRBuilder.buildInstr( 2231 Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI)); 2232 MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx}, 2233 MachineInstr::copyFlagsFromInstruction(CI)); 2234 2235 return true; 2236 } 2237 case Intrinsic::trap: 2238 case Intrinsic::debugtrap: 2239 case Intrinsic::ubsantrap: { 2240 StringRef TrapFuncName = 2241 CI.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 2242 if (TrapFuncName.empty()) 2243 break; // Use the default handling. 2244 CallLowering::CallLoweringInfo Info; 2245 if (ID == Intrinsic::ubsantrap) { 2246 Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)), 2247 CI.getArgOperand(0)->getType(), 0}); 2248 } 2249 Info.Callee = 2250 MachineOperand::CreateES(MF->createExternalSymbolName(TrapFuncName)); 2251 Info.CB = &CI; 2252 Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0}; 2253 return CLI->lowerCall(MIRBuilder, Info); 2254 } 2255 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 2256 case Intrinsic::INTRINSIC: 2257 #include "llvm/IR/ConstrainedOps.def" 2258 return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI), 2259 MIRBuilder); 2260 2261 } 2262 return false; 2263 } 2264 2265 bool IRTranslator::translateInlineAsm(const CallBase &CB, 2266 MachineIRBuilder &MIRBuilder) { 2267 2268 const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering(); 2269 2270 if (!ALI) { 2271 LLVM_DEBUG( 2272 dbgs() << "Inline asm lowering is not supported for this target yet\n"); 2273 return false; 2274 } 2275 2276 return ALI->lowerInlineAsm( 2277 MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); }); 2278 } 2279 2280 bool IRTranslator::translateCallBase(const CallBase &CB, 2281 MachineIRBuilder &MIRBuilder) { 2282 ArrayRef<Register> Res = getOrCreateVRegs(CB); 2283 2284 SmallVector<ArrayRef<Register>, 8> Args; 2285 Register SwiftInVReg = 0; 2286 Register SwiftErrorVReg = 0; 2287 for (auto &Arg : CB.args()) { 2288 if (CLI->supportSwiftError() && isSwiftError(Arg)) { 2289 assert(SwiftInVReg == 0 && "Expected only one swift error argument"); 2290 LLT Ty = getLLTForType(*Arg->getType(), *DL); 2291 SwiftInVReg = MRI->createGenericVirtualRegister(Ty); 2292 MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt( 2293 &CB, &MIRBuilder.getMBB(), Arg)); 2294 Args.emplace_back(makeArrayRef(SwiftInVReg)); 2295 SwiftErrorVReg = 2296 SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg); 2297 continue; 2298 } 2299 Args.push_back(getOrCreateVRegs(*Arg)); 2300 } 2301 2302 if (auto *CI = dyn_cast<CallInst>(&CB)) { 2303 if (ORE->enabled()) { 2304 const Function &F = *CI->getParent()->getParent(); 2305 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2306 if (MemoryOpRemark::canHandle(CI, TLI)) { 2307 MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, TLI); 2308 R.visit(CI); 2309 } 2310 } 2311 } 2312 2313 // We don't set HasCalls on MFI here yet because call lowering may decide to 2314 // optimize into tail calls. Instead, we defer that to selection where a final 2315 // scan is done to check if any instructions are calls. 2316 bool Success = 2317 CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg, 2318 [&]() { return getOrCreateVReg(*CB.getCalledOperand()); }); 2319 2320 // Check if we just inserted a tail call. 2321 if (Success) { 2322 assert(!HasTailCall && "Can't tail call return twice from block?"); 2323 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2324 HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt())); 2325 } 2326 2327 return Success; 2328 } 2329 2330 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) { 2331 const CallInst &CI = cast<CallInst>(U); 2332 auto TII = MF->getTarget().getIntrinsicInfo(); 2333 const Function *F = CI.getCalledFunction(); 2334 2335 // FIXME: support Windows dllimport function calls. 2336 if (F && (F->hasDLLImportStorageClass() || 2337 (MF->getTarget().getTargetTriple().isOSWindows() && 2338 F->hasExternalWeakLinkage()))) 2339 return false; 2340 2341 // FIXME: support control flow guard targets. 2342 if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2343 return false; 2344 2345 if (CI.isInlineAsm()) 2346 return translateInlineAsm(CI, MIRBuilder); 2347 2348 diagnoseDontCall(CI); 2349 2350 Intrinsic::ID ID = Intrinsic::not_intrinsic; 2351 if (F && F->isIntrinsic()) { 2352 ID = F->getIntrinsicID(); 2353 if (TII && ID == Intrinsic::not_intrinsic) 2354 ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F)); 2355 } 2356 2357 if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) 2358 return translateCallBase(CI, MIRBuilder); 2359 2360 assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic"); 2361 2362 if (translateKnownIntrinsic(CI, ID, MIRBuilder)) 2363 return true; 2364 2365 ArrayRef<Register> ResultRegs; 2366 if (!CI.getType()->isVoidTy()) 2367 ResultRegs = getOrCreateVRegs(CI); 2368 2369 // Ignore the callsite attributes. Backend code is most likely not expecting 2370 // an intrinsic to sometimes have side effects and sometimes not. 2371 MachineInstrBuilder MIB = 2372 MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory()); 2373 if (isa<FPMathOperator>(CI)) 2374 MIB->copyIRFlags(CI); 2375 2376 for (auto &Arg : enumerate(CI.args())) { 2377 // If this is required to be an immediate, don't materialize it in a 2378 // register. 2379 if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) { 2380 if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) { 2381 // imm arguments are more convenient than cimm (and realistically 2382 // probably sufficient), so use them. 2383 assert(CI->getBitWidth() <= 64 && 2384 "large intrinsic immediates not handled"); 2385 MIB.addImm(CI->getSExtValue()); 2386 } else { 2387 MIB.addFPImm(cast<ConstantFP>(Arg.value())); 2388 } 2389 } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) { 2390 auto *MD = MDVal->getMetadata(); 2391 auto *MDN = dyn_cast<MDNode>(MD); 2392 if (!MDN) { 2393 if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD)) 2394 MDN = MDNode::get(MF->getFunction().getContext(), ConstMD); 2395 else // This was probably an MDString. 2396 return false; 2397 } 2398 MIB.addMetadata(MDN); 2399 } else { 2400 ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value()); 2401 if (VRegs.size() > 1) 2402 return false; 2403 MIB.addUse(VRegs[0]); 2404 } 2405 } 2406 2407 // Add a MachineMemOperand if it is a target mem intrinsic. 2408 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 2409 TargetLowering::IntrinsicInfo Info; 2410 // TODO: Add a GlobalISel version of getTgtMemIntrinsic. 2411 if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) { 2412 Align Alignment = Info.align.getValueOr( 2413 DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext()))); 2414 LLT MemTy = Info.memVT.isSimple() 2415 ? getLLTForMVT(Info.memVT.getSimpleVT()) 2416 : LLT::scalar(Info.memVT.getStoreSizeInBits()); 2417 MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal), 2418 Info.flags, MemTy, Alignment)); 2419 } 2420 2421 return true; 2422 } 2423 2424 bool IRTranslator::findUnwindDestinations( 2425 const BasicBlock *EHPadBB, 2426 BranchProbability Prob, 2427 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2428 &UnwindDests) { 2429 EHPersonality Personality = classifyEHPersonality( 2430 EHPadBB->getParent()->getFunction().getPersonalityFn()); 2431 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2432 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2433 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2434 bool IsSEH = isAsynchronousEHPersonality(Personality); 2435 2436 if (IsWasmCXX) { 2437 // Ignore this for now. 2438 return false; 2439 } 2440 2441 while (EHPadBB) { 2442 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2443 BasicBlock *NewEHPadBB = nullptr; 2444 if (isa<LandingPadInst>(Pad)) { 2445 // Stop on landingpads. They are not funclets. 2446 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2447 break; 2448 } 2449 if (isa<CleanupPadInst>(Pad)) { 2450 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2451 // personalities. 2452 UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob); 2453 UnwindDests.back().first->setIsEHScopeEntry(); 2454 UnwindDests.back().first->setIsEHFuncletEntry(); 2455 break; 2456 } 2457 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2458 // Add the catchpad handlers to the possible destinations. 2459 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2460 UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob); 2461 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2462 if (IsMSVCCXX || IsCoreCLR) 2463 UnwindDests.back().first->setIsEHFuncletEntry(); 2464 if (!IsSEH) 2465 UnwindDests.back().first->setIsEHScopeEntry(); 2466 } 2467 NewEHPadBB = CatchSwitch->getUnwindDest(); 2468 } else { 2469 continue; 2470 } 2471 2472 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2473 if (BPI && NewEHPadBB) 2474 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2475 EHPadBB = NewEHPadBB; 2476 } 2477 return true; 2478 } 2479 2480 bool IRTranslator::translateInvoke(const User &U, 2481 MachineIRBuilder &MIRBuilder) { 2482 const InvokeInst &I = cast<InvokeInst>(U); 2483 MCContext &Context = MF->getContext(); 2484 2485 const BasicBlock *ReturnBB = I.getSuccessor(0); 2486 const BasicBlock *EHPadBB = I.getSuccessor(1); 2487 2488 const Function *Fn = I.getCalledFunction(); 2489 2490 // FIXME: support invoking patchpoint and statepoint intrinsics. 2491 if (Fn && Fn->isIntrinsic()) 2492 return false; 2493 2494 // FIXME: support whatever these are. 2495 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 2496 return false; 2497 2498 // FIXME: support control flow guard targets. 2499 if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget)) 2500 return false; 2501 2502 // FIXME: support Windows exception handling. 2503 if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI())) 2504 return false; 2505 2506 bool LowerInlineAsm = false; 2507 if (I.isInlineAsm()) { 2508 const InlineAsm *IA = cast<InlineAsm>(I.getCalledOperand()); 2509 if (!IA->canThrow()) { 2510 // Fast path without emitting EH_LABELs. 2511 2512 if (!translateInlineAsm(I, MIRBuilder)) 2513 return false; 2514 2515 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(), 2516 *ReturnMBB = &getMBB(*ReturnBB); 2517 2518 // Update successor info. 2519 addSuccessorWithProb(InvokeMBB, ReturnMBB, BranchProbability::getOne()); 2520 2521 MIRBuilder.buildBr(*ReturnMBB); 2522 return true; 2523 } else { 2524 LowerInlineAsm = true; 2525 } 2526 } 2527 2528 // Emit the actual call, bracketed by EH_LABELs so that the MF knows about 2529 // the region covered by the try. 2530 MCSymbol *BeginSymbol = Context.createTempSymbol(); 2531 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol); 2532 2533 if (LowerInlineAsm) { 2534 if (!translateInlineAsm(I, MIRBuilder)) 2535 return false; 2536 } else if (!translateCallBase(I, MIRBuilder)) 2537 return false; 2538 2539 MCSymbol *EndSymbol = Context.createTempSymbol(); 2540 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol); 2541 2542 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2543 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2544 MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB(); 2545 BranchProbability EHPadBBProb = 2546 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2547 : BranchProbability::getZero(); 2548 2549 if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests)) 2550 return false; 2551 2552 MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB), 2553 &ReturnMBB = getMBB(*ReturnBB); 2554 // Update successor info. 2555 addSuccessorWithProb(InvokeMBB, &ReturnMBB); 2556 for (auto &UnwindDest : UnwindDests) { 2557 UnwindDest.first->setIsEHPad(); 2558 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2559 } 2560 InvokeMBB->normalizeSuccProbs(); 2561 2562 MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol); 2563 MIRBuilder.buildBr(ReturnMBB); 2564 return true; 2565 } 2566 2567 bool IRTranslator::translateCallBr(const User &U, 2568 MachineIRBuilder &MIRBuilder) { 2569 // FIXME: Implement this. 2570 return false; 2571 } 2572 2573 bool IRTranslator::translateLandingPad(const User &U, 2574 MachineIRBuilder &MIRBuilder) { 2575 const LandingPadInst &LP = cast<LandingPadInst>(U); 2576 2577 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 2578 2579 MBB.setIsEHPad(); 2580 2581 // If there aren't registers to copy the values into (e.g., during SjLj 2582 // exceptions), then don't bother. 2583 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2584 const Constant *PersonalityFn = MF->getFunction().getPersonalityFn(); 2585 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2586 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2587 return true; 2588 2589 // If landingpad's return type is token type, we don't create DAG nodes 2590 // for its exception pointer and selector value. The extraction of exception 2591 // pointer or selector value from token type landingpads is not currently 2592 // supported. 2593 if (LP.getType()->isTokenTy()) 2594 return true; 2595 2596 // Add a label to mark the beginning of the landing pad. Deletion of the 2597 // landing pad can thus be detected via the MachineModuleInfo. 2598 MIRBuilder.buildInstr(TargetOpcode::EH_LABEL) 2599 .addSym(MF->addLandingPad(&MBB)); 2600 2601 // If the unwinder does not preserve all registers, ensure that the 2602 // function marks the clobbered registers as used. 2603 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 2604 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 2605 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 2606 2607 LLT Ty = getLLTForType(*LP.getType(), *DL); 2608 Register Undef = MRI->createGenericVirtualRegister(Ty); 2609 MIRBuilder.buildUndef(Undef); 2610 2611 SmallVector<LLT, 2> Tys; 2612 for (Type *Ty : cast<StructType>(LP.getType())->elements()) 2613 Tys.push_back(getLLTForType(*Ty, *DL)); 2614 assert(Tys.size() == 2 && "Only two-valued landingpads are supported"); 2615 2616 // Mark exception register as live in. 2617 Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn); 2618 if (!ExceptionReg) 2619 return false; 2620 2621 MBB.addLiveIn(ExceptionReg); 2622 ArrayRef<Register> ResRegs = getOrCreateVRegs(LP); 2623 MIRBuilder.buildCopy(ResRegs[0], ExceptionReg); 2624 2625 Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn); 2626 if (!SelectorReg) 2627 return false; 2628 2629 MBB.addLiveIn(SelectorReg); 2630 Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]); 2631 MIRBuilder.buildCopy(PtrVReg, SelectorReg); 2632 MIRBuilder.buildCast(ResRegs[1], PtrVReg); 2633 2634 return true; 2635 } 2636 2637 bool IRTranslator::translateAlloca(const User &U, 2638 MachineIRBuilder &MIRBuilder) { 2639 auto &AI = cast<AllocaInst>(U); 2640 2641 if (AI.isSwiftError()) 2642 return true; 2643 2644 if (AI.isStaticAlloca()) { 2645 Register Res = getOrCreateVReg(AI); 2646 int FI = getOrCreateFrameIndex(AI); 2647 MIRBuilder.buildFrameIndex(Res, FI); 2648 return true; 2649 } 2650 2651 // FIXME: support stack probing for Windows. 2652 if (MF->getTarget().getTargetTriple().isOSWindows()) 2653 return false; 2654 2655 // Now we're in the harder dynamic case. 2656 Register NumElts = getOrCreateVReg(*AI.getArraySize()); 2657 Type *IntPtrIRTy = DL->getIntPtrType(AI.getType()); 2658 LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL); 2659 if (MRI->getType(NumElts) != IntPtrTy) { 2660 Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy); 2661 MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts); 2662 NumElts = ExtElts; 2663 } 2664 2665 Type *Ty = AI.getAllocatedType(); 2666 2667 Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy); 2668 Register TySize = 2669 getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty))); 2670 MIRBuilder.buildMul(AllocSize, NumElts, TySize); 2671 2672 // Round the size of the allocation up to the stack alignment size 2673 // by add SA-1 to the size. This doesn't overflow because we're computing 2674 // an address inside an alloca. 2675 Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign(); 2676 auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1); 2677 auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne, 2678 MachineInstr::NoUWrap); 2679 auto AlignCst = 2680 MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1)); 2681 auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst); 2682 2683 Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty)); 2684 if (Alignment <= StackAlign) 2685 Alignment = Align(1); 2686 MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment); 2687 2688 MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI); 2689 assert(MF->getFrameInfo().hasVarSizedObjects()); 2690 return true; 2691 } 2692 2693 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) { 2694 // FIXME: We may need more info about the type. Because of how LLT works, 2695 // we're completely discarding the i64/double distinction here (amongst 2696 // others). Fortunately the ABIs I know of where that matters don't use va_arg 2697 // anyway but that's not guaranteed. 2698 MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)}, 2699 {getOrCreateVReg(*U.getOperand(0)), 2700 DL->getABITypeAlign(U.getType()).value()}); 2701 return true; 2702 } 2703 2704 bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) { 2705 if (!MF->getTarget().Options.TrapUnreachable) 2706 return true; 2707 2708 auto &UI = cast<UnreachableInst>(U); 2709 // We may be able to ignore unreachable behind a noreturn call. 2710 if (MF->getTarget().Options.NoTrapAfterNoreturn) { 2711 const BasicBlock &BB = *UI.getParent(); 2712 if (&UI != &BB.front()) { 2713 BasicBlock::const_iterator PredI = 2714 std::prev(BasicBlock::const_iterator(UI)); 2715 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2716 if (Call->doesNotReturn()) 2717 return true; 2718 } 2719 } 2720 } 2721 2722 MIRBuilder.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true); 2723 return true; 2724 } 2725 2726 bool IRTranslator::translateInsertElement(const User &U, 2727 MachineIRBuilder &MIRBuilder) { 2728 // If it is a <1 x Ty> vector, use the scalar as it is 2729 // not a legal vector type in LLT. 2730 if (cast<FixedVectorType>(U.getType())->getNumElements() == 1) 2731 return translateCopy(U, *U.getOperand(1), MIRBuilder); 2732 2733 Register Res = getOrCreateVReg(U); 2734 Register Val = getOrCreateVReg(*U.getOperand(0)); 2735 Register Elt = getOrCreateVReg(*U.getOperand(1)); 2736 Register Idx = getOrCreateVReg(*U.getOperand(2)); 2737 MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx); 2738 return true; 2739 } 2740 2741 bool IRTranslator::translateExtractElement(const User &U, 2742 MachineIRBuilder &MIRBuilder) { 2743 // If it is a <1 x Ty> vector, use the scalar as it is 2744 // not a legal vector type in LLT. 2745 if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1) 2746 return translateCopy(U, *U.getOperand(0), MIRBuilder); 2747 2748 Register Res = getOrCreateVReg(U); 2749 Register Val = getOrCreateVReg(*U.getOperand(0)); 2750 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 2751 unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits(); 2752 Register Idx; 2753 if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) { 2754 if (CI->getBitWidth() != PreferredVecIdxWidth) { 2755 APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth); 2756 auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx); 2757 Idx = getOrCreateVReg(*NewIdxCI); 2758 } 2759 } 2760 if (!Idx) 2761 Idx = getOrCreateVReg(*U.getOperand(1)); 2762 if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) { 2763 const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth); 2764 Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0); 2765 } 2766 MIRBuilder.buildExtractVectorElement(Res, Val, Idx); 2767 return true; 2768 } 2769 2770 bool IRTranslator::translateShuffleVector(const User &U, 2771 MachineIRBuilder &MIRBuilder) { 2772 ArrayRef<int> Mask; 2773 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U)) 2774 Mask = SVI->getShuffleMask(); 2775 else 2776 Mask = cast<ConstantExpr>(U).getShuffleMask(); 2777 ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask); 2778 MIRBuilder 2779 .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)}, 2780 {getOrCreateVReg(*U.getOperand(0)), 2781 getOrCreateVReg(*U.getOperand(1))}) 2782 .addShuffleMask(MaskAlloc); 2783 return true; 2784 } 2785 2786 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) { 2787 const PHINode &PI = cast<PHINode>(U); 2788 2789 SmallVector<MachineInstr *, 4> Insts; 2790 for (auto Reg : getOrCreateVRegs(PI)) { 2791 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {}); 2792 Insts.push_back(MIB.getInstr()); 2793 } 2794 2795 PendingPHIs.emplace_back(&PI, std::move(Insts)); 2796 return true; 2797 } 2798 2799 bool IRTranslator::translateAtomicCmpXchg(const User &U, 2800 MachineIRBuilder &MIRBuilder) { 2801 const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U); 2802 2803 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2804 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2805 2806 auto Res = getOrCreateVRegs(I); 2807 Register OldValRes = Res[0]; 2808 Register SuccessRes = Res[1]; 2809 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2810 Register Cmp = getOrCreateVReg(*I.getCompareOperand()); 2811 Register NewVal = getOrCreateVReg(*I.getNewValOperand()); 2812 2813 MIRBuilder.buildAtomicCmpXchgWithSuccess( 2814 OldValRes, SuccessRes, Addr, Cmp, NewVal, 2815 *MF->getMachineMemOperand( 2816 MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp), 2817 getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(), 2818 I.getSuccessOrdering(), I.getFailureOrdering())); 2819 return true; 2820 } 2821 2822 bool IRTranslator::translateAtomicRMW(const User &U, 2823 MachineIRBuilder &MIRBuilder) { 2824 const AtomicRMWInst &I = cast<AtomicRMWInst>(U); 2825 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2826 auto Flags = TLI.getAtomicMemOperandFlags(I, *DL); 2827 2828 Register Res = getOrCreateVReg(I); 2829 Register Addr = getOrCreateVReg(*I.getPointerOperand()); 2830 Register Val = getOrCreateVReg(*I.getValOperand()); 2831 2832 unsigned Opcode = 0; 2833 switch (I.getOperation()) { 2834 default: 2835 return false; 2836 case AtomicRMWInst::Xchg: 2837 Opcode = TargetOpcode::G_ATOMICRMW_XCHG; 2838 break; 2839 case AtomicRMWInst::Add: 2840 Opcode = TargetOpcode::G_ATOMICRMW_ADD; 2841 break; 2842 case AtomicRMWInst::Sub: 2843 Opcode = TargetOpcode::G_ATOMICRMW_SUB; 2844 break; 2845 case AtomicRMWInst::And: 2846 Opcode = TargetOpcode::G_ATOMICRMW_AND; 2847 break; 2848 case AtomicRMWInst::Nand: 2849 Opcode = TargetOpcode::G_ATOMICRMW_NAND; 2850 break; 2851 case AtomicRMWInst::Or: 2852 Opcode = TargetOpcode::G_ATOMICRMW_OR; 2853 break; 2854 case AtomicRMWInst::Xor: 2855 Opcode = TargetOpcode::G_ATOMICRMW_XOR; 2856 break; 2857 case AtomicRMWInst::Max: 2858 Opcode = TargetOpcode::G_ATOMICRMW_MAX; 2859 break; 2860 case AtomicRMWInst::Min: 2861 Opcode = TargetOpcode::G_ATOMICRMW_MIN; 2862 break; 2863 case AtomicRMWInst::UMax: 2864 Opcode = TargetOpcode::G_ATOMICRMW_UMAX; 2865 break; 2866 case AtomicRMWInst::UMin: 2867 Opcode = TargetOpcode::G_ATOMICRMW_UMIN; 2868 break; 2869 case AtomicRMWInst::FAdd: 2870 Opcode = TargetOpcode::G_ATOMICRMW_FADD; 2871 break; 2872 case AtomicRMWInst::FSub: 2873 Opcode = TargetOpcode::G_ATOMICRMW_FSUB; 2874 break; 2875 } 2876 2877 MIRBuilder.buildAtomicRMW( 2878 Opcode, Res, Addr, Val, 2879 *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 2880 Flags, MRI->getType(Val), getMemOpAlign(I), 2881 I.getAAMetadata(), nullptr, I.getSyncScopeID(), 2882 I.getOrdering())); 2883 return true; 2884 } 2885 2886 bool IRTranslator::translateFence(const User &U, 2887 MachineIRBuilder &MIRBuilder) { 2888 const FenceInst &Fence = cast<FenceInst>(U); 2889 MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()), 2890 Fence.getSyncScopeID()); 2891 return true; 2892 } 2893 2894 bool IRTranslator::translateFreeze(const User &U, 2895 MachineIRBuilder &MIRBuilder) { 2896 const ArrayRef<Register> DstRegs = getOrCreateVRegs(U); 2897 const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0)); 2898 2899 assert(DstRegs.size() == SrcRegs.size() && 2900 "Freeze with different source and destination type?"); 2901 2902 for (unsigned I = 0; I < DstRegs.size(); ++I) { 2903 MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]); 2904 } 2905 2906 return true; 2907 } 2908 2909 void IRTranslator::finishPendingPhis() { 2910 #ifndef NDEBUG 2911 DILocationVerifier Verifier; 2912 GISelObserverWrapper WrapperObserver(&Verifier); 2913 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 2914 #endif // ifndef NDEBUG 2915 for (auto &Phi : PendingPHIs) { 2916 const PHINode *PI = Phi.first; 2917 ArrayRef<MachineInstr *> ComponentPHIs = Phi.second; 2918 MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent(); 2919 EntryBuilder->setDebugLoc(PI->getDebugLoc()); 2920 #ifndef NDEBUG 2921 Verifier.setCurrentInst(PI); 2922 #endif // ifndef NDEBUG 2923 2924 SmallSet<const MachineBasicBlock *, 16> SeenPreds; 2925 for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) { 2926 auto IRPred = PI->getIncomingBlock(i); 2927 ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i)); 2928 for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) { 2929 if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred)) 2930 continue; 2931 SeenPreds.insert(Pred); 2932 for (unsigned j = 0; j < ValRegs.size(); ++j) { 2933 MachineInstrBuilder MIB(*MF, ComponentPHIs[j]); 2934 MIB.addUse(ValRegs[j]); 2935 MIB.addMBB(Pred); 2936 } 2937 } 2938 } 2939 } 2940 } 2941 2942 bool IRTranslator::valueIsSplit(const Value &V, 2943 SmallVectorImpl<uint64_t> *Offsets) { 2944 SmallVector<LLT, 4> SplitTys; 2945 if (Offsets && !Offsets->empty()) 2946 Offsets->clear(); 2947 computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets); 2948 return SplitTys.size() > 1; 2949 } 2950 2951 bool IRTranslator::translate(const Instruction &Inst) { 2952 CurBuilder->setDebugLoc(Inst.getDebugLoc()); 2953 2954 auto &TLI = *MF->getSubtarget().getTargetLowering(); 2955 if (TLI.fallBackToDAGISel(Inst)) 2956 return false; 2957 2958 switch (Inst.getOpcode()) { 2959 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 2960 case Instruction::OPCODE: \ 2961 return translate##OPCODE(Inst, *CurBuilder.get()); 2962 #include "llvm/IR/Instruction.def" 2963 default: 2964 return false; 2965 } 2966 } 2967 2968 bool IRTranslator::translate(const Constant &C, Register Reg) { 2969 // We only emit constants into the entry block from here. To prevent jumpy 2970 // debug behaviour set the line to 0. 2971 if (auto CurrInstDL = CurBuilder->getDL()) 2972 EntryBuilder->setDebugLoc(DILocation::get(C.getContext(), 0, 0, 2973 CurrInstDL.getScope(), 2974 CurrInstDL.getInlinedAt())); 2975 2976 if (auto CI = dyn_cast<ConstantInt>(&C)) 2977 EntryBuilder->buildConstant(Reg, *CI); 2978 else if (auto CF = dyn_cast<ConstantFP>(&C)) 2979 EntryBuilder->buildFConstant(Reg, *CF); 2980 else if (isa<UndefValue>(C)) 2981 EntryBuilder->buildUndef(Reg); 2982 else if (isa<ConstantPointerNull>(C)) 2983 EntryBuilder->buildConstant(Reg, 0); 2984 else if (auto GV = dyn_cast<GlobalValue>(&C)) 2985 EntryBuilder->buildGlobalValue(Reg, GV); 2986 else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) { 2987 if (!isa<FixedVectorType>(CAZ->getType())) 2988 return false; 2989 // Return the scalar if it is a <1 x Ty> vector. 2990 unsigned NumElts = CAZ->getElementCount().getFixedValue(); 2991 if (NumElts == 1) 2992 return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get()); 2993 SmallVector<Register, 4> Ops; 2994 for (unsigned I = 0; I < NumElts; ++I) { 2995 Constant &Elt = *CAZ->getElementValue(I); 2996 Ops.push_back(getOrCreateVReg(Elt)); 2997 } 2998 EntryBuilder->buildBuildVector(Reg, Ops); 2999 } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) { 3000 // Return the scalar if it is a <1 x Ty> vector. 3001 if (CV->getNumElements() == 1) 3002 return translateCopy(C, *CV->getElementAsConstant(0), 3003 *EntryBuilder.get()); 3004 SmallVector<Register, 4> Ops; 3005 for (unsigned i = 0; i < CV->getNumElements(); ++i) { 3006 Constant &Elt = *CV->getElementAsConstant(i); 3007 Ops.push_back(getOrCreateVReg(Elt)); 3008 } 3009 EntryBuilder->buildBuildVector(Reg, Ops); 3010 } else if (auto CE = dyn_cast<ConstantExpr>(&C)) { 3011 switch(CE->getOpcode()) { 3012 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 3013 case Instruction::OPCODE: \ 3014 return translate##OPCODE(*CE, *EntryBuilder.get()); 3015 #include "llvm/IR/Instruction.def" 3016 default: 3017 return false; 3018 } 3019 } else if (auto CV = dyn_cast<ConstantVector>(&C)) { 3020 if (CV->getNumOperands() == 1) 3021 return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get()); 3022 SmallVector<Register, 4> Ops; 3023 for (unsigned i = 0; i < CV->getNumOperands(); ++i) { 3024 Ops.push_back(getOrCreateVReg(*CV->getOperand(i))); 3025 } 3026 EntryBuilder->buildBuildVector(Reg, Ops); 3027 } else if (auto *BA = dyn_cast<BlockAddress>(&C)) { 3028 EntryBuilder->buildBlockAddress(Reg, BA); 3029 } else 3030 return false; 3031 3032 return true; 3033 } 3034 3035 bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB, 3036 MachineBasicBlock &MBB) { 3037 for (auto &BTB : SL->BitTestCases) { 3038 // Emit header first, if it wasn't already emitted. 3039 if (!BTB.Emitted) 3040 emitBitTestHeader(BTB, BTB.Parent); 3041 3042 BranchProbability UnhandledProb = BTB.Prob; 3043 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 3044 UnhandledProb -= BTB.Cases[j].ExtraProb; 3045 // Set the current basic block to the mbb we wish to insert the code into 3046 MachineBasicBlock *MBB = BTB.Cases[j].ThisBB; 3047 // If all cases cover a contiguous range, it is not necessary to jump to 3048 // the default block after the last bit test fails. This is because the 3049 // range check during bit test header creation has guaranteed that every 3050 // case here doesn't go outside the range. In this case, there is no need 3051 // to perform the last bit test, as it will always be true. Instead, make 3052 // the second-to-last bit-test fall through to the target of the last bit 3053 // test, and delete the last bit test. 3054 3055 MachineBasicBlock *NextMBB; 3056 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3057 // Second-to-last bit-test with contiguous range: fall through to the 3058 // target of the final bit test. 3059 NextMBB = BTB.Cases[j + 1].TargetBB; 3060 } else if (j + 1 == ej) { 3061 // For the last bit test, fall through to Default. 3062 NextMBB = BTB.Default; 3063 } else { 3064 // Otherwise, fall through to the next bit test. 3065 NextMBB = BTB.Cases[j + 1].ThisBB; 3066 } 3067 3068 emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB); 3069 3070 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) { 3071 // We need to record the replacement phi edge here that normally 3072 // happens in emitBitTestCase before we delete the case, otherwise the 3073 // phi edge will be lost. 3074 addMachineCFGPred({BTB.Parent->getBasicBlock(), 3075 BTB.Cases[ej - 1].TargetBB->getBasicBlock()}, 3076 MBB); 3077 // Since we're not going to use the final bit test, remove it. 3078 BTB.Cases.pop_back(); 3079 break; 3080 } 3081 } 3082 // This is "default" BB. We have two jumps to it. From "header" BB and from 3083 // last "case" BB, unless the latter was skipped. 3084 CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(), 3085 BTB.Default->getBasicBlock()}; 3086 addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent); 3087 if (!BTB.ContiguousRange) { 3088 addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB); 3089 } 3090 } 3091 SL->BitTestCases.clear(); 3092 3093 for (auto &JTCase : SL->JTCases) { 3094 // Emit header first, if it wasn't already emitted. 3095 if (!JTCase.first.Emitted) 3096 emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB); 3097 3098 emitJumpTable(JTCase.second, JTCase.second.MBB); 3099 } 3100 SL->JTCases.clear(); 3101 3102 for (auto &SwCase : SL->SwitchCases) 3103 emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder); 3104 SL->SwitchCases.clear(); 3105 3106 // Check if we need to generate stack-protector guard checks. 3107 StackProtector &SP = getAnalysis<StackProtector>(); 3108 if (SP.shouldEmitSDCheck(BB)) { 3109 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3110 bool FunctionBasedInstrumentation = 3111 TLI.getSSPStackGuardCheck(*MF->getFunction().getParent()); 3112 SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation); 3113 } 3114 // Handle stack protector. 3115 if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 3116 LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n"); 3117 return false; 3118 } else if (SPDescriptor.shouldEmitStackProtector()) { 3119 MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB(); 3120 MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB(); 3121 3122 // Find the split point to split the parent mbb. At the same time copy all 3123 // physical registers used in the tail of parent mbb into virtual registers 3124 // before the split point and back into physical registers after the split 3125 // point. This prevents us needing to deal with Live-ins and many other 3126 // register allocation issues caused by us splitting the parent mbb. The 3127 // register allocator will clean up said virtual copies later on. 3128 MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector( 3129 ParentMBB, *MF->getSubtarget().getInstrInfo()); 3130 3131 // Splice the terminator of ParentMBB into SuccessMBB. 3132 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint, 3133 ParentMBB->end()); 3134 3135 // Add compare/jump on neq/jump to the parent BB. 3136 if (!emitSPDescriptorParent(SPDescriptor, ParentMBB)) 3137 return false; 3138 3139 // CodeGen Failure MBB if we have not codegened it yet. 3140 MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB(); 3141 if (FailureMBB->empty()) { 3142 if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB)) 3143 return false; 3144 } 3145 3146 // Clear the Per-BB State. 3147 SPDescriptor.resetPerBBState(); 3148 } 3149 return true; 3150 } 3151 3152 bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD, 3153 MachineBasicBlock *ParentBB) { 3154 CurBuilder->setInsertPt(*ParentBB, ParentBB->end()); 3155 // First create the loads to the guard/stack slot for the comparison. 3156 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3157 Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext()); 3158 const LLT PtrTy = getLLTForType(*PtrIRTy, *DL); 3159 LLT PtrMemTy = getLLTForMVT(TLI.getPointerMemTy(*DL)); 3160 3161 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3162 int FI = MFI.getStackProtectorIndex(); 3163 3164 Register Guard; 3165 Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0); 3166 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3167 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 3168 3169 // Generate code to load the content of the guard slot. 3170 Register GuardVal = 3171 CurBuilder 3172 ->buildLoad(PtrMemTy, StackSlotPtr, 3173 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3174 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile) 3175 .getReg(0); 3176 3177 if (TLI.useStackGuardXorFP()) { 3178 LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented"); 3179 return false; 3180 } 3181 3182 // Retrieve guard check function, nullptr if instrumentation is inlined. 3183 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3184 // This path is currently untestable on GlobalISel, since the only platform 3185 // that needs this seems to be Windows, and we fall back on that currently. 3186 // The code still lives here in case that changes. 3187 // Silence warning about unused variable until the code below that uses 3188 // 'GuardCheckFn' is enabled. 3189 (void)GuardCheckFn; 3190 return false; 3191 #if 0 3192 // The target provides a guard check function to validate the guard value. 3193 // Generate a call to that function with the content of the guard slot as 3194 // argument. 3195 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3196 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3197 ISD::ArgFlagsTy Flags; 3198 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 3199 Flags.setInReg(); 3200 CallLowering::ArgInfo GuardArgInfo( 3201 {GuardVal, FnTy->getParamType(0), {Flags}}); 3202 3203 CallLowering::CallLoweringInfo Info; 3204 Info.OrigArgs.push_back(GuardArgInfo); 3205 Info.CallConv = GuardCheckFn->getCallingConv(); 3206 Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0); 3207 Info.OrigRet = {Register(), FnTy->getReturnType()}; 3208 if (!CLI->lowerCall(MIRBuilder, Info)) { 3209 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n"); 3210 return false; 3211 } 3212 return true; 3213 #endif 3214 } 3215 3216 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3217 // Otherwise, emit a volatile load to retrieve the stack guard value. 3218 if (TLI.useLoadStackGuardNode()) { 3219 Guard = 3220 MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits())); 3221 getStackGuard(Guard, *CurBuilder); 3222 } else { 3223 // TODO: test using android subtarget when we support @llvm.thread.pointer. 3224 const Value *IRGuard = TLI.getSDagStackGuard(M); 3225 Register GuardPtr = getOrCreateVReg(*IRGuard); 3226 3227 Guard = CurBuilder 3228 ->buildLoad(PtrMemTy, GuardPtr, 3229 MachinePointerInfo::getFixedStack(*MF, FI), Align, 3230 MachineMemOperand::MOLoad | 3231 MachineMemOperand::MOVolatile) 3232 .getReg(0); 3233 } 3234 3235 // Perform the comparison. 3236 auto Cmp = 3237 CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal); 3238 // If the guard/stackslot do not equal, branch to failure MBB. 3239 CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB()); 3240 // Otherwise branch to success MBB. 3241 CurBuilder->buildBr(*SPD.getSuccessMBB()); 3242 return true; 3243 } 3244 3245 bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD, 3246 MachineBasicBlock *FailureBB) { 3247 CurBuilder->setInsertPt(*FailureBB, FailureBB->end()); 3248 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 3249 3250 const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL; 3251 const char *Name = TLI.getLibcallName(Libcall); 3252 3253 CallLowering::CallLoweringInfo Info; 3254 Info.CallConv = TLI.getLibcallCallingConv(Libcall); 3255 Info.Callee = MachineOperand::CreateES(Name); 3256 Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()), 3257 0}; 3258 if (!CLI->lowerCall(*CurBuilder, Info)) { 3259 LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n"); 3260 return false; 3261 } 3262 3263 // On PS4, the "return address" must still be within the calling function, 3264 // even if it's at the very end, so emit an explicit TRAP here. 3265 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3266 // WebAssembly needs an unreachable instruction after a non-returning call, 3267 // because the function return type can be different from __stack_chk_fail's 3268 // return type (void). 3269 const TargetMachine &TM = MF->getTarget(); 3270 if (TM.getTargetTriple().isPS4CPU() || TM.getTargetTriple().isWasm()) { 3271 LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n"); 3272 return false; 3273 } 3274 return true; 3275 } 3276 3277 void IRTranslator::finalizeFunction() { 3278 // Release the memory used by the different maps we 3279 // needed during the translation. 3280 PendingPHIs.clear(); 3281 VMap.reset(); 3282 FrameIndices.clear(); 3283 MachinePreds.clear(); 3284 // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it 3285 // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid 3286 // destroying it twice (in ~IRTranslator() and ~LLVMContext()) 3287 EntryBuilder.reset(); 3288 CurBuilder.reset(); 3289 FuncInfo.clear(); 3290 SPDescriptor.resetPerFunctionState(); 3291 } 3292 3293 /// Returns true if a BasicBlock \p BB within a variadic function contains a 3294 /// variadic musttail call. 3295 static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) { 3296 if (!IsVarArg) 3297 return false; 3298 3299 // Walk the block backwards, because tail calls usually only appear at the end 3300 // of a block. 3301 return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) { 3302 const auto *CI = dyn_cast<CallInst>(&I); 3303 return CI && CI->isMustTailCall(); 3304 }); 3305 } 3306 3307 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) { 3308 MF = &CurMF; 3309 const Function &F = MF->getFunction(); 3310 GISelCSEAnalysisWrapper &Wrapper = 3311 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 3312 // Set the CSEConfig and run the analysis. 3313 GISelCSEInfo *CSEInfo = nullptr; 3314 TPC = &getAnalysis<TargetPassConfig>(); 3315 bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences() 3316 ? EnableCSEInIRTranslator 3317 : TPC->isGISelCSEEnabled(); 3318 3319 if (EnableCSE) { 3320 EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3321 CSEInfo = &Wrapper.get(TPC->getCSEConfig()); 3322 EntryBuilder->setCSEInfo(CSEInfo); 3323 CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF); 3324 CurBuilder->setCSEInfo(CSEInfo); 3325 } else { 3326 EntryBuilder = std::make_unique<MachineIRBuilder>(); 3327 CurBuilder = std::make_unique<MachineIRBuilder>(); 3328 } 3329 CLI = MF->getSubtarget().getCallLowering(); 3330 CurBuilder->setMF(*MF); 3331 EntryBuilder->setMF(*MF); 3332 MRI = &MF->getRegInfo(); 3333 DL = &F.getParent()->getDataLayout(); 3334 ORE = std::make_unique<OptimizationRemarkEmitter>(&F); 3335 const TargetMachine &TM = MF->getTarget(); 3336 TM.resetTargetOptions(F); 3337 EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F); 3338 FuncInfo.MF = MF; 3339 if (EnableOpts) 3340 FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 3341 else 3342 FuncInfo.BPI = nullptr; 3343 3344 FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF); 3345 3346 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 3347 3348 SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo); 3349 SL->init(TLI, TM, *DL); 3350 3351 3352 3353 assert(PendingPHIs.empty() && "stale PHIs"); 3354 3355 // Targets which want to use big endian can enable it using 3356 // enableBigEndian() 3357 if (!DL->isLittleEndian() && !CLI->enableBigEndian()) { 3358 // Currently we don't properly handle big endian code. 3359 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3360 F.getSubprogram(), &F.getEntryBlock()); 3361 R << "unable to translate in big endian mode"; 3362 reportTranslationError(*MF, *TPC, *ORE, R); 3363 } 3364 3365 // Release the per-function state when we return, whether we succeeded or not. 3366 auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); }); 3367 3368 // Setup a separate basic-block for the arguments and constants 3369 MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock(); 3370 MF->push_back(EntryBB); 3371 EntryBuilder->setMBB(*EntryBB); 3372 3373 DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc(); 3374 SwiftError.setFunction(CurMF); 3375 SwiftError.createEntriesInEntryBlock(DbgLoc); 3376 3377 bool IsVarArg = F.isVarArg(); 3378 bool HasMustTailInVarArgFn = false; 3379 3380 // Create all blocks, in IR order, to preserve the layout. 3381 for (const BasicBlock &BB: F) { 3382 auto *&MBB = BBToMBB[&BB]; 3383 3384 MBB = MF->CreateMachineBasicBlock(&BB); 3385 MF->push_back(MBB); 3386 3387 if (BB.hasAddressTaken()) 3388 MBB->setHasAddressTaken(); 3389 3390 if (!HasMustTailInVarArgFn) 3391 HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB); 3392 } 3393 3394 MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn); 3395 3396 // Make our arguments/constants entry block fallthrough to the IR entry block. 3397 EntryBB->addSuccessor(&getMBB(F.front())); 3398 3399 if (CLI->fallBackToDAGISel(*MF)) { 3400 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3401 F.getSubprogram(), &F.getEntryBlock()); 3402 R << "unable to lower function: " << ore::NV("Prototype", F.getType()); 3403 reportTranslationError(*MF, *TPC, *ORE, R); 3404 return false; 3405 } 3406 3407 // Lower the actual args into this basic block. 3408 SmallVector<ArrayRef<Register>, 8> VRegArgs; 3409 for (const Argument &Arg: F.args()) { 3410 if (DL->getTypeStoreSize(Arg.getType()).isZero()) 3411 continue; // Don't handle zero sized types. 3412 ArrayRef<Register> VRegs = getOrCreateVRegs(Arg); 3413 VRegArgs.push_back(VRegs); 3414 3415 if (Arg.hasSwiftErrorAttr()) { 3416 assert(VRegs.size() == 1 && "Too many vregs for Swift error"); 3417 SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]); 3418 } 3419 } 3420 3421 if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs, FuncInfo)) { 3422 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3423 F.getSubprogram(), &F.getEntryBlock()); 3424 R << "unable to lower arguments: " << ore::NV("Prototype", F.getType()); 3425 reportTranslationError(*MF, *TPC, *ORE, R); 3426 return false; 3427 } 3428 3429 // Need to visit defs before uses when translating instructions. 3430 GISelObserverWrapper WrapperObserver; 3431 if (EnableCSE && CSEInfo) 3432 WrapperObserver.addObserver(CSEInfo); 3433 { 3434 ReversePostOrderTraversal<const Function *> RPOT(&F); 3435 #ifndef NDEBUG 3436 DILocationVerifier Verifier; 3437 WrapperObserver.addObserver(&Verifier); 3438 #endif // ifndef NDEBUG 3439 RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver); 3440 RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver); 3441 for (const BasicBlock *BB : RPOT) { 3442 MachineBasicBlock &MBB = getMBB(*BB); 3443 // Set the insertion point of all the following translations to 3444 // the end of this basic block. 3445 CurBuilder->setMBB(MBB); 3446 HasTailCall = false; 3447 for (const Instruction &Inst : *BB) { 3448 // If we translated a tail call in the last step, then we know 3449 // everything after the call is either a return, or something that is 3450 // handled by the call itself. (E.g. a lifetime marker or assume 3451 // intrinsic.) In this case, we should stop translating the block and 3452 // move on. 3453 if (HasTailCall) 3454 break; 3455 #ifndef NDEBUG 3456 Verifier.setCurrentInst(&Inst); 3457 #endif // ifndef NDEBUG 3458 if (translate(Inst)) 3459 continue; 3460 3461 OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure", 3462 Inst.getDebugLoc(), BB); 3463 R << "unable to translate instruction: " << ore::NV("Opcode", &Inst); 3464 3465 if (ORE->allowExtraAnalysis("gisel-irtranslator")) { 3466 std::string InstStrStorage; 3467 raw_string_ostream InstStr(InstStrStorage); 3468 InstStr << Inst; 3469 3470 R << ": '" << InstStr.str() << "'"; 3471 } 3472 3473 reportTranslationError(*MF, *TPC, *ORE, R); 3474 return false; 3475 } 3476 3477 if (!finalizeBasicBlock(*BB, MBB)) 3478 return false; 3479 } 3480 #ifndef NDEBUG 3481 WrapperObserver.removeObserver(&Verifier); 3482 #endif 3483 } 3484 3485 finishPendingPhis(); 3486 3487 SwiftError.propagateVRegs(); 3488 3489 // Merge the argument lowering and constants block with its single 3490 // successor, the LLVM-IR entry block. We want the basic block to 3491 // be maximal. 3492 assert(EntryBB->succ_size() == 1 && 3493 "Custom BB used for lowering should have only one successor"); 3494 // Get the successor of the current entry block. 3495 MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin(); 3496 assert(NewEntryBB.pred_size() == 1 && 3497 "LLVM-IR entry block has a predecessor!?"); 3498 // Move all the instruction from the current entry block to the 3499 // new entry block. 3500 NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(), 3501 EntryBB->end()); 3502 3503 // Update the live-in information for the new entry block. 3504 for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins()) 3505 NewEntryBB.addLiveIn(LiveIn); 3506 NewEntryBB.sortUniqueLiveIns(); 3507 3508 // Get rid of the now empty basic block. 3509 EntryBB->removeSuccessor(&NewEntryBB); 3510 MF->remove(EntryBB); 3511 MF->DeleteMachineBasicBlock(EntryBB); 3512 3513 assert(&MF->front() == &NewEntryBB && 3514 "New entry wasn't next in the list of basic block!"); 3515 3516 // Initialize stack protector information. 3517 StackProtector &SP = getAnalysis<StackProtector>(); 3518 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 3519 3520 return false; 3521 } 3522